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Abstract

We define the higher eta-invariant of a Dirac-type operator on a non-simply-
connected closed manifold. We discuss its variational properties and how it would
fit into a higher index theorem for compact manifolds with boundary. We give appli-
cations to questions of positive scalar curvature for manifolds with boundary, and to a
Novikov conjecture for manifolds with boundary.

1 Introduction

The eta-invariant is a spectral invariant of Dirac-type operators on closed manifolds. It was
introduced by Atiyah, Patodi and Singer [2] in order to prove an index theorem for elliptic
operators on manifolds with boundary. Let W be an even-dimensional compact smooth spin
manifold with boundary M. Give W a Riemannian metric which is a product near M. Let
V be a Hermitian vector bundle with connection on W, also a product near the boundary.
Denote the Dirac-type operator on W, acting on spinors which satisfy the APS boundary
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conditions, by Qw, and the Dirac-type operator on M by @Q»s. Suppose, for simplicity, that
@a 1s invertible. Then the index theorem states

Index(Qu) = [ A(W) A CA(V) — 5 1(Qw). (1)

Note that while the left-hand-side of (1) is a deformation-invariant, being the index of
a Fredholm operator, neither term of the right-hand-side of (1) is topological in nature. The
integrand in (1) is a specific differential form on W. It is only the combination of the two
terms on the right-hand-side of (1) which has topological meaning.

By considering eta-invariants of Dirac-type operators coupled to flat vector bundles on
M, one can also form the rho-invariant, an analytic expression with topological meaning [3].
We review some of this theory in Section 2.

The index theorem (1) is a “lower” index theorem, in that it does not involve the
fundamental group of W. A “higher” index theorem for closed manifolds is due to the work
of Mischenko, Kasparov, Connes-Moscovici and others. To state it, suppose X is a closed
spin Riemannian manifold with fundamental group I'. Let v : X — BT be the classifying
map for the universal cover of X, defined up to homotopy. If one takes the fundamental
group into account, one can refine the index of the Dirac operator to become a higher index
living in the K-theory of the reduced group C*-algebra C;(T'). Under favorable conditions on
T, such as I being hyperbolic [18], one can pair the higher index with the group cohomology
of I', and the higher index theorem states

< Index(Qx),™ > = (A(X) U Ch(V) U »*(7)) [X], (2)
for all r € H*(BT; C).

In this paper we consider the “higher”-version of (1). That is, we want an index
theorem for manifolds with boundary which involves the cohomology of the fundamental
group of W.

Due to the nontopological nature of the integral in (1), it is clear that one first needs
a way of proving (2) which gives the right-hand-side as the integral of an explicit local
expression over X. Using Quillen’s theory of superconnections [36], we gave such a local
expression in [31].

The next problem is to define a higher eta-invariant, an object which pairs with group
cohomology. Our main interest is in the possible geometric and topological applications.
There are some hints as to the right approach to the higher eta. First, there is an L2-eta-
invariant [15], which should be the pairing of the higher eta-invariant with H°(BT'; C) = C.
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The analog of (1) has been proven in this case [37]. Second, a higher rho-invariant has been
defined for the signature operator by purely topological means {43].

An early approach to the index theorem of (2) when T’ is free abelian, due to Lusztig,
was to apply the families index theorem to a certain fibration which is canonically associated
to X {34]. In the first half of this paper, we use this method to define the higher eta-invariant
in some cases in which I is virtually abelian i.e. has an abelian subgroup of finite index. We
have two reasons for using this approach. First, it involves “commutative” analysis which
may be more familiar to readers, thereby giving some justification for the noncommutative
approach of the second half. Second, one obtains stronger results this way than for more
general T'. We initially consider the case when ' = F x Z*, with F finite. The base of the
above fibration is then F x T*. An eta-form 77, a differential form on the base of a fibration,
was defined by Bismut and Cheeger [8]. In Sections 3.1.1-3.1.6 we analyze in detail this eta-
form in the case of Lusztig’s fibration. We look at how #f changes under conformal variations
of the metric, and under arbitrary variations of the input data. In Section 3.1.7 we state a
higher index theorem for manifolds with boundary, based on the results of [9], and give an
application to the question of whether a closed positive-scalar-curvature (p.s.c.) manifold
can be the boundary of a p.s.c. manifold with a product metric near the boundary.

In Section 3.2 we consider the case when I is the semidirect product of Z* and a finite
group F. The space on which the eta-form lives turns out to be an orbifold of the type
used in {5] in order to define “delocalized” equivariant cohomology. In particular, the higher
rho-invariant is a delocalized element of equivariant cohomology.

The second half of the paper is concerned with more general I'. The idea is to work with
a fibration as above, except that now the base is a noncommutative space B whose algebra
of “continuous functions” is C;(T'). If B is a subalgebra of C}(T') consisting of “smooth”
functions, the “homology” of B is taken to be the cyclic cohomology of B. The algebra of
“differential forms” on B is taken to be the universal differential graded algebra of B. We
start by reviewing some results on the cyclic cohomology of the group algebra CI' in Section
4.1. We relate the results on semidirect product groups to cyclic cohomology in Section 4.2.

The main idea of this paper, along with {31], is to use superconnections in the context
of noncommutative geometry. The paper [31] was concerned with expressing the Chern
character of the higher index as an explicit closed differential form on B. In Section 4.3 we
review some of the needed results of [31]. The higher eta-invariant 7 is defined as a differential
form on B in Section 4.4. To show that the formal expression for 7} actually makes sense, we
assume that the Dirac operator on the I'-cover M’ of M is invertible and that I' is virtually
nilpotent i.e. of polynomial growth [21]. These technical conditions arise because unlike the
Chern character, the higher eta-invariant involves heat kernels at arbitrarily large time, and
unlike the L?-eta-invariant, it involves heat kernels between arbitrarily distant points on M.
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We use finite-propagation-speed methods to control these problems. The algebra B is taken
to be the natural “smooth” subalgebra of C(I'). In Section 4.5 we look at how # changes as
one varies the input data. As for the lower eta-invariant, we find that the variation is given
by the integral of a local expression.

We define the higher rho-invariant g to be the part of 7 corresponding to nontrivial
conjugacy classes in I'. It is a closed differential form, and in Section 4.6 we show that

after taking care of some numerical factors, it represents an element of the periodic cyclic
homology PHC., ,(B) of B (which with our assumption on T equals PHC, ,(CT') [24]).

In Section 4.7 we consider the case of signature operators, and show how the higher eta
and rho-invariants can given a wider range of definition by making the signature operator on
M effectively invertible. Modulo technical conditions on T', our analytic higher rho-invariant
is defined under the same circumstances as the topological higher rho-invariant of [43] and
takes value in the same group. We propose, but do not prove, a higher index theorem for
manifolds with boundary in Section 4.8. In Section 4.9 we use the higher eta-invariant to
formulate a Novikov conjecture for manifolds with boundary. In Section 4.10 we look at the
pairing of 77 with 0-cocycles and 1-cocycles, where the formulas can be made more explicit.
Finally, we conclude with some remarks.

I wish to thank Stephan Stolz and Shmuel Weinberger for their generous topological
help. I am grateful to Michele Vergne for making available a manuscript copy of [6]. I thank
F. Hirzebruch and the Max-Planck-Institut for their hospitality.

2 The Lower Eta-Invariant

Let M™ be a connected closed smooth manifold. For purposes of exposition, suppose that
the fundamental group T of M is finite. Then given a representation p: I' = U(N), there is
an associated flat Hermitian C¥-bundle £, = M ®, C¥ on M.

The input information needed to define the eta-invariant consists of

1. A Riemannian metricon M

2. A Clifford module over M. For simplicity, we will assume that M is spin, n is odd and
that the Clifford module is of the form § ® V, where S is the spinor bundle over M
and V is a Hermitian vector bundle with connection. ‘



There is a self-adjoint densely-defined Dirac operator @), acting on L2-sections of SQV @ E,,,
with discrete spectrum.

Definition 1 [2] The eta-invariant is

=z [ TR(Qe"%)ds € R 3)

The integral in (3) is absolutely convergent [11]. Formally, 5, = TR (1%[)

An important point about 7, is that if @, is invertible then as one varies the input
information, the variation of 7, is given by the integral of a local expression on M [3]. (More
generally, it is enough to assume that dim(Ker(Q,)) is constant during the variation.)

A special case of geometric interest is when V is a vector bundle associated to the
principal Spin(n)-bundle of M by some representation o of Spin(n). Then the Chern char-
acter Ch(V) is a polynomial in the Pontryagin classes and the Euler class of M, which
can be computed from o. Suppose that Ch(V) is a polynomial in the Pontryagin classes
of M i.e. does not involve the Euler class. Then the same is true for the index density
A(M) A Ch(V), and it turns out that the local expression for the variation of 5, vanishes
for conformal deformations of the Riemannian metric [3].

For general V, the locality of the expression for the variation of 7, implies that the
variation is independent of p. Thus if p; and p, are two representations of T' such that @,
and @),, are invertible then the rho-invariant 7, — 5,, is a deformation-invariant.

Sometimes it is more convenient to look at the reduced eta-invariant

, _ Mo+ dim(Ker(Q,))
np = 5

(mod Z).

Then 7, has a local expression for its variation, without qualifications, and so 5, —17,, is a
smooth invariant of the pair (M, V). It follows from the index theorem of 2] that if V is
associated to the principal Spin(n)-bundle of M then 7, —n/ gives a map from the bordism
group (P*(BT) to R/Z. (As QP'"(BT) is torsion, this map actually takes values in Q/Z.)

However, in this paper we will always take rho-mvarla.nts to be real-valued.

Instead of considering representations of T', it will turn out to be useful to think of the
eta-invariant as something computed on the universal cover Mof M. Let y €T act on M
on the right by a diffeomorphism R, € Dif f LM Let V be the e pullback of V' to M. Let §
be the Dirac operator on L*-sections of S ® V. Suppose that Q is invertible. Then we can



define an equivariant eta-invariant on M, a function from I' to C, by
=== [ TR (R Ge"®)as € C (@)
ny)= /7 Jo y :

The relationship between 5, and the n-function of (4) is simply that if x, is the character of

the representation p then :
M = E N Xo(7n(7).
~€r
The evaluation n(e) of 5 at the trivial element e has a local variation, and the variation of

n(v) vanishes for v # e.

Alternatively, we can define an element of the group algebra by

n=73_n(1)y € CT. (5)

~el

The cyclic cohomology group HC®(CT) is simply the vector space of traces on CT', and
decomposes according to the conjugacy classes of I':

HCO(CF)= @ CT¢ss, (6)

<z>e<I>

where for a conjugacy class < z > € < I' >, the trace T, is given by

T<x>(z°1'7)= z Cy-

~el YELT>

We can think of the cohomology group H°(T'; C) = C as being the summand C7,.s in (6);
although this identification may seem artificial at the moment, it is the zero-dimensional case
of a general statement about the cyclic cohomology of group algebras, as will be discussed
in Section 4.1. Then we can summarize the variation properties of the eta-invariant by
saying that the pairing of the 5 of (5) with the group cohomology of I has a local variation,
while the pairing of 1 with the complement of the group cohomology of I' in the cyclic
cohomology of CI' has vanishing variation. This last statement, which as it stands is only
for zero-dimensional group cohomology and zero-dimensional cyclic cohomology, is what we
will generalize to higher-dimensional cohomology groups in the second half of this paper.



3 Virtually Abelian Fundamental Groups

3.1 Product Groups
3.1.1 The Basic Setup

Let M™ be a connected closed smooth manifold with first Betti number k. The Albanese
variety A of M is the k-torus Hy(M;R)/H;(M;Z),_ ;.. [34]. Given a basis {e;}%, of
Hi(M; Z¥),, or.. C Hi(M;R¥), let {v'}f, be an integral dual basis to {e;}5, in (H;(M;R))".
The 1-forms {dv‘'}5_, in A'(H1(M;R)) descend to forms on A. Fix basepoints mo € M and
ap € A. There is a canonical homotopy class of basepoint-preserving maps from M to
A constructed as follows: If {w'}%, are closed 1-forms on M which represent {v‘}%, in

H'(M;R) = (H,(M;R))", there is a map », from M to A given by

m
v,(m) =ao+ z(/ w') e;.
i mo
The desired canonical homotopy class is that of v,. Given a basepoint-preserving map
f: M - Ain this homotopy class, if we choose w* = f*dv' then we recover f as f = v,.

We will denote the dual torus to A by P, for Picard variety.

Note: The k-tor1i A and P will play very different roles in what follows. One should
think of A as the classifying space B7*, whereas P should be thought of as the dual group
Zx,

There is a double fibration M & M x P 33 P and a canonical line bundle E, on M x P
given as follows : Let H be the Hermitian line bundle over A x P which is the quotient of
R¥ x (R*)* x C by the action of Z* x (Z*)*, where (7,7") € Z* x (Z*)* acts by

(0,0%,2) = (v +7,0" + 797, 2),

There is a canonical Hermitian connection on H given by the 1-form —27:i#do™ on R* x (R¥)*.
Let Ey = (f x Id.)*H be the pulled-back line bundle over M x P, with the pulled-back

connection.

Let F be a finite group. Suppose that the fundamental group of M is I' = F x Z*. Let
p: F = U(N) be a unitary representation of F. Let E, be the flat Hermitian C¥-bundle
over M specified by p. Then we put L, to be 7} E, ® E;, a CN-vector bundle over M x P.

The input information needed to define the eta-form consists of

7



1. A Hermitian connection on Ej, specified by the map f: M — A
2. A Riemannian metric on M

3. A Clifford module over M. For simplicity, we will assume that M is spin, and that the
Clifford module is of the form S ® V, where S is the spinor bundle over M and V is a
Hermitian vector bundle with connection. (The analogous results when M is not spin
will be straightforward.) If n is even then the Clifford module is Z; - graded by the
grading on S, while if n is odd then the Clifford module is ungraded.

For each p € P, the restriction of L, to 7;'(p) is a flat Hermitian bundle W, over M,
with twisting specified by p and p. Thus we have a family of flat bundles over M parametrized
by P.

Let &, be the infinite-dimensional vector bundle on P such that C°(&,) = C°(7{S ®
7V ®L,). That is, the fiber of £, over p € P is C°(S®V @ W,,). The Hermitian connection
on m;S@mV @ L, gives a Hermitian connection on £,, by horizontal differentiation, which
we will denote by V. For each p € P, there is a vertical Dirac operator @), acting on
C*(S @V @ W,), with discrete real spectrum. These vertical operators fit together to give
an operator Q acting on C%(€,). Fix a constant 8 > 0. We will abbreviate 5'/2d by d.
Suppose that U, is an open subset of P such that Ker(Q,) forms a vector bundle over U, as
p varies in U,,.

3.1.2 The Higher Eta-Invariant

In what follows we use the superconnection formalism of Quillen [36], along with its extension
to the odd-dimensional case [36, §5] . For the relevant notions, see (6, 7, 8, 36). As for nota-
tion, an infinite-dimensional (super)trace will be written as (S)T' R, while a finite-dimensional
(super)trace will be written as tr(,). We will write the Chern character of a (super)-vector
bundle V as Chg(V) = tr(,)(e™#*V), where Fy is the curvature of a connection on V, and

put Ch(V) = Chy(V).
Definition 2 The superconnection D, : C®(E) — C®(€ @ A*(P)) is given by

_ ) sQ+V  ifniseven
D, ‘{ s0Q+V  if n is odd. @



Definition 3 [7] For s > 0, the Chern character ch,(s) € A*(P) of £,, a closed form, is
given by
% STR (e‘ﬁDg) if n is even
chy(s) = (8)
% TR, (e‘ﬁDz) if n is odd.

Definition 4 [8, 19] The eta-form i, € A*(U,) is given by

E;éi IS STR (Q e“’DZ) ds ifnis even

o . (9)
B S TR, (0Qe DY) ds  if n is odd.

Note: The integral in (9) is well-defined, as is shown in [6]. The reason for dividing by N
in the definitions will become clear.

Let R be the rescaling operator on A*(P) which is multiplication by 83/ on A/(P).
We will let ¥ and 7™ be the local coordinates on A and P respectively from Section 3.1.1.

Proposition 1 The differential forms ch,(s) have a limit as s — 0, given by

limch,(s) = Ry ( [ AM) A Ch(v) A eﬁﬂ'w"‘). (10)
2—0 M
Pf. From [7], we have that

lim ch, (s) = Ry ( /M A(T*(M x P)) A Ch(z!V ® L,)) .
As T*™(M x P) = miTM,
A(T*™(M x P)) = n; A(M).

Now
Ch(miV® L,) = 7iCh(V) A m;Ch(E,) A Ch(Ey).
As E, is flat, Ch(E,) = N. It remains to compute Ch(Ey). As in [34], the curvature of H is

d(—2miv-do*) = —27idU Adv™. Then the curvature of E, is —271 f*dU A dv* = —271 & AdD™,
from which the proposition follows. |



Note: The right-hand-side of (10) is a polynomial in the forms dv*. The coeflicients
are higher indices. The index theorem for families {1, 6, 7] says that for all s > 0, ch,(s) rep-
resents the Chern character § Chg(Indez(Q)) of the index bundle Indez(Q), and a fortior:
so does the right-hand-side of (10).

Let Viker(q) denote the Hermitian connection on Ker(Q) induced from its embedding
in the Hilbert space L%(£,) = L3 (n;S @ 1V ® L,).

Proposition 2 [8, 19] The differential of 7j, on U, is given by
Rﬁ (IM E(M) A Ch(V) A CQWiaAdr) - l_}f tr, (e_ﬁvi’e’(Q)) if n is even

Jﬁp = R . (11)
Rp (fu A(M) A CH(V) A e3xi0réT) if n is odd.
Pf. If n is even, then d—(%;ﬂwl = —-ﬂ dSTR (Q e"ﬁDg). Integrating with respect to s, we
obtain _
37, = i oh(s) = fim chy(s). (12)

In the 3 — oo limit, only the kernel of @ contributes to the supertrace in ch,(s) , and one
has lim,_.e chy(s) = 3 STR (e"av?""(‘?)). Along with Proposition 1, this proves the even

case. If n is odd, equation (12) still holds, but lim,e chy(s) = & TR, (e7#7xe@) = 0.
||

We now look at what conclusions can be drawn about the eta-forms without having
detailed information about the vector bundle Ker(Q). We will make succesively weaker
hypotheses, and will naturally get succesively weaker conclusions.

We will want to see how 7], changes as we vary the input data. The method to compute
this is to consider the product bundle R x M x P — R x P. The R factor represents
the parameter € which controls the variation. Let us denote the corresponding eta-form on
R x P by 5, . Then &, € A*(R x P) can be written as

&, = ,(€) + B/ 7de AT, ¢)
where 7, and ﬁp are forms on P. The differential of 5, on R x P is given by
d&, = dij, + p**de A (8.5, — d7,). (13)

Thus the formulas for the differentials of eta-forms, applied to &,, will allow us to compute
0.7, up to an exact form on P. If a quantity is independent of ¢, we will say that it is a
deformation invariant. (The reason that we do not say simply that it is an invariant is that
there may be some restrictions on the operators parametrized by e, such as invertibility.)
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3.1.3 @, invertible for all p€ P
In this section we assume that the operators @, are invertible for all p € P. We take U, = P.

Proposition 3 The eta-form 7, is closed.

Pf. In this case Index(Q) is trivial, and so the higher indices of (10) vanish. The result
then follows from Proposition 2. ||

Thus 7, represents a cohomology class [7j,] in H*(P;C). A priori, this class depends .
on all of the choices made, namely

1. Themap f: M — A
2. The Riemannian metric on M

3. The Hermitian connection on V.

Proposition 4 Suppose that the vector bundle V is associated to the principal Spin(n)-
bundle on M. Suppose that the indez density ﬁ(M)ACh(V) is a polynomial in the Pontryagin
classes of M i.e. does not involve the Euler density. Then for fized f : M — A, [j,] is a
conformal-deformation invariant.

Pf. Let g(c) be a 1-parameter family of conformally equivalent metrics. Let ¥ be the
corresponding vector bundle on R X M. Let 5, be the eta-form on R x P. By Proposition
2,

35, = Ry ( [ AR x M) A Ch(T) A 62""“““‘).
Thus

A7, — t’f%p = f-Y%4(9,) Ja‘rp =Rg (/Mi(a‘) (A(R x M) A Ch(17) ) A ch’u‘aAdU‘) _

By hypothesis, A(Rx M)ACh(V) is a polynomial in the Pontryagin classes p; € A%*(Rx M),
and it is known that this implies that i(d,) (A(R x M) A Ch(V)) vanishes identically [16].

(To see this last point, it is enough to consider the Pontryagin forms ¢r 2% on R x M.
If w(¢) denotes the Riemannian connection 1-form, its curvature on R x M is

) = R(e) + de A D,
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where R(e) is the Riemannian curvature 2-form of M. Thus i(d,) tr 12* is proportionate to
tr(8.wAR?*~1). In terms of a local orthonormal basis {r;}, the change in w under a conformal
change of metric is of the form dw;; = h,; 7; — h,; 7, for some function 2 on M [23]. Then
tr(Ow A R*-1) is proportionate to ¥i; (hir; — h;m) A (R¥1); =25, hir; A (R*1);;.
However, ; 7; A (R*~1);; vanishes by the Bianchi identity.)

Therefore, 8,7, is exact on P. B

Proposition 5 Suppose that p; and p; are two representations of ¥ such that the corre-
sponding families of Dirac operators are tnvertible on all of P. Then [7,,] - [,] is inde-
pendent of the choice of f and is a deformation invariant with respect to the Riemannian
metric on M and the Hermitian connection on V.

Pf. Consider a 1-parameter family of choices. Form the corresponding families of Dirac
operators, parametnzed by R x P, and let &, and &,, be their eta-forms By Proposition
2,d5 G, and da-p2 are the same local expression on R x P, and so d (6,, —&,,) =0. Then by
(13), O(7,, — 7,,) is exact on P. Thus [7,,] - [f,,] is a deformatlon-mva.riant with respect
to the choices made. As any two choices of f can be joined by a path, and the invertibility

of the operators (), is independent of the choice of f, the independence with respect to f
follows. [

Note: In Proposition 5 we are interested only in the difference between [7j,,] and [7,,]. It is
not really necessary to assume that both p; and p; are such that the corresponding families
of Dirac operators are individually invertible on all of P. To be more general, suppose that
{p;} are the irreducible representations of F and {c;} is a set of complex numbers such that
Y;c;=0andforallpe P, 3; ﬁ)— TR(e=*"9(3)) decreases exponentially as s? — co. Then
the same argument as in the proof of Proposition § gives that ¥°;¢;[7,,] is a deformation
invariant.

An important class of examples for which this more general invertibility sometimes
holds is given by signature operators. The paper [43, §1] considers simple manifolds, mean-
ing that if M’ is the finite F-cover of M, the group F acts trivially on the twisted co-
homology groups H*(M’; Qm(M’)). The analogous condition in our case would be that
x; Tff,' TR(e"zqg("i)) decreases exponentially as s — oo provided that the coefficient of the
trivial representation vanishes. This condition is independent of the Riemannian metric on
M. If in addition };c; = 0 then ¥; ¢;[ff,;] is a deformation invariant. As any two Rie-
mannian metrics can be joined by a path of Riemannian metrics, the deformation invariance
implies complete invariance of 3, ¢;[7f,,] . That is, we have defined a smooth topological
invariant of M. To put it another way, we have defined a higher rho-invariant which lies in

12



KF(pt.)/{trivial and regular representations} ® H*(P;C). Presumably this coincides with
the higher rho-invariant defined in [43, §1]. To show this, one would have to prove a families
index theorem for fibrations whose fibers are singular spaces of the type used in [43].

Example: A class of operators that fulfill the hypotheses of this section is given by
Dirac operators on manifolds of positive scalar curvature. To see that 7, can be nontrivial,
let L be a spin spherical space form with fundamental group F. Take M to be L x T', with
the product metric and a spin structure induced from the given spin structure on L and any
spin structure on T'. Take the vector bundle V to be trivial, so that one is considering the
Dirac operator acting on spinors on M. The metric on M has positive scalar curvature, and
so the Lichnerowicz formula implies that @, is invertible for all p € P [29]. By separation of
variables, it is easy to see that [7,(M)] = %’E n.(L) - Cha(T') € H*(P;C). Here n,(L) € C
is the usual twisted eta-invariant of L and Chg(T') € H*(P;C) is the Chern character of
the index bundle for the family of twisted Dirac operators on T'. In particular, L and p can
be chosen so that 5,(L) is nonzero [20], and it follows from (10) that Chs(T') is a nonzero
element of H'(P;C).

3.1.4 Ker(Q,) forms a vector bundle on P

In this section we assume that the kernels of the operators J, form a vector bundle on P as
p varies in P. If n is even then we cannot say anything without detailed information about
the vector bundle Ker(Q). For example, one sees from Proposition 2 that there is no reason
that 7, should be closed. However, if n is odd then all of the results of the previous section
go through.

Proposition 8 If n is odd, the eta-form , is closed.

Pf. In this case the right hand side of (11) is a polynomial in the variables d*. However,
the existence of #], means that this polynomial is an exact form on P. Thus its coefficients
must vanish. | |

The proofs of the following propositions are virtually the same as in Section 3.1.3.

Proposition 7 Suppose that the vector bundle V is associated to the principal Spin(n)-
bundle on M. Suppose that the indez density A(M)ACh(V) is a polynomial in the Pontryagin
classes of M. If n is odd then for fized f : M — A, [7},] is a conformal-deformation invariant.
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Proposition 8 Suppose that p, and p; are two representations of F such that the kernels
of the corresponding families of Dirac operators form vector bundles on P. If n is odd then
[fips] - [7i,) is independent of the choice of f and is a deformation invariant with respect to
the Riemannian metric on M and the Hermitian connection on V.

3.1.5 @, is invertible for pe U,

In this section we assume that the operators @, are invertible when p lies in an open subset
U, of P. We can no longer conclude that %, is closed on U,.

Let 1+ : U, = P be the embedding of U, in P. The relative de Rham cohomology
H*(P,U,; C) is isomorphic to the homology of the complex

o S AP U) S ANPU,) S A(PU) S -
where A*(P,U,) = AK(P) @ A*1(U,) and d (o, o) = (de,i*(a) — d o) [12].

Let C denote Ry (s A(M) A Ch(V) A e¥7977) € A*(P).

Proposition 9 The pair (C,7,) is a closed element of A*(P,U,). Its class in H*(P,U,; C) is
independent of the choice of f and is a deformation invariant with respect to the Riemannian
metric on M and the Hermitian connection on V.

Pf. It is always true that dC = 0, and it follows from Proposition 2 that (C, )
is closed. Let ¢ parametrize a 1-parameter family of choices, and consider the forms C =
R (IM AR x M) A CR(V) A e"'dft'(”'da')) € A*(RxP)and &, € A*(RxU,). Decompose
C as

C =C(e) + ' %de A 5(6)
Then the equations dC = 0 and d g, = t"C give

(1

8.C -dC =0
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to be the (tangential) signature operator: 18, acting on A°(M). Let us use the local coor-
dinate v* € {0,1) on P, with v* = 0 being the untwisted situation. Then @, is invertible
for v* € (0,1). So 7 is a 0-form on (0,1), which to v* € (0,1) assigns the corresponding
twisted eta-invariant. A computation gives that 7j(v*) = -"25 (2v* = 1). Also C = /7Bdv*,
a 1-form defined on all of P. It is easy to check that (C,7) represents a generator for
HY(P(0,1);C)=C

Proposition 10 Suppose that the vector bundle V is associated to the principal Spin(n)-
bundle on M. Suppose that the indez density AM)ACK(V) is a polynomial in the Pontryagin
classes of M. Then for fized f : M — A, the class of 7j, in A"(U,,)/Im(d) is a conformal-
deformation invariant.

Pf. The proof is the same as that of Proposition 7. n

Proposition 11 Suppose that p; and p; are two representations of F such that the corre-
sponding families of Dirac operators are invertible on U,. Then1j,, - 7j,, 13 a closed form on
U,. Its class in H*(U,; C) is independent of the choice of f and is a deformation tnvariant
with respect to the Riemannian metric on M and the Hermitian connection on V.

Pf. By Proposition 2, 7, and #,, have the same differential on U,. The proof of the
deformation invariance of [7,, — j,,] is the same as in Proposition 5. n

3.1.6 Ker(Q,) forms a vector bundle on U,

In this section we assume that the kernels of the operators @, form a vector bundle on U, as
p varies in U,. If n is even then we cannot say anything without detailed information about
the vector bundle Ker(Q), but if n is odd then all of the results of the previous section go
through.

Proposition 12 If n is odd then the pair (C, 7,) is a closed element of A*(P,U,). Its class
in H*(P,U,;C) ts independent of the choice of f and is a deformation invariant with respect
to the Riemannian metric on M and the Hermitian connection on V.

Proposition 13 Suppose that the vector bundle V is associated to the principal Spin(n)-
bundle on M. Suppose that the indez density A(M)AChA(V) is a polynomial in the Pontryagin
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classes of M. If n is odd then for fized f : M — A, the class of 7j, in A*(Up)/Im(J) is a

conformal-deformation invariant.

Proposition 14 Suppose that p, and p; are two representations of F such that the kernels
of the corresponding families of Dirac operators form vector bundles on U,. If n is odd then
fpy - 1o, i3 a closed form on U,. Its class in H*(U,; C) is independent of the choice of f and
is a deformation invariant with respect to the Riemannian metric on M and the Hermitian
connection on V.

3.1.7 Higher Index Theorem for Manifolds with Boundary

Note that to define 7, the group I' does not really have to equal 7;(M). It is enough just to
have a homomorphism from 7,(M) to I and a map f from M to the corresponding torus in
the canonical homotopy class, and all of the previous steps go through.

We now suppose that M is the boundary of a compact spin manifold W, with a product
metric near the boundary. (We no longer assume that M is connected.) Let V be a Hermitian
vector bundle with connection on W which is a product near the boundary. Take the map
f: W — Afrom W to its Albanese variety to be constant in the normal direction near the
boundary of W.

We will denote the fundamental group of W by I', and assume that it is the product
of a finite group F and a free abelian group. Then the inclusion of M into W gives a
homomorphism from 7 (M) to I, and f restricts to a map fay : M — A. Let p: F —
U(N) be a representation of F. Suppose that the twisted Dirac-type operators on M are all
invertible. Then we can define the eta-form 7,(M) € A*(P).

Let Qw,, denote the family of twisted Dirac-type operators on W, parametrized by P,
with Atiyah-Patodi-Singer (APS) [2] boundary conditions. Then the index bundle Indez(Qw,,)
lies in K*(P) and from [9], its Chern character is given by

% Chg (Indez(Qw,)) = Ry ( jw A(W) A Ch(V) A e““’w"d*"'w) —7,(M) € H*(P;C).

(14)
(This only seems to be proven when dim(W) is even; for remarks on the odd case, see [10].)

In particular, suppose that W has positive scalar curvature and that V is trivial, so that
we are looking at the pure Dirac operator. Then M also has positive scalar curvature. The
Bochner argument [29], applied to the manifold W with boundary, gives that Indez(Qw,) =
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0. Thus if {p;} are the irreducible representations of F and {c;} is a sequence of numbers
such that 35, ¢; = 0 then 3°; ¢; 7,,(M), which is a sort of higher rho-invariant, vanishes in
H*(P;C). So [L; ¢; 7j,,(M)] is an obstruction to realizing M as the boundary of a manifold
W with a positive-scalar-curvature metric which is a product near the boundary.

To see that this is a nonvacuous statement, let L be as in the Example of Section
3.1.3. Then L represents a torsion element in the bordism group Q27"*(BF), and so there is
a positive integer ¢ such cL is the boundary of a spin manifold W with fundamental group
F; take any such W. Take M to be isometrically ¢L x T!. Then M bounds W x T and
T,(M) =¢ 3@ 1,(L) - Chg(T"). If L has a nontrivial rho-invariant in the ordinary sense
[20] then we conclude that W x T' cannot have a positive-scalar-curvature metric which is
a product near the boundary, with the boundary metric being the given one on M.

3.2 Semidirect Product Groups

In this section we extend the results of the previous section on product groups to the case of
a semidirect product of Z* and a finite group F. That is, we assume that the fundamental
group [ of M fits into a split exact sequence

1-ZF ST S F 1.

Let M’ be the F-fold normal covering of M. We will let ¢ € F act on the right on M’, by
Ry, € Dif f(M'). Let A and P be the Albanese and Picard varieties of M’. The action of F
on M’ induces an action on P. We will denote the subset of P which is fixed by ¢ € F by
P®.

It is known that the irreducible representations of I" all arise as follows. Think of P as
the dual group to Z*. Given p € P, let r, be the corresponding representation of Z*¥. Let
F, be the subgroup of F which fixes p. Let p, be an irreducible representation of F,. Then

one forms the representation of I' induced from the representation r, - p, of Z* - F,, [28].

This motivates looking at the following space. (Unlike the preceding sections, we no
longer look at representations of F.)

Definition 5 [5] P € P x F is given by

P={(p,¢) € PxF:pp=p}=]](P%¢)
¢
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F acts on P by (p,¢) - ¢' = (pd', 8"~ ' ¢¢'). We will denote the space of F-invariant
differential forms on P by A*(P/F), and the associated cohomology theory, the “delocalized
equivariant cohomology” [5] by

H*(P/F;C) = [P H"(P*C)fF = [H(P;C)F & [P H"(P* C)F.
é de

Fix f: M’ — A in the canonical homotopy class. Let V be a Hermitian vector bundle with
connection on M, and let V' be its pullback to M’.

Let W, be the flat Hermitian line bundle on M’ whose twisting is specified by p € P.
Let Q;, be the Dirac operator acting on L*-sections of S’ ® V' @ W,,. Suppose that U is an
open F-invariant subset of P such that Ker(Q;) forms an F-vector-bundle on U as p varies

in U. Define U and U# as for P. If n is even, the Chern-Weil construction goes through to
give a closed form tr, (e'ﬁviﬁr(o’)) e A*(U/F).

Let £ be the infinite-dimensional vector bundle on (P?#,4) C P whose fiber over
(p,8) is C=(5' ® V' ® W;). The Dirac operators {Q;},epe fit together to give an operator
QY : C(&) = C(&). Let Vi : C™(&,) — C’°°(€¢. ® A'(P?)) be the natural Hermitian

connection. Using Vj and Q5, form the superconnection D, as in (7).

Definition 6 For s > 0, the Chern character ch(s) € /\*(ﬁ/F) of £, a closed form, is given
on (P?,¢) by
STR (R; e"ﬁDQ-ca) if n is even
ch(s) =
TR, (Rye™®es’)  if n is odd.

Definition 7 The ete-form ij € A‘(U/F) is given on (U%,¢) b
B2 [ STR (R; Q' e_ﬁD;--e) ds ifniseven

=
I

B [ TR, (Ry0Q ¢ P+ ) ds  if n is odd.
The same arguments as in Section 3.1.2 give

Proposition 15 The differential forms ch(s) have a limit as s — 0, given on (P?%, §) by

lim ch(s) = 6,. Ry ( /M, A(M') A CR(V') A ewf\dﬂ') . (15)

a—0
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Proposition 16 The differential of 7 is given on (U%, ¢) by

SRy (fyr ACMY) A CH(V') A 25987 i, (ko) if m is even

di =

842 R (Jur A(M') A Ch(V') A €¥i3n4T) if n is odd.
(16)

It is now straightforward to extend the results of Section 3.1 to the case of semidirect
products. For example, we give the extensions of Propositions 3-5. Assume that @ is
invertible for all p € P.

Proposition 17 The eta-form 7 is closed.
Thus 7 represents a class [7] in H*(P/F;C).

Proposition 18 Suppose that the vector bundle V is associated to the principal Spin(n)-
bundle on M. Suppose that the index density A(M') A Ch(V') ts a polynomial in the Pon-
tryagin classes of M'. Then for fized f : M' — A, [7]] is a conformal-deformation invariant.

Proposition 19 The “delocalized” part of [7j], that is, the part in (@4, H*(P?; C)JF, is
independent of the choice of f and is a deformation invariant with respect to the Riemannian
metric on M and the Hermitian connection on V.

Note: Suppose that M is a Riemannian spin manifold with positive scalar curvature. The
same argument as in Section 3.1.7 gives that the delocalized part of [7f] is an obstruction to
realizing M as the boundary of a spin manifold of positive scalar curvature with the same
fundamental group, which is a product near the boundary.

Note: The 7, of Section 3.1.2 is related to the 77 of the present section by a Fourier
transform on the group F. More precisely, suppose that I' = F x Z*. Let < F > denote the
conjugacy classes of F. Then F acts trivially on P and

P=PxF, N (P/F)= @ A (P), H'(P/F;C)= P H*(P; C).
<F> <F>

Let us write j € A*(P/F) as 7 = ®cy»e<r> 71 (< ¢ >), with each §j (< ¢ >) in A"(P).
Given a representation p : F — U(N), let x, denote its character. Then 7, is given by

=_ZXp(¢ (< ¢>).

¢GF
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4 Noncommutative Eta-Invariants

4.1 Cyclic Cohomology of Group Algebras

Let B be an algebra over C with unit 1. As a vector space, the universal graded differential
algebra of B is (0,(B) = @2, (%(B), with 2,(B) = B® (®*(B/C)). As a graded differential
algebra, Q.(B) is generated by B and dB with the relations

dl = 0,({2 = O,d(wkwl) = (dwk)wg + (—l)kwk(dw,) forwy € Qk(B) ,wp € Q[(B)
It will be convenient to write an element w; of 0, (B) as a finite sum ¥ bodb, . .. dby.

The reduced cyclic homology HC.(B) is the homology of the complex
~ . T (B) D TUB) ST (B) > ..,

where Ui(B) is the quotient of the space of cyclic chains C}(B) by the subspace span{by, ®
...®b.: b; =1forsomei}. One has [26]

HC.(B) = Cok (HC.(C) —» HC.(B)). (17)

The homology H.(B) of the differential complex 0.(B) = Q.(B)/[(B), 2. (B)] is
isomorphic to the subspace Ker(B) of HC.(B) for * > 0 [17, 26]. (In the case * = 0,
Hy(B) = Ker(B) : HCy(B) (= B/[B,B]) — H,(B,B).) Thus there is a pairing between
the reduced cyclic cohomology HC ~(B) and H.(B) for * > 0. This pairing comes from
a pairing between ZC (B) and Q,(B); if T € -ZUI‘(B) is a reduced cyclic cocycle and
Y bodby .. .db, € (B) is a k-form then their pairing is T T (bo, by, ..., b) [17]. (For x = 0,
there is a pairing between HC?(B), the space of traces on B, and Q(B) = B.)

Now let I' be a discrete group. Let CI' be the group algebra of I'. Let < T' > denote
the conjugacy classes of I', and < ' >’ (< I' >”) those represented by elements of finite
(infinite) order. For z € T, let Z, denote its centralizer in I' and put N, = {z}\Z,, the
quotient of Z, by the cyclic group generated by z. If z and z' are conjugate then N, and
Ny are isomorphic groups, and we will write N, for their isomorphism class. Let C[z] be
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a polynomial ring in a variable z of degree 2. Then the cyclic cohomology of CT is given by
(13]
HC'CD) =( @ H'(NeriC©@CE)® @ H(NewwiC).  (18)

<z>e<l>! <xr>e<I>”

Let S : H*(N¢z>; C) = H**?(N¢y»; C) be the Gysin homomorphism of the fibration
8! - BZ, — BN,. We will abbreviate even,odd by e,0. Put
Te(< z>) = lim(... » H"}(N¢z»; C) D H*(Nge»; C) S H¥3(N¢p»; C) — ..,
the inductive limit. Then the periodic cyclic cohomology of CT is given by [13]
PHC*(CT)=( €@ H(Nwe>;C))d P T(<z>). (19)
<z>ELT>! <z>e<r>"

In particular, H*°(I'; C) is a direct summand of PHC*°(Cr’), corresponding to < z > =<
e >. Similar results hold for cyclic homology.

Note: T*(< z >) often vanishes, for example if N ;5 has finite virtual cohomological
dimension.

We will need explicit cocycles for HC*(CT'). Fix a representative z € < z >. Put

Crt={r:T*! = C: 1 is skew and for all (yo,71,...,7%) € T**' and z € Z,,

(290, 2715 -, 2%) = T(Yo, 71, -+ W) and T(2Y0, Y15 -+, W) = T(Yo, 1y -5 W) }-
Let § be the usual coboundary operator:

k+1

67—(701717 e !7&'{’1) = E (—l)jT(’Yg,‘T], e ’:ﬂ:” v ’7k+l)’
j=0

Denote the resulting cohomology groups by H*. Then H¥ is isomorphic to H*¥(N.s:C)
and for each cocycle 7 € ZF, there is a cyclic cocycle T, € ZC*(CT') given by

0 1f70.7k¢<$>
. . : a 20
(Yo, 715+ 1 ) { (9,970, -1 9% - -Yk=1) ifYo... % =g lzg (%)

For k > 0, these are in fact reduced cyclic cocycles.

4.2 Pairing of [7] with Cyclic Cohomology

We relate the results of Section 3 to the cyclic cohomology of CI'. Suppose that T' is a
semidirect product as in Section 3.2. If the operators @, are all invertible, we defined

[7] € H*(P/F;C). Thus to obtain numbers, we should pair [7] with H.(P/F;C).
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If F happens to be trivial then we are talking about H,(P;C). In this case, the rela-
tionship between P and the group T is given by Fourier transform. Namely, CT' corresponds
to certain analytic functions on P and the reduced group C*-algebra C?(TI') is isomorphic to
C(P). The algebra C*(P), which can be considered as a subalgebra of C}(I'), has the same
periodic cyclic cohomology as its subalgebra CI', namely PHC®°(C*(P)) = H..(P;C).

For general F, CT is the cross-product CZ* x F. The periodic cyclic cohomology of
CT will be the same as that of the cross-product algebra C*°(P) * F, and one has that
PHC*(C*(P)*F) = H, ,(P/F;C) [41]. As seen in (19), PHC*°(CT') breaks up according

to the conjugacy classes of I'.

Thus in this case we obtain numbers by pairing [7] with PHC®°(CTI'). The “delo-
calized” part of [7] pairs with the part of PHC®*°(CI') coming from nontrivial conjugacy
classes.

4.3 Noncommutative Superconnections

The formal expressions for the higher Chern character and higher eta-invariant are the essen-
tially the same as those of Section 3. However, the meanings of the symbols are somewhat
different. We first review and extend some of the results of [31].

Let M™ be a connected closed oriented Riemannian manifold and let T' be a finitely
presented group. Let M’ be a normal I'-cover of M, with ¥ € T acting on the right by
R, € Dif f(M’). Let v : M — BT be the classifying map (defined up to homotopy) for the
fibration ' = M’ 5 M. Let E be a Clifford module over M with Hermitian connection.
For simplicity, we will assume that M is spin and that £ = S ® V, where S is the spinor
bundle of M and V is a Hermitian vector bundle with connection. If n is even then the
Clifford module is Z;-graded by the grading on S, while if n is odd then the Clifford module
is ungraded. Let E’ be the pullback of E to M’, with the pulled-back connection. Let @' be

the Dirac operator acting on L?-sections of E’, a densely-defined self-adjoint operator.

The results of [31] are valid for any finitely presented group I'. However, in this paper
we will assume hereafter that " has a finitely-presented nilpotent subgroup of finite index.
Let || - || be a right-invariant word-length metric on I'. The assumption on I is equivalent to
saying that I is of polynomial growth with respect to || - || [21]. We will need this assumption
in order to show that the formal expression for the higher eta-invariant is well-defined. The
results from [31] which are given here are slightly modified in order to take this assumption
on [' into account.
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Let B be the subalgebra of C(I') consisting of elements whose entries die faster than
any power in || - ||. That is,

B={f:T—>C:¥geZsup ((1+ Iy D 1F()I) < o0}

It is a Fréchet locally m-convex algebra with unit, in the sense of [35]. One can define a
completlon 0.(B) of (.(B) whlch is a Fréchet graded differential algebra. The homology
H.(B) of the differential complex [ (B) 0.(8B) /[Q.(B), Q.(B)] pairs with the (topological)
cyclic cohomology HC*(B) of B, and in fact with the reduced cyclic cohomology for * >
0. It is shown in [24] that the periodic cyclic cohomology PHC®°(B) is isomorphic to
PHC®°(CT).

Definition 8 £ = (M’ xyr B) ® E, a vector bundle over M.

The fibers of £ are right B-modules, and there is a right B-action on the space C*(£)
of smooth sections of £ If F is a Fréchet algebra containing B, one can form the B-
vector bundle £QpF. We define HomF(£,EQpF) to be the algebra of integral operators
T : C®(€) = C*(ERQpF) with smooth kernels T(m;,m;) € Homp(Em,, Em; ®sF). That is,
for s € C*(£),

(Ts) (my) = /M T(my, my) s(mg) dvol(mg) € En, BF.
We denote Hom® (€,£) by Endy(£).

A B-connection on £ is a map V : C®(£) — C*(E&s ((B)) with smooth integral
kernel such that V(sb) = V(s)b+ s ®gdb for all s € C*(£) and b € B.

One can define a Dirac-type operator acting on C*(£), which we will denote by Q.
Then for all T > 0, there is a heat kernel e=79” € End®(£).

Definition 9 The superconnection D, is given by

] sQ+V if n is even
D, = { $0@Q +V if nis odd. (21)

For 8 > 0, we define e P € Hom¥ (£,EQ5 01.(B)) by a Duhamel expansion in V.

If n is (even) odd, one can define a (super)trace (S)TR : Hom¥ (€, EQs (1.(B)) —
.(B).
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Definition 10 For s > 0, the Chern character ch(s) € 6.(3) of €, a closed form, is given
by
STR (e‘ﬁDe) if n is even
ch(s) = (22)
TR, (e#P*)  if nis odd.

To make things more explicit, it will be convenient to work on M’. We now give the
covering-space versions of the preceding definitions, which are adaptions of the results in
[31]. Fix a basepoint zo € M’ in each connected component of M’. For a multi-index a, let
V* denote repeated covariant differentiation on E’.

Proposition 20 [81] There is an isomorphism between C®(E) and

{f € C®(M',E") : ¥q € Z and all multi-indices a, sup ( (1 + d(zo,z))? |[V*f(z)]) < 00}.

Proposition 21 [31] There is an isomorphism between the algebra Endy(£) and the al-
gebra of T-invariant integral operators T on L*(M',E') with smooth kernels T(z,y) €
Hom(E,, E.)} such that for all ¢ € Z and all multi-indices a and B,

sup ((1+d(z,9))? [V2V{T(z,y)]) < co.
Iy

It follows from finite propagation speed estimates (see equation (30)) that e~T9"” defines
an element of Endg(£).

Let tr(,) denote the local (super)trace on End(E.). Fix a function ¢ € C§°(M') with
‘the property that 3- e Ry = 1.

Proposition 22 [31] The (super)trace of an element T of End¥(£), represented as in
Proposition 21, is given by

(STR(T) = T [, 8(e) treo(&;T)(z,2)) dvol(x)] ¥~ (mod [B;B).

4 3y

Similarly, an element f of C®(£®s ﬁk(B)) can be written as ¥ f,, . .dvi...dy, with
each f, .. € C®(M',E') a smooth rapidly decreasing section of E’. An element K of
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Hom% (€, E850%(B)) can be represented by smooth rapidly decreasing kernels K., ., (z,y) €
Hom(E,, E.) such that K = }_ K., 4, d7 ... d7x is -invariant. Then

TRI) = F [, #)tri (R Kooz, 2)dvol @iod . dye. - (mod0(B), 2B

Y0 ye0ry YR ET

Proposition 23 [81] For each function h € C§°(M') such that
> Rh=1, (23)
~€er
there is a connection o
V:C%(€) - C*(EQs (B))
given by
Vi=2 hRf®sdy

~ver

for all f € C®(£).

Proposition 24 [81] Define ch(s) using the connection of Proposition 28. Then ch(s) has
a limit as s — 0 given by the integral of a local ezpression on M. That is, there is a biform

w € A*(M) ®-ﬁ.(3), closed in both factors, constructed from h such that
lim ch(s) = /ME(M) A Ch(V) A w € Q.(B). (24)

We refer to [31] for the exact expression for w. The important term in w of degree k

(with respect to B) is a closed form on M with values in ﬁk(B), whose pullback to M’ is
given by

kf2 —
(1) ﬁT Y RLdh AL AR dhyedy...dy € AF(M') ® Qu(B).

M=

There are other terms in degree k£ which are lower order forms on M, and arise because
of the S operation in cyclic homology, as will become clear in Section 4.6. An important
point is that the right-hand-side of (24) has support on the forms spanned by {yody ... dv: :
Yo.. Ve = e}.

Corollary 1 [31] Let T, be a cyclic k-cocycle of CI' constructed as in (20). Suppose that T,
eztends to a cyclic cocycle of B. Then for all s > 0, the pairing < ch(s),T, > is well defined
and independent of s. If z # e then < ch(s), T, >=0. If z = ¢, let [r] € H*(BT; C) denote
the cohomology class represented by 7. Then

< ch(s), T, > = (=1)* pH* [M AM) A Ch(V) A »[r). (25)
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Note: The right-hand-side of (25) is a higher-index. The factor (—1)* arises because we
are using a slightly different definition of 7, than [31].

4.4 The Higher Eta-Invariant

We now wish to define the eta-form as a differential form on the noncommutative base
space. In line with Section 4.2, the goal is to come up with a form which can be paired
with the cyclic cohomology of CI'. In order to understand what are reasonable hypotheses
under which to define 7, it is worth reconsidering the discussion of Section 4.2. Suppose
for simplicity that F is trivial. We have seen that the periodic cyclic cohomology of CT'
corresponds to the homology of P. Now a reasonable condition to define the pairing of a
form with the homology of P is that the form should be defined on all of P. For the eta-form,
this means that we need for Ker(@,) to form a vector bundle on P. This is equivalent to
saying that dim(Ker(Q,)) is constant in p. In other words, we rule out the possibility that
an eigenvalue of (), goes from a nonzero value to zero, as p varies.

The way to generalize this condition to arbitrary fundamental groups can be-seen by
performing a Fourier transform over P. Namely, an element of the space C®(€) of Section
3.1.1 corresponds under Fourier transform to a section of the vector bundle £’ of Section
4.3. One finds that the above condition on dim(Ker(Q,)) is equivalent to the condition that
Q" has a Green’s operator i.e. that there is a gap between 0 and the nonzero L?-spectrum
of Q2. (The proof of this statement is similar to the arguments in [32, Section VI].) This
last condition makes sense for arbitrary fundamental group.

Thus a reasonable requirement to define 7 is for Q'* to have a Green’s operator. In
this case, there are general reasons to believe that (26) should make sense [6, Section 9.1].
However, in this paper we will look at the simpler situation in which Q'* actually has a
bounded L*-inverse i.e. that the infimum of the L2-spectrum is strictly positive.

Definition 11 Suppose that Q'2 has a bounded L%*-inverse. The higher ela-invariant 77 €
0.(B) is
ﬂl“ Joo STR (Q' e—ﬁDZ) ds if nis even

=
]

(26)
B\/* [° TR, (UQ' e'ﬁDE) ds if n is odd.

It will easily follow from the proof of Proposition 25 that the integrand #(s) of (26) is
integrable on any compact interval of (0,00). The problem is to show that it is integrable
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both near 0 and near oco. The proof of the next proposition is slightly technical, and the
reader may wish to omit it at first reading.

Proposition 25 7j(s) is absolutely integrable for large s.

Pf. Let u > 0 be such that [—u, u] C R\Spectrum(Q’). Let B be a smooth even function

on R such that © is 0 on [—1,1] and 1 on R\(—1,1). The idea of the proof is that for
any function g, ¢(Q’) = g(Q’)(’)(%) This observation, along with finite propagation speed
estimates, will allow us to prove the proposition. '

For the purposes of the proof, we can assume that M’ is connected. Let us recall the
finite propagation speed estimate of [14]. Put N =[]+ 1. Let ¢ be a fixed sufficiently small
positive number. If £ and y are two points in M’, put R(z,y) = min(0,d(z,y) —¢). Let f(r)
be a Schwartz function on R, with Fourier transform f(p). Then Theorem 1.4 of [14] says

IN o
1/(Q)(=z,y)| < const. Y | F%)(p)|dp. (27)

=5 bl2Rz)

Now for any integer L > 0,

|F®)(p)| = const. |(r37f) (p)| <

const. (14572 [ (1= Ly(r% ()l < comst. (14277 [ 101 (5% )

-0

Thus

IN o0 0o .
@)l Seomst. 3 [~ @+ Hap [ 10— VG (29)

3=0

~Tr3

In particular, suppose that f(r) = r*O(r/p)e for some integer a > 0. Put

Fu(R)= [ (1 +p%) Ldp.
L(R) fR (1+p")""dp
(Note that Fr(R) is O(R™2:*!) as R — 00.) Then we obtain

Qe ™) (@9)| < const. Fu(Rla,y) 3= [+ 10Pr/w)] TO ™, (29)

ABC

with A, B, and C being nonnegative integers and the sum over A, B and C being finite.
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If instead we apply (27) with f(r) = r°¢~7"* then we obtain [32, eqn. (9)]
(Q"e"9)(z, )l <
R(z,y)’ -4 4N AN X
const. (—T—) [R(z,y) " + R(z,¥) " + R(z,y)"T ™" + R(z,y)*H*V T~ N]e~ 5",
(30)

As the integration in the Duhamel expansion involves all time, we will also need small-
time bounds for the heat kernel. It follows from standard methods [40] that thereisa 75 > 0
such that for 0 < T < T and d(z,y) < 2¢,

Q" T9")(z, y)| < const. T~ F* e~ THH. (31)

The strategy will be to use the estimate (29) when T > T, the estimate (30) when
T < T, and d(z,y) > 2¢, and the estimate (31) when T £ T and d(z,y) < 2e.

Consider the Duhamel expansion of #(s). For simplicity, consider the case when n is
even; the arguments are the same when n is odd. We have that

D} =s"Q" +s(VQ' +Q'V)+ V7,
where for f € C*(M', E'),

1. (VQ'+ Q'V) (f) = Tyer (8h) R: f@pdy, with 8k = [Q’, h] and
2. V3(f) =, yver b (R3h) Ry f@pdvydy'.
To show that 7(s) is integrable, it is enough to only consider the component of a fixed de-

gree, say k. Only a finite number of terms of the Duhamel expansion will contribute to this
degree. Consider a typical term, such as

BASTR((=1)} [5°.. 5% 8(8 — Thoo u) Q&9 s(VQ'+ Q' V)e 179" 5(VQ'+Q'V)....
s(VQ' + Q' Ve~ Y duy . . . dug. (32)
Written out explicitly, this will be
B2 Y (D J° o [P 6(B — Theo ) S (o) tr[ R, Qe 5(Oh) Ry, 67179
s(Oh) R, ... s(Bh) R, e+ 9" (zo, z0) dvol(zo) dug . .. duo Yodyr ... dye =  (33)
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BT e (CLF IS 52 6(B = Thoo ) Japr B(o) tra[Qlem 9" {sR;, (0h)} e2#*Q”
{sRo0 (0R)} ... 5 { Ry, (OR)} ™™ 9" R;

Y0 Yk

(zo0, To) dvol(zo) duy . . . dupyodyr - . . dye =
(34)

e

(e (20, z1) {s(Bh)(z170)} €719 (21, 23) {3(Oh)(z2v0m)} - -

{s(Oh}zkv0 .. Yk-1)} e_“"’jqn(:rwo v ks To)] dvol(zy) . . . dvol(zo) duy . . . dug Yodm . . . dyi.
(35)
Let us change variable to v; = u;s?, to obtain

[Q'e™9" (20, 21) {(8h)(170)} €™ 9" (21, 72) {(BR)(z370m)} - -

{ (Oh)(zxY0 - - YE-1)} e_"“Qm(:z:no e o YKy To)] dvol(zy) . . . dvol(zo) dvk . . . dvg Yody1 .. . dyk.
(36)
It is enough to show that the coefficient of ypdy, ... dy in (36) decays faster than any power
of 14+ 50 1 Il

We will divide the integration domain of the {v;}5_, into 27*! pieces according as to
whether each v; is less than or equal to, or greater than Tg. First, consider the contribution
to the coefficent of yod~, ...dy: from the piece having all of the {v,-}_f,-‘:o greater than Tp.
Using (29), its norm will be bounded above by

const. {S ..o ot -+ s 18(20)]| FL(R(z0,21)) [Oh(z170)] FL(R(z1,22)) [Bh(zzram)] ..

|0h(zx¥0 - - - Ye-1)| FLR(ZxY0 - - - 1hy To)) dvol(zy) . . . dvol(zo)}
(72 g5 SR S S 8B = 5T Thov) Sape Mhcors” OB (rj /)] v 67457
dry...drodvg ... dvy}, (37)

where the sum over A, B, is a sum over a finite set.

Let S be a compact set which contains supp(¢) and supp(h). Then the first factor in
(37) is

[0A(yx)| FL(R(yx7k, y0)) dvol(ys) . .. dvol(yo) =
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):»m,...,-y., fs-- . fs |4"(y0)| FL(R(yO'anyl)) |6h(y1)| FL(R(yl‘h,yz)) |3h(y2)| s
|0k (yi )| FL(R(yxve, ¥o)) dvol(yx) . .. dvol(yo). (38)

The fact that T is of polynomial growth implies that for large enough L, (38) is finite.
As © and its derivatives vanish on [— 1,1}, the second factor in (37) is bounded above by
const. s [0 R IR S 8B = s Thgv) T Minor? of? €77

dry...drodvg .. .dyvy <

—k—2 oo 00 00 - LG _y(2? ;
const. sTK=2 [2 [ [ . [P8(B—s 22;_0”1)2,40 HJ_0(35+1§)AJ v’ e i (G+az;)

dry...dz,dvg...dvy <

00 Ay viud
const. 3""2[ / 5(,6—3'220, > H J’ ﬁ) ' e'JlLdvk...dv(,:
To To i=0 o =0 2
2.3 k A;
const. s7F= e~ 2 / / §(8— s 2Z:v_, S I (—l— +3) " dvg ... dvo (39)
TO TO .._0 E‘a ,‘,;:0 vJ

For large s, the exponential term in (39) will dominate the rest, which will grow at most
polynomially in s. Thus the contribution of the piece with all v;’s greater than T, will decay
rapidly in s.

Now let us look at the contributions from the pieces with v; < Tp for some v;. For

simplicity, let us consider the piece with vg < T and v; > T for j > 0; the estimates of the
other pieces will be similar. Its contribution to (36) is

BT (DR P 268 — 57 T 05) Sy o H0) s
[@'e™9" (z0,21) {(Bh)(2170)} 9" (1,22) {(BR)(@rr0m)} -
{(Oh)(zev0 . - - k-1)} e'”*qu(mk'yo o+ Yk, To)] dvol(zy) . . . dvol(zg) dvg . . . dvg Yodyi . . . dyx.

(40)
Using (29), the norm of the coeflicient of 44d7, . ..d¥, in (40) will be bounded above by

const ATy, .on Jaar - Jaar (J5° Q€™ (w0, 1)| dvo) [#(z0)] [0 (z170)]
Fr(R(z1,22)) |Oh(z27v0m)|. . - 10h(zkv0 - - - Ye—1)] FL(R(Zx0 - - - Yk, To)) dvol(zy) . . . dvol(zo)}
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{8752 sup,getomy fix - S5 J° -+ S5 6(B—57 Thoovi) Lm0 Tl v 10P (15 v 4575
drk...drldvk...dvl}, (41)
Integrating (31) gives that for d(zo,z;) < 2,

! n n— rd?
fho |Qle~»9 :(mo,x1)| dvg < const. JTo T2 e~ 7 dT = const. ff'.:-: r e T dr =

o ns (748 1,1 401 _ _a
const. /_ro-‘ (Tg'+z) 7T e o ds < const, T (To + 7-) e T

where d = d(z¢, z,). Similarly, integrating (30) gives that for d(zq,z;) 2> 2e,

& 1Q'e=9" (20, 21)| duo <

1,1 4 1 4 v L, 4
where R = d(zo,2:) — €. Equations (42) and (43) show that f7° IQ’e‘WQ'2($0,$1)| dvg is
locally integrable in zo, and decays faster than any power in d(zq,z,) as d(zo,z;) — o0.
Then for large enough L, the first term in (41) is finite. The second term in (41) can be
bounded as in equation (39), and so we obtain that the contribution of the piece with vy, < T
and v; > T for j > 0 is integrable for large s. It should be clear that the same arguments
will apply to rest of the 27! pieces of the integration domain. Also, one can check that the
same arguments apply to the other terms in the Duhamel expansion. |

R2
e, (43)

Proposition 26 #(s) is ebsolutely integrable for small s.

Pf.  The method of proof will be as in {6, Section 10.5]. (Our labels s and ¢ are the
opposite of [6].) We will cross the noncommutative base space with R. That is, we consider
the algebra B = C°(R) ® B and the graded differential algebra A*(R) @ Q.(B). Let M be
C®(R)®C>(E), a B-module. Let ¢ be a coordinate for R and consider the superconnection
D,, acting on M, given by

—

D, = Du + dt A 0¢.
Define ch(s) € A*(R) ®-ﬁ.(3) as in Definition 10. Then it follows as in [6, Section 10.5] that
ch(s) = ch(ts)— BY*sdt A 7j(ts). (44)

As in (24), one can compute the asymptotics of the left-hand-side of (44) as s — 0. One
finds that there is a Taylor’s series expansion with s®-term given by the right-hand-side of
(24). In particular, the di-term of (44) starts at order s', and so #(ts) has a finite limit as
s — (. Taking t = 1, the proposition follows. |
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4.5 Variational Properties of 7

A priori, 7] depends on the choices made in its definition, namely

1. The function A,
2. The Riemannian metric on M and

3. The Hermitian connection on V.

To understand this dependence, first let us do some formal calculations. For simplic-
ity, suppose that n is even. Consider a smooth l-parameter family of input information,

parametrized by a real number e. As elements of ﬁ.(B ), we have the equalities

dCh(S) _ /29~
and dch(s) dD
aems) _ _ &% -8D}
= BdSTR ( T ¢ ) . (46)
Then &i(s) D
N\ /1 ¢ s -BD?
d —— . =dp (STR( 7 ¢ )) (47)
This makes it plausible that
d
’7(3) = B/ (STR (di -ﬂDf)) (mod Im(d)), (48)

which is in fact true, as one can check that

2 ﬁ 2 Y
d”(s) ﬂ‘“ - STR (di -ﬁDs) =d( / STR (e-“D-Qe‘“"“)D- %) du)- (49)
0

(Recall that in defining ﬁ_(B) we quotient out by the commutator.)

From (49), we obtain that

dn = "% (lim — llm)STR (df’ e‘ﬁDE) (mod Im(d)). (50)

de 4400 20 €
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One can justify the formal manipulations in equations (45)-(50) by the estimates used in the
proof of Proposition 25. With our assumption that the operators Q'(¢) are all invertible,we
have

lim STR (% e-ﬁD?) =0.

83— 00 €
Thus o D
d_z = — g2 EEI& STR (E‘l e"BDE) (mod Im(d)),

which, being a small-time limit, is given by the integral of a local expression on M. Note
that this is essentially the same argument as was used at the end of Section 3.1.2. The
small-time limit can be calculated as in [31}, and we will simply state the result.

Proposition 27 Consider the product bundle R x M, with vertical metrics given by g(e),
and pulled-back vector bundle V. Let h be the function on R x M’ corresponding to h{e).

There is a biform w' € A*(R x M) ®6_(B), closed in both factors, constructed from h such
that _
% - fMi(ac) (AR x M) ACh(V) Aw')  (mod Im(d)). (51)

The important term in w' of degree k (with respect to B) is a closed form on R x M
whose pullback to R x M’ is given by

B S Ridh AL AR dEyody...,dy € AE(R x MY) @ 0(B).
Y. Y=

The right-hand-side of (51) has support on the forms spanned by

{70dy: ... dyx (mod Im(d)) : vo... 1 = €} .

Corollary 2 Let T, be a cyclic cocycle of CI' constructed as in (20). Suppose that T, eztends
to a cyclic cocycle of B. Suppose that the vector bundle V is associated to the principal
Spin(n)-bundle on M. Suppose that the indez density A(M) A Ch(V) is a polynomial in the
Pontryagin classes of M. Then for fized h, < 7, T, > is a conformal-deformation invariant.

Pf.  As in the proof of Proposition 4, i(3,) (ﬁ(R X M) A Ch(f?)) vanishes identically.
n

Corollary 3 Let T, be a cyclic cocycle of CT' constructed as in (20). Suppose that T, extends
to a cyclic cocycle of B. If z # e then < #, T, > is independent of h and is a deformation
invariant with respect to the Riemannian metric on M and the Hermitian connection on V.
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Pf. This follows directly from Proposition 27. |

Example: Take M as in the Example of Section 3.1.3, with the Dirac operator. Then the
cyclic cohomology of CT is given by

HC*(CT) = @ HC*(CZ).

<F>

Under Fourier transform, an element 7, of HC*(CZ') becomes a sum of a closed k-current
on T and lower-dimensional homology classes on T' [17]). Let ® denote the corresponding
total class in H.(T'). Let < f > be a conjugacy class in F'. Let 7, be the cyclic cocycle on
CT formed from < f > and 7,. It follows from separation of variables that

<A T> =Yg () <o,T]>

Here 01 (f) is the eta-invariant of (4) and [T'] is the fundamental class of T' in cohomology.

4.6 Pairing with Periodic Cyclic Cohomology

We saw in Corollary 3 that we obtain deformation invariants of (M, V) by pairing j with
certain cyclic cocycles of B. This gives a generalization of the rho-invariant of [3], which

corresponds to the special case of pairing with 0-cocycles. More precisely, 6.(3) breaks up
into a sum of subcomplexes labeled by the conjugacy classes of T', and we can write

i= @ fdl<z>) (52)

<z>E<I>

We define the higher rho-invariant by

= @B dil(<z>) (53)

<> FECe>

Integrating (45) with respect to s, we have

F'd = — (lim —lim) ch(s).
As @' is invertible, lim,_, ., ch(s) = 0. From Proposition 24, lim,_g ch(s) has support on the
subcomplex corresponding to the trivial conjugacy class. Thus 7 is closed, and so represents

an element of the (topological) reduced cyclic homology HC.(B). By Proposition 27, the
class of 5 in HC.(B) is a deformation invariant of (M, V).

34



The pairing of g with reduced cyclic cocycles of CT' was described in Corollary 3. It
does not immediately pass to a pairing with the periodic cyclic cohomology, mostly because
of a problem with numerical factors. We now wish to produce something which does pair
with the periodic reduced cyclic cohomology of CT.

First, let us discuss periodicity in reduced cyclic cohomology. From the dual equation
to (17),

HC™(B) & Ker (HC*(B) = HC*(C)), (54)
the S-operator on cyclic cohomology passes to an operator on reduced cyclic cohomology.
However, it does not generally have a simple expression as an operator on reduced cochains.
Of course, if B is an augmented algebra then there is a simple expression. More generally,
suppose that B is an algebra with a trace Tr. Given ¢ € C¥(B), define T'r - ¢ € C*+'(B, B*)
by

(TT‘ : ¢)(b0v very bk-H) = T"(bo)¢(b1, vy bk+l)~
Using the notation of [17], define S¢ € CF*%(B) by

1
k+3

S¢= A5 (0td) +¥(Tr - 9) (55)

and define §¢ € C¥**(B) by

~ 1

Sl ey e el (56)
Note that because Ab = bA, the term that we have added to the usual expression for the
S-operator is a cyclic coboundary. Then one can check that S and S extend to operators
on reduced cyclic cohomology. Similarly, there are operators S and § in reduced cyclic
homology. Periodicity in reduced cyclic homology will refer to invariance with respect to the
§-operator. In particular, for the various group algebras which we consider, there is a trace
T'r given by evaluation at the identity element.

We now consider the relationship between the Chern character and periodicity. (We
will loosely speak of the Chern character of a module as an element of HC.(B), although
this is not strictly true for the term of degree zero.) In general, the Chern character is not
S-invariant. For example, in the case of a finite right projective Z;-graded module £, putting
Q@ =0, we have

B

Cha(®) = 3 (-175 tr, (771), (57)

i=0

which as an element of HC,(B) is not S-invariant. However, one can easily modify this
expression by defining Ch*"(£) to be

ChP"(£) = /0 ” ePChyg dB.
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Then

o(e) = (17 ke, ((971), (58)

which is S-invariant [26].

Similarly, in the case of an ungraded finite right-projective module, assume that the self-
adjoint operator @ is invertible. Give the module a Z,-grading by the positive and negative
spectral subspaces of Q. Then 7j5(€) is closed, and its class in HC.(B) is 3@0115(8) [8, 30].

Thus o
(€)= [ i dp
0
is S-invariant.

This motivates the following definitions:

Definition 12 .
chP(3) = /0 e Pchps(s) dp,
ﬁpcr = i e-ﬂ 77,62 dﬂ
0
and o
3 = [ e
0

As the dependence of chgz(s), 7z and pg2 on B is simply given by a nonnegative power of 3
in each degree, it is clear that the §-integral makes sense.

Proposition 28 As elements of HC.(B), ch? (s) and p* are S-invariant.

Pf. First suppose that n is even. The class of chp:(s) in HC.(B) equal to the s — 0 limit,
which was given in Proposition 24. Let us write chg(0) as

chga(0) = Y-(—1) B¥ch(0),
j=0
with chi1(0) € TTCT;;(B). Using the expression for w derived in [31], one can check that

S chl?(0) = ch®-%(0). (59)
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We will not give the (uninteresting) computation here. It follows that

1

5K =~ B

ch=%(0), (60)

and so

k7 (0) = 3(~1))(27)! eh(0),

j=0

and hence also ch?®"(s), are S-invariant.

If n is odd, consider S x M. Now m,(S" x M) = Z x 7;(M), and the algebra of rapidly
decaying elements of C*(Z x m;(M)) is isomorphic to C*(S?) ® B. A separation of variables
argument shows that the image of chg;’““(s) under the natural map ¢ : HC,(C*(S")@B) —

AC.(C=(5'))® HC.(B), is given by

HechS M (s)) = @ chli(s) = Y Bn ® (~1)*1g¥+1chlBs+1(s), (61)

=0

where 7 is a generator of HC,(C>=(S')) and we put

hh(s) = Jo(~1)H FFHREH ) (62)

=0

As the S operator is simply obtained by taking tensor products with the cyclic homology of
C, it commutes with ¢, and

S(n ® chl*(s)) = 5 ® S(chl*(s)).
Applying (59) to S? x M then gives
S(chBH(s)) = chlii=1(s), (63)

and so

1
(27025 +1)
It follows that the periodic Chern character of M,

oo

k() = (=114 (2] + 1)! chB(s)

0

S(chP () = chl3=1(g). (64)

i1s S-invariant.

The method of proof of Proposition 26 now applies to give the same result for pPe.
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4.7 Higher Eta-Invariants for the Signature Operator

We now consider the case when @' is the signature operator on M’ if n is even, or the
tangential signature operator if n is odd. We have only defined the higher eta-invariant
for invertible operators in this paper, and so as it stands, the higher eta-invariant for a
signature operator would probably never be defined. However, there are various ways to
make the obstructions to invertibility cancel, in order to obtain an effectively invertible
operator. This is somewhat similar to how the Ray-Singer torsion becomes a topological
invariant for a pair of homotopy-equivalent manifolds (the Whitehead torsion) or for a flat
acyclic bundle (the Reidemeister torsion).

To be more precise, suppose that M; and M; are closed smooth oriented Riemannian
manifolds with a smooth orientation-preserving homotopy equivalence o : M; — M;. Let
' be a finitely presented virtually nilpotent group and let o' : M} — M| be a lift of a to
normal I'-covers. Consider the complex

S ARMY, M) S AR(M, M) S AR (M, M) S

where AF(M{, M}) = AY(M])@® A*1(M}) and d(wi,ws) = (dwy,a’w; — dw;). Then the
homotopy-equivalence of M; and M, implies that the relative (tangential) signature oper-
ator is L*-invertible on A*(M{, M}) [33). If h € C$°(M]) satisfies (23) then we can form
a superconnection from the pair (h,(a')*h) as in Section 4.3, and define a relative higher
eta-invariant (M;, M;). As the invertibility of the relative signature operator is indepen-
dent of the Riemannian metrics, it follows that the relative higher rho-invariant p(M;, M;)
is independent of all choices made, and is a smooth topological invariant of the pair of homo-
topic manifolds. This can be compared with the higher rho-invariant defined for a homotopy
equivalence in [43, §2] by means of an analysis of the surgery exact sequence.

Another possible cancellation mechanism can be seen from the fact that the lower
signature of an even-dimensional manifold can be computed from A3(M), and the lower
eta-invariant of an odd-dimensional manifold can be computed from Im(d*) C A (M).
That is, there is a cancellation outside of a certain subspace of A*(M).

To extend this cancellation mechanism, suppose first that M is a smooth closed ori-
ented Riemannian manifold of even dimension n. The integrand 7j(s) of (26) is always
integrable near s = 0, and the question is the large-s integrability. Suppose that the Lapla-
cian has a bounded LZ-inverse on A%(M’). (This condition is a homotopy invariant of M
[22], and as T satisfies the Strong Novikov Conjecture [27], it implies that the higher sig-
natures of M vanish.) Then there are no integrability problems in defining 7. To see this,
let P be the projection operator onto AT(M')@dA% (M")@d* A% (M'). Then Q' com-
mutes with P, but the connection V will not commute with P, and so we cannot say that
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7 can be computed from Im(P). However, as the question of large-s integrability is in-
dependent of the choice of connection, we can homotop our superconnection from D, to
D! = PD,P + (1 — P)D,(1 — P), without affecting the integrability question. Now #, de-
fined using D), decomposes as fjim(p) + fiker(p). As Q' is invertible on Im(P), there is no
problem with the large-s integrability of ;. (p). However, fixc(p) vanishes for algebraic rea-
sons. To see this, define the operator W on Ker(P) to be multiplication by sign(k — %) on
Ker(P) N A*(M') [38). Then W is an invertible odd operator which commutes with @’ and
D.,. Thus

STR(Q e#P%) = STR(W-'W Q' e7°P%) = —STR(WQ' ePPiW ") =
— STR(WW™'Q' e#P%) = —STR (Q' e#P%) = 0. (65)
This implies that fjx..(p) vanishes.

Again, the higher rho-invariant g is independent of all choices made, and is a smooth
topological invariant of M.

If n is odd, a similar argument shows that it is enough to assume that the Laplacian
has a bounded L3-inverse on Im(d*) C A5 (M’).

Finally, suppose that ' = F x 'y, with F a finite group. In analogy to Section 3.1.3,
suppose that the Laplacian has a bounded Lz-linverse on the orthogonal complement to the

F-invariant forms in A%(M’) or Im(d*) C A"T (M'). Then 7 will be well-defined as long as
we only look at it away from the trivial representation of F.

4.8 Conjectural Higher Index Theorem for Manifolds with Bound-
ary

We now suppose that M is the boundary of a compact spin manifold W, with a product
metric near the boundary. Let W’ be a normal cover of W with virtually nilpotent covering
group I'. Let V be a Hermitian vector bundle with connection on W which is a product near
the boundary. Let h € C§°(W’) be a function which is constant in the normal direction near
the boundary, such that 3", B3h = 1. Let M’ = W’ be the I'-cover of M. Suppose that
the Dirac-type operator on M’ is invertible. Using the restriction of k to M’, we can define

iim € Q(B).

Let @}y be the Dirac-type operator acting on a C(I')-Hilbert module of spinors on
W', with APS boundary conditions. The analysis of [37] shows that @}, gives an unbounded
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KK(C,Cr(I')-cycle in the sense of [4]. Thus Index(Qjy) is well-defined in K.(C;(T)). As
K.(C:(T)) = K.(B) [25], there is a Chern character Chg(Indez(Qy)) € H.(B).

Conjecture 1

Chy(Indez(Qly)) = jw AW) A Ch(V) A w — iy € H.(B) (66)

As evidence for this conjecture, we note that it follows from Proposition 27 that the
right-hand-side of (66) is deformation-invariant. Furthermore, (66) has been proven when
paired with the trivial 0-cocycle [37] for general finitely-presented I'. It should be possible
to prove the conjecture by combining the methods of [31] and [37].

As an application, consider the case when V is trivial, so that one has the pure Dirac
operator. As in Section 3.1.7, a consequence of the conjecture would be that the higher
rho-invariant gives an obstruction to extending a positive scalar curvature metric from the
boundary of a compact spin manifold to the entire manifold, so as to have a product metric
near the boundary.

4.9 Higher Signatures for Manifolds with Boundary

We refer to [44] for a survey of the Novikov conjecture. Let us just recall the statement. For
simplicity, we will work with smooth oriented manifolds, and all homotopy equivalences will
be assumed to be smooth and orientation-preserving. Let W be a closed manifold and let
v : W — BT be a continuous map into the classifying space of a finitely presented group
TI'. The L-class of W can be taken to lie in H*(W;C) and its Poincaré dual *L then lies in
H,(W; C). One version of the Novikov conjecture is that v,(*L) € H,(BT'; C) is a homotopy
‘invariant of W. (Instead of considering all such I', one can equally well just take I to be
7 (W), which is a more standard form of the conjecture.)

If W is now a manifold with boundary M, there are various possible Novikov conjec-
tures. For the simplest one, let [ and I" be finitely presented groups with a homomorphism
from I” to I" such that one has a commutative diagram of continuous maps:

M - W
! l .
BIY — BT

Let v : (W,M) — (BT, BI") be the corresponding map of pairs. The L-class still defines
an element of H*(W;C), and its Poincaré dual *L now lies in H,(W, M;C). Then one can
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conjecture that v.(xL) € H.(BT, BT';C) is a homotopy invariant of the pair (W, M) [44].
This can be considered to be a relative Novikov conjecture, in that it involves two groups.
In the special case when M is empty and IV is trivial, one recovers the previous Novikov
conjecture. As pointed out in [44], the relative Novikov conjecture would follow if one knew
the truth of the Novikov conjecture for I' and the Borel conjecture for I".

That the relative Novikov conjecture is not completely satisfactory can be seen by
considering the case when W and M have the same fundamental group I' = I'. Then
H.(BT, BT'; C) is the 0-vector space, and so v,(*L) vanishes. However, the ordinary signa-
ture is a nontrivial homotopy invariant of the pair (W, M). Thus there are more homotopy
invariants than those detected by the statement of the relative Novikov conjecture.

We wish to propose an absolute Novikov conjecture for manifolds with boundary, in
that it only involves one group I'. For the same technical reasons as before, we will assume
that T is virtually nilpotent. So let » : W — BT be a continuous map. There is an induced
map vy : M — BT and corresponding normal covering M’. Assume that M is such that
the Laplacian, acting on middle dimensional (or middle-two dimensional) forms on M’ is
invertible, as discussed in Section 4.7. (One could also consider the case when I' = F x T,

as discussed there.) Then s € 1Si..(l')’) is well-defined. Let w be the biform of Proposition
24. Now
L EW) A = (67)

represents a class in ?_(3) which is a smooth topological invariant of the pair (W, M). Upon
integrating {67) over 8 as in Definition 12, we obtain an element of PHC, o(B), say L. As
PHC., ,(B) is isomorphic to PHC, ,(CT') [24], the description of Section 4.1 shows that &
breaks up according to conjugacy classes of I' into a part in H.(I';C) and a part outside
of H.(I'; C). As w is concentrated on the trivial conjugacy class, the part of ¥ outside of
H.(T;C) is simply the negative of the higher rho-invariant of M. By the higher signature
«o0(W, M,T), we will mean the part of ¥ in H.(T'; C).

Conjecture 2 o(W, M,T) is a homotopy-invariant of the pair (W, M).
Note :

1. To be more concrete, let 7 € Z*(I'; C) be a group cocycle and form the corresponding
cyclic cocycle 7, as in (20), with z = e. If 7, extends to a cyclic cocycle of the algebra
B then we obtain higher signature numbers by pairing the form of (67) with 7, via the
pairing of Section 4.1.
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2. As a consequence of Conjecture 2, we would get a Novikov additivity for the higher sig-
nature of a closed manifold which is split along a codimension-1 submanifold satisfying
the conditions on M.

3. When T is trivial then it follows from [2] that o(W, M,T) is the ordinary signature of
the pair (W, M), which does satisfy the conjecture.

4. The relative Novikov invariant is the image of (W, M, T') under the map H,(BT;C) —
H.(BT; BT"; C).

4.10 Pairings of 77 with 0-Cocycles and 1-Cocycles
4.10.1 0-Cocycles

Let n be odd and let T be a 0-cocycle on B, that is, a trace on B. Then

<HT >=< B[P TR, (0Q e#¥)ds, T >= E <TR(&),T >=
4&61‘ < fap $(m) tr ((R;rga'-l) (m,m)) dvol(m)~,T > =
YE T er Jagr $(m) tr (i3 (mey,m)) dvol(m) T().

We can relax the smoothness condition on ¢, and take ¢ to be the characteristic function of
a fundamental domain F in M’, to obtain

<7,T>= E/ (qu m7,m)) dvol(m) T (). (68)

verl

As a special case, if we take 7 to be obtained from the character of a finite-dimensional
representation p of I, we get 325 times the lower eta-invariant for p. On the other hand, if
we take 7 to be the standard trace obtained from evaluation at the identity element of T,
we get 3@ times the L?-eta-invariant of [15].

More generally, following the discussion of Section 2, given an element z of T, let 7,
be the 0-cocycle obtained by pairing with the characteristic function of < z > in I'. Then

<iT>= g ) j tr (I_g"l (m’y,m)) dvol(m). (69)

ye<z>

If £ # e then < #, T, > is deformation-invariant.
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4.10.2 1-Cocycles

Let n be even and let 7 be a 1-cocycle on B. Then

<7,T>=
< B2 f° ff STR (Qe™ ¥ (=s[V, Q)e=P~9"") duds, T > =
< B350 § STR((—s[V,Q)) Q e77°9") duds, T > =
< - Bl = STR(|V,Q]Q ™#"9) d(8s?), T > =
- Z2 STR((V,Q1Q™"),T >=
1/2

- T < a4l 7 ((Rz, (80 B3, @) (mym) dvol(m) od, T > =
EF Tonmer i $(m) tr, (08)(my0) Q™" (myom, m)) dvol(m) T (o, m)-
Again, we can take ¢ to be the characteristic function of a fundamental domain, to ob-
tain
ﬂl/'.'
<HT>= ) / tr, ((8h)(m0) Q'™ (myom, m)) dvol(m) T(10,m). (70)

Yo,mer

Given an element z of T, let T be a cocycle constructed as in Section 4.1, such that 7,
extends to a 1-cocycle of B. Let {g;} be a sequence in I' such that {g;'zg;} parametrizes
< z >. Then

~ / - -
<HT >= =B 5, Toer Jr tra ((Bh)(mro) Q' (mgj zg;,m)) dvol(m) (g5, g570) =
BF To; Toer Sy trs ((91)(mgir0) Q' (mz, m)) dvol(m) 7(gj, gi%0) =
/
B Ty Toer frgz trs ((0R)(m) Q' (ma, m)) dvol(m) 7(g;,7).

iIf z # e, this is deformation-invariant. If z = e, then 7(e,y) = p(y) for some group
homomorphism g : T' = (C,+), and

1/2
<HiT>=— ﬂT S [Ltr (0R)omn) @ (m,m)) dool(m) (). (1)
~ver

If we put A = T.er p(7) R3(dR) € A'(M') then

R:A =5 p(y) Ry (dh) = Y u(g™'y) Ry(dh) = 3 (u(7) — ulg)) Ri(dh) = A.

~el ~€T ~vel

Thus the integrand of (71) is [-invariant, and so (71) can be written as the integral of a
smooth quantity on M.
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4.11 Remarks

1. It would be desirable to weaken the assumptions that @’ is invertible and that the
group I is virtually nilpotent. This latter assumption is very strong, and we hope that
it can be weakened to a statement that, roughly, one can prove the Strong Novikov
Conjecture for I'. This would be more consistent with the results of [43} for the
signature operator.

2. The higher eta-invariant described in this paper can be viewed as fitting into a (C, B)-
bivariant theory in the sense of [27]. One should be able to extend this to a (C*°(M), B)-
bivariant eta-invariant using the equations of [30]. This would give a higher rho-
invariant which pairs with both the cyclic cohomology of I' and the de Rham cohomol-
ogy of M. The (C*(M), C)-bivariant eta-invariant is considered in [42].

3. As the higher rho-invariant of this paper lies in cyclic homology, it is natural to guess
that it is the Chern character of something which is defined in K-theory. Recall that the
Chern character of the index of a Dirac-type operator on M also takes value in cyclic
homology, but on the part corresponding to the trivial conjugacy class, as can be seen
from (24). In contrast, the higher rho-invariant takes value in the complementary part,
as seen in (53). Thus the higher rho-invariant gives complementary information to the
higher index. This seems to be related to the fact that when a group I' has torsion, the
assembly map from K O.(BT) to K.(C?(I')) is generally neither injective nor surjective,
even if T is finite [39]. In this latter case, the (reduced) lower rho-invariant detects
Q/Z factors in KO.(BT).
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