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Abstract

For any complex simple Lie algebra g we give a complete classifica-
tion of orbits in g* (with respect of the Ad*-action of the corresponding
group) such that the bracket defined by a modified R-matrix R € A’g
is a Poisson one. We consider the family of Poisson brackets generated
by the above bracket and the Kirillov-Kostant-Souriau bracket. These
two brackets are compatible.

1 Introduction

Let g be a semisimple Lie algebra over C, G be its adjoint group. Con-
sider a homogeneous G-manifold M = G/H. Any element X € g defines
a holomorphic vector field p(X) on the manifold M in the following way
p(X)f(m) = f(e=*m)|i=0, f € Fun(M). The correspondence X — p(X) is
a representation of g into the space Vect(M) of all holomorphic vector fields
on M. Let us fix an element R € A?g and associate the following operator
to it

f@g—{figlr=n<(p®p)R,df ®dg >, f,g€ Fun(M). (1)

Hereafter x 1s the usual commutative multiplication in the space of holomor-
phic functions Fun(M)

2 Fun(M)®? — Fun(M)



and <, > stands for the pairing between vector fields and differential forms.
Let us consider two conditions
(i) R satisfies the classical Yang-Baxter equation i.e. [[R, R]] = 0 where

[R, R]] = [R", R"] + [R", R¥] + [R", R¥]

(it is clear that [[R, R]] € A%g for any R € A%g).

(i1) The operator (1) defines a Poisson bracket i.e. it satisfies the Jacobi
identity (since the antisymmetricity and the Leibnitz identity are fulfilled
automatically).

It is obvious that the implication (i)=>(ii) is true. However (ii) could be
fulfilled even if the condition (i) fails. In the present paper we investigate
the following

PROBLEM. Let g be a stimple Lie algebra. Describe all orbits O in g%,
such that the condition (ii) ts fulfilled, where R is a modified R-matriz.

These orbits are said to be the orbits of R-matriz type.

In fact the problem under consideration may be formulated without any
R-matrix and therefore the property of an orbit to be of the R-matrix type
does not depend on a particular choice of R-matrix. More exactly, there exists
a unique {(up to a scalar multiple) G-invariant 3-form on g* and an orbit O
is of R-matrix type iff the restriction of this 3-form on O is identically zero
(cf. Section 2).

Two families of R-matrix type orbits have been described in [DGM],
[DG1], the orbit of the highest weight vectors and symmetric spaces. In
the present paper we give a complete solution of the Problem. The answer
appears to be rather pretty. Namely, if an orbit O is of R-matrix type, then it
is either semisimple or nilpotent and a semisimple one must be a symmetric
space. For nilpotent orbits we give a criterion, formulated in terms of the
height of an orbit (cf. Theorem 1). In the case of classical simple Lie algebras
this condition may be reformulated in a very simple form (cf. Theorem 2).

The classification of all R-matrix type orbits enables us to construct the
new families of compatible Poisson brackets. Recall that two Poisson brack-
ets are called compatible if any linear combination of them is again a Poisson
bracket. It is well-known that there exists a symplectic structure and there-
fore a non-degenerated Poisson bracket on any orbit O € g*, the so-called
“Kirillov-Kostant-Souriau bracket” (we denote it {, }xxs). It is easy to see
that the brackets {, }xxs and {, }r (assuming the orbit to be of R-matrix



type) are always compatible. Therefore on any R-matrix type orbit there
exists the following family of Poisson brackets

{Yep =af,}krs+0{,}r (2)

The question of compatibility of the Kirillov-Kostant-Souriau bracket and
the reduced Sklyanin bracket was investigated in the paper [KRR] for orbits
equipped with a hermitian structure. In Section 4 we describe the relation
between the reduced Sklyanin bracket and the R-matrix one and deduce
(partially) the result of [KRR] from ours.

In the paper [GRZ] a simultaneous quantization of the family {, },, was
constructed assuming R to be a classical R-matrix. The result of the quan-
tization is a two-parameter family of associative algebras which is a flat
deformation of the commutative algebra of functions on g*. Our next inten-
tion is to construct an analogous quantization of the family (2) on orbits of
R-matrix type.

2 Algebraization of the Problem

Let g be a simple Lie algebra, G be its adjoint group, and rkg = I. It is
well-known, that (A*g)¢ is the exterior algebra of ! generators of degrees
2m; +1,1=1,...,1, where my,...,m; are the exponents of g. In particular
dim(A3g)¢ =1 since m; = 1 and m; > 2,7 > 2. Fix some » € (A%g)% \ {0}.
Clearly ¢ may be regarded as a (G-invariant) 3-form on g*.

Recall that an element R € Ag is called a modified R-matriz iff [[R, R]]
is G-invariant and therefore [[R, R]] = ¢y for some ¢ € C*.

Remark that all modified R-matrices were classified in [BD]. The most
popular solution is

1 XaAX
R=-V"Z2ald-a
32 T, X ) ®)

where «a runs over all positive roots of g (this one depends on the choice of a
triangular decomposition of g ). This R-matrix is related to some “canonical”
Manin triple. However all statements below embrace any modified R-matrix,
since they are formulated in terms of the element ¢ only.

For a fixed homogeneous G-manifold M we shall consider a map

0, (f@®gBA) = pu<(p®p®p)p,df ®dg ®dh >, f,g,h € Fun(M).
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It is obvious that for any modified R-matrix the bracket {, }r is Poisson one
iff Imp, = 0. For the sake of brevity we shall write ¢ |»s= 0 in this case.
Therefore now our Problem is transformed into the following one:

Describe all orbits O in g* such that ¢ o= 0.

Let us introduce some notation. Suppose z € g°. By g. denote the
stationary subalgebra of z in g and by G, denote the stabilizer of z in G
(relative to the coadjoint representation). Let O = O(z) be the G-orbit of a
point = € g".

One may consider ¢ as the G-invariant map ¢ : C — A%g. By virtue of
the G-invariance of the element ¢ it suffices to check the condition ¢ |o= 0 for
a single point z, where this is equivalent to the following one: the composition

k5 A% — A%(g/8.) (4)

is equal to 0.
Dualizing (4) we get the sequence

N (8/82) = No" 5k (5)
Clearly, (4) is a complex iff (5) is a complex. Let us remark that (g/g.)”
is naturally isomorphic to the annihilator subspace Anng, C g*. We shall
identify g and g* via the Killing form ( , ). Then Anng, & g =: wm, C g,

where gt is the orthogonal complement to g, relative to the Killing form,
and ¢*: A3g — k is defined by the formulae:

¢"(z,y,2) = o([z,y],2), a€C". (6)

Therefore our final reformulation looks as follows:
Let = € g be a non-zero element and m, = (g)* C g. Find all z such
that
[mg, m;] C 82 (7)
The latter condition means that [z,y] € g, for any z,y € m,.
Thus we have reduced the problem of describing all R-matrix type orbits
to the Lie algebra condition (7).

3 R-matrix type orbits

Keep the previous notation. All assertions on orbits of the adjoint rep-
resentation with no references to their proofs may be found e.g. in [SS].
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Suppose = € g. There exists a unique decomposition (Jordan decomposition)
z = z, + T, such that

(1) z, is semisimple and z, is nilpotent,

(2) [:l:,, :z:,,] =0,

(3) 8z = 8z, N Bz,
In order to formulate our results we need some preliminaries. Take an ar-
bitrary non-zero nilpotent element ¢ € g. By the Morozov’s theorem there
exists a sh-triple {e, h, f}, containing e (i.e. [e, f] = h, [h,€e] = 2¢, [h, f] =
~2f). The semisimple element h defines a natural grading on g. Put
8(:) = {z € g | [h,z] = iz}. Then g(0) is a reductive subalgebra of g of the
maximal rank and g = € g(:) is a Z-grading of g. Given e, all sh-triples,
containing e, form a sin‘gelg G-orbit. Therefore properties of the Z-grading
under consideration reflect really properties of the orbit O(e) only.

Definition. The integer max{: | g(z) # 0} is said to be the height of e
(or the orbit O(e)) and will be denoted by ht(e).

Since e € g(2), we have ht(e) > 2 for any nilpotent e # 0.
We shall say the orbit O is semisimple (resp., nilpotent), if it consists of
semisimple (resp., nilpotent) elements.

The following is our solution of the Problem.

Theorem 1. Let O be a non-zero orbil in g.
1. Suppose ¢ |0= 0, then O is either semisimple or nilpotent.
2. If O is semisimple, then @ o= 0 iff O is a symmelric space.
8. If O = O(e) is nilpotent, then ¢ |o= 0 iff ht(e) = 2.

The condition on the height of nilpotent elements seems to be somewhat
vague. But for the classical Lie algebras this admits a nice reformulation.

Theorem 2. 1. Suppose e is a nilpotent matriz in s{V) or sp(V). Then
7 ]o(e)E 0 i_ﬁ e? = 0.
2. Suppose e is a nilpotent matriz in so(V), then ¢ |o(= 0 iff €2 = 0 or
rank(e) = 2 and rank(e?) = 1.

Proofs of these theorems will be given in a series of propositions below.
Before doing this let us present some useful observations.
(a) It immediately follows from our description that only "small enough” or-
bits may be of R-matrix type. It is also easy to give the explicit presentation
of these orbits in classical Lie algebras via the Jordan normal form.
(b) All R-matrix type orbits appears to be spherical or multiplicity free. (This
important property may be formulated in a various way. The simplest one is



that an G-orbit O is spherical iff a Borel subgroup of G has an open orbit on
O.) This is well-known for symmetric spaces, and for nilpotent orbits of the
height 2 this is proved in [P]. However there exist spherical nilpotent orbits
which are not of R-matrix type, namely the ones of the height 3 (cf. [P]).

Recall that any simple Lie algebra contains finitely many nilpotent orbits.
In the following tables we indicate the numbers of nilpotent R-matrix type
orbits for each simple Lie algebras. For classical Lie algebras-these integers
may be computed by using Theorem 2 and for exceptional ones one should
look through the classification tables of nilpotent orbits.

Table

An B, C. D, Es | E7 [Es | Fy| Gy

(n+1)/2) | [n/2]+1) n |[n/2)+1] 2 {3 | 2]2]1

Now let us return to the proofs of Theorems.

Proposition 3. Suppose = € g is a semisimple element, then [m;, m,] C
8. iff Gz is a symmelric space.

Proof. If x is semisimple, then g, is reductive and the restriction of the
Killing form on g_ is non-degenerate. This gives us the direct sum decompo-
sition g = g.® m,. Hence, (7) is equivalent to saying that this decomposition
is a Zy-grading of g. That is, g, is the fixed subspace of an involutive auto-
morphism of g. O

Proposition 4. Suppose e € g ts a nilpotent element, then [m,,m ] C g.
iff ht(e) = 2.

Proof. Denote by s the 3-dimensional subalgebra of g with the base

{e,h, f}. Obviously s = sl,. Consider g as the s-module (by restricting the
adjoint representation of g on s). Then g = @; V(d;), where V(d;) is the
unique irreducible s-module of dimension d; + 1. The condition ht(e) < 2 is
equivalent to the following: d; < 2 for every .
(a) First we prove that [m,, m./ ¢ g., if ht(e) > 2. Assume that there exist
V(d;) C g with di > 3. Let vo € V(d;) be the lowest weight vector, i.e.
[f,v0) = 0 and [h,vo)] = —divg. By definition put v; = (ade)’vy. Then
vz # 0, i.e. v; & g.. On the other hand, we have vy, e € Im(ade) = m, and
[e, v1] = vs. '

2
(b) Assume ht(e) = 2 and let g = € g(i) be the corresponding grading.
t==2
The structure of g, is as follows. This is a positively graded algebra, g. =

DL o(8e)i, (8); = 8(2) for 1 = 1,2 and (g.)o C 8(0). Let ¢ be the orthogonal



complement to {g.)o in g(0) (we know the restriction of the Killing form on
8(0) is non-degenerate). Then

¢ P (g.)o = 8(0)

and m, = ¢ @ g(1) @ 9(2). Hence in order to prove the assertion one have to
establish that [¢,¢] C (g.)o. But this has been proved in [P, ch.3]. O

Proposition 5. Assume z is neither semisimple, nor nilpotent. Then
(7) is not satisfied.

Proof. Let x = 3 + n be the Jordan decomposition, s # 0, n # 0. Then
m, = m, + m, (the sum is not direct!). Putting m,, = m_ N g,, one get
already the direct sum m, = m, ® m,,. The reductivity of g, is used at this
point. The single relation (7) for m; is inverted into 3 relations for m, and
m,,. Namely,

[m., m] C g2
[man-; man] C9:

Since g, C g,, the first one give us that g = g, ® m, is a Z,-grading of g.
The second one give us [m,, m,,] C g, = mi, ie.

0 = ([m,, m,,], m,) = ([m,, m,], m,,)

Since m,, C g,, the last equality implies by the induction that m,, is orthog-
onal to the subalgebra of g, generated by m,. But the latter coincides with g
(K, lemma 4.1], i.e. m,, = 0. Hence m; = m, and z = s. The contradiction
obtained proves the proposition. O

Combining Propositions 3-5 one obtains the proof of Theorem 1. Theorem
2 is a direct consequence of the description of nilpotent elements of the small
height in classical Lie algebras given in [P].

4 Discussion

Thus on any R-matrix type orbit one can construct the family (2) of Poisson
brackets, generated by the K-K-S bracket and a fixed R-matrix bracket. We
leave to the reader to verify that these brackets are compatible {cf. also

[DGM]).



Let us describe now another way to construct Poisson brackets arising
from modified R-matrices. All constructions of this Section are still valid for
real manifolds. In this case Fun(M) (resp., Vect(M)) denotes the space of
smooth functions (resp., smooth vector fields) on M.

Consider a bracket (introduced by E.Sklyanin)

{f,g}S = {fag}f_{f?g}n {f:g}l =pu< (pl®pl)Ra df®dg >,f)g € FUH(G),

defined on a group G. Here p; : g — Vect(G) (i = l;r) are representations
of g in right-(left-)invariant vector fields.
Remark that it is natural to consider a representation

pP=p®p 89— Vect(G)

of the algebra g @ g and to describe all elements R € A%(g & g) defining
Poisson brackets on G with respect to the scheme above. In particular R =
Ry — Ry, R; = R € A%g defines the Sklyanin bracket if R is a modified
R-matrix.

Let us fix a homogeneous space M = G/H. Suppose that the bracket
{, }s can be reduced onto the space M. It means that {f, g}s is H-invariant if
f,g € Fun(G) are H-invariant. Consider the reduced brackets {, }¥, {,}M,
{,}M. In general the brackets {,}, {,}* are not Poisson ones. However
they become the Poisson ones simultaneously.

If M is a symmetric space then {, } coincides with a R-matrix bracket
and {,}™ is a Poisson bracket as well. Assuming R to be of the form (3)
and M = O to be an orbit in g* equipped with an hermitian structure it is
easy to show that the bracket {, } is equal to the Kirillov-Kostant-Souriau
bracket up to a factor (cf. [DG1]). Thus {,}¥ = {,}r + a{, }xxs for some
a and therefore the bracket {,}¥ is compatible with the bracket {, }xxs on
such a manifold as this follows from our result (more precisely from its real
counterpart). This generalizes the “positive” half of a result from [KRR]
which states that on a hermitian orbit in g* the brackets {, }¥f and {, }xxs
are compatible iff M is a symmetric space, and R is of the form (3).

Using the cited result we can state as well that on any hermitian orbit the
brackets {, }¥ and {, }xxs are compatible iff the brackets {,}}M and {,}M
are the Poisson ones (assuming R to be as above).

Concluding the paper we would like to remark that we consider the prob-
lem of a simultaneous quantization of the family (2) in the spirit of [GRZ] as
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a problem of a great interest. Up to now the quantization of the whole family
is only done for the case g = sl (cf. [DG2]). In the last case all orbits in g*
are of R-matrix type and therefore R-matrix bracket is the Poisson one on
the whole g*. As a result of the quantization of the family (2) there arises a
“braiding” of the enveloping algebra U(sk). In general situation it is reason-
able to expect that a braided deformation of some quotient algebras of the
enveloping algebras will arise. However a construction of this quantization 1s
an open problem.
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