
Max-Planck-Institut für Mathematik
Bonn

Divisibility questions in commutative algebraic groups

by

Laura Paladino

Max-Planck-Institut für Mathematik
Preprint Series 2018 (44)





Divisibility questions in commutative
algebraic groups

Laura Paladino

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

University of Calabria
Ponte Bucci, Cubo 30B
87036 Arcavacata di Rende
Italy

MPIM 18-44





Divisibility questions in commutative algebraic groups

Laura Paladino∗

Abstract
Let k be a number field, let A be a commutative algebraic group defined over k

and let p be a prime number. Let A[p] denote the p-torsion subgroup of A. We give
some sufficient conditions for the local-global divisibility by p in A and the triviality
of the Tate-Shafarevich group X(k,A[p]). When A is an abelian variety principally
polarized, those conditions imply that the elements of the Tate-Shafarevich group
X(k,A) are divisible by p in the Weil-Châtelet group H1(k,A) and the local-global
principle for divisibility by p holds in Hr(k,A), for all r ≥ 0.

1 Introduction

We consider two local-global problems, strongly related, that recently arose as general-

izations of some classical questions. Let A be a commutative algebraic group defined

over a number field k. Let k̄ be the algebraic closure of k and let Mk be the set of

places v of k. For every positive integer q, we denote by A[q] the q-torsion subgroup

of A and by k(A[q]) the number field obtained by adding to k the coordinates of the

q-torsion points of A. It is well-known that A[q] ' (Z/qZ)n, for some positive integer n

depending only on A. The Galois group Gal(k(A[q])/k) is then isomorphic to the image

of the representation of the absolute Galois group Gk := Gal(k̄/k) in the general linear

group GLn(Z/qZ). The behaviour of G := Gal(k(A[q])/k) is related to the answer to the

following question, known as Local-Global Divisibility Problem in commutative algebraic

groups.

Problem 1. Let A be a commutative algebraic group defined over a number field k. Let

P ∈ A(k) and let q be a positive integer. Assume that for all but finitely many valuations

v ∈ k, there exists Dv ∈ A(kv) such that P = qDv. Is it possible to conclude that there

exists D ∈ A(k) such that P = qD?
∗Partially supported by Istituto Nazionale di Alta Matematica F. Saveri with grant “Assegno di ricerca
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This problem was stated in 2001 by Dvornicich and Zannier and its formulation was

motivated by a particular case of the famous Hasse Principle on quadratic forms and by

the Grunwald-Wang Theorem (see [15], [16] and [14]).

It is well-known that the vanishing of H1(G,A[q]) is a sufficient condition for the

local-global dividibility by q (see [15]). Anyway, this condition is not necessary and the

obstruction to the local-global principle for divisibility by q in A is given by a subgroup

of H1(G,A[q]), denoted by H1
loc(G,A[q]) (see Section 2 for further details), that contains

the Tate-Shafarevic group X(k,A[q]) (up to isomorphism).

Clearly a solution to Problem 1 for all powers pl of prime numbers p is sufficient to

get an answer for all integers q, by the unique factorization in Z and Bézout’s identity.

In the case of elliptic curves the problem has been widely studied since 2001. The

answer is affirmative when q is a prime p (see [15] and [49]), for every k. For all powers

2n, with n ≥ 2 there are explicit counterexamples over Q (see [12], [16], [35]) and for 3n,

with n ≥ 2 there are explicit counterexamples both over Q (see [12]) and over Q(ζ3) (see

[35], [37]). For all powers of a prime p ≥ 5 the answer is affirmative over Q (see [40]).

Moreover if k does not contain the field Q(ζp + ζ−1
p ), where ζp is a p-th root of the unity,

the local-global divisibility holds for all powers of every prime p > (3[k:Q]/2 + 1)2 (see

[39]).

An aswer to the local-global divisibility by an odd prime number p in the algebraic

tori, has been given in [21]. The answer is positive in every torus of dimension n < 3(p−1)

and negative when n ≥ 3(p− 1).

These last result in particular shows that if n ≥ 3, then even the local-global di-

visibility by p may fail. In addition for every n ≥ 6 and p ≥ 3, when A is an abelian

variety, Katz in [27] produces counterexamples to the local-global disivibility by p when

the question is restricted to torsion points of A (see also [18]). So we are sure that the

local-global divisibility by p does not hold in general. This is also underlined by Dvorni-

cich and Zannier in [15, §3], for n ≥ 3. They construct some examples of subgroups of

GLn(q), with n ∈ {3, 4}, and show that the local-global divisibility by p fails in A over k

if Gal(k(A[p])/k) has a representation in GLn(q), whose image is one of their examples

(see also Subsection 3.2 for further details). Anyway, they have no evidence that their

examples really realize representations of some Galois group Gal(k(A[p])/k) and then

the situation is not clear yet (see also [41]).

For abelian varieties, some sufficient conditions to have the local-global divisibility by
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pn, for every n ≥ 1 appear in [19] and in [20]. Anyway, for a general abelian variety A, one
of the conditions is H1(Gal(k(A[p])/k),A[p]) = 0. So the question about the divisibility

by p remain in fact open, since, as stated above, the vanishing ofH1(Gal(k(A[p])/k),A[p])

widely assures the local-global divisibility by p. Let ζp be a p-th root of the unity. Only

in the case of abelian varieties principally polarized and defined over number fields k

linearly disjoint from Q(ζp), the condition H1(Gal(k(A[p])/k),A[p]) = 0 is replaced by

some conditions concerning all the fields k(P ) generated by the coordinates of a point

P , as P varies in A[p] (see [19, Theorem 3]).

In the end there are no criteria to establish the validity of the local-global divisibility

by p in a general abelian variety, as well as in a general commutative algebraic group A.

Here we prove that, excluding some particular cases when p is small with respect to

n, the strongest obstruction to the validity of the Hasse principle for divisibility by p is

essentially the reducibility of A[p] as Gal(k̄/k)-module. In particular if A[p] is irreducible

as a N -module, for every subnormal subgroup N of Gal(k(A[p])/k), not contained in its

center, then we get an affirmative answer for the divisibility by all p > n, for every n. We

will call such a module a very strongly irreducible one, in accordance with the well-know

definition of strongly irreducible module, that we are going to recall (see [4, Definition

1.1])

Definition 1.1. Let n, q be positive integers. A subgroup Γ of GLn(q) is strongly irre-

ducible if every normal subgroup N ≤ Γ, not contained in the center Z(Γ), is irreducible.

We say that an irreducible Γ-module M is strongly irreducible if M is an irreducible

N -module, for every normal subgroup N ≤ Γ, not contained in the center Z(Γ).

Here we state the definition of very strongly irreducibility, that concerns subnormal

subgroups of Γ and not only normal subgroups of Γ.

Definition 1.2. Let n, q be positive integers. A subgroup Γ of GLn(q) is very strongly

irreducible if every subnormal subgroup N of Γ, not contained in the center Z(Γ), is

irreducible.

We say that an irreducible Γ-module M is very strongly irreducible if M is an irreducible

N -module, for every subnormal subgroup N ≤ Γ, not contained in the center Z(Γ).

We prove the following statement.
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Theorem 1.3. Let p be a prime number. Let k be a number field and let A be a

commutative algebraic group defined over k, with A[p] ' (Z/pZ)n. Assume that A[p] is

a very strongly irreducible Gk-module or a direct sum of very strongly irreducible Gk-

modules and that we are in one of the following cases

1) 2 ≤ n ≤ 250 and p ≥ n
2 + 1;

2) n ≥ 251 and p ≥ n+ 1;

then the local-global divisibility by p holds in A over k and X(k,A[p]) = 0.

There are evidences that the bounds for p appearing in 1) and 2) of Theorem 1.3

could be sharp in many cases (but not always, as we will see in Subsection 3.3, part

iii.). At the end of the paper we will show a bound which is likely sharp in all cases (see

Remark 3.11 and Theorem 3.12). We have not presented this bound in the statement of

Theorem 1.3, with the aim of giving a simpler and more elegant bound for each n.

By the proof of Theorem 1.3, we will also deduce the following results.

Corollary 1.4. Let p be a prime number. Let k be a number field and let A be a

commutative algebraic group defined over k, where A[p] ' (Z/pZ)n. Let p ≥ n
2 + 1. If

the absolute Galois group Gk acts on A[p] as a subgroup of an extraspecial group, then

H1(G,A[p]) = 0.

Corollary 1.5. Let p be a prime number. Let k be a number field and let A be a

commutative algebraic group defined over k, where A[p] ' (Z/pZ)n. Let p > 2n + 2. If

the absolute Galois group Gk acts on A[p] as a subgroup of a group of Lie type in cross

characteristic, then H1(G,A[p]) = 0.

The triviality of H1(G,A[p]) is assured by a deep theorem proved by Nori (see [34,

Theorem E]) in many cases, i. e. whenever Gk acts semisimply on A[p] ' (Z/pZ)n and

p is greater than a constant c(n), depending only on n. Anyway the constant is not

explicit. In our statement, in the cases when Gk acts on A[p] ' (Z/pZ)n as a subgroup

of GLn(p) isomorphic to a subgroup of an almost simple group or an extraspecial group,

we can respectively give explicit bounds p > 2n+ n and p ≥ n/2 + 1 to get the triviality

of that first cohomology group.

In the case when A is an abelian variety, with dual A∨, the triviality of X1(k,A[p]∨)

implies X(k,A) ⊆ pHr(k,A), for every positive integer r (see [13, Theorem 2.1]). When
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A and A∨ are isomorphic (for instance if A is principally polarized), then the vanishing

of X1(k,A[p]) itself implies X(k,A) ⊆ pHr(k,A), for all r ≥ 1. Such an inclusion is a

sufficient and necessary condition to have an affirmative answer to the following second

and more general local-global problem.

Problem 2. Let A be a commutative algebraic group defined over a number field k. Let

q be a positive integer and let σ ∈ Hr(k,A). Assume that for all v ∈ Mk there exists

τv ∈ Hr(kv,A) such that qτv = σ. Can we conclude that there exists τ ∈ Hr(k,A), such

that qτ = σ?

Problem 2 was firstly considered by Cassels for r = 1 in the case when A is an elliptic

curve E (see [5, Problem 1.3]). In particular Cassels questioned if the elements of the

Tate-Shafarevich group X(k, E) were divisible by pl in the Weil-Châtelet group H1(k, E),

for all l. Tate produced soon an affirmative answer for divisibility by p (see [6]).

Proposition 1.6 (Tate, 1962). Problem 2 has an affirmative answer when r = 1, E is

an elliptic curve and q = p is a prime number.

The question for powers pl, with l ≥ 2 remained open for decades. The mentioned

affirmative results to Problem 1 in elliptic curves imply an affirmative answer to Problem

2, since the proofs show the triviality of the corresponding Tate-Shafarevich group. So

Cassels’ question has an affirmative answer for all p ≥ 5 in elliptic curves over Q and for

all p > (3[k:Q]/2 + 1)2 in elliptic curves over k. On the contrary, for powers of p ∈ {2, 3}
the answer is negative by [12].

The problem was afterwards considered for abelian varieties by Bašmakov (see [2])

and lately by Çiperiani and Stix, who gave some sufficient conditions for a positive answer

(see [9]). One of their conditions is again the vanishing of H1(Gal(k(A[p])/k),A[p]), so

in particular the question for divisibility by p is still open. In [12] Creutz also proved

that for every prime p, there exists an abelian variety A defined over Q(ζp) such that

X(k,A) 6⊆ pH1(k,A). Thus in abelian varieties of dimension strictly greater than 1,

even the local-global divisibility by p may fail for Problem 2, as well as for Problem 1.

As a consequence of Theorem 1.3, we have the following statement.

Corollary 1.7. Let p be a prime number. Let A be an abelian variety principally po-

larized of dimension g. Assume that A[p] is a very strongly irreducible Gk-module or

a direct sum of very strongly irreducible Gk-modules and we are in one of the following

cases
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1) 1 ≤ g ≤ 125, p ≥ n
2 + 1;

2) g ≥ 126, p ≥ n+ 1;

then the local-global divisibility by p holds in Hr(k,A), for all r ≥ 0.

Corollary 1.7 can be considered a generalization of Tate’s Proposition 1.6 to all commu-

tative algebraic groups.

About the structure of this paper, a few preliminary known results in the theory of

groups and in local-global divisibility are stated in next section. Then we proceed with

the proof of Theorem 1.3. We firstly show the validity of the local-global divisibility

by p and the triviality of X(k,A[p]) in some particular cases, i. e., when it is a group

extension with a cyclic group as a quotient (see Lemma 3.2) and when the image of the

representation of Gk in GLn(p) is the whole special linear group (see Lemma 3.5). Then

we show that Theorem 1.3 holds for n ∈ {2, 3}. In the end we give a proof of Theorem

1.3 for a general n and we deduce Corollary 1.4 and Corollary 1.5.

2 Preliminary results

We recall some known results about local-global divisibility and about group theory, that

will be useful in the following.

We keep the notation introduced in Section 1. Thus k denotes a number field and A
denotes a commutative algebraic group, defined over k. From now on let q := pl, where

p is a prime number and l is a positive integer. As introduced before, the q-torsion

subgroup of A will be denoted by A[q] and the number field generated over k by the

coordinates of the points in A[q] will be denoted by F := k(A[q]). The q-torsion subgroup

A[q] of A is a Gk-module, where Gk denotes the absolute Galois group Gal(k̄/k). We

have A[q] ' (Z/qZ)n, for a certain n depending only on A. Thus Gk acts over A[q]

as a subgroup of GLn(Z/qZ) isomorphic to G = Gal(k(A[q])/k). We still denote by

G the representation of Gk in GLn(Z/qZ). If q = p is a prime number, in particular

G ≤ GLn(p). When A is an abelian variety of dimension g, we have n = 2g.

Let Σ be the subset of Mk containing all the places v of K, that are unramified in F .

For every v ∈ Σ, we denote by Gv the Galois group Gal(Fw/kv), where w is a place of F

extending v. In [15] Dvornicich and Zannier proved that the answer to the local-global
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question for divisibility by q of points in A(k) is linked to the behaviour of the following

subgroup of H1(G,A[q])

H1
loc(G,A[q]) :=

⋂
v∈Σ

ker(H1(G,A[q])
resv−−−−−→ H1(Gv,A[q])), (2.1)

where resv, as usual, denotes the restriction map. By substituting Mk to Σ in (2.1), i.

e. by letting v vary over all the valuations of k, we get the classical definition of the

Tate-Shafarevich group X1(k,A[q]) (up to isomorphism)

X1(k,A[q]) :=
⋂
v∈Mk

ker(H1(k,A[q])
resv−−−−−→ H1(kv,A[q])).

In particular, the vanishing of H1
loc(G,A[q]) assures the triviality of X1(k,A[q]), that is

a sufficient condition to get an affirmative answer to Problem 2, for r = 0, and in many

cases for all r ≥ 0 (see [13, Theorem 2.1] and Section 2). Furthermore the triviality

of H1
loc(G,A[q]) is a sufficient condition for an affirmative answer to Problem 1 by [15,

Proposition 2.1].

Owing to Čebotarev’s Density Theorem, the group Gv varies over all cyclic subgroups

of G as v varies in Σ, then in [15] Dvornicich and Zannier gave the following equivalent

definition of H1
loc(G,A[q]).

Definition 2.1. A cocycle {Zσ}σ∈G ∈ H1(G,A[q]) satisfies the local conditions if, for

every σ ∈ G, there exists Aσ ∈ A[q] such that Zσ = (σ − 1)Aσ. The subgroup of

H1(G,A[q]) formed by all the cocycles satisfying the local conditions is called first local

cohomological group of G with values in A[q] and it is denoted by H1
loc(G,A[q]).

The description of H1
loc(G,A[q]) given in Definition 2.1 is useful in proving its triviality

and even in producing counterexamples to the local-global divisibility. We keep the

notation H1
loc(G,A[q]) used in almost all previous papers about the topic, but it is worth

to mention that in [42] Sansuc already treated similar modified Tate-Shafarevich groups

as in (2.1) and introduced the notation X1
Mk\Σ(k,A).

Remark 2.2. Observe that if G is cyclic, then H1
loc(G,A[q]) = 0.

The vanishing of H1
loc(G,A[q]) is strongly related to the behaviour of H1

loc(Gp,A[q]),

where Gp is the p-Sylow subgroup of G (see [15]).
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Lemma 2.3 (Dvornicich, Zannier). Let Gp be a p-Sylow subgroup of A. An element of

H1
loc(A,A[q]) is zero if and only if its restriction to H1

loc(Gp,A[q]) is zero.

In some cases, a quick way to show that both H1
loc(G,A[q]) and H1

loc(Gp,A[q]) are trivial

is the use of Sah’s Theorem (see [30, Theorem 5.1]).

Lemma 2.4 (Sah’s Theorem). Let G be a group and let M be a G-module. Let α be

in the center of G. Then H1(G,M) is annihilated by the map x → αx − x on M . In

particular, if this map is an automorphism of M , then H1(G,M) = 0.

By Lemma 2.4, if G is a subgroup of GLn(q) that contains a non-trivial scalar matrix,

then H1(G,Z/qZ) = 0. Thus, in particular, H1
loc(G,A[q]) = 0 too.

Corollary 2.5. Let G ≤ GLn(q), for some positive integers n and q. If λ · In ∈ G,

λ ∈ F∗q , is a nontrivial scalar matrix, then H1
loc(G,A[q]) = 0.

In our proofs of Theorem 1.3, a crucial tool is the use of Aschbacher’s Theorem on

the classification of maximal subgroups of GLn(q) (see [1]). Aschbacher proved that the

maximal subgroups of GLn(q) could be divided into 9 specific classes Ci, 1 ≤ i ≤ 9. For

a big n, it is a very hard open problem to find the maximal subgroups of GLn(q) of type

C9. We have an explicit list of such groups only for n ≤ 12 (see [3]). On the contrary,

the maximal subgroups of GLn(q) of geometric type (i. e. of class Ci, with 1 ≤ i ≤ 8)

have been described for every n (see [28]). We recall some notations in group theory and

then we resume the description of the maximal subgroups of GLn(q) of geometric type

in the following Table 1 (see [28, Table 1.2.A, § 3.5 and § 4.6]).

Notation 1. Let n, l be positive integers, let p be a prime number and let q = pl. We

denote by Fq the finite field with q elements. Let ωq be a primitive element of F∗q . We use

the standard notations for the special linear group SLn(q), the projective special linear

group PSLn(q), the unitary group Un(q), the symplectic group Spn(q), the simmetric

group Sn and the alternating group An. By Cn we denote a cyclic group of order n and

by p1+2n an extraspecial group of order p1+2n. Furthermore, if n is odd or both n and

q are even, then we denote by On(q) the orthogonal group and by SOn(q) the special

orthogonal group. If n is even and q is odd we denote by (see [3])
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GO+
n (q) the stabilizer of the non-degenerate symmetric bilinear antidiagonal form

(1,...,1);

SO+
n (q) the subgroup of GO+

n (q) formed by the matrices with determinant 1;

GO−n (q) the stabilizer of non-degenerate symmetric bilinear form In, when n ≡ 2(mod 4)

and q ≡ 3(mod 4) and the stabilizer of non-degenerate symmetric bilinear diagonal

form (ωq, 1, ..., 1), when n 6≡ 2(mod 4) and q 6≡ 3(mod 4);

SO−n (q) the subgroup of GO−n (q) formed by the matrices with determinant 1.

For n even and ε ∈ {+,−}, we denote by Ωεn(q) the subgroup of index 2 of Oεn, obtained

as the kernel of the spinor norm and by PΩεn(q) the quotient Ωεn(q)/{±}.

Notation 2. Let A,B be two groups. We denote by

AoB, the semidirect product of A with B (where A E AoB);

A ◦B, the central product of A and B;

A oB, the wreath product of A and B;

A.B, a group Γ that is an extension of its normal subgroup A with the group B (then

B ' Γ/A), in the case when we do not know if it is a split extension or not;

A.B, a group Γ that is a non-split extension of its normal subgroup A with the group

B (then B ' Γ/A);

A : B, a group Γ that is a split extension of its normal subgroup A with the group B

(then B ' Γ/A and Γ ' AoB).
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type description structure
C1 stabilizers of totally singular or nonsingular

subspaces
maximal parabolic group

C2 stabilizers of direct sum decompositions
V =

⊕r
i=1 Vi, with each Vi of dimension t

GLt(q) o Sr, n = rt

C3 stabilizers of extension fields of Fq of prime
index r

GLt(q
r).Cr, n = rt, r prime

C4 stabilizers of tensor product decompositions
V = V1 ⊗ V2

GLt(q) ◦GLr(q), n = rt

C5 stabilizers of subfields of Fq of prime index r GLn(q0), q = qr0, r prime

C6
normalizers of symplectic-type r-groups
(r prime) in absolutely irreducible
representations

(Cq−1 ◦ r1+2t).Sp2t(r), n = rt, r prime, r 6= p

C7 stabilizers of tensor product decompositions
V =

⊗t
i=1 Vi, dim(Vi) = r

(GLr(q) ◦ ... ◦GLr(q))︸ ︷︷ ︸
t

.St, n = rt

C8 classical subgroups
Spn(q), n even
Oεn(q), q odd

Un(q
1
2 ), q a square

Table 1: Maximal subgroups of GLn(q) of geometric types

Although we generally do not know explicitly the maximal subgroups of type C9, by

Aschbacher’s Theorem, we have such a characterization of them:

“if Γ is a maximal subgroup of GLn(q) of class C9 and Z denotes its center, then for some

nonabelian simple group T , the group Γ/(Γ ∩ Z) is almost simple with socle T ; in this

case the normal subgroup (ΓZ).T acts absolutely irreducibly, preserves no nondegenerate

classical form, is not a subfield group, and does not contain SLn(q).”

We will use this description in our proof of Theorem 1.3. Furthermore, for very small

integers n there are a few subsequent and more explicit versions of Aschbacher’s Theorem,

that describe exactly the maximal subgroups of class C9. To prove Theorem 1.3 we will

use the classification of the maximal subgroups of SLn(q) appearing in [3], for n ≤ 12.

From now on we will say that a subgroup G of GLn(q) (respectively of SLn(q)) is of class

Ci or of type Ci, with 1 ≤ i ≤ 9, if G is contained in a maximal subgroup of GLn(q)

(respectively of SLn(q)) of class Ci.

3 Proof of Theorem 1.3

The proof of Theorem 1.3 follows by the proof of the next slightly more general statement,

with the only difference in the hypotheses that we assume G ≤ GLn(pm), for some
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positive integerm (instead of simply GLn(p)). This more general assumption considering

powers of p in lieu of p will be useful when G is of type C3 and it is isomorphic to a

subgroup of GLt(p
r).Cr, with n = tr, for some prime number r.

Theorem 3.1. Let p be a prime number. Let k be a number field and let A be a com-

mutative algebraic group defined over k. Assume that G = Gal(k(A[p])/k) is isomorphic

to a subgroup of GLn(pm), for some positive integers n,m. If A[p] is a very strongly

irreducible G-module or a direct sum of very strongly irreducible G-modules and we are

in one of the following cases

1) 2 ≤ n ≤ 250 and p ≥ n
2 + 1;

2) n ≥ 251 and p ≥ n+ 1;

then the local-global divisibility by p holds in A over k and X(k,A[p]) = 0.

When n = 2, m = 1 and p 6= 2, the conclusion of Theorem 3.1 follows immediately

by Chevalley’s Theorem on the classification of the commutative algebraic groups in

characteristc 0 (see for example [43]), combined with the mentioned results in [15] and

in [21]. Anyway, when m > 1, or m = 1, p = 2 and A an algebraic torus, there are

no similar results in the literature, even for n = 2. Thus, we will give a proof for the

more general case when G ≤ GL2(pm), with m ≥ 1, for n = 2 too. That will be a

part of the base of the induction for the general case. In fact, for n = 2 we can prove a

stronger result than Theorem 3.1, since it suffices to assume that A[p] is an irreducible

G-module (or a direct sum of irreducible G-modules), as we will see in Subsection 3.1

(see Proposition 3.8).

We firstly prove a very useful lemma. In fact it covers many cases when G is iso-

morphic to a subgroup of GLn(pm) that is an extension of a group with trivial local

cohomology by a cyclic group. Observe that here the hypothesis of irreducibility (and

not very strongly irreducibility) is sufficient. Of course every statement proved for an

irreducible G-module, holds for a very strongly irreducible G-module too (as well as for

a strongly irreducible G-module).

Lemma 3.2. Let p be a prime number and n,m positive integers. Let A be a commutative

algebraic group defined over a number field k. Assume that G = Gal(k(A[p])/k) acts
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irreducibly on A[p] as a subgroup of GLn(pm), which is an extension S.Ct, where t is a

positive integer. If H1
loc(S,A[p]) = 0, then H1

loc(G,A[p]) = 0 too.

Proof. If S is trivial, then G ' Ct is cyclic and H1
loc(G,A[p]) = 0. Assume that S is a

nontrivial normal subgroup of G. If S contains a nontrivial element of the center Z(G),

then by Sah’s Theorem, we get H1
loc(G,A[p]) = 0. So we may assume without loss of

generality that S ∩ Z(G) is trivial. Let Ct = 〈f〉, where as usual 〈f〉 denotes the group

generated by f. We have G = S.〈f〉. We denote by f both an element in the quotient Ct
and a representative of it in G. Let {Zg}g∈G represent a cocycle of H1

loc(G,A[p]). Since

H1
loc(S,A[p]) = 0, then there exists A ∈ A[p] such that Zσ = (σ − 1)A, for all σ ∈ S.

Furthermore, there exists Af ∈ A[p] such that Zf = (f − 1)Af. Being 〈f〉 cyclic, then
Zϕ = (ϕ−1)Af, for every ϕ ∈ 〈f〉. Since S is a normal subgroup of G, the automorphism

f acts on S by conjugation and fσf−1 = τ , with τ ∈ S. In particular fσ = τ f. Then

Zfσf−1 = Zf + fZσ + fσZf−1 (3.1)

i. e.

(τ − 1)A = (f− 1)Af + f(σ − 1)A+ fσ(f−1 − 1)Af

τ(A)−A = f(Af)−Af + τ f(A)− f(A) + τ(Af)− τ f(Af).

We have

τ(f− 1)(Af −A) = (f− 1)(Af −A).

By eventually changing σ with τ and f with f−1, one easily deduces that the p-torsion

point B := (f − 1)(Af − A) is fixed by all σ ∈ S. In other words, if kS denotes the

subfield of k(A[p]) fixed by S, then B ∈ A(kS). If B = 0, then (f− 1)Af = (f− 1)A and

H1
loc(G,A[p]) = 0. Suppose B 6= 0. Observe that for every element σ ∈ S there exists

σi ∈ S such that σfi = fiσi, for each positive integer i. Then all σ ∈ S also fix fi(B), for

every i:

σ(fi(B)) = fiσi(B) = fi(B).

By considering fi instead of f in (3.1), we get

τ(fi − 1)(Af −A) = (fi − 1)(Af −A),
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for all positive integers i. Assume that t ≥ n. If fi(B) = αB, for some 1 ≤ α ≤ p− 1 and

1 ≤ i ≤ t, such that gcd(i, t) = 1, we choose fi as a generator of 〈f〉. Consider a basis of

A[p], where B is the first vector in the basis. Since every σ ∈ S fixes B and fi(B) = αB,

then the group G is reducible and we have a contraddiction with our assumptions. Then

suppose that fi(B) 6= αB, for all 1 ≤ i ≤ p − 1. In particular B and f(B) are linearly

independent as vectors in A[p] and we can choose them as the first two elements of a

basis of that vector space.

Suppose that B, f(B) and f2(B) are not linearly independent, i. e. f2(B) = α0B +

α1f(B), for some α0, α1 ∈ Fp. Then the matrix that represents f in GLn(pl) is of the

form


0 α0 ∗ ... ∗
1 α1 ∗ ... ∗
0 0 ∗ ... ∗

...
0 0 ∗ ... ∗

 .

Since every σ ∈ S fixes B and f(B), then G is reducible, a contraddition. Thus we may

assume that B, f(B) and f2(B) are linearly independent. In a similar way, we get that

B, f(B), f2(B), ..., fn−1(B) are linearly independent (recall that we are assuming t ≥ n).

Therefore we can choose the basis {B, f(B), f2(B), ..., fn−1(B)}, for A[p]. We have that

every σ ∈ S fixes all the p-torsion points of A[p], a contraddiction with S being nontrivial.

Thus B = 0 and H1
loc(G,A[p]) = 0. Now suppose t < n. As above we may assume that

B, f(B), f2(B), ..., ft−1(B) are linearly independent. Moreover ft(B) = B. We have that

f has the following form, with respect to such a basis {B, f(B), f2(B), ..., ft−1(B)} (recall
that t < n)

g =



0 ... 0 1 ∗ ... ∗
0 ∗ ... ∗

It−1

...
...

...
0 ∗ ... ∗

0 ... 0 0 ∗ ... ∗
...

...
...

...
...

0 ... 0 0 ∗ ... ∗


. (3.2)

Since σ ∈ S fixes every fi(B), then G acts reducibly on A[p] and we have a contraddiction.

Therefore B = 0, implying (f− 1)A = (f− 1)Af, i. e. H1
loc(G,A[p]) = 0.
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With the same arguments used in the proof of Lemma 3.2, we can also prove the

following statements.

Corollary 3.3. Let p be a prime number and let n,m be positive integers. Let A be a com-

mutative algebraic group defined over a number field k. Assume that G = Gal(k(A[p])/k)

is isomorphic to a subgroup of GLn(pm) that is an extension S.J , where S acts irreducibly

on A[p]. If H1
loc(S,A[p]) = 0, then H1

loc(G,A[p]) = 0.

Proof. Let {Zg}g∈G represent a cocycle of H1
loc(G,A[p]). Since H1

loc(S,A[p]) = 0, then

there exists A ∈ A[p] such that Zσ = (σ − 1)A, for all σ ∈ S. Choose an element f ∈ J .
We still denote by f one of its representatives in G. There exists Af ∈ A[p], such that

Zf = (f − 1)Af. Let B := (f − 1)(Af − A). By considering the subgroup of J generated

by f and repeating the argument used in Lemma 3.2, every σ ∈ S fixes B. If B 6= 0,

then we have a contraddiction with S acting irreducibly on A[p]. Thus B = 0, i. e.

Zf = (f− 1)(Af) = (f− 1)A, implying H1
loc(G,A[p]) = 0.

Corollary 3.4. Let p be a prime number and let n,m be positive integers. Let A be a com-

mutative algebraic group defined over a number field k. Assume that G = Gal(k(A[p])/k)

is isomorphic to a subgroup of GLn(pm) that is an extension S.J . If H1
loc(S,A[p]) = 0

and H1
loc(J,A[p]) = 0, and there exist ρ ∈ S and ω ∈ J such that ρ − 1 and ω − 1 are

invertible, then H1
loc(J,A[p]) = 0.

Proof. Let {Zg}g∈G represent a cocycle of H1
loc(G,A[p]). Since H1

loc(S,A[p]) = 0, then

there exists A ∈ A[p] such that Zσ = (σ − 1)A, for all σ ∈ S. Moreover, there exists

W ∈ A[p] such that Zτ = (τ−1)W , for all τ ∈ J . By the same argument used in the proof

of Lemma 3.2, the point B := (ω−1)(W−A) ∈ A[p] is fixed by every σ ∈ S. In particular

B lies in
⋂
σ∈S ker(σ − 1). Since ker ρ = 0, then B = 0, implying (ω − 1)(W − A) = 0.

The kernel of ω − 1 is trivial too by hyphotesis and then W = A.

The next remark, will allow us to deal with subgroups of SLn(pm), instead of GLn(pm).

Remark 3.5. Let G be a subgroup of GLn(pm) and let G̃ := G ∩ SLn(pm). Since

|GLn(pm)| = (pm − 1)|SLn(pm)|, then the p-Sylow subgroup of GLn(pm) coincides with

the p-Sylow subgroup of SLn(pm). By Lemma 2.3, we haveH1
loc(G,A[pm]) = 0 if and only

if H1
loc(G̃,A[pm]) = 0. Moreover SLn(pm) is a normal subgroup of GLn(pm) and then, if
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A[p] is a very strongly irreducible G-module, then A[p] is a very strongly irreducible G̃-

module too. Therefore from now on we assume G ≤ SLn(pm), without loss of generality.

Observe that when A[p] is an irreducible G-module, the vanishing of H1
loc(G̃,A[pm])

implies the vanishing of H1
loc(G,A[pm]) by Lemma 3.2 too. In fact GLn(pm) is an exten-

sion of SLn(pm) by a cyclic group.

We are going to prove that if G is the whole special linear group SLn(pm) (for some m),

then the local-global divisibility holds in A.

Lemma 3.6. If G = SLn(pm), for some positive integer m, then H1
loc(G,A[p]) = 0.

Proof. Let q = pm. If n = 2 (more generally if n is even), then G contains −I and, by

Lemma 2.5, we have the conclusion. Assume that n = 3. By lemma 2.3, it suffices to

prove that H1
loc(Gp,A[p]) = 0, for a p-Sylow subgroup Gp of G. Let Gp be the subgroup

of G = SL3(q) consisting of all the upper triangular matrices of the form 1 ∗ ∗
0 1 ∗
0 0 1

 .

We denote by G1 the subset of Gp formed by the matrices 1 α 0
0 1 0
0 0 1


with α ∈ Fp. By G2 we denote the subset of Gp formed by the matrices 1 0 β

0 1 γ
0 0 1

 ,

with β, γ ∈ Fp. Observe that Gp is generated by the elements of G1 and the elements of

G2. In fact  1 α 0
0 1 0
0 0 1

 1 0 β − αγ
0 1 γ
0 0 1

 =

 1 α β
0 1 γ
0 0 1

 .

We are going to prove that both H1
loc(G1,A[p]) and H1

loc(G2,A[p]) are trivial. Then we

will be able to glueing the local cohomologies and showing H1
loc(Gp,A[p]) = 0.



Proof of Theorem 1.3 16

1. The triviality of H1
loc(G1,A[p]).

The additive group of the finite field Fpm , with pm elements, is isomorphic to the vector

space V = (Fp)m. Let α1, α2, ...αm be a basis of V . Observe that G1 is generated by the

matrices

σi =

 1 αi 0
0 1 0
0 0 1

 ,

where 1 ≤ i ≤ m. If σ ∈ G1, then

σ =

 1 α 0
0 1 0
0 0 1

 ,

with α = λσ,1α1 + λσ,2α2 + ... + λσ,mαm, for some λσ,1, ..., λσ,m ∈ Z/pZ. Therefore

σ = σ
λσ,1
1 · σλσ,22 · ... · σλσ,mm . For some τ ∈ G1, suppose that there exists A ∈ A[p] such

that (σ − 1)A = Zσ and (τ − 1)A = Zτ . Then

Zστ = Zσ + σ(Zτ ) = (σ − 1)A+ σ((τ − 1)A) = σ(A)−A+ στ(A)− σ(A) = (στ − 1)A.

Thus, to prove that there exists A ∈ A[p] such that (σ − 1)A = Zσ, for all σ ∈ G1,

it suffices to prove that (σi − 1)A = Zσi , for every 1 ≤ i ≤ m. Assume that Zσi =

(xσi , yσi , zσi) represents a cocyle inH1
loc(G1,A[p]). Since Zσi satisfies the local conditions

as in Definition 2.1, then there exists Ai = (x̃σi , ỹσi , ˜zσi) ∈ A[p] such that (σi − 1)Ai =

Zσi , i. e.  0 αi 0
0 0 0
0 0 0

 x̃σi
ỹσi
˜zσi

 =

 xσi
yσi
zσi

 . (3.3)

By equation (3.3), we deduce that yσi = zσi = 0 and ασi ỹσi = xσi . Thus, without loss

of generality we may choose Ai = (0, ỹσi , 0), for every 1 ≤ i ≤ m. Let j ∈ {1, ...,m}. We

have

{
ασi ỹσi = xσi
ασj ˜yσj = xσj

(3.4)

In a similar way yσ = zσ = 0, for all σ ∈ G1. Observe that

Zστ =

 xσ
0
0

+

 1 ασ 0
0 1 0
0 0 1

 xτ
0
0

 =

 xσ
0
0

+

 xτ
0
0

 = Zσ + Zτ .
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Then, because of yσ = zσ = 0, the equality Zστ = Zσ + σ(Zτ ) is simply Zστ = Zσ + Zτ ,

for all σ, τ ∈ G1. In particular xστ = xσ + xτ and then, by equation (3.4), we get

xσiσj = xσi + xσj = ασi ỹσi + ασj ˜yσj .

On the other hand

σiσj =

 1 ασi 0
0 1 0
0 0 1

 1 ασj 0
0 1 0
0 0 1

 =

 1 ασi + ασj 0
0 1 0
0 0 1

 ,

implying xσiσj = (ασi + ασj ) ˜yσiσj . Then

(ασi + ασj ) ˜yσiσj = ỹσiασi + ˜yσjασj ,

i. e.,

( ˜yσiσj − ỹσi)ασi + ( ˜yσiσj − ˜yσj )ασj = 0.

Since αi and αj are elements of a basis of V , then ˜yσiσj = ỹσi and ˜yσiσj = ˜yσj , implying

ỹσi = ˜yσj . We have Ai = Aj and then H1
loc(G1,A[p]) = 0.

2. The triviality of H1
loc(G2,A[p]).

The group G2 is generated by the matrices of the form

σ =

 1 0 αi
0 1 αj
0 0 1

 , (3.5)

where i, j ∈ {1, ...,m} and α1, ..., αm form a basis of the vector space V as above. Assume

that Zσ = (xσ, yσ, zσ) represents a cocyle in H1
loc(G1,A[p]). Then, for every σ ∈ G2,

there exists Aσ = (x̃σ, ỹσ, z̃σ) ∈ A[p] such that (σ − 1)Aσ = Zσ, i. e. 0 0 αi
0 0 αj
0 0 0

 x̃σ
ỹσ
z̃σ

 =

 xσ
yσ
zσ

 . (3.6)

By equation (3.6), we deduce that zσ = 0 and

{
αiz̃σ = xσ
αj z̃σ = yσ

(3.7)
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Furthermore, without loss of generality, we may assume that x̃σ = ỹσ = 0, i. e. Aσ =

(0, 0, z̃σ). Because of zσ = 0, in a similar way as above we have that the equality

Zστ = Zσ + σ(Zτ ) is simply Zστ = Zσ + Zτ , for all τ ∈ G2. Let

τ =

 1 0 αh
0 1 αs
0 0 1

 ,

for some h, s ∈ {1, ...,m}. Therefore xστ = xσ + xτ = z̃σαi + z̃ταh. On the other hand,

as for the matrices of G1, the entry xστ is equal to (αi + αh) ˜zστ . Then

(αi + αh) ˜zστ = z̃σαi + z̃ταh.

Likewise we get

(αj + αs) ˜zστ = z̃σαj + z̃ταs.

We have the system of equations

{
αi(z̃σ − ˜zστ ) + αh(z̃τ − ˜zστ ) = 0
αj(z̃σ − ˜zστ ) + αs(z̃τ − ˜zστ ) = 0

(3.8)

Since αi, αj , αh, αs are elements of a basis of V , then ˜zστ = z̃σ and ˜zσiτ = z̃τ , implying

z̃σ = z̃τ . Since the matrices of the form (3.5) generate G2, as i, j vary between 1 and m,

then we can conclude that there exists R ∈ A[p] such that (σ−1)R = Zσ, for all σ ∈ G2.

Therefore H1
loc(G2,A[p]) = 0.

3. The glueing of the cohomologies

By equation (3.6), without loss of generality, we can choose A1 = (0, a, 0) and R =

(0, 0, b), for some a, b ∈ Fp. Let W = (0, a, b). We have (σ− 1)W = Zσ, for every σ ∈ G1

and (τ − 1)W = Zτ , for every τ ∈ G2. Observe that, for every σ ∈ G1 and τ ∈ G2, the

cocycle equation implies

Zστ = Zσ + σ(Zτ ) = (σ − 1)W + σ(τ − 1)W = (στ − 1)W.

Because of G1 and G2 generating G, we get the conclusion.
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When n > 3

Let n > 3. Let Gp be the p-Sylow subgroup of GLn(pm) formed by all the upper

triangular matrices. Observe that Gp is generated by the matrices



1 ∗ 0 . . . . . . 0

0 1 0
...

...
. . . . . . . . .

. . . . . .
...

. . . 1 0
0 . . . . . . 0 1


; . . . ;



1 0 . . . 0 ∗ 0

0 1
...

...
...

...
. . . . . . 0

...
. . . . . . ∗

...
... 0 1 0
0 . . . . . . 0 1


;



1 0 . . . 0 ∗

0 1
. . .

... ∗
...

. . . . . . . . .
...

...
. . . 0

...
...

. . . 1 ∗
0 . . . . . . 0 1


,

with the entries ∗ varying in Fp. For 2 ≤ i ≤ n, let Mi be the subgroup of Gp formed

by the identity and the matrices with some nonzero entries only in the ith column.

By induction, the same techniques used to prove the triviality of H1
loc(G1,A[p]) and

H1
loc(G2,A[p]) as above, show that there exists Wi = (0, ..., 0, ai, 0, ..., 0), depending only

on i, such that (σ − 1)Wi = Zσ, for all σ ∈ Gi. Let W = (0, a2, ..., ai, ..., an). Then

(σ − 1)W = Zσ, for all σ ∈ G.

From now on we will assume, without loss of generality, that G is a proper subgroup

of SLn(pm).

For n ∈ {2, 3} we give a proof Theorem 3.1 based on a case by case analysis of the

possible maximal subgroups of SLn(pm). Then we proceed with the proof of Theorem

1.3 for a general n.

3.1 The case when n = 2

In this section we consider algebraic groups A such that G is isomorphic to a subgroup

of GL2(pm), for some positive integer m. In particular this is the case when A[p] ∼=
(Z/pZ)2. As stated above if m = 1 and p 6= 2, then the conclusion of Theorem 3.1

follows immediately by Chevalley’s Theorem on the classification of the commutative

algebraic groups in characteristc 0 (see for example [43]), combined with the mentioned

results in [15] and [21]. Anyway, when m > 1, or m = 1, p = 2 and A an algebraic torus,

there are no similar results in the literature. Thus, here we give a proof for the more
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general case when G ≤ GL2(pm), with m ≥ 1. We use the classification of the maximal

subgroups of SL2(q) appearing in [3], for q = pm, that we partially recall in the next

lemma.

Lemma 3.7. Let q = pm, where p is a prime number and m is a positive integer. The

maximal subgroups of SL2(q) of type Ci, with 2 ≤ i ≤ 9 are

(a) a subgroup of type C2, the generalized quaternion group Q2(q−1) of order 2(q − 1),

with q odd, q 6= 5;

(b) a subgroup of type C2, the dihedral group D2(q−1) of order 2(q − 1), with q even;

(c) a subgroup of type C3, the generalized quaternion group Q2(q+1), of order 2(q + 1),

for q odd;

(d) a subgroup of type C3, the dihedral group D2(q+1) of order 2(q + 1), for q even;

(e) a subgroup of type C5, the group SL2(q0).C2, with q = q2
0;

(f) subgroup of type C5, the group SL2(q0), with q = qr0, for q odd, r an odd prime;

(g) subgroup of type C5, the group SL2(q0), with q = qr0, for q even, q0 6= 2, r prime;

(h) a group of type C6, the group 21+2.S3, for q = p ≡ ±1 (mod 8);

(i) a group of type C6, the group 21+2 : C3, for q = p ≡ ±3, 5,±11,±13,±19 (mod 40);

(j) a group of type C9, the group C ·2A5, q = p ≡ ±1 (mod 10) or q = p2, with p ≡
±3 (mod 10).

In fact, for n = 2 we are going to prove the following stronger result than Theorem 3.1,

with the assumption that A[p] is an irreducible G-module or a direct sum of irreducible

G-modules.

Proposition 3.8. Let p be a prime number. Let k be a number field and let A be a

commutative algebraic group defined over k. Assume that G = Gal(k(A[p])/k) is iso-

morphic to a subgroup of GL2(pm), for some positive integer m. If A[p] is an irreducible

Gk-module or a direct sum of irreducible Gk-modules, then the local-global divisibility by

p holds in A over k and X(k,A[p]) = 0.
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Proof. As already noticed in [39], for every group Γ and every direct sum of two Γ-

modules M1 and M2, one has H1
loc(Γ,M1 ×M2) ' H1

loc(Γ,M1)
⊕
H1

loc(Γ,M2). Thus

H1
loc(G, .) is an additive functor and it suffices to prove the statement when A[p] is an

irreducible Gk-module, to get an answer even in the case when A[p] is a direct sum of

irreducible Gk-modules. Thus, we may assume without loss of generality that G is not of

type C1 and it is isomorphic to one of the subgroups of SL2(pm) listed in Lemma 3.7. In

cases (a) (resp. (c)), G is a subgroup of the generalized quaternion group Q2(q−1) (resp.

Q2(q+1)). The group Q2(q−1) (resp. Q2(q+1)) is an extension C2.Cq−1 (resp. C2.Cq+1) of

a cyclic group of order 2, with a cyclic group of order q−1 (resp. q+1). Then G is cyclic

or it is an extension of two cyclic groups. Since the local cohomology of a cyclic group is

trivial, then by Lemma 3.2, we have H1
loc(G,A[p]) = 0. In cases (b), (d), (h), (i) and

(j), for every p ≥ 2, the p-Sylow subgroup of G is either trivial or cyclic (recall that cases

(h), (i) and (j) may occur only if p 6= 2). By Lemma 2.3, we have H1
loc(G,A[p]) = 0.

Suppose that we are in case (e). For every p > 2, the p-Sylow subgroup Gp of G is a

subgroup of SL2(q0), where q = q2
0 . Thus, without loss of generality, we may assume

that G is a subgroup of SL2(q0). If G = SL2(q0), then H1
loc(G,A[p]) = 0, by Lemma

3.6. Assume that G is a proper subgroup of SL2(q0). If G is still of type C5, then G

is isomorphic to a subgroup of SL2(q1), where q0 = q2
1 . Again, if G = SL2(q1), then by

Lemma 3.6, we have H1
loc(G,A[p]) = 0. We may assume that G is a proper subgroup of

SL2(q1) and so on. Sincem is finite, at a certain point we will find that either G is of type

Ci, with i 6= 5, or G is trivial. If G is of type Ci, with i 6= 5, because of our assumption

that G is very strongly irreducible, then G is isomorphic to one of the subgroups listed

in cases (a), (b), (c), (d), (h), (i) and (j). Thus H1
loc(G,A[p]) = 0, as above. If G

is trivial, then H1
loc(G,A[p]) = 0 too. The same arguments, combined with Lemma 3.2

(recall that we are assuming that A[p] is irreducible), give H1
loc(G,A[p]) = 0, for p = 2

too. Cases (f) and (g) are similar to case (e), being Gp a subgroup of SL2(q0), with

q = qr0, with r a prime.

In particular we have proved Theorem 3.1 for n = 2.

3.2 The case when n = 3

In this section we consider algebraic groups A such that A[p] ∼= (Z/pZ)3. As mentioned

in the Introduction, in [15] Dvornicich and Zannier underline that the answer in this case

is not obvious. In fact, they show an example in which H1
loc(Γ,Z/pZ) 6= 0, where Γ is a
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subgroup of the p-Sylow subgroup of GL3(p) of the form 1 a b
0 1 λa
0 0 1

 , a, b ∈ Z/pZ, λ ∈ Z/pZ∗.

Anyway, they have no evidence that this group is really the p-Sylow subgroup of a Galois

group Gal(k(A[p])/k,A[p]). Even in the case when Γ would be the p-Sylow subgroup

of a certain Galois group Gal(k(A[p])/k,A[p]), we could get no information about the

algebraic group A for which the local-global divisibility fails. Here we prove Theorem

3.1 for n = 3.

We use the classification of the maximal subgroups of SL3(q) and of SU3(q) appearing

in [3].

Lemma 3.9. Let q = pm, where p is a prime number and m is a positive integer. Let

d := gcd(q − 1, 3). The maximal subgroups of SL3(q) of type Ci, with 3 ≤ i ≤ 9 are

(a) a group of type C2, the group C2
q−1 : S3, for q ≥ 5;

(b) a group of type C3, the group Ch : C3, where h = q2 + q + 1;

(c) a group of type C5, the group SL3(q0).Cs, where s := gcd
(
q−1
p−1 , 3

)
and q = qr0, r

prime.

(d) a group of type C6, the group 31+2
+ : Q8.Cs, where s = gcd(q−1,9)

3 , q = p ≡ 1 (mod 3)

and the extraspecial group 31+2
+ is the p-Sylow subgroup of GL3(p);

(e) a group of type C8, the group SO3(q)× Cd, with q odd;

(f) a group of type C8, the group SU3(q0)× Ct, where t := gcd(p− 1, 3) and q = q2
0;

(g) a group of type C9, the group PSL2(7)× Cd, for q = p ≡ 1, 2, 4 (mod 7), q 6= 2;

(h) a group of type C9, the group C .
3 A6, of order 9 · 5!, for q = p ≡ 1, 4 (mod 15) or

q = p2, with p ≡ 2, 3 (mod 5), p 6= 3.

Lemma 3.10. Let q = pm, where p is a prime number and m is a positive integer. Let

d := gcd(q − 1, 3). The maximal subgroups of SU3(q) of type Ci, with 3 ≤ i ≤ 9 are

(e.1) a group of type C2, the group C2
q−1 : S3, for q ≥ 5;
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(e.2) a group of type C3, the group Ch : C3, where h = q2 + q + 1, q 6= 3;

(e.3) a group of type C5, the group SU3(q0).Cs, where s := gcd
(
q+1
q+1 , 3

)
and q = qr0, r

prime;

(e.4) a group of type C8, the group SO3(q)× Cd, q odd and q ≥ 7;

(e.5) a group of type C6, the group 31+2
+ : Q8.Cs, where s = gcd(q+1,9)

3 , the extraspecial

group 31+2
+ is the p-Sylow subgroup of GL3(p), q = 5 or q = p ≡ 2 (mod 3) and

q ≥ 11;

(e.6) a group of type C9, the group PSL2(7)× Cd, q = p ≡ 3, 5, 6 (mod 7);

(e.7) a group of type C9, the group C .
3 A6, for q = p ≡ 11, 14 (mod 15);

(e.8) a group of type C9, the group C .
3 A
·
6C2, (where here C2 is a known specific quotient

of A6), for q = p = 5;

(e.9) a group of type C9, the group C .
3 A7, of order 9 · 7 · 5!, for q = p = 5.

Proof of Theorem 3.1 for n = 3. As in the case when n = 2, since H1
loc(G, .) is

an additive functor, we assume without loss of generality that G is not of type C1 and

then it is a subgroup of the groups listed in Lemma 3.9. We are going to show that

H1
loc(G,A[p]) = 0, for all p ≥ 3. In cases (a), (b) and (d) the p-Sylow subgroup of G is

either trivial or cyclic, for all p (recall that case (a) occur only for p ≥ 5 and case (a)

occur only for q = p ≡ 1 (mod 3). Therefore H1
loc(G,A[p]) = 0. Assume that we are in

case (g). Since this case may occur only for p 6= 3, then the p-Sylow subgroup of G is

isomorphic to a subgroup of PSL2(7). Therefore, for every p ≥ 2, the p-Sylow subgroup

of G is either trivial or cyclic and H1
loc(G,A[p]) = 0 (recall that this case does not hold

when p = 2 too). Assume that we are in case (h). If p ≥ 3, then the p-Sylow subgroup of

G is trivial or cyclic again (observe that this case does not happen when p = 3). Assume

that we are in case (c). For every p 6= 3, the p-Sylow subgroup of G is a subgroup of

SL3(q0). Since SL3(q0) is a normal subgroup of G and G is very strongly irreducible,

we may assume, without loss of generality, that G ⊆ SL3(q0). If G = SL3(q0), then

H1(G,A[p]) = 0, by Lemma 3.6. If G is trivial, then H1(G,A[p]) = 0 too. So, suppose

that G is a non-trivial proper subgroup of SL3(q0). If G is still of type C5 in SL3(q0),

then G is contained in SL3(q1).Cs1 , where q0 = q2
1 and s1 = gcd(q0−1,9)

3 . Again, we may
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assume that G is strictly contained in SL3(q1) and so on. Since q is finite, after a finite

number of steps we find that G is of type Ci, with i 6= 5. We have H1
loc(G,A[p]) = 0, by

the arguments used for the subgroups of classes Ci, with i 6= 5. Thus H1
loc(G,A[p]) = 0

too. If p = 3, we can use the same argument as for p 6= 3, combined with Lemma 3.2 (by

the hypothesis of the very strongly irreducibility of A[p]). Assume that we are in case

(e). Again, for all p, the p-Sylow subgroup Gp of G is contained in SO3(q). Since G is

very strongly irreducible, by Lemma 3.2 we may assume without loss of generality that

G is contained in SO3(q). The group SO3(q) is isomorphic to SL2(q) (see [3, Proposition

1.10.1]). If G = SO3(q), then −I ∈ G and H1
loc(G,A[p]) = 0, because of Lemma 2.5.

Assume that G is strictly contained in SO3(q). In the proof of Theorem 3.1 for n = 2, we

have seen that G still contains −I or its p-Sylow subgroup Gp is either trivial or cyclic.

In all cases the first cohomology group H1
loc(G,A[p]) vanishes.

Suppose that we are in case (f). By Lemma 3.2 and the assumption that A[p] is very

strongly irreducible, we may assume without loss of generality that G ≤ SU3. Thus we

use Lemma 3.10. There are only four cases in which the subgroups of SU3 are different

from the ones listed in Lemma 3.9, i. e. cases (e.3), (e.5), (e.8) and (e.9). For all p,

in cases (e.5), (e.8) and (e.9), the p-Sylow subgroup is either trivial or cyclic. Thus

H1
loc(G,A[p]) = 0. Since the p-Sylow subgroup of SU3(q0) coincides with the p-Sylow

subgroup of SL3(q0), we can treat case (e.3) in the same way as case (c). We have

proved that for every possible G, if A[p] is a very strongly irreducible G-module and

p ≥ 3, then the local-global divisibility by p holds in A over k. 2

3.3 General Case

To prove Theorem 3.1 for every n, we use the description of the subgroups of GLn(q)

of geometric type shown in Table 1. For some classes of groups we also use induction,

having already proved the statement for n ≤ 3. When the p-Sylow subgroup of G is

isomorphic to (Z/pZ)2, there are known counterexample to the local-global divisibility

(see the mentioned [15], [16], [36]) and also even when (Z/pZ)3 there are counterexamples

(see [35] again). Then in various parts of the proof we will show that for p ≥ n + 1, or

respectively for p ≥ n/2 + 1, the p-Sylow subgroup of G is either trivial or cyclic (which

does not hold for p ≤ n+ 1, or respectively p ≤ n/2 + 1).

Proof of Theorem 3.1 Since we have already proved the statement for n ∈ {2, 3}, we
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assume n ≥ 4. Suppose that for every integer n′ < n, the local-global divisibility by

p holds in commutative algebraic groups A over k when G ≤ GLn′ acts very strongly

irreducibly on A[p] ' (Z/pZ)n
′
and p > n′. As in the cases when n = 2 and n = 3, since

H1
loc(G, .) is an additive functor, we may assume, without loss of generality, that G is

not of class C1.

Part i. Subgroups of geometric type

Class C2

Assume that G is of class C2. In this case A[p] =
⊕r

i=1Ai, with each Ai of dimension

t and G = (G1 × ... × Gr) o Sr, where Gi is a subgroup of GLt(q) acting on Ai and

tr = n. In this situation A[p] is irreducible, but not very strongly irreducible (nor

strongly irreducible). By our assumptions, then A[p] has to be a direct sum of very

strongly irreducible G-modules. In particular Gi is very strongly irreducible for all 1 ≤
i ≤ r. If p > r, then the p-Sylow subgroup of G is contained in G1 × ... × Gr. Since

H1
loc(G, .) is an additive functor, by induction we get that H1

loc(G,A[p]) = 0, for p ≥
max{r + 1, t + 1}. Observe that the greatest r that we can have is r = n itself. But

in this case t = 1 and A[p] =
⊕n

i=1Ai, with each Ai of dimension 1. The group G is

then a subgroup of Cnq−1.Sn. If p > n/2, the p-Sylow subgroup of G is either trivial

or cyclic and H1
loc(G,A[p]) is trivial. If r 6= n, then r ≤ n/2, and t ≤ n/2 too. Thus

max{r + 1, t+ 1} ≤ n/2. If p ≥ n/2 + 1, then H1
loc(G,A[p]) = 0.

Class C3

Suppose that G is of type C3. In this situation the G-module A[p] is considered as

vector space over a a field extension F̃ of Fpm with degree a prime number r dividing

n. The p-torsion subgroup A[p] has dimension t := n/r as a vector space over F̃ (see

[28, §5.3 and Table 2.1.A]) and G is isomorphic to a subgroup of GLt(p
mr).Cr. If r = n

(this in particular happens if n is a prime), then the only possible subgroup of class

C3 is GL1(pmn).Cn. Since the cardinality of GL1(pmn) is pmn−1
p−1 , then, for every p, the

p-Sylow subgroup of G is either trivial or cyclic and H1
loc(G,A[p]) = 0. If r 6= n, then

1 < r ≤ n/2. Therefore, for all p ≥ n/2 + 1, the p-Sylow subgroup of G is contained in

GLt(p
mr). Observe that G∩GLt(p

mr) is very strongly irreducible too. Since 1 < t ≤ n/2
too, we use induction (recall that here A[p] is considered as a vector space of dimension

t < n over F̃ ) and Lemma 3.2 to get H1
loc(G,A[p]) = 0, for every p ≥ n/2 + 1.
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Class C4

Suppose that G is of type C4. Observe that this case does not occur when n is a prime.

The group G is isomorphic to a subgroup of a central product GLt(p
m)◦GLr(p

m) acting

on a tensor product V1⊗V2 = A[p], where rt = n and V1, V2 are vector spaces over Fpm ,

with dimension respectively t and r. A central product Γ of two groups is a quotient of

their direct product by a subgroup of its center. Then every subgroup of Γ is a central

product of two groups too (where one of the two groups or both can be trivial). So let

G = Gt ◦ Gr, with Gt acting on V1 and Gr acting on V2 (see also [28, §4.4]). Consider

Zσ⊗τ , with σ⊗ τ ∈ Gt ◦Gr, representing a cocycle of G with values in A[p] = V1⊗V2. If

Zσ⊗τ satisfies the local conditions, then there exists Aσ⊗τ ∈ V1 ⊗ V2 such that Zσ⊗τ =

(σ⊗τ−1⊗1)Aσ⊗τ , for all σ⊗τ ∈ Gt ◦Gr. Observe that Aσ⊗τ = A
(1)
σ⊗τ ⊗A

(2)
σ⊗τ , for some

A
(1)
σ⊗τ ∈ V1 and A(2)

σ⊗τ ∈ V2. We can construct a cocycle Zσ := (σ − 1)Aσ, with σ ∈ Gt,
by choosing Aσ among the possible A(1)

σ⊗τ ∈ V1. In the same way we can construct a

cocycle Zτ := (τ − 1)Aτ , with τ ∈ Gr, by choosing Aτ among the possible A(2)
σ⊗τ ∈ V2.

For the tensor product construction, a priori we could have more than one choice of

Aσ (respectively Aτ ) for each σ (resp. τ). Anyway, we choose just one Aσ (resp. Aτ ).

Observe that even in the general case of Definition 2.1, when a cocycle satisfies the local

conditions, there could exist various Aσ giving the equality Zσ = (σ − 1)Aσ. Anyway

we make just one choice for Aσ ∈ A[q], for each σ ∈ G. Since r < n, by induction

H1
loc(Gr, V1) = 0, for every p ≥ r + 1 (observe that Gr is very strongly irreducible

itself by our assumptions). Then there exists A ∈ V1, such that Zσ = (σ − 1)A, for all

σ ∈ Gr. In the same way, since t < n, then by induction, for all p ≥ t + 1, we have

H1
loc(Gt, V2) = 0 (again Gt itself is very strongly irreducible). Thus there exists B ∈ V2,

such that Zτ = (τ − 1)B, for all τ ∈ Gt. Therefore Zσ⊗τ = (σ ⊗ τ − 1⊗ 1)A⊗B, for all

σ ⊗ τ ∈ Gt ◦ Gr, and H1
loc(G,A[p]) = 0. Since r ≤ n/2 and t ≤ n/2, as above, we have

H1
loc(G,A[p]) = 0, for every p ≥ n/2 + 1.

Class C5

If G is of class C5, then G is isomorphic to a subgroup of GLn(pt), where m = tr, with

t a positive integer and r a prime. Observe that this case does not occur when m = 1.

If G is the whole group GLn(pt), then by Lemma 3.6, we have H1
loc(G,A[p]) = 0. If G is

trivial, then H1
loc(G,A[p]) is trivial too. Suppose that G is a proper non-trivial subgroup

of GLn(pt). If G is still of class C5, then G is isomorphic to a subgroup of GLn(pt2),
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for some positive integer t2, such that t = r2t2, with r2 prime. If G = GLn(pt2), again

H1
loc(G,A[p]) = 0, by Remark 3.5 and Lemma 3.6. Then we may assume that G is a

proper subgroup of GLn(pt2) and so on. Since m is finite and we are assuming that G is

not trivial, then G is isomorphic to a subgroup of GLn(ptj ) (for some positive integer tj
dividing m) of class Ci, with i 6= 5. We may then repeat the arguments used (or that we

will use) for other classes Ci, with i /∈ {1, 5}, to get H1
loc(G,A[p]) = 0.

Class C6

Suppose that G is of class C6, i. e. G lies in the normalizer of an extraspecial

group. This may happen only when n = rt, with r a prime different from p and t a

positive integer. The possible maximal subgroup of class C6 is (Cq−1 ◦ r1+2t).Sp2t(r)

(see [28, §3.5]). To ease notation we denote by H the normal subgroup Cq−1 ◦ r1+2t.

Let G′ := G ∩ H. Owing to p 6= r, the p-Sylow subgroup G′p of G′ is trivial. Then

the p-Sylow subgroup Gp of G is isomorphic to the p-Sylow subgroup of G/G′ that is

isomorphic to a subgroup of Sp2t(r). Since p 6= r, then p divides the cardinality |Sp2t(r)|
if and only if p divides

∏t
i=1(r2i−1) = (r−1)(r+1)...(rt−1−1)(rt−1 +1)(rt−1)(rt+1).

Observe that rt−1 = rt/r ≥ n/2. If p 6= 2, then rt−1 = n/r < n/2. Moreover for all

p 6= 2, if p|(n + 1), then p - (n − 1) and the other way around. The greatest factor of

(r − 1)(r + 1)...(rt−1 − 1)(rt−1 + 1)(rt − 1)(rt + 1) is rt + 1 = n + 1. If p > n/2 (in

particular we have p > 2, being n ≥ 4), then p2 > n2/4 > n + 1, for all n > 4. Thus

if p ≥ n/2 + 1/2 and n > 4, we have that p2 - |Sp2t(r)| and the p-Sylow subgroup of

G is either trivial or cyclic. Consequently H1
loc(G,A[p]) = 0. We have to control what

happens for n = 4. By the classification of the maximal subgroups of SL4(q) appearing

in [3, Table 8.9, pag. 381], one sees that there are the following two maximal subgroups

of class C6

the group C4 ◦ 21+4 ·S6, for q = p ≡ 1 (mod 8) ;

the group C4 ◦ 21+4
·A6, for q = p ≡ 5 (mod 8).

In both cases the p-Sylow subgroups of G is either trivial or cyclic for every p (since

the groups occur only for certain primes as above). We can conclude for every n, that

H1
loc(G,A[p]) is trivial, for all p ≥ n/2 + 1.

Class C7
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Assume that G is of class C7. This case occur only when n = rt, where r is a

prime and t > 1. The group G is the stabilizer of a tensor product decomposition⊗t
i=1 Vr, with n = rt, t ≥ 2 and dim(Vi) = r, for every 1 ≤ i ≤ t. Thus G is a

subgroup of (GLr(q) ◦ ... ◦GLr(q))︸ ︷︷ ︸
t

.St. If p > t, then the p-Sylow subgroup of G is

contained in G′ = G ∩ (GLr(q) ◦ ... ◦GLr(q))︸ ︷︷ ︸
t

. In this case, by using induction on t and

the argument given in the case when G is of class C4 as the base of the induction, we have

H1
loc(G

′,A[p]) = 0, for all p ≥ max{t+ 1, r+ 1} (recall that we are assuming that A[p] is

very strongly irreducible). Obviously t ≤ n/2 and r ≤ n/2. Then if we take p ≥ n/2 + 1,

we still have that the p-Sylow subgroup of G is contained in G′ and H1
loc(G

′,A[p]) = 0.

Class C8

Suppose that G is of class C8. If n is even, then G is contained either in the group

Spn(pm), or in a group Oεn(pm), for some ε ∈ {+,−}, or in the group Un(p
m
2 ), with

m even too. If n is odd, then G is contained either in On(pm), or in Un(p
m
2 ) (with m

even). If G is the whole group Un(p
m
2 ), then its p-Sylow subgroup Gp coincides with

the p-Sylow subgroup of GLn(pm), i. e. the p-Sylow subgroup of SLn(pm). By Lemma

3.6, we have H1
loc(G,A[p]) = 0. If G is the whole symplectic group Spn(pm) (with n

even) or one of the whole orthogonal groups, then contains −I and H1
loc(G,A[p]) = 0,

by Lemma 2.5. Assume that G is strictly contained in one of those classical groups.

Aschbacher’s theorem holds for unitary, symplectic and orthogonal groups too and the

maximal subgrops of those classical groups are still divided in the same 9 classes (see

[28]). From the classification of the maximal subgroups of Spn(pm), On(pm), Oεn(pm)

and Un(p
m
2 ) of class Ci, i 6= 9 appearing in [28, Table 3.5B, Table 3.5C, Table 3.5D and

Table 3.5E], we have that On(pm), Oεn(pm) and Un(p
m
2 ) do not contain groups of class

C8 and that the subgroups of Spn(pm) of class C8 are Oεn(pm) themselves. Since we are

assuming that G is strictly contained in one of those three groups, then it is a subgroup

of class Ci, for some i 6= 8. By repeating the arguments used for the maximal subgroups

of SLn(q) of class Ci, with i 6= 8 (see ii below for class C9), for the maximal subgroups of

symplectic, orthogonal and unitary groups, we get the conclusion.

Part ii. Subgroups of class C9

Suppose that G is of class C9 and let Z(G) be its center. By the description of the

subgroups of class C9, recalled in Section 2, the group G/Z(G) is almost simple. Because
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of Sah’s Theorem, if Z(G) is nontrivial, then H1
loc(G,A[p]) = 0. So, without loss of

generality, we may assume that Z(G) is trivial and G is almost simple. Thus G contains

a simple group S and it is contained in the automorphism group of S

S ≤ G ≤ Aut(S). (3.9)

In particular, if G is a subgroup of GLn(pm), then S is a subgroup of GLn(pm) too.

So, first of all, we consider the possible simple groups S contained in GLn(pm), for a

certain n. Observe that S is not a cyclic group by (3.9). The classification of the finite

simple groups is well-known, as well as the list of their automorphisms groups. One of

the most complete references in the literature is Wilson’s book on finite simple groups

[48]. Following that text, we will divide the simple groups in four classes: alternating

groups, sporadic groups, classical groups and exceptional groups. We will consider the

twisted exceptional group (i. e. the Ree groups, the Suzuki groups, the group 3D4(q)

and the group 2E6(q)) among the exceptional groups. We will also call groups of Lie

type the classical and the exceptional groups.

Alternating groups

Assume that S is an alternating group AN , for some positive integer N . Since the

cardinality of the outer automorphism group of AN divides 4 for all N , then we may

assume without loss of generality that G = S. By [28, Proposition 5.3.7 (i)], we have

that the minimal degree for a representation of AN in GLn(pl), for n ≥ 9, is N − 2,

i. e. n ≥ N − 2. Then N ≤ n + 2. Since |An+2| =
(n+ 2)!

2 , if p ≥ n + 1, then

p2 - |An+2| (recall n ≥ 9). In particular p2 does not divide the cardinality of every

possible subgroup of GLn(pl) of type C9 isomorphic to AN , for every positive integer N .

We have H1
loc(G,A[p]) = 0, for all p ≥ n+1, n ≥ 9. We will treat the case when n ≤ 8 in

Part iii. below. In particular we will see that the bound p ≥ n/2 + 1 is in fact sufficient

for the triviality of H1
loc(G,A[p]), when G is an alternating group, for all 4 ≤ n ≤ 250.

Sporadic groups

Assume that S is a sporadic group. Then p = 13 is the greatest prime number such

that p2 could eventually divide its cardinality (this is the case of the Monster group).

Furthermore, for every sporadic group, the outer automorphism group is either trivial

or cyclic of order 2. Then for p > 13, we have H1
loc(G,A[p]) = 0. If n ≥ 25, the bound
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p ≥ n/2 + 1 covers the case of sporadic groups too, as well as the cases of the groups of

geometric type. We will see in Part iii. below that the same bound p ≥ n/2 + 1 assures

the triviality of H1
loc(G,A[p]), when G is a sporadic group, for all n ≤ 25.

Groups of Lie type

Now assume that S is neither alternating, nor sporadic. If p > 3, then the automorphisms

of the field Fpm , generated by the Frobenius map f : x 7→ xp, are the only automorphisms

of S, whose order can be divided by p. The Frobenius automorphisms form a group of

outer automorphisms of S isomorphic to Cm. Then we have outer automorphisms of S

with order divided by p if and only if p | m. Thus we may assume G ' S.Cm. Being

A[p] very strongly irreducible, we have that the vanishing of H1
loc(S,A[p]) implies the

vanishing of H1
loc(G,A[p]), by Lemma 3.2. So it suffices to prove H1

loc(S,A[p]) = 0, for

all group S of Lie type, whenever p ≥ n + 1. We are going to consider two distinct

situation: when the characteristic of the field of definition of S is different from p (the

so-called cross characteristic case in the literature) and when the characteristic of the

field of definition of S is equal to p (the so-called defining characteristic case).

Cross characteristic case

If the characteristic of the field of definition of S is different from p, then we have an

explicit lower bound for the degrees of the representations of S, as one can see in [28, Table

5.3.A, pag. 188] (see also [31] and [25]). In particular if S is isomorphic to PSL2(rα), for

some odd prime r and some positive integer α, then n ≥ rα − 1
2 (by [28, Table 5.3.A,

pag. 188]). Thus rα ≤ 2n+ 1. Being r 6= p, if a prime p does not divide (rα + 1)(rα− 1),

then p does not divide the cardinality of SL2(rα).

Observe that every odd prime p that divides rα + 1 does not divide rα − 1 and the

other way around. Moreover rα + 1 ≤ 2n + 2. Suppose p ≥ n/2 + 1. Then p2 >
(n+ 1)2

4 ≥ 2n+ 2, for all n ≥ 7. Therefore the p-Sylow subgroup of S is either trivial or

cyclic and H1
loc(S,A[p]) = 0. In Part iii. we will analyze case by case all the subgroups

of GLn(pm) of class C9, for every n ≤ 6 and we will show that the bound p ≥ n/2 + 1

assures H1
loc(G,A[p]) = 0, for all n. If S is isomorphic to PSL2(2α), the bound for n is

n ≥ 2α − 1 (see again [28, Table 5.3.A, pag. 188]).
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With an analogous argument as for odd primes r, if p ≥ n/2 + 1, then p2 does not

divide (2α+ 1)(2α−1), for all n ≥ 4 and H1
loc(G,A[p]) = 0. Now suppose S = PSLt(r

α),

for some t ≥ n and r 6= p. The bound for n is n ≥ (rα)n−1 − 1 [28, Table 5.3.A,

pag. 188]. Then rα ≤ n−1
√
n+ 1. As above, since p 6= r, if p -

∏t
i=2((rα)i − 1),

then p does not divide the cardinality of SLt(r
α). Observe that

∏t
i=2((rα)i − 1) ≤∏n−1

i=2 ( n−1
√

(n+ 1)i−1). The greatest factor in the last product is n−1
√

(n+ 1)n−1−1 = n.

If p ≥ n (in particular if p ≥ n+ 1), then p2 does not divide
∏t
i=2((rα)i − 1). Therefore

the p-Sylow subgroup of S is either trivial or cyclic and then H1
loc(S,A[p]) = 0. Now

suppose S = PUt(r
α), for some t ≥ n and r 6= p. To ease notation, from now on

let rα = w. When n is odd, the bound is n ≥ ww
n−1 − 1
w + 1 , and, when n is even, the

bound is n ≥ wn−1 − 1
w + 1 [28, Table 5.3.A, pag. 188]. Firstly suppose that n is odd.

We have w ≤ n−1

√
w + 1
w n+ 1. Observe that w + 1

w ≤ 3
2 . Thus w ≤ n−1

√
3
2n+ 1. If

a prime p does not divide
∏t
i=2((w)i − (−1)i), then it does not divides the cardinality

of S = PUt(w). We have
∏t
i=2((w)i − (−1)i) ≤

∏n−1
i=2

(
n−1

√(
3
2n+ 1

)i
− (−1)i

)
. The

greatest factor in the last product is n−1

√(
3
2n+ 1

)n−1

− (−1)n−1 = 3
2n+ 2 (recall that

n is odd). Observe that n + 1 > 1
2

(
3
2n+ 2

)
. If p ≥ n + 1, then p2 - 3

2n + 2. Moreover

p ≥ n + 1 > wi + 1
2 , for all i, and in particular p ≥ n + 1 ≥ wi − (−1)i

2 . Suppose

that p | (w)i − (−1)i and p | (w)j − (−1)j , for some 2 ≤ i < j ≤ n − 1. If i, j are

both odd, then p divides wj + 1 − (wi + 1) = wi(wj−i − 1). Being p 6= r, we have

p | wj−i − 1. Since p ≥ n + 1 > wj−i − 1
2 , the only possibility is p = wj−i − 1. Then

n + 1 ≤ p = wj−i − 1 ≤ n−1

√
(3
2n+ 1)j−i + 1 ≤ n−1

√
(3
2n+ 1)n−2 + 1 and we have a

contraddiction. So, for all p ≥ n+ 1 the p-Sylow subgroup of G is either trivial or cyclic

and H1
loc(S,A[p]) = 0. If i, j are both even, we can repeat the same argument. If j

is even and i is odd (or i is even and j odd), we get that p divides wi(wj−i + 1). We

may apply again the same argument, owing to p ≥ n + 1 ≥ wi + 1
2 , for all i. If n is

even the bound is n ≥ wn−1 − 1
w + 1 . So w ≤ n−1

√
w + 1
w ≤ n−1

√
w + 1
w and we may use

the same argument applied when n is odd to get H1
loc(S,A[p]) = 0. The other minimal

bounds for n appearing in [28, Table 5.3.A, pag. 188], when S is a classical group in cross

characteristic, are very similar to the ones already discussed. So, with arguments that

are very much akin to the ones already shown when S is the projective special linear

group or the unitary group, one can verify that H1
loc(S,A[p]) = 0, for all p ≥ n + 1,
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whenever S is a classical group of Lie Type in cross characteristic.

Assume that S is the exceptional group E8(w). In this case the lower bound for

the dimension of the representation is w27(w2 − 1) (again [28, Table 5.3.A, pag. 188]).

Thus w27 ≤ n
w2 − 1

≤ n
3 , i. e. w ≤ 27

√
n
3 . A prime p 6= r divides the cardinality of

E8(w) if and only if it divides the product
∏3
i=0(w6i+2 − 1)

∏5
i=2(w6i − 1). We have∏3

i=0(w6i+2−1)
∏5
i=2(w6i−1) ≤

∏3
i=0( 27

√
(n3 )6i+2−1)

∏5
i=2( 27

√
(n3 )6i−1). If p ≥ n+1,

then p is always strictly greater than every factor in that last product, except the greatest

one 27

√
(n3 )30 − 1. Anyway, in this case p2 ≥ (n+ 1)2 > 27

√
(n3 )30 − 1. Thus the p-Sylow

subgroups of G is either trivial or cyclic and H1
loc(S,A[p]) = 0. In similar ways, using the

bounds in [28, Table 5.3.A, pag. 188], one sees that the assumption p ≥ n+ 1 is always

sufficient to get the conclusion H1
loc(S,A[p]) = 0, when S is an exceptional group of Lie

type in cross characteristic.

Defining characteristic case

Assume that the characteristic of the field of definition of S is p. We have that S is a

classic group, with dimension t < n (see [28, Table 5.4.C, pag. 200]) or an exceptional

group. If S is a classic group then S is a projective linear group or a projective symplectic

group or a projective unitary group or a projective orthogonal group. In all cases S is

a quotient by scalar matrices of a classical matrix group. Observe that if Γ is a matrix

group and PΓ is its quotient modulo scalar matrices, then the p-Sylow subgroup of PΓ

is an isomorphic copy of the p-Sylow subgroup of Γ (no scalar matrix has order dividing

p, for p > 2). Thus H1
loc(Γ,A[p]) = 0 implies H1

loc(PΓ,A[p]) = 0. Since S has dimension

t < n, then by using induction, we deduce H1
loc(S,A[p]) = 0.

Assume that S is an exceptional group of Lie type. By [10] (see in particular Table

(4.5) at page 186) and [11] (see in particular Table (4.3) at page 193), the cohomology

group H1(S,A[p]) is trivial, for all p > 3, when n is the possible minimal degree of the

representation of S and when n is the dimension of the Lie algebra with automorphism

group S (in this case S has a natural representation in dimension n and this often

coincides with the representation of S with minimal degree). If the representation of S is

neither the minimal nor the natural one, then we can proceed as follows. We first consider

the groups S that are not twisted. Let L(λ) denote the irreducible G-module of highest

weight λ. In [45, Thm 1.2.3] the authors prove that for all p > 31 the first cohomology

group H1(S,L(λ)) is trivial, when λ is a fundamental dominant weight (or it is less
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than a fundamental dominant weight) and S is not a twisted group. In 1950 Chevalley

proved that whenever M is an irreducible S-module, then M = L(λ), for some dominant

weight λ (see [22] and [7]). In particular, since we are assuming that A[p] is irreducible,

then A[p] = L(λ), for some dominant weight λ. In addition, every dominant weight is

a positive integer linear combination of fundamental dominant weights and it is well-

known in the theory of Lie groups that this implies a decomposition L(λ) = ⊗si=1L(ωi),

where s is a positive integer and ωi is a fundamental weight, for every 1 ≤ i ≤ s. Thus

H1
loc(S,A[p]) ' H1

loc(S,⊗si=1L(ωi)), for certain fundamental weights ωi and the group S

preserves a tensor product decomposition. In particular S acts on A[p] in the same way

as the subgroups of class C4 or C7 (see [28, §4.4]). Since the mentioned Theorem 1.2.3 in

[45] assures the triviality of H1(S,L(ωi)), for all 1 ≤ i ≤ s, we can use the arguments

given for groups of class C4 or C7 to deduce the triviality of H1
loc(S,A[p]). Observe that

when n ≥ 31, we have that p ≥ n+ 1 implies p > 31. Thus we may apply Theorem 1.2.3

in [45] for all exceptional groups and get H1
loc(S,A[p]) = 0, with the other arguments

as above. If n < 31, then every representation of an exceptional group of degree n is

either minimal or fundamental (or both), except the representation of the group G2(q)

of degree 27. But for groups of type G2(q) the conclusion of the mentioned Theorem

1.2.3 in [45] holds for all p > 3. So, again we may apply all the arguments as above to

get H1
loc(S,A[p]) = 0. We have to prove the same conclusion for twisted groups of lie

type. If we assume that p > 3, then we have neither Suzuki groups nor Ree groups in the

defining characteristic (see [48] for further details). We are left with groups 2E6(q) and
3D4(q). The group 2E6(q) is a subgroup of E6(q2) modulo scalars (see [48, 4.11]). We

may apply Shapiro’s Lemma (see for instance [33, Theorem 4.19] or [46, Lemma 6.3.2

and Lemma 6.3.4]) to get

H1
(
E6(q2), IndE6(q2)

2E6(q)A[p]
)
' H1(2E6(q),A[p]),

where IndE6(q2)
2E6(q) denotes the induced G-module

⊕s
i σi(A[p]), where σi varies in a system

of left coset representatives of H in G, s := [E6(q2) :2 E6(q)] denotes the index of 2E6(q)

in E6(q2) (see [33, Definition 4.18]) and σi(A[p]) is isomorphic to A[p]. Being H1(G,−)

and additive functor for every group G, we have

s⊕
i=1

H1(E6(q2), σi(A[p])) ' H1(2E6(q),A[p]).

We have already proved that H1
loc(E6(q2),A[p]) = 0, under the assumption that A[p] is
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irreducible. Therefore H1
loc(E6(q2), σi(A[p])) = 0, for all i, and H1

loc(2E6(q),A[p]) = 0.

The group 3D4(q) is a subgroup of Ω+
8 (q3). The cited results in [10] and in [45] hold for

Ω+
8 (q3) (but they do not hold in general for symplectic groups). Then we may apply all

the arguments as above to get H1
loc(Ω+

8 (q3),A[p]) = 0 and deduce H1
loc(3D4(q),A[p]) = 0,

by Shapiro’s Lemma.

To finish the proof we have to control that p ≥ n/2 + 1 is a sufficient bound for the

subgroups of class C9 of SLn(q), when 4 ≤ n ≤ 250.

Part iii. The cases when 4 ≤ n ≤ 250

In accordance with part i., the bound p ≥ n/2 + 1 is sufficient, whenever G is a

subgroup of class Ci, with 1 ≤ i ≤ 8. To show that the same bound works even when

G is a subgroup of class C9, we are going to control case by case what happens for such

groups when 4 ≤ n ≤ 250.

n = 4

Let d := gcd(q − 1, 4). By the classification of the maximal subgroups of SL4(q)

appearing in [3, Table 8.9, pag. 381], we have the following maximal subgroups of

class C9.

(a) the group A7, only if q = p = 2;

(b) the group Cd ◦ C2
·PSL2(7), for q = p ≡ 1, 2, 4 (mod 7), p 6= 2;

(c) the group Cd ◦ C2
·A7, for q = p ≡ 1, 2, 4 (mod 7), p 6= 2;

(d) the group Cd ◦ C2
·U4(2), for q = p ≡ 1 (mod 6).

In cases (b), (c) and (d) the p-Sylow subgroups of G is either trivial or cyclic

for all p (observe that those cases occur only for certain primes). In case a) the

p-Sylow subgroup of G is either trivial or cyclic, for all p ≥ 3. Then we get the

conclusion.

n = 5

Let d := gcd(q − 1, 5). We have to prove H1
loc(G,A[p]) = 0, for all p ≥ 3. Since

this bound is sufficient to have H1
loc(G,A[p]) = 0, when G is of class Ci, for i 6= 9,
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we have to consider only the subgroups of of SL5(q) of class C9, i. e. the ones

appearing in the following list (see [3, Table 8.19, pag. 386])

(a) the group PSL2(11)× Cd if q = p ≡ 1, 3, 4, 5, 9 (mod 11);

(b) the group U4(2)× Cd, if p ≡ 1 (mod 6), for q = p ≡ 1 (mod 6);

(c) the Mathieu group M11 if q = 3.

Assume that we are in case (a) and G is isomorphic to a subgroup of PSL2(11)×Cd.
Then the cardinality of G divides 23 · 3 · 5 · 11 · d and its p-Sylow subgroup is either

trivial or cyclic, for every p ≥ 3. Assume that we are in case (b). The group

U4(2) has order 26 · 35 · 5. Since this case does not occur if q ∈ {2, 3}, then, for
every p ≥ 2, the p-Sylow subgroup of G is either trivial or cyclic again. Therefore

H1
loc(G,A[p]) = 0. Assume that we are in case (c). This case may happen only if

q = 3. The Mathieu group M11 has cardinality 24 · 32 · 5 · 11. In this last case, for

every p ≥ 5, the p-Sylow subgroup of G is either trivial or cyclic. So we have the

bound p > 3 appearing in the statement of Theorem 1.3.

n = 6

We have to prove H1
loc(G,A[p]) = 0, for all p > 3. Let d := gcd(q − 1, 6). The

maximal subgroups of SL6(q) of class C9 are the ones appearing in the following

list (see [3, Table 8.25, pag. 389])

(a) a group of type C9, the group C2 × C ·3A6.C2;

(b) a group of type C9, the group C2 × C ·3A6;

(c) a group of type C9, the group C ·6A6;

(d) a group of type C9, the group Cd ◦ C ·2PSL2(11);

(e) a group of type C9, the group C ·6A7;

(f) a group of type C9, the group C ·6PSL3(4)·C2;

(g) a group of type C9, the group C ·6PSL3(4);

(h) a group of type C9, the group C ·2M12;

(i) a group of type C9, the group C ·6U4(3)·C2;

(l) a group of type C9, the group C ·6U4(3);

(m) a group of type C9, the group Cd ◦ SL3(q).
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Some of the cases in the list can occur only under certain conditions of q. Since

the proof does not depend on those conditions, we avoided to write them, to ease

the notation.

One easily verifies that in cases (a), (b), (c), (e), (f), (g), (h), (i) and (l), the p-

Sylow subgroup of G is either trivial or cyclic, for all p > 3. Thus H1
loc(G,A[p]) = 0,

for every p ≥ 5. Assume that we are in case (d). If p > 5, then the p-Sylow

subgroup of G is either trivial or cyclic too. If p = 5, then the p-Sylow subgroup of

G is either trivial, or cyclic or isomorphic to the p-Sylow subgroup of SL2(11). By

Lemma 3.6, we get H1
loc(G,A[p]) = 0 in this last case too. Assume that we are in

case (m). If p ≥ 5, then the p-Sylow subgroup of G is isomorphic to a subgroup of

SL3(q). By the assumption that A[p] is very a strongly irreducible G-module and

the results achieved in Section 3.2 for n = 3, we have H1
loc(G,A[p]) = 0. In the end

H1
loc(G,A[p]) = 0, for all p ≥ 5.

n = 7

Let d := gcd(q − 1, 7). The only maximal subgroup of SL7(q) of class C9 is the

group Cd × U3(3), with cardinality 27 · 33 · 7 · d (see [3, Table 8.36, pag. 395]).

Observe that d|7 and when p = 7, in particular d 6= 7. Therefore, for all p ≥ 5, the

p-Sylow subgroup of G is either trivial or cyclic. Thus if G is a subgroup of SL7(q)

and A[p] is a very strongly irreducible G-module, then H1
loc(G,A[p]) = 0, for all

p ≥ 5.

n = 8

Let d := gcd(q− 1, 8). As above, we have to consider only the subgroups of SL8(q)

of class C9, i. e. the groups appearing in the following list (see [3, Table 8.45, pag.

399])

(a) the group C ·4PSL3(4);

(b) the group Cd ◦ C ·4PSL3(4);

(c) the group Cd ◦ C ·4PSL3(4).C2.

Again, some of the cases in the list can happen only under certain conditions on

q. Since the proof does not depend on those condition, as above we avoid to write

them, to ease the notation. One sees that the cardinality of every maximal subgroup
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of SL8(q) of class C9 divides 26 · |SL2(4)| = 212 · 3 · 5 · 63. Then, for every p ≥ 3,

the p-Sylow subgroup of all of those groups is either trivial or cyclic, implying the

triviality of H1
loc(G,A[p]).

n = 9

Let d := gcd(q − 1, 9). The maximal subgroups of SL9(q) of class C9 are (see [3,

Table 8.55, pag. 406])

(a) C ·3A7, for q = p;

(b) Cd × PSL2(19), for q = p ≡ 1, 4, 5, 6, 7, 9, 11, 16, 17 (mod 19);

(c) PSL3(q2).C2, for q ≡ 0 (mod 3);

(d) PSL3(q2).S3, for q ≡ 2 (mod 3);

(e) C9 ◦ SL3(q2).2, for q ≡ 1 (mod 9);

(f) SL3(q2).C6, for q ≡ 4, 7 (mod 9).

For all p ≥ 5, the groups in cases (a) and (b) have a p-Sylow subgroup that is

either trivial or cyclic. In cases (a), (b) (c), (d), (e) and (f) for all p ≥ 5, the

p-Sylow subgroup of G is isomorphic to a subgroup of SL3(q2). We use induction

to get H1
loc(G,A[p]) = 0.

n = 10

We have to prove H1
loc(G,A[p]) = 0, for all p ≥ 7, when G is a subgroup of SL10

contained in one of its maximal subgroup of class C9. Let d := gcd(q − 1, 10),

h := gcd(q − 1, 3) and s := gcd(q−1,4)
2 . The maximal subgroups of SL10(q) of class

C9 are (see [3, Table 8.61, pag. 410])

(a) Cd◦C ·2PSL2(19), for q = p ≡ 1, 4, 5, 6, 7, 9, 11, 16, 17 (mod 19);

(b) Cd◦C ·2PSL3(4), for q = p ≡ 11, 15, 23 (mod 28);

(c) Cd◦C ·2PSL3(4).C2 (where C2 is a specific quotient of SL3(4)), for q = p ≡
3, 9, 25 (mod 28);

(d) Cd◦C ·2M12 (where M12 is the Mathieu group of order 26 · 33 · 5 · 11), for q =

p ≡ 3 (mod 8);

(e) Cd◦C ·2M12.C2, for q = p ≡ 1 (mod 8);
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(f) Cd◦C ·2M22 (where M22 is the Mathieu group of order 27 · 32 · 5 · 7 · 11), for

q = p ≡ 11, 15, 23 (mod 28);

(g) Cd◦C ·2M22.C2, for q = p ≡ 1, 9, 25 (mod 28);

(h) Cd × PSL3(q).Ch, for p ≥ 5;

(i) Cd◦C ·sPSL4(q).Cs, for p ≥ 3;

(j) Cd◦SL5(q).

Observe that d|10, but d 6= 5, when p = 5. Then, in cases (a), (b), (c), (d),

(e), (f) and (g), for all p ≥ 5, the p-Sylow subgroup Gp of G is isomorphic to a

subgroup of one of the groups SL2(19), SL3(4), M12 and M22. Thus Gp is either

trivial or cyclic. We have H1
loc(G,A[p]) = 0 in all those cases. For cases (h), (i),

(j) we use induction and similar techniques as above.

n = 11

As for n = 10, it suffices to prove H1
loc(G,A[p]) = 0, for all p ≥ 7, when G is a

subgroup of a maximal subgroup of SL11(q) of class C9. Let d := gcd(q − 1, 11).

The maximal subgroups of SL11(q) of class C9 are (see [3, Table 8.71, pag. 418])

(a) PSL2(23), for q = 2;

(b) Cd × PSL2(23), for q = p ≡ 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18 (mod 23), q 6= 2;

(c) Cd × U5(2), for q = p ≡ 1 (mod 3);

(d) the mathieu group M24, for q = 2.

Recall that the Mathieu group M24 has order 210 · 33 · 5 · 7 · 11 · 23 (moreover this

case happens only for q = 2). Furthermore, we have |SL2(23)| = 24 · 3 · 11 · 23 and

|U5(2)| = 210 · 36 · 5 · 11. Then, for all p ≥ 5, the p-Sylow subgroup of G is either

trivial or cyclic in all cases.

n = 12

Let d := gcd(q− 1, 12) and let Suz denote the Suzuki group of order 213 · 37 · 52 · 7 ·
11 · 13. As above it suffices to consider the maximal subgroups of SL12(q) of class

C9, listed below (see [3, Table 8.77, pag. 422])

(a) Cd ◦ C ·6A6, for q = p ≡ 1, 4 (mod 15);
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(b) C12 ◦ C ·6A6, for q = p2, p ≡ 2, 3 (mod 5), p 6= 2, 3;

(c) Cd ◦ C ·2PSL2(23), for q = p ≡ 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18 (mod 23), p 6= 2;

(d) C ·12PSL2(4) (where C12 is a specific subgroup of SL2(23) of order 12), for

q = 49;

(e) Cd ◦ C ·6Suz, for q = p ≡ 1 (mod 3).

Assume that G is a subgroup of one of the groups appearing in the list.

If p > 5, then the p-Sylow subgroup of G is either trivial or cyclic in all cases (a),

(b), (c), (d) and (e).

Therefore H1
loc(G,A[p]) is trivial, for all p ≥ 7.

13 ≤ n ≤ 250

In [23], the authors list all the possible subgroups of class C9 of SLn(q), for every

n ≤ 250, excluding the groups of Lie type in their defining characteristic (see also

[24]). By part i. and part ii., the bound p ≥ n/2 + 1 works for all groups except

some sporadic groups (only for 13 ≤ n ≤ 26) and the groups of Lie type in cross

characteristic. Proceeding as for n ≤ 12, by analyzing the tables in [23], one sees

that even when 13 ≤ n ≤ 250 the first local cohomology group H1
loc(G,A[p]) is

trivial for all p ≥ n/2 + 1, for these two classes of groups. 2

About the bounds for p we can make the following considerations.

Remark 3.11. A likely sharp bound. Looking at the proofs for n ∈ {2, 3} and

4 ≤ n ≤ 250, one sees that the bound p ≥ n/2 + 1 is probably sharp in many cases.

In fact, for p ≤ n/2, the p-Sylow subgroup of G could be a direct product of two cyclic

groups Cp (look for examples at the 3-Sylow subgroup of M11 when n = 5, or at the

Klein group contained in the 2-Sylow subgroup of A7, when n = 4, and so on). When the

p-Sylow subgroup Gp of G is isomorphic to C2
p , the local-global divisibility may fail as in

the mentioned examples produced in [15], [17] and in [35], [36], [37]. One can rise those

examples to similar ones for all n. So the local-global principle for divisibility by p could

fail for p ≤ n/2, when Gp ' C2
p . Anyway for some n, as for n = 8 or n = 10, the bound

p ≥ n/2 + 1 is obviously not sharp. In those cases Gp is trivial or cyclic even for some

p ≤ n/2. We will now replace the bound n/2 + 1 with a bound pn, that still depends

only on n and that is probably sharp, for all n (see also Remark 3.13 below). In fact,
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if p̂ is the greatest prime < pn, then the p̂-Sylow subgroup of G can be isomorphic to

C2
p̂ and the local-global principle for divisibility by p̂ can fail. We cannot prove that the

bound pn is really sharp, only because we cannot prove that there exists a commutative

algebraic group A with a prescribed p̂-torsion subgroup A[p̂] such that Gp̂ is exactly a

group for which the principle fails. We can only prove that for p = p̂ the group Gp̂ could

be isomorphic to C2
p̂ and that this surely does not happen when p ≥ pn. By eventually

changing the field of definition k, it is likely that we can have Gp̂ ' C2
p̂ . This still does

not assure that H1
loc(Gp̂,A[p̂]) = 0. But among so many commutative algebraic groups

A and number fields k, for each n, we expect that this happens for at least one of them,

as in the case when n = 2 for elliptic curves. We are going to give a new version of

Theorem 1.3 with such a bound pn.

For every n, let ρn be the smallest prime such that, for all p ≥ ρn the square p2

divides no cardinalities of the maximal subgroups of class C9 of GLn(q). In addition,

when n = rt, for some prime r and some positive integer t, let pn be the smallest prime

such that for all p ≥ pn, the square p2 does not divide
∏t
i=1(r2i − 1). Observe that p2

divides no cardinalities of the subgroups of class C6 of GLn(q). If n is not a power of a

prime, there are no subgroups of class C6 in GLn(q), so set pn = 1 in that case. It is then

clear from the proof of Theorem 3.1, that we can give a new version of Theorem 1.3 as

follows.

Theorem 3.12. Let p be a prime number. Let k be a number field and let A be a

commutative algebraic group defined over k, with A[p] ' (Z/pZ)n. For every n, there

exists a prime pn, depending only on n, such that if p ≥ pn and A[p] is a very strongly

irreducible Gk-module or a direct sum of very strongly irreducible Gk-modules, then the

local-global divisibility by p holds in A over k and X(k,A[p]) = 0. Moreover pn =

max{pd, pn, ρn}, where d is the greatest divisor of n.

Remark 3.13. In addition, it is probable that p ≥ n/2 + 1 is a proper bound for every

n > 250 too. In fact it does work for all groups except certain groups of Lie type in

cross characteristic and certain alternating groups that can never occur for some prime

numbers (or that can never occur at all). Anyway we can only conjecture this fact, since,

as stated above, we do not know the classification of the subgroups of GLn(q) of class

C9, for n > 250.
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We now proceed with the proofs of the corollaries stated in the introduction, that can

be quickly deduced from the proof of Theorem 3.1.

Proof of Corollary 1.4 By the proof of Theorem 1.3 part i., concerning subgroups of

class C6, one easily deduces that for p ≥ n/2+1, the p-Sylow subgroup Gp of G is trivial.

Thus H1(Gp,A[p]) = 0. It is well-known that the restriction map

H1(G,A[p])→ H1(Gp,A[p])

is injective on the p-primary part of H1(G,A[p]) (see for example [44, Thm 4, Chap. IX,

§2]). Since A[p] ' (Z/pZ)n is a p-group, the p-primary part of H1(G,A[p]) is the whole

group. Then H1(Gp,A[p]) = 0 implies H1(G,A[p]) = 0. 2

Proof of Corollary 1.5 By the proof of Theorem 1.3 part ii., one can easily deduce

that if p > 2n+ 2, then the p-Sylow subgroup Gp of G is trivial. Thus H1(Gp,A[p]) = 0.

As in the proof of Corollary 1.4, this implies H1(G,A[p]) = 0. 2

Remark 3.14. In the same way as Corollary 1.5 and Corollary 1.4 one sees that

a) if p > n + 2 and the absolute Galois group Gk acts on A[p] as a subgroup of an

alternating group, then H1(G,A[p]) = 0.

b) if p > 13 and the absolute Galois group Gk acts on A[p] as a subgroup of a sporadic

group, then H1(G,A[p]) = 0.
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