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Abstract

We define the higher eta-invariant of a Dirac-type operator on a non-simply­
connected closed manifold. We discuss its variational properties and how it would
fit into a higher index theorem for compact manifolds with boundary. We give appli­
cations to questions of positive sealar eurvature for manifolds with boundary, and to a
Novikov eonjecture for manifolds with boundary.

1 Introduction

The eta-invariant is a spectral invariant of Dirac-type operators on closed manifolds. It was
introduced by Atiyah, Patodi and Singer [2J in order to prove an index theorem for elliptic
operators on manifolds with boundary. Let W be an even-dimensional compact smooth spin
manifold with boundary M. Give W a Riemannian metric which is a product near M. Let
V be a Hermitian vector bundle with connection on W, also a product near the boundary.
Denote the Dirac-type operator on W, acting on spinars which satisfy the APS boundary
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conditions, by Qw, and the Dirac-type operator on M by QM. Suppose, for simplicity, that
QM is invertible. Then the index theorem states

Index(Qw} = fwA(W} A Ch(V) (1)

Note that while the left·hand~sideof (1) is a deformation-invariant, being the index of
a Fredholm operator, neither term of the right-hand-side of (1) is topologjcal in nature. The
integrand in (1) is a specific differential form on W. It is only the combination of the two
terms on the right-hand-side of (1) whieh has topological meaning.

By eonsidering eta-invariants of Dirac-type operators coupled to Hat vector bundles on
M, one can also form the rho-invariant, an analytic expression with topological meaning [3].
We review some of this theory in Section 2.

The index theorem (1) is a "lower" index theorem, in that it does not involve the
fundamental group of W. A "higher" index theorem for closed manifolds is due to the work
of Mischenko, Kasparov, Connes-Moscovici and others. To state it, auppose X ia a closed
spin Riemannian manifold with fundamental group r. Let LI : X --. Br be the classifying
map for the universal cover of X, defined up to homotopy. If one takes the fundamental
group into account, one cau refine the index of the Dirac operator to become a higher index
living in the K-theory of the reduced group C*-algebra C;(r). Under favorable conditions on
r, such as r being hyperbolic [18], one cau pair the higher index with the group cohomology
of r, and the higher index theorem states

< Index(Qx),r > = (A(X) U Ch(V) U v*(r)) [X],

for all r E H·(Bfj C).

(2)

In this paper we consider the "higher"-version of (1). That is, we want an index
theorem for manifolds with boundary whieh involves the cohomology of the fundamental
group of W.

Due to the nontopological nature of the integral in (1), it is clear that one first needs
a way of proving (2) whieh gjves the right-hand-side as the integral of an explicit IDeal
expression over X. Using Quillen's theory of supereonnections [36], we gave such a loeal
expression in [31].

The next problem is to define a higher eta-invariant, an object whieh pairs with group
cohomology. Our main interest is in the possible geometrie and topological applications.
There are same hints as to the right approach to the higher eta. First, there is an L 2-eta­
invariant [15], which should be the pairing of the higher eta-invariant with HO(Br; C) ~ c.
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The analog of (1) has been proven in this case [37]. Second, a higher rho-invariant has been
defined for the signature operator by purely topological means [43].

An early approach to the index theorem of (2) when f is free abelian, due to Lusztig,
was to apply the families index theorem to a certain fibration which is canonically associated
to X [34]. In the first half of this paper, we use this method to define the higher eta-invariant
in some cases in which f is virtually abelian i.e. has an abelian subgroup of finite index. We
have two reasons for using this approach. First, it involves "commutative" analysis which
may be more familiar to readers, thereby giving some justification for the noncommutative
approach of the second half. Second, one obtains stronger results this way than for more
general f. We initially consider the case when f = F X Zk, with F finite. The base of the
above fibration is then Fx Tk. An eta-form ;;, a differential form on the base of a fibration,
was defined by Bismut and Cheeger [8]. In Sections 3.1.1-3.1.6 we analyze in detail this eta­
form in the case of Lusztig's fibration. We look at how ij changes under conformal variations
of the metric, and under arbitrary variations of the input data. In Section 3.1.7 we state a
higher index theorem for manifolds with boundary, based on the results of [9], and give an
application to the question of whether a c10sed positive-scalar-curvature (p.s.c.) manifold
can be the boundary of a p.s.c. manifold with a product metric near the boundary.

In Section 3.2 we consider the case when f is the semidirect product of Zk and a finite
group F. The space on which the eta-form lives turns out to be an orbifold of the type
used in [5] in order to define "delocalized" equivariant cohofl1ology. In particular, the higher
rho-invariant is a delocalized element of equivariant cohomology.

The second half of the paper is concerned with more general f. The idea is to work with
a fibration as above, except that now the base is a noncommutative space B whose algebra
of "continuous functions" is C;(f). If B is a subalgebra of C;(f) consisting of "smooth"
functions, the "homology" of B is taken to be the cyclic cohomology of B. The algebra of
"differential forms" on B is taken to be the universal differential graded algebra of 8. We
start by reviewing some results on the cyclic cohomology of the group algebra Cf in Section
4.1. We relate the results on semidirect product groups to cyc1ic cohomology in Section 4.2.

The main idea of this paper, along with [31], is to use superconnections in the context
of noncommutative geometry. The paper [31] was concerned with expressing the ehern
character of the higher index as an explicit closed differential form on B. In Section 4.3 we
review some of the needed results of [31]. The higher eta-invariant Ti is defined as a differential
form on B in Section 4.4. To show that the formal expression for ij actually makes sense, we
assume that the Dirac operator on the f-cover M' of M is invertible and that f is virtually
nilpotent Le. of polynomial growth [21]. These technical conditions arise because unlike the
ehern character, the higher eta-invariant involves heat kerneis at arbitrarily large time, and
unlike the L2-eta-invariant, it involves heat kerneis between arbitrarily distant points on M'.
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We use finite-propagation-speed methods to control these problems. The algebra B is taken
to be the natural "smooth" subalgebra of C;(f). In Section 4.5 we look at how ij changes as
one varies the input data. As for the lower eta-invariant, we find that the variation is given
by the integral of a local expression.

We define the higher rho-invariant p to be the part of ii corresponding to nontrivial
conjugacy classes in f. It is a closed differential form, and in Section 4.6 we show that
after taking care of some numerical factors, it represents an element of the periodic cyclic
homology P HCe,o(B) of B (which with our assumption on r equals PHCe,o(Cr) [24]).

In Section 4.7 we consider the case of signature operators, and show how the higher eta
and rho-invariants can given a wider range of definition by making the signature operator on
M' effectively invertible. Modulo technical conditions on r, our analytic higher rho-invariant
is defined under the same circumstances as the topological higher rho-invariant of [43] and
takes value in the same group. We propose, hut do not prove, a higher index theorem for
manifolds with boundary in Section 4.8. In Section 4.9 we use the higher eta-invariant to
formulate a Novikov conjecture for manifolds with boundary. In Section 4.10 we look at the
pairing of if with O-cocycles and l-cocycles, where the formulas can he made more explicit.
Finally, we conclude with some remarks.

I wish to thank Stephan Stolz and Shmuel Weinberger for their generous topological
help. I am grateful to Micheie Vergne for making available a manuscript copy of [6J. I thank
F. Hirzebruch and the Max-Planck-Institut for their hospitality.

2 The Lower Eta-Invariant

Let Mn he a connected closed smooth manifold. For purposes of exposition, suppose that
the fundamental group r of M is finite. Then given a representation p : r -+ U(N), there is
an associated flat Hermitian CN -bundle E p = M &J p CN on M.

The input information needed to define the eta-invariant consists of

1. A Riemannian metric on M

2. A Clifford module over M. For simplicity, we will assurne that M is spin, n is odd and
that the Clifford module is of the form S 0 V, where S is the spinor bundle over M
and V is a Hermitian vector bundle with connection.

4



There is a self-adjoint densely-defined Dirae operator QP acting on L2-sections of S® V ® EPl

with discrete spectrum.

Definition 1 [El The eta-invariant is

T/p= N~LOOTR(Qpe-"Q~)dS E R.

The integral in (3) is absolutely eonvergent [11]. Formally, fJp = -k T R (l8T).

(3)

An important point about 17p is that if Qp is invertible then a.s one varies the input
information, the variation of fJp is given by the integral of a loeal expression on M [3]. (More
generally, it is enough to assurne that dim(Ker(Qp)) is constant during the variation.)

A special ease of geometrie interest is when V is a veetor bundle associated to the
principal Spin(n)-bundle of M by some representation U of Spin(n). Then the ehern ehar­
acter Ch(V) is a polynomial in the Pontryagin dasses and the Euler dass of M, whieh
ean be eomputed from u. Suppose that Ch(V) is a polynomial in the Pontryagin dasses
of M Le. does not involve the Euler dass. Then the same is true for the index density
A(M) /\ C h(V), and it turns out that the loeal expression for tbe variation of fJp vanishes
for eonformal deformations of the lliemannian metrie [3].

For general V, the loeality of the expression for the variation of fJp implies that the
variation is independent of p. Thus if Pt and P2 are two representations of f such that QPt

.and QP2 are invertible then the rho-invariant fJpl - 17M is a deformation-invariant.

Sometimes it is more eonvenient to look at the reduced eta-invariant

f = 17p +dim(Ker(Qp)) ( od Z)
fJp 2 m.

Then fJ~ has a loeal expression for its variation, without qualifieations, and so fJ~l - fJ~ is a
smooth invariant of the pair (M, V). It follows from the index theorem of [2] that if V is
a.ssociated to the principal Spin(n)-bundle of M then 7]~ -17~ gives a map from the bordism

. . t

group !1::1n(Bf) to R/Z. (As !1::1n(Bf) is torsion, this map aetually takes values in Q/Z.)
However, in this paper we will always take rho-invariants to be real-valued.

Instead of eonsidering representations of r l it will turn out to be usefu] to think of the
eta-invariant as something eomputed on the universal cover M of M. Let I E r aet on M
on the right by a diffeomorphism lLy E DilllM). Let V be th~pullbaek of V to M. Let Ci
be the Dirae operator on L~-seetions of S ® V. Suppose that Q is invertible. Then we ean
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define an equivariant eta-invariant on M, a function from r to C, by

2 {OO ( - 202)7](,) = Vi Ja T R R~ Qe- IJ ds E C. (4)

The relationship between 7]p and the 11-function of (4) is simply that if XP is the character of
the representation p then

The evaluation '7(e) of 7] at the trivial element e has a local variation, and the variation of
7](,) vanishes for i f:. e.

Alternatively, we ean define an element of the group algebra by

11 = E 7](,), E Cf.
'YEf

(5)

The eyclie eohomology group HCO(Cf) is simply the veetor spaee of traees on Cf, and
deeomposes aceording to the eonjugaey classes of f:

HCO(Cf) = ffi C7<:t:> ,
<x> E<r>

where for a eonjugaey class < x > E < f >, the traee 7<:t:> is given by

7<x>(E c,,) = E e.y.
'YEf 'YE<x>

(6)

We ean think of the eohomology group HO(f; C) = C as being the summand CT<e> in (6);
although this identifieation may seem artificial at the moment, it is the zero-dimensional ease
of a general statement about the eyclie eohomology of group algebras, as will be diseussed
in Seetion 4.1. Then we ean summarize the variation properties of the eta-invariant by
saying that the pairing of the 7] of (5) with the group eohomology of r has a loeal variation,
while the pairing of 7] with the eomplement of the group eohomology of f in the eyc1ie
eohomology of Cf has vanishing variation. This last statement, whieh as it stands is only
for zero-dimensional group eohomology and zero-dimensional eyclie eohomology, is what we
will generalize to higher-dimensional eohomology groups in the seeond half of this paper.
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3 Virtually Abelian Fundamental Groups

3.1 Product Groups

3.1.1 The Basic Setup

Let Mn be a connected dosed smooth manifold with first Betti number k. The Albanese
variety A of M is the k-torus H1(M;R)jH1(M;Z)modTor [34]. Given a basis {ei}7=1 of
H1(Mj Zk)modTor C H1(Mj R k ), let {vi}~=l be an integral dual basis to {ei}~=l in (H1(M; R)r.
The I-forms {dvi}~=1 in 1\1 (HdM; R)) descend to forms on A. Fix basepoints mo E M and
ao E A. There is a canonical homotopy dass of basepoint-preserving maps from M to
A constructed as folIows: If {wi}~=o are dosed I-forms on M which represent {Vi}:=1 in
H1 (M; R) '" (H1 (M; R)r, there is a map Vw from M to A given by

v",(m) = ao +IJJ~ WO) ei·
I

The desired canonical homotopy dass is that of Vw' Given a basepoint·preserving map
f : M -4 A in this homotopy dass, if we choose wi = I*dv i then we recover f as f = V w •

We will denote the dual torus to A by p) for Picard variety.

Note: The k-tori A and P will play very different roles in what folIows. One should
~ink of A as the classifying space Bzk

1 whereas P should be thought of as the dual group
Zk.

There is a double fibration M f.!- Mx P .s P and a canonicalline bundle Eo on Mx P
given as folIows: Let H be the Hermitian line bundle over A x P which is the quotient of
R k x (Rk)'" X C by the action of Zk X (Zk)*, where (7,""*) E Zk x (Zk)* acts by

(v,v*,z) -+ (v+"v* +7*,e21riv ·(-y)z).

There is a canonical Hermitian connection on H given by the I-form -27riv·dV* on R k x(Rk )"'.

Let Eo = (I x I d.)'" H be the pulIed-back line bundle over M x p) with the pulled-back
connection.

Let F be a finite group. Suppose that the fundamental group of M is r = F x Zk. Let
p : F -4 U(N) be a unitary representation of F. Let E p be the flat Hermitian CN-bundle
over M specified by p. Then we put L p to be 1r; E p ~ Eo, a CN-vector bundle over M x P.

The input information needed to define the eta-form consists of
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1. A Hermitian eonneetion on Eo, specified by the map / : M ---+ A

2. A Riemannian metrie on M

3. A Clifford module over M. For simplieity, we will assume that M is spin, and that the
Clifford module is of the form S 0 V, where S is the spinor bundle over M and V is a
Hermitian veetor bundle with conneetion. (The analogous results when M is not spin
will be straightforward. ) If n is even then the Clifford module is Z2 - graded by the
grading on S, while if n is odd then the Clifford module is ungraded.

For eaeh pEP, the restrietion of L p to 7r;l(p) is a Hat Hermitian bundle Wp over M,
with twisting specified by p and p. Thus we have a family of Hat bundles over M parametrized
by P.

Let f,pbe the infinite-dimensional veetor bundle on P sueh that Cco(f,p) = cco (7r;S 0
7ri'V 0 Lp). That is, the fiber of f,p over pEP is Cco (S 0 V C3> Wp). The Hermi tian conneetion
on 7ri' S ® 1I"i'V 0 L p gives a Hermitian conneetion on f,Pl by horizontal differentiation, which
we will denote by V. For eaeh pEP, there is a vertical Dirae operator Qp aeting on
CCO(S 0 V 0 W p), with discrete real speetrum. These vertieal operators fit together to give
an operator Q aeting on CCO(&p). Fix a constant ß > O. We will abbreviate ßl/2d by d.
Suppose that Up is an open subset of P such that Ker(Qp) forms a veetor bundle over Up as
p varies in Up •

3.1.2 The Higher Eta-Invariant

In what follows we use the superconneetion formalism of Quillen [36], along with its extension
to the odd-dimensional case [36, §5] . For the relevant nations, see [6, 7, 8, 36]. As for nota­
tion, an infinite-dimensional (super)traee will be written as (S)TR, while a finite-dimensional
(super)trace will be written as t'}6)' We will wr.ite the ehern eharaeter of a .(super)-veetor
bundle V as Chß(V) = tr(6)(e-ß v), where Fv 18 the eurvature of a connectIon on V, and
put Ch(V) = Ch1(V).

Definition 2 The superconnection D. : CCO(&) ---+ CCO(& ~ "-(P)) is given by

D _ { sQ +V
6 - St7Q +V

8

if n is even
if n is odd.
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(8)
if n is even

Definition 3 [7} For s > 0, the Chern charaeter chp(s) E /\-(P) of Ep , a closed form, is
given by

if n is odd.

Definition 4 [8, 19} The eta-form l1p E A"(Up) is given by

__ I2!/; Jooo
STR (Q e-ßD~) ds

flp ==
f!!/;- Jooo T R cr (aQ e-ß~) ds

if n is even

if n is odd.
(9)

Note: The integral in (9) is well-defined, as is shown in (6]. The reason for dividing by N
in the definitions will become dear.

Let 'R-ß be the rescaling operator on /\-(P) which is multiplication by ßi/2 on /\i(P).
We will let ü and V- be the local coordinates on A and P respectively from Section 3.1.1.

Proposition 1 The differential forms chp(s) have a limit as s --Jo 0, given by

limchp(s) == 'R-ß ([ A(M) /\ Ch(V) /\ e21riWAdV-) •
~-o JM

Pf. From [7], we have that

limchp(s) == 'R-ß(f ACITVert(M X P)) /\ Ch(1r;V ® Lp)) .
6-0 JM

As Tvert(M x P) == 1fiTM,

Now

(10)

Ch(1r;V ® Lp) == 1r;Ch(V) /\ 1r;Ch(Ep ) /\ Ch(Eo).

As Ep is Hat, Ch(Ep) == N. It remains to compute Ch(Eo). As in (34], the curvature of H is
d( -27ri ü· dV-) == -21fi d'Ü /\ dV-. Then the curvature of Eo is -21fi I-dü /\ dV- == -21ri w/\ dV-,
from which the proposition follows. •
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Note: The right-hand-side of (10) is a polynomial in the forms dV*. The coefficients
are higher indices. The index theorem for families [1, 6, 7] says tbat for all S > 0, ch p( s) rep­
resents the ehern character *C hp(Index(Q)) of the index bundle Index(Q), and a foriiori
so does the right-hand-side of (10).

Let VKer(Q) denote the Hermitian connection on K er(Q) induced from its embedding
in the Hilbert space L2(cp ) = L:l(7r;S 0 7r;V @ Lp ).

Proposition 2 [8, 19} The differential 0/ Tjp on Up is given by

......... 1'R.P(fMA(M) 1\ Ch(V) 1\ e21riWl\d,r) -ktr.(e-ßV~er(Q»)
dTJp =

'R-ß (fM A(M) 1\ Ch(V) 1\ e21ri Wl\d,r)

i/ n is even

i/ n is odd.

(11)

pr. If n is even, then d(eS:(·)) = -* d STR (Q e-ßD~). Integrating with respect to s, we
obtain

dTjp = limehp(s) - lim ehp(s). (12)
.lII-O .lII-CO

In the s -+ 00 limit, only the kernel of Q contributes to the supertrace in ehp(s) , and one

has lim .lII-CO ehp ( s) = 11 STR (e-ßVker( Q) ). Along wi th Proposition 1, this proves the even

case. Ir n is odd, equation (12) still holds, but 1im.lll_oo ehp(s) = ~ T Ru (e-ßVk~r(Q») = O.

•
We now look at what conclusions can be drawn about the eta-forms without having

detailed information about the vector bundle K er(Q). We will make succesively weaker
hypotheses, and will naturally get succesively weaker conc1usions.

We will want to see how ij'p changes as we vary the input data. The method to compute
this is to consider the product bundle R x M x P -+ R x P. The R factor represents
the parameter l. which controls the variation. Let us denote the corresponding eta-form on
R x P by up • Then up E I\·(R x P) can be written as

up = ij'p(l.) +ßI
/

2df 1\ ~p(f)

where ij'p and ~p are forms on P. The differential of up on R x P is given by
-. -. In .........
dup =dijp+ß d€I\(ßeijp-dijp). (13)

Thus the formulas for the differentials of eta-forms, applied to up , will allow us to compute
8,fip up to an exact form on P. If a quantity is independent of f, we will say that it is a
deformation invariant. (Tbe reason that we do not say simply that it is an invariant is that
there may be some restrietions on the operators parametrized by f, such as invertibility.)
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3.1.3 Qp invertible ror all pEP

In this section we assurne that the operators Qp are invertible for all pEP. We take Up = P.

Proposition 3 The eta-form ijp is closed.

pr. In this case Index (Q) is trivial, and 80 the higher indices of (10) vanish. The result
then follows from Proposition 2. •

Thus ijp represents a cohomology class [ijp] in H*(P; C). Apriori, this dass depends .
on all of the choices made, namely

1. The map f : M -+ A

2. The Riemannian metric on M

3. The Hermitian connection on V.

Proposition 4 Suppose that the vector bundle V is associated to the principal Spin(n)­
bundle on M. Suppose that the index density A(M)I\Ch(V) is a polynomial in the Pontryagin
classes 0/ M i.e. does not involve the Euler density. Then for fixed f : M -+ A, [ijp] is a
conformal-deformation invariant.

pr. Let g( f) be aI-parameter family of conformally equivalent metries. Let V be the
corresponding vector bundle on R x M. Let äp be the eta-form on R x P. By Proposition
2,

Thus

8,1;p - d~p = ß- 1
/

2 i(8,) dap = 'R-ß (L i(8,) (A(R x M) !I Ch(V) ) !I ehiWAdi1") .

By hypothesis, A(Rx M)I\Ch(V) is a polyno~al in the Pontrya~inclasses Pk E 1\4k(Rx M),
and it is known that this implies that i(8() (A(R x M) 1\ Ch(V)) vanishes identically [16].

(To see this last point, it is enough to consider the Pontryagin forms tr n2k on R x M.
If W(f) denotes the Riemannian connection I-form, its curvature on R x M is

11



where R(€) is the Riemannian curvature 2-form of M. Thus i(8() tr n2k is proportionate to
tr(8(wI\R2k- 1 ). In terms of a local orthonormal basis {Ti}, the change in wunder a conformal
change of metric is of the form 8(Wij = h,i Tj - h,j Ti, for some function h on M [23]. Then
tr (8(w 1\ R2k- 1

) is proportionate to Eij ( h,iTj - h,jTi) 1\ (R2k
-

1
)ij = 2 L ij h,iTj 1\ (R2k

-
1

) ij .

However, Lj Tj 1\ (R2k-l )ij vanishes b~ the Bianchi identity.)

Therefore, 8t 11p is exact on P. •

Proposition 5 Suppose that PI and P2 are two representations of F such that the eorre­
sponding /amilies of Dirae operators are invertible on all of P. Then [7]Pl] - [11P2] is inde­
pendent of the ehoiee 0/ / and is a deformation invariant with respect to the Riemannian
metrie on M and the Hennitian connection on V.

Pf. Consider aI-parameter family of choices. Form the corresponding families of Dirac
operators, parametrized by R x P, and let Ö'PI and Ö'P'J be their eta~forms. By Proposition
2, dÜP1 and JÜh are the same loeal expression on R x P, and so d(üp1 - uP'J) = O. Then by
(13), 8t (ifpl -1jP'J) is exaet on P. Thus [ifpl] - [ifP2] is a deformation-invariant with respeet
to the choices made. As any two choices of f can be joined by a path, and the invertibility
of the operators Qp is independent of the ehoiee of /, the independenee with respeet to f
fo11ows. •

Note: In Proposition 5 we are interested only in the difference between [i]Pl] and [7]P2]' It is
not really necessary to assume that both PI and P2 are such that the corresponding families
of Dirae operators are individua11y invertible on a11 of P. To be more general, suppose that
{Pj} are the irreducible representations of Fand {Cj} is a set of complex numbers such that
Lj Cj = 0 and for a11 pEP, Ej 7t T R( e-a:olQ;(Pj)) deereases exponentially as S2 -4 00. Then

J

the same argument as in the proof of Proposition 5 gives that Lj Cj[i]Pj] is adeformation
invariant.

An important dass of examples for which this more general invertibility sometimes
holds is given by signature operators. The paper [43, §1] considers simple manifolds, mean­
ing that if M' is the finite Fwcover of M, the group F a.cts trivia11y on the twisted co­
homology groups H-(M'; Q1rl(M')). The analogous condition in our ease would be that
Lj 1f T R(e--2Q;(Pj)) decreases exponentially as S2 -4 00 provided that the coefficient of the

J

trivial representation vanishes. This condition is independent of the Riemannian metric on
M. Ir in addition Lj Cj = 0 then Lj Cj[7]Pj] is a deformation invariant. As any two Rie­
mannian metries can be joined by a path of Riemannian metries, the deformation invarianee
implies complete invariance of Lj cj[flpj]. That is, we have defined a smooth topologieal
invariant of M. To put it another way, we have defined a higher rho-invariant which lies in
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KF(pt.)/{trivial and regular representations} ® H*(P; C). Presumably this eoineides with
the higher rho-invariant defined in [43, §lJ. To show this, one would have to prove a families
index theorem for fibrations whose fibers are singular spaees of the type used in [43J.

Example: A dass of operators that fulfill the hypotheses of this seetion is given by
Dirae operators on manifolds of positive sealar eurvature. To see that ijp ean be nontrivial,
let L be a spin spherieal spaee form with fundamental group F. Take M to be L x T', with
the produet metrie and a spin strueture indueed from the given spin strueture on L aod any
spin strueture on T'. Take the veetor bundle V to be trivial, so that one is eonsidering the
Dirac operator acting on spinors on M. The metrie on M has positive sealar eurvature, aod
so the Liehnerowicz fonnula implies that Qp is invertible for all pEP [29J. By separation of

variables, it is easy to see that [ij'p(M)J = ~ '1p(L) . Chß(T' ) E H*(P; C). Here 'lp(L) E C
is the usual twisted eta-invariant of Land Chß(T' ) E H*(Pj C) is the ehern eharaeter of
the index bundle for the farnily of twisted Dirae operators on T'. In partieular, Land p can
be chosen so that 7]p(L) is nonzero [20), aod it follows from (10) that Chß(T' ) is a nonzero
element of H'(P; C).

3.1.4 Ker(Qp) forms a vector bundle on P

In this seetion we assume that the kerneis of the operators Qp form a veetor bundle on P as
p varies in P. If n is even then we cannot say anything without detailed information about
the vector bundle K er(Q). For example, one sees from Proposition 2 that there is no reason
that ijp should be closed. However, if n is odd then all of the results of the previous section
go through.

Proposition 6 1/ n is odd, the eta-form fjp is closed.

Pf. In this case the right hand side of (11) ia a polynomial in the variables d'Ü*. However,
the existenee of ijp means that this polynomial is an exact form on P. Thus its coeffieients
must vanish. •

The proofs of the following propositions are virtually the same as in Seetion 3.1.3.

Proposition 7 Suppose that the vector bund/e V is associated to the principa/ Spin(n)­
bund/e on M. Suppose that the index density A(M)I\Ch(V) is a po/ynomial in the Pontryagin
classes 0/ M. 1/ n is odd then /or fixed / : M ~ A, [ij'pJ is a confonnal-de/ormation invariant.
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Proposition 8 Suppose that PI and P'1. are two representations 0/ F such that the kernels
0/ the corresponding /amilies 0/ Dirae operators form veetor bundles on P. I/ n is odd then
[f]Pt] - [f]P2] is independent 0/ the ehoiee of fand is a deformation invariant with respect to
the Riemannian metrie on M and the Hermitian eonneetion on V.

3.1.5 Qp ia invertible ror p E Up

In this section we assurne that the operators Qp are invertible when p lies in an open subset
Up of P. We can no longer conclucle that 11p is closecl on Up.

Let i : Up ~ P be the embedding of Up in P. The relative de Rham cohomology
n·(p, Up ; C) is isomorphie to the homology of the eomplex

... L "k-I(p, Up) L t\k(p, Up) L t\k+I(P, Up) L ... ,
where "k(p, Up ) = "k(P) ffi t\k-I (Up ) and d(0', a') = (da, i·(a) - da') (12].

Let Cdenote 'Rß (fM A(M) t\ Ch(V) t\ e21fi~"d~) E "-(P).

Proposition 9 The pair (0, i'fp) is a closed element 0/ t\-(P, Up). Its class in H·(P, Up;C) is
independent 0/ the ehoiee 0/ / and is a deformation invariant with respect to the Riemannian
metrie on M and the Hermitian connection on V.

pr. It is always true that dC = 0, and it follows from Proposition 2 that (0, qp)
is closed. Let f parametrize al-parameter family of choices, and consider the forms C =
'Rß (JMA(R x M) " Ch(V) " e21ridJ:(üodJ-)) E "·(RxP) andüp E t\·(RxUp ). Decompose
CM _

C = C(f) +ß1
/

2df t\ O(f).

Then the equations dC = 0 and düp = i·C give

and
8(7]p - ~p = i-Co

Thus 8((0, 7]p) = d(C, -qp). •

Example. Take M = SI. We will identify M with its Albanese variety A. Take Q
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to be the (tangential) signature operator: i8v , aeting on /\O(M). Let us use the loeal eoor­
dinate v'" E [0,1) on P, with v'" = 0 being the untwisted situation. Then Qp is invertible
for v'" E (0,1). So 11 is a O-form on (0,1), whieh to v'" E (0,1) assigns the eorresponding

twisted eta-invariant. A computation gives that Ti(v"') = Yf (2v'" - 1). Also C = Vifßdv'" ,
al-form defined on all of P. It is easy to check that (6, Ti) represents a generator for
BI(P, (0,1); C) ~ C.

Proposition 10 Suppose that the veetor bundle V is associated to the prineipal Spin(n)­
bundle on M. Suppose that the index density A(M)/\Ch(V) is a polynomial in the Pontryagin
dasses of M. Then for fixed f : M -+ A, the dass of r;p in /\"'(Up)jlm(d) is a eonfonnal­
deformation invariant.

pr. The proof is the same as that of Proposition 7. •

Proposition 11 Suppose that PI and P'l are two representations 0/ F sueh that the eorre­
sponding families of Dirae operators are invertible on Up • Then ifpt - ifp'2 is a dosed form on
Up • [ts dass in B"'(Up ; C) is independent of the choiee 0/ fand is a deformation invariant
with respeet to the Riemannian metrie on M and the Hermitian eonneetion on V.

pr. By Proposition 2, fjpl and ijP'J have the same differential on Up• Tbe proof of the
deformation invariance of [ij'PI - fjP2] is the same as in Proposition 5. •

3.1.6 Ker(Qp) forms a vector bundle on Up

In this section we assume that tbe kerneis of the operators Qp form a vector bundle on Up as
p varies in Up • If n is even then we cannot say anything without detailed information about
the vector bundle K er(Q), but if n is odd then all of the results of the previous section go
through.

Proposition 12 [fn is odd then the pair(C, Tip) is a closed element o//\"'(P,Up). fts dass
in H"'(P, Up ; C) is independent 0/ the ehoiee 0/ / and is a deformation invariant with respeet
to the Riemannian metrie on M and the Hennitian eonneetion on V.

Proposition 13 Suppose that the veetor bundle V is assoeiated to the prineipal Spin(n)­
bundle on M. Suppose that the index density A(M) /\Ch(V) is a polynomial in the Pontryagin
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classes of M. 1f n is odd then for fixed f : M -+ A, the class 0/ ijp in /\*(Up)j Im(d) lS a
con/onnal-deformation invariant.

Proposition 14 Suppose that PI and P2 are two representations 0/ F such that the kernels
of the corresponding families 0/ Dirac operators fonn veetor bundles on Up • 1f n is odd then
ijpl - ijp~ is a closed form on Up. 1ts class in H* (Up;C) is independent of the choice of fand
is a deformation invariant with respeet to the Riemannian metrie on M and the Hermitian
conneetion on V.

3.1.7 Higher Index Theorem for Manifolds with Boundary

Note that to define ij, the group r does not really have to equal1rl(M). It is enough just to
have a homomorphism from 7rI (M) to r and a map f from M to the corresponding torus in
the canonical homotopy dass, and all of the previous steps go through.

We now suppose that M is the boundary of a compact spin manifold W, with a product
metric near the boundary. (We no longer assurne that M is connected.) Let V be a Hermitian
vector bundle with connection on W which is a product near the boundary. Take the map
f : W -+ A from W to its Albanese variety to be constant in the normal direction near the
boundary of W.

We will denote the fundamental group of W by r, and assurne that it is the product
of a finite group Fand a free abelian group. Then the inclusion of M into W gives a
homomorphism from 7rI(M) to r, and f restriets to a map IM : M -+ A. Let P : F -+

U(N) be a representation of F. Suppose that the twisted Dirac-type operators on Mare all
invertible. Then we can define the eta-form ijp(M) E /\*(P).

Let Qw,p denote the family of twisted Dirac-type operators on W, parametrized by P,
with Atiyah-Patodi-Singer (APS) [2] boundary conditions. Then the index bundle Index( Qw,p)
lies in K*(P) and from [9], its ehern character is given by

~ Chß (Index(Qw,p)) = 'R-ß (fw A(W) !I Ch(V) !I e2~iWWI\dV"w) - ifp(M) E W(P; Cl·
(14)

(This only seems to be proven when dim(W) is evenj for remarks on the odd case, see [10].)

In particular, snppose that W has positive scalar curvature and that V is trivial, so that
we are looking at the pure Dirac operator. Then M also has positive scalar curvature. The
Bochner argument [29], applied to the manifold W with boundary, gives that Index(Qw,p) =
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O. Thus if {Pi} are the irreducible representations of F aod {ci} is a sequence of numbers
Buch that Ei Cj = 0 then Ei Cj ijp} (M), which is a sort of higher rho-invariant, vanishes in
H·(P; C). So [Ej ci 7]p}(M)] is an obstruction to realiziog M as the boundary of a manifold
W with a positive-scalar-curvature metric which is a product near tbe boundary.

To see that this is a nonvacuous statement, let L be as in the Example of Section
3.1.3. Then L represents a torsion element in the bordism group n:pin(BF), and so there is
a positive integer c such cL is the boundary of a spin manifold W with fundamental group
F; take any such W. Take M to be isometrically cL x T'. Then M bounds W x Tl and
IIp(M) = C ~ f}p(L) . Chp(T' ). If L has a nontrivial rho-invariant in the ordinary sense
[20] then we conclude that W x T' cannot have a positive-scalar-curvature metric which is
a product near the boundary, with the boundary metric being the given one on M.

3.2 Semidirect Product Groups

In this section we extend the results of the previous section on product groups to the case of
asemidireet product of Zk and a finite group F. That is, we assume that the fundamental
group r of M fits ioto a split exact sequence

Let M' be the F-fold normal covering of M. We will let cP E Fact on the right on M', by
RrIJ E Dilf(M'). Let A aod P be the Albanese and Picard varieties of M'. The action of F
on M' induces an action on P. We will denote the subset of P which is fixed by r/> E F by
prP.

It is known that the irreducible representations of r all arise as follows. Think of P as
the dual group to Zk. Given pEP, let r p be the corresponding representation of Zk. Let
Fp be the subgroup of F whicb fixes p. Let Pp be an irreducible representation of Fp' Then
one forms the representation of r induced from the representation r p • Pp af Zk . Fp [28].

This motivates looking at the following space. (Unlike tbe preceding sections, we no
langer look at representations of F.)

Definition 5 [5} PCP x F is given by

P = {(p,t/» E P x F: pt/> = p} = U(prIJ,t/».
tP
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Facts on j3 by (p, rP) . 4>' = (p4>', rP,-l 4>rP'). We will denote the space of F-invariant
differential forms on P by /\*(P/F), and the associated cohomology theory, the "delocalized
equivariant cohomology" [5] by

H*(P /F; C) = [EB H*(PtP; C)]F = [H*(P; C)]F EB [EB H*(PtP; C)]F.
tP tP"/;e

Fix f : M' --t A in the canonical homotopy dass. Let V be a Hermitian vector bundle with
connection on M, and let V' be its pullback to M'.

Let Wp be the Rat Hermitian line bundle on M' whose twisting is specified by pEP.
Let Q~ be the Dirac operator acting on L2-sections of S' ® V' ® Wpo Suppose that U is an
open F-invariant subset of P such that K er(Q~) forms an F-vector-bundle on U as p varies
in U. Define tJ and Uq, as for P. If n is even, the ehern-Weil construction goes through to

give a closed form tr. (e-PV~<'-(Q')) E A*(UIF).

~t €q, be the infinite-dimensional vector bundle on (ptP, 4» C P whose fiber over
(p,4» is COO(S' ® V' ® Wp ). The Dirac operators {Q~}PEP. fit together to give an operator
Q~ : COO(€q,) --t COO(€q,). Let ~~ : COO(€q,) -+ COO(€tP ® 1\1 (PtP)) be the natural Hermitian
connection. Using V'~ and Q~, form the superconnection D~,6 as in (7).

Definition 6 Fors > 0, the Chern characterch(s) E I\*(P/F) off, a closedform, is giuen
on (PtP, rP) by

if n is even

if n is odd.

Definition 7 The eta-form r; E 1\*(tJ /F) is given on (UtP, 4» by

f ßl/2 Jo"'" STR (R; Q' e-ßD~,.') ds if n is even

TI = 1ßl/2 J: T R. (R; O'Q' e-ßD~..') ds if n is odd.

The same arguments as in Section 3.1.2 give

Proposition 15 The differential forms ch(s) have a limit as s --t 0, given on (ptP, 4» by

!~ch(s) = 6~.e 'R-ß (L, A(M') A Ch(V') A e2riW
f\dJ") . (15)
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Proposition 16 The differential 0/ ii is given on (U.p, eP) by

if n is even

if n is odd.

(16)

It is now straightforward to extend the results of Section 3.1 to the case of semidirect
products. For example, we give the extensions of Propositions 3-5. ABsume that Q~ is
invertible for all pEP.

Proposition 17 The eta-form Ti is closed.

Thus ii represents a dass [ii] in H"(P /F; C).

Proposition 18 Suppose that the vector bun~le V is associated to the principal Spin(n)­
bundle on M. Suppose that the index density A(M') " Ch(V') is a polynomial in the Pon­
tryagin classes 01 M'. Then lor fixed I : M' -.. A, [ij] is a conlormal-deformation invariant.

Proposition 19 The "delocalized" part 01 [ij], that is, the part in [EB4l;i:e H"(P.p; C)]F, is
independent of the choice 01 fand is a deformation invariant with respect to the Riemannian
metrie on M and the Hermitian eonneetion on V.

Note: Suppose that M is a Riemannian spin manifold with positive scalar curvature. Tbe
same argument as in Section 3.1.7 gives that the delocalized part of [f7] is an obstruction to
reaJizing M as the boundary of a spin manifold of positive scalar curvature with the same
fundamental group, which is a product near the boundary.

Note: Tbe f7p of Section 3.1.2 is related to the ij of the present section by a Fourier
transform on the group F. More precisely, suppose that r ~ F x Zk. Let < F > denote tbe
conjugacy classes of F. Then Facts triviallyon P and

p = P x F, ,," (P/F) f"V E9 ""(P), H*(F/F; C) ~ E9 H*(P; C).
<F> <F>

Let us write f7 E "*(P /F) a.s ii = EB<4l> E <F> ii « 4> », with each f7 « 4> » in "*(P).
Given a representation p : F -.. U(N), let Xp denote its character. Then 1]p is given by

ijp = ~ L Xp(cf» ij« cf> ».
4lEF
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4 Noncommutative Eta-Invariants

4.1 Cyclic Cohomology of Group Aigebras

Let B be an algebra over C with unit 1. As a vector space, the universal graded differential
algebra of B is !l ... {B) = E9~o !lk{B), with Ok{B) = B ® (@k{B/C)). As a graded differential
algebra, O... {B) is generated by Band dB with the relations

It will be eonvenient to write an element Wk of nk{B) as a finite sum L bodbt ..• dbk •

The redueed eydie homology JlC... {B) is the homology of the complex

7l). b 7l). b 7l).
~ ... v ...+l{B) ~ v ... {B) ~ v ..._t{B) ~ ... ,

where V:(B) is the quotient of the spaee of eydic chains C;(B) by the subspace span{bo 0
... ® b... : bi = 1 for some i}. One has [26]

1lC... (B) ~ Cok (HC.(C) -. HC.(B)). (17)

The homology "H.(B) of the differential eomplex TI.(B) = n.(B)j[O.(B), n.(B)] is
isomorphie to the subspace Ker(B) of 1ltJ.(B) for * > 0 [17, 26]. (In the ease * = 0,
"Ho(B) rv Ker(B) : HCo(B) (= B/[B,B]) ~ Ht(B,B).) Thus there is a pairing between
the redueed eydie eohomology 1llJ·(B) and "H.(B) for * > O. This pairing comes from

a pairing between "Zl]·(B) and f!.. (B)j if T E ~k{B) is a redueed eyclie eoeycle and
L bodb1 ••• dbk E !lk(8) is a k-forrn then their pairing is LT(lJo, b., ... ,bk) [17]. (For *= 0,
there is a pairing between HCO{B), the space of traces on 8, and Oo(B) = B.)

Now let r be a discrete group. Let cr be the group algebra of r. Let < r > denote
the eonjugaey classes of r, and < r >' « r >") those represented by elements of finite
(infinite) order. For x E r, let Zr denote its centralizer in r and put Nr = {x}\Zr, the
quotient of Zr by the eydie group generated by x. If x and x' are eonjugate then Nr and
N r, are isomorphie groups, and we will write N<r> for their isomorphism dass. Let erz] be
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a polynomial ring in a variable Z of degree 2. Then the cyclic cohomology of cr is given by
[13]

HC"'(Cr) = ( EB H"'(N<r>; C) ® C[z]) ffi EB H*(N<:r:>; C).
<r>E<r>' <r>E<f>"

(18)

(20)

Let S : H*(N<r>; C) -+ H*+2(N<r>; C) be the Gysin homomorphism of the fibration
SI -+ BZr -+ BNx • We will abbreviate even, odd by e, o. Put

Te,O( < x » = lim( ... -+ H*-'J(N<r>; C) ~ H*(N<3:>; C) ~ H*+'J(N<3:>; C) -+ ...),

the inductive limit. Then the periodic cyclic cohomology of cr is given by [13]

PHCe,O(Cr) = ( EB He.o(N<3:>;C)) ffi EB Te,O« x». (19)
<x>E<f>' <3:>E<r>"

In particular, He,o(f; C) is a direct summand of P HCe,O(Cr), corresponding to < x > = <
e >. Similar results hold for cyclic homology.

Note: T*( < x » often vanishes, for example if N<3:> has finite virtual cohomological
dimension.

We will need explicit cocycles for HC"'(Cr). Fix a representative xE< x >. Put

c; = {T : rk+1 -+ C : r is skew and for all (1o, Il! ... ,"'tk) E rk+1 and z E Zr,

T(Z""tO, Z""tt, ... , zlk) = T(/O, 11,· .. , ;k) and r(x;O' 11,' .. 'Fk) = T(10,;l!"" Fk)}'

Let 8 be the usual coboundary operator:

k+l
8T(/o,/b ... ,;k+d = E (-I)]T(;o,/b" .,f"j, ... ,Ik+d·

]=0

Denote the resulting cohomology groups by H;. Then H: is isomorphie to Hk (N<r>; C)
and for each eocycle T E Z;, there isa eyclie eoeycle T.,. E ZC k ( er) giyen by

rr ( ) {O il;o ... Ik rI.< x >
.l". 10"l!···,lk = ( ) '1 -1

T 9,970, ... ,9;0·· ·;k-1 1 10·· ·;k = 9 x9

For k > 0, these are in fact reduced cyclic coeycles.

4.2 Pairing of [ij] with Cyclic Cohomology

We relate the results of Seetion 3 to the eyclie cohomology of er. Suppose that r is a
semidirect product as in Section 3.2. If the operators Qp are all invertible, we defined
[111 E H*(P /Fj C). Thus to obtain numbers, we should pair [111 with H*(P /F; C).
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If F happens to be trivial then we are talking about H.{P; Cl. In this case, the rela­
tionship between P and the group r is given by Fourier transform. Namely, Cf corresponds
to certain analytic functions on P and tbe reduced group C·-algebra C:{f) is isomorphie to
C{P). The algebra COO{P), which can be considered as a subalgebra of C;{f), has the same
periodic cyclic cohomology as its subalgebra Cf, namely PHce.o{coo{P)) = He.o{P; Cl.

For general F, Cf is the cross-product CZ k * F. The periodic cyclic cohomology of
Cf will be the same as that of the cross-product algebra COO{P) * F, and one has that
PHCe,O{COO{P)*F) = He.o(P/F; C) [41]. As seen in (19), PHCe,O{Cf) breaks up according
to the conjugacy classes of f.

Thus in this case we obtain numbers by pairing [i1] with PHce.o{Cf). The "delo­
calized" part of [fj] pairs with the part of PHCe.o(Cf) coming from nontrivial conjugacy
classes.

4.3 Noncommutative Superconnections

The formal expressions for the higher Chern character and higher eta-invariant are the essen­
tially the same as those of Section 3. However, the meanings of the symbols are somewhat
different. We first review and extend some of the results of [31].

Let Mn be a connected closed oriented Riemannian manifold and let f be a finitely
presented group. Let M' be anormal f-cover of M, with 1 E r acting on the right by
Rry E Diff(M' ). Let v : M -+ Ef be the classifying map (defined up to homotopy) for the
fibration f -+ M' ~ M. Let E be a Clifford module over M with Hermitian connection.
For simplicity, we will assume that M is spin and that E = S ~ V, where S is the spinor
bundle of M and V is a Hermitian vector bundle with connection. If n is even then the
Clifford module is Z2-graded by the grading on S, while if n is odd then tbe Clifford module
is ungraded. Let E' be the pullback of E to M', witb tbe pulled-back connection. Let Q' be
the Dirac operator acting on L2-sections of E', a densely-defined self-adjoint operator.

The results of [31] are valid for any finitely presented group f. However, in this paper
we will assume hereafter that r has a finitely-presented nilpotent subgroup of finite index.
Let 11 . 11 be a right-invariant word-Iength metric on r. The assumption on f is equivalent to
saying that f is of polynomial growth with respect to 11 • 11 [21]. We will need this assumption
in order to show that the formal expression for tbe bigber eta-invariant is well-defined. Tbe
results from [31) which are given here are slightly modified in order to take tbis assumption
on r into account.
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Let 8 be the subalgebra of C;(r) consisting of elements whose entries die faster than
any power in 11 . 11. That is,

8 = {I : r -+ C : Vq E Z, sup ( (1+ I1 , Il)q 1/(,)I) < oo}
'Y

It is a Frechet locally m-eonvex algebra with unit, in the sense of (35]. One ean define a
completion 0.(8) of 0.(8) which is a Freehet graded differential algebra. The homology
-= "':I::'" ,..., X x
H.(B) of the differential complex O. (B) = O. (B) / (0. (8), O. (B)] pairs with the (topologieal)
eyclie eohomology HC·(B) of B, and in fact with the reduced eyclie eohomology for * >
O. It is shown in [24] that the periodie eyclic eohomology PHCe.o(B) is isomorphie to
PHCe.o(Cr).

Definition 8 E = (M' Xr 8) ® E, a veetor bundle over M.

The fibers of & are right B-modules, and there is a right B-aetion on the spaee COO(&)
of smooth seetions of E. 1f:F is a Freehet algebra eontaining B, one ean form the 8­
veetor bundle E®8:F. We define Homä(&,E®B:F) to be the algebra of integral operators
T: Coo(&) -+ Coo(&®a:F) with smooth kerneis T(ml,m2) E Hom8(&m-;p&ml®8:F). That is,
for s E Coo(E),

(Ts)(ml) = 1M T(mt, m2) s(m2) dvol(m2) E E:m /h8:F.

We denote Homä(E,E) by Endß(E).

A 8-eonnection on & is a map V : Ooo(E) -+ Coo(E08 01 (8» with smooth integral
kernel such that V(sb) = V(s)b + s ®Bdb for all s E Coo(E) and bEB.

One ean define a Dirae-type operator aeting on Coo(E), which we will denote by Q.
Then for all T > 0, there is a heat kernel e-TQ1 E Endlf(E).

Definition 9 The superconnection Da is given by

D _ { sQ +\7
a - serQ +\7

if n is even
if n is odd.

(21)

For ß > 0, we define e-ßD~ E Hom'8(E, E®B O.(B» by a Duhamel expansion in V.

If n is (even) odd, one ean define a. (super)tra.ce (S)TR : Hom[l(E, E®8 O.(B» -+
~

0.(8).
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-::0:::-

Definition 10 For s > 0, the ehern charaeter ch(s) E 0.(8) 0/ E, a closed fonn, is given
by

if n is even

(22)
i/ n is odd.

To make things more explicit, it will be convenient to work on M'. We now give the
covering-space versions of the preceding definitions, which are adaptions of the results in
[31]. Fix a basepoint Xo E M' in each connected component of M'. For a multi-index 0', let
va denote repeated covariant differentiation on E'.

Proposition 20 {Si} There is an isomorphism between COO(E) and

{/ E COO(M', E') : Vq E Z and all multi-indices Q, sup ( (1 +d(xo, x))q IVa /(x)[ ) < oo}.
x

Proposition 21 {91} There is an isomorphism between the algebra Endä(E) and the al­
gebra 0/ r-invariant integral operators T on L 2(M', E') with smooth kernels T(x, y) E
Hom(E~, E~) such that for all q E Z and all multi-indices 0' und ß,

sup ((1 + d(x, y))q 1V'~V'~T(x, y)[) < 00.
X,lI

It follows from fini te propagation speed estimates (see equation (30)) that e- TQI2 defines
an element of Endä(E).

Let tr(,,) denote the loeal (super)traee on End(E~). Fix a funetion cP E Cgo(M') with
·the property that L/,Er R~cP = 1.

Proposition 22 [Si} The (super)trace 0/ an element T 0/ Endä(E), represented as tn
Proposition 21, is given by

(S)TR (T) = E [f cP(x) tr(,,)((R.;T)(x, x)) dvol(x)] I' (modlB,8I).
/'Er 1M I

Similarly, an element f of COO(E®B fh(B)) cao be written as L f/'l"''Ylrdl'l ... dl'k, with
each !'Yl .../'Ir E COO(M', E') a smooth rapidly decreasing section of E'. An element K of
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Homä(&, &®Bfh(B)) can be represented by smooth rapidly decreasing kerneis K'Yl ..''YJc(x, y) E

Hom(E~,E~) such that K = LK'Yl ...'YJcd/l ... d'k is f~invariant. Then

(S)TR(K) = 1: [1 <p(x)tr(,,)((R~K'Y1"''YIJ(x, x))dvol(x)],od/1 .•• d/k (mod(ft.(8), 0.(8)]).
'Yo"",'YJcer M'

Proposition 23 [91} For each function h E Cgo(M') such that

E R:yh = 1,
'Yer

there is a connection

given by
\l f = E h ~f ®B d1

'Yer

for all f E COO(&).

(23)

Proposition 24 {91} Define ch(s) using the connection 0/ Proposition 23. Then ch(s) has
a limit as s -+ 0 given by the integral 0/ a loeal expression on M. That is, there is abiform

"X'"

w E I\"(M) 0 0 .. (8), closed in both lactors, constructed /rom h such that

limch(s) = ( A(M) 1\ Ch(V) 1\ w E 0.. (8). (24)
,,-0 JM

We refer to (31] for the exact expression for w. The important term in W of degree k
-::0:=-

(with respect to B) is a closed form on M with values in nk(B), whose pullback to M' is
given by

ßk/2 "X'"

(_1)k kI E R~dh 1\ .. . 1\ !CyO ...'YJc-l dh /od/1 .•. d/k E I\k(M') 001.(8).
• "'ro .. ·'Yk=e

There are other terms in degree k which are lower order forms on M, and arise because
of the S operation in cyclic homology, as will become clear in Section 4.6. An important
point is that the right-hand-side of (24) has support on the forms spanned by {'Od'l ... d'k :
,0 ... 'k = e}.

Corollary 1 [91} Let Tr be a cyclic k.eocycle 0/cr constructed as in (!JO). Suppose that Tr
extends to a cydic cocycle 0f B. Then for all s > 0J the pairing < eh (s), 4 > is weil defined
and independent of s. If x i= ethen< ch(s), Tr > = O. If x = e, let [T] E Hk(Bf; C) denote
the cohomology dass represented by T. Then

< ch(s), T, > = (_l)k ßk/1 LA(M) A Ch(V) A V·[T). (25)
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Note: The right-hand-side of (25) is a higher-index. The faetor (_1)k arises beeause we
are using a slightly different definition of T,. than [31].

4.4 The Higher Eta-Invariant

We now wisb to define the eta-form as a differential form on tbe noneommutative base
spaee. In line witb Seetion 4.2, the goal is to eome up with a form whieh ean be paired
with the eyc1ie eohomology of cr. In order to understand what are reasonable hypotheses
under whieh to define ij, it is worth reeonsidering tbe diseussion of Seetion 4.2. Suppose
for simplicity that F is trivial. We have seen that the periodic eyc1ie eobomology of cr
eorresponds to the homology of P. Now a reasonable eondition to define tbe pairing of a
form with the homology of P is that the form should be defined on aH of P. For the eta-form,
this means that we need for K er(Qp) to form a veetor bundle on P. This is equivalent to
saying that dim(K er(Qp» is eonstant in p. In other words, we rule out the possibility that
an eigenvalue of Qp goes from a nonzero value to zero, as p varies.

The way to generalize this eondition to arbitrary fundamental groups ean be-seen by
performing a Fourier transform over P. Namely, an element of the spaee COO(E) of Seetion
3.1.1 eorresponds under Fourier transform to a seetion of the veetor bundle E' of Seetion
4.3. One finds that the above eondition on dim(Ker(Qp» is equivalent to the eondition that
Q,

2 has a Green's operator i.e. that there is a gap between 0 aod the nonzero L 2-speetrum
of Q,2. (The proof of tbis statement is similar to the arguments in [32, Seetion VI].) This
last eondition makes sense for arbitrary fundamental group.

Thus a reasonable requirement to define 17 is for Q,2 to have a Green's operator. In
this ease, there are general reasons to believe that (26) sbould make sense [6, Seetion 9.1].
However, in this paper we will look at the simpler situation in whieh Q,2 aetually has a
bounded L2-inverse i.e. that the infimum of the L2-speetrum is strictly positive.

Definition 11 Suppose that Q,2 has a bounded L 2-inverse. The higher eta-invariant i1 E
-::0::-

0.(8) is

Ti = J ßI/2 J: STR (Q' e-ßDl ) ds

1ßI/2 J: T Rq (uQ' e-ßDl ) ds

if n is even

if n is odd.

(26)

It will easily follow from the proof of Proposition 25 that the integrand 1](s) of (26) is
integrable on any eompaet interval of (0,00). Tbe problem is to show that it is integrable
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both near 0 and near 00. The proof of the next proposition is slightly technical, and the
reader may wish to omit it at first reading.

Proposition 25 ii( s) is absolutely integrable for large s.

pr. Let J.l > 0 be such that [-1', J.l] C R\Spectrum(Q'). Let e be a smooth even function
on R such that e is 0 on [-~,!] and 1 on R\( -1,1). The idea of the proof is that for

any function 9, g(Q') = g(Q')e(~). This observation, along with finite propagation speed
estimates, will a110w us to prove the proposition. .

For the purposes of the proof, we can assume that M' is connected. Let us recall the
finite propagation speed estimate of [14]. Put N = [~] +1. Let f be a fixed sufficiently small
positive number. If x and y are two points in M', put R(x, y) = min(O, d(x, y) - f). Let f(r)
be a Schwartz function on R, with Fourier transform j(p). Then Theorem 1.4 of [14] says

'JN

If(Q')(x,Y)1 ~ const. E f 11(2j )(p)ldp.
j=O J'vl;;::R(x,v)

Now for any integer L 2:: 0,

(27)

11(2j )(p)1 = const. I(r'Ji f) (p)1 ::;

const. (1 +p2)-L IL:(1- :2)L(r2i f(r))drl :::; const. (1 +p2t LL: 1(1- :2 )L(r2i f(r))ldr.

Thus

'JN 100 Joo eP .1/(Q')(x, y)1 ~ const. L (1 +p2)-Ldp 1(1 - -d2 )L(r21 j(r))ldr.
j=O R(~,y) -00 r

In particular, suppose that f(r) = raS(r/ p)e-Tr'J for some integer a ~ 0. Put

FL(R) = loo (1 +p2t Ldp.

(Note that FL(R) is O(R-2L+1 ) as R -+ 00.) Then we obtain

(28)

I(Q'Be-TQ·2)(X,y)1 :::; const. FL(R(x,y)) L 100

rA 18(B)(r/Il)! TC e-Tr' dr, (29)
A,B,C

with A, B, and G being nonnegative integers and the sum over A, B and G being finite.
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If instead we apply (27) with f(r) = rae-Tr'J then we obtain [32, eqn. (9)]

As the integration in the Duhamel expansion involves all time, we will also need small­
time bounds for the heat kernel. It follows from standard methods [40] that there is a To > 0
such that for 0 < T ~ To and d(x, y) ~ 2f,

a ,'J ~ d'J(%,~)
j(Q' e-Tq )(x,y)1 ~ const. T---re--nrr. (31)

The strategy will be to use the estimate (29) when T > Ta, the estimate (30) when
T ~ To and d(x,y) > 2€, and the estimate (31) when T ~ Ta and d(x,y) ~ 2(.

Consider the Duhamel expansion of ij'(s). For simplicity, consider the case when n is
even; the arguments are the same when n is odd. We have that

where for f E COO(M', E'),

1. (~Q' + Q'~) (f) = E..rer (8h) R;f08d" with 8h = [Q', h] and

2. V2(f) = "Lrr,-Y'Ef h (R;h) R=n,/®ad,d,'.

To show that ij'(s) is integrable, it is enough to only consider the component of a fixed de­
gree, say k. Only a finite number of terms of the Duhamel expansion will contribute to this
degree. Consider a typical term, such as

(t"'7Q' Q't"'7) -Uk$'lQ''J ) d ds v + v e Uk . .. Uo.

Written out explicitly, this will be

(32)

ßl/2 2:")'0,... ,"'111 (_l)k J; ... Jooo h(ß - 2:J=o Uj) IM' 4>(xo) tr.[~Q'e-UO$'JQI'J s(8h) R:yl e-Ul~'JQ/'J

s(8h)~ ... s(8h) R;lIe-uk~Q/'J](xo, xo) dvol(xo) dUk . .• duo ,od'l ... d'k = (33)
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ßI/2'L-ro"",'Yk (_l)k Io
oo

••• Jooo 8(ß- Ej=ouj) fMI<j>(xo)tr6[Q'e-uo6~QI~{sR~(8h)} e-U16~Q'~

{sR~'"r'1(8h)} .. . 09 {~ •••'Yk-l (8h)} e-U".2Q'2 R~ "'''(kH Xo, xo) dvol(xo) dUk ... duo ,od,I . .. d,k =
(34)

ßI/2 'L-ro, ... ,'Yk (_l)k 1000
••• Iooo 8(ß - Ej=o Uj) IMI'" IMI <j>(xo) tr.

[Q'e-uo ,,2QI2 (XO, Xl) {S(8h)( Xlio)} e-Ul.2Q/2 (X}, X:2) {o9( 8h)( X:2iOid} ...

{o9 (8h)(XkiO'" ik-l)} e-Uk62Q12 (XkIO .. 'lk, XO)] dvol(xk)'" dvol(xo) dUk ... duo ,odil ... dik.
(35)

Let UB change variable to Vj = Ujo92, to obtain

j31/:2S -k-:2 'L-ro,... ,'Y1r (_l)k J;' ... Irr 8(ß - 8-
2 Lj=o Vj) JMI ... IM' </>(xo) tr"

[Q'e-tIOQ'~(XO,Xl) {(8h)(XlrO)} e-vIQ'2(XI,X:2) {(8h)(x:2/0il)} ...

Q/2{ (8h)(XkrO .. . ik-l)} e-ulr (Xk"Yo .. 'Ik, xo)] dvol(xk) . .. dvol(xo) dVk . .. dvo rod,I" .dik.
(36)

It is enough to show that the coefficient of Iod'I" .d'k in (36) decays faster than any power

of 1 +Ej=o 11 ij 11·

We will divide the integration domain of the {Vj }~=o into 2j +1 pieces according as to
whether each Vj is less than or equal to, or greater than To. First, consider the contribution
to the coefficent of ,odil ... drk from the piece having all of the {Vj }j=o greater than To.
Using (29), its norm will be bounded above by

const. {2:1tl "",'Yk IMI'" IMI Ic/>(xo)l FL(R(xo lxI)) 18h(Xlio)1 FL(R(XI' X:2)) 18h(X2/0/dl···

18h(Xkio" "k-I)1 FL(R(Xk/O" 'Ik, xo)) dvol(xk)'" dvol(xo)}

{o9-k-:2 JI: ... Ir: Io
oo

... 1000 8(ß - 09-
22:j=o Vj) 2:Ä,ß,a n;=o rt

j
16(Bj)(rj/p)l vfj e-vjrj

drk ... drodVk ... dvo} l (37)

where the surn over Ä, B, C is a surn over a finite set.

Let S be a cornpact set which contains supp(</» and supp(h). Then the first factor in
(37) is

L"M,... ,'Yk fM' •.. fM' 1</>(Yo) I FL(R(Yo/o, YI)) I8h(YI) I FL(R(YI/I' Y2)) 18h(Y:2) I ...

18h(Yk)1 FL(R(Yklkl Yo)) dvol(Yk)' .. dvol(yo) =
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~"'.,"fk JS'" Js 14>(Yo)1 FL(R(y%, Yl» 18h(Yl)1 FL(R(Yl/b Y2» 18h(Y2)1· ..

18h(Yk)1 FL(R(Yklk' Yo)) dvol(Yk) ... dvol(yo).

The fact that r is of polynomial growth implies that for large enough L, (38) is finite.

(38)

As e and its derivatives vanish on [- !' !], the second factor in (37) is bounded above by

t -1.-2 JOO Joo Joo Joo C(ß -2 "I. ) " nk Ai Ci -vir~cons.s To '" To ~ ••• ~ U -s LJ;=OVj LJÄ,ä j=orj Vj e J

3

t -1.-2 fOO foo roo roo C(ß -2 ".10 ) '" nk ( + l!)Ai Ci -vi(T+JUi)cons . 8 Tc •.• To Jo ... Jo 0 - 8 LJj=O V; LJÄ,tJ ;=0 Xj 2 Vj e

dXk . .. dxodvk ... dvo ~

/00 /00 k k 1 J.l Ai tI .~3
con8t. 8-1.-2 11 ... 11 ö(ß - S-2 L Vj) L II vYi-

l
(- + -2) e- + dVk ... dvo =

Tc Tc j=o A,t) j=o Vj

33 ~oo ~oo k k 1 Ai
Con8t. 8-.10-2 e-~ . .. ö(ß - 8-

2 L Vj) L II vfi- t (- + J.l) dVk ... dvo. (39)
To To j=O A,e ;=0 Vj 2

For large 8, the exponential term in (39) will dominate the rest, which will grow at most
polynomially in s. Thus the contribution of the piece with all v;'s greater than To will decay
rapidly in s.

Now let us look at the contributions from the pieces with v; ~ To for some Vj. For
simplicity, let us consider the piece with Vo ~ To and Vj > To for j > 0; the estimates of the
other pieces will be similar. Hs contribution to (36) is

ßl!2s-k-2 ~, ...,"fk (-l)k IoTo JT: . .. .r;: ö(ß - 8-
2 2:;=0 Vi) JMI JM/ 4>(xo) tr,

[Q'e-uoQ'3 (xo,xt} {(8h)(xt/o)} e-vIQI3(xt,X2) {(8h)(X210/dJ ..

Q,3
{ (8h)(Xk/0'" Ik-dJ e-Vk (XkIO'" 11., xo)] dvol(xk)'" dvol(xo} dVk ... dvo ,od,t ... d/k.

(40)
Using (29), the norm of the coefficient of ,od,t ... d,k in (40) will be bounded above by

const. {E1U ,••• ,"fJ; JMI ... IMI (JJc IQ'e-voQ'3 (xo, xl)1 dvo) 14>(xo)118h(xt/o)1

FL(R(xt, X2» 18h(X2101t )1 .. ·18h(Xk/O" "k-l)1 FL(R(XkIO' .. 11., xo» dvol(x~.) . .. dvol(xo)}
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(42)

{S-1:-1 suPvoE[O,To] fn... fT: 1000
••• fooo S(ß-S-1 Ej;;;;o Vj) L.Ä,B,c' nj;;;;l rt j Ie(Bj) (rj / Jl) Ivfj e-VjrJ

drk ... drldvk ... dVI}, (41)

Integrating (31) gives that for d( Xo, Xl) ::; 2f,

roTo Q,41 ) I Ti.!!.±1 .t4l 00 n-3 ,.,?
Jl IQ'e- vo (xo, Xl dvo::; const. fo 0 T- -re- nrT dT = const. fTo-1 r-re-:nr dr =

{OO n-3 (TÖ
1+$).t4l 1 1 4.01!!.j! _ ,r

eonst. lT
o
-

1
(To-

I +x)--re- 4.01 dx ::; const. cP (T
o
+7) e ttno,

where d = d(xo, Xl)' Similarly, integrating (30) gives that for d(xo, xd ;::: 2f,

fg-o IQ'e-voQ'41 (xo, xI)1 dvo ::;

1 1 4 )-S/'J[ -1 -1-4N 1 4 1+4N ( 1 4 )1+4N] _#; )
const' R3 (T

o
+ R'J R +R +R(T

o
+ R'J)+R Ta + R1 e 0, (43

where R = d( XO, Xl) - €. Equations (42) and (43) show that f[o IQ'e-voQ ,41 (xo, xI) I dvo is
locally integrable in Xo, and decays faster than any power in d(xo, xd as d(xo, xd -t 00.

Then for large enough L, the first term in (41) is finite. The second term in (41) cau be
bounded as in equation (39), and so we obtain that the contribution of the piece with Va ::; To
and Vj > To for j > 0 is integrable for large s. It should be c1ear that the same arguments
will apply to rest of the 2j +1 pieces of the integration domain. Also, one can check that the
same arguments apply to the other terms in the Duhamel expansion. •

Proposition 26 ii( s) is absolutely integmble far small s.

pr. The method of proof will be as in [6, Section 10.5]. (Dur labels sand t are the
opposite of [f!).) We will cross the noncommutative base space with R. Th!"t is, we consider
the algebra B = COO(R) 0 Band the graded differential algebra I\"'(R) ® 0 ... (8). Let M be
COO(R) 0 COO(E), aB-module. Let t be a coordinate for Rand consider the superconnection
D 6 , acting on M, given by

D6 = Dt6 + dt 1\ Ot.
- -,,::-

Define eh(s) E 1\'" (R) 0 0", (B) as in Definition 10. Then it follows as in [6, Section 10.5] that

ch(s) = ch(ts) - ßI/2 S dt 1\ ij(ts). (44)

As in (24), one can compute the asymptotics of the left-hand-side of (44) a.s s -t O. One
finds that there is a Taylor's series expansion with sO-term given by the right-hand-side of
(24). In particular, the dt- term of (44) starts at order sI, and so ij(ts) has a finite limit as
s -t O. Taking t = 1, the proposition follows. •
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4.5 Variational Properties of fj

Apriori, Ti depends on the choices made in its definition, namely

1. The function h,

2. The Riemannian metric on M and

3. The Hermitian connection on V.

To understand this dependence, first let us do Borne formal calculations. For simplic­
ity, suppose that n is even. Consider a smooth l~parameter family of input information,

-,::'"

parametrized by areal number f. As elements of 0.(8), we have the equalities

dch(s) = -ß1/'Jdij(s)
ds

and
dch(s) = -ß d STR (dD. e-ßD~) .

df df

Then

d dif(s) = d ß1/2.:!.- (STR (dD. e-ßD~)) .
df ds d€

This makes it plausible that

dij(s) = ß1/2.!!:.... (STR (dDs e-ßD~)) ( ( ))df ds df mod Im d ,

whieh is in fact true, as one can check that

(45)

(46)

(47)

(48)

-,.:::-

(Recall that in defining 0.(8) we quotient out by the commutator.)

From (49), we obtain that

dif = ßl/'l (lim -lim)STR (dDs e-ßD~) (mod Im(d)).
~ .-00 s-o ~
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One can j ustify the formal manipulations in equations (45)- (50) by the estimates used in the
proof of Proposition 25. With our assumption that the operators Q'( f) Me all invertible,we
have

1· STR ( dD
6 -ßD~) 01m -d e ' = .

6-00 e.

Thus

dii = _ ßl/'J lim STR ( dD
6 e-ßD~) (mod Im(d)),

de. ,,-0 df

which, being a small-time limit, is given by the integral of a local expression on M. Note
that this is essentially the same argument as was used at the end of Section 3.1.2. The
small-time limit can be calculated as in [31], and we will simply state the result.

Proposition 27 Consider the product bundle R x M, with vertical metrics given by g(e.),
and pulled-back vector bundle V. Let h be the /unetion on R x M' corresponding to h(e.).

~ -There is a bi/orm w' E I\·(R x M) 00.(8), closed in both /actors, construeted from h such
that

~: =Li(8,) (A(R x M) i\ Ch(V) i\ w') (mod Im(d)). (51)

The important term in w' of degree k (with respect to 8) is a closed form on R x M
whose pullback to R x M' is given by

ßk/2 E R~ih 1\ . .. 1\ H::.ro ..."flc-l dlt ,od'l ... , d,k E I\k(R X M') 0 n,,(8).
"'I\)···"flc=e

The right-hand-side of (51) has support on the forms spanned by

{,od'1 ... d'k (mod Im(d)) : ,0 .. .'k = e} .

Corollary 2 Let Tr be a cyclic cocycle ofcr constructed as in (fO). Suppose that Tr extends
to a cyclic cocycle 0/8. Suppose that the vector bundle V is associated to the principal
Spin{n}-bundle on M. Suppose that the index density A(M) 1\ Ch(V) is a polynomial in the
Pontryagin classes 0/ M. Then /or fixed h, < ii, Tr > is a conformal-de/ormation invariant.

pr. As in the proof of Proposition 4, i(a~) (A(R x M) 1\ Ch(V)) vanishes identically.

•
Corollary 3 Let T,. be a cyclic cocycle ofCr construeted as in (fO). Suppose that T,. extends
to a cyclic cocycle of B. I/ x f; ethen< ii, T,. > is independent 0/ hand is adeformation
invariant with respect to the Riemannian meiric on M and the Hermitian connection on V.
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Pf. This follows direetly from Proposition 27. •

Example: Take M as in the Example of Seetion 3.1.3, with the Dirae operator. Then the
eydie eohomology of cr is given by

Hc*(Cr) = EB HC·(CZ' ).
<F>

Under Fourier transform, an element Ta of HCk(CZ' ) beeomes a sum of a dosed k-eurrent
on T' and lower-dimensional homology classes on T' [17]. Let ~ denote the eorresponding
total dass in H.(T' ). Let< f > be a eonjugaey dass in F. Let T, be the eydic eoeycle on
cr formed from < f > and 7;,. It follows from separation of variables that

Here 1JL(!) is the eta-invariant of (4) and [T'] ia the fundamental dass of T' in eohomology.

4.6 Pairing with Periodic Cyclic Cohomology

We saw in Corollary 3 that we obtain deformation invariants of (M, V) by pairing ij with
eertain cyclie eocycles of 8. This gives a generalization of the rho-invariant of [3], which

"="
eorresponds to the special ease of pairing with O-eocydes. More precisely, f2.(8) breaks up
ioto a sum of subcomplexes labeled by the conjugaey classes of r, and we ean write

Ti = EB ij« x».
<~>E<r>

We define the higher rhü-invariant by

p= EB r;« x».
<x>;t<e>

Integrating (45) with respeet to s, we have

(52)

(53)

As Q' is invertible, lim,,_oo ch(s) = O. From Proposition 24, lim,,_o ch(s) has support on the
subeomplex eorresponding to the trivial conjugacy dass. Thus pis dosed, and so represents
an element of the (topological) reduced eydie homology "HlJ.(B). By Proposition 27, the
dass of p in 1lV.(B) is a deformation invariant of (M, V).
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The pairing of p with reduced cyc1ic cocyc1es of Cf was described in Corollary 3. It
does not immediately pass to a pairing with the periodic cyclic cohomology, mostly because
of a problem with numerical factors. We now wish to produce something which does pair
with the periodie reduced cyclic cohomology of Cf.

First, let us diseuss periodicity in reduced eydie cohomology. From the dual equation
to (17),

-m;*(B) f"'Y ](er (HG *(8) ~ HG *(C)), (54)

the 8-operator on eydic cohomology passes to an operator on reduced cyclic cohomology.
However, it does not generally have a simple expression as an operator on reduced cochains.
Of course, if 8 is an augmented algebra then there is a simple expression. More generally,
suppose that 8 is an algebra. with a trace Tr. Given 4> E Cf(8), define Tr· 4> E Ck+1(B, B·)
by

(Tr . 4>)(1)0, ... , bk+d = Tr( ho)4>(~, ... , bk+1).

Using the notation of [17], define 84> E G;+2(8) by

Sq, = A [k ~ 3 (uür,h) +b'(Tr. r,h)]

and define Sr/J E C~+2(B) by

- 1
84>=- (k+l)(k+2)8r/J

(55)

(56)

(57)

Note that because Ab' = bA, the term that we have added to the usual expression for the
S·operator is a cyc1ic coboundary. Then one can check that Sand 5 extend to operators
on reduced cydic cohomology. Similarly, there are operators Sand S in reduced eydie
homology. Periodicity in reduced eyclic homology will refer to invariance with respect to the
S-operator. In partieular, for the various group algebras whieh we consider, there is a trace
Tr given by evaluation at the identity element.

We now consider the relationship between the ehern character and periodicity. (We
will loosely speak of the ehern eharaeter of a module as an element of 1JlJ.(B), although
this is not strictly true for the term of degree zero.) In general, the ehern character is not
§.invariant. For example, in the case of a finite right projective Z2-graded module C, putting
Q = 0, we have

00 ßi
Ghß(c) = L(-l)i_., tr, (V2)k) ,

i=O J.

which as an element of 1lV.(B) is not S-invariant. However, aue can easily modify this
expression by defining Chper (c) to be
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Then

(58)

which is S-invariant [26].

Similarly, in the case of an ungraded finite right-projective module, assume that the self­
adjoint operator Q is invertible. Give the module a Z2-gra.ding by the positive and negative
spectral subspaces of Q. Then 71P(f) is dosed, and its class in 1l7J.(B) is ~Chp(E) [8, 30].
ThuB

is S-invariant.

This motivates the following definitions:

Definition 12

and

ehper(s) = fooo e-Pehp'J(s} dß,

ii""r = foe<> e-ßiiß' dß

As the dependence of ehp'J(s}, 11p'J and pp'J on ß is simply given by a nonnegative power of ß
in each degree, it is clear that the ß-integral makes sense.

Proposition 28 As elements o/1Tl!.(B}J ehper(s} and pper are S-invariant.

Pf. First suppose that n is even. The dass of ehP'J (s) in 1llJ.(B) equal to the s ---+ 0 limit,
which was given in Proposition 24. Let us write ehp2(0} aB

00

Chp2(0} = E(-l)iß2ichl2Jl(O),
i=O

with ch[2il(O) E 11l!2i(B). Using the expression for w derived in [31], one can check that
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We will not give the (uninteresting) computation here. It follows that

Sch(211(0) = _ 1 ch[2j-2}(0)
(2j - 1)(2j) ,

and so co
chJ>e'l"(O) = E(-1)j(2j)! ch[211 (0),

j=O

and hence also chper(s), are S-invariant.

(60)

If n is odd, consider SI X M. Now 1rl (SI X M) = Z X 1rl(M), and the algebra of rapidly
decaying elements of C;(Z X 1rl (M)) is isomorphie to coo(SI) 0 B. Aseparation of variables
argument shows that the image of ehg~ x M ( s) under the natural map t :HV. (cco(SI) 0 B) ~
IrrJ.(COO(SI)) 01lV.(B), is given by

00

t(ch%~XM(s))= ß1J 0 ch~(s) = Eß1J 0 (_I)i+ l ß2i +1 ch(2j+11(s), (61)
i=O

where 1J is a generator of1llJ1(CCO(Sl)) and we put

00

ch~(s) = E(_1)i+1ß2j+1ch(2j+l](S).
j=O

(62)

As the S operator is simply obtained by taking tensor produets with the cyclic homology of
C, it commutes with t, and

S(1] ® Ch[2 j+l](S)) = 1] ® S(Ch[2j +l] (s)).

Applying (59) to SI X M then gives

S(Ch[2j+l](S)) = Ch[2j -l}(S),

,and so
S(Ch[2j+l](S)) = _ 1 Ch[2 j -l](S).

(2j)(2j + 1)
It follows that the periodic ehern character of M,

00

chper(s) = L:(_1)i+l (2;' + I)! CM2i +l](S)
i=O

is §-invariant.

(63)

(64)

The method of proof of Proposition 26 now applies to give the same result for pper .
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4.7 Higher Eta-Invariants for the Signature Operator

We now consider the case when Q' is the signature operator on M' if n is even, or the
tangential signature operator if n is odd. We have only defined the higher eta-invariant
for invertible operators in this paper, and so as it stands, the higher eta-invariant for a
signature operator would probably never be defined. However, there are various ways to
make the obstructions to invertibility cancel, in order to obtain an effectively invertible
operator. This is somewhat similar to how the Ray-Singer torsion becomes a topological
invariant for a pair of homotopy-equivalent manifolds (the Whitehead torsion) or for a Hat
acyclic bundle (the Reidemeister torsion).

To be more predse, suppose that MI and M'J are closed smooth oriented Riemannian
manifolds with a smooth orientation-preserving homotopy equivalence 0 : M'J --+ MI' Let
r be a finitely presented virtually nilpotent group and let 0' : M~ --+ M; be a lift of 0 to
normal r ·covers. Consider the complex

d k-l(M' M') d k(M' M') cl k+l(M' M') d... --+/\ l' 'J --+/\ l' 2 --+/\ l' 2 --+ ... ,

where I\k(M{,M~) = I\k(MDe/\k-l(M~) and d(wt,w'J) = (dwt,O-Wl - dw2 ). Then the
homotopy-equivalence of MI and M 2 implies that the relative (tangential) signature oper­
ator is L2-invertible on /\-(M{, M~) [33]. If h E Cö(M;) satisfies (23) then we can form
a superconnection from the pair (h, (o'th) as in Section 4.3, and define a relative higher
eta-invariant ii(Mt, M2 ). As the invertibility of the relative signature operator is indepen­
dent of the Riemannian metrics, it follows that the relative higher rho-invariant p(M1 , M'J)
is independent of all choices made, and is a smooth topological invariant of the pair of homo­
topic manifolds. This can be compared with the higher rho-invariant defined for a homotopy
equivalence in [43, §2] by means of an analysis of the surgery exact sequence.

Another possible cancellation mechanism can be seen from the fact that the lower
:signature of an even-dimensional manifold can be computed from /\ i'(M), and the lower
eta-invariant of an odd-dimensional manifold can be computed from Im(d-) c /\ !!fl(M).
That is, there is a cancellation outside of a certain subspace of "-(M).

To extend this cancellation mechanism, suppose first that M is a smooth closed ori­
ented Riemannian manifold of even dimension n. The integrand 1f(s) of (26) is always
integrable near s = 0, and the question is the large-s integrability. Suppose that the Lapla­
dan has a bounded L'J-inverse on /\~(M'). (This condition is a homotopy invariant of M
[22], and as r satisfies the Strong Novikov Conjecture [27], it implies that the higher sig­
natures of M vanish.) Then there are DO integrability problems in defining 1f. Ta see this,
let P be the projection operator onto "i"(M') e d" if (M') e d- /\ i (M'). Then Q' com­
mutes with P, but the connection 'V will not commute with P, and so we cannot say that
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ii ean be eomputed from Im(P). However, as the question of large-s integrability is in­
dependent of the choice of connection, we can homotop our superconnection from D. to
D: = PD 6 P + (1 - P)D6 (1 - P), without affeeting the integrability question. Now 1], de­
fined using D~, decomposes as 1]lm(P) + iiKer{P)' As Q' is invertible on Im(P), there is 00

problem with the large-s integrability of iilm(P)' However, iiKer{P) vanishes for algebraie rea­
sons. To see this, define the operator W on K er(P) to be multiplication by sign(k - ~) on
K er(P) n AJ:(M') [38]. Then W is an invertible odd operator which commutes with Q' and
D~. Thus

STR (Q' e-ßD~) = STR (W-1W Q' e-ßD~) = -STR (WQ' e-ßD~W-l) =

- STR (WW-1Q' e-ßD~) = -STR (Q' e-ßD~) = O.

This implies that iiKer{P) vanishes.

(65)

Again, the higher rho-invariant pis independent of aH choices made, and ia a amooth
topological invariant of M.

If n ia odd, a aimilar argument shows that it is enough to assume that the Laplacian
has a bounded L2-inverse on Im(d·) C Anr(M').

Finally, suppose that f = F x f o, with F a finite group. In analogy to Section 3.1.3,
suppose that the Laplacian has a bounded L2-inverse on the orthogonal complement to the
F-invariant forms in 1\9"(M') or Im(d·) C A!!jl(M'). Then ii will be well-defined aB long aB

we only look at it away from the trivial representation of F.

4.8 Conjectural Higher Index Theorem for Manifolds with Bound­
ary

We now suppose that M is the boundary of a compact spin manifold W, with a product
metric near the boundary. Let W' be a normal cover of W with virtually nilpotent covering
group f. Let V be a Hermitian vector bundle with eonneetion on W which is a product near
the boundary. Let h E Cü(W') be a function which is constant in the normal direction near
the boundary, such that ~ErR~h = 1. Let M' = aw' be the f-cover of M. Suppose that
the Dirac-type operator on M' is invertible. Using the restrietion of h to M', we ean define

~

ijM E 0.(8).

Let Qw be the Dirac-type operator acting on a C;(f)-Hilbert module of spinors on
W', with APS boundary conditions. The analysis of [37] shows that Qw gives an unbounded
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KK(C,C;(r))-cycle in the sense of [4]. Thus Index(Qw) is well-defined in K.(C;(r)). As
':::0::::

K.(C;(r)):: K.(8) [25], there is a ehern eharacter Chß(Index(Q~))E H.(8).

Conjecture 1

Chß(Index(Q'w)) = fw A(W) 1\ Ch(V) 1\ W - TJM E H.(B) (66)

As evidence for this conjecture, we note that it follows from Proposition 27 that the
right-hand·side of (66) is deformation·invariant. Furthermore, (66) has been proven when
paired with the trivial O-cocycle [37} for general finitely-presented r. It should be possible
to prove the conjecture by combining the methods of [31] and [37].

As an application, consider the case when V is trivial, so that one has the pure Dirac
operator. As in Section 3.1. 7, a consequence of the conjecture would be that the higher
rho-invariant gives an obstruction to extending a positive scalar curvature metric from the
boundary of a compact spin manifold to the entire manifold, so as to have a product metrie
near the boundary.

4.9 Higher Signatures for Manifolds with Boundary

We refer to [44] for a survey of the Novikov conjecture. Let us just reeall the statement. For
simplicity, we will work with smooth oriented manifolds, and all homotopy equivalenees will
be assumed to be smooth and orientation-preserving. Let W be a closed manifold and let
lJ : W .-. Br be a eontinuous map into the classifying spaee of a finitely presented group
.r. The L-class of W ean be taken to lie in H*(Wj C) and its Poineare dual *L then lies in
.H.(Wj C). One version of the Novikov eonjeeture is that v.(*L) E H.(Br; C) is a homotopy
:invariant of W. (Instead of eonsidering all such r, one can equally weil just take r to be
7rl(W), whieh is a more standard form of the eonjecture.)

If W is now a manifold with boundary M, there are various possible Novikov eonjee­
tures. For the simplest one, let r' and r be finitely presented groups with a homomorphism
{rom r' to r such that one has a eommutative diagram of eontinuous maps:

M .-. W

1 1
Br' .-. Br

Let lJ : (W, M) -... (Br, Br') be the corresponding map of pairs. The L-class still defines
an element of H*(W; C), and its Poineare dual *L now lies in H.(W, Mj C). Then one ean
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conjecture that v.(*L) E H.(Bf,Bf'j C) is a homotopy invariant of the pair (W,M) (44].
This can be considered to be a relative Novikov conjecture, in that it involves two groups.
In the special ca.se when M is empty and f' is trivial, one recovers the previous Novikov
conjecture. As pointed out in [44], the relative Novikov conjecture would follow if one knew
the truth of the Novikov conjecture for f and the Borel conjecture for f'.

That the relative Novikov conjecture is not completely satisfactory can be seen by
considering the case when W and M have the same fundamental group f = r'. Then
H.(Bf,Bf'j C) is the o-vector space, and so v.(*L) vanishes. However, the ordinary signa­
ture is a nontrivial homotopy invariant of the pair (W, M). Thus there are more homotopy
invariants than those detected by the statement of the relative Novikov conjecture.

(67)Jw L(W) 1\ w - TiM

We wish to propose an absolute Novikov conjecture for manifolds with boundary, in
that it only involves one group f. For the same technical reasonB as before, we will assume
that f is virtually nilpotent. So let v : W -+ Er be a continuous map. There is an induced
map VM : M -+ Er and corresponding normal covering M'. Assume that M is such that
the Laplacian, acting on middle dimensional (or middle-two dimensional) forms on M' is
invertible, as diseussed in Section 4.7. (One eould also eonsider the ease when f = F x ro,

"':lI::'"

as discussed there.) Then TiM E !1.(B) is well-defined. Let w be the biform of Proposition
24. Now

':=

represents a class in H .(8) which is a smooth topological invariant of the pair (W, M). Upon
integrating (67) over ß as in Definition 12, we obtain an element of PHCe,o(B), say E. As
PHCe,o(B) is isomorphie to PHCe,o(Cr) [24], the deseription of Seetion 4.1 shows that E
breaks up according to conjugaey classes of r into a part in H.(rj C) and a part outside
of H.(rj Cl. As w is coneentrated on the trivial conjugacy class, the part of E outside of
H.(fj C) is simply the negative of the higher rho..invariant of M. By the higher signature

,;O'(W, M, r), we will mean the part of E in H.(rj C).

Conjecture 2 t7(W, M, r) is a homotopy-invariant of the pair (W, M).

Note:

1. To be more conerete, let T E z·(r; C) be a group eoeycle and form tbe corresponding
eyclic cocycle Tr aB in (20), with x = e. If Tr extends to a eyclic cocycle of the algebra
B tben we obtain higher signature numbers by pairing the form of (67) with Tr via the
pairing of Seetion 4.1.
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2. As a consequence of Conjecture 2, we would get a Novikov additivity for the higher sig­
nature of a closed ma.nifold which is split along a codimension-l submanifold satisfying
the conditions on M.

3. When f is trivial then it follows from [2] that u(W, M, f) is the ordinary signature of
the pair (W, M), which does satisfy the conjecture.

4. The relative Novikov invariant is the image of O'(W, M, f) uuder the map H.(Bf; C) -t

H.(Br; Br'; C).

4.10 Pairings of fj with O-Cocycles and l-Cocycles

4.10.1 O-Cocycles

Let n be odd and let T be a O-cocycle on B, that is, a trace on B. Then

< ii, i > = < ßl/2 Irr TRq (O'Q e-ß,,2Q2) ds, T > = 4- < TR (~),T > =

4- ~Er < IM' fj>(m) tr ((R~~) (m, m)) dvol(m) "Y, T > =

4- ~Er fMtlp(m) tr (~ (m"Y, m)) dvol(m) 7("Y).

We can relax the smoothness condition on </1, and take r/> to be the characteristic function of
a fundamental domain :F in M', to obtain

Vi { ( Q' )< q, T > = ""2~JF tr IQ'I (m')', m) dvol(m) T(')'). (68)

As a. special case, if we take 7 to be obtained from the character of a. finite-dimensional
representation p of r, we get 4- times the lower eta-invariant for p. On the other hand, if
we take T to be the standard trace obtained from evaluation at the identity element of r,
we get ~ times the L2-eta.-invariant of [15].

More generally, following the discussion of Section 2, given an element x of r, let Tx
be the O-cocycle obtained by pairing with tbe characteristic function of < x > in f. Then

- .;; {( Q' )< 1], Tx > = - L: J:J tr IQ'I (m"Y,m) dvol(m).
, 2 1'e<x> :F

If x f ethen< ii, Tz; > is deformation-invariant.
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4.10.2 1..Cocycles

Let n be even and let T be a 1-cocycle on 8. Then

< ij, T > =
< ß1/'J fooo ft STR (Qe-uilQ'J (-s[V, Q))e-<ß-u).'JQ'J) duds, T > =

< ß1/2 Io
oo It STR (( -s[V', Q)) Q e-ß.'JQ'J) duds, T > =

< - ~ fooo STR ([V', Q] Q e-ßa'JQ'J) d(ßS2), T > =

< - ~ STR([V', Q] Q-1), T > =

- ß~'J L1\),"Yler < IMI tjJ(m) tra ((R=ro(8h)R=n Q,-1) (m, m)) dvol(m) /,od,I, T > =

- ß~'J ~."Y1 er IMI 4>(m) tr11 ((8h) (m/,o) Q,-1 (m/'O/'b m)) dvol(m) T (/'0, /'1)'

Again, we cau take 4> to be the characteristic function of a fundamental domain, to ob­
tain

< ij, 7 > = - ß~2 L LIr, ((8h)(m, 0) Q,-1(m, 011, m)) dvol(m) 7bo, 11). (70)
1\) ,"Yl er

Given an element x of f, let 1" be a cocycle constructed as in Section 4.1, such that T,.
extends to a 1-cocycle of 8. Let {gj} be a sequence in f such that {gj1 xgj } parametrizes
< x>. Then

< ij, T > = - ß~'J Lgj L"'fOer f:F tr ll ((8h)(m/o) Q,-1 (mgj1 xgj ,m)) dvol(m) r(gh gj/o) =

- ß~'J Lg
j
~ef IF9j l tr/J ((Bh)(mgj/'o) Q,-1(mx, m)) dvol(m) r(gj,gj,o)

-- ß~/'J Lgj L"Yer I:Fgjl trJ1 ((Bh)(m,) Q,-1 (mx, m)) dvol(m) r(gj, I)'

'-'If x =f e, thia is deformation-invariant. If x = e, then r (e, , ) = Jl (,) for sorne group
homomorphism Jl : r ---+ (C, +), and

< 11, T > = - ß
2

1
/
2

L { Ir, ((8h)(m, ) Q,-1(m, m)) dvol(m) pb). (71)
"Yef J:F

If we put A = L"Yer Jl(,) ~(dh) E 1\1(M') then

R;A = L Jl(,) R"n(dh) = E Jl(g-1,) R~(dh) = E(Jl(,) - Jl(g)) R~(dh) = A.
"Yef -ref -ref

Thus the integrand of (71) ia f-invariant, and so (71) can be written as the integral of a
smooth quantity on M.
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4.11 Remarks

1. It would be desirable to weaken the assumptions that Q' is invertible and that tbe
group r is virtually nilpotent. This latter assumption is very strong, and we hope that
it ean be weakened to a statement tbat, roughly, one ean prove the Strong Novikov
Conjeeture for f. This would be more eonsistent with the results of [43] for the
signature operator.

2. The higher eta-invariant deseribed in this paper ean be viewed as fitting into a (C, B)­
bivariant theory in the sense of [27]. One should be able to extend this to a (COO(M), 8)­
bivariant eta-invariant using the equations of [30]. This would give a higher rho­
invariant whieh pairs with both the eydic eohomology of fand the de Rham eohomol­
ogy of M. The (COO(M), C)-bivariant eta-invariant is eonsidered in [42].

3. As the higher rho-invariant of this paper lies in eydie homology, it is natural to guess
that it is the Chern eharaeter of something whieh is defined in K-theory. Reeall that tbe
Chern eharaeter of the index of a Dirae-type operator on M also takes value in eyclie
homology, hut on the part eorresponding to the trivial eonjugacy dass, as ean be seen
from (24). In eontrast, the higher rho-invariant takes value in the eomplementary part,
~ seen in (53). Thus the higher rho-invariant gives eomplementary information to the
higher index. This seems to be related to the fact that when a group f has torsion, the
assembly map from KO.(Bf) to K.(C;(f)) is generally neither injeetivenor surjeetive,
even if f is finite [39]. In this latter ease, the (redueed) lower rho-invariant deteets
Q/Z faetors in KO.(Bf).
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