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Divisibility questions in commutative algebraic groups

Laura Paladino*

Abstract

Let k be a number field, let A be a commutative algebraic group defined over k
and let p be a prime number. Let A[p] denote the p-torsion subgroup of A. We give
some sufficient conditions for the local-global divisibility by p in A and the triviality
of the Tate-Shafarevich group II(k, A[p]). When A is an abelian variety principally
polarized, those conditions imply that the elements of the Tate-Shafarevich group
ITI(k, A) are divisible by p in the Weil-Chatelet group H'(k, .A) and the local-global
principle for divisibility by p holds in H" (k,.A), for all r > 0.

1 Introduction

We consider two local-global problems, strongly related, that recently arose as general-
izations of some classical questions. Let A be a commutative algebraic group defined
over a number field k. Let k be the algebraic closure of k and let M}, be the set of
places v of k. For every positive integer ¢, we denote by A[g] the g-torsion subgroup
of A and by k(A[q]) the number field obtained by adding to k the coordinates of the
g-torsion points of A. It is well-known that A[qg] ~ (Z/qZ)™, for some positive integer n
depending only on A. The Galois group Gal(k(A[q])/k) is then isomorphic to the image
of the representation of the absolute Galois group Gy := Gal(k/k) in the general linear
group GL,,(Z/qZ). The behaviour of G := Gal(k(Alg])/k) is related to the answer to the
following question, known as Local-Global Divisibility Problem in commutative algebraic

groups.

Problem 1. Let A be a commutative algebraic group defined over a number field k. Let
P € A(k) and let q be a positive integer. Assume that for all but finitely many valuations
v € k, there exists D,, € A(k,) such that P = qD,,. Is it possible to conclude that there
exists D € A(k) such that P =qD?

*Partially supported by Istituto Nazionale di Alta Matematica F. Saveri with grant “Assegno di ricerca
Ing. Giorgio Schirillo”; partially supported by Max Planck Institute for Mathematics in Bonn
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This problem was stated in 2001 by Dvornicich and Zannier and its formulation was
motivated by a particular case of the famous Hasse Principle on quadratic forms and by
the Grunwald-Wang Theorem (see [I5], [16] and [14]).

It is well-known that the vanishing of H'(G,Alq]) is a sufficient condition for the
local-global dividibility by ¢ (see [I5]). Anyway, this condition is not necessary and the
obstruction to the local-global principle for divisibility by ¢ in A is given by a subgroup
of H'(G, Alq]), denoted by HL (G, Alq]) (see Sectionfor further details), that contains
the Tate-Shafarevic group III(k, A[q]) (up to isomorphism).

Clearly a solution to Problem [1| for all powers p! of prime numbers p is sufficient to
get an answer for all integers ¢, by the unique factorization in Z and Bézout’s identity.

In the case of elliptic curves the problem has been widely studied since 2001. The
answer is affirmative when ¢ is a prime p (see [I5] and [49]), for every k. For all powers
2" with n > 2 there are explicit counterexamples over Q (see [12], [16], [35]) and for 3™,
with n > 2 there are explicit counterexamples both over Q (see [12]) and over Q((3) (see
[35], [37]). For all powers of a prime p > 5 the answer is affirmative over Q (see [40]).
Moreover if k does not contain the field Q(¢, +¢, '), where (, is a p-th root of the unity,
the local-global divisibility holds for all powers of every prime p > (3F@/2 1+ 1)2 (see
139]).

An aswer to the local-global divisibility by an odd prime number p in the algebraic
tori, has been given in [2I]. The answer is positive in every torus of dimension n < 3(p—1)
and negative when n > 3(p — 1).

These last result in particular shows that if n > 3, then even the local-global di-
visibility by p may fail. In addition for every n > 6 and p > 3, when A is an abelian
variety, Katz in [27] produces counterexamples to the local-global disivibility by p when
the question is restricted to torsion points of A (see also [I8]). So we are sure that the
local-global divisibility by p does not hold in general. This is also underlined by Dvorni-
cich and Zannier in [15] §3], for n > 3. They construct some examples of subgroups of
GL,(q), with n € {3,4}, and show that the local-global divisibility by p fails in A over k
if Gal(k(A[p])/k) has a representation in GL,(g), whose image is one of their examples
(see also Subsection for further details). Anyway, they have no evidence that their
examples really realize representations of some Galois group Gal(k(A[p])/k) and then
the situation is not clear yet (see also [41]).

For abelian varieties, some sufficient conditions to have the local-global divisibility by
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p", for every n > 1 appear in [19] and in [20]. Anyway, for a general abelian variety A, one
of the conditions is H!(Gal(k(A[p])/k), A[p]) = 0. So the question about the divisibility
by p remain in fact open, since, as stated above, the vanishing of H'(Gal(k(A[p])/k), A[p])
widely assures the local-global divisibility by p. Let ¢, be a p-th root of the unity. Only
in the case of abelian varieties principally polarized and defined over number fields &
linearly disjoint from Q(¢,), the condition H'(Gal(k(A[p])/k), A[p]) = 0 is replaced by
some conditions concerning all the fields k(P) generated by the coordinates of a point
P, as P varies in A[p] (see [19, Theorem 3]).

In the end there are no criteria to establish the validity of the local-global divisibility

by p in a general abelian variety, as well as in a general commutative algebraic group A.

Here we prove that, excluding some particular cases when p is small with respect to
n, the strongest obstruction to the validity of the Hasse principle for divisibility by p is
essentially the reducibility of A[p] as Gal(k/k)-module. In particular if A[p] is irreducible
as a N-module, for every subnormal subgroup N of Gal(k(A[p])/k), not contained in its
center, then we get an affirmative answer for the divisibility by all p > n, for every n. We
will call such a module a very strongly irreducible one, in accordance with the well-know
definition of strongly irreducible module, that we are going to recall (see [4, Definition

1.1])

Definition 1.1. Let n,q be positive integers. A subgroup I' of GL,,(q) is strongly irre-
ducible if every normal subgroup N < T, not contained in the center Z(T'), is irreducible.
We say that an irreducible I'-module M is strongly irreducible if M is an irreducible

N-module, for every normal subgroup N < T, not contained in the center Z(T").

Here we state the definition of very strongly irreducibility, that concerns subnormal

subgroups of I' and not only normal subgroups of T'.

Definition 1.2. Let n,q be positive integers. A subgroup I' of GL,,(q) is very strongly
irreducible if every subnormal subgroup N of T, not contained in the center Z(T'), is
irreducible.

We say that an irreducible I'-module M is very strongly irreducible if M is an irreducible

N-module, for every subnormal subgroup N < T, not contained in the center Z(T').

We prove the following statement.
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Theorem 1.3. Let p be a prime number. Let k be a number field and let A be a
commutative algebraic group defined over k, with Alp| ~ (Z/pZ)"™. Assume that Alp| is
a very strongly irreducible G-module or a direct sum of very strongly irreducible Gy-

modules and that we are in one of the following cases

1) 2<n <250 ande%—l—l;

2) n>251andp>n+1;

then the local-global divisibility by p holds in A over k and II(k, Alp]) = 0.

There are evidences that the bounds for p appearing in 1) and 2) of Theorem 1.3
could be sharp in many cases (but not always, as we will see in Subsection 3.3, part
i11.). At the end of the paper we will show a bound which is likely sharp in all cases (see
Remark and Theorem . We have not presented this bound in the statement of
Theorem with the aim of giving a simpler and more elegant bound for each n.

By the proof of Theorem we will also deduce the following results.

Corollary 1.4. Let p be a prime number. Let k be a number field and let A be a
commutative algebraic group defined over k, where Alp] ~ (Z/pZ)™. Let p > % +1. If
the absolute Galois group Gy acts on A[p] as a subgroup of an extraspecial group, then

HY(G, Alp]) = 0.

Corollary 1.5. Let p be a prime number. Let k be a number field and let A be a
commutative algebraic group defined over k, where Alp] ~ (Z/pZ)"™. Let p > 2n+ 2. If
the absolute Galois group Gy, acts on Alp] as a subgroup of a group of Lie type in cross
characteristic, then H*(G, Alp]) = 0.

The triviality of H'(G,Alp]) is assured by a deep theorem proved by Nori (see [34,
Theorem E|) in many cases, i. e. whenever G}, acts semisimply on Alp| ~ (Z/pZ)"™ and
p is greater than a constant c¢(n), depending only on n. Anyway the constant is not
explicit. In our statement, in the cases when Gy acts on Alp| ~ (Z/pZ)"™ as a subgroup
of GL,,(p) isomorphic to a subgroup of an almost simple group or an extraspecial group,
we can respectively give explicit bounds p > 2n+n and p > n/2 + 1 to get the triviality
of that first cohomology group.

In the case when A is an abelian variety, with dual A", the triviality of III*(k, A[p]")
implies II(k, A) C pH" (k, A), for every positive integer r (see [I3|, Theorem 2.1]). When
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A and AV are isomorphic (for instance if A is principally polarized), then the vanishing
of II*(k, Alp]) itself implies 11(k, A) C pH"(k,.A), for all » > 1. Such an inclusion is a
sufficient and necessary condition to have an affirmative answer to the following second

and more general local-global problem.

Problem 2. Let A be a commutative algebraic group defined over a number field k. Let
q be a positive integer and let o € H"(k, A). Assume that for all v € My there exists
Ty € H"(ky, A) such that qT, = 0. Can we conclude that there exists T € H" (k, A), such

that gt = o ?

Problem 2] was firstly considered by Cassels for » = 1 in the case when A is an elliptic
curve & (see [0, Problem 1.3]). In particular Cassels questioned if the elements of the
Tate-Shafarevich group III(k, £) were divisible by p' in the Weil-Chatelet group H'(k, &),

for all . Tate produced soon an affirmative answer for divisibility by p (see [@]).

Proposition 1.6 (Tate, 1962). Problem 2 has an affirmative answer when r =1, £ is

an elliptic curve and q = p is a prime number.

The question for powers p', with [ > 2 remained open for decades. The mentioned
affirmative results to Problem [I]in elliptic curves imply an affirmative answer to Problem
[2] since the proofs show the triviality of the corresponding Tate-Shafarevich group. So
Cassels’ question has an affirmative answer for all p > 5 in elliptic curves over Q and for
all p > (3%@/2 £ 1)2 in elliptic curves over k. On the contrary, for powers of p € {2,3}
the answer is negative by [12].

The problem was afterwards considered for abelian varieties by Basmakov (see [2])
and lately by Ciperiani and Stix, who gave some sufficient conditions for a positive answer
(see [9]). Onme of their conditions is again the vanishing of H'(Gal(k(A[p])/k), Alp]), so
in particular the question for divisibility by p is still open. In [12] Creutz also proved
that for every prime p, there exists an abelian variety A defined over Q((,) such that
OI(k,A) € pH!(k, A). Thus in abelian varieties of dimension strictly greater than 1,
even the local-global divisibility by p may fail for Problem 2, as well as for Problem 1.

As a consequence of Theorem [1.3] we have the following statement.

Corollary 1.7. Let p be a prime number. Let A be an abelian variety principally po-
larized of dimension g. Assume that Alp] is a very strongly irreducible Gy-module or
a direct sum of very strongly irreducible Gy-modules and we are in one of the following

cases
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1) 1<g<125,p> 5 +1;
2) g>126,p>n+1;
then the local-global divisibility by p holds in H" (k, A), for all r > 0.

Corollary [I.7] can be considered a generalization of Tate’s Proposition [I.6] to all commu-

tative algebraic groups.

About the structure of this paper, a few preliminary known results in the theory of
groups and in local-global divisibility are stated in next section. Then we proceed with
the proof of Theorem [1.3] We firstly show the validity of the local-global divisibility
by p and the triviality of III(k,.A[p]) in some particular cases, i. e., when it is a group
extension with a cyclic group as a quotient (see Lemma and when the image of the
representation of Gy in GL, (p) is the whole special linear group (see Lemma. Then
we show that Theorem holds for n € {2,3}. In the end we give a proof of Theorem
for a general n and we deduce Corollary [T.4] and Corollary

2 Preliminary results

We recall some known results about local-global divisibility and about group theory, that

will be useful in the following.

We keep the notation introduced in Section 1. Thus k denotes a number field and A
denotes a commutative algebraic group, defined over k. From now on let ¢ := p’, where
p is a prime number and [ is a positive integer. As introduced before, the g¢-torsion
subgroup of A will be denoted by A[g] and the number field generated over k by the
coordinates of the points in A[q] will be denoted by F' := k(A[g]). The g-torsion subgroup
Alg] of A is a Gp-module, where G} denotes the absolute Galois group Gal(k/k). We
have Alq] ~ (Z/qZ)", for a certain n depending only on A. Thus G} acts over .A[qg]
as a subgroup of GL,(Z/qZ) isomorphic to G = Gal(k(A[q])/k). We still denote by
G the representation of Gy, in GL,(Z/qZ). If ¢ = p is a prime number, in particular
G < GL,(p). When A is an abelian variety of dimension g, we have n = 2g.

Let X be the subset of M}, containing all the places v of K, that are unramified in F.
For every v € 3, we denote by G, the Galois group Gal(F,/k,), where w is a place of F'

extending v. In [I5] Dvornicich and Zannier proved that the answer to the local-global
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question for divisibility by ¢ of points in A(k) is linked to the behaviour of the following
subgroup of H(G, A[q])

H)oo(G, Alg]) = ] ker(H'(G, Alg]) —— H' (G, Alq)), (2.1)

vEY
where res,, as usual, denotes the restriction map. By substituting M to ¥ in (2.1)), i.
e. by letting v vary over all the valuations of k, we get the classical definition of the

Tate-Shafarevich group I (k, A[g]) (up to isomorphism)

' (k, Alg)) == [ ker(H'(k, Alg]) ——*— H'(ky, Alq])).

vE My
In particular, the vanishing of H} (G, A[q]) assures the triviality of IIT*(k, A[q]), that is
a sufficient condition to get an affirmative answer to Problem [2] for » = 0, and in many
cases for all r > 0 (see [I3, Theorem 2.1] and Section [2). Furthermore the triviality
of H}

loc

(G, Alg)) is a sufficient condition for an affirmative answer to Problem 1| by [15]
Proposition 2.1].
Owing to Cebotarev’s Density Theorem, the group G, varies over all cyclic subgroups

of G as v varies in X, then in [I5] Dvornicich and Zannier gave the following equivalent

definition of H\ (G, Alq]).

Definition 2.1. A cocycle {Z,},cq € H*(G, Alqg]) satisfies the local conditions if, for
every 0 € G, there exists A, € Alq] such that Z, = (¢ — 1)A,. The subgroup of
H(G, Alq]) formed by all the cocycles satisfying the local conditions is called first local
cohomological group of G with values in Alg] and it is denoted by HL. (G, Alq]).

The description of H (G, Alq]) given in Definition is useful in proving its triviality
and even in producing counterexamples to the local-global divisibility. We keep the

: 1
notation Hy,

(G, Alg]) used in almost all previous papers about the topic, but it is worth
to mention that in [42] Sansuc already treated similar modified Tate-Shafarevich groups

as in (2.1) and introduced the notation Hl}wk\E (k, A).
Remark 2.2. Observe that if G is cyclic, then HL (G, Alg]) = 0.

The vanishing of H] (G, Alg]) is strongly related to the behaviour of H} (G, Alq)),
where G, is the p-Sylow subgroup of G (see [15]).
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Lemma 2.3 (Dvornicich, Zannier). Let G, be a p-Sylow subgroup of A. An element of
H} (A, Alq)) is zero if and only if its restriction to HL (G, Alq]) is zero.

In some cases, a quick way to show that both H] (G, Alg]) and H\} (G, Alq]) are trivial
is the use of Sah’s Theorem (see [30, Theorem 5.1|).

Lemma 2.4 (Sah’s Theorem). Let G be a group and let M be a G-module. Let o be
in the center of G. Then HY(G,M) is annihilated by the map * — ax —x on M. In
particular, if this map is an automorphism of M, then H'(G, M) = 0.

By Lemma if G is a subgroup of GL,(q) that contains a non-trivial scalar matrix,
then H'(G,Z/qZ) = 0. Thus, in particular, H. (G, Alg]) = 0 too.

Corollary 2.5. Let G < GL,(q), for some positive integers n and q. If A- I, € G,
(G, Alg]) = 0.

A € Fy, is a nontrivial scalar matriz, then HL .

In our proofs of Theorem [1.3] a crucial tool is the use of Aschbacher’s Theorem on
the classification of maximal subgroups of GL,(q) (see [I]). Aschbacher proved that the
maximal subgroups of GL,(¢) could be divided into 9 specific classes C;, 1 <1 < 9. For
a big n, it is a very hard open problem to find the maximal subgroups of GL,,(q) of type
Cy. We have an explicit list of such groups only for n < 12 (see [3]). On the contrary,
the maximal subgroups of GL,(q) of geometric type (i. e. of class C;, with 1 <14 < 8)
have been described for every n (see [28]). We recall some notations in group theory and
then we resume the description of the maximal subgroups of GL,,(¢q) of geometric type

in the following Table 1 (see [28] Table 1.2.A, § 3.5 and § 4.6]).

Notation 1. Let n,l be positive integers, let p be a prime number and let ¢ = p!. We
denote by [, the finite field with ¢ elements. Let w, be a primitive element of F;. We use
the standard notations for the special linear group SL,(¢), the projective special linear
group PSL,(q), the unitary group U,(q), the symplectic group Sp,,(¢), the simmetric

group S, and the alternating group A,. By C,, we denote a cyclic group of order n and

14+2n 14+2n

an extraspecial group of order p . Furthermore, if n is odd or both n and

by p
q are even, then we denote by O, (¢q) the orthogonal group and by SO, (¢) the special

orthogonal group. If n is even and ¢ is odd we denote by (see [3])
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GO, (q) the stabilizer of the non-degenerate symmetric bilinear antidiagonal form

(1,...,1);
SO (g) the subgroup of GO;! (q) formed by the matrices with determinant 1;

GO,, (¢) the stabilizer of non-degenerate symmetric bilinear form I,,, when n = 2(mod 4)
and ¢ = 3(mod 4) and the stabilizer of non-degenerate symmetric bilinear diagonal

form (wg, 1, ...,1), when n # 2(mod 4) and ¢ # 3(mod 4);
SO,, (¢) the subgroup of GO, (¢) formed by the matrices with determinant 1.

For n even and € € {+, —}, we denote by ¢ (q) the subgroup of index 2 of Of, obtained
as the kernel of the spinor norm and by PQ¢(q) the quotient Q¢ (q)/{£}.

Notation 2. Let A, B be two groups. We denote by

A % B, the semidirect product of A with B (where A < A x B);
A o B, the central product of A and B;
A B, the wreath product of A and B;

A.B, a group I that is an extension of its normal subgroup A with the group B (then

B ~T/A), in the case when we do not know if it is a split extension or not;

A B, a group I that is a non-split extension of its normal subgroup A with the group

B (then B ~T/A);

A : B, a group I" that is a split extension of its normal subgroup A with the group B
(then B~T/A and ' ~ A x B).
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type description structure

Cy | stabilizers of totally singular or nonsingular maximal parabolic group
subspaces

Cy | stabilizers of direct sum decompositions GL(q) 2 Sr,n=rt
V =@;_, Vi, with each V; of dimension ¢

Cs | stabilizers of extension fields of F, of prime GL:(¢").Cr,n = rt,r prime
index

Ca stabili;ers of tensor product decompositions GL¢(q) o GL,(¢),n =1t
V=Vel

Cs | stabilizers of subfields of F, of prime index r GL,(q0), ¢ = qf, r prime
normalizers of symplectic-type r-groups

C¢ | (r prime) in absolutely irreducible (Cyet1 0 7+20) Spyy (r), n = rt, 7 prime, r # p
representations

Cr | stabilizers of tensor product decompositions (GL,(q) 0 ... o GL,(q)) .S;,n = rt

V= _ Vidim(V;) =r

i

Sp,,(q), n even

Cs classical subgroups O;,(q), q odd
2

U, (>

, ¢ a square

Table 1: Maximal subgroups of GL,(q) of geometric types

Although we generally do not know explicitly the maximal subgroups of type Cy, by

Aschbacher’s Theorem, we have such a characterization of them:

“f T' is a maximal subgroup of GL, (q) of class Cy and Z denotes its center, then for some
nonabelian simple group T, the group I'/(I' N Z) is almost simple with socle T'; in this
case the normal subgroup (I'Z).T acts absolutely irreducibly, preserves no nondegenerate

classical form, is not a subfield group, and does not contain SL,,(g).”

We will use this description in our proof of Theorem Furthermore, for very small
integers n there are a few subsequent and more explicit versions of Aschbacher’s Theorem,
that describe exactly the maximal subgroups of class Cg9. To prove Theorem we will

use the classification of the maximal subgroups of SL, (¢) appearing in [3], for n < 12.

From now on we will say that a subgroup G of GL,,(q) (respectively of SL,,(q)) is of class
C; or of type C;, with 1 < ¢ < 9, if G is contained in a maximal subgroup of GL,(q)
(respectively of SL,,(q)) of class C;.

3 Proof of Theorem [1.3l

The proof of Theorem [I.3]follows by the proof of the next slightly more general statement,
with the only difference in the hypotheses that we assume G < GL,(p™), for some
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positive integer m (instead of simply GL,,(p)). This more general assumption considering
powers of p in lieu of p will be useful when G is of type C3 and it is isomorphic to a

subgroup of GL(p").C,., with n = ¢r, for some prime number r.

Theorem 3.1. Let p be a prime number. Let k be a number field and let A be a com-
mutative algebraic group defined over k. Assume that G = Gal(k(A[p])/k) is isomorphic
to a subgroup of GL,(p™), for some positive integers n,m. If Alp] is a very strongly
irreducible G-module or a direct sum of very strongly irreducible G-modules and we are

in one of the following cases

1) 2<n <250 and p > G +1;

2) n>251 andp>n+1;

then the local-global divisibility by p holds in A over k and I (k, Alp]) = 0.

When n =2, m =1 and p # 2, the conclusion of Theorem follows immediately
by Chevalley’s Theorem on the classification of the commutative algebraic groups in
characteristc 0 (see for example [43]), combined with the mentioned results in [I5] and
in [2I]. Anyway, when m > 1, or m = 1, p = 2 and A an algebraic torus, there are
no similar results in the literature, even for n = 2. Thus, we will give a proof for the
more general case when G < GLa(p™), with m > 1, for n = 2 too. That will be a
part of the base of the induction for the general case. In fact, for n = 2 we can prove a
stronger result than Theorem since it suffices to assume that A[p] is an irreducible

G-module (or a direct sum of irreducible G-modules), as we will see in Subsection

(see Proposition [3.8)).

We firstly prove a very useful lemma. In fact it covers many cases when G is iso-
morphic to a subgroup of GL,(p™) that is an extension of a group with trivial local
cohomology by a cyclic group. Observe that here the hypothesis of irreducibility (and
not very strongly irreducibility) is sufficient. Of course every statement proved for an
irreducible G-module, holds for a very strongly irreducible G-module too (as well as for

a strongly irreducible G-module).

Lemma 3.2. Let p be a prime number and n, m positive integers. Let A be a commutative

algebraic group defined over a number field k. Assume that G = Gal(k(Alp])/k) acts
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irreducibly on Alp] as a subgroup of GL,(p™), which is an extension S.Ct, where t is a
positive integer. If HL (S, Alp]) =0, then HL (G, Alp]) = 0 too.

loc

Proof. 1f S is trivial, then G ~ Cy is cyclic and H]} (G, A[p]) = 0. Assume that S is a
nontrivial normal subgroup of G. If S contains a nontrivial element of the center Z(G),
then by Sah’s Theorem, we get H. (G, A[p]) = 0. So we may assume without loss of
generality that S N Z(G) is trivial. Let C; = (f), where as usual (f) denotes the group
generated by f. We have G = S.(f). We denote by f both an element in the quotient C;
and a representative of it in G. Let {Z,},e¢ represent a cocycle of H\ (G, A[p]). Since
HL (S, A[p]) = 0, then there exists A € A[p] such that Z, = (0 — 1)A, for all 0 € S.
Furthermore, there exists A; € A[p| such that Z; = (f — 1)A;. Being (f) cyclic, then
Z, = (¢ —1)A;, for every ¢ € (f). Since S is a normal subgroup of G, the automorphism

f acts on S by conjugation and fof~! = 7, with 7 € S. In particular fo = 7. Then

Zfo-f—l = Zf + fZg + fO'Zf—l (31)
1. €.
(r=DA= (DA +flo - DA+fo(f! —1)4;
7(A) — A =§(A45) — A5 + 7f(A) — §(A) + 7(A5) — 7§(4y).
We have

(- DA —A4) = F-1)(4; - A).
By eventually changing o with 7 and f with f~!, one easily deduces that the p-torsion
point B := (f — 1)(A4; — A) is fixed by all ¢ € S. In other words, if k% denotes the
subfield of k(A[p]) fixed by S, then B € A(k®). If B =0, then (f — 1)A; = (f — 1)A and
H} (G, Alp]) = 0. Suppose B # 0. Observe that for every element o € S there exists
o; € S such that of® = fio;, for each positive integer i. Then all o € S also fix §(B), for
every i:
o(F(B)) = f'oi(B) = §'(B).

By considering §! instead of f in (3.1]), we get

T(F = 1)(Af— A) = (F — 1)(4; — A),
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for all positive integers i. Assume that t > n. If fi(B) =qaB, forsome 1 <a<p-—1and
1 < i <t, such that ged(i,t) = 1, we choose f* as a generator of (f). Consider a basis of
Alp], where B is the first vector in the basis. Since every o € S fixes B and §/(B) = aB,
then the group G is reducible and we have a contraddiction with our assumptions. Then
suppose that f/(B) # aB, for all 1 < i < p — 1. In particular B and §f(B) are linearly
independent as vectors in A[p] and we can choose them as the first two elements of a
basis of that vector space.

Suppose that B, f(B) and f*(B) are not linearly independent, i. e. §2(B) = agB +
a1f(B), for some ap,a; € F,. Then the matrix that represents f in GL,(p') is of the

form
0 (7)) ek
1 o * ... =x
0 0 =« *
0 0 =« *

Since every o € S fixes B and f(B), then G is reducible, a contraddition. Thus we may
assume that B, f(B) and f(B) are linearly independent. In a similar way, we get that
B,§{(B),f*(B), ...,{*"Y(B) are linearly independent (recall that we are assuming ¢ > n).
Therefore we can choose the basis {B, f(B), {>(B),...,f* '(B)}, for Alp]. We have that
every o € S fixes all the p-torsion points of A[p], a contraddiction with S being nontrivial.
Thus B =0 and H}}
B,§{(B),f*(B), ..., f*~*(B) are linearly independent. Moreover f'(B) = B. We have that
f has the following form, with respect to such a basis {B, §(B), f*(B), ...,f*"1(B)} (recall

that t <n)

(G, Alp]) = 0. Now suppose t < n. As above we may assume that

0 0|1
0
Iy
g= 0 (3.2)
0 00
0 010 *

Since o € S fixes every f'(B), then G acts reducibly on A[p] and we have a contraddiction.
Therefore B = 0, implying (f — 1)A = (f — 1) 4y, i. e. HL (G, A[p]) = 0. O

loc
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With the same arguments used in the proof of Lemma we can also prove the

following statements.

Corollary 3.3. Let p be a prime number and let n, m be positive integers. Let A be a com-
mutative algebraic group defined over a number field k. Assume that G = Gal(k(Alp])/k)
is isomorphic to a subgroup of GL,,(p™) that is an extension S.J, where S acts irreducibly

on Alp]. If HL (S, Alp]) =0, then H} (G, Alp]) = 0.

Proof. Let {Zy}4ec represent a cocycle of H} (G, Alp]). Since H\ (S, Alp]) = 0, then
there exists A € A[p| such that Z, = (¢ — 1)A, for all o € S. Choose an element f € J.
We still denote by f one of its representatives in G. There exists A; € A[p], such that
Zy = (f —1)A;. Let B := (f — 1)(A; — A). By considering the subgroup of J generated
by f and repeating the argument used in Lemma [3.2] every o € S fixes B. If B # 0,
then we have a contraddiction with S acting irreducibly on A[p]. Thus B = 0, i. e.

Zy = (f = 1)(4f) = (f — 1A, implying H,,.(G, A[p]) = 0. D

Corollary 3.4. Let p be a prime number and let n, m be positive integers. Let A be a com-
mutative algebraic group defined over a number field k. Assume that G = Gal(k(Alp])/k)
is isomorphic to a subgroup of GL,,(p™) that is an extension S.J. If HL (S, Alp]) =0
and H{ (J, A[p]) = 0, and there exist p € S and w € J such that p —1 and w — 1 are

loc

invertible, then H\ (J, Alp]) = 0.

Proof. Let {Z,}4ec represent a cocycle of Hl (G, Alp]). Since H\ (S, A[p]) = 0, then
there exists A € A[p] such that Z, = (0 — 1)A, for all ¢ € S. Moreover, there exists
W e Alp] such that Z, = (1—1)W, for all 7 € J. By the same argument used in the proof
of Lemma[3.2] the point B := (w—1)(W —A) € A[p] is fixed by every ¢ € S. In particular
B lies in [, cgker(oc —1). Since ker p = 0, then B = 0, implying (w — 1)(W — A) = 0.
The kernel of w — 1 is trivial too by hyphotesis and then W = A.

O

The next remark, will allow us to deal with subgroups of SL,, (p™), instead of GL,, (p™).

Remark 3.5. Let G be a subgroup of GL,(p™) and let G := G N SL,(p™). Since
|GL,(p™)| = (p™ — 1)|SL,,(p™)|, then the p-Sylow subgroup of GL,,(p™) coincides with
the p-Sylow subgroup of SL,, (p™). By Lemma we have H (G, A[p™]) = 0 if and only
if HX (G, A[p™]) = 0. Moreover SL,(p™) is a normal subgroup of GL, (p™) and then, if

loc
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Alp| is a very strongly irreducible G-module, then A[p] is a very strongly irreducible G-
module too. Therefore from now on we assume G < SL,,(p™), without loss of generality.

Observe that when A[p] is an irreducible G-module, the vanishing of HL (G, A[p™))
implies the vanishing of H (G, A[p™]) by Lemmatoo. In fact GL,,(p™) is an exten-
sion of SL,,(p™) by a cyclic group.

We are going to prove that if G is the whole special linear group SL,, (p™) (for some m),
then the local-global divisibility holds in A.

Lemma 3.6. If G = SL,(p™), for some positive integer m, then H}. (G, Alp]) = 0.

Proof. Let ¢ = p™. If n = 2 (more generally if n is even), then G contains —I and, by
Lemma 2.5 we have the conclusion. Assume that n = 3. By lemma [2.3] it suffices to
prove that H (G, Alp]) = 0, for a p-Sylow subgroup G, of G. Let G, be the subgroup

of G = SL3(q) cousisting of all the upper triangular matrices of the form

1
0
0

O = %
= % %

We denote by G the subset of G}, formed by the matrices

1
0
0

o~ Qo

0
0
1
with o € F),. By G2 we denote the subset of G, formed by the matrices

0 8
T~ 1,
0 1

O O =

with 3,7 € F,. Observe that G, is generated by the elements of G and the elements of
Gs. In fact

1 a 0 1 0 B—ay 1 a p
0 1 0 0 1 vy =10 1 «~
0 0 1 0 0 1 0 0 1

We are going to prove that both H[ (G, Alp]) and H} (G2, Alp]) are trivial. Then we
will be able to glueing the local cohomologies and showing HL. (G, A[p]) = 0.
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1. The triviality of H (G, Alp]).

The additive group of the finite field F,m, with p™ elements, is isomorphic to the vector
space V = (F,)™. Let a1, aa, ...qu, be a basis of V. Observe that Gy is generated by the

matrices

1 Q5 0
=10 1 0],
0 0 1
where 1 <i <m. If 0 € G4, then
1 a O
c=|0 1 0 |,
0 0 1
with a = As101 + Ag 202 + ... + Ag i, for some Ay 1,...;Ao.m € Z/pZ. Therefore
o= Ui“”l . aé\"’z +...-on?™. For some T € Gy, suppose that there exists A € Alp] such

that (o0 — 1)A = Z, and (7 — 1)A = Z,. Then
Zor =Zs+0(Z;)=(0—1)A+0o((t—1)A)=0(A) — A+ 07(A) —0(A) = (o7 — 1)A.

Thus, to prove that there exists A € A[p] such that (o — 1)A = Z,, for all ¢ € Gy,
it suffices to prove that (o; — 1)A = Z,,, for every 1 < i < m. Assume that Z,, =
(To;, Yo, 20, ) Tepresents a cocyle in H (G1, A[p]). Since Z,, satisfies the local conditions
as in Definition then there exists 4; = (25,, Yo, , 20;) € A[p] such that (o; — 1)A; =

Loy 1. €.

0 o O To, Lo,
0 0 O You | =1 You |- (3.3)
0 0 O 2o, Ze

By equation (3.3), we deduce that y,, = 2,, = 0 and a,,ys;, = Z»,. Thus, without loss
of generality we may choose 4; = (0,ys,,0), for every 1 <i <m. Let j € {1,...,m}. We

have

{ A5, Yo, = Lo, (3.4)

A5, Yo; = Lo;

In a similar way y, = 2, = 0, for all o € G;. Observe that

Lo 1 (0% 0 Tr Lo Tr
Lor = 0 +{ 0 1 O 0 = 0 + 0 =Zs+ Z;.
0 0 0 1 0 0 0
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Then, because of y, = z, = 0, the equality Z,, = Z, + 0(Z;) is simply Z,, = Z, + Z,
for all 0,7 € G;. In particular z,, = 2z, + x; and then, by equation (3.4), we get

Loo0; = Loy + To; = Qo Yo, + Ao, Yo -

On the other hand

1 a, O 1 a;; 0 1 ag,+a, 0
oio;j =0 1 0 0O 1 0 1]=1]1P0 1 0o |,
0 0 1 0 0 1 0 0 1

implying 25,5, = (o, + A, )Yo,0,- Then

(aai + Oéoj)yoiaj =Yo,;Qo; + yaj aoj7

(ycf;dj - y;i)agi + (yﬂ;aj - y;j)af’j =0.

Since ; and «; are elements of a basis of V', then y,.», = 5, and yy,0;, = ys,, implying

Yo, = Yo,- We have A; = A; and then H} (Gq, Alp]) = 0.
2. The triviality of H{ (G2, A[p)).

The group Gs is generated by the matrices of the form

1 0 (67
co=101 « |, (3.5)
0 0 1

where i,j € {1,...,m} and «q, ..., ay,, form a basis of the vector space V as above. Assume
that Z, = (2,0, 25) represents a cocyle in H. (G1, A[p]). Then, for every o € Ga,
there exists A, = (¥, Y, 20) € A[p] such that (¢ — 1)A, = Z,, 1. e.

0 0 o4 Ty Lo
00 a; Yo | =1 v |- (3.6)
0 0 0 Zo o

By equation (3.6), we deduce that z, = 0 and

WiZe = Ty
{ he (3.7)
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Furthermore, without loss of generality, we may assume that 2, =y, = 0, 1. e. A, =
(0,0,7,). Because of z, = 0, in a similar way as above we have that the equality

Zor = Zy +0(Z;) is simply Z,r = Z, + Z;, for all 7 € Go. Let

Oh

\‘
I
O O =
o~ O

Qs )
1

for some h, s € {1,...,m}. Therefore z,, = x, + x; = Zya; + Zra. On the other hand,

as for the matrices of Gy, the entry z,. is equal to (o; + ap)z5,. Then
(i + ap)zor = Zg; + Zraup,.

Likewise we get
(o + as)zor = Zoaj + Zras.

We have the system of equations

0i(Zg — 2or) +an(Zr — 20:) =0
{ a;(Ze — 25r) +as(Zr — 25,) =0 (3.8)

Since «;, o, ap, o are elements of a basis of V, then 25, = Z; and zs,, = Z7, implying
Zo = Zr. Since the matrices of the form generate Go, as i, j vary between 1 and m,
then we can conclude that there exists R € A[p| such that (6 —1)R = Z,, for all ¢ € Ga.
Therefore Hi (G2, Alp]) = 0.

loc

3. The glueing of the cohomologies

By equation (3.6)), without loss of generality, we can choose A; = (0,a,0) and R =
(0,0,b), for some a,b € F,. Let W = (0,a,b). We have (6 —1)W = Z,, for every o € G,
and (1 — 1)W = Z,, for every 7 € G2. Observe that, for every o € Gy and 7 € Ga, the

cocycle equation implies

Zor =Zo+0(Z:)=(c—1)W +0o(r—1)W = (o7 — 1)W.

Because of G; and G2 generating G, we get the conclusion.
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When n > 3

Let n > 3. Let G, be the p-Sylow subgroup of GL, (p™) formed by all the upper

triangular matrices. Observe that G, is generated by the matrices

1 = 0 0 1 0 0 x= 0 1 0
0 1 0 0 1 0 1
) 0
Jees *,
1 0 0 1 0
0 1 0 0 1 0

with the entries * varying in F,. For 2 < ¢ < n, let M; be the subgroup of G}, formed
by the identity and the matrices with some nonzero entries only in the ith column.
By induction, the same techniques used to prove the triviality of HL (Gi,Alp]) and
H (Ga, Alp]) as above, show that there exists W; = (0, ..., 0, a;,0, ...,0), depending only
on i, such that (¢ — 1)W; = Z,, for all 0 € G;. Let W = (0,aq,...,ai,...,a,). Then
(c —1)W =2Z,, forall 0 € G.

O

From now on we will assume, without loss of generality, that G is a proper subgroup

of SL,, (p™).

For n € {2,3} we give a proof Theorem based on a case by case analysis of the
possible maximal subgroups of SL, (p™). Then we proceed with the proof of Theorem

[I.3] for a general n.

3.1 The case when n =2

In this section we consider algebraic groups A such that G is isomorphic to a subgroup
of GLa(p™), for some positive integer m. In particular this is the case when Alp] =
(Z/pZ)?. As stated above if m = 1 and p # 2, then the conclusion of Theorem
follows immediately by Chevalley’s Theorem on the classification of the commutative
algebraic groups in characteristc 0 (see for example [43]), combined with the mentioned
results in [I5] and [2I]. Anyway, when m > 1, or m = 1, p = 2 and A an algebraic torus,

there are no similar results in the literature. Thus, here we give a proof for the more

O =
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general case when G < GLa(p™), with m > 1. We use the classification of the maximal
subgroups of SLy(q) appearing in [3], for ¢ = p™, that we partially recall in the next

lemma.

Lemma 3.7. Let ¢ = p™, where p is a prime number and m s a positive integer. The

mazimal subgroups of SLa(q) of type C;, with 2 < i <9 are

(a) a subgroup of type Co, the generalized quaternion group Qoq—1y of order 2(q — 1),
with q odd, q #5;

(b) a subgroup of type Ca, the dihedral group Dyiq—1y of order 2(q — 1), with q even;

(c) a subgroup of type Cs, the generalized quaternion group Qo(q+1y, of order 2(q + 1),
for q odd;

(d) a subgroup of type Cs, the dihedral group Dy(g41y of order 2(q + 1), for q even;
(e) a subgroup of type Cs, the group SLa(qo).Ca, with ¢ = q¢3;

(£) subgroup of type Cs, the group SLa(qo), with ¢ = qfy, for q odd, r an odd prime;
(g) subgroup of type Cs, the group SLa(qo), with g = qfj, for q even, qo # 2, r prime;
(h) a group of type Cs, the group 2'12.S3, for ¢ = p = +1 (mod 8);

(i) a group of type Cs, the group 2112 : C3, for ¢ = p = £3,5, £11, 413,419 (mod 40);

(G) a group of type Co, the group CyAs, ¢ = p = +1 (mod 10) or ¢ = p?, with p =
+3 (mod 10).

In fact, for n = 2 we are going to prove the following stronger result than Theorem [3.1]
with the assumption that A[p] is an irreducible G-module or a direct sum of irreducible

G-modules.

Proposition 3.8. Let p be a prime number. Let k be a number field and let A be a
commutative algebraic group defined over k. Assume that G = Gal(k(A[p])/k) is iso-
morphic to a subgroup of GLa(p™), for some positive integer m. If Alp] is an irreducible
Gr-module or a direct sum of irreducible Gy-modules, then the local-global divisibility by

p holds in A over k and III(k, A[p]) = 0.
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Proof. As already noticed in [39], for every group I' and every direct sum of two I'-
modules M; and M, one has HL (T, M; x M) ~ HL (T, M;) @ HL (T, M>). Thus
H (G,.) is an additive functor and it suffices to prove the statement when Afp] is an
irreducible Gi-module, to get an answer even in the case when Alp] is a direct sum of
irreducible Gg-modules. Thus, we may assume without loss of generality that G is not of
type C; and it is isomorphic to one of the subgroups of SLa(p™) listed in Lemma In
cases (a) (resp. (c)), G is a subgroup of the generalized quaternion group Qg(4—1) (resp.
Q2(g+1))- The group Qy(4—1) (resp. Qa(g41)) is an extension Co.Cy_1 (resp. Co.Cyy1) of
a cyclic group of order 2, with a cyclic group of order ¢—1 (resp. ¢+1). Then G is cyclic
or it is an extension of two cyclic groups. Since the local cohomology of a cyclic group is
trivial, then by Lemma we have H! (G, A[p]) = 0. In cases (b), (d), (h), (i) and
(J), for every p > 2, the p-Sylow subgroup of G is either trivial or cyclic (recall that cases
(h), (i) and (j) may occur only if p # 2). By Lemma we have H} (G, Alp]) = 0.
Suppose that we are in case (e). For every p > 2, the p-Sylow subgroup G, of G is a
subgroup of SLa(qg), where ¢ = ¢3. Thus, without loss of generality, we may assume
that G is a subgroup of SLa(go). If G = SLa(qo), then HL (G, Alp]) = 0, by Lemma
Assume that G is a proper subgroup of SLa(qo). If G is still of type Cs, then G
is isomorphic to a subgroup of SLa(g1), where g = ¢%. Again, if G = SLa(g1), then by
Lemma we have HL (G, Alp]) = 0. We may assume that G is a proper subgroup of
SLa(g1) and so on. Since m is finite, at a certain point we will find that either G is of type
C;, with 4 # 5, or G is trivial. If G is of type C;, with i # 5, because of our assumption
that G is very strongly irreducible, then G is isomorphic to one of the subgroups listed
in cases (a), (b), (c), (d), (h), (i) and (j). Thus H} (G, Alp]) = 0, as above. If G
is trivial, then H} (G, A[p]) = 0 too. The same arguments, combined with Lemma
(recall that we are assuming that A[p] is irreducible), give H} (G, Alp]) = 0, for p = 2
too. Cases (f) and (g) are similar to case (e), being G, a subgroup of SLa(go), with

q = g4, with r a prime. O

In particular we have proved Theorem [3.1] for n = 2.

3.2 The case when n =3

In this section we consider algebraic groups A such that A[p] = (Z/pZ)3. As mentioned
in the Introduction, in [I5] Dvornicich and Zannier underline that the answer in this case

is not obvious. In fact, they show an example in which Hlloc(f‘, Z/pZ) # 0, where T is a
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subgroup of the p-Sylow subgroup of GL3(p) of the form

a b
1 Xa |, a,beZ/pZ,\€ZL/pZ”.
0 1

OO

Anyway, they have no evidence that this group is really the p-Sylow subgroup of a Galois
group Gal(k(A[p])/k, A[p]). Even in the case when I" would be the p-Sylow subgroup
of a certain Galois group Gal(k(A[p])/k, Alp]), we could get no information about the
algebraic group A for which the local-global divisibility fails. Here we prove Theorem
Bl for n = 3.

We use the classification of the maximal subgroups of SL3(¢) and of SU3(q) appearing
in [3].

Lemma 3.9. Let g = p™, where p is a prime number and m is a positive integer. Let

d:=ged(q —1,3). The mazimal subgroups of SL3(q) of type C;, with 3 <i <9 are
(a) a group of type Co, the group 03—1 1S3, forq>5;
(b) a group of type Cs, the group Cj, : Cs, where h = ¢* + q + 1;

(c) a group of type Cs, the group SLs(qo).Cs, where s := ged (%,3) and ¢ = ¢, r

prime.

(d) a group of type Cs, the group 3?‘2 : Qs.C, where s = M, g=p=1(mod 3)
and the extraspecial group 3_1‘_+2 is the p-Sylow subgroup of GL3(p);

(e) a group of type Cs, the group SO3(q) x Cy, with q odd;
(f) a group of type Cs, the group SUs(qo) x C, where t := ged(p — 1,3) and q = ¢&;
(g) a group of type Cy, the group PSLy(7) x Cq, for g =p=1,2,4 (mod 7),q # 2;

(h) a group of type Co, the group Cq Ag, of order 95!, for ¢ = p = 1,4 (mod 15) or
q = p?, with p = 2,3 (mod 5),p # 3.

Lemma 3.10. Let ¢ = p™, where p is a prime number and m s a positive integer. Let

d :=ged(q — 1,3). The mazimal subgroups of SUs(q) of type C;, with 3 <1i <9 are

(e.1) a group of type Cz, the group Cz_, : Ss, for q > 5;
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(e.2) a group of type Cs, the group Cy : Cs, where h = q¢* +q+1, ¢ # 3;

(e.3) a group of type Cs, the group SUs(qo).Cs, where s := ged (%,3) and g = qf, r

prime;
(e.4) a group of type Cs, the group SO3(q) x Cy, q odd and q > 7;

w , the extraspecial

(e.5) a group of type Cg, the group 3?2 : Qg.Cy, where s =
group 3?‘2 is the p-Sylow subgroup of GL3(p), ¢ =5 or ¢ = p = 2 (mod 3) and
q=11;

(e.6) a group of type Co, the group PSLs(7) x Cy, ¢ = p = 3,5,6 (mod 7);
(e.7) a group of type Co, the group Cy Ag, for ¢ = p = 11,14 (mod 15);

(e.8) a group of type Cy, the group Cq AzCs, (where here Cy is a known specific quotient
of Ag), for q=p=15;

(e.9) a group of type Co, the group Cy Az, of order 9-7-5!, forq=p=>5.

Proof of Theorem for n = 3. As in the case when n = 2, since H}

loc(G ) 1
an additive functor, we assume without loss of generality that G is not of type C; and
then it is a subgroup of the groups listed in Lemma [3.9) We are going to show that
HE (G, Alp]) =0, for all p > 3. In cases (a), (b) and (d) the p-Sylow subgroup of G is
either trivial or cyclic, for all p (recall that case (a) occur only for p > 5 and case (a)
occur only for ¢ = p =1 (mod 3). Therefore HL (G, Al[p]) = 0. Assume that we are in
case (g). Since this case may occur only for p # 3, then the p-Sylow subgroup of G is
isomorphic to a subgroup of PSLy(7). Therefore, for every p > 2, the p-Sylow subgroup
of G is either trivial or cyclic and H} (G, A[p]) = 0 (recall that this case does not hold
when p = 2 too). Assume that we are in case (h). If p > 3, then the p-Sylow subgroup of
G is trivial or cyclic again (observe that this case does not happen when p = 3). Assume
that we are in case (c). For every p # 3, the p-Sylow subgroup of G is a subgroup of
SL3(go). Since SL3(go) is a normal subgroup of G and G is very strongly irreducible,
we may assume, without loss of generality, that G C SLs(qo). If G = SL3(qo), then
HY(G, Alp]) =0, by Lemma If G is trivial, then H*(G, A[p]) = 0 too. So, suppose
that G is a non-trivial proper subgroup of SL3(qp). If G is still of type C5 in SLs(qo),

ged(go—1,9)
3

then G is contained in SL3(q;).Cs,, where qo = ¢7 and s = . Again, we may
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assume that G is strictly contained in SL3(g1) and so on. Since ¢ is finite, after a finite
number of steps we find that G is of type C;, with i # 5. We have HL (G, Alp]) = 0, by
the arguments used for the subgroups of classes C;, with i # 5. Thus H\ (G, Alp]) = 0
too. If p = 3, we can use the same argument as for p # 3, combined with Lemma (by
the hypothesis of the very strongly irreducibility of A[p]). Assume that we are in case
(e). Again, for all p, the p-Sylow subgroup G,, of G is contained in SO3(g). Since G is
very strongly irreducible, by Lemma [3.2] we may assume without loss of generality that
G is contained in SO3(g). The group SO3(q) is isomorphic to SLa(g) (see [3, Proposition
1.10.1]). If G = SO3(q), then —I € G and H] (G, Alp]) = 0, because of Lemma
Assume that G is strictly contained in SO3(q). In the proof of Theoremfor n =2, we
have seen that G still contains —I or its p-Sylow subgroup G, is either trivial or cyclic.
In all cases the first cohomology group H} (G, A[p]) vanishes.

Suppose that we are in case (f). By Lemma [3.2)and the assumption that A[p] is very
strongly irreducible, we may assume without loss of generality that G < SU3z. Thus we
use Lemma [3.10] There are only four cases in which the subgroups of SU3 are different
from the ones listed in Lemma [3.9] i. e. cases (e.3), (e.5), (e.8) and (e.9). For all p,
in cases (e.5), (e.8) and (e.9), the p-Sylow subgroup is either trivial or cyclic. Thus
H} (G, Alp]) = 0. Since the p-Sylow subgroup of SUs(qo) coincides with the p-Sylow
subgroup of SL3(qo), we can treat case (e.3) in the same way as case (c). We have
proved that for every possible G, if A[p|] is a very strongly irreducible G-module and
p > 3, then the local-global divisibility by p holds in A over k. O

3.3 General Case

To prove Theorem for every n, we use the description of the subgroups of GL,(q)
of geometric type shown in Table 1. For some classes of groups we also use induction,
having already proved the statement for n < 3. When the p-Sylow subgroup of G is
isomorphic to (Z/pZ)?, there are known counterexample to the local-global divisibility
(see the mentioned [15], [16], [36]) and also even when (Z/pZ)? there are counterexamples
(see [35] again). Then in various parts of the proof we will show that for p > n + 1, or
respectively for p > n/2 + 1, the p-Sylow subgroup of G is either trivial or cyclic (which
does not hold for p < n+ 1, or respectively p < n/2 + 1).

Proof of Theorem Since we have already proved the statement for n € {2,3}, we
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assume n > 4. Suppose that for every integer n’ < n, the local-global divisibility by
p holds in commutative algebraic groups A over k¥ when G < GL, acts very strongly
irreducibly on A[p] ~ (Z/pZ)"™ and p > n’. As in the cases when n = 2 and n = 3, since
Hl

Le(G,.) is an additive functor, we may assume, without loss of generality, that G is

not of class C;.

Part i. Subgroups of geometric type
Class Cq

Assume that G is of class Co. In this case Alp] = @;_, A;, with each A; of dimension
t and G = (Gy X ... x G;) 1 Sy, where G; is a subgroup of GL;(q) acting on A; and
tr = n. In this situation A[p] is irreducible, but not very strongly irreducible (nor
strongly irreducible). By our assumptions, then A[p] has to be a direct sum of very
strongly irreducible G-modules. In particular G; is very strongly irreducible for all 1 <
i < r. If p > r, then the p-Sylow subgroup of G is contained in G; X ... X G,.. Since
H} _(G,.) is an additive functor, by induction we get that H. (G, A[p]) = 0, for p >
max{r + 1,t + 1}. Observe that the greatest r that we can have is r = n itself. But
in this case ¢t = 1 and Alp] = @), 4;, with each A; of dimension 1. The group G is
then a subgroup of Cp ;.5,. If p > n/2, the p-Sylow subgroup of G is either trivial
or cyclic and HL (G, Alp]) is trivial. If r # n, then r < n/2, and t < n/2 too. Thus

max{r +1,t + 1} <n/2. If p > n/2+ 1, then HL (G, Alp]) = 0.
Class C3

Suppose that G is of type Cs5. In this situation the G-module A[p| is considered as
vector space over a a field extension F' of F,m with degree a prime number r dividing
n. The p-torsion subgroup A[p| has dimension ¢ := n/r as a vector space over F (see
[28, §5.3 and Table 2.1.A]) and G is isomorphic to a subgroup of GL:(p™").C,. If r =n
(this in particular happens if n is a prime), then the only possible subgroup of class

C3 is GLy(p™").C,,. Since the cardinality of GL;(p™") is pT;iIl, then, for every p, the

p-Sylow subgroup of G is either trivial or cyclic and H} (G, Alp]) = 0. If r # n, then
1 < r < n/2. Therefore, for all p > n/2 + 1, the p-Sylow subgroup of G is contained in
GL(p™"). Observe that GNGL(p™") is very strongly irreducible too. Since 1 < ¢t < n/2
too, we use induction (recall that here A[p] is considered as a vector space of dimension

t < n over F) and Lemmato get HL (G, A[p]) =0, for every p > n/2 + 1.
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Class Cy4

Suppose that G is of type C4. Observe that this case does not occur when n is a prime.
The group G is isomorphic to a subgroup of a central product GL;(p™) o GL,.(p™) acting
on a tensor product V; ® Vo = A[p|, where rt = n and Vi, V5 are vector spaces over Fpm,
with dimension respectively ¢t and r. A central product I' of two groups is a quotient of
their direct product by a subgroup of its center. Then every subgroup of I' is a central
product of two groups too (where one of the two groups or both can be trivial). So let
G = Gy o G,, with Gy acting on V; and G, acting on V; (see also |28, §4.4]). Consider
Zsgr, with 0 @ T € Gy 0 G,., representing a cocycle of G with values in A[p] =V, @ V,. If
Z,%+ satisfies the local conditions, then there exists A,g, € V4 ® V5 such that Z,5, =
(0@7—1®1)Asg., forall o®7 € Gy oG,. Observe that A,g, = AE,%T ®A§%T7 for some
AS@)W € Vi and AS,Z@))T € V5. We can construct a cocycle Z, := (0 — 1)A,, with o € Gy,
by choosing A, among the possible AE,%T € V1. In the same way we can construct a
cocycle Z, := (1 — 1)A,, with 7 € G,, by choosing A, among the possible A((,%T e Ws.
For the tensor product construction, a priori we could have more than one choice of
A, (respectively A;) for each o (resp. 7). Anyway, we choose just one A, (resp. A.).
Observe that even in the general case of Definition 2.1 when a cocycle satisfies the local
conditions, there could exist various A, giving the equality Z, = (¢ — 1)A,. Anyway
we make just one choice for A, € Alg], for each 0 € G. Since r < n, by induction
HE (G, Vi) = 0, for every p > r + 1 (observe that G, is very strongly irreducible
itself by our assumptions). Then there exists A € Vi, such that Z, = (¢ — 1)A, for all
o € G,. In the same way, since ¢t < n, then by induction, for all p > t + 1, we have
HL (G, Va) =0 (again G; itself is very strongly irreducible). Thus there exists B € Va,
such that Z, = (7 — 1)B, for all 7 € G;. Therefore Z,g, = (c @ T —-1®1)A® B, for all
o®T € GyoG,, and HL (G, Alp]) = 0. Since r < n/2 and t < n/2, as above, we have
H} (G, Alp]) = 0, for every p > n/2 + 1.

Class Cs

If G is of class Cs, then G is isomorphic to a subgroup of GL,, (p!), where m = tr, with
t a positive integer and r a prime. Observe that this case does not occur when m = 1.
If G is the whole group GL,,(p'), then by Lemma we have H} (G, Alp]) = 0. If G is
trivial, then H. (G, A[p]) is trivial too. Suppose that G is a proper non-trivial subgroup
of GL,(p'). If G is still of class Cs, then G is isomorphic to a subgroup of GL,(p'?),
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for some positive integer to, such that ¢ = rots, with ro prime. If G = GL,(p*?), again
H} (G, Alp]) = 0, by Remark and Lemma Then we may assume that G is a
proper subgroup of GL, (p*?) and so on. Since m is finite and we are assuming that G is
not trivial, then G is isomorphic to a subgroup of GL,,(p'/) (for some positive integer ¢;
dividing m) of class C;, with i # 5. We may then repeat the arguments used (or that we
will use) for other classes C;, with i ¢ {1,5}, to get H{} (G, A[p]) = 0.

loc

Class Cg

Suppose that G is of class Cg, i. e. G lies in the normalizer of an extraspecial
group. This may happen only when n = r!, with r a prime different from p and t a
positive integer. The possible maximal subgroup of class Cg is (Cy—1 o 7172%).Spy,(r)
(see 28] §3.5]). To ease notation we denote by H the normal subgroup C,_; o r!'*2.
Let G := GN H. Owing to p # r, the p-Sylow subgroup Gj, of G’ is trivial. Then
the p-Sylow subgroup G, of G is isomorphic to the p-Sylow subgroup of G/G’ that is
isomorphic to a subgroup of Spy,(r). Since p # r, then p divides the cardinality |Spe,(7)]
if and only if p divides H§:1(7‘2i ==+ =D+ D)t = 1) (rt +1).
Observe that r'=! = ¢t/r > n/2. If p # 2, then r*=! = n/r < n/2. Moreover for all
p # 2, if p|(n + 1), then p 4 (n — 1) and the other way around. The greatest factor of
r=Dr+1. =)+ D) - )t + ) isrt+ 1 =n+1. If p>n/2 (in
particular we have p > 2, being n > 4), then p?> > n?/4 > n + 1, for all n > 4. Thus
if p>mn/2+1/2 and n > 4, we have that p* { |Spy,(r)| and the p-Sylow subgroup of
G is either trivial or cyclic. Consequently H{ (G, A[p]) = 0. We have to control what
happens for n = 4. By the classification of the maximal subgroups of SL4(q) appearing
in [3| Table 8.9, pag. 381], one sees that there are the following two maximal subgroups

of class Cg
the group Cy 02174 " Sq, for ¢ = p =1 (mod 8) ;
the group Cy 0 2'7* A, for ¢ = p =5 (mod 8).

In both cases the p-Sylow subgroups of G is either trivial or cyclic for every p (since
the groups occur only for certain primes as above). We can conclude for every n, that

H} (G, Alp]) is trivial, for all p > n/2 + 1.

Class Cy
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Assume that G is of class C;. This case occur only when n = rf, where r is a
prime and ¢ > 1. The group G is the stabilizer of a tensor product decomposition
®::1 V., with n = rt, ¢ > 2 and dim(V;) = r, for every 1 < i < t. Thus G is a
subgroup of (GL,(¢) o ...0GL.(q)).S;. If p > t, then the p-Sylow subgroup of G is

t
contained in G’ = GN (GL.(q) o ... o GL.(q)). In this case, by using induction on ¢ and

the argument given in the case Wh(ten G is of class C4 as the base of the induction, we have
HE (G', Alp]) = 0, for all p > max{t+1,r+1} (recall that we are assuming that A[p| is
very strongly irreducible). Obviously ¢t < n/2 and r < n/2. Then if we take p > n/2+1,
we still have that the p-Sylow subgroup of G is contained in G’ and H} (G’, A[p]) = 0.

Class Cg

Suppose that G is of class Cg. If n is even, then G is contained either in the group
Sp,,(p™), or in a group O (p™), for some € € {+,—}, or in the group U,(p? ), with
m even too. If n is odd, then G is contained either in O,,(p™), or in U, (p?) (with m
even). If G is the whole group U, (p? ), then its p-Sylow subgroup G, coincides with
the p-Sylow subgroup of GL,,(p™), i. e. the p-Sylow subgroup of SL,,(p™). By Lemma
we have H} (G, Alp]) = 0. If G is the whole symplectic group Sp,,(p™) (with n
even) or one of the whole orthogonal groups, then contains —I and H} (G, A[p]) = 0,
by Lemma Assume that G is strictly contained in one of those classical groups.
Aschbacher’s theorem holds for unitary, symplectic and orthogonal groups too and the
maximal subgrops of those classical groups are still divided in the same 9 classes (see
[28]). From the classification of the maximal subgroups of Sp,,(p™), O,(p™), Of (p™)
and U, (p?%) of class C;, i # 9 appearing in [28, Table 3.5B, Table 3.5C, Table 3.5D and
Table 3.5E], we have that O, (p™), O%,(p™) and U, (p? ) do not contain groups of class
Cs and that the subgroups of Sp,, (p™) of class Cs are O;,(p™) themselves. Since we are
assuming that G is strictly contained in one of those three groups, then it is a subgroup
of class C;, for some ¢ # 8. By repeating the arguments used for the maximal subgroups
of SL,,(q) of class C;, with i # 8 (see ii below for class Cg), for the maximal subgroups of

symplectic, orthogonal and unitary groups, we get the conclusion.
Part 1. Subgroups of class Cg

Suppose that G is of class Cg and let Z(G) be its center. By the description of the
subgroups of class Cy, recalled in Section the group G/Z(G) is almost simple. Because
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of Sah’s Theorem, if Z(G) is nontrivial, then H\. (G, Alp]) = 0. So, without loss of
generality, we may assume that Z(G) is trivial and G is almost simple. Thus G contains

a simple group S and it is contained in the automorphism group of S
S <G < Aut(9). (3.9)

In particular, if G is a subgroup of GL, (p™), then S is a subgroup of GL,(p™) too.
So, first of all, we consider the possible simple groups S contained in GL,(p™), for a
certain n. Observe that S is not a cyclic group by . The classification of the finite
simple groups is well-known, as well as the list of their automorphisms groups. One of
the most complete references in the literature is Wilson’s book on finite simple groups
[48]. Following that text, we will divide the simple groups in four classes: alternating
groups, sporadic groups, classical groups and exceptional groups. We will consider the
twisted exceptional group (i. e. the Ree groups, the Suzuki groups, the group *Dy(q)
and the group 2Fg(q)) among the exceptional groups. We will also call groups of Lie

type the classical and the exceptional groups.
Alternating groups

Assume that S is an alternating group Ay, for some positive integer N. Since the
cardinality of the outer automorphism group of Ay divides 4 for all N, then we may
assume without loss of generality that G = S. By [28, Proposition 5.3.7 (i)], we have
that the minimal degree for a representation of Ay in GL,(p!), for n > 9, is N — 2,
i. e n > N—2 Then N < n+ 2. Since |A,i2| = M—QL)!, if p > n+1, then
p? 1 |Ans2| (recall n > 9). In particular p? does not divide the cardinality of every
possible subgroup of GL,,(p') of type Cy isomorphic to Ay, for every positive integer N.
We have H. (G, A[p]) =0, for all p > n+1, n > 9. We will treat the case when n < 8 in

Part . below. In particular we will see that the bound p > n/2 4+ 1 is in fact sufficient

for the triviality of H{\ (G, A[p]), when G is an alternating group, for all 4 < n < 250.
Sporadic groups

Assume that S is a sporadic group. Then p = 13 is the greatest prime number such
that p? could eventually divide its cardinality (this is the case of the Monster group).
Furthermore, for every sporadic group, the outer automorphism group is either trivial

or cyclic of order 2. Then for p > 13, we have HL (G, Alp]) = 0. If n > 25, the bound

loc
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p > n/2+ 1 covers the case of sporadic groups too, as well as the cases of the groups of
geometric type. We will see in Part ii. below that the same bound p > n/2 + 1 assures

the triviality of H. (G, A[p]), when G is a sporadic group, for all n < 25.
Groups of Lie type

Now assume that S is neither alternating, nor sporadic. If p > 3, then the automorphisms
of the field F,», generated by the Frobenius map § : z — zP, are the only automorphisms
of S, whose order can be divided by p. The Frobenius automorphisms form a group of
outer automorphisms of S isomorphic to C,,. Then we have outer automorphisms of S
with order divided by p if and only if p | m. Thus we may assume G ~ S.C,,. Being
Alp] very strongly irreducible, we have that the vanishing of H. (S,.A[p]) implies the
vanishing of H} (G, Alp]), by Lemma So it suffices to prove H} (S, A[p]) = 0, for
all group S of Lie type, whenever p > n + 1. We are going to consider two distinct
situation: when the characteristic of the field of definition of S is different from p (the

so-called cross characteristic case in the literature) and when the characteristic of the

field of definition of S is equal to p (the so-called defining characteristic case).

Cross characteristic case

If the characteristic of the field of definition of S is different from p, then we have an
explicit lower bound for the degrees of the representations of S, as one can see in |28, Table
5.3.A, pag. 188] (see also [31] and [25]). In particular if S is isomorphic to PSLy(r?®), for
some odd prime r and some positive integer «, then n > TQT_l (by [28, Table 5.3.A,
pag. 188]). Thus r* < 2n+ 1. Being r # p, if a prime p does not divide (r® +1)(r® — 1),
then p does not divide the cardinality of SLa(r%).

Observe that every odd prime p that divides r® + 1 does not divide r®* — 1 and the
other way around. Moreover r® + 1 < 2n + 2. Suppose p > n/2 + 1. Then p? >
%1—)2 > 2n+ 2, for all n > 7. Therefore the p-Sylow subgroup of S is either trivial or
cyclic and H (S, Alp]) = 0. In Part ii. we will analyze case by case all the subgroups
of GL,(p™) of class Cg, for every n < 6 and we will show that the bound p > n/2 + 1
assures H} (G, Alp]) = 0, for all n. If S is isomorphic to PSL2(2%), the bound for n is
n > 2% —1 (see again [28, Table 5.3.A, pag. 188]).
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With an analogous argument as for odd primes r, if p > n/2 + 1, then p? does not
divide (2% +1)(2% — 1), for all n > 4 and H}. (G, A[p]) = 0. Now suppose S = PSL;(r?),

loc

for some t > n and r # p. The bound for n is n > (r®)"~! — 1 |28, Table 5.3.A,
pag. 188]. Then r* < "/n+1. As above, since p # r, if p ¢ HEZQ((TO‘)i - 1),
then p does not divide the cardinality of SL;(r®). Observe that Hf.zg((ro‘)i -1) <
H?;Ql( "/(n+ 1)*—1). The greatest factor in the last product is "/(n+ 1)»~1—1 = n.
If p > n (in particular if p > n 4 1), then p® does not divide [['_,((r*)" — 1). Therefore
the p-Sylow subgroup of S is either trivial or cyclic and then HL (S, Alp]) = 0. Now
suppose S = PU(r%), for some t > n and r # p. To ease notation, from now on

n—1
let 7 = w. When n is odd, the bound is n > wﬁ7 and, when n is even, the

n—1
bound is n > wT_’_—fl [28, Table 5.3.A, pag. 188]. Firstly suppose that n is odd.

We have w < "Kl/wTHn—l—l. Observe that H}TH < % Thus w < "]V%n—i— 1. If

a prime p does not divide []'_,((w)" — (=1)*), then it does not divides the cardinality

of § = PU,(w). We have []'_,((w)’ — (~1)}) < [’} ( (%n + 1)i - (1)i>. The

n—1
greatest factor in the last product is "7 (%n + 1) — (=1t = %n + 2 (recall that

n is odd). Observe that n + 1 > % (%n + 2). If p>n+1, then p? ¢ %n + 2. Moreover
p>n+1> w12—|— 1, for all ¢, and in particular p > n+1 > % Suppose
that p | (w)? — (=1)* and p | (w)? — (=1)7, for some 2 < i < j < n—1. If i,j are

both odd, then p divides w’ + 1 — (w +1) = wi(wi=% — 1). Being p # r, we have

p|w~"—1. Since p >n+1 i —1 , the only possibility is p = w/~* — 1. Then
n+l1<p=w"-1< "J/( n—i—lﬂ P41 < m/( n—i—l" 2 +1 and we have a
contraddiction. So, for all p > n + 1 the p-Sylow subgroup of G is either trivial or cyclic
and H{ (S, Alp]) = 0. If 4,j are both even, we can repeat the same argument. If j
is even and i is odd (or i is even and j odd), we get that p divides w’(w/~% 4+ 1). We
may apply again the same argument, owing to p > n+ 1 > wz; 1, for all 4. If n is

1
even the bound is n > wi_i_;l Sow < "4/ WTH < "*HwTH and we may use

the same argument applied when n is odd to get H{ (S, A[p]) = 0. The other minimal

bounds for n appearing in [28, Table 5.3.A, pag. 188], when S is a classical group in cross
characteristic, are very similar to the ones already discussed. So, with arguments that
are very much akin to the ones already shown when S is the projective special linear

group or the unitary group, one can verify that H. (S, Alp]) = 0, for all p > n + 1,
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whenever S is a classical group of Lie Type in cross characteristic.

Assume that S is the exceptional group Fg(w). In this case the lower bound for
the dimension of the representation is w?"(w? — 1) (again |28, Table 5.3.A, pag. 188]).
Thus w?’ < w2n— . < %, ie w< ¥y % A prime p # r divides the cardinality of
Es(w) if and only if it divides the product Hfzo(w6i+2 -1 Hfﬂ(w& —1). We have

[T (w2 = 1) [y (w® = 1) < T ( 5/ ()52 = D) TTo(/(B)6 = 1). I p > n+1,

then p is always strictly greater than every factor in that last product, except the greatest

one 2\7/@ — 1. Anyway, in this case p? > (n+1)? > 2\7/@ — 1. Thus the p-Sylow

subgroups of G is either trivial or cyclic and HL. (S, A[p]) = 0. In similar ways, using the

bounds in [28] Table 5.3.A, pag. 188], one sees that the assumption p > n + 1 is always
sufficient to get the conclusion H{ (S, A[p]) = 0, when S is an exceptional group of Lie

type in cross characteristic.
Defining characteristic case

Assume that the characteristic of the field of definition of S is p. We have that S is a
classic group, with dimension ¢ < n (see |28 Table 5.4.C, pag. 200]) or an exceptional
group. If S is a classic group then S is a projective linear group or a projective symplectic
group or a projective unitary group or a projective orthogonal group. In all cases S is
a quotient by scalar matrices of a classical matrix group. Observe that if I" is a matrix
group and PT is its quotient modulo scalar matrices, then the p-Sylow subgroup of PI"
is an isomorphic copy of the p-Sylow subgroup of I' (no scalar matrix has order dividing
p, for p > 2). Thus H} (T, A[p]) = 0 implies H. (PT, A[p]) = 0. Since S has dimension
t < n, then by using induction, we deduce H.. (S, A[p]) = 0.

Assume that S is an exceptional group of Lie type. By [I0] (see in particular Table
(4.5) at page 186) and [II] (see in particular Table (4.3) at page 193), the cohomology
group H(S, A[p]) is trivial, for all p > 3, when n is the possible minimal degree of the
representation of S and when n is the dimension of the Lie algebra with automorphism
group S (in this case S has a natural representation in dimension n and this often
coincides with the representation of S with minimal degree). If the representation of S is
neither the minimal nor the natural one, then we can proceed as follows. We first consider
the groups S that are not twisted. Let L(\) denote the irreducible G-module of highest
weight A. In [45] Thm 1.2.3] the authors prove that for all p > 31 the first cohomology

group H'(S,L()\)) is trivial, when X is a fundamental dominant weight (or it is less
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than a fundamental dominant weight) and S is not a twisted group. In 1950 Chevalley
proved that whenever M is an irreducible S-module, then M = L(\), for some dominant
weight A (see [22] and [7]). In particular, since we are assuming that A[p] is irreducible,
then A[p] = L()\), for some dominant weight A. In addition, every dominant weight is
a positive integer linear combination of fundamental dominant weights and it is well-
known in the theory of Lie groups that this implies a decomposition L(\) = ®5_; L(w;),
where s is a positive integer and w; is a fundamental weight, for every 1 < i <s. Thus
H (S, Alp]) ~ HL (S, ®_; L(w;)), for certain fundamental weights w; and the group S
preserves a tensor product decomposition. In particular S acts on A[p] in the same way
as the subgroups of class Cy or C7 (see [28] §4.4]). Since the mentioned Theorem 1.2.3 in
[45] assures the triviality of H(S, L(w;)), for all 1 < i < s, we can use the arguments
given for groups of class C4 or C7 to deduce the triviality of HL (S, A[p]). Observe that
when n > 31, we have that p > n+ 1 implies p > 31. Thus we may apply Theorem 1.2.3
in [45] for all exceptional groups and get H. (S, Alp]) = 0, with the other arguments
as above. If n < 31, then every representation of an exceptional group of degree n is
either minimal or fundamental (or both), except the representation of the group Gy(q)
of degree 27. But for groups of type Ga(q) the conclusion of the mentioned Theorem
1.2.3 in [45] holds for all p > 3. So, again we may apply all the arguments as above to
get HL (S, A[p]) = 0. We have to prove the same conclusion for twisted groups of lie
type. If we assume that p > 3, then we have neither Suzuki groups nor Ree groups in the
defining characteristic (see [48] for further details). We are left with groups ?Eg(q) and
3D4(q). The group 2Eg(q) is a subgroup of Fg(q?) modulo scalars (see [48, 4.11]). We
may apply Shapiro’s Lemma (see for instance [33, Theorem 4.19] or [46, Lemma 6.3.2
and Lemma 6.3.4]) to get

H' (Es(q?). ndZ}\%,) Alpl ) ~ H' (*Eo(q), Alp)),

where Indfggi; denotes the induced G-module @} o;(A[p]), where o; varies in a system
of left coset representatives of H in G, s := [Es(q?) :* Eg(q)] denotes the index of 2Eg(q)
in Fg(q?) (see [33, Definition 4.18]) and o;(A[p]) is isomorphic to A[p]. Being H!(G, —)

and additive functor for every group G, we have

@Hl(Ea(QZ)yai(A[p])) ~ H'(*Es(q), Alp))-

We have already proved that H _(Es(q?), Alp]) = 0, under the assumption that A[p] is
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irreducible. Therefore H} (Es(q?),0;(A[p])) = 0, for all 4, and H} _(*Es(q), Alp]) = 0.
The group ®Dy4(q) is a subgroup of QF (¢). The cited results in [I0] and in [45] hold for
Qd (¢%) (but they do not hold in general for symplectic groups). Then we may apply all
the arguments as above to get Hy (24 (¢®), A[p]) = 0 and deduce H}.(*D4(q), Alp]) = 0,
by Shapiro’s Lemma.

To finish the proof we have to control that p > n/2 + 1 is a sufficient bound for the
subgroups of class Cg of SL,,(q), when 4 < n < 250.

Part 1. The cases when 4 < n < 250

In accordance with part 4., the bound p > n/2 + 1 is sufficient, whenever G is a
subgroup of class C;, with 1 < 4 < 8. To show that the same bound works even when
G is a subgroup of class Cg, we are going to control case by case what happens for such

groups when 4 < n < 250.

n=4

Let d := ged(q — 1,4). By the classification of the maximal subgroups of SL4(q)
appearing in [3, Table 8.9, pag. 381], we have the following maximal subgroups of

class Cy.

(a) the group A7, only if ¢ =p =2;
(b) the group Cyo Cy PSLy(7), for q=p=1,2,4 (mod 7), p # 2;
(c) the group CyoCy Az, for q=p=1,2,4 (mod 7), p # 2;
(d) the group Cyo Cy "Uy(2), for ¢ = p =1 (mod 6).
In cases (b), (c) and (d) the p-Sylow subgroups of G is either trivial or cyclic
for all p (observe that those cases occur only for certain primes). In case a) the
p-Sylow subgroup of G is either trivial or cyclic, for all p > 3. Then we get the
conclusion.

n=>5

Let d := ged(q — 1,5). We have to prove H (G, Alp]) = 0, for all p > 3. Since
this bound is sufficient to have H} (G, A[p]) = 0, when G is of class C;, for i # 9,
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we have to consider only the subgroups of of SLs(q) of class Cg, i. e. the ones

appearing in the following list (see [3, Table 8.19, pag. 386])

(a) the group PSLy(11) x Cyif g =p=1,3,4,5,9 (mod 11);
(b) the group Uy(2) x Cy, if p=1 (mod 6), for g =p =1 (mod 6);
(c) the Mathieu group M, if ¢ = 3.
Assume that we are in case (a) and G is isomorphic to a subgroup of PSLy(11) x Cy.
Then the cardinality of G divides 22-3-5-11-d and its p-Sylow subgroup is either
trivial or cyclic, for every p > 3. Assume that we are in case (b). The group
U4(2) has order 20 - 3° - 5. Since this case does not occur if ¢ € {2,3}, then, for
every p > 2, the p-Sylow subgroup of G is either trivial or cyclic again. Therefore
HL (G, Alp]) = 0. Assume that we are in case (c). This case may happen only if
g = 3. The Mathieu group M;; has cardinality 2% - 32 - 5 - 11. In this last case, for
every p > 5, the p-Sylow subgroup of G is either trivial or cyclic. So we have the
bound p > 3 appearing in the statement of Theorem

n==~06

We have to prove Hl (G, Alp]) = 0, for all p > 3. Let d := ged(q — 1,6). The
maximal subgroups of SLg(q) of class Cy are the ones appearing in the following

list (see [3, Table 8.25, pag. 389)])

(a) a group of type Cq, the group Cy x C5A44.Co;
(b) a group of type Cy, the group Cy x C5Ag;

(c) a group of type Cy, the group CgAg;

(d) a group of type Cy, the group Cy o C3PSLa(11);
(e) a group of type Cy, the group CiAz;

(f) a group of type Cy, the group CizPSL3(4) Co;
(g) a group of type Cg, the group C;PSL3(4);

(h) a group of type Cy, the group C;Ms;

(i) a group of type Cy, the group CgU4(3) Cy;

(1) a group of type Cy, the group CiU4(3);

(m) a group of type Co, the group Cy o SL3(q).
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Some of the cases in the list can occur only under certain conditions of g. Since
the proof does not depend on those conditions, we avoided to write them, to ease

the notation.

One easily verifies that in cases (a), (b), (c), (e), (f), (g), (h), (i) and (1), the p-
Sylow subgroup of G is either trivial or cyclic, for all p > 3. Thus H} (G, A[p]) = 0,
for every p > 5. Assume that we are in case (d). If p > 5, then the p-Sylow
subgroup of G is either trivial or cyclic too. If p = 5, then the p-Sylow subgroup of
G is either trivial, or cyclic or isomorphic to the p-Sylow subgroup of SLy(11). By
Lemma we get H\ (G, A[p]) = 0 in this last case too. Assume that we are in
case (m). If p > 5, then the p-Sylow subgroup of G is isomorphic to a subgroup of
SL3(g). By the assumption that A[p] is very a strongly irreducible G-module and
the results achieved in Section for n = 3, we have H} (G, A[p]) = 0. In the end
HL (G, Alp]) =0, for all p > 5.

n="7
Let d := ged(q — 1,7). The only maximal subgroup of SL7(q) of class Cy is the
group Cy x Us(3), with cardinality 27 - 3% - 7 - d (see [3, Table 8.36, pag. 395]).
Observe that d|7 and when p = 7, in particular d # 7. Therefore, for all p > 5, the
p-Sylow subgroup of G is either trivial or cyclic. Thus if G is a subgroup of SL7(q)
and Alp] is a very strongly irreducible G-module, then H (G, A[p]) = 0, for all
p 25

n==~8

Let d := ged(g — 1,8). As above, we have to consider only the subgroups of SLg(q)
of class Cy, i. e. the groups appearing in the following list (see [3| Table 8.45, pag.
399])

(a) the group C;PSL3(4);

(b) the group Cy o C;PSL5(4);

(c) the group C4 o0 CyPSL3(4).Cs.

Again, some of the cases in the list can happen only under certain conditions on

q. Since the proof does not depend on those condition, as above we avoid to write

them, to ease the notation. One sees that the cardinality of every maximal subgroup
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of SLg(q) of class Cy divides 26 - [SLg(4)| = 2'2 -3 -5 - 63. Then, for every p > 3,
the p-Sylow subgroup of all of those groups is either trivial or cyclic, implying the
triviality of HL (G, A[p]).

n=9

Let d := ged(g — 1,9). The maximal subgroups of SLg(q) of class Cg are (see |3
Table 8.55, pag. 406])

(a) C3A7, for ¢ = p;
(b) Cq x PSLy(19), for ¢ =p=1,4,5,6,7,9,11,16,17 (mod 19);
(c) PSL3(g?).Cy, for ¢ = 0 (mod 3);
(d) PSL3(q?).Ss, for ¢ =2 (mod 3);
(e) CyoSLz(¢?).2, for ¢ =1 (mod 9);
(f) SL3(¢?).Cs, for ¢ = 4,7 (mod 9).
For all p > 5, the groups in cases (a) and (b) have a p-Sylow subgroup that is
either trivial or cyclic. In cases (a), (b) (c), (d), (e) and (f) for all p > 5, the
p-Sylow subgroup of G is isomorphic to a subgroup of SL3(¢?). We use induction
to get HL (G, Alp]) = 0.
n =10

We have to prove H (G, Alp]) = 0, for all p > 7, when G is a subgroup of SLj,
contained in one of its maximal subgroup of class Cy. Let d := ged(q — 1, 10),
h:=gced(q—1,3) and s := w. The maximal subgroups of SLig(q) of class
Co are (see |3, Table 8.61, pag. 410])

(a) C40C;PSLy(19), for ¢ =p=1,4,5,6,7,9,11,16,17 (mod 19);

(b) CyoC;PSL3(4), for ¢ = p=11,15,23 (mod 28);

(c) C4oCyPSL3(4).Cy (where Cy is a specific quotient of SL3(4)), for ¢ = p =
3,9,25 (mod 28);

(d) CyoCyMiy (where Mo is the Mathieu group of order 26 - 32 -5 - 11), for ¢ =
p =3 (mod 8);

(€) Cq0C3M15.Cs, for ¢ = p =1 (mod 8);
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(f) C40C;5 Moy (where May is the Mathieu group of order 27 - 32 . 5.7 . 11), for
qg=p=11,15,23 (mod 28);

(g) CyoCyMay.Cy, for ¢ =p=1,9,25 (mod 28);

(h) C4q x PSL3(q).Ch, for p > 5;

(i) CyoC.PSL4(q).Cy, for p > 3;

(3) CaoSLs(q).

Observe that d|10, but d # 5, when p = 5. Then, in cases (a), (b), (c), (d),
(e), (f) and (g), for all p > 5, the p-Sylow subgroup G, of G is isomorphic to a
subgroup of one of the groups SL2(19), SL3(4), Mi2 and Masy. Thus G, is either

trivial or cyclic. We have H (G, A[p]) = 0 in all those cases. For cases (h), (i),

(j) we use induction and similar techniques as above.

n=11

As for n = 10, it suffices to prove H\. (G, Alp]) = 0, for all p > 7, when G is a
subgroup of a maximal subgroup of SLi1(q) of class Cg. Let d := ged(q — 1,11).
The maximal subgroups of SL11(g) of class Cy are (see [3, Table 8.71, pag. 418])

(a) PSL3(23), for g = 2;
(b) Cy x PSLy(23), forq=p=1,2,3,4,6,8,9,12,13,16, 18 (mod 23),q # 2;
(c) Cq4xUs(2), for g =p=1 (mod 3);
(d) the mathieu group May, for ¢ = 2.
Recall that the Mathieu group Ma4 has order 210 .33 .5.7.11-23 (moreover this
case happens only for ¢ = 2). Furthermore, we have [SLy(23)| = 2*-3-11-23 and
|Us(2)| = 210-.36.5.11. Then, for all p > 5, the p-Sylow subgroup of G is either
trivial or cyclic in all cases.

n =12

Let d := ged(q — 1,12) and let Suz denote the Suzuki group of order 2'3-37.52.7.
11-13. As above it suffices to consider the maximal subgroups of SLi2(q) of class

Co, listed below (see [3, Table 8.77, pag. 422])

(a) Cyo0CyAg, for g=p=1,4 (mod 15);
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(b) Ciza0C4Ag, for ¢ =p?, p=2,3 (mod 5), p # 2,3;
(c) CyoCyPSLy(23), for g =p=1,2,3,4,6,8,9,12,13,16, 18 (mod 23), p # 2;

(d) C;,PSLo(4) (where Cho is a specific subgroup of SLs(23) of order 12), for
q=49;

(e) Cq0CiSuz, for g=p=1 (mod 3).

Assume that G is a subgroup of one of the groups appearing in the list.

If p > 5, then the p-Sylow subgroup of G is either trivial or cyclic in all cases (a),
(b), (c), (d) and (e).
Therefore H} (G, Alp]) is trivial, for all p > 7.

13 <n <250

In 23], the authors list all the possible subgroups of class Cg of SL,(q), for every
n < 250, excluding the groups of Lie type in their defining characteristic (see also
[24]). By part i. and part 4., the bound p > n/2 + 1 works for all groups except
some sporadic groups (only for 13 < n < 26) and the groups of Lie type in cross
characteristic. Proceeding as for n < 12, by analyzing the tables in [23], one sees
that even when 13 < n < 250 the first local cohomology group H. (G, A[p]) is
trivial for all p > n/2 4 1, for these two classes of groups. O

About the bounds for p we can make the following considerations.

Remark 3.11. A likely sharp bound. Looking at the proofs for n € {2,3} and
4 < n < 250, one sees that the bound p > n/2 + 1 is probably sharp in many cases.
In fact, for p < n/2, the p-Sylow subgroup of G could be a direct product of two cyclic
groups C,, (look for examples at the 3-Sylow subgroup of M;; when n = 5, or at the
Klein group contained in the 2-Sylow subgroup of A7, when n = 4, and so on). When the
p-Sylow subgroup G, of G is isomorphic to Cg, the local-global divisibility may fail as in
the mentioned examples produced in [15], [I7] and in [35], [36], [37]. One can rise those
examples to similar ones for all n. So the local-global principle for divisibility by p could
fail for p < n/2, when G, ~ Cg. Anyway for some n, as for n = 8 or n = 10, the bound
p > n/2+ 1 is obviously not sharp. In those cases G, is trivial or cyclic even for some
p < n/2. We will now replace the bound n/2 + 1 with a bound p,, that still depends
only on n and that is probably sharp, for all n (see also Remark below). In fact,



General Case 40

if p is the greatest prime < p,, then the p-Sylow subgroup of G can be isomorphic to
C}% and the local-global principle for divisibility by p can fail. We cannot prove that the
bound p,, is really sharp, only because we cannot prove that there exists a commutative
algebraic group A with a prescribed p-torsion subgroup A[p] such that G is exactly a
group for which the principle fails. We can only prove that for p = p the group G could
be isomorphic to Cg and that this surely does not happen when p > p,. By eventually
changing the field of definition k, it is likely that we can have G ~ Cg. This still does
not assure that Hll()c(Gﬁ7A[]3]) = 0. But among so many commutative algebraic groups
A and number fields k, for each n, we expect that this happens for at least one of them,
as in the case when n = 2 for elliptic curves. We are going to give a new version of
Theorem [1.3] with such a bound p,.

For every n, let p, be the smallest prime such that, for all p > p, the square p?
divides no cardinalities of the maximal subgroups of class Cy of GL,(¢). In addition,
when n = rt, for some prime r and some positive integer ¢, let p,, be the smallest prime
such that for all p > p,,, the square p? does not divide H§:1(7"2i —1). Observe that p?
divides no cardinalities of the subgroups of class Cg of GL,(q). If n is not a power of a
prime, there are no subgroups of class Cg in GL,,(q), so set p,, = 1 in that case. It is then
clear from the proof of Theorem that we can give a new version of Theorem as

follows.

Theorem 3.12. Let p be a prime number. Let k be a number field and let A be a
commutative algebraic group defined over k, with Alp] ~ (Z/pZ)"™. For every n, there
exists a prime py,, depending only on n, such that if p > p, and Alp] is a very strongly
irreducible G-module or a direct sum of very strongly irreducible Gy-modules, then the
local-global divisibility by p holds in A over k and Ul(k, Alp]) = 0. Moreover p, =

max{pd, Pn, pn}, where d is the greatest divisor of n.

Remark 3.13. In addition, it is probable that p > n/2 + 1 is a proper bound for every
n > 250 too. In fact it does work for all groups except certain groups of Lie type in
cross characteristic and certain alternating groups that can never occur for some prime
numbers (or that can never occur at all). Anyway we can only conjecture this fact, since,
as stated above, we do not know the classification of the subgroups of GL,(q) of class

Cy, for n > 250.
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We now proceed with the proofs of the corollaries stated in the introduction, that can

be quickly deduced from the proof of Theorem

Proof of Corollary By the proof of Theorem [I.3] part 4., concerning subgroups of
class Cg, one easily deduces that for p > n/2+ 1, the p-Sylow subgroup G, of G is trivial.
Thus H'(G,, Alp]) = 0. It is well-known that the restriction map

H(G, Alp]) — H'(G,, Alp])

is injective on the p-primary part of H*(G, Ap]) (see for example [44, Thm 4, Chap. IX,
§2]). Since Alp] ~ (Z/pZ)™ is a p-group, the p-primary part of H!(G, Alp]) is the whole
group. Then H'(G,, A[p]) = 0 implies H'(G, Alp]) = 0. O

Proof of Corollary By the proof of Theorem [I.3] part ii., one can easily deduce
that if p > 2n + 2, then the p-Sylow subgroup G, of G is trivial. Thus H'(G,, A[p]) = 0.
As in the proof of Corollary this implies H(G, Alp]) =0. O

Remark 3.14. In the same way as Corollary [I.5] and Corollary [I.4] one sees that

a) if p > n + 2 and the absolute Galois group Gy, acts on A[p] as a subgroup of an
alternating group, then H'(G, A[p]) = 0.

b) if p > 13 and the absolute Galois group G}, acts on A[p] as a subgroup of a sporadic
group, then H(G, Alp]) = 0.
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