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NESTING STATISTICS IN THE O(n) LOOP MODEL ON RANDOM
MAPS OF ARBITRARY TOPOLOGIES

GAËTAN BOROT AND ELBA GARCIA-FAILDE

Abstract. We pursue the analysis of nesting statistics in the O(n) loop model on
random maps, initiated for maps with the topology of disks and cylinders in [4], here for
arbitrary topologies. For this purpose we rely on the topological recursion results of [8, 9]
for the enumeration of maps in the O(n) model. We characterize the generating series
of maps of genus g with k′ marked points and k boundaries and realizing a fixed nesting
graph. These generating series are amenable to explicit computations in the loop model
with bending energy on triangulations, and we characterize their behavior at criticality
in the dense and in the dilute phase.

1. Introduction

The enumeration of maps, which are models for discretized surfaces, developed initially
from the work of Tutte [59, 60, 61]. The discovery of matrix model techniques [12] and
the development of bijective techniques based on coding by decorated trees [13, 55] led
in the past 30 years to a wealth of results. An important motivation comes from the
conjecture that the geometry of large random maps is universal, i.e., there should exist
ensembles of random metric spaces depending on a small set of data (like the central
charge and a symmetry group attached to the problem) which describe the continuum
limit of random maps. Two-dimensional quantum gravity aims at the description of these
random continuum objects and physical processes on them, and the universal theory which
should underly is Liouville quantum gravity possibly coupled to a conformal field theory
[39, 35, 16]. Understanding rigorously the emergent fractal geometry of such limit objects
is nowadays a major problem in mathematical physics. Another important problem is
to establish the convergence of random maps towards such limit objects. Solving various
problems of map enumeration is often instrumental in this program, as it provides useful
probabilistic estimates.

As of now, the geometry of large random planar maps with faces of bounded degrees
(e.g., quadrangulations) is fairly well understood. In particular, their scaling limit is the
Brownian map [44, 32, 45, 43], the complete proof of convergence in the Gromov-Hausdorff
sense being obtained in [45, 43]. This universality class is often called in physics that of
“pure gravity”. Recent progress generalized part of this understanding to planar maps
containing faces whose degrees are drawn from a heavy tail distribution. In particular,
the limiting object is the so-called α-stable map, which can be coded in terms of stable
processes whose parameter α is related to the power law decay of the degree distribution
[33].
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The next class of interesting models concerns random maps equipped with a statistical
physics model, like percolation [38], the Ising model [37, 11], or the Q-Potts model [14,
2, 62], . . . To make the distinction explicit, maps without a statistical physics model will
be called usual maps. It is well-known, at least on fixed lattices [31, 1, 58, 54, 53],
that the Q-state Potts model can be reformulated as a fully packed loop model with a
fugacity

√
Q per loop, for random maps this equivalence is explained in detail in [5]. The

O(n) model also admits a famous representation in terms of loops [19, 53] with n the
fugacity per loop. The interesting feature of the O(n) model is that it gives rise to two
universality classes which depend continuously on n, called dense or dilute in respect to
the behavior of macroscopic loops, as can be detected at the level of critical exponents
[51, 52, 53, 23, 34, 40, 24, 41, 17]. The famous KPZ relations [39] (see also [15, 18]) relate,
at least from the physics point of view, the critical exponents of these models on a fixed
regular lattice, with their corresponding critical exponent on random planar maps, as was
repeatedly checked for a series of models [39, 37, 23, 24, 40, 21, 4]. These exponents for
random planar maps are summarized in [4, Figure 4].

It is widely believed that after a Riemann conformal map to a given planar domain,
the proper conformal structure for the continuum limit of random planar maps weighted
by the partition functions of various statistical models is described by the Liouville theory
of quantum gravity (see, e.g., the reviews [35, 16, 50] and [22, 42]). In the particular
case of pure random planar maps, the universal metric structure of the Brownian map
[43, 45, 42] has very recently been identified with that directly constructed from Liouville
quantum gravity [46, 48, 47]. After this Riemann conformal mapping, the configuration
of critical O(n) loops is believed to be described in the continuous limit by the so-called
conformal loop ensemble [56, 57], denoted by CLEκ and depending on a continuous index
κ ∈ (8/3, 8), with the correspondence n = 2 cos π(1− 4

κ
) for n ∈ (0, 2] [20, 36, 21].

Yet, little is known on the metric properties of large random maps weighted by an
O(n) model, even from a physical point of view. Most of the works described above are
restricted to planar maps. In [4], one of the authors jointly with Bouttier and Duplantier
investigated the nesting properties of loops in maps with the topology of a disk or a
cylinder weighted by an O(n) model, and showed to be in perfect agreement with the
known nesting properties of CLEκ [49] after taking into account a suitable version of the
KPZ relations [25]. In this article, we push this analysis forward and investigate rigorously
the nesting properties of maps of any topology weighted by an O(n) model. This includes
as a special case the description of the critical behavior of maps without loops (i.e. in
the class of pure gravity) having possibly marked points, microscopic and macroscopic
boundaries. This generalization is non-trivial as the combinatorics of maps with several
boundaries, marked points, and arbitrary genus, is much more involved than in the cases
of disks and cylinders. Our approach is based on analytic combinatorics, and relies on
two main ingredients: (1) the substitution approach developed in [7, 6] for planar
maps; and (2) the topological recursion of [29, 10] to reduce by a universal algorithm
the enumeration of maps – possibly carrying an O(n) loop model – of any topology to
the enumeration of disks and cylinders. Obtaining the desired asymptotics for generating
series of maps subjected to various constraints is then a matter of careful analysis of
singularities.
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1.1. Outline and main results.

1.1.1. Combinatorics of maps and their nesting. We introduce in detail the O(n) loop
model and the notion of nesting graph of a map in Section 2. To present informally
our findings, let us say that the primary nesting graph (Γ0, ?) of a map M has vertices
corresponding to the connected components of the complement of the loops, and edges
between vertices which correspond to connected components adjacent to the same loop.
Each vertex carries a genus (of the connected component it refers to) and may carry marks
– here denoted ? – remembering to which connected components the marked points or
boundaries ofM belong to. The nesting graph (Γ, ?) is obtained from Γ0 by collapsing all
genus 0 univalent vertices which do not carry a mark, and collapsing any maximal sequence
of P consecutive edges with at least one of its endpoints being a genus 0 unmarked vertex
to a single edge remembering P – which we call an arm of length P . These two steps are
repeated until one of them leaves the graph unchanged. The collection P of arm lengths
is conventionally not included in the data of Γ. In other words, every edge in Γ0 refer
to a loop in M, and an arm of length P in Γ represents P consecutive loops disposed
along a cylindric part ofM which “separate” the marks. Precise definitions are provided
in § 2.1.2.

The main goal of the article is to study maps in the O(n) loop model realizing a fixed
nesting graph. Their generating series are typically denoted with script letters FFF . We will
also encounter generating series of maps in the O(n) model which are not keeping track
of nestings, and denoted F. We review the substitution approach of [7] in Section 2.2,
describing disks with an O(n) loop model as usual maps whose faces can also be disks with
an O(n) loop model. Generically, generating series of usual maps whose faces can also be
disks with an O(n) loop model will be denoted F . We may impose geometric constraints
on the maps under consideration, by fixing the genus g, the number k′ of marked points,
the number of boundaries k and their respective perimeters (`i)

k
i=1, the volume (= total

number of vertices) V , and maybe the arm lengths (P (e))e. This is conveniently handled
at the level of generating series by including extra Boltzmann weights, respectively uV ,∏

i x
−(`i+1)
i , and

∏
e s(e)

P (e). The precise definitions of these generating series and the easy
combinatorial relations between them are described in Section 2. In particular, the basic
formula for the generating series of maps with a fixed nesting graph is Proposition 2.2.

In Section 3, we review the analytic properties of these generating series, i.e. in which
sense the Boltzmann weights can be considered as nonnegative real-valued parameters
instead of formal parameters, and their characterization by functional equations already
known in the literature. We state the topological recursion formula for F(g,k) and F (g,k)

from [10] which will be our second basic formula, and explain how it can be used in
practice. We also explain in Section 3.5 how the addition of extra marked points can
easily be handled at the level of generating series. These results are valid in the general
O(n) loop model, where loops are allowed to cross faces of any degree.

We specialize in Section 4 them in the O(n) loop model on triangulations with bending
energy α. It also depends on the parameter h per triangle visited by a loop, and g per
empty triangle. This model is the simplest one which is amenable to an explicit solution in
terms of theta functions, and still contains the dense and dilute universality classes which
are specific to loop models. At this point, it is very useful to introduce the parameter
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b ∈ (0, 1
2
) such that

n = 2 cos(πb).

We review the expression for the generating series of disks and cylinders (Section 4.2),
which are the non-trivial initial data allowing to reach higher topologies. We also trans-
form (Section 4.3-4.5) the topological recursion formula for F(g,k) into a more explicit sum
over trivalent graphs, which will be suited for later analysis.

1.1.2. Critical behavior. Following [6], we review in Section 5 the phase diagram of this
bending energy model. The properties of the special functions, and some details necessary
to obtain this phase diagram as well as for later use, are collected in Appendix A-D which
are mostly taken from [4]. For fixed n ∈ (0, 2), α not too large and vertex weight u = 1, it
features in the (g, h) plane a non-generic critical line, beyond which the generating series
of pointed disks are divergent. As is well-known, the radius of convergence is actually
the same for generating series of maps of any topology. The critical exponents in the
interior (resp. at the tip) of the non-generic critical line pertain to the dense (resp.
dilute) universality class. Beyond this point, the critical line continues to a generic line,
i.e. corresponding to the universality class of pure gravity. We focus on the non-generic
critical line as it is specific to the loop models. If (g, h) is chosen on the non-generic
critical line but we keep the vertex weight u < 1, the model remains off-critical. The
distance to criticality is governed by (1 − u) → 0. At the level of the explicit solution
in terms of theta functions, approaching criticality corresponds to a trigonometric limit
with a modulus scaling like

(1.1) q ∼ [(1− u)/q∗]
c,

with an exponent distinguishing between the dense and the dilute phase

c =

{
1

1−b dense,

1 dilute.

It is related to the famous string susceptibility exponent γstr by c = −γstrb. All other
exponents can be expressed in terms of b and c, and we will give expressions valid for
both universality classes using

d =

{
1 dense,

−1 dilute.

The remainder of the text, and the main contribution of this article, is devoted to the
analysis of singularities of the generating series under consideration for (g, h) on the non-
generic critical line, in the limit u → 1, here conveniently traded for q → 0 according to
(1.1). This is done in several steps in Section 5-6 summarized below. We then perform
in Section 7 a saddle point analysis to extract the asymptotics of the desired generating
series of maps with fixed volume V → ∞. The analysis reveals two interesting regimes
for boundary perimeters: either we impose the boundary to be

• microscopic (“small”), i.e. `i finite,
• or macroscopic (“large”), here corresponding to `i V c/2 for fixed `i.
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We argue in Section 7.3 that, as far as critical exponents for asymptotics are concerned,
marked points behave like small boundaries. So, we can present here our results in a
simpler form in absence of marked points.

Notation 1.1. We agree that F ·∼ G means there exists a constant C > 0 such that
F ∼ CG in the asymptotic regime under study.

Our first main result (Theorem 7.1) concerns generating series of maps with fixed
nesting graph.

Theorem 1.2. Assume 2g− 2 + k > 0. Let kL be the number of macroscopic boundaries,
kS the number of microscopic boundaries, and k = kL +kS. Let also k

(0,2)
S be the number of

microscopic boundaries and marked points that belong to a genus 0 connected component
of the complement of all loops which does not contain any other mark and was adjacent to
exactly one loop. The generating series of connected maps of genus g realizing the nesting
graph (Γ, ?) behaves as

[
uV

kL∏

i=1

x
−(`iV

c/2+1)
i

kL+kS∏

i=kL+1

x
−(`i+1)
i

]
FFF (g,k)[Γ, ?] ·∼V [−1+c((2g−2+k)(1−d b

2
)− 1

4
kS+( 1

4
− b

2
)k

(0,2)
S )]

when V →∞.

As b ∈ (0, 1
2
), we see that the nesting graphs most likely to occur are those in which each

microscopic mark – either a marked point or a microscopic boundary – belongs to a genus
0 univalent vertex which does not carry any other mark. This is exemplified in Figure 1
for maps of genus 0 with 4 microscopic marks. The analog statement for cylinders can
easily be extracted from [4] and is here rederived as Theorem 7.2.

Our second main result (Theorem 7.3 in Section 7.1) describes the large deviation
function of (large) arm lengths in maps realizing a given nesting graph. It is instructive
to first review the result for cylinders obtained in [4], which is expressed in terms of the
function

J(p) = sup
s∈[0,2/n]

{
p ln(s) + arccos(ns/2)− arccos(n/2)

}

= p ln
( 2

n

p√
1 + p2

)
+ arccot(p)− arccos(n/2).(1.2)

plotted in Figure 2. It has the following properties:

• J(p) ≥ 0 for positive p, and achieves its minimum value 0 at popt = n√
4−n2 given

below.
• J(p) is strictly convex, and J ′′(p) = 1

p(p2+1)
.

• J(p) has a slope ln(2/n) when p→∞.
• When p→ 0, we have J(p) = arcsin(n/2) + p ln(2p/n) +O(p).
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3

4

1

2 3
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1
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V −1+c(1−db+ 1
4− b

2 )

V −1+c(1−db)

V −1+c(1−db+ 1
2−b)

V −1+c(1−db+ 3
4− 3b

2 )

V −1+c(1−db+1−2b)

V −1+c(1−db)
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V −1+c(1−db+ 1
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V −1+c(1−db+ 1
2−b)

V −1+c(1−db+1−2b)

Figure 1. The possible nesting graphs for planar maps with 4 microscopic
boundaries labeled 1, 2, 3, 4 (up to permutations of the labels), and the order
of magnitude of the number of maps realizing them for large volume V . For
n ∈ (0, 2), i.e. b ∈ (0, 1

2
), the greatest order of magnitude is achieved for

the two last graphs in the right column.

1 2 3 4
p

0.5

1.0

1.5

J(p)

Figure 2. The function J(p) for n = 1, n =
√

2 (Ising) and n =
√

3 (3-Potts).
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Theorem 1.3. The probability that, in a cylinder with volume V →∞, the two boundaries
of perimeters (L1, L2) are separated by P loops admits the following asymptotics

P
[
P =

c lnV

π
p
∣∣∣V, L1 = `1, L2 = `2

] ·∼ (lnV )−
1
2 V −

c
π
J(p),

P
[
P =

c lnV

2π
p
∣∣∣V, L1 = `1, L2 = `2V

c
2

] ·∼ (lnV )−
1
2 V −

c
2π
J(p),

P
[
P =

c lnV

π
p
∣∣∣V, L1 = `1V

c
2 , L2 = `2V

c
2

] ·∼ (lnV )−
1
2 V −

c
π
J(p).

We observe that the typical order of magnitude of the number of separating loops
between the two boundaries is lnV . More precisely, πP

c lnV
is almost surely equal to the value

popt, at which the large deviation reaches its minimum value zero, and the fluctuations of
P are Gaussian of order

√
lnV due to the quadratic behavior of J(p) near p = popt.  is

a normalization constant equal to 1 for two macroscopic or two microscopic boundaries,
and equal to 2 for one microscopic and one macroscopic boundary.

In this article, for maps of any topology and any nesting graph, we show (Theorem 7.3
in Section 7.2) that individual arms have exactly the same behavior: arm lengths are
asymptotically independent from one another, and their large deviation function is uni-
versally given by (1.2), only depending on the arm being adjacent to a genus 0 vertex
carrying as only mark one microscopic boundary (or not) via a rescaling  = 2 (or  = 1).

Theorem 1.4. Assume 2g − 2 + k > 0, fix a nesting graph (Γ, ?), and choose which
boundaries are microsopic or macroscopic. Let E(Γ) the set of edges of Γ, ES

0,2, the set
of edges incident to a genus 0 univalent vertex carrying as only mark one microscopic
boundary. Consider the regime

(1.3) P (e) =
c lnV p(e)

(e)π
, (e) =

{
2 if e ∈ ES

0,2(Γ),

1 otherwise,

where p(e) may depend on V but remains bounded away from 0, and negligible in front of
lnV . The probability to have arm lengths P in maps realizing (Γ, ?), of volume V with
boundary perimeters Li = `i for the microscopic ones, and Li = `i V

c
2 for the macroscopic

ones, with fixed `i > 0, behaves as

P(g,k)
[
P|Γ, ?, V,L

] ·∼
∏

e∈E(Γ)

(lnV )−
1
2 V −

c
(e)π

J [p(e)].

The Gaussian fluctuations of arm lengths at order
√

lnV around cpopt

(e)π
lnV are precisely

described in Corollary 7.5. If CLEκ were properly defined on Riemann surfaces of any
topology, Theorem 1.4 could be converted into a prediction of extreme nestings of any
topology for CLEκ thanks to the scheme of KPZ transformations described in [4, Section
7].

1.1.3. Steps of the proofs. The task of Section 5 is to derive, for 2g − 2 + k > 0, the
non-generic critical behavior of:

• the generating series F (g,k) of maps whose faces are disk configurations of the O(n)
model, and
• the generating series F(g,k) of maps in the O(n) model,
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in presence of an arbitrary fixed number of microscopic and macroscopic boundaries (The-
orem 5.8). Here we work in the canonical ensemble, i.e. considering the generating series
depending on Boltzmann weights u for vertices and xi for boundary perimeters. When all
boundaries are macroscopic, the result easily follows from the property “commuting with
singular limits” of the topological recursion, see e.g. [27, Theorem 5.3.2]. The situation
is more tricky is presence of microscopic boundaries, and our analysis in this case is new.
Our scheme analysis of the topological recursion is in fact more general than the O(n)
model, and it may be of use for other problems in enumerative geometry. Concretely,
we start from the sum over colored trivalent graphs for F (g,k) and F(g,k) described in
Section 4.5. We analyse the critical behavior of the weights of vertices and of edges in
Appendix E, and collect the result in Section 5.4.1. The difference between F and F only
comes from the edge weights, so both cases can be treated in parallel. Then, we deter-
mine in Section 5.5 for fixed genus g, fixed number of boundaries k, and fixed coloring of
the k legs, which graphs give the leading contribution in the critical regime. This is the
most technical part, the formula for the critical exponent of this leading contribution in
Lemma 5.7 is quite intrincate, but we should remember that it does not have a priori a
combinatorial meaning. The quantities which have a meaning are F and F , and they are
obtained by summing all these contributions over the colorings of the legs. We find the
final result for the critical behavior of F and F in Theorem 5.8 is much simpler. This
result does not concern nesting but is interesting per se. It clearly displays the affine
dependence of the critical exponents on the Euler characteristic of the maps.

We proceed in Section 6 to examine the dominant contribution to the critical behavior
of FFF , the generating series for fixed nesting graph (Γ, ?). The starting point is the
combinatorial formula of Proposition 3.10, which is an appropriate glueing along the
given nesting graph Γ of vertex weight and edge weights. The vertex weights are the
F ’s for which we have already obtained the critical behavior in Theorem 5.8. The edge
weights are the generating series F(2)

s for cylinders remembering the number of separating
loops between two boundaries, and some of their variants obtained by attaching a loop
around one (F̂(2)

s ) or both (F̃(2)
s ) of their boundaries which are defined in Section 2.3; we

determine their critical behavior in Section 6.2, thanks to the explicit formula for F
(2)
s

from Proposition 4.3. We deduce the critical behavior of FFF ’s by a saddle point analysis
in Section 6.3 and Theorem 6.4. This is then converted, as explained in § 1.1.2, into
asymptotics in the microcanonical ensemble, i.e. for fixed and large volume, boundary
perimeters, and then for arm lengths as well in Section 7.

A word of caution relevant in Section 6 concerning the canonical ensemble: the dom-
inant contributions depend on the set of variables for which one wishes to study the
singularities. If one is only interested later on in fixing the volume and boundary perime-
ters, one should study singularities with respect to u – via the variable q – and xi’s. If one
is interested later on in fixing as well the arm lengths, one wants to study singularities
with respect to u, xi and the collection of Boltzmann weights s for the separating loops.
It can happen that some dominant terms in the first situation contain no singularity with
respect to s, so we need to consider in the second situation terms which were subleading
in the first situation, see e.g. Theorem 6.4. The saddle point analysis here is facilitated as
similar handlings already appeared for cylinder generating series in [4], and the technical
aspects of the present article rather focus on the combinatorics of maps of higher topology.
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2. Properties of the general O(n) loop model

2.1. Definitions. We start by reminding the definition of the model, following the pre-
sentation of [7, 6].

2.1.1. Loop models. A map is a finite connected graph (possibly with loops and multiple
edges) drawn on a closed orientable compact surface, in such a way that the edges do not
cross and that the connected components of the complement of the graph (called faces)
are simply connected. Maps differing by a homeomorphism of their underlying surfaces
are identified; thus there are countably many maps. The map is planar if the underlying
surface is topologically a sphere. The degree of a vertex or a face is its number of incident
edges (around a face, we count incident edges with multiplicity). To each map we may
associate its dual map which, roughly speaking, is obtained by exchanging the roles of
vertices and faces. For k ≥ 1, a map with k boundaries is a map with k marked faces,
pairwise distinct and labeled from 1 to k. By convention all the boundary faces are rooted,
that is to say for each boundary face f we pick an oriented edge (called a root) having
f on the right. The perimeter of a boundary is the degree of the corresponding face.
Non-boundary faces are called inner faces. We may also consider maps with k′ marked
points, and by convention we do not assume that the k′ marked points sit on pairwise
distinct vertices. We call marked element either a marked point or a marked face.

A triangulation with k boundaries (resp. a quadrangulation with k boundaries) is a map
with k boundaries such that each inner face has degree 3 (resp. 4).

Figure 3. A planar triangulation with a boundary of perimeter 8 (with
root in red, the distinguished face being the outer face), endowed with a
loop configuration (drawn in green).

Given a map, a loop is an undirected simple closed path on the dual map (i.e. it covers
edges and vertices of the dual map, and hence visits faces and crosses edges of the original
map). This is not to be confused with the graph-theoretical notion of loop (edge incident
twice to the same vertex), which plays no role here. A loop configuration is a collection of
disjoint loops, and may be viewed alternatively as a collection of crossed edges such that



10 GAËTAN BOROT AND ELBA GARCIA-FAILDE

every face of the map is incident to either 0 or 2 crossed edges. When considering maps
with boundaries, we assume that the boundary faces are not visited by loops. Finally,
a configuration of the O(n) loop model on random maps is a map endowed with a loop
configuration, see Figure 3 for an example. For sake of clarity, we call usual map a map
without a loop configuration.

Remark 2.1. In the original formulation of [34, 40, 41, 28], the loops cover vertices and
edges of the map itself. Our motivation for drawing them on the dual map is that it
makes our combinatorial decompositions easier to visualize.

2.1.2. The nesting graphs. Given a configuration C of the O(n) loop model on a connected
map M of genus g, we may cut the underlying surface along every loop, which splits
it into several connected components c1, . . . , cN . Let Γ0 be the graph on the vertex set
{c1, . . . , cN} in which there is an edge between ci and cj if and only if they have a common
boundary, i.e. they touch each other along a loop (thus the edges of Γ0 correspond to the
loops of C). We assign to each vertex v the genus h(v) of the corresponding connected
component and for each marked element in M belonging to a connected component ci,
we put a mark on the corresponding vertex of Γ0. If the map is planar, Γ0 is a tree and
all its vertices carry genus 0. We call Γ0 the primary nesting graph of M .

Let us consider an ensemble of maps with k′′ = k+k′ marked elements. One can define
the nesting graph Γ from Γ0 by repeteadly performing the following two steps until they
leave the graph unchanged:

(i) erasing all vertices that correspond to connected components which, in the com-
plement of all loops in M , are homeomorphic to disks, and the edge incident to
each of them;

(ii) replacing any maximal simple path of the form v0−v1−· · ·−vP with P ≥ 2, where
the vertices (vi)

P−1
i=1 represent connected components homeomorphic to cylinders,

by a single edge

v0

P
− vP

carrying a length P . By convention, edges which are not obtained in this way
carry a length P = 1.

The outcome is (Γ, ?,P) where Γ is the nesting graph, which is connected and has vertices
labeled by genera such that

g = b1(Γ) +
∑

v∈V (Γ)

h(v).

The sequence of lengths P records the number of consecutive “separating” loops for
each edge. By construction, given the total genus g and a finite set of marked elements,
one can only obtain finitely many inequivalent nesting graphs. ? is the assignment of the
marked elements of M to the vertices of Γ. The valency d(v) of vertices v of the nesting
graph Γ with no boundaries must satisfy:

2h(v)− 2 + d(v) > 0.

This articles studies the distribution of nesting graphs and nesting variables (Γ, ?,P)
in ensembles of random maps of the O(n) model that we now define.



NESTING STATISTICS IN THE O(n) LOOP MODEL . . . 11

1

2

1

2

3

4

4

3

1

2

3

4

b1,2

b3

b4

b1,2

b3

b4

b1,2

b3

b4

1
1

2

1
1

2
1

1
1

1

1
21

v v

Figure 4. Left: schematic representations of loop configurations on a map
of genus 1 with 4 boundaries. Center: associated primary nesting graphs,
where every red vertex carries the marks of the boundaries which belong
to the corresponding connected component in the map. Right: associated
nesting graphs, where every edge is labelled with its depth. All vertices
carry genus 0, except v in the first case which has h(v) = 1.

2.1.3. Statistical weights. The O(n) loop model is a statistical ensemble of configurations
in which n plays the role of a fugacity per loop. In addition to this “nonlocal” parameter,
we need also some “local” parameters, controlling in particular the size of the maps and
of the loops. Precise instances of the model can be defined in various ways.

The simplest instance is the O(n) loop model on random triangulations [34, 40, 41, 28]:
here we require the underlying map to be a triangulation, possibly with boundaries and
marked points. There are two local parameters g and h, which are the weights per face
(triangle) distinct from a boundary and which is, respectively, not visited and visited by a
loop. The Boltzmann weight attached to a configuration C with k ≥ 1 boundaries is thus
w(C) = nLgThT

′ , with L the number of loops of C, T its number of unvisited triangles
and T ′ its number of visited triangles.

A slight generalization of this model is the bending energy model [6], where we incor-
porate in the Boltzmann weight w(C) an extra factor αB, where B is the number of pairs
of successive loop turns in the same direction, see Figure 5. Another variant is the O(n)
loop model on random quadrangulations considered in [7] (and its “rigid” specialization).
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h

1α

g

Figure 5. Top row: local weights for the O(n) loop model on random
triangulations. Bottom row: in the bending energy model, an extra weight
α is attached to each segment of a loop between two successive turns in the
same direction.

In the general O(n) loop model, the Boltzmann weight of a configuration is:

w(C) =
1

|AutC| n
L
∏

l≥3

gNll
∏

{l1,l2}
l1+l2≥1

g
Nl1,l2
l1,l2

,

where Nl is the number of unvisited faces of degree l, and Nl1,l2 is the number of visited
faces of degree (l1 + l2 + 2) whose boundary consists, in cyclic order with an arbitrary
orientation, of l1 uncrossed edges, 1 crossed edge, l2 uncrossed edges and 1 crossed edge.
As the loop are not oriented here, Nl1,l2 = Nl2,l1 and we also assume gl1,l2 = gl2,l1 . Aut(C)
is the subgroup of permutations of vertices and edges respecting the root edges and leaving
C invariant, which can be observed to be trivial if the number of boundaries k ≥ 1.

2.1.4. Generating series. We now define the basic generating series of interest. Fixing
three integers k, k′ ≥ 0 and g ≥ 0, we consider the ensemble of allowed configurations
of the O(n) model where the underlying map is a connected surface of genus g, with
k boundaries of respective lengths `1, `2, . . . , `k ≥ 1 (called perimeters) and k′ marked
points. The corresponding generating series is then the sum of the Boltzmann weights
w(C) of all such configurations. We find convenient to add an auxiliary weight u per
vertex, and define

(2.1) F
(g,k,•k′)
`1,...,`k

= δk,1δ`1,0 u+
∑

C

u|V (C)|w(C),

where the sum runs over all desired configurations C, and |V (C)| denotes the number of
vertices of the underlying map of C, also called volume. We simply write F (g,k) when there
are no marked points, and F (g,k,•) when there is one marked point. For planar maps, i.e.
g = 0, we just write F (k)

`1,...,`k
. We call cylinders the planar maps with k = 2 boundaries,

and disks the planar maps with k = 1 boundary. By convention, the map consisting of
a single vertex in the sphere is considered as a disk with a boundary of length `1 = 0,
accounting for the first term in (2.1).



NESTING STATISTICS IN THE O(n) LOOP MODEL . . . 13

In the course of studying the O(n) loop model, we will also need the generating series
of usual maps. The Boltzmann weight of a configuration in this case is chosen to be

(2.2) w(C) =
1

|AutC|
∏

l≥1

gNll ,

and the generating series F (g,k,•k′)
`1,...,`k

is defined as previously.

2.2. Planar case: usual maps and the nested loop approach. In maps with the
topology of a disk, there is a notion of inside and outside a loop, from the point of view of
the boundary. Then, the nested loop approach [6] puts in bijection disks M with a loop
configuration with triples (M,R,M ′), where:

• M is a usual disk, called the gasket of M . It is obtained as the connected compo-
nent containing the boundary in the complement all loops inM , filling the interior
of each outermost loops by a face.
• R is a disjoint union of sequences of faces visited by a single loop so as to form
an annulus, which is rooted on its outer boundary. It is obtained as the collection
of faces crossed by the outermost loops in M – from the point of view of the
boundary – and the root edge on the outer boundary of each ring (call it B)
is conventionally defined to be the edge outgoing from the vertex in B which is
reached by the shortest leftmost geodesic between the origin of the root edge on
the boundary of M , and B.
• M ′ is a disjoint union of disks carrying loop configurations. These are the inside
of the outermost loops.

Figure 6. Left: schematic representation of a loop configuration on a
planar map with one boundary. Right: the associated primary nesting tree
(the red vertex corresponds to the gasket).

This translates into a functional relation for the generating series of disks:
(2.3) F` = F`(G1, G2, . . .),

where the weights Gl of a face of degree l must satisfy the following fixed point condition

(2.4) Gl = gl +
∑

`′≥0

Al,`′F`′(G1, G2, . . .) = gl +
∑

`′≥1

Al,`′ F`′ .
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We have denoted by Al,` the generating series of sequences of faces visited by a loop,
which are glued together so as to form an annulus, in which the outer boundary is rooted
and has length l, and the inner boundary is unrooted and has length `. Compared to the
notations of [6], we decide to include in Al,` the weight n for the loop crossing all faces of
the annulus. We call Gl the renormalized face weights. Note that, although gl could be
zero for l = 1, 2 and for l ≥ l0, G1, G2 and Gl for l ≥ l0 are a priori non-zero. For this
reason, it was necessary to consider the model of usual maps with general face weights
(2.2), while we could restrict e.g. to faces (visited or not) of perimeter larger of equal to
3 in the definition of the general O(n) loop model.

In all what follows, unless explicitly mentioned, the generating series of usual maps
F (g,k) will always be specialized to the renormalized face weights (G1, G2, . . .).

Functional relations for more general planar maps can be deduced from this fixed point
equation. The operation of marking a boundary of length ` is realized by the operator
` ∂
∂g`

, while marking a vertex amounts to applying u ∂
∂u
. For instance:

F (2)
`1,`2

= `2
∂

∂g`2
F`1 , F

(2)
`1,`2

= `2
∂

∂g`2
F`1 ,

F•` = u ∂
∂u
F`, F •` = u ∂

∂u
F`.

By convention, the equation for F• assumes that the evaluation to renormalized face
weights Gl given by (2.4) is done after the derivative with respect to the vertex weight u.
In other words, F• is the generating series of maps pointed in the gasket. Therefore, we
deduce from (2.3)-(2.4)

F
(2)
`1,`2

= F (2)
`1,`2

+
∑

l,l′≥1

F (2)
`1,l
Rl,l′ F

(2)
l′,`2 ,(2.5)

F •` = F•` +
∑

l′≥1,l′′≥0

F (2)
`,l′ Rl′,l′′F

•
l′′ ,(2.6)

where Rl,` = Al,`/l is the generating series of annuli visited by a single loop, whose outer
and inner boundaries are both unrooted.

More generally, F (g,k,•k′)
`1,...,`k

will denote the generating series of usual maps with k′ marked
points, evaluated at renormalized face weights. According to the nested loop approach, it
enumerates maps in the O(n) model where the k boundaries and the k′ marked points all
belong to the same connected component after removal of all loops. As already remarked
for F•` , due to the constraints on the relative position of the marked points and the loops,

F (g,k,•k′)
`1,...,`k

6= (u∂u)
k′
[
F (g,k)
`1,...,`k

|{gl=Gl}
]
.

The difference comes from the order of differentiation/evaluation at u-dependent renor-
malized vertex weight {Gl} from (2.4).

2.3. Separating loops and refined enumeration. In a mapM with a non empty set of
marked elements P , a loop is separating1 if it is not contractible inM \P . The separating
loops (or sequences of separating loops) were encoded in the edges of the nesting graph.
If the map is planar, an equivalent definition is saying that a loop is separating if it does
not bound a disk in the underlying surface which contains no marked element.

1With this definition, non-contractible loops in M are separating, even though the name could be
misleading in such a case.
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Let us examine the simple case of two marked elements in a planar map. Then, either
the two marked elements are not separated by a loop (the nesting graph consists of a
single vertex carrying the two marks), or they are separated by P ≥ 1 loops (the nesting
graph consists of an edge of length P between two vertices). To fix ideas, let us say that
the first marked element is a boundary. Then, we can put such a map M in bijection
either with a cylinder having no separating loop, or a triple consisting of a cylinder with
no separating loops, an annulus of faces visited by a single loop, and another mapM ′ with
p− 1 separating loops. This is the combinatorial meaning of (2.5)-(2.6), and it allows an
easy refinement. Namely, let F (2)

`1,`2
[s] (resp. F •` [s]) be the generating series of cylinders

(resp. pointed disks) where the Boltzmann weight includes an extra factor sP and P is
the number of separating loops. We obtain from the previous reasoning:

F
(2)
`1,`2

[s] = F (2)
`1,`2

+ s
∑

l,l′≥1

F (2)
`1,l
Rl,l′ F

(2)
l′,`2 [s],(2.7)

F •` [s] = F•` + s
∑

l′,l′′≥1

F (2)
`,l′ Rl′,l′′F

•
l′′ [s].(2.8)

In full generality, we are interested in computing F (g,k,•k′)
`1,...,`k

[Γ, ?; s], the refined generating
series of maps of the O(n) model which are connected of genus g, have k boundaries and
k′ marked points, achieve the nesting graph with its markings (Γ, ?), and for which the
usual Boltzmann weight contains an extra factor:

∏

e∈E(Γ)

s(e)P (e).

The construction of the nesting graph provides a combinatorial decomposition of maps.
Indeed, we can retrieve bijectively the original map from (Γ, ?,P), by glueing together:

• for each vertex v of valency d(v), a usual map (with renormalized weights) of genus
h(v) with k(v) labeled boundaries and d(v) other unlabeled boundaries, and k′(v)
marked points;
• for each edge e of length 1, an annulus visited by a single loop;
• for each each e of length P (e) ≥ 2, two annuli visited by a single loop capping a
cylinder with P (e)− 2 separating loops.

Let us denote E(Γ) the set of edges. At a given vertex v, e(v) is the set of outcoming half-
edges, and for a given edge e, {e+, e−} is its set of half-edges. ∂(v) the set of boundaries
which are registered on marked elements on v – if there are no marked elements on v or
just k(v) = 0, then ∂(v) = ∅. Let V0,2(Γ) be the set of univalent vertices v of genus 0
which carry exactly 1 boundary; the outgoing half-edge (pointing towards the boundary)
is then denoted e+(v) and Ṽ (Γ) = V (Γ) \ V0,2(Γ). Let Eun(Γ) be the set of edges which
are incident to vertices in V0,2(Γ), and Ẽ(Γ) = E(Γ)\Eun(Γ). We define the set of glueing
half-edges as follows:

Eglue(Γ) =
⋃

e∈Ẽ(Γ)

{e+, e−} ∪
⋃

v∈V0,2(Γ)

e+(v).
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Let us introduce the generating series of cylinders with one annulus (with unrooted
outer boundary) glued to one of the two boundaries

(2.9) F̂
(2)
`1,`2

[s] = s
∑

l≥0

R`1,lF
(2)
l,`2

[s]

and the generating series of cylinders capped with two annuli with unrooted outer bound-
aries

(2.10) F̃
(2)
`1,`2

[s] = sR`1,`2 + s2
∑

l,l′≥0

R`1,lF
(2)
l,l′ [s]Rl′,`2 .

By convention, we included in the latter an extra term corresponding to a single annulus
with its two boundaries unrooted.

We can determine the desired refined generating series of maps, whose corresponding
nesting graph is fixed, using the decomposition of any such map into the previously
introduced pieces.

Proposition 2.2.

F (g,k,•k′)
`1,...,`k

[Γ, ?, s] =
∑

l :Eglue(Γ)→N

∏

v∈Ṽ (Γ)

F (h(v),k(v)+d(v),•k′(v))
`(∂(v)),l(e(v))

d(v)!

∏

e∈Ẽ(Γ)

F̃
(2)
l(e−),l(e+)[s(e)]

∏

v∈V0,2(Γ)

F̂
(2)
l(e+(v)),`(∂(v))[s(e+(v))],(2.11)

where ` :
⋃

v∈V (Γ) ∂(v)→ N is given by `1, . . . , `k.

3. Analytic properties of generating series

So far, all the parameters of the model were formal. We now would like to assign them
real values. In this section, we review the properties of generating series of maps obtained
by recording all possible boundary perimeters at the same time.

3.1. Usual maps. In the context of usual maps (here not specialized to the renormalized
face weigths), we say that u and a sequence (gl)l≥1 of nonnegative real numbers are
admissible if F•` < ∞ for any `. By extension, we say that u and a sequence (gl)l≥1 of
real numbers are admissible if u and (|gl|)l≥1 are admissible. For admissible vertex and
face weights, we can define

F(x) =
∑

`≥0

F`
x`+1

∈ Q[[x−1]].

Then, F(x) satisfies the one-cut lemma and a functional relation coming from Tutte’s
combinatorial decomposition of rooted disks.

Theorem 3.1. [6] If (gl)l≥1 is admissible, then the formal series F(x) is the Laurent
series expansion at x = ∞ of a function, still denoted F(x), which is holomorphic for
x ∈ C \ γ, where γ = [γ−, γ+] is a segment of the real line depending on the vertex and
face weights. Its endpoints are characterized so that γ± = s ± 2r, and r and s are the
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evaluation at the chosen weights of the unique formal series in the variables u and (gl)l≥1

such that
∮

γ

dy

2iπ

(
y −∑l≥1 gl y

l−1
)

σ(z)
= 0,(3.1)

u+

∮

γ

dy

2iπ

y
(
y −∑l≥1 gl y

l−1
)

σ(z)
= 0,(3.2)

where σ(x) =
√
x2 − 2sx+ s2 − 4r. Besides, the endpoints satisfy |γ−| ≤ γ+, with equality

iff gl = 0 for all odd l’s.

Theorem 3.2. [6] F(x) is uniformly bounded for x ∈ C \ γ. Its boundary values on the
cut satisfy the functional relation:

(3.3) ∀x ∈ γ, F(x+ i0) + F(x− i0) = x−
∑

l≥1

gl x
l−1,

and F(x) = u/x + O(1/x2) when x → ∞. These properties uniquely determine γ−, γ+

and F(x).

Although (3.3) arise as a consequence of Tutte’s equation and analytical continuation,
it has itself not received a combinatorial interpretation yet.

With Theorem 3.1 at hand, the analysis of Tutte’s equation for generating series of maps
with several rooted boundaries and their analytical continuation has been performed (in
a more general setting) in [9, 3]. The first outcome is that, if u and (gl)l≥1 are admissible,
then F (g,k,•k′)

`1,...,`k
<∞, for all g, k and k′, so that we can define

F (g,k,•k′)(x1, . . . , xk) =
∑

`1,...,`k≥0

F (g,k,•k′)
`1,...,`k

x`1+1
1 · · ·x`k+1

k

∈ Q[[x−1
1 , . . . , x−1

k ]].

The second outcome is that these are as well Laurent series expansions at∞ of functions,
still denoted F (g,k,•k′)(x1, . . . , xk), which are holomorphic for xi ∈ C \ γ, with the same γ
as in Theorem 3.1, and which have upper/lower boundary values when xi approaches γ
while (xj)j 6=i ∈ (C \ γ)k−1 are fixed. More specifically, for cylinders:

Theorem 3.3. σ(x1)σ(x2)F (2)(x1, x2) remains uniformly bounded for x1, x2 ∈ C \ γ. We
have the functional relation, for x1 ∈ (γ−, γ+) and x2 ∈ C \ γ:

F (2)(x1 + i0, x2) + F (2)(x1 − i0, x2) = − 1

(x1 − x2)2
,

and we have F (2)(x1, x2) ∈ O(x−2
1 x−2

2 ) when x1, x2 → ∞. These properties uniquely
determine F (2)(x1, x2).

Once γ± have been obtained, the formula for the generating series of usual cylinders is
well-known:

(3.4) F (2)(x1, x2) =
1

2(x1 − x2)2

{
− 1 +

x1x2 − γ−+γ+

2
(x1 + x2) + γ−γ+

σ(x1)σ(x2)

}
.
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The generating series for usual pointed disks is also particularly simple (see e.g. [6]):

(3.5) F•(x) =
1

σ(x)
.

Theorem 3.4. [27, 9] Let 2g − 2 + k > 0. There exists r(g, k) > 0 such that

σ(x1)r(g,k)F (g,k)(x1, . . . , xk)

remains bounded when x1 approaches γ while (xi)
k
i=2 are kept fixed away from γ.

F (g,k)(x1, . . . , xk) has upper/lower boundary values for x1 ∈ (γ−, γ+) and xI = (xi)
k
i=2

fixed away from γ; it satisfies under the same conditions:

F (g,k)(x1 + i0, xI) + F (g,k)(x1 − i0, xI) = 0,

and F (g,k)(x1, xI) ∈ O(x−2
1 ) when x1 →∞.

3.2. In the O(n) loop model. In the context of the O(n) model, we say that two se-
quences of real numbers (gl)l≥3 and (Al1,l2)l1,l2 are admissible if the corresponding sequence
of renormalized face weights (G1, G2, . . .) computed by (2.4) is admissible. For admissible
face weights, we can define:

F(x) =
∑

`≥0

F`
x`+1

∈ Q[[x−1]].

In the remaining of the article, we always assume admissible face weights.
As consequence of (2.3), F(x) satisfies the one-cut property (the analogue of Theo-

rem 3.1), and we still denote γ± the endpoints of the cuts, which now depend on face
weights (gl)l≥3 and annuli weights (Al,l′)l,l′≥0. Admissibility also implies that the annuli
generating series

R(x, y) =
∑

l+l′≥1

Rl,l′x
lyl
′

and

A(x, y) =
∑

l≥1

∑

l′≥0

Al,l′ x
l−1yl

′
= ∂xR(x, y)

are holomorphic in a neighborhood of γ × γ. And, F(x)’s boundary values on the cut
satisfy the following functional relation:
Theorem 3.5. [6] F(x) is uniformly bounded for x ∈ C\γ and has upper/lower boundary
values on γ. For x ∈ γ, we have:

(3.6) F(x+ i0) + F(x− i0) +

∮

γ

dz

2iπ
A(x, z)F(z) = x−

∑

k≥1

gk x
k−1

and F(x) = u/x+O(1/x2) when x→∞. These properties uniquely determine F(x) and
γ±.

Now with Theorem 3.5 at hand, the analysis of Tutte’s equation for the partition
functions of maps having several boundaries in the loop model, and their analytical con-
tinuation, has also been performed in [9, 3]. The outcome is that

F(g,k,•k′)(x1, . . . , xk) =
∑

`1,...,`k≥0

F
(g,k,•k′)
`1,...,`k

x`1+1
1 · · ·x`k+1

k

∈ Q[[x−1
1 , . . . , x−1

k ]]
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are also well-defined and Laurent series expansions at infinity of functions, still denoted
F(g,k,•k′)(x1, . . . , xk), which are holomorphic for xi ∈ C\γ, with the same γ independently
of g, k and k′, and admit upper/lower boundary values for xi ∈ γ while (xj)j 6=i ∈ (C\γ)k−1

are kept fixed. Besides:

Theorem 3.6. σ(x1)σ(x2)F(2)(x1, x2) remains uniformly bounded for x1, x2 ∈ C \ γ. For
x1 ∈ (γ−, γ+) and x2 ∈ C \ γ, we have the following functional relation:

F(2)(x1 + i0, x2) + F(2)(x1 − i0, x2) +

∮

γ

dy

2iπ
A(x1, y)F(2)(y, x2) = − 1

(x1 − x2)2
,

and F(2)(x1, x2) ∈ O(x−2
1 x−2

2 ) when x1, x2 → ∞. These properties uniquely determine
F(2)(x1, x2).

Theorem 3.7. [27, 9] Let 2g − 2 + k > 0. There exists r(g, k) > 0 such that

σ(x1)r(g,k)F(g,k)(x1, . . . , xk)

remains bounded when x1 approaches γ while (xi)
k
i=2 are kept fixed away from γ.

F(g,k)(x1, . . . , xk) has upper/lower boundary values for x1 ∈ (γ−, γ+) and xI = (xi)
k
i=2 fixed

away from γ, and it satisfies under the same conditions:

F(g,k)(x1 + i0, xI) + F(g,k)(x1 − i0, xI) +

∮

γ

dy

2iπ
A(x, y)F(g,k)(y, xI) = 0

and F(g,k)(x1, xI) ∈ O(x−2
1 ) when x1 →∞.

3.3. Refined generating series. We now recall the results of [4] for the refined gener-
ating series of pointed disks and cylinders. First of all, for admissible weights and s ∈ R
at least in a neighborhood of [−1, 1],

F•s(x1) =
∑

`≥0

F •` [s]

x`1+1
1

∈ Q[[x−1
1 ]],

F(2)
s (x1, x2) =

∑

`1,`2≥1

F
(2)
`1,`2

[s]

x`1+1
1 x`2+1

2

∈ Q[[x−1
1 , x−1

2 ]](3.7)

are well-defined, and are Laurent series expansions at infinity of functions, still denoted
F

(2)
s (x1, x2) and F•s(x1), which are holomorphic of xi ∈ C \ γ, for the same γ appearing in

Section 3.2, independently of s. Besides, we have linear functional relations very similar
to those satisfied by the unrefined generating series:

Theorem 3.8. [4] σ(x1)σ(x2)F
(2)
s (x1, x2) is uniformly bounded for x1, x2 ∈ C \ γ. For

any x1 ∈ (γ−, γ+) and x2 ∈ C \ γ fixed, we have:

F(2)
s (x1 + i0, x2) + F(2)

s (x1 − i0, x2) + s

∮

γ

dy

2iπ
A(x1, y)F(2)

s (y, x2) = − 1

(x1 − x2)2

and F
(2)
s (x1, x2) ∈ O(x−2

1 x−2
2 ) when x1, x2 → ∞. These properties uniquely determine

F
(2)
s (x1, x2).
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Theorem 3.9. [4] σ(x)F•s(x) is uniformly bounded when x ∈ C \ γ. For x ∈ (γ−, γ+), we
have:

F•s(x+ i0) + F•s(x− i0) + s

∮

γ

dy

2iπ
A(x, y)F•s(y) = 0

and F•s(x) = u/x+O(1/x2) when x→∞. These properties uniquely determine F•s(x).

From the analytic properties of F(2)
s and R, it follows that

F̂(2)
s (x1, x2) =

∑

`1,`2≥0

F̂
(2)
`1,`2

[s]
x`11
x`2+1

2

= s

∮

γ

dy

2iπ
R(x1, y)F(2)

s (y, x2)

is the series expansion when x1 → 0 and x2 →∞ of a function denoted likewise, which is
holomorphic for x1 in a neighborhood of γ and x2 in C \ γ. And,

F̃(2)
s (x1, x2) =

∑

`1,`2≥0

F̃
(2)
`1,`2

[s]x`11 x
`2
2(3.8)

= sR(x, y) + s2

∮

γ

dy1

2iπ

dy2

2iπ
R(x1, y1)F(2)

s (y1, y2)R(y2, x2)

is the series expansion at xi → 0 of a function denoted likewise, which is holomorphic
for xi in a neighborhood of γ. This fact and the analytic properties of F (g,k,•k′) for any
g, k, k′ described in Section 3.2 imply, together with the formula of Proposition 2.2:

Proposition 3.10. If u, (gl)l≥3 and (Al,`)l,` are admissible, then at least for s(e) ∈ R in
a neighborhood of [−1, 1] for each e ∈ E(Γ), the generating series for fixed nesting graph

FFF (g,k,•k′)
Γ,?,s (x1, . . . , xk) =

∑

`1,...,`k≥0

F (g,k,•k′)
`1,...,`k

[Γ, ?, s]

x`1+1
1 · · ·x`k+1

k

are well-defined, and are the Laurent expansions at ∞ of functions, denoted with same
symbol, which are holomorphic in (x1, . . . , xk) ∈ (C\γ)k for the same segment γ appearing
in Section 3.2. If I is a finite set, (xi)i∈I a collection of variables and J a subset of I, we
denote xJ = (xj)j∈J . The formula of Proposition 2.2 can be translated into

FFF (g,k)
Γ,?,s(x1, . . . , xk) =

∮

γ
Eglue(Γ)

∏

e∈Eglue(Γ)

dye
2iπ

∏

v∈Ṽ (Γ)

F (h(v),k(v)+d(v),•k′(v))(x∂(v), ye(v))

d(v)!

∏

e∈Ẽ(Γ)

F̃
(2)
s(e)(ye+ , ye−)

∏

v∈V0,2(Γ)

F̂
(2)
s(e+(v))(ye+(v), x∂(v)).(3.9)

3.4. Topological recursion.

Theorem 3.11. [27, 9] The generating series F(g,k) for arbitrary topologies can be ob-
tained from the generating series of disks F(0,1) = F and of cylinders F(0,2) = F(2) by the
topological recursion of [29]. This is a universal recursion on 2g − 2 + k > 0. By spe-
cialization, the generating series of usual maps at renormalized face weights F (g,k) is also
given by the topological recursion: the initial data of the recursion is then F(x) = F(x)

and F (2) given by (3.4).
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The general statement of the topological recursion formula demands more notions of
complex analysis than desirable here, so we refer in general to [29, 9]. We shall describe
its somewhat simpler application to the bending energy model in the next Section.

For the general O(n) model, we cannot go much further at present. Let us summarize
the logic of computation of FFF (g,k)

Γ,?,s, which is the main quantity of interest in this article.
Firstly, one tries to solve for F(x) the linear equation of Theorem 3.5, as a function of γ±,
only exploiting that σ(x)F(x) remains uniformly bounded for x→ γ± – for the moment,
we do not use the stronger fact that F(x) is bounded. This problem is known a priori to
have a unique solution for any choice of γ±, but is hardly amenable to an explicit solution.
Secondly, imposing that F(x) is actually uniformly bounded for x ∈ C \ γ gives two non-
linear equations which determine γ±. These equations may not have a unique solution,
but we look for the unique solution such that γ± are evaluations at the desired weights
of formal power series of

√
u, gl, n and Ak,l. Thirdly, now knowing γ± – or assuming to

know them – one tries to solve for F
(2)
s (x1, x2) the linear equation of Theorem 3.8, in a

uniform way for any s. This problem is as difficult as the first step2. In a fourth step, if
γ±, F(x), and F(2)(x1, x2) are known or assumed so, the topological recursion allows the
explicit computation of F(g,k)(x1, . . . , xk) by induction on 2g−2 +k. We now have all the
ingredients to compute in a fifth step the generating series FFF (g,k)

Γ,?,s in absence of marked
points.

3.5. Adding marked points. The computation of generating series of maps with marked
points is done a posteriori. For the generating series of maps with loops where the position
of the marked points is not constrained, we simply have

F(g,k,•k′) = (u∂u)
k′F(g,k).

To force marked points and boundaries to be all together, not separated by loops, i.e. to
compute F (g,k,•k′), we proceed differently.

Consider a usual map of genus g with k boundaries of perimeters (`i)
k
i=1. Denote V the

number of vertices, E the number of edges, and (Nm)m≥1 the number of (non-marked)
faces of degree m. We have the Euler relation

2− 2g − k = V − E +
∑

m≥1

Nm,

and counting half-edges gives

2E =
∑

m≥1

mNm +
k∑

i=1

`i.

Then, the number of vertices is

V = 2− 2g − k +
∑

m≥1

(m
2
− 1)Nm +

k∑

i=1

1
2
`i.

2As a matter of fact, there exists a general and explicit linear formula to extract F(x) (resp. F•s) from
the knowledge of F(2)

s=1(x1, x2) (resp. F(2)
s (x1, x2)), which we will not need here.
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Therefore, the operation of marking a point is realized at the level of generating series
by application of the operator

2− 2g − k +
∑

m≥1

(1
2
− 1

m
)mgm∂gm −

k∑

i=1

1
2
∂xixi.

In particular, if we denote V(x) = 1
2
x2−∑m≥1

gm
m
xm, the generating series of usual maps

with marked points and (non-renormalized) face weights {gm}m≥1 satisfies, for all k′ ≥ 1

F (g,k,•k′)
bare (x1, . . . , xk) =

(
2− 2g − k −

k∑

i=1

1
2
∂xixi

)
F (g,k,•(k′−1))

bare (x1, . . . , xk)

−
∮

γ

dy

2iπ

(
y
2
V′(y)−V(y)

)
F (g,k+1,•(k′−1))

bare (y, x1, . . . , xk).

For renormalized face weights, we have to take into account the shift (2.4), resulting in

F (g,k,•k′)(x1, . . . , xk) =
(

2− 2g − k −
k∑

i=1

1
2
∂xixi

)
F (g,k,•(k′−1))(x1, . . . , xk)

−
∮

γ

dy

2iπ

(
y
2
Ṽ′(y)− Ṽ(y)

)
F (g,k+1,•(k′−1))(y, x1, . . . , xk),(3.10)

where

Ṽ(x) = V(x)−
∮

γ

dz

2iπ
R(x, z)F(z).

4. The bending energy model

4.1. Definition. We shall focus on the class of loop models with bending energy on
triangulations studied in [6], for which the computations can be explicitly carried out.
On top of the loop fugacity n and the vertex weight u, it features a weight g per unvisited
triangle, h per visited triangle, and α per consecutive pair of visited triangles pointing in
the same direction. The annuli generating series in this model are:

R(x, z) = n ln

(
1

1− αh(x+ z)− (1− α2)h2xz

)
(4.1)

= n ln

(
1

z − ς(x)

)
+
n

2
ln

(
ς ′(x)

−h2

)
,

A(x, z) = ∂xR(x, z)

= n

(
ς ′(x)

z − ς(x)
+
ς ′′(x)

2ς ′(x)

)
,

where

(4.2) ς(x) =
1− αhx

αh+ (1− α2)h2x

is a rational involution. We assume that the weights are admissible, and thus all relevant
generating series of maps with boundaries have a cut [γ−, γ+].
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Technically, the fact that A(x, y) is a rational function with a single pole allows for an
explicit solution of the linear equation for F(x) and F

(2)
s (x1, x2), assuming γ± are known

(see Section 4.2.2). Then, γ± are determined implicitly by two complicated equations –
cf. (4.15) below. This is nevertheless explicit enough to analyze the critical behavior of
the model (see Section 5).

4.2. Solving the linear equation.

4.2.1. Preliminaries. If f is a holomorphic function in C \ γ such that f(x) ∼ cf/x when
x→∞, we can evaluate the contour integral:

(4.3)
∮

γ

dy

2iπ
A(x, y) f(y) = −nς ′(x) f(ς(x)) + ncf

ς ′′(x)

2ς ′(x)
,

where we notice that
ς ′′(x)

2ς ′(x)
= − 1

x− ς(∞)
.

Therefore, a linear equation of the form

f(x+ i0) + f(x− i0) + s

∮

γ

dy

2iπ
A(x, y) f(y) = φ(x), ∀x ∈ (γ−, γ+),

becomes

(4.4) f(x+i0)+f(x− i0)−ns ς ′(x)f(ς(x)) = φ̃(x) := φ(x)−nscf
ς ′′(x)

2ς ′(x)
, ∀x ∈ (γ−, γ+).

When ns 6= ±2, which is assumed here,

(4.5) fhom(x) = f(x)− 2φ̃(x) + nsς ′(x)φ̃(ς(x))

4− n2s2
,

with f a solution of (4.4), satisfies the following homogeneous linear equation:

(4.6) ∀x ∈ (γ−, γ+), fhom(x+ i0) + fhom(x− i0)− nsς ′(x)fhom(ς(x)) = 0.

If we assume that φ(x) is a given rational function with poles q away from γ, fhom(x)
acquires poles at the same points, and we have:

fhom(x) = δq,∞
cf
x
− 2φ̃(x) + nsς ′(x)φ̃(ς(x))

4− n2s2
+O(1), x→ q.

So, we are left with the problem of solving (4.6) with vanishing right-hand side, but
admitting rational singularity with prescribed divergent part at a finite set of points
q ∈ C \ γ.

The key to the solution is the use of an elliptic parametrization x = x(v). It depends
on a parameter τ = iT which is completely determined by the data of γ± and ς(γ±). The
domain C \

(
γ ∪ ς(γ)

)
is mapped to the fundamental rectangle (Figure 7)

(4.7)
{
v ∈ C, 0 < Re v < 1/2, |Im v| < T

}
,

with values at the corners:

(4.8)
x(τ) = x(−τ) = γ+, x(τ + 1/2) = x(−τ + 1/2) = γ−,

x(0) = ς(γ+), x(1/2) = ς(γ−).
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0

γ+

ς(γ+)

γ−

ς(γ−)

τ = iT
1
2 + τ

1
2

γ−

ς(γ−)

− 1
2 + τ

− 1
2

∞
1
2 + τw∞

Figure 7. The fundamental rectangle in the v-plane. We indicate the
image of special values of x in purple, and the image of the cut γ in red.
The left (resp. right) panel is the image of Imx > 0 (resp. Imx < 0).

Besides, when x is in the physical sheet,

v(ς(x)) = τ − v(x).

Since the involution ς is decreasing, ς(γ−) belongs to the union (ς(γ+),+∞) t (−∞, γ−),
and therefore x =∞ is mapped to v∞ = 1

2
+ τw∞ with 0 < w∞ < 1/2. When α = 1, by

symmetry we must have w∞ = 1/2.
The function v 7→ x(v) is analytically continued for v ∈ C by the relations:

(4.9) x(−v) = x(v + 1) = x(v + 2τ) = x(v).

This parametrization allows the conversion [28, 6] of the functional equation

(4.10) ∀x ∈ γ̊, f(x+ i0) + f(x− i0)− n ς ′(x) f(ς(x)) = 0

for an analytic function f(x) in C \ γ, into the functional equation:

(4.11) ∀v ∈ C, f̃(v+2τ)+f̃(v)−n f̃(v−τ) = 0, with f̃(v) = f̃(v+1) = −f̃(−v),

for the analytic continuation of the function f̃(v) = f(x(v))x′(v). The second condition
in (4.11) enforces the continuity of f(x) on R \ γ. We set:

(4.12) b =
arccos(n/2)

π
.

The new parameter b ranges from 1
2
to 0 when n ranges from 0 to 2. Solutions of the

first equation of (4.11) with prescribed meromorphic singularities can be build from a
fundamental solution Υb, defined uniquely by the properties:

(4.13) Υb(v + 1) = Υb(v), Υb(v + τ) = eiπbΥb(v), Υb(v) ∼
v→0

1

v
.

Its expression and main properties are reminded in Appendix A.
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4.2.2. Elementary generating series. We present the solution for the generating series of
disks, and of refined disks and cylinders. Let G(v) be the analytic continuation of

(4.14) x′(v)F(x(v))− ∂v
(

2V(x(v)) + nV(ς(x(v)))

4− n2
− nu ln

[
ς ′(x(v))

]

2(2 + n)

)
,

where V(x) = 1
2
x2 −∑k≥1

gl
l
xl collects the weights of empty faces. In the model we

study, empty faces are triangles counted with weight g each, so V(x) = 1
2
x2 − g

3
x3. Let

us introduce (g̃l)l≥1 as the coefficients of expansion:

∂

∂v

(
− 2V(x(v))

4− n2
+

2 lnx(v)

2 + n

)
=

v→v∞

∑

k≥1

g̃k−1

(v − v∞)k
+O(1).

Their expressions for the model where all faces are triangles are recorded in Appendix C.

Proposition 4.1 (Disks). [6] We have that

G(v) =
∑

l≥0

1

2

(−1)lg̃l
l!

∂lv∞
[
Υb(v + v∞) + Υb(v − v∞)−Υb(−v + v∞)−Υb(−v − v∞)

]
.

The endpoints γ± are determined by the two conditions:

(4.15) G(τ + ε) = 0, ε = 0, 1
2
,

which follows from the fact that F(x) remains bounded when x→ γ±.

For use in refined generating series, let us define

b(s) =
arccos(ns/2)

π
.

Proposition 4.2. [4] Define G•s(v) as the analytic continuation of

x′(v)F•s(x(v)) + ∂v

(
nsu ln[ς ′(x(v))]

2(2 + ns)

)
.

We have:

G•s(v) =
u

2 + ns

[
−Υb(s)(v + v∞)−Υb(s)(v − v∞) + Υb(s)(−v + v∞) + Υb(s)(−v − v∞)

]
.

Proposition 4.3. [8, 4] Define G
(2)
s (v1, v2) as the analytic continuation of

x′(v1)x′(v2)F(2)
s (x(v1), x(v2)) +

∂

∂v1

∂

∂v2

(
2 ln

[
x(v1)− x(v2)

]
+ ns ln

[
ς(x(v1))− x(v2)

]

4− n2s2

)
.

We have:

G(2)
s (v1, v2) =

1

4− n2s2

[
Υ′b(s)(v1 + v2)−Υ′b(s)(v1− v2)−Υ′b(s)(−v1 + v2) + Υ′b(s)(−v1− v2)

]
.

Remark 4.4. When there is no bending energy, i.e. α = 1, the 4-terms expression of
Propositions 4.1-4.2 can be reduced to 2 terms using τ−v∞ = v∞ mod Z and the pseudo-
periodicity of the special function Υb.



26 GAËTAN BOROT AND ELBA GARCIA-FAILDE

4.3. Topological recursion. Theorem 3.7 in the special case of the bending energy
model shows that F(g,k)(x1, x2, . . . , xk) for 2g− 2 + k > 0 satisfies the homogeneous linear
equation with respect to x1, for fixed (xi)

k
i=2. Following Section 4.2, we can thus introduce

a meromorphic function G(g,k)(v1, . . . , vk) as the analytical continuation of

(4.16) F(g,k)(x(v1), . . . , x(vk))
k∏

i=1

x′(vi).

It is also convenient to introduce a shift for the case of cylinders. We consider:

G
(g,k)

(v1, . . . , vk) = G(g,k)(v1, . . . , vk)

+δg,0δk,2

(
2− n2

4− n2

x′(v1)x′(v2)

(x(v1)− x(v2))2
− n

4− n2

ς ′(x(v1))x′(v1)x′(v2)

(x(v1 − τ)− x(v2))2

)
.(4.17)

While G(2)(v1, v2) satisfied the homogeneous linear equation, G(2)
(v1, v2) satisfies, with

respect to v1, the inhomogeneous version of equation (4.11) with right-hand side 1/(x(v1)−
x(v2))2.

Our starting point is the topological recursion residue formula proved in [8] or [9, Section
5]. Let us define the recursion kernel, for ε ∈ {0, 1/2}:

(4.18) Kε(v0, v) = −dv

2

∫ v
2(τ+ε)−v dv′G

(2)
(v′, v0)

G(v) + G(2τ − v)
.

If k ≥ 2, let I = {2, . . . , k}, and if k = 1, I = ∅. If J is a set, we denote vJ = (vj)j∈J .

Theorem 4.5. For 2g − 2 + k > 0, we have

G
(g,k)

(v1, vI) =
∑

ε∈{0,1/2}

Res
v→τ+ε

Kε(v1, v)

[
G

(g−1,k+1)
(v, 2(τ + ε)− v, vI)

+
no disks∑

h+h′=g
JtJ ′=I

G
(h,1+|J |)

(v, vJ)G
(h′,1+|J ′|)

(2(τ + ε)− v, vJ ′)
]
,

where “no disks” means that we exclude the terms containing disk generating series, that
is (h, J) or (h′, J ′) equal to (0, ∅).

We are going to rewrite this recursion without involving residues. We first need to
introduce some notations. Let us define the elementary blocks :

(4.19) ε ∈ {0, 1
2
}, Bε,l(v) =

∂2l

∂v2l
2

G
(2)

(v, v2)
∣∣∣
v2=τ+ε

.

Since x(τ + ε+w) is an even function of w, formula (4.19) is insensitive to replacing G
(2)

by G(2). From the structure of G(2) = G
(2)
s=1 shown in Proposition 4.3, we see that

(4.20) Bε,l(v) = ∂2l
v Bε,0(v).
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Proposition 4.6. For 2g − 2 + k > 0, we have a decomposition

G
(g,k)

(v1, . . . , vk) = G(g,k)(v1, . . . , vk) =
∑

l1,...,lk≥0
ε1,...,εk∈{0, 12}

C(g,k)
[
l1
ε1
· · · lkεk

] k∏

i=1

Bεi,li(vi),

where the sum contains only finitely many non-zero terms.

As a consequence of Theorem 4.5, the coefficients C(g,k)[lIεI
]
satisfy the recursion given

in Proposition 4.7 below. Its proof appears right after Proposition 4.7.

4.3.1. Initial conditions. We denote yε,1 and yε,2 the first two coefficients in the Taylor
expansion at w → 0:

(4.21) ∆εG(w) := G(w + τ + ε) + G(−w + τ + ε) = yε,1w
2 +

yε,2
6
w4 +O(w6).

We also need the constants

(4.22) υb,2m+1 = lim
w→0

(
Υ

(2m+1)
b (w) +

(2m+ 1)!

w2m+2

)
,

introduced in Appendix A. The initial conditions for the recursion concern (g, k) = (0, 3)
and (1, 1):

C(0,3)
[
l1
ε1
l2
ε2
l3
ε3

]
= −2 δl1,l2,l3,0 δε1,ε2,ε3

yε1,1
, C(1,1)

[
l
ε

]
= δl,0

( yε,2
24y2

ε,1

+
υb,1
yε,1

)
− δl,1

24yε,1
.

4.3.2. The recursion coefficients. We first define

(4.23) K
[
l
ε
m
σ
m′
σ′
]

= Res
w→0

−w2l+1dw

(2l + 1)! ∆εG(w)
Bσ,m(w + τ + ε)Bσ′,m′(−w + τ + ε).

Since ∆εG(w) is even, we have the symmetry

(4.24) K
[
l
ε
m
σ
m′
σ′
]

= K
[
l
ε
m′
σ′

m
σ

]
.

By counting the degree of the integrand at w = 0, we find selection rules. There are
finitely many indices for which K does not vanish:

{
ε = σ = σ′ and l ≤ m+m′ + 2

}
,

or
{
ε = σ 6= σ′ and l ≤ m+ 1

}
,

or
{
ε 6= σ = σ′ and l = 0

}
.

We also define

(4.25) K̃
[
l
ε
l′
ε′
m
σ

]
=

−δε,ε′
(2l + 1)! (2l′)!

Res
w→0

dw
w2(l+l′)+1

∆εG(w)
Bσ,m(τ + ε+ w).

There are finitely many values of the parameters for which K̃ does not vanish:
{
ε = ε′ = σ and l + l′ ≤ m+ 1

}
,

or
{
ε = ε′ 6= σ and (l, l′) = (0, 0)

}
.
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4.3.3. The recursion formula.

Proposition 4.7. Assume 2g − 2 + k ≥ 2, and denote L = {2, . . . , k}. The coefficients
of the decomposition in Proposition 4.6 satisfy:

C(g,k)
[
l1
ε1
· · · lkεk

]
=

∑

m,m′≥0
σ,σ′∈{0,1/2}

K
[
l1
ε1
m
σ
m′
σ′
]
C(g−1,k+1)

[
m
σ
m′
σ′

lL
εL

]

+
stable∑

h+h′=g
JtJ ′=L

m,m′≥0, σ,σ′∈{0,1/2}

K
[
l1
ε1
m
σ
m′
σ′
]
C(h,|J |+1)

[
m
σ
lJ
εJ

]
C(h′,1+|J ′|)[m′

σ′
lJ′
εJ′

]

+
∑

i∈L, m≥0
σ∈{0,1/2}

2 K̃
[
l1
ε1
li
εi
m
σ

]
C(g,k−1)

[
m
σ

lL\{i}
εL\{i}

]
,(4.26)

where “stable” means that we exclude the terms involving disk or cylinder generating series,
i.e. for which (h, |J |+ 1) or (h′, |J ′|+ 1) belongs to {(0, 1), (0, 2)}.

Although this recursion gives a non symmetric role to the first boundary, the result
ensuing from the initial conditions of § 4.3.1 is symmetric. This must be true by consis-
tency, and this is in fact a general property of the topological recursion, cf. [29, Theorem
4.6].

4.4. Proof of Propositions 4.6-4.7.

4.4.1. Properties of the elementary blocks. We have called elementary blocks the following
functions:

(4.27) Bε,l(v) =
∂2l

∂v2l
2

G(2)(v, v2)
∣∣∣
v2=τ+ε

.

Lemma 4.8. Bε,l(τ + ε′ + w) is regular at w = 0 if ε 6= ε′, and behaves like (2l +
1)!w−(2l+2) +O(1) when w → 0 if ε = ε′.

Proof. We compute using Proposition 4.3 and the properties (4.13) of Υb:

(4.28) Bε,l(τ + ε′ +w) =
(e2iπb − 1)Υ

(2l+1)
b (ε+ ε′ + w) + (e−2iπb − 1)Υ

(2l+1)
b (ε+ ε′ − w)

4− n2
.

We deduce its behavior when w → 0. Since Υb is regular at the value 1
2
, (4.28) is regular

at w = 0 when ε 6= ε′. If ε = ε′, the simple pole of Υb produces the divergent behavior:

Bε,l(τ + ε+ w) =
(2l + 1)!

w2l+2
+O(1).

�
We shall need later in the computation of G(1,1):

Lemma 4.9.

(4.29) G
(2)

(τ + ε+ w, τ + ε− w) =
w→0

1

4w2
− υb,1 + o(1),

where υb,1 is the constant computed in (A.6).
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Proof. We compute with (4.17):

G
(2)

(τ + ε+ w, τ + ε− w)(4.30)

= −2− n2

4− n2

(
υb,1 +

Sx(τ + ε+ w)

6

)

+
n

4− n2

x′(ε+ w)x′(τ + ε+ w)

(x(ε+ w)− x(τ + ε+ w))2
− Υ′b(2w) + Υ′b(−2w)

4− n2
,

where we introduced the Schwarzian derivative:

(4.31) Sx(v) =
x′′′(v)

x′(v)
− 3

2

(x′′(v)

x′(v)

)2

.

Since x′(τ + ε+w) is an odd function of w, the second term in (4.30) is o(1) when w → 0.
We also compute:

1

6
Sx(τ + ε+ w) =

1

6

[
x′′′′(τ + ε)

x′′(τ + ε)
− 3

2w2

(
1 + x′′′′(τ+ε)

2x′′(τ+ε)
w2

1 + x′′′′(τ+ε)
6x′′(τ+ε)

w2

)2

+O(w2)

]

= − 1

4w2
+O(w2)

and
Υ′b(2w) + Υ′b(−2w) = 2

(
− 1

4w2
+ υb

)
+ o(w2).

Collecting all terms in (4.30) we find (4.29). �

4.4.2. Computing the residues. Now we are ready to examine the formula of Theorem 4.5.
In order to compute the residues at v → τ + ε, we should first compute the expansion
of the recursion kernel near those points. If we set v = (τ + ε) + w and ∆εG(w) =
G(τ + ε+ w) + G(τ + ε− w), we find

Kε(v0, τ + ε+ w) =
−1

2∆εG(w)

∫ w

−w
dz

(∑

l≥0

Bε,l(v0)
z2l

(2l)!
+ (odd terms)

)

= −
∑

l≥0

w2l+1

(2l + 1)!∆εG(w)
Bε,l(v0),(4.32)

in terms of the elementary blocks (4.27). Since we consider a model with off-critical
weights, ∆εG(w) has exactly a double zero at w → 0. Subsequently, Kε(v0, τ + ε + w)
has a simple pole at w = 0, and the term indexed by l in the sum has a simple pole if
l = 0, and has a zero of order (2l − 1) if l ≥ 1.

We prove Propositions 4.6-4.7 by induction on χ = 2g − 2 + k > 0. The first case to
consider is χ = 1, i.e. (g, k) = (0, 3) or (1, 1). For (g, k) = (0, 3), Theorem 4.5 yields

G(0,3)(v1, v2, v3)

=
∑

ε∈{0,1/2}

Res
w→0

Kε(v1, τ + ε+ w)
[
G

(2)
(τ + ε+ w, v2)G

(2)
(τ + ε− w, v3)

+G
(2)

(τ + ε+ w, v3)G
(2)

(τ + ε− w, v2)
]
.
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As one can check from Proposition 4.3, G(2)(τ + ε + w, v′) is regular when w → 0.
Therefore, the residue picks up the term l = 0 in the expansion of the recursion kernel,
and evaluates the function between brackets to w = 0. The result is thus of the form
announced in Proposition 4.6, with only non-zero coefficients:

(4.33) C(0,3)
[

0
ε

0
ε

0
ε

]
= − 2

yε,1
, ε ∈ {0, 1

2
},

computed using also the expansion (4.21) of ∆εG(w).
For (g, k) = (1, 1), Theorem 4.5 yields

G(1,1)(v1) =
∑

ε∈{0,1/2}

Res
w→0

Kε(v1, τ + ε+ w) ·G(2)
(τ + ε+ w, τ + ε− w).

We have seen in Lemma 4.9 that the last factor has a double pole when w → 0, with
no simple pole and constant term −υb,1 defined in (A.6). Then, we have to expand the
recursion kernel up to O(w2) in order to obtain the final answer for G(1,1). In other words,
we only need to include the terms l = 0 and l = 1, and use the expansion (4.21) of the
denominator to perform the computation:

Kε(v1, τ + ε+ w) = −Bε,0(v1)

yε,1

1

w
+
(yε,2Bε,0(v1)

y2
ε,1

− Bε,1(v1)

yε,1

) w
6

+ o(w).

We find eventually

G(1,1)(v1) =
∑

ε∈{0,1/2}

( yε,2
24y2

ε,1

+
υb,1
yε,1

)
Bε,0(v1)− Bε,1(v1)

24yε,1
.

The answer is of the form of Proposition 4.6, with only non-zero coefficients:

(4.34) C(1,1)
[

0
ε

]
=

yε,2
24y2

ε,1

+
υb
yε,1

, C(1,1)
[

1
ε

]
= − 1

24yε,1
.

Now, take χ ≥ 2, and assume the result is true for all G(g′,k′)
= G(g′,k′), with 0 <

2g′−2+k′ < χ. We would like to compute G(g,k) for a topology such that 2g−2+k = χ.
The residue formula of Theorem 4.5 involves G(g′,k′) for 0 < 2g′ − 2 + k′ < χ, which we
replace by the decomposition of Proposition 4.6, as well as G(2).

The terms which do not contain G
(2) give a contribution which is the sum over indices

(lj, εj)j∈I and indices (m,σ), (m′, σ′) of terms containing the factor:
[∏

j∈I

Bεj ,lj(vj)
]

Res
w→0

Kε(v0, τ + ε+ w)Bσ,m(τ + ε+ w)Bσ′,m′(τ + ε− w)

=
∑

l≥0

[∏

j∈I

Bεj ,lj(vj) ·Bε,l(v0)
]
K
[
l
ε
m
σ
m′
σ′
]
.

We computed the residue thanks to the expansion ofKε given in (4.32), and we introduced
the coefficient (4.23):

K
[
l
ε
m
σ
m′
σ′
]

= Res
w→0

−dww2l+1

(2l + 1)!∆εG(w)
Bσ,m(τ + ε+ w)Bσ′,m′(τ + ε− w).
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These terms thus form a linear combination of products of elementary blocks in the
variables v0, (vj)j∈I , which contribute to C(g,k)

[
l
ε
lI
εI

]
by the two first lines in (4.26).

Since 2g − 2 + k ≥ 2, the contribution to G(g,k)(v0, vI) containing G
(2) is precisely the

sum over ε ∈ {0, 1/2} and i ∈ I = {2, . . . , k} of

(4.35) Res
w→0

Kε(v0, τ + ε+w)
[
G

(2)
(τ + ε+w, vi)G

(g,k−1)(τ + ε−w, vI\{i}) + (w → −w)
]
.

The quantity in brackets can be decomposed using odd and even parts:

2
[
G

(2)

even(τ + ε+ w, vi)G
(g,k−1)
even (τ + ε+ w, vI\{i})

−G(2)

odd(τ + ε+ w, vi)G
(g,k−1)
odd (τ + ε+ w, vI\{i})

]
.

When we insert in this expression the decomposition of Proposition 4.6 for G(g,k−1), we
have to deal with the sum over indices (lj, εj)j 6=i and (m,σ) of terms of the form

2C(g,k−1)
[
m
σ

lI\{i}
εI\{i}

] ∏

j∈I\{i}

Bεj ,lj(vj) ·
[
G

(2)

even(τ + ε+ w, vi)B
even
σ,m (τ + ε+ w)

−G
(2)

odd(τ + ε+ w, vi)B
odd
σ,m(τ + ε+ w)

]
.(4.36)

According to Lemma 4.8, Bodd
σ,m(τ + ε+w) ∈ O(w) when w → 0. Since G(2)

(τ + ε+w, vi)
is regular when w → 0, this implies that the product of the odd parts does not contribute
to the residue (4.35). Besides, the expansion at w → 0 of the product of even parts in
(4.36) can be expressed in terms of the elementary blocks. We thus obtain a contribution

(4.37)
∑

l,li≥0

2C(g,k−1)
[
m
ε

lI\{i}
εI\{i}

]
[ ∏

j∈I\{i}

Bεj ,lj(vj) ·Bε,l(v0)Bε,li(vi)

]
K̃
[
l
ε
l′
ε′
m
σ

]

and we have defined

K̃
[
l
ε
l′
ε′
m
σ

]
= δε,ε′ Res

w→0

−dww2l+1

(2l + 1)!∆εG(w)
· w

2l′

(2l′)!
·Bσ,m(w + τ + ε),

which is the coefficient announced in (4.25). Since the prefactor of B in the residue is an
odd 1-form in w, the residue picks up the even part of B, so it did not change the result
to replace Beven by B. Let us examine the cases for which K̃ does not vanish. If ε = σ,
we take into account the behavior at w → 0 of Bε,m(τ + ε+w) given by Lemma 4.8, and
find

(4.38) K̃
[
l
ε
l′
ε′
m
σ

]
= δε,ε′

1

(2l + 1)!(2l′)!
Res
w→0

−dww2(l+l′)

∆εG(w)

(
(2m+ 1)!w−2m

w
+ w υb,2m+1

)
,

where υb,2m+1 are the constants introduced in (A.5). Since ∆εG(w) has a double zero at
w = 0, (4.38) vanishes if l+ l′ ≥ m+ 2. If ε 6= σ, Lemma 4.8 tells us that Bσ,m(τ + ε+w)

is regular at w = 0, hence K̃ vanish unless (l, l′) = (0, 0), and we have

K̃
[

0
ε

0
ε
m
σ

]
= −Bσ,m(τ + ε)

yε,1
=

Υ
(2m+1)
b (1

2
)

yε,1
.
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The last equality follows from (4.28) and the properties of Υb described in Appendix A.
We can study in a similar way the cases for which K does not vanish.

Collecting all the terms from (4.35) and (4.37), we arrive to Formula (4.26) and conclude
the recursive proof. �

4.5. Diagrammatic representation. Unfolding the recursion yields a formula forG(g,k)

with 2g − 2 + k > 0 as a sum over the set S(g,k) of graphs G with first Betti number g,
trivalent vertices equipped with a cyclic order of their incident edges, and legs (univalent
vertices) labeled {1, . . . , k}. With this definition, if there is an edge from a trivalent
vertex to itself (a loop), the cyclic order is just the transposition of the two distinct
incident edges. The weight given to a graph actually depends on the choice of an initial
leg i0, but the sum over graphs is independent of those choices [30].

Before stating the formula, we need a preliminary construction. If G ∈ S(g,k), we denote
V (G) the set of trivalent vertices and a E(G) the set of edges. We also denote Vo(G) the
set of trivalent vertices with a loop. If v is a vertex, we denote e[v] its set of incident
edges. A simple counting gives:

(4.39) |E(G)| = 3g − 3 + 2k, |V (G)| = 2g − 2 + k.

4.5.1. Exploration of a cyclically ordered graph. The choice of an initial leg and the data
of the cyclic order determines a way to explore G, i.e. two bijections

ϕ : {1, . . . , |E(G)|} → E(G), η : {1, . . . , |V (G)|+ k} → V (G) ∪ {1, . . . , k}
which record in which order the edges, and the vertices or legs, are visited. Let us describe
how ϕ and η are constructed.

We declare that η(1) is the initial leg, and φ(1) is the edge incident to the initial leg i0.
Since 2g− 2 + k > 0, G must have at least a trivalent vertex, so φ(1) is also incident to a
trivalent vertex that we declare to be η(2). We define a seed with initial value (φ(1), η(2)).
Then, we apply the following algorithm. Let (e = φ(j1), v = η(j2)) be the seed. If v is
not a leg, let e+ (resp. e−) be the edge following (resp. preceding) e in the cyclic order
around v.
• First cases: either v is a leg or, otherwise, e+ and e− have already been explored (i.e.
are equal to φ(i+) and φ(i−) for some i± < j1). If actually all vertices have already been
explored (i.e. j2 = |V (G)| + k), the algorithm terminates; otherwise, we consider the
maximal j′2 < j2 such that η(j′2) is not a leg, and the maximal j′1 ≤ j1 such that φ(j′1) is
incident to η(j′2), and reset the seed to (φ(j′1), η(j′2)).
• Second case: e+ has not been explored. We define φ(j1 + 1) = e+ = {v, v+} and
η(j2 + 1) = v+, and reset the seed to (e+, v+).
• Third case: e+ has already been explored, but not e−. We define φ(j1 + 1) = e− =
{v, v−} and η(j′ + 1) = v−, and reset the seed to (e−, v−).

Now, at any trivalent vertex v which does not have a loop, we can label the incident
edges e0

v, e
1
v, e

2
v, starting from the edge such that φ−1(e0

v) is minimal among e[v], and
following the cyclic order. If a trivalent vertex v has a loop, we can just label e0

v the
incident edge which is not a loop, and e1

v the other one; this definition also agrees with
the order of exploration at v.
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Definition 4.10. A trivalent vertex v is bi-terminal if e1
v and e2

v are incident to legs. It
is terminal if e1

v xor e2
v is incident to a leg. We denote Vt(G) (resp. Vtt(G)) the set of

(bi-)terminal vertices, and V ′(G) the set of trivalent vertices which are neither terminal,
neither bi-terminal, nor have a loop.

We stress that, for a given graph, all these notions depend on the choice of an initial
leg.

4.5.2. The unfolded formula. Let Col(G; (l, ε)) be the set of colorings of edges by labels
in N× {0, 1

2
} such that

• the coloring of edges incident to legs agrees with the fixed coloring (l, ε) of the
legs;
• the color of a loop is identical to the color of the other edge incident to the vertex
where the loop is attached.

If (m,σ) is such a coloring, and v is a trivalent vertex which does not have a loop, we
definem[v] to be the sequence (m(e0

v),m(e1
v),m(e2

v)), and similarly for the sequence σ[v].
One proves by induction:

Proposition 4.11. For 2g − 2 + k > 0, we have

C(g,k)
[
l1
ε1
· · · lkεk

]

=
∑

G∈S(g,k)

(m,σ)
∈Col(G;(l,ε))

∏

v∈V ′(G)

K
[m[v]
σ[v]

] ∏

v∈Vt(G)

K̃
[m[v]
σ[v]

] ∏

v∈Vtt(G)

C(0,3)
[m[v]
σ[v]

] ∏

v∈Vo(G)

C(1,1)
[m(e0

v )

σ(e0
v )

]
.

�

4.5.3. Usual maps with renormalized face weights. F(g,k)|n=0 is the generating series of
usual triangulations, with weight g3 per triangle. This is different from F (g,k), which is by
definition the generating series of usual maps with renormalized face weights (2.4), and
still depends on n.

Recall that F(g,k) depends on n in two ways. Firstly, n appears as a proportionality
coefficient in A(x, y) – see (4.1) – in the linear functional relation of Theorem (3.7).
Secondly, the linear equation for F(x) gives two equations determining γ± as functions
of n, and this data gives the interval x ∈ (γ−, γ+) on which the linear equation for F(g,k)

holds. For (g, k) 6= (0, 1), we can disentangle the two dependences in n: let us call n1

the variable appearing linearly in the linear equation, and n2 the variable on which γ±
depends. We denote momentarily F

(g,k)
n1,n2 the corresponding generating series. Note that

the parametrization x(v) only depends on n2.
The previous remarks show that the generating series of maps in the O(n) model is

F(g,k) = F(g,k)
n1=n,n2=n,

while the generating series of usual maps with renormalized face weights is

F (g,k) = F
(g,k)
n1=0,n2=n.

Note however that F(x) = F(x).
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Let us use curly letters to denote the analogue, in the context of usual maps with
renormalized face weights, of all quantities defined in the context of maps of the O(n)
model. We have

G(2)
(v1, v2) =

1

4

[
Υ′1/2(v1 + v2)−Υ′1/2(v1 − v2)−Υ′1/2(−v1 + v2) + Υ′1/2(−v1 − v2)

]

+
x′(v1)x′(v2)

2(x(v1)− x(v2))2
,

where Υ1/2 is a function of the elliptic modulus τ , thus a function of n2. The modified
building block is defined as:

Bε,l = ∂2l
v Bε,0, Bε,0 = G(2)

(v, τ + ε).(4.40)

As the generating series of disks are F(x) = F(x) and the parametrization x(v) only
depends on n2, we have

∆εG(v) = ∆εG(v).

The modified recursion coefficients (compare with (4.23)-(4.25)) are

K
[
l
ε
m
σ
m′
σ′
]

= Res
w→0

−w2l+1dw

(2l + 1)!∆εG(w)
Bσ,m(w + τ + ε)Bσ′,m′(−w + τ + ε),

K̃
[
l
ε
l′
ε′
m
σ

]
=

−δε,ε′
(2l − 1)! (2l′)!

Res
w→0

dw

w

w2(l+l′)

∆εG(w)
Bm,σ(τ + ε+ w).

Following the proof of Proposition 4.7, the non-zero modified initial data read:

C(0,3)
[
l1
ε1
l2
ε2
l3
ε3

]
= −2 δl1,l2,l3,0 δε1,ε2,ε3

yε1,1
, C(1,1)

[
l
ε

]
= δl,0

( yε,2
24y2

ε,1

+
υ1/2

yε,1

)
− δl,1

24yε,1
.

Compared to the initial conditions for C’s, the only difference is the replacement of υb,1 by
υ1/2 (see (4.22) for their definition) in C(1)

[
0
ε

]
. Then, the analogue of Propositions 4.6-4.11

is:

Proposition 4.12. For 2g − 2 + k > 0, we have a decomposition into a finite sum:

G(g,k)(v1, . . . , vk) =
∑

l1,...,lk≥0
ε1,...,εk∈{0, 12}

C(g,k)
[
l1
ε1
· · · lkεk

] k∏

i=1

Bεi,li(vi).

The coefficients are given by the unfolded formula:

C(g,k)
[
l1
ε1
· · · lkεk

]

=
∑

G∈S(g,k)

(m,σ)
∈Col(G;(l,ε))

∏

v∈V ′(G)

K
[m[v]
σ[v]

] ∏

v∈Vt(G)

K̃
[m[v]
σ[v]

] ∏

v∈Vtt(G)

C(0,3)
[m[v]
σ[v]

] ∏

v∈Vo(G)

C(1,1)
[m(e0

v )

σ(e0
v )

]
.

�
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5. Critical behavior in the bending energy model (disregarding nesting)

5.1. Phase diagram. For fixed values (n, α, g, h), we introduce:
uc = sup{u ≥ 0 : F •` <∞}

in terms of the generating series of pointed disks defined in (2.5). If uc = 1 (resp. uc < 1,
uc > 1), we say that the model is at a critical (resp. subcritical, supercritical) point. At a
critical point, the generating series F(x) = F(x) has a singularity when u→ 1−, and the
nature (universality class) of this singularity is characterized by some critical exponents.
The phase diagram of the model with bending energy was rigorously determined in [6, 4],
and is plotted qualitatively in Figure 8, see also the early works [40, 34] for α = 1. We
now review the precise results obtained in [6, 4].

g

h

subcritical

dense

dilute

generic

supercritical

Figure 8. The phase diagram of the model with bending energy is qual-
itatively insensitive to the value of n ∈ (0, 2) and α not too large.

Three universality classes can be found in the model with bending energy: generic, non-
generic dilute and non-generic dense. For n > 0, we find a dense critical line, which ends
with a dilute critical point, and continues as a generic critical line. For n = 0, only the
generic critical line remains. As the generic universality class is already present in maps
without loops, we will not pursue its study. On the contrary, the non-generic universality
class is specific to the loop model, and it corresponds to a regime where macroscopic loops
continue to exist in maps of volume V →∞ [40, 26]. The remaining of the text aims at
describing our various generating series on the non-generic critical line.

A non-generic critical point occurs when γ+ approaches the fixed point of ς:

γ∗+ = ς(γ∗+) =
1

h(α + 1)
.

In this limit, the two cuts γ and ς(γ) merge at γ∗+, and one can justify on the basis of
combinatorial arguments [6, Section 6] that γ− → γ∗− with

|γ∗−| < |γ∗+| and ς(γ∗−) 6= γ∗−.
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In terms of the parametrization x(v), it amounts to letting T → 0, and this is conveniently
measured in terms of the parameter

q = e−
π
T → 0.

After establishing the behavior of x(v) and the special function Υb(v) in this regime (see
Appendix A for a summary), one can prove:

Theorem 5.1. [6] Assume α = 1, and introduce the parameter

ρ = 1− 2hγ∗− = 1− γ∗−
γ∗+
.

There is a non-generic critical line, parametrized by ρ ∈ (ρmin, ρmax]:

g

h
=

4(ρb
√

2 + n−
√

2− n)

ρ2(b2 − 1)
√

2− n+ 4ρb
√

2 + n− 2
√

2− n,

h2 =
ρ2b

24
√

4− n2

ρ2 b(1− b2)
√

2 + n− 4ρ
√

2− n+ 6b
√

2 + n

−ρ2(1− b2)
√

2− n+ 4ρb
√

2 + n− 2
√

2− n.

It realizes the dense phase of the model. The endpoint

ρmax =
1

b

√
2− n
2 + n

corresponds to the fully packed model g = 0, with the critical value h = 1
2
√

2
√

2+n
. The

endpoint

ρmin =

√
6 + n−

√
2− n

(1− b)
√

2 + n
is a non-generic critical point realizing the dilute phase, and it has coordinates:

g

h
= 1 +

√
2− n
6 + n

,

h2 =
b(2− b)

3(1− b2)(2 + n)

(
1− 1

4
√

(2− n)(6 + n)

)
.

The fact that the non-generic critical line ends at ρmax < 2 is in agreement with |γ∗−| <
|γ∗−|.
Theorem 5.2. [4] There exists αc(n) > 1 such that, in the model with bending energy
α < αc(n), the qualitatitive conclusions of the previous theorem still hold. For α = αc(n),
only a non-generic critical point in the dilute phase exist, and for α > αc(n), non-generic
critical points do not exist.

Theorem 5.3. [4] Assume (g, h) are chosen such that the model has a non-generic critical
point for vertex weight u = 1. When u < 1 tends to 1, we have

q ∼
(1− u

q∗

)c
,

with the universal exponent

c =

{
1

1−b dense,

1 dilute.
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The non-universal constant reads, for α = 1:

q∗ =

{
6(n+2)

b
ρ2(1−b)2

√
2+n+2ρ(1−b)

√
2−n−2

√
2+n

ρ2b(1−b2)
√

2+n−4ρ(1−b2)
√

2−n+6b
√

2+n
dense,

24
b(1−b)(2−b) dilute.

For α 6= 1, its expression is much more involved, see [4, Appendix E].

5.2. Principles.

5.2.1. Small and large boundaries. The generating series of connected maps of genus g in
the O(n) model with fixed volume V and fixed boundary lengths `1, . . . , `k reads

[uV ]F
(g,k)
`1,...,`k

=

∮
du

2iπ uV+1

∮ k∏

i=1

dxi x
`i
i

2iπ
F(g,k)(x1, . . . , xk).

The contour for integration of xi is originally around ∞ with negative orientation, but
we can move it to surround γ. At a critical point, the asymptotics when V → ∞ are
dominated by the behavior of the generating series at u = 1. If we want to keep `i
finite, we can leave the contour integral over xi in a neighborhood of ∞, and by setting
xi = x(1

2
+ τwi) we trade it for a contour surrounding wi = w∗∞. If we want to let `i →∞

at a rate controlled by V → ∞, the asymptotics will be dominated by the behavior of
the generating series for xi near the singularity γ+ → γ∗+, i.e. for xi = x(τwi) with wi of
order 1. The same principle hold for any of the unrefined generating series F and FFF Γ.

If Hs(x1 . . . , xk) is a refined generating series of maps with k boundaries (with s a
Boltzmann weight for certain separating loops), we can compute the number of such
maps having fixed volume V , fixed number P of such separating loops, and fixed boundary
perimeters, by
[
sPuV

∏

i

x
−(`i+1)
i

]
Hs(x1, . . . , xk) =

∮
ds

2iπ

∮
du

2iπ

∮ [ k∏

i=1

x`ii dxi
2iπ

] du

uV+1

Hs(x1, . . . , xk)

sP+1uV+1
.

In the regime P, V →∞, the contour integral over s will be determined by the behavior
of the generating series near the dominant singularity in the variable s, and u→ 1.

To summarize, we need to study the behavior of generating series approaching critical-
ity, i.e. q = e−

π
T with τ = iT → 0, while x = x(v) with v = ε + τw and w is in a fixed

compact. With ε = 1
2
we access to the regime of finite (also called "small") boundaries,

and with ε = 0 to the regime of large boundaries.

5.3. Organization of the computations. In the present Section 5, we will study maps
without marked points. The modifications arising to include a number k′ > 0 of marked
points will be discussed in Section 7.3. We will find, as can be expected, that marked
points behave – as far as critical exponents are concerned – as small boundaries.

Our first goal is to determine the behavior of the generating series of maps F(g,k) and
of usual maps with renormalized face weights F (g,k). To obtain it, we first determine the
behavior of the building blocks of Proposition 4.11-4.12 in the next paragraph, and then
study the behavior of the sum over colorings and graphs to derive the behavior of C(g,k) and
C(g,k) (Lemma 5.7). This step is rather technical, and the result for the critical exponent
for C’s and C’s is not particularly simple. Yet, the final result for the critical behavior
of the generating series of maps themselves turns out to be much simpler (Theorem 5.8).
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We recall that the C’s do not have a combinatorial interpretation in terms of maps, so
this technical part should only be seen as a (necessary) intermediate step to arrive to the
F’s and F ’s.

5.4. Preliminaries.

5.4.1. Building blocks. We first examine the behavior at criticality, i.e. q = e−
π
T → 0, of

the various bricks appearing in Proposition 4.11. Let us define

ε, ε′ ∈ {0, 1
2
}, ε⊕ ε′ :=

{
0 if ε = ε′,
1
2

if ε 6= ε′,

and for ε, σ, σ′ ∈ {0, 1
2
}

f(ε, σ, σ′) := b
[
(ε⊕ σ) + (ε⊕ σ′)

]
+
(
d b

2
− 1
)
(1− 2ε),

with d = 1 in the dense phase, and d = −1 in the dilute phase. Its table of values is
(dense on the left, dilute on the right):

σ + σ′ 0 1
2

1

ε = 0 b
2
− 1 b− 1 3b

2
− 1

ε = 1
2

b b
2

0

σ + σ′ 0 1
2

1

ε = 0 − b
2
− 1 −1 b

2
− 1

ε = 1
2

b b
2

0

Lemma 5.4. In the critical regime τ = iT with T → 0+, we have for the building blocks
of the generating series of maps in the bending energy model

K
[
l
ε
m
σ
m′
σ′
]

=
(π
T

)2(m+m′−l)+1

qf(ε,σ,σ′)
{
K∗
[
l
ε
m
σ
m′
σ′
]

+O(qb)
}
,

K̃
[
l
ε
l′
ε
m
σ

]
=

(π
T

)2(m−l−l′)−1

qf(ε,ε,σ)
{
K̃∗
[
l
ε
m
σ
m′
σ′
]

+O(qb)
}
,

C(0,3)
[

0
ε

0
ε

0
ε

]
=

(π
T

)−3

qf(ε,ε,ε)
{
C(0,3)
∗
[

0
ε

0
ε

0
ε

]
+O(qb)

}
,

C(1,1)
[
l
ε

]
=

(π
T

)−(2l+1)

qf(ε,ε,ε)
{
C(1,1)
∗
[
l
ε

]
+O(qb)

}
,

Bε,l(τφ+ ε′) =
(π
T

)2l+2

qb(ε⊕ε
′)
{
B
∗,(2l+1)
ε⊕ε′,l (πφ) +O(qb)

}
.

And, for the building blocks of the generating series of usual maps with renormalized face
weights

K
[
l
ε
m
σ
m′
σ′
]

=
(π
T

)2(m+m′−l)+1

qf(ε,σ,σ′)
{
K∗
[
l
ε
m
σ
m′
σ′
]

+O(qb)
}
,

K̃
[
l
ε
l′
ε
m
σ

]
=

(π
T

)2(m−l−l′)−1

qf(ε,ε,σ)
{
K̃∗
[
l
ε
m
σ
m′
σ′
]

+O(qb)
}
,

C(0,3)
[

0
ε

0
ε

0
ε

]
=

(π
T

)−3

qf(ε,ε,ε)
{
C(0,3)
∗
[

0
ε

0
ε

0
ε

]
+O(qb)

}
,

C(1,1)
[
l
ε

]
=

(π
T

)−(2l+1)

qf(ε,ε,ε)
{
C(1,1)
∗
[
l
ε

]
+O(qb)

}
,

Bε,l(τφ+ ε′) =
(π
T

)2l+2

q
1
2

(ε⊕ε′)
{
B∗,(2l+1)
ε⊕ε′,l (πφ) +O(q

1
2 )
}
.



NESTING STATISTICS IN THE O(n) LOOP MODEL . . . 39

Note that all exponents are identical to the previous ones, except for the elementary blocks:
the exponent of B is the exponent of B specialized to b = 1

2
.

The expressions for the leading order coefficients – here denoted with ∗ – are provided
in Appendix E. They are non-zero and satisfy the same selection rules as the unstarred
quantities on the left-hand side. An interesting feature of the result is that, in the formula
of Proposition 4.11 (resp. Proposition 4.12), the contribution to C(g,k) (resp. C(g,k)) of a
colored graph (G,σ) has order of magnitude qf(G,σ) with

f(G,σ) =
∑

v∈V (G)

f(σ[v])

and f(σ[v]) does not depend on the vertex being terminal, bi-terminal, having a loop or
not. Since q = e−

π
T → 0 when T → 0+, the leading term in C(g,k) and C(g,k) are given by

the colored graphs minimizing f(G,σ). We will study the minimizing graphs and their
exponent in Section 5.5, but we already remark that they are identical for C(g,k) and C(g,k).

5.4.2. Minimization over colorings.

Lemma 5.5. For a given graph G of genus g with k legs, the coloring assigning 0 to each
edge realizes the minimum of f(G;σ), which is

(2g − 2 + k)
(
d b

2
− 1
)
.

Proof. Every f(ε, σ, σ′) realizes its minimum
(
d b

2
− 1
)
at (ε, σ, σ′) = (0, 0, 0), and the

coloring with σ[v] = (0, 0, 0) for all v ∈ V (G) receives a non-zero contribution at this
order. �

5.4.3. Study of a critical exponent. Let bxc denote the unique integer such that bxc ≤
x < bxc+ 1. Let us define

β1(i1/2) := b i1/2
2
c+ 2δi1/2,1,

β2(g, k, i0) := 2g − 2 + bk
2
c+ b i0+(kmod 2)

2
c.

We then define a function of three integers g, i0, i1/2 such that 2g − 2 + i0 + i1/2 ≥ 1:
(5.1)

β(g, i0, i1/2) =

{
β1(i1/2) b

2
+ β2(g, i0 + i1/2, i0)(d b

2
− 1) if β2(g, i0 + i1/2, i0) > 0,

0 if β2(g, i0 + i1/2, i0) = 0.

It will be useful later to know what happens when we decrement i0 and increment i1/2.

Lemma 5.6. For i0 > 0, we have β(g, i0, i1/2) + ∆ = β(g, i0 − 1, i1/2 + 1), where

∆ =





2 b
2
−
(
d b

2
− 1
)
, if i1/2 = 0,

− b
2
, if i1/2 = 1,

−
(
d b

2
− 1
)
, if i1/2 > 0 even,
b
2
, if i1/2 > 1 odd,
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except for the exceptional cases (g, k) = (0, 3), (0, 4) and (g, k, i0) = (1, 1, 1), (0, 5, 1). In
the last cases, we obtain

∆ =

{
−
(
d b

2
− 1
)
, if (g, k) = (1, 1), i0 = 1,

−2 b
2
−
(
d b

2
− 1
)
, if (g, k) = (0, 5), i0 = 1,

and, in the other exceptional cases, where some configurations (i0, i1/2) give C(g,k) = 0, we
only record the variations between configurations giving non-zero C’s:

• β(0, 3, 0)−
(
d b

2
− 1
)

= β(0, 0, 3) = 0,
• β(0, 4, 0) + b

2
−
(
d b

2
− 1
)

= β(0, 2, 2),
• β(0, 2, 2)− b

2
−
(
d b

2
− 1
)

= β(0, 0, 4) = 0.

Proof. The exceptional cases can be easily checked with the expression for β. For the
general situation, we separate cases according to the parity of i0 and k, and we check first
how β2(g, i0 + i1/2, i0) varies depending on the parity of i1/2:

• If i1/2 is even, then β2(g, k, i0 − 1) = β2(g, k, i0)− 1.
• If i1/2 is odd, then β2(g, k, i0 − 1) = β2(g, k, i0).

For the variation of β1(i1/2), we distinguish four cases:
• β1(1) = β1(0) + 2 = 2.
• β1(2) = β1(1)− 1 = 1.
• If i1/2 > 0 is even, then β2(i1/2 + 1) = β1(i1/2).
• If i1/2 > 1 is odd, then β2(i1/2 + 1) = β2(i1/2) + 1.

�

5.5. Coefficients C and C.
Lemma 5.7. Let g ≥ 0 and k ≥ 1 such that 2g − 2 + k > 0. Let ε1, . . . , εk ∈ {0, 1

2
} be

fixed, and denote i0 (resp. i1/2) be the number of εi = 0 (resp. = 1
2
). Then, in the critical

regime τ = iT with T → 0+ we obtain

C(g,k)
[
l1
ε1
· · · lkεk

]
=

(π
T

)−∑k
i=1(2li+1)

qβ(g,k0,i1/2)
(
C(g,k)
∗
[
l1
ε1
· · · lkεk

]
+O(q

b
2 )
)
,

C(g,k)
[
l1
ε1
· · · lkεk

]
=

(π
T

)−∑k
i=1(2li+1)

qβ(g,k0,i1/2)
(
C(g,k)
∗

[
l1
ε1
· · · lkεk

]
+O(q

b
2 )
)
,

where the leading coefficients indicated with ∗ are non-zero.

Proof. As the scaling of the elementary blocks is the same for C(g,k) and C(g,k), the final
scaling exponent will be the same. We shall do the reasoning for C(g,k). The determination
of the exponent of π

T
will be addressed in the third part of the proof. For the moment, we

only focus on the powers of q. Since we know C(g,k)
[
l1
ε1
· · · lkεk

]
is invariant by permutation

of the pairs (li, εi)
k
i=1, the scaling exponent will only depend on g, i0 and i1/2. In the case

i1/2 = 0, we have:

β(g, k, 0) =
(

2g − 2 + bk
2
c+ bk+(kmod 2)

2
c
) (

d b
2
− 1
)

= (2g − 2 + k)
(
d b

2
− 1
)
,

so the claim is correct according to Lemma 5.5.
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We prove all the other cases by induction on 2g− 2 + k, starting by the two base cases
with 2g − 2 + k = 1. We know in both base cases there is only one graph with single
vertex.
• (g, k) = (0, 3). Remember C(0,3)

[
l1
ε1
l2
ε2
l3
ε3

]
= 0 in case we do not have ε1 = ε2 = ε3. So the

only case to consider is i1/2 = 3 and we have f(1
2
, 1

2
, 1

2
) = 0, which is equal to β(0, 0, 3)

since β2(0, 3, 0) = −1 < 0.
• (g, k) = (1, 1). Remember the color of a loop should be identical to the color of the
other edge. So in the case i1/2 = 1, we get f(1

2
, 1

2
, 1

2
) = 0, which is equal to β(1, 0, 1) since

β2(1, 1, 0) = 0.
Now we will prove the result for cases with 2g− 2 + k supposing it is true for all cases

(g, k) with 2g − 2 + k < 2g − 2 + k. We know we can decompose graphs G ∈ S(g,k) in
terms of a graph P with only one trivalent vertex v0 and no loops, and either one graph
G̃ ∈ S(g−1,k+1) or two graphs G ′ ∈ S(g′,k′+1) and G ′′ ∈ S(g′′,k′′+1), with g′ + g′′ = g and
k′ + k′′ = k − 1, and excluding (g′, k′) = (0, 0) and (g′′, k′′) = (0, 0).

The two last legs of P are shared either with two legs of G̃, or with one in G ′ and one in
G ′′. Consider the following decompositions ĩ = ĩ0 + ĩ1/2, k′ = i′0 + i′1/2 and k′′ = i′′0 + i′′1/2,
with ĩ + 2 = k + 1 and (k′ + 1) + (k′′ + 1) = k + 1, where ĩ, k′ and k′′ correspond to the
number of legs in the respective subgraphs which are non-shared with P .

In order to extend a coloring for the corresponding subgraph G̃, or G ′ and G ′′ to a coloring
of the whole G, we will pick σ[v0] = (σ0, σ1, σ2) in a compatible way, i.e. the colorings
σ1 and σ2 of the two legs of P which are shared with the corresponding subgraphs will
coincide with the given ones for these legs on the subgraphs. We will make these choice to
minimize f(G;σ), which will be f(σ[v0])+

∑
v∈V (G̃) f(σ̃[v]) or f(σ[v0])+

∑
v∈V (G′) f(σ′[v])+∑

v∈V (G′′) f(σ′′[v]).
For every configuration i0 + i1/2 = k, we will first build a graph with a coloring which

is compatible with the fixed colorings of the legs (G,σ) ∈ S(g,k) × Col(G; (l, ε)) from the
ones from previous induction steps such that f(G;σ) = β(g, i0, i1/2), i.e. a graph realizing
the desired value. Secondly, we will have to prove that there is no other (G ′,σ′) ∈ S(g,k)×
Col(G; (l, ε)) with f(G ′;σ′) < β(g, i0, i1/2), i.e. β(g, i0, i1/2) is actually the minimum.

Remember that the cases with i0 = k and i1/2 = 0 were already checked, so we do not
consider them in the following.

First part: special cases

We will deal first with the two special cases (g, k) = (0, 4), (0, 5).

• (g, k) = (0, 4). The graphs in S(0,4) have only two vertices, one terminal and one bi-
terminal. This implies that the only options with C(0,4)

[
l1
ε1
· · · l4ε4

]
6= 0 are i0 = 0, 2, 4. We

show in Figure 9 the graphs with a suitable coloring which realize the desired value in
every remaining case.

Observe that G ′′ is the only graph in S(0,3). Since i′′1/2 = 2 and the only vertex is biterminal,
we have to set σ2 = 1

2
here. We already checked that f(G ′′;σ′′) = β(0, 0, 3) = 0. Therefore,
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0

0
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

(k0, k1/2) = (2, 2) (k0, k1/2) = (0, 4)

Figure 9. (g, k) = (0, 4)

for (i0, i1/2) = (2, 2) we obtain f(G;σ) = f(0, 0, 1
2
) = d b

2
− 1 + b

2
= β(0, 2, 2) and for

(i0, i1/2) = (0, 4), f(G;σ) = f(1
2
, 1

2
, 1

2
) = 0 = β(0, 0, 4), as we wanted.

• (g, k) = (0, 5). For every possible (i0, i1/2) we choose the graph with the corresponding
colorings shown in Figure 10:

0

0

0
1
2

1
2

1
2

0

(k0, k1/2) = (3, 2)

0

0
1
2

1
2

1
2

1
2

1
2

(k0, k1/2) = (2, 3)

1
2

1
2

0
1
2

1
2

1
2

0

(k0, k1/2) = (1, 4)

1
2

1
2

1
2

1
2

1
2

1
2

1
2

(k0, k1/2) = (0, 5)

0

0
1
2

0

0

0

1
2

(k0, k1/2) = (4, 1)

Figure 10. (g, k) = (0, 5)

Observe that G ′′ ∈ S(0,4), which also makes the choice of σ2 special.
� If i0 = 4 and i1/2 = 1, with the chosen graph we can only set σ2 = 1

2
. By induction

hypothesis, we have f(G ′′;σ′′) = β(0, 2, 2) = b− 1. Therefore

f(G;σ) = f(0, 0, 1
2
)+β(0, 2, 2) = (d+1) b

2
−1+(d+1) b

2
−1 = 2 b

2
+2
(
d b

2
− 1
)

= β(0, 4, 1).

� If i0 = 3 and i1/2 = 2, we can choose σ2 = 0. By induction hypothesis, we have
f(G ′′;σ′′) = β(0, 2, 2) = d b

2
− 1 + b

2
. Therefore

f(G;σ) = f(0, 0, 0) + β(0, 2, 2) = d b
2
− 1 + b

2
+ d b

2
− 1 = β(0, 3, 2).

� If i0 = 2 and i1/2 = 3, we can only choose σ2 = 1
2
. By induction hypothesis, we have

f(G ′′;σ′′) = β(0, 0, 4) = 0. Therefore

f(G;σ) = f(0, 0, 1
2
) = (d + 1) b

2
− 1 = β(0, 2, 3).
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� If i0 = 1 and i1/2 = 4, we can only choose σ2 = 0. Therefore f(G;σ) = f(1
2
, 1

2
, 0) +

β(0, 2, 2) = b
2

+ b
2

+ d b
2
− 1 = β(0, 1, 4).

� If i0 = 0 and i1/2 = 5, we can only choose σ2 = 1
2
. Thus f(G;σ) = f(1

2
, 1

2
, 1

2
)+β(0, 0, 4) =

0 = β(0, 0, 5).

First part: general cases

For the general cases with (g, k) 6= (0, 4), (0, 5) we will consider four cases. If k > 2, we
will be automatically in one of the first two cases.
Case I: i0 ≥ 2. We will choose the graph G constructed from G ′ and G ′′, with k′ = i′0 = 1
and g = 0. Observe that G ′ has 2 legs, both with coloring 0. In this case, v0 is a terminal
vertex, so for the contribution to be non-zero, we have σ0 = σ1 and we know that σ1 = 0
because the leg is shared with G ′. Note that i0 = i′′0 + 2 and i1/2 = i′′1/2.

0

0

σ2
...

}
k′′ = k − 2g

Figure 11. i0 ≥ 2

In the general case, we can always choose σ2 = 0. By the induction hypothesis, we can
choose (G ′′,σ′′) such that f(G ′′;σ′′) = β(g, i′′0 + 1, i′′1/2). Therefore

f(G;σ) = d b
2
− 1 + β1(i′′1/2) b

2
+ β2(g, k′′ + 1, i′′0 + 1)

(
d b

2
− 1
)

= β1(i1/2) b
2

+ (β2(g, k − 1, i0 − 1) + 1)
(
d b

2
− 1
)

= β(g, i0, i1/2).

The last step is a simple computation separating the cases where k − 1 is even and odd.

Case II: i1/2 ≥ 2. Again we choose the graph G constructed from G ′ and G ′′, with k′ = 1
and = 0, but with k′1/2 = 1 because in this case we have no assumption on i0. And again
v0 is a terminal vertex, so for the contribution to be non-zero, we have σ0 = σ1, but here
σ1 = 1

2
. Note that i0 = i′′0 and i1/2 = i′′1/2 + 2.

σ2
...

}
k′′ = k − 2

1
2

1
2

g

Figure 12. i1/2 ≥ 2
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It will minimize to choose σ2 = 1
2
, if i′′1/2 = 1, and σ2 = 0, otherwise. If i′′1/2 = 1, we have

f(G;σ) = 0 + β1(2) b
2

+ β2(g, k′′ + 1, i′′0)
(
d b

2
− 1
)

= β1(i1/2) b
2

+ β2(g, k − 1, i0)
(
d b

2
− 1
)

= β(g, i0, i1/2).

In the last step we separate the cases where k− 1 is even and odd, and we use i0 + 3 = k
to deduce the parity of i0 in every case. If i′′1/2 6= 1, we have:

f(G;σ) = b
2

+ β1(i′′1/2) b
2

+ β2(g, k′′ + 1, i′′0 + 1)
(
d b

2
− 1
)

= β1(i′′1/2 + 2) b
2

+ β2(g, k − 1, i0 + 1)
(
d b

2
− 1
)

= β(g, i0, i1/2).

The last step is again a simple computation separating cases according to the parity of
k − 1.
Case III: i0 = 1, i1/2 = 1. This is the remaining case of k = 2. Observe that here g > 0
so that 2g − 2 + 2 > 0. We distinguish two cases:
• g = 1. We choose the graph G constructed from G̃ with ĩ = ĩ1/2 = 1. Since the vertex
of G̃ is terminal in G, at least σ1 or σ2 should be 1

2
for the contribution of the graph to

be non-zero. Actually if we set σ1 = σ2 = 1
2
, we get f(G;σ) = f(0, 1

2
, 1

2
) + f

(
1
2
, 1

2
, 1

2

)
=

d b
2
− 1 + b = β(1, 1, 1).

0 0

1
2

1
2

Figure 13. (g, i0, i1/2) = (1, 1, 1)

• g > 1. We build G from G ′ and G ′′ with k′ = i′1/2 = 1, g′ > 0, k′′ = 0 and g′′ > 0, which
we can choose because g > 1. Observe that if g > 0, then 2g − 2 + 1 > 0 and hence in
our cases we will have β2 > 0. Since i′0, i′′0 = 0 and i0 = 1, σ0 = 0 and we can choose
σ1 = σ2 = 0.

0
0

0

1
2

g′

g′′

Figure 14. g > 1, (i0, i1/2) = (1, 1)

Therefore
f(G;σ) = ( b

2
− 1) + β1(1) b

2
+ β2(g′, 2, 1)

(
d b

2
− 1
)

+ β1(0) b
2

+ β2(g′′, 1, 1)
(
d b

2
− 1
)

= b+ (2g − 2 + 1)
(
d b

2
− 1
)

= β(g, 1, 1).
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Case IV: k = 1. The case (1, 1) was already a base one, so here we suppose g > 1. We
consider the case k = i1/2 = 1. So σ0 = ε1 = 1

2
and we construct G from G ′ and G ′′ with

k′ = k′′ = 0 and g′, g′′ > 0 . We can choose σ1 = σ2 = 0.

1
2

0

0

g′

g′′

Figure 15. k = 1

Therefore

f(G;σ) = b+ β1(0) b
2

+ β2(g′, 1, 1)
(
d b

2
− 1
)

+ β1(0) b
2

+ β2(g′′, 1, 1)
(
d b

2
− 1
)

= b+ (2g − 2)
(
d b

2
− 1
)

= β(g, 0, 1).

Second part: disconnected cases

For the second part of the proof, we will check that all other possible graphs and
colorings for every case do not give a smaller exponent. We first discuss the disconnected
case, i.e. the case where G is constructed from G ′ and G ′′ so that G ′,G ′′ 6∈ S(0,2). The cases
with G ′ or G ′′ in S(0,3) or S(0,4) will be considered apart because they will have some extra
restrictions to choose σ1 and σ2 and will be called the exceptional cases in this part.

σ0

σ1

σ2

...

...

}
k′

}
k′′

g′

g′′

Figure 16. G from G ′ and G ′′

Moreover, remember that a graph in S(0,5) and with i0 = 0, i1/2 = 5 was also giving the
special value of β2(0, 5, 0) = 0 and hence β(0, 0, 5) = 0 automatically. However, observe
that when one of the pieces G ′ or G ′′ is in S(0,5), we will not have any exceptional situation
here because a graph in S(0,5) with i′1/2 = 4 and σ1 = 1

2
, or i′′1/2 = 4 and σ2 = 1

2
will never

be chosen to minimize; it will always be better to choose σ1 or σ2 to be 0, which in this
case is possible.
Case σ1 = 0. Let us check that choosing σ1 = 0, if possible, always minimizes. Observe
that f(0, 0, σ2) = f

(
0, 1

2
, σ2

)
− b

2
. Then, we have

f(0, 0, σ2) + β(g′, i′0 + 1, i′1/2) ≤ f(0, 1
2
, σ2) + β(g′, i′0, i

′
1/2 + 1).

Indeed, it is clear if i′1/2 6= 1, and if i′1/2 = 1, we always have an equality because

f(0, 0, σ2) + β(g′, i′0 + 1, 1) = f(0, 1
2
, σ2)− b

2
+ β(g′, i′0, 2) + b

2
.
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The same argument works for σ2. Now, we should check that the exceptional cases, where
we cannot choose σ1 = σ2 = 0, do not minimize further.
• If σ1 = 1

2
, σ2 = 0, (g′, k′ + 1) = (0, 3), i′1/2 = 2, we have

f(G;σ) =
(
(d + 1) b

2
− 1
)

+ 0 + β(g, i0, i1/2 − 1) = δi1/2,3 b+ β(g, i0, i1/2),

where we have used that here i1/2 ≥ 2.
• If σ1 = 1

2
, σ2 = 0, (g′, k′ + 1) = (0, 4), i′1/2 = 1, we have

f(G;σ) = (d + 1) b
2
− 1 + b

2
+
(
d b

2
− 1
)

+ β1(i1/2 − 1) b
2

+ β2(g, k − 4, i0 − 2)
(
d b

2
− 1
)

= (β1(i1/2 − 1) + 2) b
2

+ (β2(g, k − 4, i0 − 2) + 2)
(
d b

2
− 1
)

= (β1(i1/2 − 1) + 2) b
2

+ (β2(g, k, i0)− 1)
(
d b

2
− 1
)
≥ β(g, i0, i1/2).

In the last step we have used that β1(i1/2 − 1) + 2 > β(i1/2).
• If σ1 = 1

2
, σ2 = 0, (g′, k′ + 1) = (0, 4), i′1/2 = 3, we have

f(G;σ) =
(
d b

2
− 1 + b

2

)
+ 0 + β1(i1/2 − 3) b

2
+ β2(g, k − 4, i0)

(
d b

2
− 1
)

= (β1(i1/2 − 3) + 1) b
2

+ (β2(g, k − 4, i0) + 1)
(
d b

2
− 1
)

= (β1(i1/2 − 3) + 1) b
2

+ (β2(g, k, i0)− 1)
(
d b

2
− 1
)

≥ (β1(i1/2)− 1) b
2

+ (β2(g, k, i0)− 1)
(
d b

2
− 1
)

= β(g, i0, i1/2)−
(
d b

2
− 1 + b

2

)
≥ β(g, i0, i1/2).

• The remaining cases with σ1 = 1
2
, σ2 = 1

2
consist of G ′,G ′′ ∈ S(0,4); G ′ ∈ S(0,3) and

G ′ ∈ S(0,4), and symmetric ones by exchanging the role of σ1 and σ2. They can be checked
easily from the results for the base cases (0, 3) and (0, 4).

f(G;σ) =
(
d b

2
− 1
)

+ β(g′, i′0 + 1, i′1/2) + β(g − g′, i′0 + 1, i′1/2)

= (β1(i′1/2) + β1(i′′1/2)) b
2

+
(
β2(g′, k′ + 1, k′0 + 1) + β2(g′′, k′′ + 1, k′′0 + 1) + 1

) (
d b

2
− 1
)
.

On the one hand, separating cases according to the parity of k′ and k′′, and the parity of
i′0 and i′′0, we check that

β2(g′, k′ + 1, k′0 + 1) + β2(g′′, k′′ + 1, k′′0 + 1) + 1

≤ β2(g′ + g′′, k′ + k′′ + 1, i′0 + i′′0 + 1) = β2(g, k, i0)(5.2)

and hence with this part we cannot minimize further.
On the other hand, distinguishing cases according to the parity of k′1/2 and i′′1/2, and

considering the special cases with one or the two of them equal to 1, we see that β1(i′1/2)+

β1(i′′1/2) = β1(i′1/2+i′′1/2)+1 = β1(i1/2)+1, if i′1/2, i
′′
1/2 > 1 and odd, and β1(i′1/2)+β1(i′′1/2) ≥

β1(i1/2), otherwise.
Finally, we check easily that in the case of odd i′1/2, i

′′
1/2 > 1, where we have minimized

β1 by 1, we lie in the cases with β2(g′, k′+1, k′0 +1)+β2(g′′, k′′+1, k′′0 +1)+1 < β2(g, k, i0).
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Therefore, we also do not minimize globally, i.e.

f(G;σ) ≥ β(g, i0, i1/2),

because − b
2
> d b

2
− 1 and thus, with a minimizing purpose, we prefer β2 + 1 to β1 − 1.

Case σ0 = 1
2
. As in the previous cases, it can be checked first that the exceptional cases

do not minimize further. Let us check now which σ1 we should choose to minimize, making
use of Lemma 5.6.

f(1
2
, 0, σ2) + β1(g′, i′0 + 1, i′1/2) = f(1

2
, 1

2
, σ2) + b

2
+ β1(g′, i′0, i

′
1/2 + 1)−∆.

If i′1/2 6= 1, ∆ ≥ b
2
and hence σ1 = 0 minimizes. But, if i′1/2 = 1, ∆ = − b

2
and hence

σ2 = 1
2
is the minimizing choice. By the symmetry of the situation, the same argument

works for the choice of σ2 depending on i′′1/2.
• i′1/2 = i′′1/2 = 1. Using the inequality (5.2), we have

f(G;σ) = 0 + β(g′, i′0, i
′
1/2 + 1) + β(g′′, i′0, i

′
1/2 + 1)

= β1(2)b+ (β2(g′, k′ + 1, k′0) + β2(g′′, k′′ + 1, k′′0))
(
d b

2
− 1
)

≥ β1(3) b
2

+ (β2(g, k, i′0 + i′′0 − 1)− 1)
(
d b

2
− 1
)

≥ β1(3) b
2

+ β2(g, k, i′0 + i′′0)
(
d b

2
− 1
)

= β(g, i0, i1/2).

• i′1/2 = 1, i′′1/2 6= 1 (and the analogous case i′1/2 6= 1, i′′1/2 = 1). Again using (5.2), we
obtain

f(G;σ) = b
2

+ β(g′, i′0, i
′
1/2 + 1) + β(g′′, i′′0 + 1, i′′1/2)

= b
2

+ (β1(2) + β1(i′′1/2)) b
2

+ (β2(g′, k′ + 1, k′0) + β2(g′′, k′′ + 1, k′′0 + 1))
(
d b

2
− 1
)

≥ b
2

+ β1(i′′1/2 + 2) b
2

+ (β2(g, k, i′0 + i′′0)− 1)
(
d b

2
− 1
)

≥ β1(i1/2) b
2

+ β2(g, k, i′0 + i′′0)
(
d b

2
− 1
)

= β(g, i0, i1/2).

• i′1/2 6= 1, i′′1/2 6= 1.

f(G;σ) = b+ β(g′, i′0 + 1, i′1/2) + β(g′′, i′′0 + 1, i′′1/2)

= b+ (β1(i′1/2) + β1(i′′1/2)) b
2

+(β2(g′, k′ + 1, k′0 + 1) + β2(g′′, k′′ + 1, k′′0 + 1))
(
d b

2
− 1
)

≥ b+ β1(i′1/2 + i′′1/2 + 1) b
2

+ (β2(g, k, i′0 + i′′0 + 1)− 1)
(
d b

2
− 1
)

≥ b+ β1(i′1/2 + i′′1/2 + 1) b
2

+ (β2(g, k, i′0 + i′′0 + 1)− 1)
(
d b

2
− 1
)

≥ b+ β1(i′1/2 + i′′1/2 + 1) b
2

+ (β2(g, k, i′0 + i′′0) + 1− 1)
(
d b

2
− 1
)

= β(g, i0, i1/2).

Second part: connected case

Now let us examine the case in which G is constructed from G̃. Firstly it can be easily
checked apart that special cases with G̃ ∈ S(0,3),S(0,4) do not minimize further.



48 GAËTAN BOROT AND ELBA GARCIA-FAILDE

σ0

σ1

σ2

g − 1
...

}
k̃

Figure 17. G from G̃

Case σ0 = 0. When we are not in the exceptional cases, we can always choose σ1 = σ2 = 0
to minimize.

f(G;σ) =
(
d b

2
− 1
)

+ β1(̃i1/2) b
2

+ β2(g̃, ĩ, ĩ0)
(
d b

2
− 1
)

=
(
d b

2
− 1
)

+ β1(i1/2) b
2

+ β2(g − 1, k + 1, i0 + 1)
(
d b

2
− 1
)

= β1(i1/2) b
2

+ (β2(g, k + 1, i0 + 1)− 1)
(
d b

2
− 1
)

= β(g, i0, i1/2),

where for the last computation we distinguish cases according to the parity of k.

Case σ0 = 1
2
. By the symmetry argument at the beginning of the proof, the only case

remaining to be checked is the one corresponding to i0 = 0 and i1/2 = k. By a computation
similar to the one in the previous case with σ0 = 1

2
, we get that if ĩ1/2 = 1, (σ1, σ2) =

(1
2
, 0) or (σ1, σ2) = (0, 1

2
) are the minimizing choices and if if ĩ1/2 6= 1, then we choose

(σ1, σ2) = (0, 0) to minimize.
• ĩ1/2 = 1 (k = i1/2 = 2).

f(G;σ) = b
2

+ β1(2) b
2

+ β2(g − 1, 3, 1)
(
d b

2
− 1
)

= b
2

+ β1(2) b
2

+ (β2(g, 2, 0)− 1)
(
d b

2
− 1
)

≥ β1(2) b
2

+ β2(g, 2, 0)
(
d b

2
− 1
)

= β(g, 0, 2).

• ĩ1/2 6= 1.

f(G;σ) = b+ β1(̃i1/2) b
2

+ β2(g − 1, k + 1, 2)
(
d b

2
− 1
)

= b+ β1(i1/2 − 1) b
2

+ β2(g − 1, k + 1, 2)
(
d b

2
− 1
) (

d b
2
− 1
)

≥ β1(i1/2) b
2

+ β2(g, k, 0)
(
d b

2
− 1
)

= β(g, 0, i1/2),

where the last inequality is simple to check distinguishing the usual cases.
This exhausts all possible graphs and shows that the colored graphs constructed in the

first part for each (g, i0, i1/2) achieve the minimal value for the exponent, and this value
is given by β(g, i0, i1/2) of (5.1).

Third part

We show recursion on 2g−2+k ≥ 1 that C(g,k)
[
l1
ε1
· · · lkεk

]
receives a power ( π

T
)−

∑k
i=1(2`i+1)

as prefactor. It is already correct for (g, k) = (0, 3) and (1, 1) according to Lemma 5.4. If
it is true for all (g′, k′) such that 2g′− 2 +k′ < χ, then one easily check with the recursive
formula of Proposition 4.7, the behavior of K and ĩ, and the induction hypothesis that it
continue to holds for all (g, k) such that 2g − 2 + k = χ.
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Together with the identification of the leading power of q in the previous steps, this
concludes the proof for the critical behavior of C(g,k). The arguments are identical for
C(g,k).

�

5.6. Generating series of maps. We arrive to the final result for the generating series
of maps in the O(n) model.

Theorem 5.8. Let k = k0 + k1/2 ≥ 1 and g ≥ 0 such that 2g − 2 + k > 0. Let
xj = x(1

2
+ τφj) for j ∈ {1, . . . , k1/2}, i.e. xj remains finite and away from [γ∗−, γ

∗
+]. Let

yj = x(τψj) for j ∈ {1, . . . , k0}, i.e. yj scales with q → 0 such that yj − γ+ ∈ O(q
1
2 ).

Then, we have in the critical regime q → 0:

F(g,k)(x1, . . . , xk1/2
, y1, . . . , yk0)

= q(2g−2+k)(d b
2
−1)− k

2
+ b+1

2
k1/2

(
F(g,k)
∗ (φ1, . . . , φk1/2

;ψ1, . . . , ψk0) +O(q
b
2 )
)
,

and for the generating series of usual maps with renormalized face weights:

F (g,k)(x1, . . . , xk1/2
, y1, . . . , yk0)

= qβ̃(g,k,k1/2)
(
F (g,k)
∗ (φ1, . . . , φk1/2

;ψ1, . . . , ψk0) +O(q
b
2 )
)
,

with β̃(g, k, k1/2) = (2g− 2 + k)(d b
2
− 1)− k

2
+ 3

4
k1/2. Recall that d = 1 in the dense phase

and d = −1 in the dilute phase.

The result for (g, k) = (0, 2) is much easier to derive: this is done in Corollary 6.2 below,
and the outcome is that Theorem 5.8 is still valid for (g, k) = (0, 2). Remark that in this
case, the first term in the critical exponent vanishes so the result is the same in the dense
and dilute phase – only the relation between u and q differ, according to Theorem 5.3.

Proof. First, we study the critical behavior of G(g,k)(v1, . . . , vk). From the decomposition
of Proposition 4.6, the critical behavior for its coefficients C(g,k) from Lemma 5.7 and the
asymptotic behavior for Bε,l(v) in the two regimes v = τφ and v = 1

2
+τφ given in Lemma

5.4, it follows that each summand with ε1, . . . , εk fixed behaves like qβ̄(g,i0,i1/2,j0,j1/2), with
(5.3) β̄(g, i0, i1/2, j0, j1/2) = β(g, i0, i1/2) + (j0 + j1/2) b

2
,

where j0 + j1/2 = |{j ∈ {1, . . . , k} : εj 6= ε′j}| and, more concretely,

j1/2 := |{j ∈ {1, . . . , k1/2} : 0 = εj 6= ε′j = 1
2
}|,

j0 := |{j ∈ {k1/2 + 1, . . . , k1/2 + k0} : 1
2

= εj 6= ε′j = 0}|.
Since we are interested in the dominant behavior of G(g,k)

(
(vi)

k
i=1

)
with fixed k0 and k1/2,

we need to decide which 0 ≤ j0 ≤ k0 and 0 ≤ j1/2 ≤ k1/2 minimize β̄(g, i0, i1/2, j0, j1/2).
Observe that i0 = k0 − j0 + j1/2 and i1/2 = k1/2 − j1/2 + j0.

We will consider first the special base cases, where some configurations (i0, i1/2) give
vanishing C’s.
• (g, k) = (0, 3). Since the only configurations with C(g,k) 6= 0 are (i0, i1/2) = (3, 0) and
(i0, i1/2) = (0, 3), we have (j0, j1/2) = (0, k1/2) and (j0, j1/2) = (i0, 0), respectively.

β̄(0, 3, 0, 0, k1/2) = β(0, 3, 0) + k1/2
b
2
≤ 0 ≤ β(0, 0, 3) + i0

b
2

= β̄(0, 0, 3, k0, 0).
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• (g, k) = (0, 4). First, similarly to the previous case, we have

β̄(0, 4, 0, 0, k1/2) = β(0, 4, 0) + k1/2
b
2
≤ −1

2
≤ 0 ≤ β(0, 0, 4) + i0

b
2

= β̄(0, 0, 4, k0, 0).

The only possibility remaining to compare is (i0, i1/2) = (2, 2). Here we use β(0, 2, 2) =
β(0, 4, 0) + 1 from the previous lemma.

� β̄(0, 2, 2, 2, k1/2) = β(0, 4, 0) + 1 + (2 + k1/2) b
2
≥ β̄(0, 4, 0, 0, k1/2).

� β̄(0, 2, 2, 1, k1/2 − 1) = β(0, 4, 0) + 1 + k1/2
b
2
≥ β̄(0, 4, 0, 0, k1/2).

� β̄(0, 2, 2, 0, k1/2 − 2) = β(0, 4, 0) + 1 + (k1/2 − 2) b
2
≥ β̄(0, 4, 0, 0, k1/2).

Using Lemma 5.6, observe that in all the remaining cases, for i0 > 0, we have

β(g, i0, i1/2) + ∆ = β(g, i0 − 1, i1/2 + 1),

with ∆ ≥ b
2
, except for i1/2 = 1.

• We now justify that it is always better to decrease j0. If i1/2 6= 1,

β̄(g, i0 − 1, i1/2 + 1, j0, j1/2) = β(g, i0 − 1, i1/2 + 1) + (j0 + j1/2) b
2

= β(g, i0, i1/2) + ∆ + (j0 + j1/2) b
2

≥ β(g, i0, i1/2) + (j0 + j1/2 − 1) b
2

= β̄(g, i0, i1/2, j0 − 1, j1/2).

And if i1/2 = 1,

β̄(g, i0 − 1, 2, j0, j1/2) = β(g, i0, 1)− b
2

+ (j0 + j1/2) b
2

= β(g, i0, 1) + (j0 + j1/2 − 1) b
2

= β̄(g, i0, 1, j0 − 1, j1/2).

• Now, if i1/2 6= 1, it is also better to increase j1/2:

β̄(g, i0 − 1, i1/2 + 1, j0, j1/2) = β(g, i0, i1/2) + ∆ + (j0 + j1/2) b
2

≥ β(g, i0, i1/2) + (j0 + j1/2 + 1) b
2

= β̄(g, i0, i1/2, j0, j1/2 + 1).

And if i1/2 = 1, it is better to increase j1/2 by 2:

β̄(g, k − 2, 2, j0, j1/2) = β(g, k, 0) + b
2
−
(
d b

2
− 1
)

+ (j0 + j1/2) b
2

≥ β(g, k, 0) + b+ (j0 + j1/2) b
2

= β̄(g, k, 0, j0, j1/2 + 2).

Therefore, the minimal exponent corresponds to the minimum j0 and the maximum
j1/2, i.e. j0 = 0 and j1/2 = k1/2, and i0 = k and i1/2 = 0:

β̄(g, k, 0, 0, k1/2) = β(g, k, 0) + k1/2
b
2

= (2g − 2 + k)
(
d b

2
− 1
)

+ k1/2
b
2
.

The final result follows from

F(g,k)(x(v1), . . . , x(vk))
[ k∏

i=1

x′(vi)
]

= G(g,k)(v1, . . . , vk),
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the critical behavior we just found for G(g,k)(v1, . . . , vk) and the asymptotic behavior for
x(v) in the two regimes v = τφ and v = 1

2
+ τφ given in Appendix B. The resulting power

of q is

(2g − 2 + k)
(
d b

2
− 1
)

+ k1/2
b
2
− 1

2
k0

= (2g − 2 + k0 + k1/2)
(
d b

2
− 1
)
− k0+k1/2

2
+ k1/2

b+1
2
.

For F ’s, the only difference compared to (5.3) is the factor 1
4
instead of b

2
in the total

exponent for fixed j0, j1/2:

β̄′(g, i0, i1/2, j0, j1/2) = β(g, i0, i1/2) + (j0 + j1/2)1
4
.

One can check that the minimum of this exponent is again reached when j0 = 0 and
j1/2 = k1/2, and this entails the claim. �

6. Critical behavior of nestings in the bending energy model

6.1. Summary of strategy. Our first goal here is to determine the behavior of the
generating series FFF of maps realizing a given nesting graph Γ, without remembering the
arm lengths – i.e. setting s(e) = 1 – and in absence of marked points. For this purpose,
we perform a saddle point analysis of the expression of Proposition 3.10 using the previous
results on the behavior of F , and of the generating series of capped cylinders F̂(2)

s and F̃
(2)
s

in Section 6.2. The final result is Theorem 6.4 below. The second goal is to extend these
computations to the refined generating series FFF (g,k)

Γ,?,s of maps realizing a given nesting
graph. Here, we just need to repeat the computations of our first goal in presence of
the variable s, which roughly amounts to replacing b by b(s) when necessary. The only
important difference is that we wish to extract the leading contribution containing the
dominant singularity in the variable s, and this sometimes brings some modification to
the hierarchy of dominant terms. The result is described in Section 6.3.

In Section 7.1 we convert the critical behavior of all those generating series into asymp-
totics for fixed large volume V and fixed boundary perimeters (Li)i in the regime of small
or large boundaries. In Section 7.2, we also examine the critical behavior in this setting
of the probability of having fixed arm lengths P (e) tending to∞ at rate lnV – which nat-
urally appears from the analysis. In particular, we compute the large deviation function
for the arm lengths.

Finally, in Section 7.3, we show that all these results continue to be valid in presence
of marked points, provided one treats each marked point as a small boundary.

6.2. Cylinders and capped cylinders. In order to derive the critical behavior ofFFF (g,k)
Γ,?,s,

we need one more ingredient, namely the critical behaviors of F̃(2)
s (x1, x2) and F̂

(2)
s (x1, x2).

For this purpose, we first derive the critical behavior of G(2)
s in the various regimes,

which can be straightforwardly obtained using the expression in Proposition 4.3 together
with the asymptotic behavior of the special function Υb in Lemma A.2 in Appendix.
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Lemma 6.1. Set vi = εi + τwi for εi ∈ {0, 1
2
}. In the limit q → 0, we have

G(2)
s (v1, v2) =

( π
T

)2

4− n2s2

q(ε1⊕ε2)b(s)

1− qb(s)

×
{
Hb(s),0(w1, w2)− qb(s)Hb(s)+2,0(w1, w2) +O(q2−b(s)) if ε1 = ε2,

Hb(s), 1
2
(w1, w2)− q1−b(s)Hb(s)−2, 1

2
(w1, w2) +O(q) if ε1 6= ε2,

where

Hb,0(w1, w2) = (b− 1)
(sin π(b− 1)(w1 + w2)

sin π(w1 + w2)
− sin π(b− 1)(w1 − w2)

sinπ(w1 − w2)

)

+
cos π(w1 + w2) cosπ(b− 1)(w1 + w2)

sin2 π(w1 + w2)

−cosπ(w1 − w2) cosπ(b− 1)(w1 − w2)

sin2 π(w1 − w2)
,

Hb, 1
2
(w1, w2) = 8b sin πbw1 sin πbw2.

The errors are uniform for w1, w2 in any compact and stable under differentiation.

The first consequence of this Lemma is the critical behavior of the “singular part” of
F

(2)
s (x1, x2) with respect to the variables u and (x1, x2), which will be used in Theorem 7.2

to obtain the asymptotics of the cylinder generating series for fixed large volumes and fixed
boundary perimeters. We warn the reader about two subtleties in this analysis regarding
what we mean by this “singular part”. F

(2)
s is directly expressed in terms of G

(2)
s in

Proposition 4.3 up to a shift term. This shift term can actually be dropped as far as
fixing boundary perimeter is concerned, as it gives a zero contribution when performing
contour integrations of the form

∮ dx1 x
L1
1

2iπ

dx2 x
L2
2

2iπ
F

(2)
s (x1, x2). Powers q0 should also be

dropped from this “singular term” as they disappear in contour integrals
∮

du
2iπuV+1F

(2)
s

used to fix the volume; in such a case, the next-to-leading order will play the leading role
in the computations for fixed volume. Taking these subtleties into account, the result for
this “singular part” of F(2)

s straightforwardly follows from Lemma 6.1 and the behavior of
x(v) given in Lemma B.3 in Appendix:

Corollary 6.2. Set xi = x(εi + τφi) for εi ∈ {0, 1
2
}. In the limit q → 0, the singular

parts (for this we use the sign ≡) with respect to the variables u, x1, x2 of the cylinder
generating series are

F(2)
s (x1, x2) ≡ qβ̃

(0,2)(s,ε1,ε2)
{
F(2)
s ∗ (φ1, φ2) + qb(s)F(2)

s ∗∗(φ1, φ2) +O(qmin(1−b(s),2b(s)))
}
,

F (2)(x1, x2) ≡ qβ̃
(0,2)(0,ε1,ε2)

{
F

(2)
s=0 ∗(φ1, φ2) + q

1
2 F

(2)
s=0 ∗∗(φ1, φ2) +O(q)

}
,

where

(6.1) β̃(0,2)(s, ε1, ε2) =





−1 if ε1 = ε2 = 0,
b(s)−1

2
if ε1 6= ε2,

b(s) if ε1 = ε2 = 1
2
,
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F(2)
s ∗ =

1

4− n2s2

Hb(s),ε1⊕ε2(φ1, φ2)

(x∗ε1)′(φ1)(x∗ε2)′(φ2)
,

and for ε1 = ε2:

F(2)
s ∗∗(φ1, φ2) =

1

4− n2s2

(Hb(s),0 −Hb(s)+2,0)(φ1, φ2)

(x∗ε1)′(φ1)(x∗ε2)′(φ2)
.

The value of F(2)
s ∗∗ for ε1 6= ε2 will be irrelevant.

The second consequence of Lemma 6.1 is the critical behavior of the generating series of
capped cylinders F̂(2)

s and F̃
(2)
s which appear in the evaluation of FFF via Proposition 3.10.

Lemma 6.3. Let xj = x(εj + τφj) for j = 1, 2, and consider the critical regime q → 0.
Let H(x) be a generating series which is holomorphic for x ∈ C \ [γ−, γ+] such that
H(x) ∈ O(1/x2) when x→∞, and when x = x(ε+ τφ) admits the critical behavior

H(x) =
(π
T

)C
q

3
2
ε
{
Hε,∗(φ) +O(qb)

}
,

where C stands for an arbitrary real number. When computing the integral

(6.2)
∮

γ

dx1

2iπ
H(x1)F̂(2)

s (x1, x2),

the effective part (for this we use the sign ≡) of F̂(2)
s is

(6.3) F̂(2)
s (x1, x2) ≡ qκ̂(ε2)

{
F̂(2)
s;ε2,∗(φ1, φ2) +O(qb(s))

}
,

with ε1 = 0 and the exponent

κ̂(ε2) =

{
−1

2
if ε2 = 0,

b(s)
2

if ε2 = 1
2
.

And, the effective part containing the dominant singularity in the variable s is

(6.4) F̂(2)
s (x1, x2) ≡ qκ̂(ε2)

{
F̂

(2)

s;ε2,∗(φ1, φ2) +O(qb(s))
}
,

with ε1 = 0 and

κ̂(ε2) =

{
b(s)− 1

2
if ε2 = 0,

b(s)
2

if ε2 = 1
2
.

Likewise, let H̃(x1, x2) be a generating series which is holomorphic for (x1, x2) ∈ (C \
[γ−, γ+])2 and such that H̃(x1, x2) ∈ O(x−2

1 x−2
2 ) when xi →∞, and admitting the following

critical behavior when xj = x(εj + τφj):

H̃(x1, x2) =
(π
T

)C
q

3
2

(ε1+ε2)
{
H̃ε1,ε2,∗(φ1, φ2) +O(qb)

}
,

where C is an arbitrary number. When computing the contour integral

(6.5)
∮

γ

dx1

2iπ

∮

γ

dx2

2iπ
H̃(x1, x2) F̃(2)

s (x1, x2),

the effective part of F̃(2)
s is

(6.6) F̃(2)
s (x1, x2) ≡ F̃(2)

s ∗ (φ1, φ2) +O(qb(s)),
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with ε1 = ε2 = 0. And, the effective part containing the dominant singularity in the
variable s is

(6.7) F̃(2)
s (x1, x2) ≡ qb(s)

{
F̃

(2)

s ∗ (φ1, φ2) +O(qb(s))
}
,

with ε1 = ε2 = 0. The non-zero constant prefactors are given in (6.11)-(6.12) and (6.13)-
(6.14) in the course of the proof.

The discrepancy between κ’s and κ’s stems from the fact that the leading terms in
(6.3)-(6.6) sometimes only contain a singularity in the variable s, which is a pole at
s = ±2/n, which turns out to be subdominant when we study the coefficient of [sP ] when
P →∞ (see [4, Section 6.4 and 6.5] or the proof of Theorem 7.3). In such a case, we have
to look for the first next-to-leading term with a singular dependence in s – here always
coming from a power of q depending on s.

Proof of Lemma 6.3. We shall estimate the contour integrals (6.2) and (6.5) in the
regime q → 0 by the steepest descent method. In particular, we will have to determine
which region of the complex plane gives the dominant contribution of the integral, and
the proof will show that it is always the vicinity of γ∗+. It is however convenient to first
transform the expressions of F̂(2)

s and F̃
(2)
s .

Using ∂xR(x, y) = A(x, y), the evaluation (4.3) of the contour integral of a function
against A(x, y) and the definition of G(2)

s (v1, v2) in Proposition 4.3, setting xi = x(vi) and
analytically continuing in (v1, v2), we obtain

F̂(2)
s (x1, x2) = s

∮

γ

dy

2iπ
R(x1, y)F(2)

s (y, x2)

= s

∫ x1

dx̃1

∮

γ

dy

2iπ
A(x̃1, y)F(2)

s (y, x2) + C(x2)

= −
∫ x1

dx̃1 ns ς
′(x̃1)F(2)

s (ς(x̃1), x2) + C(x2)

= ns

∫ v(x1)

dṽ1
G

(2)
s (τ − ṽ1, v2)

x′(v2)

+
ns

4− n2s2

(
2

x2 − ς(x1)
+

ns ς ′(x2)

ς(x2)− ς(x1)

)
+ C(x2),(6.8)

where we stress that C(x2) does not depend on x1, and for this reason will disappear
when performing contour integration against H(x1) as H(x1) ∈ O(x−2

1 ). We can then do
a partial fraction expansion with respect to x1:

1

x2 − ς(x1)
=

−ς ′(x2)

x1 − ς(x2)
+

1

x2 − ς(∞)
,

ς ′(x2)

ς(x2)− ς(x1)
= − 1

x1 − x2

+
ς ′(x2)

ς(x2)− ς(∞)
.
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Therefore:
∮

γ

dx1

2iπ
H(x1) F̂(2)

s (x1, x2) = ns

∮

γ

dx1

2iπ
H(x1)

∫ v(x1) dṽ1 G
(2)
s (τ − ṽ1, v2)

x′(v2)

+
ns

4− n2s2

(
2ς ′(x2)H(ς(x2)) + nsH(x2)

)
.(6.9)

The second term is of order of magnitude q
3
2
ε2 . To examine the behavior of the first

term, we fix the value of ε2 ∈ {0, 1
2
}. When the variable x1 is in the regime x1 =

x(ε1 + τφ1), the integrand (including dx1) is of order of magnitude

(6.10) q
3
2
ε1+( 1

2
−ε1)−( 1

2
−ε2)+b(s)(ε1⊕ε2).

If ε2 = 0, this is for ε1 = 0 equal to q0, while for ε1 = 1
2
it is equal to q

1
4

+
b(s)

2 – which is
negligible compared to the former. If ε2 = 1

2
, (6.10) is equal for ε1 = 0 to q

b(s)+1
2 , while for

ε1 = 1
2
it is equal to q

3
4 – which is negligible compared to the former. So, independently

of the value of ε2, we move the contour for x1 to pass close to γ∗+ and the integral will be
dominated by the regime x1 = x(ε1 + τφ1) with ε1 = 0. And, the first term in (6.9) is of
order q0 when ε2 = 0, and of order q

b(s)+1
2 when ε2 = 1

2
. Since b(s) ∈ (0, 1

2
), we deduce

that (6.9) is of order q0 if ε2 = 0, and of order q
b(s)+1

2 if ε2 = 1
2
.

Combining everything, the effective part of F̂(2)
s which is relevant to extract the leading

term in (6.9) is

F̂(2)
s (x1, x2) ≡ qκ̂(ε2)

{
F̂(2)
s;ε2,∗(φ1, φ2) +O(qb(s))

}
,

with ε1 = 0, the exponent

κ̂(ε2) =

{
−1

2
if ε2 = 0,

b(s)
2

if ε2 = 1
2
,

and the prefactors:

F̂
(2)
s;0,∗(φ1, φ2) =

ns

4− n2s2

{∫ φ1

dφ̃1

Hb(s),0(1− φ̃1, φ2)

(x∗0)′(φ2)
(6.11)

+
(x∗0)′(1− φ2)

(x∗0)′(φ2)

2

x∗0(φ1)− x∗0(1− φ2)
− ns

x∗0(φ1)− x∗0(φ2)

}
,

F̂
(2)

s; 1
2
,∗(φ1, φ2) = −8ns cosπbφ1 sin πbφ2

4− n2s2
.(6.12)

In the case ε2 = 0, this leading term only contains the subdominant singularity s = ±2/n
in the variable s. Therefore, we need to retain the next-to-leading order, which is of order
qb(s) and will give the dominant contribution when we are interested in the coefficient of
sP for P → ∞. In this case, the effective part of F̂(2)

s which is relevant to extract the
leading term in (6.9) is

F̂(2)
s (x1, x2) ≡ qκ̂(ε2)

{
F̂

(2)

s;ε2,∗ +O(qb(s))
}
,
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with ε1 = 0, the exponent

κ̂(ε2) =

{
b(s)− 1

2
if ε2 = 0,

b(s)
2

if ε2 = 1
2
,

and the non-zero prefactors

F̂
(2)

s;0,∗ =
ns

4− n2s2

∫ φ1

dφ̃1

(Hb(s),0 −Hb(s)+2,0)(1− φ̃1, φ2)

(x∗0)′(φ2)
,(6.13)

F̂
(2)

s; 1
2
,∗ = F̂

(2)

s; 1
2
,∗(φ1, φ2).(6.14)

Let us now turn to F̃
(2)
s . We compute from the definition (3.8):

F̃(2)
s (x1, x2)

= sR(x1, x2) + s2

∮

γ2

dy1

2iπ

dy2

2iπ
R(x1, y1)R(x2, y2)F(2)

s (y1, y2)

= sR(x1, x2) + s2

∫ x1

dx̃1

∫ x2

dx̃2

∮

γ

dy1

2iπ

dy2

2iπ
A(x̃1, y1)A(x̃2, y2)F(2)

s (y1, y2)

+C1(x1) + C2(x2)

= sR(x1, x2) + n2s2

∫ x1

dx̃1

∫ x2

dx̃2 ς
′(x̃1)ς ′(x̃2)F(2)

s (ς(x̃1), ς(x̃2))dx̃1dx̃2

+C1(x1) + C2(x2)

= sR(x1, x2) + n2s2

(∫ v(x1)

dṽ1

∫ v(x2)

dṽ2 G
(2)
s (τ − ṽ1, τ − ṽ2)

−2 ln
[
ς(x1)− ς(x2)

]
+ ns ln

[
x1 − ς(x2)

]

4− n2s2
+ C̃1(x1) + C̃2(x2)

)
.(6.15)

The functions C1(x1), C̃1(x1), C2(x2) and C̃2(x2) do not depend simultaneously on x1

and x2 and will thus disappear when we perform the contour integral against H̃(x1, x2)
as it behaves like O(x−2

1 x−2
2 ) when xi → ∞. Given the expression (4.1) for R, the term

sR(x1, x2) in the first line combines with the ratio in the second line, up to an extra term
which only depends on x2 and will also disappear:

F̃(2)
s (x1, x2) = n2s2

∫ v(x1) ∫ v(x2)

dṽ1 dṽ2 G
(2)
s (τ − ṽ1, τ − ṽ2)

−2ns(ns ln[x1 − x2] + 2 ln[x1 − ς(x2)])

4− n2s2
+ Ĉ1(x1) + Ĉ2(x2),
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where again Ĉi(xi) does not depend simultaneously on both x1 and x2 so that they will
disappear in the next step. Now, we can compute

∮

γ

dx1

2iπ

∮

γ

dx2

2iπ
H̃(x1, x2) F̃(2)

s (x1, x2)

= n2s2

∮

γ

dx1

2iπ

∮

γ

dx2

2iπ
H̃(x1, x2)

∫ v(x1){
dṽ1

∫ v(x2)

dṽ2 G
(2)
s (τ − ṽ1, τ − ṽ2)

− 2dx̃1

ns(4− n2s2)

( 2

x̃1 − ς(x2)
+

nsς ′(x̃1)

ς(x̃1)− ς(x2)

)}

= n2s2

{∮

γ

dx1

2iπ

∮

γ

dx2

2iπ
H̃(x̃1, x2)

∫ v(x1) ∫ v(x2)

dṽ1dṽ2 G
(2)
s (τ − ṽ1, τ − ṽ2)

− 2

ns(4− n2s2)

∮

γ

dx1

2iπ

(
2

∫ x1

dx̃1 H̃(x̃1, ς(x1)) ς ′(x1) + ns

∫ x1

dx̃1 H̃(x̃1, x1)

)}
.(6.16)

The same arguments we used for F̂(2)
s show that the dominant contribution to the integrals

always come from the part of the integration where xj = x(τφj) with φj of order 1. So,
the effective part of F̃(2)

s which allows extracting the dominant contribution of (6.16) is:

F̃(2)
s (x1, x2) ≡ F̃(2)

s ∗ (φ1, φ2) +O(qb(s)),

where xj = x(εj + τφj) with ε1 = ε2 = 0 and:

F̃(2)
s ∗ =

n2s2

4− n2s2

∫ φ1
∫ φ2

dφ̃1dφ̃2Hb(s),0(1− φ̃1, 1− φ̃2)

− 2ns

4− n2s2

(
2 ln[x∗0(φ1)− x∗0(1− φ2)] + ns ln[x∗0(1− φ1)− x∗0(1− φ2)]

)
.

And, the effective part of F̃(2)
s which contains the dominant singularity in the variable s

is

F̃(2)
s (x1, x2) ≡ qb(s)

{
F̃

(2)

s ∗ (φ1, φ2) +O(qb(s)
}
,

where xj = x(εj + τφj) with ε1 = ε2 = 0 and:

(6.17) F̃
(2)

s (φ1, φ2) =
n2s2

4− n2s2

∫ φ1
∫ φ2

dφ̃1dφ̃2 (Hb(s),0 −Hb(s)+2,0)(1− φ̃1, 1− φ̃2).

�

6.3. Fixed nesting graph. Now we can deduce the critical behavior of the generating
series of maps with a fixed nesting graph Γ. Recall that we denoted V0,2(Γ) the set
of univalent vertices of genus 0 carrying exactly one boundary. Let us introduce the
notations V 0

0,2(Γ) (resp. V 1/2
0,2 (Γ)) for the vertices for which we keep the boundary large

(resp. small). Let k(0,2), k(0,2)
0 and k

(0,2)
1/2 denote the cardinalities of V0,2(Γ), V 0

0,2(Γ) and
V

1/2
0,2 (Γ), respectively.
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Theorem 6.4. Let xj = x(εj + τφj) for j = 1, . . . , k, and k0 and k1/2 denote the number
of εj = 0 (large boundaries) and of εj = 1/2 (small boundaries). When q → 0, we have
for the singular part with respect to u and xi’s:

FFF (g,k)
Γ,?,s=1(x1, . . . , xk) = qκ(g,k,k1/2,k

(0,2)
1/2
|b){[FFF (g,k)

Γ,? ]∗(φ1, . . . , φk) +O(q
b
2 )
}
,

where

κ(g, k, k1/2, k
(0,2)
1/2 |B) = (2g − 2 + k)(d b

2
− 1)− k

2
+ 3

4
k1/2 + (B

2
− 1

4
)k

(0,2)
1/2 .

And, for the singular part with respect to s, u and xi’s:

(6.18) FFF (g,k)
Γ,?,s(x1, . . . , xk) = qκ(g,k,k1/2,k

(0,2)
1/2
|s)
{

[FFF (g,k)
Γ,? ]∗(φ1, . . . , φk) +O

( ∑

e∈E(Γ)

q
b(s(e))

2

)}
,

where

κ(g, k, k1/2, k
(0,2)
1/2 |s) = κ(g, k, k1/2, k

(0,2)
1/2 |0)

+
∑

e∈Ẽ

b[s(e)] +
∑

v∈V 0
0,2

b[s(e+(v))] +
∑

v∈V 1/2
0,2

1
2
b[s(e+(v))].

Remarkably, the result does not depend on the details of Γ, but only on its genus
g, and number of boundaries of different types. For a fixed topology (g, k), the graphs
minimizing the number of small boundaries have the biggest contribution and if we also
fix a configuration (k0, k1/2), the graphs maximizing k(0,2)

1/2 contribute the most.

Proof. We want to estimate the expression of Proposition 3.10 for FFF (g,k)
Γ,?,s in the regime

q → 0. Given that the vertex weights are F ’s whose leading term according to Theo-
rem 5.8 has the property to receive an extra factor q

3
4 whenever a boundary variable xi

is not close to γ∗+ at scale q
1
2 , we are in the conditions of Lemma 6.3. We can apply the

steepest descent method to approximate the integral, and we have argued in the proof of
Lemma 6.3 that the contour should be moved to pass close to γ∗+ because the dominant
contribution comes from the regime where each ye − γ∗+ ∈ O(q

1
2 ), i.e. ye = x(τφe) for φe

of order 1. Therefore, combining Theorem 5.8 for F ’s and Lemma 6.3 for F̂(2)
s and F̃

(2)
s ,

we arrive to:

FFF (g,k)
Γ,?,1(x1, . . . , xk)

=

∮

γ
Eglue(Γ)

∏

e∈Eglue(Γ)

dye
2iπ

∏

v∈Ṽ (Γ)

F (h(v),k(v)+d(v))(x∂(v), ye(v))

d(v)!

×
∏

e∈Ẽ(Γ)

F̃
(2)
s=1(ye+ , ye−)

∏

v∈V0,2(Γ)

F̂
(2)
s=1(ye+(v), x∂(v))

=
∏

e∈Eglue(Γ)

q
1
2

∏

v∈Ṽ (Γ)

q[2h(v)−2+k(v)+d(v)](d b
2
−1)− k(v)+d(v)

2
+ 3

4
k1/2(v)

∏

v∈V 0
0,2

q−
1
2

∏

v∈V 1/2
0,2

q
b
2

×
{

[FFF (g,k)
Γ,?,1]∗(φ1, . . . , φk) +O(q

b
2 )
}
,(6.19)
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with

[FFF (g,k)
Γ,?,1]∗(φ1, . . . , φk) =

∮

CEglue(Γ)

∏

e∈Eglue(Γ)

dx∗0(φ̃e)

2iπ

∏

v∈Ṽ (Γ)

F (h(v),k(v)+d(v))
∗ (φ∂(v), φ̃e(v))

d(v)!

×
∏

e∈Ẽ(Γ)

F̃
(2)
s=1 ∗(φ̃e+ , φ̃e−)

∏

v∈V0,2(Γ)

F̂
(2)
s=1 ∗(φ̃e+(v), φ∂(v)).

Since we refer all the time to a fixed nesting graph Γ, we omit it in the notations for
simplicity. Let us now simplify the total exponent. The first Betti number of the graph is

1− |V |+ |E| = g −
∑

v∈Ṽ

h(v),

and we recall that |V | = |Ṽ |+ k(0,2) and |E| = |Ẽ|+ k(0,2). Then, we observe that
∑

v∈Ṽ

k(v) = k − k(0,2) and
∑

v∈Ṽ

k1/2(v) = k1/2 − k(0,2)
1/2 .

By counting inner half-edges we also find
∑

v∈Ṽ

d(v) = 2|E| − |Eun| = 2|Ẽ|+ k(0,2) = |Eglue|.

Moreover, we obviously have k(0,2) = k
(0,2)
0 + k

(0,2)
1/2 . Substituting these relations in (6.19)

gives a total exponent

κ = 1
2
|Eglue|+

(
2(g − |E|+ |V | − 1)− 2|Ṽ |+ k − k(0,2) + 2|E| − k(0,2)

) (
d b

2
− 1
)

−1
2
(k − k(0,2))− 1

2
|Eglue|+ 3

4
(k1/2 − k(0,2)

1/2 )− 1
2
k

(0,2)
0 + b

2
k

(0,2)
1/2

= (2g − 2 + k)
(
d b

2
− 1
)
− k

2
+ 3

4
k1/2 + ( b

2
− 1

4
)k

(0,2)
1/2 .

A similar computation for general s = (s(e))e∈E(Γ) using the behavior of the singular part
of F̂(2)

s and F̃
(2)
s with respect to s, leads to the claim (6.18), with prefactor

[FFF (g,k)
Γ,?,1]∗(φ1, . . . , φk) =

∮

CEglue(Γ)

∏

e∈Eglue(Γ)

dx∗0(φ̃e)

2iπ

∏

v∈Ṽ (Γ)

F (h(v),k(v)+d(v))
∗ (φ∂(v), φ̃e(v))

d(v)!

×
∏

e∈Ẽ(Γ)

F̃
(2)

s(e) ∗(φ̃e+ , φ̃e−)
∏

v∈V0,2(Γ)

F̂
(2)

s(e+(v)) ∗(φ̃e+(v), φ∂(v)).

�

7. Large volume asymptotics

Recall from Theorem 5.3 the scaling of q with respect to the variable u coupled to the
volume

q ∼
(1− u

q∗

)c
, c =

1

1− b
2
− d b

2

,

with d = 1 in dense phase, d = −1 in dilute phase.
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7.1. Relative amplitude of nesting graphs. We now extract from Theorem 6.4 the
leading asymptotics of the generating series of maps of given volume V , given boundary
perimeters, and given nesting graph Γ, not keeping track of the number of separating
loops on each arm – i.e. for s(e) = 1, in the regime V →∞, while we impose either small
or large boundaries.

Theorem 7.1. Take (g, h) on the non-generic critical line. Assume 2g− 2 + k > 0. The
generating series of connected maps of volume V , of genus g, with k1/2 boundaries of finite
perimeter Li = `i, among which k(0,2)

1/2 are carried by a genus 0 leaf as only mark, and k0

boundaries of perimeters Li = `iV
c/2 – for fixed positive ` = (`i)

k
i=1 – and realizing the

nesting graph (Γ, ?), behaves when V →∞ as

(7.1)
[
uV

k∏

i=1

x
−(Li+1)
i

]
FFF (g,k)

Γ,?,1 ∼AAA (g,k)
Γ,?,1(`)V [−1+c((2g−2+k)(1−d b

2
)− 1

4
k1/2+( 1

4
− b

2
)k

(0,2)
1/2

)],

where k = k0 + k1/2 is the total number of boundaries, and an expression for the non-zero
prefactor is given in (7.9).

Several remarkable conclusions can be drawn from this result. Firstly, if we keep all
boundaries large, we have

FFF (g,k)
Γ,?,1
·∼ V −1+c(2g−2+k)(1−d b

2
)

and the order of magnitude only depends on the global topology of Γ, i.e. on the genus
g and the number of boundaries k. In other words, for given g and k, all nesting graphs
have comparable probabilities to be realized.

Secondly, if we keep a certain number k1/2 > 0 of small boundaries, the nesting graphs
most likely to be realized when V →∞ at criticality are the ones with k(0,2)

1/2 = k1/2, i.e.,
where each small boundary belongs as the only marked element to a connected component
with the topology of a cylinder on the complement of all loops (see Figure 18). And, all
nesting graphs with this property have comparable probabilities.

For completeness, we also study the case of cylinders (g, k) = (0, 2) – for which the
computations already appeared in [4]. There are only two possible nesting graphs:

(7.2) (Γ1, ?) = •1,2 (Γ2, ?) = 1•−−•2

Before conditioning on the volume and the boundary perimeters, the generating series for
(Γ1, ?) is F (2)(x1, x2), while the generating series for the (Γ2, ?) is (F

(2)
s=1 −F (2))(x1, x2).

We derive from Corollary 6.2:

Theorem 7.2. Take (g, h) on the non-generic critical line. Fix `i positive independent
of V , and εi ∈ {0, 1

2
}. If εi = 0, we choose Li = `iV

c/2, and if εi = 1
2
, we rather choose

Li = `i. We have when V →∞:[
uV x

−(L1+1)
1 x

−(L2+1)
2

]
FFF (0,2)

Γ1,?
(x1, x2) ∼ FFF (0,2)

Γ1,?,s=1(`1, `2)V −1− c
2

(ε1⊕ε2),(7.3)
[
uV x

−(L1+1)
1 x

−(L2+1)
2

]
FFF (0,2)

Γ2,?,s=1(x1, x2) ∼ FFF (0,2)
Γ2,?,s=1(`1, `2)V −1−cb(ε1⊕ε2),(7.4)

with a non-zero prefactor.
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Figure 18. A typical map of the O(n) model with small boundaries.
These are most likely to be incident to distinct long arms (containing
O(lnV ) separating loops). We have only drawn in green the loops which
are separating.

The constant prefactors AAA are computed in the course of the proofs. Although their
structure is combinatorially clear – we essentially have to replace in the formula of Propo-
sition 3.10 all the factors by their effective leading asymptotics derived throughout the
previous Section, and perform the extra contour integrations in ũ and x̃ whose effect is
simply displayed in (7.9) – it is however a formidable task to obtain explicit formulas (as
functions of `i) for a given nesting graph Γ. For us, the formula serves as showing that
this prefactor is non trivial.

Proofs. We briefly sketch the proof as the details of the saddle point analysis are essen-
tially the same as in [4, Section 6.4 and 6.5]. Let ∂0(Γ) the set of boundaries for which
we want to impose perimeter Li = `i V

c/2 (i.e. we declare εi = 0), and ∂1/2(Γ) the set of
boundaries for which we rather impose Li = `i (i.e. we declare εi = 1

2
). The analysis re-

veals that this scaling V c/2 for large boundaries is the one for which a non-trivial behavior
will be obtained.

Conditioning on boundary perimeters

We first study integrals of the form

(7.5) I(u) =
∏

i∈∂0(Γ)

∮

γ

x`iV
c/2

i dxi
2iπ

∏

i∈∂1/2

∮

γ

x`ii dxi
2iπ

Φ

[
u; (xi)i∈∂1/2(Γ);

(xi − γ+

q
1
2

)
i∈∂0(Γ)

]
,
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R− C0

Figure 19. The contour C.

where Φ is a function which has a non-zero limit when u → 1, and the convergence is
uniform when its variables belong to any compact. We also take from Corollary B.7 in
Appendix that

γ∗+ − γ+ = O(q).

We use the change of variables

xi =

{
γ∗+ + q

1
2 x∗0(φi) if i ∈ ∂0,

γ∗+ + x∗1
2

(φi) if i ∈ ∂1/2(Γ),

and deform the contour in
(
x̃i = q−

1
2 (xi−γ∗+)

)
i∈∂1/2(Γ)

and ye to the one shown in Figure 19.
In the limit u → 1, the properties of the integrand on those steepest descent contours
ensure that we can use the monotone convergence theorem to find

I(u) ∼ q
1
2

(Eglue(Γ)+k0)
∏

i∈∂0(Γ)

∮
dx∗0(φi) e

x∗0(φi)`i/γ
∗
+

2iπ

∏

i∈∂1/2

∮ (x∗1
2

(φi))
`i dx∗1

2

(φi)

2iπ

×Φ
[
u;
(
x∗1

2
(φi)

)
i∈∂1/2(Γ)

;
(
x∗0(φi)

)
i∈∂0(Γ)

]
.

Conditioning on volume V

Next, we would like to estimate integrals of the form

I =

∮
du

2iπ uV+1
I(u) qη

for some exponent η. We recall q is a function of u for which Theorem 5.3 gives

q ∼
(1− u

q∗

)c
, u→ 1.

We perform the change of variables

u = 1− ũ

V
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and deform the contour in u to the one shown in Figure 20. Now assume

η + 1
2
k0 6= 0.

In the limit V →∞, by the properties of the integrand on this steepest descent contour,
we can complete the integral to a contour which is again C shown in Figure 19 and find

I ∼ V −1−c(η+ 1
2
k0)

∮

C

−dũ eũ

2iπ

( ũ
q∗

)c(η+ 1
2
k0) ∏

i∈∂0

∮

(x∗0)−1(C)

dx∗0(φi) e
x∗0(φi)`i/γ

∗
+

2iπ

∏

i∈∂1/2

∮

(x∗1
2

)−1(γ)

(x∗1
2

(φi))
`i dx∗1

2

(φi)

2iπ
Φ
[
1; (x∗1

2
(φi))i∈∂1/2

;
(
x∗0(φi)

)
i∈∂0

]
.

The integral over ũ factors out and yields a Gamma function

I =
V −1−c(η+ 1

2
k0)

−Γ
[
− c
(
η + 1

2
k0

)]
∏

i∈∂0

∮

(x∗0)−1(C)

dx∗0(φi) e
x∗0(φi)`i/γ

∗
+

2iπ

∏

i∈∂1/2

∮

(x∗1
2

)−1(γ)

(x∗1
2

(φi))
`i dx∗1

2

(φi)

2iπ
Φ
[
1; (x∗1

2
(φi))i∈∂1/2

;
(
x∗0(φi)

)
i∈∂0

]
.(7.6)

10

Figure 20. The contour of integration for ũ.

Specialization to Theorem 7.1

We obtain Theorem 7.1 for FFF (g,k)
Γ,?,1 with 2g − 2 + k > 0 by taking from the proof of

Theorem 6.4 the exponent

(7.7) η := (2g − 2 + k)(d b
2
− 1)− k

2
+ 3

4
k1/2 + ( b

2
− 1

4
)k

(0,2)
1/2

and

(7.8) Φ
[
1; (x∗1

2
(φi))i∈∂1/2(Γ);

(
x∗0(φi)

)
i∈∂0(Γ)

]
= [FFF (g,k)

Γ,?,1]∗(φ1, . . . , φk)
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Since k = k0 + k1/2, we remark that

η + 1
2
k0 = (2g − 2 + k)(d b

2
− 1) + 1

4
k1/2 + ( b

2
− 1

4
)k

(0,2)
1/2

is non-zero. The constant prefactor is thus

AAA (g,k)
Γ,?,1(`) = −Γ−1

[
− c
(
η +

1

2
k0

)]∏

i∈∂0

∮

(x∗0)−1(C)

dx∗0(φi) e
x∗0(φi)`i/γ

∗
+

2iπ

∏

i∈∂1/2

∮

(x∗1
2

)−1(γ)

(x∗1
2

(φi))
`i dx∗1

2

(φi)

2iπ
[FFF (g,k)

Γ,?,1]∗(φ1, . . . , φk)(7.9)

Specialization to Theorem 7.2

We first consider FFF (0,2)
Γ,?,s=1. From Corollary 6.2, the first term leads us to the previous

setting with

(7.10) η + 1
2
k0 = β̃(0,2)(s, ε1, ε2) + 1

2
k0 =





0 if ε1 = ε2 = 0,
b(s)

2
if ε1 6= ε2,

b(s) if ε1 = ε2 = 1
2
,

with s = 0 for (Γ1, ?) and s = 1 for (Γ2, ?). However, in the case of two large boundaries
(ε1 = ε2 = 0), we see that this first term contains no power of q, so is regular in u. The
leading contribution in this case comes from the second term, hence corresponds to an
exponent

(7.11) η + 1
2
k0 = b(s), if ε1 = ε2 = 0.

So, we obtain the desired result by specializing (7.6) to the exponent (7.10) corrected by
(7.11) and

(7.12) Φ
[
1; (x∗1

2
(φi))i∈∂1/2(Γ);

(
x∗0(φi)

)
i∈∂0(Γ)

]
=

{
F

(2)
s ∗∗(φ1, φ2) if ε1 = ε2 = 0,

F
(2)
s ∗ (φ1, φ2) otherwise,

with again s = 0 for (Γ1, ?) and s = 1 for (Γ2, ?). If we define [FFF (0,2)
Γ,?,1]∗(φ1, φ2) to be the

right-hand side of (7.12), the prefactors in (7.3)-(7.4) are then also given by (7.9) with
the exponents η we just saw.

�

7.2. Large deviation for arm lengths in a fixed nesting graph. Next, we also
determine the asymptotics of the probability

(7.13) P(g,k)
[
P|Γ, ?, V,L

]
:=

[
uV
∏

e∈E(Γ) s(e)
P (e)

∏k
i=1 x

−(Li+1)
i

]
FFF (g,k)

Γ,?,s(x1, . . . , xk)
[
uV
∏k

i=1 x
−(Li+1)
i

]
FFF (g,k)

Γ,?,1(x1, . . . , xk)

that a connected map of genus g, of fixed volume V , with k boundaries of fixed perimeters
L = (Li)

k
i=1, fixed nesting graph (Γ, ?), has a number P (e) of separating loops on every
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1 2 3 4
p

0.5

1.0

1.5

J(p)

Figure 21. The function J(p): blue for n = 1, green for n =
√

2 (Ising),
and orange for n =

√
3 (3-Potts).

arm e ∈ E(Γ). We assume that Γ has at least one arm for this to make sense. We
introduce

J(p) = sup
s∈[0,2/n]

{
p ln(s) + arccos(ns/2)− arccos(n/2)

}

= p ln
( 2

n

p√
1 + p2

)
+ arccot(p)− arccos(n/2).(7.14)

This function is plotted in Figure 21.

Theorem 7.3. Take (g, h) on the non-generic critical line. Assume 2g − 2 + k > 0, fix
positive variables ` = (`i)

k
i=1 independent of V , and positive p =

(
p(e)

)
e∈E(Γ)

such that
p(e) � lnV . We consider the regime where k0 boundaries have perimeter Li = `iV

c/2,
k1/2 boundaries have perimeter Li = `i, and

(7.15) P (e) =
c lnV p(e)

π
·
{

1
2

if e is incident to a vertex in V
1/2

0,2 ,

1 otherwise.

In the limit V →∞, we have

P(g,k)
[
P|Γ, ?, V,L

]
(7.16)

∼ P(g,k)
[
p|Γ, ?, `

] ∏

e∈Ẽ(Γ)

V −
c
π
J [p(e)]

√
lnV

∏

v∈V 0
0,2(Γ)

V −
c
π
J [p(e+(v))]

√
lnV

∏

v∈V 1/2
0,2 (Γ)

V −
c

2π
J [p(e+(v))]

√
lnV

,

where an expression for the non-zero prefactor is given in (7.19).
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For completeness we recall the result for (g, k) = (0, 2) from [4, Theorem 7.1]. Let
P(0,2)[P |V, L1, L2] be the probability that a cylinder with boundaries of perimeters L1 and
L2 has exactly P separating loops.

Theorem 7.4. Take (g, h) on the non-generic critical line. Fix positive variables (`1, `2)
independent of V , and p positive such that p� lnV . We have when V →∞

P(0,2)
[
P =

c lnV

π
p
∣∣∣V , L1 = `1 , L2 = `2

]
∼ P(0,2)

1 (p, `1, `2)
V −

c
π
J(p)

√
lnV

,(7.17)

P(0,2)
[
P =

c lnV

2π
p
∣∣∣V , L1 = `1 , L2 = `2V

c/2
]
∼ P(0,2)

2 (p, `1, `2)
V −

c
2π
J(p)

√
lnV

,

P(0,2)
[
P =

c lnV

π
p
∣∣∣V , L1 = `1V

c/2 , L2 = `2V
c/2
]
∼ P(0,2)

3 (p, `1, `2)
V −

c
π
J(p)

√
lnV

.

The main conclusion drawn from Theorems 7.3 is that, for a given nesting graph, the
arm lengths typically behave like independent random variables of order lnV , with large
deviation function proportional to J(p). Note that there is a factor of 1

2
involved in the

definition (7.15) of the reduced variable P (e) and in the large deviation function in (7.16)
for arms whose ends are a small boundary and an annulus (carrying a loop). This factor
is absent for an inner arm (whose ends are two annuli) and an arm whose end is a large
boundary and an annulus. The details of the proof show that large lengths for annuli
carrying loops give effectively dominant contributions. So, the (non-)appearance of 2 in
Theorems 7.3 and 7.4 for cylinders follows the same pattern. Up to these factors of 2
which are prescribed by the geometry, the function J(p) is universal. Focusing around
the point

popt =
n√

4− n2
,

where J reaches its minimum value 0, we obtain:

Corollary 7.5. Consider the ensemble of connected maps of genus g with k boundaries
of perimeters L, with volume V , realizing a fixed nesting graph (Γ, ?). Let (e) = 2 if e
is incident to a vertex in V

1/2
0,2 , and (e) = 1 otherwise. Under the assumptions and the

regime described in Theorem 7.3, the vector of random variables

P (e)− cpopt lnV/(e)π√
lnV

converges in law when V → ∞ to the random Gaussian vector
(
N (0, σ2

(e))
)
e∈E(Γ)

with
variances

σ2
 =

23−nc

π(4− n2)
3
2

.

Proof of Theorem 7.3. We shall again be brief, as the saddle point analysis is again
similar to [4, Section 6.4 and 6.5]. The asymptotic behavior for the denominator in (7.13)
was already obtained in Theorem 7.1. We now focus on the numerator. We are in the
general setting of the proof of § 7.1, namely integrals I(u) = Is(u) of the form (7.5), with
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now an s-dependent exponent of the form

η(s) = η̃ +
∑

e∈E

b(e)

(e)
, (e) ∈ {1, 2},

and a function Φ = Φs depending also smoothly on s, when u → 1 uniformly. We can
start from the asymptotic result (7.6) when V →∞, just missing to estimate the contour
integral with respect to s:

J =

∮ ∏

e∈E

ds(e)

2iπ s(e)P (e)+1
Is

∼ V −1−c(η̃+ 1
2
k0)
∏

e∈E

∮
ds(e)

2iπ s(e)P (e)+1

V −cb(s(e))/(e)

−Γ
[
− c
(
η(s) + 1

2
k0

)]

∏

i∈∂0

∮

(x∗0)−1(C)

dx∗0(φi) e
x∗0(φi)`i/γ

∗
+

2iπ

∏

i∈∂1/2

∮

(x∗1
2

)−1(γ)

(x∗1
2

(φi))
`i dx∗1

2

(φi)

2iπ

×Φs

[
1; (x∗1

2
(φi))i∈∂1/2(Γ);

(
x∗0(φi)

)
i∈∂0(Γ)

]
.

It is natural to study the regime

P (e) =
cp(e) lnV

(e)π

for p(e) > 0 independent of V , as then the singular part of the integrand is of the form
∏

e∈E

exp
(
−1(e) lnV Sp(e)[s(e)]

)
, with Sp(s) =

cp ln s

π
− cb(s).

We first compute the saddle point s(p) of Sp, i.e. the point such that S ′p(s(p)) = 0. We
find

s(p) =
2

n

p√
1 + p2

.

We also compute in terms of the function J introduced in (7.14)

Sp(s(p)) =
c(πb− J(p))

π
.

We then perform the change of variables

s(e) = s[p(e)] +
s̃(e)√
lnV

and find by Taylor expansion of Sp at order 2 around s = s(p):

ds

2iπ sP+1
V −cb(s)/ ∼ ds̃

2iπ s(p)
(lnV )−

1
2 V Sp(s(p)) exp

(cn2(p2 + 1)2

8πp
s̃2
)
,

which remains valid when p is allowed to depend on V such that p � lnV and p is
uniformly bounded away from 0. We then deform the contour in s̃(e) to a steepest
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descent contour iR, and the properties of the integrand imply we can apply the monotone
convergence theorem and computation of the Gaussian integral in s̃ yields when V →∞:

J ∼ V −1−cη̃

−Γ
[
− c
(
η(s(p)) + 1

2
k0

)]
∏

e∈E

V cb/(e)−cJ(p(e))/(e)π

√
2j−1

e cp(e)(p2(e) + 1) lnV

×
{∏

i∈∂0

∮

(x∗0)−1(C)

dx∗0(φi) e
x∗0(φi)`i/γ

∗
+

2iπ

∏

i∈∂1/2

∮

(x∗1
2

)−1(γ)

(x∗1
2

(φi))
`i dx∗1

2

(φi)

2iπ

Φs(p)

[
1; (x∗1

2
(φi))i∈∂1/2(Γ);

(
x∗0(φi)

)
i∈∂0(Γ)

]}
,(7.18)

where
s(p) =

(
s[p(e)]

)
e∈E.

Specialization to Theorem 7.3

We observe that in all situations, the probability we desire is given by the ratio JI where
the exponent η̃ to take into account for the numerator – see (7.18) –, and the one η for
the denominator – see (7.18) and the value (7.7) for η – are related by

η̃ = η − b.

This implies that the power of V which does not involve the function J in (7.18) disappear,
and yields the claim with

(7.19) P(g,k)
Γ,? (`;p) =

ÃAA
(g,k)

Γ,? (`;p)

AAA (g;k)
Γ,? (`)

,

where the denominator is given by (7.9) and the numerator by

ÃAA
(g,k)

Γ,? (`;p) = −Γ−1
[
− c
(
η(s(p)) +

1

2
k0

)] ∏

e∈E(Γ)

(
2j−1

e cp(e)(p2(e) + 1)
)− 1

2

∏

i∈∂0

∮

(x∗0)−1(C)

dx∗0(φi) e
x∗0(φi)`i/γ

∗
+

2iπ

∏

i∈∂1/2

∮

(x∗1
2

)−1(γ)

(x∗1
2

(φi))
`i dx∗1

2

(φi)

2iπ

FFF (g,k)
Γ,?,s(p)(φ1, . . . , φk).

We could also rederive Theorem 7.4 – already obtained in [4] – in the same way.
�

7.3. Addendum: generating series of maps with marked points. We now gener-
alize Theorem 5.8 to allow marked points.

Lemma 7.6. Let k = k0+k1/2 ≥ 1 and g ≥ 0 such that (g, k) 6= (0, 1). Let xj = x(1
2
+τφj)

for j ∈ {1, . . . , k1/2}, i.e. xj remains finite and away from [γ∗−, γ
∗
+]. Let yj = x(τψj) for
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j ∈ {1, . . . , k0}, i.e. yj scales with q → 0 such that yj − γ+ ∈ O(q
1
2 ). We have in the

critical regime q → 0

F (g,k,•k′)(x1, . . . , xk1/2
, y1, . . . , yk0)

= qβ̃(g,k+k′,k1/2+k′)
{
F (g,k,•k′)
∗ (φ1, . . . , φk1/2

, ψ1, . . . , ψk0) +O(q
b
2 )
}
.

This is also true for (g, k) = (0, 1).

The outcome is that marked points behave as small boundaries. Subsequently, the
asymptotics of the generating series FFF (g,k)

Γ,?,s given by Proposition 3.10 in presence of k′
marked points are the same as obtained in Theorem 6.4, provided one replaces k1/2 with
k1/2 + k′, and likewise for Theorem 7.1 concerning fixed volume asymptotics, and Theo-
rem 7.3 concerning fixed volume and fixed arm lengths asymptotics.

Proof. First assume (g, k) 6= (0, 1). We proceed by recursion, starting from the base case
k′ = 0 obtained in Theorem 5.8:

F (g,k)(x,y) = qβ̃(g,k,k1/2) Φ
[
u; (xi)

k1/2

i=1 ;
(yi − γ∗+

q
1
2

)k0

i=1

]
,

where Φ is a function which has a uniform limit when u → 1 and its other variables
remain in a compact, and

(7.20) β̃(g, k, k1/2) = (2g − 2 + k)(d b
2
− 1)− k

2
+ 3

4
k1/2.

We shall use (3.10) to decrease the value of k′. Assume the claim holds for k′′ marked
points with k′′ < k′. Equation (3.10) gives us

F (g,k,•k′)(x,y) =
(

2− 2g − k −
k1/2∑

i=1

1
2
∂xixi −

k0∑

i=1

1
2
∂yiyi

)
F (g,k,•(k′−1))(x,y)

−
∮

γ

dz

2iπ

(
z
2
Ṽ′(z)− Ṽ(z)

)
F (g,k+1,•(k′−1))(z,x,y),(7.21)

with

Ṽ′(x) = V′(x)−
∮

γ

A(x, z)F(z)

= V′(x) + nς ′(x)F(ς(x))− nuς ′′(x)

2ς ′(x)
.

We can substitute in this expression the function G introduced in (4.14):

Ṽ′(x) = V′(x)− nG(τ − v)

x′(v)
+
n
(
2ς ′(x)V′(ς(x)) + nV′(x)

)

4− n2
− nuς ′′(x)

ς ′(x)
.

The critical behavior of G(v) when v = ε + τw with ε ∈ {0, 1
2
}, and q = eiπτ → 0 is

obtained from substituting its expression from Proposition 4.1, using the asymptotics of
the function Υb in A.2, and the identities (D.1)-(D.2). The result takes the form

G(τ − v) = q(1−2ε)(1−d b
2

)
{
G̃∗ε(φ) +O(q

b
2 )
}
.
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Besides, the induction hypothesis tells us that the order of magnitude of

F (g,k+1,•(k′−1))(x(v),x,y)

receives an extra factor of q
3
4 when v = 1

2
+ τφ with φ in a compact. As b ∈ (0, 1

2
), in any

case we have 3
4
< 1−d b

2
and therefore the contribution of the vicinity (at scale q

1
2 ) of γ∗+ in

the contour integral over γ in the second line of (7.21) remains negligible compared to the
contribution of the bulk of the contour (given by the regime ε = 1

2
). And, by induction

hypothesis, this contribution is of order qβ̃(g,(k+k′−1)+1,(k1/2+k′−1)+1), where the +1 come
from the variable z ∈ γ. On the other hand, the first line in (7.21) has a contribution of
order qβ̃(g,k+k′−1,k1/2+k′−1). As

β̃(g, k + k′ − 1, k1/2 + k′ − 1)− β̃(g, k + k′, k1/2 + k′) = 1
2
− d b

2
> 0

the first line is always negligible compared to the second line, and this gives the claim for
k′ marked points. We conclude for all (g, k) 6= (0, 1) by induction.

Now consider (g, k) = (0, 1). For k′ = 1, we have from (3.5):

F•(x) =
1√

(x− γ+)(x− γ−)
,

Therefore with x = x(τφ) = γ∗+ + q
1
2x∗0(φ) in the critical regime

F•(x) ∼ q−
1
4 F•∗(φ),

whose exponent agrees with β̃(g, k + k′ = 2, k1/2 + k′ = 1). On the other hand, for
x = x(1

2
+ τφ) in the critical regime, we have

F•(x) =
1√

(x− γ∗+)(x− γ∗−)
+ q

1
2 F̃•∗(φ) +O(q)

coming from the behavior of γ+ when q → 0 as given by Corollary B.5. This exponent 1
2

agrees with β̃(g = 0, k + k′ = 2, k1/2 + k′ = 2). With these two cases as initial conditions
and the previous results, we can repeat the previous steps to show from (7.21) that the
claim holds for (g, k) = (0, 1) for any k′ > 0. �
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Appendix A. The special function Υb

Let τ be a complex number in the upper-half plane. The Jacobi theta function is the
entire function of v ∈ C defined by

(A.1) ϑ1(v|τ) = −
∑

m∈Z

eiπτ(m+ 1
2

)2+iπ(w+ 1
2

)(2m+1).

Its main properties are

(A.2) ϑ1(−v|τ) = ϑ1(v + 1|τ) = −ϑ1(v|τ), ϑ1(v + τ |τ) = −e−2iπ(v+ τ
2

) ϑ1(v|τ)

and the effect of the modular transformation:

(A.3) ϑ1(v|τ) =
e−

iπv2

τ√
−iτ

ϑ1( v
τ
| − 1

τ
).

Definition A.1. Υb(v) is the unique meromorphic function with a simple pole at u = 0
with residue 1, and the pseudo-periodicity properties:

Υb(v + 1) = Υb(v), Υb(v + τ) = eiπbΥb(v).

We have several expressions:

Υb(v) =
∑

m∈Z

e−iπbm cotanπ(v +mτ)

=
ϑ′1(0|τ)

ϑ1(− b
2
|τ)

ϑ1(v − b
2
|τ)

ϑ1(v|τ)

=
e

iπbv
τ

iT

ϑ′1
(
0| − 1

τ

)

ϑ1

(
− b

2τ

∣∣− 1
τ

) ϑ1

(v− b
2

τ

∣∣− 1
τ

)

ϑ1

(
v
τ
| − 1

τ

) .(A.4)

We have the expansion:

(A.5) Υb(w) =
1

w
+
∑

j≥0

υb,jw, w → 0,

with

υb,1 =
1

2

ϑ′′1( b
2
|τ)

ϑ1( b
2
|τ)
− 1

6

ϑ′′′1 (0|τ)

ϑ′1(0|τ)
(A.6)

=
1

(iT )2

(1

2

ϑ′′1( bτ̃
2
|τ̃)

ϑ1( bτ̃
2
|τ̃)
− 1

6

ϑ′′′1 (0|τ̃)

ϑ′1(0|τ̃)
+ iπb

ϑ′1( bτ̃
2
|τ̃)

ϑ1( bτ̃
2
|τ̃)
− π2b2

2

)
,

where τ̃ = −1/τ and τ = iT . The value of the constant term in (A.5) is irrelevant for our
purposes. The expressions involving τ̃ or

q = eiπτ̃ = e−
π
T

are convenient to study the regime T → 0, i.e. q → 0.

Lemma A.2. Let v = ε+ τw. We have, for b ∈ (0, 1):

Υb(v) =
2πqεb

T (1− qb) ·
{

Υ∗b,0(w)− qbΥ∗b+2,0(w) +O(q2−b) if ε = 0,

Υ∗
b, 1

2

(w)− (q1−b − q)Υ∗
b−2, 1

2

(w) + qΥ∗
b+2, 1

2

(w) +O(q1+b) if ε = 1
2 .
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The errors are uniform for w in any compact independent of τ → 0, stable under differ-
entiation, and the expressions for the limit functions are

Υ∗b,0(w) =
eiπ(b−1)w

2i sin(πw)
,(A.7)

Υ∗
b, 1

2
(w) = −eiπbw.(A.8)

We also have

(A.9) υb,1 =
(π
T

)2{1

3
+ b+

b2

2
+O(qb)

}
.

�

Appendix B. The parametrization x↔ v

Consider given values of γ± and ς(γ±) such that

(B.1) γ− < γ+ < ς(γ+) < ς(γ−).

We set

(B.2) v = iC

∫ x

ς(γ+)

dy√
(y − ς(γ−))(y − ς(γ+))(y − γ+)(y − γ−)

.

The normalizing constant is chosen such that, for x moving from the origin ς(γ+) to ς(γ−)
with a small negative imaginary part, v is moving from 0 to 1

2
. When x moves on the

real axis from ς(γ+) to γ+, v moves from 0 to a purely imaginary value denoted τ = iT .
Then, the function v 7→ x(v) has the properties:

x(v + 2τ) = x(v + 1) = x(−v) = x(v), ς(x(v)) = x(v − τ),

and is depicted in Figure 7. x′(v) has zeroes when v ∈ 1
2
Z + τZ, and double poles at

v = v∞ + Z + 2τZ. From (B.2), paying attention to the determination of the squareroot
at infinity obtained by analytic continuation, we can read in particular:

(B.3) x′(v) ∼ iC

(v − v∞)2
, v → v∞.

From (B.1), we know that v∞ = 1
2

+ τw∞, where w∞ ∈ (0, 1) is determined as a function
of γ± and ς(γ±).

There is an alternative expression for (B.2) in terms of Jacobi functions:

v =
2iC arcsn−1

[√
ς(γ+)−γ−
ς(γ−)−γ−

x−ς(γ+)
x−ς(γ−)

; k
]

√
(ς(γ+)− γ−)(ς(γ−)− γ+)

,

with

k =

√
(ς(γ−)− γ−)(ς(γ+)− γ+)

(ς(γ−)− γ+)(ς(γ+)− γ−)
.
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By specialization at x = γ− and x = ς(γ−), we deduce the expressions:

C =

√
(ς(γ+)− γ−)(ς(γ−)− γ+)

4K ′(k)
,(B.4)

T =
K(k)

2K ′(k)
,(B.5)

in terms of the complete elliptic integrals. By matching poles and zeroes, we can infer an
expression for x(v)− γ+ in terms of Jacobi theta functions:

(B.6) x(v)− γ+ = −iC
ϑ′1(0|2τ)ϑ1(2v∞|2τ)

ϑ1(v∞ − τ |2τ)ϑ1(v∞ + τ |2τ)

ϑ1(v − τ |2τ)ϑ1(v + τ |2τ)

ϑ1(v − v∞|2τ)ϑ1(v + v∞|2τ)
.

From (B.2), one can derive the expansion of x(v) when v → v∞.

Lemma B.1. When v → v∞, we have the expansion

x(v) =
−iC

v − v∞
+
E1

4
+

i

C

3E2
1 − 8E2

48
(v−v∞)+

−E3
1 + 4E1E2 − 8E3

64C2
(v−v∞)2+O(v−v∞)3,

where we introduced the symmetric polynomials in the endpoints:

E1 = γ− + γ+ + ς(γ+) + ς(γ−),(B.7)
E2 = γ−

{
γ+ + ς(γ+) + ς(γ−)

}
+ γ+

{
ς(γ+) + ς(γ−)

}
+ ς(γ+)ς(γ−),(B.8)

E3 = γ−γ+ς(γ+) + γ−γ+ς(γ−) + γ−ς(γ−)ς(γ+) + γ+ς(γ+)ς(γ−).(B.9)

More generally, the coefficient of (v−v∞)k in this expansion is a homogeneous symmetric
polynomial of degree (k + 1) with respect to the endpoints, with rational coefficients up to
an overall factor (iC)−k. �

In the study of non-generic critical points, we want to take the limit where γ+ and
ς(γ+) collide to the fixed point of the involution:

γ∗+ =
1

(α + 1)h
,

while γ− → γ∗− remains distinct from ς(γ∗−). This implies T → 0, or equivalently k →
0. This limit is easily studied using the modular transformation (A.3) in (B.6), or the
properties of the elliptic integrals. If we set

q = e−
π
T ,

we arrive to:

Lemma B.2.

q =
(k

4

)4{
1 +O(k2)

}
,

w∞ = w∗∞
{

1 +O(q
1
2 )
}
.

�

We can then derive the critical behavior of the parametrization x(v) in the two regimes
of interest:
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Lemma B.3. Let v = ε+ τw for ε ∈ {0, 1
2
}. We have

x(v)− γ+ = q
1
2
−ε {x∗ε(w) +O(q

1
2 )
}
.

The error is uniform for w in any compact independent of τ → 0, and this is stable under
differentiation with respect to v. It is actually an asymptotic series in q

1
2 . The limit

functions are

x∗0(w) = 8
√

(ς(γ∗−)− γ∗+)(γ∗+ − γ∗−) sin(πw∗∞) cos2
(πw

2

)
,

x∗1
2
(w) =

√
(ς(γ∗−)− γ∗+)(γ∗+ − γ∗−)

sin(πw∗∞)

cos(πw)− cos(πw∗∞)
.

�

If we specialize the second equation to v = 1
2

+ τ , use the expression (4.2) of ς(x) and
perform elementary trigonometric manipulations, we find:

Corollary B.4.

cos(πw∗∞) =
1− α
1 + α

· 1− h(1 + α)γ∗−
1 + h(1− α)γ∗−

.

�

We may consider w∗∞ as a parameter for the non-generic critical line. Specializing again
Lemma B.3 to v = ε+ τ and using Corollary B.4 yields:

Corollary B.5. There exists a constant ρ1 such that:

2h(γ∗+ − γ+) =
16 cos(πw∗∞)

(1− α2)
q

1
2 +O(q),

2h(γ∗− − γ−) = ρ1q
1
2 +O(q),

and

E1 =
1− α sin2(πw∗∞)

(1− α2)h sin2(πw∗∞)
+

2ρ1 cos(πw∗∞)

h(1− cos(πw∗∞))2
q

1
2 +O(q),

E2 =
2
(
(3α2 − 1) sin2(πw∗∞)− 2(3α− 2)

)

(α2 − 1)2h2 sin2(πw∗∞)
+

2ρ1(3α− 2)

h2(1− α2)(1− cos(πw∗∞))2
q

1
2 +O(q),

E3 =
4
(
α2 sin2(πw∗∞)− α(2 + cos2(πw∗∞) + 1)

)

(1− α)2(1 + α)3 sin2(πw∗∞)h3
+O(q

1
2 ).

The first four lines are used in [4] to describe the phase diagram (reviewed here in
Section 5.1) and the critical exponents of the model. Straightforward computations with
(B.4)-(B.5) yield:

Corollary B.6.
πC

T
=

√
(ς(γ−)− γ∗+)(γ∗+ − γ−) +O(q),

=
2 cot(πw∗∞)

(1− α2)h
+

(1 + cos(πw∗∞))ρ1

2(1− cos(πw∗∞)) sin(πw∗∞)
q

1
2 +O(q).

�
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There are some simplifications in absence of bending energy, i.e., α = 1. We then have
w∗∞ = 1

2
which is in agreement with Corollary B.4. The non-generic critical line is then

parametrized by ρ = 1− 2hγ∗−, which is related to the former parametrization by letting
α→ 1 and w∗∞ → 1

2
in such a way that

(B.10)
(1

2
− w∗∞

)
∼ (1− α)

2π
ρ.

Corollary B.5 specializes to:

Corollary B.7. For α = 1, we have:

2h(γ∗+ − γ+) = O(q),

E1 =
2

h
+O(q),

E2 =
6− ρ2

4h2
− ρρ1

2h2
q

1
2 +O(q),

E3 =
2− ρ2

4h3
+O(q

1
2 ),

πC

T
=

ρ

2h
+
ρ1

2h
q

1
2 +O(q).

�

The fact that ς(x) = 1
h
− x and γ∗+ = 1

2h
gives the exact relation E1 = 2

h
, in agreement

with the second line.

Appendix C. The coefficients g̃k

In the loop model with bending energy where all faces are triangles, the parameters
are: g (resp. h) the weight per face not visited (resp. visited) by a loop, α the bending
energy, and n the weight per loop. We can compute g̃k from their definition (4.2.2) if we
insert the expansion of Lemma B.1. We recall that C is the constant in (B.2), and E’s
are symmetric polynomials in the endpoints defined in Lemma (B.1). If we introduce

g̃k = (iC)k ĝk,

we find

ĝ3 =
2g

4− n2
,

ĝ2 =
2− gE1

4− n2
,

ĝ1 =
g(3E2

1 − 4E2)− 6E1

12(4− n2)
,

ĝ0 = − 2u

2 + n
.

We remark that ĝ3 and ĝ0 depend on the parameters of the model in a very simple way,
whereas ĝ1 and ĝ2 have a non-trivial behavior in the non-generic critical regime, which
can be deduced up to O(q) from Corollary B.5, either in terms of the parameter w∗∞, or
the parameter ρ if α = 1.
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Corollary C.1. We have:

ĝ2 =
1

4− n2

[
1 +

2g

h

(
α− 1

sin2(πw∗∞)

)]

−g
h

ρ1 cos(πw∗∞)

(1− cos(πw∗∞))2(4− n2)
q

1
2 +O(q),

ĝ1 =
2g
[
(3α2 + 1) sin4(πw∗∞) + 2(3α− 2) sin2(πw∗∞) + 6

]

3(1− α2)2h2(4− n2) sin4(πw∗∞)

+
3h sin2(πw∗∞)(1− α2)(α sin2(πw∗∞) + 1)

3(1− α2)2h2(4− n2) sin4(πw∗∞)

+
ρ1 cos(w)

{
2g
[
4− 3α sin2(πw∗∞) + 2 cos2(πw∗∞)

]
− 3h sin2(πw∗∞)(1− α2)

}

(1− cos(πw∗∞))2 sin2(πw∗∞)(1− α2)h2(4− n2)
q

1
2

+O(q).

�

There are some simplifications for α = 1. Owing to the exact relation E1 = 2
h
, only ĝ1

has a non-trivial dependence in the non-critical regime:

Corollary C.2. For α = 1, we have:

ĝ2 =
2

4− n2

(
1− g

h

)
,

ĝ1 =
1

h(4− n2)

(
− 1 +

g

h
(ρ2 + 6)

)
+

gρρ1

h2(4− n2)
q

1
2 +O(q).

�

Appendix D. Determination of the endpoints and phase diagram

In this section, we recall the elements leading to the proofs of the theorems of Sec-
tion 5.1, see [4] for more details. The equations ∆εG

•(0) = 0 for ε ∈ {0, 1
2
} determine γ±

in terms of the weights of the model. We compute from Proposition 4.1 and the behavior
of Υb(τφ+ 1/2) given in Lemma A.2:

DYb,0(πw∞)− q1−bDYb−2,0(πw∞) +O(q) = 0,(D.1)

DYb, 1
2
(πw∞)− qbY (k)

b+2, 1
2

(πw∞) +O(q) = 0,(D.2)

where
(D.3)

Yb,0(w) = cos(bw), Yb, 1
2
(w) =

sin[(1− b)w]

sinw
, D =

3∑

l=0

(−1)lĝl
l!

(πC
T

)l
∂lπw∞ .

Exactly at criticality, we must have u = 1 and q = 0, thus using Corollary B.6:

− 2

2 + n
+

3∑

k=1

(−1)kĝ∗k
k!

(2cot(πw∗∞)

(1− α2)h

)k Y (k)
b,ε (πw∗∞)

Yb,ε(πw∗∞)
= 0, ε ∈ {0, 1

2
}.
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We note that the critical values ĝ∗k obtained in Section C are such that (D.1)-(D.2) give a
system of two linear equations determining g

h
and h2 in terms of the parameter w∗∞. For

α = 1, we rather use ρ as parameter, and the solution is

g

h
=

4(ρb
√

2 + n−
√

2− n)

ρ2(b2 − 1)
√

2− n+ 4ρb
√

2 + n− 2
√

2− n,(D.4)

h2 =
ρ2b

24
√

4− n2

ρ2 b(1− b2)
√

2 + n− 4ρ
√

2− n+ 6b
√

2 + n

−ρ2(1− b2)
√

2− n+ 4ρb
√

2 + n− 2
√

2− n.(D.5)

Since g
h
and h2 must be nonnegative, we must have ρ ∈ [ρ′min, ρmax] with

ρ′min =
2
√

1− b2
√

2− n−
√

2
√

(10 + n)b2 − 4 + 2n

b
√

1− b2
√

2− n
,(D.6)

ρmax =
1

b

√
2− n
2 + n

.(D.7)

However, we will see later that the non-generic critical line only exists until some value
ρmin > ρ′min, so (D.6) will become irrelevant. For α 6= 1, see [4, Appendix D].

Now, let us examine the approach of criticality. We fix (g, h) on the non-generic critical
line for u = 1, and we now study the behavior when u 6= 1 but u → 1 of the endpoints
γ±. In particular, since the behavior of the elliptic functions is conveniently expressed in
this regime in terms of q = e−

π
T , our first task is to relate (1 − u) to q → 0. For this

purpose, we look at (D.1), and note that u only appears in ĝ0. There could be a term of
order q

1
2 stemming from near-criticality corrections to w∞, ĝk and πC

T
, but computation

reveals that it is absent. Therefore, we obtain:

1− u =
n+ 2

2

( 3∑

l=0

(−1)lĝ∗l
l!

(2 cot(πw∗∞)

(1− α2)h

)l Y (l)
b−2,0(πw∗∞)

Yb,0(πw∗∞)

)
q1−b +O(q),

where ĝ∗0 = − 2
2+n

and (ĝ∗k)k≥1 should be replaced by their values in terms of (g, h, w∗∞)
from Section C, and (g, h) by their parametrization (D.4)-(D.5) on the critical line.

We examine the case α = 1. Using the parametrization (D.4)-(D.5), the resulting
formula is:

(D.8) 1− u = q∗ q
1−b + (q∗,1 + c′ρ1)q + o(q).

with:

q∗ =
12

b

ρ2(1− b)2
√

2 + n+ 2ρ(1− b)
√

2− n− 2
√

2 + n

−ρ2b(1− b2)
√

2 + n+ 4ρ(1− b2)
√

2− n− 6b
√

2 + n
,

q∗,1 =
24

b

−ρ2(b2 + 1)
√

2 + n+ 2ρb
√

2− n+ 2
√

2 + n

−ρ2b(1− b2)
√

2 + n+ 4ρ(1− b2)
√

2− n− 6b
√

2 + n
.

The value of c′ is irrelevant because we will soon show that ρ1 = 0. As (1− u) should be
nonnegative for q > 0, we must have q∗ ≥ 0, which demands ρ ∈ [ρmin, ρmax] with:

(D.9) ρmin =

√
6 + n−

√
2− n

(1− b)
√

2 + n
.
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We observe that this lower bound is larger than ρ′min given by (D.6) for any n ∈ [0, 2],
therefore the non-generic critical line can only exist in the range ρ ∈ [ρmin, ρmax] provided
by (D.9)-(D.7). These necessary conditions were also obtained in [6] – where the lower
bound arose from the constraint of positivity of the spectral density associated with the
generating series of disks F(x) – and it was checked that these conditions are sufficient.

We now turn to the second equation (D.2). We have checked that the term in qb van-
ishes, as we expect by consistency with (D.8). Then, the term of order q

1
2 is proportional

to ρ1, therefore we must have, in both dense and dilute phase:

ρ1 = 0,

which means that γ− − γ∗− ∈ O(q).

We see that for ρ ∈ (ρmin, ρmax]:

q ∼ q∗ (1− u)
1

1−b .

for some constant q∗ > 0. This corresponds, by definition, to the dense phase. For
ρ = ρmin (i.e. the dilute phase) we have q∗ = 0, and (D.8) specializes to:

1− u =
24

b(1− b)(2− b) q + o(q).

For general α not too large (see the statement of Theorem 5.2), the result is qualitatively
the same, only the non-zero constant prefactor differs – see [4, Appendix D].

Appendix E. Proof of Lemma 5.4

The goal in this appendix is to obtain the critical behavior of the building blocks. From
the expression (4.19)-(4.20) and the behavior of the special function Υb from Lemma A.2
we find:

Lemma E.1. We have in the regime T → 0:

Bε,l(ε
′ + τφ) =

2(−1)l+1

√
4− n2

(π
T

)2l+2

qb(ε⊕ε
′)
{
B
∗,(2l+1)
ε⊕ε′,b (πφ) +O(qb)

}
,

Bε,l(ε
′ + τφ) = (−1)l+1

(π
T

)2l+2

q
1
2

(ε⊕ε′){B∗,(2l+1)

ε⊕ε′, 1
2

(πφ) +O(q
1
2 )
}
,

where
B∗0,b(φ) =

sin(1− b)φ
sinφ

, B∗1
2
,b
(φ) = 2 cos bφ.

The error is uniform for φ in any compact, and stable by differentiation.

We next focus on the denominator of the recursion kernel.

Lemma E.2. We have in the regime T → 0

(∆εG)(τφ) =
(π
T

)
q(1−d b

2
)(1−2ε)

{
G∗ε(φ) +O(qb)

}
,

where d = 1 in the dense phase, and d = −1 in the dilute phase. We have

G∗0(φ) =

{
−D∗b−2 sin πφ sin π(1− b)φ in dense phase,

D∗b+2 sin πφ sinπ(1 + b)φ in dilute phase,
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with D∗b given in (E.3) below. In each phase, G∗0(φ) 6= 0. We have

G∗1/2(φ) = i
√

4− n2D∗
(

2
sin π(1− b)w∗∞

sin πw∗∞
−sin π(1− b)(w∗∞ − φ)

sin π(w∗∞ − φ)
−sin π(1− b)(w∗∞ + φ)

sinπ(w∗∞ + φ)

)
,

where D∗ is a differential operator given in (E.2) below.

Proof. From Proposition 4.1 and the behavior of Υb(τφ + 1
2
) given in Lemma A.2, we

repeat in a finer way the computation of the beginning of Section 5.1.:

(∆0G)(τφ)(E.1)

=
√

4− n2
8iπ

T

qb/2

1− qb
{
− cosπbφDYb,0(πw∞) + q1−b cos π(b− 2)φDYb−2,0(πw∞)

−q
(

cos π(b− 2)φDYb−2,0(πw∞) + cos π(b+ 2)φDYb+2,0(πw∞)
)

+O(q1+b)
}
,

where Yb,0 are D were introduced in (D.3). One of the exact condition determining the
endpoint was ∆0G(0) = 0, i.e.

DYb,0(πw∞) = q1−bDYb−2,0(πw∞)− qD(Yb−2,0 + Yb+2,0)(πw∞) +O(q1+b) = 0,

which we can substitute in (E.1) to obtain

(∆0G)(τφ)

=
√

4− n2
16iπ

T

qb/2

1− qb
{
q1−b sin πφ sin π(1− b)φDYb−2,0(πw∞)

+q sin πφ
(

sin π(1− b)φDYb−2,0(πw∞) + sin π(1 + b)φDYb+2,0(πw∞)
)

+O(q1+b)

}
.

The dense phase was characterized by

(E.2) D∗Yb−2,0(πw∗∞) 6= 0, D∗ =
∑

l≥0

(−1)lĝ∗l
l!

∂lπw∗∞ .

Therefore, the first term, of order q1−b, is indeed the subleading term. The dilute phase
is characterized by D∗Yb−2(πw∗∞) = 0 and then one can check that D∗Yb+2(πw∗∞) 6= 0. So,
in the dilute phase the leading term is of order O(q). This gives the announced results
with

(E.3) D∗b = 16i
√

4− n2D∗Yb(πw∗∞).

For (∆ 1
2
G)(τφ), we easily arrive to the result using the behavior of Υb(τφ) from Lem-

ma A.2, and exploiting the freedom to subtract ∆ 1
2
G(0) = 0. �

Corollary E.3. We have when T → 0 in the dense phase, for r = 1, 2 and ε ∈ {0, 1
2
}:

yε,r =
(π
T

)2r+1

q(1−2ε)(1−db/2)
{
y∗ε,r +O(qb)

}
,

with y∗ε,r 6= 0 computable from Lemma E.2, and y∗0,2/y∗0,1 = −2 + 2b− b2.

Inserting the previous results into the expressions (4.33)-(4.34) for the initial conditions,
we find:
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Corollary E.4. When T → 0 in the dense phase:

C(0,3)
[

0
ε

0
ε

0
ε

]
=

(π
T

)−3

q(1−2ε)(db/2−1)
{
C(0,3)
∗
[

0
ε

0
ε

0
ε

]
+O(qb)

}
,

C(1,1)
[

0
ε

]
=

(π
T

)−1

q(1−2ε)(db/2−1)
{
C(1,1)
∗
[

0
ε

]
+O(qb)

}
,

C(1,1)
[

1
ε

]
=

(π
T

)−3

q(1−2ε)(db/2−1)
{
C(1,1)
∗
[

1
ε

]
+O(qb)

}
,

(E.4)
and likewise for C’s, with:

C(0,3)
∗
[

0
ε

0
ε

0
ε

]
= − 2

y∗ε,1
,

C(1,1)
∗
[

0
0

]
=

6 + 26b+ 11b2

24y∗0,1
,

C(1,1)
∗
[

0
1
2

]
=

y∗1
2
,2

24(y∗1
2
,1

)2
+

2 + 6b+ 3b2

6y∗1
2
,1

,

C(1,1)
∗
[

1
ε

]
= − 1

24y∗ε,1
.

From Corollary E.3 we can then deduce the critical behavior of K’s and K̃’s.

Corollary E.5. For ε, σ, σ′ ∈ {0, 1
2
}, we denote:

f(ε, σ, σ′) = b
{

(ε⊕ σ) + (ε⊕ σ′)
]

+ ( b
2
− 1)(1− 2ε).

When T → 0 in the dense phase, we have

K
[
l
ε
m
σ
m′
σ′
]

=
(π
T

)2(m+m′−l)+1

qf(ε,σ,σ′)
{
K∗
[
l
ε
m
σ
m′
σ′
]

+O(qb)
}
,

K̃
[
l
ε
l′
ε
m
σ

]
=

(π
T

)2(m−l−l′)−1

qf(ε,ε,σ)
{
K̃∗
[
l
ε
l′
ε
m
σ

]
+O(qb)

}
,

with

K∗
[
l
ε
m
σ
m′
σ′
]

=
4(−1)l+m+m′

4− n2
Res
φ→0

dφφ2l+1

(2l + 1)!G∗ε(φ)
B
∗,(2m+1)
ε⊕σ [π(φ+ 1)]B

∗,(2m′+1)
ε⊕σ′ [π(φ− 1)],

K̃∗
[
l
ε
l′
ε
m
σ

]
=

2(−1)m+l+l′+1

√
4− n2

Res
φ→0

dφφ2(l+l′)+1

(2l + 1)!(2l′)!G∗ε(φ)
B
∗,(2m+1)
ε⊕σ [π(φ+ 1)].

Proof. This is a direct computation from Lemma E.1-E.2. We note that for K̃, we find
an exponent qf̃(ε,σ), with f̃(ε, σ) = b(ε⊕ σ) + ( b

2
− 1)(1− 2ε). But since ε⊕ ε = 0, this is

also equal to f(ε, ε, σ). �
We also remark that the order of magnitude of C(0,3)

[
0
ε

0
ε

0
ε

]
and C(1,1)

[
l
ε] is qf(ε,ε,ε). There-

fore, for a given graph G and coloring σ of its edges appearing in the sum of Proposi-
tion 4.11, and any vertex v ∈ V (G), the factor associated to v – either K, K̃, C(0,3) or
C(1,1) – is of order of magnitude qfv with

fv = f
(
σ(e0

v), σ(e1
v), σ(e2

v)
)
.
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