On Poisson pairs associated to modified R-matrices

Dmitrii Gurevich
Dmitrii Panyushev

Max-Planck-Institut fur Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Germany

On Poisson pairs associated to modified R-matrices

Dmitrii Gurevich, Dmitrii Panyushev

April 20, 1993

Abstract

For any complex simple Lie algebra \mathfrak{g} we give a complete classification of orbits in \mathfrak{g}^{*} (with respect of the $A d^{*}$-action of the corresponding group) such that the bracket defined by a modified R-matrix $R \in \wedge^{2} \mathfrak{g}$ is a Poisson one. We consider the family of Poisson brackets generated by the above bracket and the Kirillov-Kostant-Souriau bracket. These two brackets are compatible.

1 Introduction

Let \boldsymbol{g} be a semisimple Lie algebra over \mathbf{C}, G be its adjoint group. Consider a homogeneous G-manifold $M=G / H$. Any element $X \in \mathfrak{g}$ defines a holomorphic vector field $\rho(X)$ on the manifold M in the following way $\rho(X) f(m)=\left.f\left(e^{-t X} m\right)\right|_{t=0}, f \in F u n(M)$. The correspondence $X \mapsto \rho(X)$ is a representation of \mathfrak{g} into the space $V e c t(M)$ of all holomorphic vector fields on M. Let us fix an element $R \in \wedge^{2} \mathfrak{g}$ and associate the following operator to it

$$
\begin{equation*}
f \otimes g \rightarrow\{f, g\}_{R}=\mu<(\rho \otimes \rho) R, d f \otimes d g>, f, g \in F u n(M) \tag{1}
\end{equation*}
$$

Hereafter μ is the usual commutative multiplication in the space of holomorphic functions $F u n(M)$

$$
\mu: F u n(M)^{\otimes 2} \rightarrow F u n(M)
$$

and $<,>$ stands for the pairing between vector fields and differential forms.
Let us consider two conditions
(i) R satisfies the classical Yang-Baxter equation i.e. $[[R, R]]=0$ where

$$
[[R, R]]=\left[R^{12}, R^{13}\right]+\left[R^{12}, R^{23}\right]+\left[R^{13}, R^{23}\right]
$$

(it is clear that $[[R, R]] \in \wedge^{3} \mathfrak{g}$ for any $R \in \wedge^{2} \mathfrak{g}$).
(ii) The operator (1) defines a Poisson bracket i.e. it satisfies the Jacobi identity (since the antisymmetricity and the Leibnitz identity are fulfilled automatically).

It is obvious that the implication (i) \Rightarrow (ii) is true. However (ii) could be fulfilled even if the condition (i) fails. In the present paper we investigate the following

PROBLEM. Let \mathfrak{g} be a simple Lie algebra. Describe all orbits \mathcal{O} in \mathfrak{g}^{*}, such that the condition (ii) is fulfilled, where R is a modified R-matrix.

These orbits are said to be the orbits of R-matrix type.
In fact the problem under consideration may be formulated without any R -matrix and therefore the property of an orbit to be of the R-matrix type does not depend on a particular choice of R-matrix. More exactly, there exists a unique (up to a scalar multiple) G-invariant 3 -form on \mathfrak{g}^{*} and an orbit \mathcal{O} is of R-matrix type iff the restriction of this 3 -form on \mathcal{O} is identically zero (cf. Section 2).

Two families of R-matrix type orbits have been described in [DGM], [DG1], the orbit of the highest weight vectors and symmetric spaces. In the present paper we give a complete solution of the Problem. The answer appears to be rather pretty. Namely, if an orbit \mathcal{O} is of R-matrix type, then it is either semisimple or nilpotent and a semisimple one must be a symmetric space. For nilpotent orbits we give a criterion, formulated in terms of the height of an orbit (cf. Theorem 1). In the case of classical simple Lie algebras this condition may be reformulated in a very simple form (cf. Theorem 2).

The classification of all R-matrix type orbits enables us to construct the new families of compatible Poisson brackets. Recall that two Poisson brackets are called compatible if any linear combination of them is again a Poisson bracket. It is well-known that there exists a symplectic structure and therefore a non-degenerated Poisson bracket on any orbit $\mathcal{O} \in \mathfrak{g}^{*}$, the so-called "Kirillov-Kostant-Souriau bracket" (we denote it $\{,\}_{K K S}$). It is easy to see that the brackets $\{,\}_{K K S}$ and $\{,\}_{R}$ (assuming the orbit to be of R-matrix
type) are always compatible. Therefore on any R-matrix type orbit there exists the following family of Poisson brackets

$$
\begin{equation*}
\{,\}_{a, b}=a\{,\}_{K K S}+b\{,\}_{R} \tag{2}
\end{equation*}
$$

The question of compatibility of the Kirillov-Kostant-Souriau bracket and the reduced Sklyanin bracket was investigated in the paper [KRR] for orbits equipped with a hermitian structure. In Section 4 we describe the relation between the reduced Sklyanin bracket and the R-matrix one and deduce (partially) the result of [KRR] from ours.

In the paper [GRZ] a simultaneous quantization of the family $\{,\}_{a, b}$ was constructed assuming R to be a classical R-matrix. The result of the quantization is a two-parameter family of associative algebras which is a flat deformation of the commutative algebra of functions on \mathfrak{g}^{*}. Our next intention is to construct an analogous quantization of the family (2) on orbits of R-matrix type.

2 Algebraization of the Problem

Let \mathfrak{g} be a simple Lie algebra, G be its adjoint group, and $\mathrm{rkg}=l$. It is well-known, that $\left(\wedge^{*} g\right)^{G}$ is the exterior algebra of l generators of degrees $2 m_{i}+1, i=1, \ldots, l$, where m_{1}, \ldots, m_{l} are the exponents of g. In particular $\operatorname{dim}\left(\wedge^{3} \mathfrak{g}\right)^{G}=1$ since $m_{1}=1$ and $m_{i} \geq 2, i \geq 2$. Fix some $\varphi \in\left(\wedge^{3} \mathfrak{g}\right)^{G} \backslash\{0\}$. Clearly φ may be regarded as a (G-invariant) 3 -form on \boldsymbol{g}^{*}.

Recall that an element $R \in \wedge^{2} \mathrm{~g}$ is called a modified R-matrix iff $[[R, R]]$ is G-invariant and therefore $[[R, R]]=c \varphi$ for some $c \in \mathrm{C}^{*}$.

Remark that all modified R-matrices were classified in [BD]. The most popular solution is

$$
\begin{equation*}
R=\frac{1}{2} \sum \frac{X_{\alpha} \wedge X_{-\alpha}}{\left(X_{\alpha}, X_{-\alpha}\right)} \tag{3}
\end{equation*}
$$

where α runs over all positive roots of \mathfrak{g} (this one depends on the choice of a triangular decomposition of \mathfrak{g}). This R -matrix is related to some "canonical" Manin triple. However all statements below embrace any modified R-matrix, since they are formulated in terms of the element φ only.

For a fixed homogeneous G-manifold M we shall consider a map

$$
\varphi_{\rho}:(f \otimes g \otimes h) \rightarrow \mu<(\rho \otimes \rho \otimes \rho) \varphi, d f \otimes d g \otimes d h>, f, g, h \in F u n(M)
$$

It is obvious that for any modified R-matrix the bracket $\{,\}_{R}$ is Poisson one iff $\operatorname{Im} \varphi_{\rho}=0$. For the sake of brevity we shall write $\left.\varphi\right|_{M} \equiv 0$ in this case. Therefore now our Problem is transformed into the following one:

Describe all orbits \mathcal{O} in \mathfrak{g}^{*} such that $\left.\varphi\right|_{0} \equiv 0$.
Let us introduce some notation. Suppose $\boldsymbol{x} \in \mathfrak{g}^{*}$. By $\mathfrak{g}_{\boldsymbol{x}}$ denote the stationary subalgebra of x in \mathfrak{g} and by G_{x} denote the stabilizer of x in G (relative to the coadjoint representation). Let $\mathcal{O}=\mathcal{O}(x)$ be the G-orbit of a point $x \in \mathfrak{g}^{*}$.

One may consider φ as the G-invariant map $\varphi: \mathbf{C} \rightarrow \wedge^{3} \mathfrak{g}$. By virtue of the G-invariance of the element φ it suffices to check the condition $\left.\varphi\right|_{\mathcal{O}} \equiv 0$ for a single point x, where this is equivalent to the following one: the composition

$$
\begin{equation*}
k \xrightarrow{\varphi} \Lambda^{3} \mathfrak{g} \rightarrow \Lambda^{3}\left(\mathfrak{g} / \mathfrak{g}_{x}\right) \tag{4}
\end{equation*}
$$

is equal to 0 .
Dualizing (4) we get the sequence

$$
\begin{equation*}
\Lambda^{3}\left(\mathfrak{g} / \mathfrak{g}_{x}\right)^{*} \rightarrow \wedge^{3} \mathfrak{g}^{*} \xrightarrow{\varphi^{*}} k \tag{5}
\end{equation*}
$$

Clearly, (4) is a complex iff (5) is a complex. Let us remark that ($\left.\mathfrak{g} / \mathrm{g}_{\boldsymbol{x}}\right)^{*}$ is naturally isomorphic to the annihilator subspace $\mathrm{Anng}_{x} \subset \mathfrak{g}^{*}$. We shall identify \mathfrak{g} and \mathfrak{g}^{*} via the Killing form (,). Then Anng $\mathfrak{g}_{x} \cong \mathfrak{g}_{x}^{\perp}=: \mathfrak{m}_{x} \subset \mathfrak{g}$, where \mathfrak{g}_{x}^{\perp} is the orthogonal complement to \mathfrak{g}_{x} relative to the Killing form, and $\varphi^{*}: \wedge^{3} \mathfrak{g} \rightarrow k$ is defined by the formulae:

$$
\begin{equation*}
\varphi^{*}(x, y, z)=\alpha([x, y], z), \quad \alpha \in \mathbf{C}^{*} . \tag{6}
\end{equation*}
$$

Therefore our final reformulation looks as follows:
Let $x \in \mathfrak{g}$ be a non-zero element and $\mathfrak{m}_{x}=\left(\mathfrak{g}_{x}\right)^{\perp} \subset \mathfrak{g}$. Find all x such that

$$
\begin{equation*}
\left[\mathfrak{m}_{x}, \mathfrak{m}_{x}\right] \subset \mathfrak{g}_{x} \tag{7}
\end{equation*}
$$

The latter condition means that $[x, y] \in \mathfrak{g}_{x}$ for any $x, y \in \mathfrak{m}_{x}$.
Thus we have reduced the problem of describing all R-matrix type orbits to the Lie algebra condition (7).

3 R-matrix type orbits

Keep the previous notation. All assertions on orbits of the adjoint representation with no references to their proofs may be found e.g. in [SS].

Suppose $x \in \mathfrak{g}$. There exists a unique decomposition (Jordan decomposition) $x=x_{s}+x_{n}$ such that
(1) x_{s} is semisimple and x_{n} is nilpotent,
(2) $\left[x_{s}, x_{n}\right]=0$,
(3) $\mathfrak{g}_{x}=\mathfrak{g}_{x_{t}} \cap \mathfrak{g}_{x_{n}}$.

In order to formulate our results we need some preliminaries. Take an arbitrary non-zero nilpotent element $e \in \mathfrak{g}$. By the Morozov's theorem there exists a $5 h_{2}$-triple $\{e, h, f\}$, containing e (i.e. $[e, f]=h,[h, e]=2 e,[h, f]=$ $-2 f)$. The semisimple element h defines a natural grading on g. Put $\mathfrak{g}(i)=\{x \in \mathfrak{g} \mid[h, x]=i x\}$. Then $\mathfrak{g}(0)$ is a reductive subalgebra of \mathfrak{g} of the
 containing e, form a single G_{e}-orbit. Therefore properties of the \mathbf{Z}-grading under consideration reflect really properties of the orbit $\mathcal{O}(e)$ only.

Definition. The integer $\max \{i \mid g(i) \neq 0\}$ is said to be the height of e (or the orbit $\mathcal{O}(e)$) and will be denoted by ht (e).

Since $e \in \mathfrak{g}(2)$, we have $\mathrm{ht}(e) \geq 2$ for any nilpotent $e \neq 0$.
We shall say the orbit \mathcal{O} is semisimple (resp., nilpotent), if it consists of semisimple (resp., nilpotent) elements.

The following is our solution of the Problem.
Theorem 1. Let \mathcal{O} be a non-zero orbit in \mathfrak{g}.

1. Suppose $\left.\varphi\right|_{0} \equiv 0$, then \mathcal{O} is either semisimple or nilpotent.
2. If \mathcal{O} is semisimple, then $\left.\varphi\right|_{0} \equiv 0$ iff \mathcal{O} is a symmetric space.
3. If $\mathcal{O}=\mathcal{O}(e)$ is nilpotent, then $\left.\varphi\right|_{0} \equiv 0$ iff $h t(e)=2$.

The condition on the height of nilpotent elements seems to be somewhat vague. But for the classical Lie algebras this admits a nice reformulation.

Theorem 2. 1. Suppose e is a nilpotent matrix in $s l(V)$ or $s p(V)$. Then $\left.\varphi\right|_{O_{(e)}} \equiv 0$ iff $e^{2}=0$.
 $\operatorname{rank}(e)=2$ and $\operatorname{rank}\left(e^{2}\right)=1$.

Proofs of these theorems will be given in a series of propositions below. Before doing this let us present some useful observations.
(a) It immediately follows from our description that only "small enough" orbits may be of R-matrix type. It is also easy to give the explicit presentation of these orbits in classical Lie algebras via the Jordan normal form.
(b) All R-matrix type orbits appears to be spherical or multiplicity free. (This important property may be formulated in a various way. The simplest one is
that an G-orbit \mathcal{O} is spherical iff a Borel subgroup of G has an open orbit on \mathcal{O}.) This is well-known for symmetric spaces, and for nilpotent orbits of the height 2 this is proved in $[\mathrm{P}]$. However there exist spherical nilpotent orbits which are not of R-matrix type, namely the ones of the height 3 (cf. [P]).

Recall that any simple Lie algebra contains finitely many nilpotent orbits. In the following tables we indicate the numbers of nilpotent R-matrix type orbits for each simple Lie algebras. For classical Lie algebras these integers may be computed by using Theorem 2 and for exceptional ones one should look through the classification tables of nilpotent orbits.

Table

$\mathbf{A}_{\boldsymbol{n}}$	\mathbf{B}_{n}	\mathbf{C}_{n}	\mathbf{D}_{n}	\mathbf{E}_{6}	\mathbf{E}_{7}	\mathbf{E}_{8}	\mathbf{F}_{4}	\mathbf{G}_{2}
$[(n+1) / 2]$	$[n / 2]+1$	n	$[n / 2]+1$	2	3	2	2	1

Now let us return to the proofs of Theorems.
Proposition 3. Suppose $x \in g$ is a semisimple element, then $\left[\mathrm{m}_{x}, \mathrm{~m}_{x}\right] \subset$ g_{x} iff $G x$ is a symmetric space.

Proof. If x is semisimple, then \mathfrak{g}_{x} is reductive and the restriction of the Killing form on $\boldsymbol{g}_{\boldsymbol{x}}$ is non-degenerate. This gives us the direct sum decomposition $\mathfrak{g}=\mathfrak{g}_{x} \oplus \mathfrak{m}_{x}$. Hence, (7) is equivalent to saying that this decomposition is a \mathbf{Z}_{2}-grading of \mathfrak{g}. That is, \mathfrak{g}_{x} is the fixed subspace of an involutive automorphism of \mathfrak{g}.

Proposition 4. Suppose $e \in \mathfrak{g}$ is a nilpotent element, then $\left[\mathfrak{m}_{e}, \mathfrak{m}_{e}\right] \subset \mathfrak{g}_{e}$ iff $h t(e)=2$.

Proof. Denote by s the 3-dimensional subalgebra of \mathfrak{g} with the base $\{e, h, f\}$. Obviously $\mathfrak{s} \cong \mathfrak{s h}_{\boldsymbol{h}}$. Consider \mathfrak{g} as the \mathfrak{s}-module (by restricting the adjoint representation of \mathfrak{g} on \mathfrak{s}). Then $\mathfrak{g}=\oplus_{i} V\left(d_{i}\right)$, where $V\left(d_{i}\right)$ is the unique irreducible s-module of dimension $d_{i}+1$. The condition ht $(e) \leq 2$ is equivalent to the following: $d_{i} \leq 2$ for every i.
(a) First we prove that $\left[\mathfrak{m}_{e}, \mathfrak{m}_{e}\right] \not \subset \boldsymbol{g}_{e}$, if $\mathrm{ht}(e)>2$. Assume that there exist $V\left(d_{\mathfrak{i}}\right) \subset \mathfrak{g}$ with $d_{i} \geq 3$. Let $v_{0} \in V\left(d_{i}\right)$ be the lowest weight vector, i.e. $\left[f, v_{0}\right]=0$ and $\left[h, v_{0}\right]=-d_{i} v_{0}$. By definition put $v_{j}=(\operatorname{ad} e)^{j} v_{0}$. Then $v_{3} \neq 0$, i.e. $v_{2} \notin g_{e}$. On the other hand, we have $v_{1}, e \in \operatorname{Im}(\operatorname{ad} e)=\mathfrak{m}_{e}$ and $\left[e, v_{1}\right]=v_{2}$.
(b) Assume ht $(e)=2$ and let $\mathfrak{g}=\bigoplus_{i=-2}^{2} \mathfrak{g}(i)$ be the corresponding grading. The structure of $\mathfrak{g}_{\boldsymbol{e}}$ is as follows. This is a positively graded algebra, $\mathfrak{g}_{e}=$ $\oplus_{i=0}^{2}\left(\mathfrak{g}_{e}\right)_{i},\left(\mathfrak{g}_{e}\right)_{i}=\mathfrak{g}(i)$ for $i=1,2$ and $\left(g_{c}\right)_{0} \subset \mathfrak{g}(0)$. Let \mathfrak{c} be the orthogonal
complement to $\left(\mathfrak{g}_{e}\right)_{0}$ in $\mathfrak{g}(0)$ (we know the restriction of the Killing form on $\mathfrak{g}(0)$ is non-degenerate). Then

$$
\mathfrak{c} \oplus\left(\mathfrak{g}_{c}\right)_{0}=\mathfrak{g}(0)
$$

and $\mathfrak{m}_{\boldsymbol{e}}=\mathfrak{c} \oplus \mathfrak{g}(1) \oplus \mathfrak{g}(2)$. Hence in order to prove the assertion one have to establish that $[\mathbf{c}, \mathbf{c}] \subset\left(\boldsymbol{g}_{e}\right)_{0}$. But this has been proved in [P, ch.3].

Proposition 5. Assume x is neither semisimple, nor nilpotent. Then (7) is not satisfied.

Proof. Let $x=s+n$ be the Jordan decomposition, $s \neq 0, n \neq 0$. Then $\mathfrak{m}_{x}=\mathfrak{m}_{s}+\mathfrak{m}_{n}$ (the sum is not direct!). Putting $\mathfrak{m}_{s n}=\mathfrak{m}_{x} \cap \mathfrak{g}_{s}$, one get already the direct sum $m_{x}=m_{s} \oplus \mathrm{~m}_{s n}$. The reductivity of g_{3} is used at this point. The single relation (7) for \boldsymbol{m}_{x} is inverted into 3 relations for \boldsymbol{m}_{s} and $\mathrm{m}_{s n}$. Namely,

$$
\left[\mathfrak{m}_{x}, \mathfrak{m}_{x}\right] \subset \mathfrak{g}_{x} \Leftrightarrow\left\{\begin{array}{l}
{\left[\mathfrak{m}_{s}, \mathfrak{m}_{s}\right] \subset \mathfrak{g}_{x}} \\
{\left[\mathfrak{m}_{s}, \mathfrak{m}_{s n}\right] \subset \mathfrak{g}_{x}} \\
{\left[\mathfrak{m}_{s n}, \mathfrak{m}_{s n}\right] \subset \mathfrak{g}_{x}}
\end{array}\right.
$$

Since $\mathfrak{g}_{x} \subset \mathfrak{g}_{s}$, the first one give us that $\mathfrak{g}=\mathfrak{g}_{s} \oplus \mathfrak{m}_{s}$ is a \mathbf{Z}_{2}-grading of \mathfrak{g}. The second one give us $\left[\mathfrak{m}_{s}, \mathfrak{m}_{s n}\right] \subset g_{s}=\mathfrak{m}_{s}^{\perp}$, i.e.

$$
0=\left(\left[\mathfrak{m}_{s}, \mathfrak{m}_{s n}\right], \mathfrak{m}_{s}\right)=\left(\left[\mathfrak{m}_{s}, \mathfrak{m}_{s}\right], \mathfrak{m}_{s n}\right)
$$

Since $\mathfrak{m}_{s n} \subset \mathfrak{g}_{s}$, the last equality implies by the induction that $\mathrm{m}_{\boldsymbol{m}}$ is orthogonal to the subalgebra of \mathfrak{g}, generated by $\mathfrak{m}_{\mathfrak{s}}$. But the latter coincides with \mathfrak{g} [K , lemma 4.1], i.e. $\mathrm{m}_{s n}=0$. Hence $\mathrm{m}_{x}=\mathrm{m}_{s}$ and $x=s$. The contradiction obtained proves the proposition.

Combining Propositions 3-5 one obtains the proof of Theorem 1. Theorem 2 is a direct consequence of the description of nilpotent elements of the small height in classical Lie algebras given in [P].

4 Discussion

Thus on any R-matrix type orbit one can construct the family (2) of Poisson brackets, generated by the K-K-S bracket and a fixed R-matrix bracket. We leave to the reader to verify that these brackets are compatible (cf. also [DGM]).

Let us describe now another way to construct Poisson brackets arising from modified R-matrices. All constructions of this Section are still valid for real manifolds. In this case $F u n(M)$ (resp., $V e c t(M)$) denotes the space of smooth functions (resp., smooth vector fields) on M.

Consider a bracket (introduced by E.Sklyanin)

$$
\{f, g\}_{s}=\{f, g\}_{I}-\{f, g\}_{r},\{f, g\}_{i}=\mu<\left(\rho_{i} \otimes \rho_{i}\right) R, d f \otimes d g>, f, g \in F u n(G)
$$

defined on a group G. Here $\rho_{i}: \mathfrak{g} \rightarrow \operatorname{Vect}(G)(i=l ; r)$ are representations of g in right-(left-)invariant vector fields.

Remark that it is natural to consider a representation

$$
\rho=\rho_{l} \oplus \rho_{r}: \mathfrak{g} \oplus \mathfrak{g} \rightarrow V \operatorname{ect}(G)
$$

of the algebra $\mathfrak{g} \oplus g$ and to describe all elements $\mathbf{R} \in \wedge^{2}(\boldsymbol{g} \oplus \mathfrak{g})$ defining Poisson brackets on G with respect to the scheme above. In particular $\mathbf{R}=$ $R_{1}-R_{2}, R_{i}=R \in \wedge^{2} g$ defines the Sklyanin bracket if R is a modified R-matrix.

Let us fix a homogeneous space $M=G / H$. Suppose that the bracket $\{,\}_{S}$ can be reduced onto the space M. It means that $\{f, g\}_{S}$ is H-invariant if $f, g \in F u n(G)$ are H-invariant. Consider the reduced brackets $\{,\}_{S}^{M},\{,\}_{1}^{M}$, $\{,\}_{T}^{M}$. In general the brackets $\{,\}_{1}^{M},\{,\}_{r}^{M}$ are not Poisson ones. However they become the Poisson ones simultaneously.

If M is a symmetric space then $\{,\}_{\}}^{M}$ coincides with a R -matrix bracket and $\{,\}_{T}^{M}$ is a Poisson bracket as well. Assuming R to be of the form (3) and $M=\mathcal{O}$ to be an orbit in \mathfrak{g}^{*} equipped with an hermitian structure it is easy to show that the bracket $\{,\}_{T}^{M}$ is equal to the Kirillov-Kostant-Souriau bracket up to a factor (cf. [DG1]). Thus $\{,\}_{S}^{M}=\{,\}_{R}+a\{,\}_{K K S}$ for some a and therefore the bracket $\{,\}_{S}^{M}$ is compatible with the bracket $\{,\}_{K K S}$ on such a manifold as this follows from our result (more precisely from its real counterpart). This generalizes the "positive" half of a result from [KRR] which states that on a hermitian orbit in \mathfrak{g}^{*} the brackets $\{,\}_{S}^{M}$ and $\{,\}_{K K S}$ are compatible iff M is a symmetric space, and R is of the form (3).

Using the cited result we can state as well that on any hermitian orbit the brackets $\{,\}_{S}^{M}$ and $\{,\}_{K K S}$ are compatible iff the brackets $\{,\}_{l^{M}}$ and $\{,\}_{\tau}^{M}$ are the Poisson ones (assuming R to be as above).

Concluding the paper we would like to remark that we consider the problem of a simultaneous quantization of the family (2) in the spirit of [GRZ] as
a problem of a great interest. Up to now the quantization of the whole family is only done for the case $\mathfrak{g}=\boldsymbol{s h}$ (cf. [DG2]). In the last case all orbits in \mathfrak{g}^{*} are of R-matrix type and therefore R-matrix bracket is the Poisson one on the whole \mathfrak{g}^{*}. As a result of the quantization of the family (2) there arises a "braiding" of the enveloping algebra $U\left(5 h_{2}\right)$. In general situation it is reasonable to expect that a braided deformation of some quotient algebras of the enveloping algebras will arise. However a construction of this quantization is an open problem.

References

[BD] Belavin, A.; Drinfeld, V.: On solutions of the classical YangBaxter equation for simple Lie algebras, Funct. Anal. Appl. 16(1982).
[DG1] Donin, J.; Gurevich, D.: Some Poisson structures associated to Drinfeld-Jimbo R-matrices and their quantization, Preprint Bar-Ilan University, 1993.
[DG2] Donin, J.; Gurevich, D.: Braiding of the Lie algebra $\mathbf{s l}_{2}$, Preprint MPI 93/.
[DGM] Donin, J.; Gurevich, D.; Majid, S.: R-matrix brackets and their quantization, Ann.de l'Institut d'Henri Poincaré (to appear).
[GRZ] Gurevich, D.; Rubtsov, V.; Zobin, V.: Quantization of Poisson pairs: R-matrix approach, J.of Geometry and Physics, 9:1 (1992), 25-44
[KRR] Khoroshkin, S.; Radul, A.; Rubtsov, V.: A family of Poisson structures on hermitian symmetric spaces, CMP (to appear).
[K] Kac, V.G.: Some remarks on nilpotent orbits, J. algebra 64(1980), 190-213.
[P] Panyushev, D.: Complexity and nilpotent orbits, Preprint MPI 93/
[SS] Springer, T.A.; Steinberg, R.: Conjugacy classes, In: "Seminar on algebraic groups and related finite groups". Lecture notes in Math. 131, 167-266, Springer Verlag, Berlin Heidelberg New York 1970.

