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Abstract
We prove the exactness of the reduction map from étale (ϕ,Γ)-modules over com-

pleted localized group rings of compact open subgroups of unipotent p-adic algebraic
groups to usual étale (ϕ,Γ)-modules over Fontaine’s ring. This reduction map is a com-
ponent of a functor from smooth p-power torsion representations of p-adic reductive
groups (or more generally of Borel subgroups of these) to (ϕ,Γ)-modules. Therefore
this gives evidence for this functor—which is intended as some kind of p-adic Langlands
correspondence for reductive groups—to be exact. We also show that the corresponding
higher Tor-functors vanish. Moreover, we give the example of the Steinberg represent-
ation as an illustration and show that it is acyclic for this functor to (ϕ,Γ)-modules
whenever our reductive group is GLd+1(Qp) for some d ≥ 1.

1 Introduction

1.1 Colmez’ work

In recent years it has become increasingly clear that some kind of p-adic version of the
local Langlands conjectures should exist. However, a precise formulation is still missing. It is
all the more remarkable that Colmez has recently managed to establish such a correspondence
between 2-dimensional p-adic Galois representations of Qp and continuous irreducible unitary
p-adic representations of GL2(Qp). In fact, Colmez [3, 4] constructed a functor from smooth
torsion P -representations to étale (ϕ,Γ)-modules where P is the standard parabolic subgroup
of GL2(Qp). Whenever we are given a unitary GL2(Qp)-representation V , we may find a
GL2(Qp)-invariant lattice L inside it. Hence we can take the restriction to P of the reduction
L/pmL mod pm for some positive integer m and pass to (ϕ,Γ)-modules using Colmez’ functor.
The (ϕ,Γ)-module corresponding to the initial representation of GL2(Qp) will be the projective
limit of these (ϕ,Γ)-modules when m tends to infinity. The miracle is that whenever we
started with an irreducible supercuspidal GL2-representation in characteristic p the resulting
(ϕ,Γ)-module will be 2-dimensional and hence correspond to a 2-dimensional modulo p Galois
representation of the field Qp. The image of 1-dimensional and pricipal series representations
is, however, 0 and 1 dimensional, respectively (see Thm. 10.7 in [13]).

1.2 The Schneider-Vigneras functors

Even more recently, Schneider and Vigneras [10] managed to generalize Colmez’ functor
to general p-adic reductive groups. Their context is the following. Let G be the group of
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Qp-points of a Qp-split connected reductive group over Qp whose centre is also assumed to
be connected for technical simplicity. To review their construction we fix a Borel subgroup
P = TN with split torus T and unipotent radical N . We also fix an appropriate compact
open subgroup N0 which gives rise to the ‘dominant’ submonoid T+ := {t ∈ T | tN0t

−1 ⊆ N0}
in T . On the one side we consider the abelian category Mo−tor(P ) of all smooth o-torsion
representations of the group P where o is the ring of integers in a fixed finite extension K/Qp.
On the other side a monoid ring Λ(P+) is introduced for the monoid P+ := N0T+ and we
denote the category of all (left unital) Λ(P+)-modules by M(Λ(P+)). Such a module M is
called étale if every t ∈ T+ acts, informally speaking, with slope zero on M . The universal
δ-functor V 7→ Di(V ) for i ≥ 0 fromMo−tor(P ) to the categoryMet(Λ(P+)) of étale Λ(P+)-
modules is constructed the following way. Di are the derived functors of a contravariant
functor D : Mo−tor(P )→Met(Λ(P+)) which is not exact in the middle, but takes surjective,
resp. injective maps to injective, reps. surjective maps. (Hence D 6= D0 in general.) The
modules Di(V ) are not expected to have good properties in general. This is why it is natural
to pass to some topological localization Λ`(P?) of the group ring Λ(P?) of a submonoid P? of P+

generated by P0, ϕ, and Γ. The corresponding abelian categoryMet(Λ`(P?)) of étale Λ`(P?)-
modules is a generalization of Fontaine’s (ϕ,Γ)-modules. Indeed, whenever G = GL2(Qp)
(in this case we denote by S? the standard monoid inside GL2(Qp) and note that N0

∼= Zp)
then the objects that are finitely generated over the smaller localized ring Λ`(N0) ∼= ΛF (Zp)
are exactly Fontaine’s (ϕ,Γ)-modules. This construction leads to the universal δ-functor
Di
`(V ). The fundamental open question in [10] is for which class of P -representations V are

the modules Di
`(V ) finitely generated over Λ`(N0). Moreover, with the help of a Whittaker

type functional ` one may pass to the category Met(ΛF (S?)) for the standard monoid S?
in GL2(Qp). This way one obtains a δ-functor Di

ΛF (S?) from Mo−tor(P ) to the category of
not necessarily finitely generated (ϕ,Γ)-modules à la Fontaine. For the group G = GL2(Qp)
Colmez’ original functor coincides with D0

ΛF (S?) and the higher Di
ΛF (S?) vanish.

1.3 Outline of the paper

The aim of this short note is to investigate the exactness properties of the functors con-
structed by Schneider and Vigneras [10]. Whenever G 6= GL2(Qp) then the reduction map

` : Λ`(N0) � ΛF (Zp)

has a nontrivial kernel and hence is not flat. However, the extra étale ϕ-structure allows us
to show that the reduction functor from étale ϕ-modules over Λ`(N0) to étale ϕ-modules over
ΛF (Zp) induced by ` is still exact if we restrict ourselves to pseudocompact Λ`(N0)-modules
which includes those finitely generated. The proof relies on the non-existence of nonzero maps
from pure ϕ-modules of slope 0 to pure ϕ-modules of positive slope over Fontaine’s ring. In
section 3.4 we use this to show that in fact the higher Tor-functors ToriΛ`(N0)(ΛF (Zp),M)
vanish for i ≥ 1 whenever M is a pseudocompact étale ϕ-module over Λ`(N0).

In section 4 we investigate the example of the Steinberg representation VSt. We show that
in this case we have D0(VSt) = D(VSt) and, in particular D0(VSt) is finitely generated over
Λ`(N0). Moreover, we prove that all the higherDi(VSt) vanish for i ≥ 1. This is the first known
example of a smooth o-torsion P -representation with finitely generated D0

` and with known
Di
` for all i ≥ 0. Hence VSt is acyclic for the functor D` and also for the functor DΛF (S?) by the
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first part of the paper. It also follows that the functor in the other direction fromMet(Λ(P+))
toMo−tor(P ) sends D0(VSt) back to VSt. We expect that the method of computing Di(VSt)
for i ≥ 0 generalizes to a wider class of smooth o-torsion P -representations. For technical
reasons we restrict ourselves in this section to the general linear group GLd+1(Qp) with d ≥ 1.
The case GL2(Qp) is also formally included—however, the functor D is known [3, 4] to be
exact in this case.

2 Preliminaries and notations

2.1 Basic notations

We are going to use the notations of [10], but for the convenience of the reader we recall
them here, as well. Let G be the group of Qp-rational points of a Qp-split connected reductive
group over Qp. Assume further that the centre of this reductive group is also connected. We
fix a Borel subgroup P = TN in G with maximal split torus T and unipotent radical N . Let
Φ+ denote, as usual, the set of roots of T positive with respect to P and let ∆ ⊆ Φ+ be the
subset of simple roots. For any α ∈ Φ+ we have the root subgroup Nα ⊆ N . We recall that
N =

∏
α∈Φ+ Nα for any total ordering of Φ+. Let T0 ⊆ T be the maximal compact subgroup.

We fix a compact open subgroup N0 ⊆ N which is totally decomposed, ie. N0 =
∏

αN0 ∩Nα

for any total ordering of Φ+. Then P0 := T0N0 is a group. We introduce the submonoid
T+ ⊆ T of all t ∈ T such that tN0t

−1 ⊆ N0, or equivalently, such that α(t) is integral for any
α ∈ ∆. Then P+ := N0T+ = P0T+P0 is obviously a submonoid of P .

We also fix a finite extension K/Qp with ring of integers o, prime element π, and residue
class field k. For any profinite groupH let Λ(H) := o[[H]], resp. Ω(H) := k[[H]] = Λ(H)/πΛ(H)
be the Iwasawa algebra of H with coefficients in o, resp. k.

2.2 The functors D and Di

By a representation we will always mean a linear action of the group (or monoid) in
question in a torsion o-module V . It is called smooth if the stabilizer of each element in V is
open in the group. We put V ∗ := Homo(V,K/o) the Pontryagin dual of V which is a compact
linear-topological o-module. Following [10] we define

D(V ) := lim−→
M

M∗

where M runs through all the generating P+-subrepresentations of V . Whenever V is com-
pactly induced it is equipped with an action of the ring Λ(P+) which is by definition the image
of the natural map

Λ(P0)⊗o[P0] o[P+]→ lim←−
Q

o[Q \ P+]

where Q runs through all open normal subgroups Q ⊆ P0 which satisfy bQb−1 ⊆ Q for any
b ∈ P+ (cf. Proposition 3.4 in [10]). The Λ(P+)-modules Di(V ) for a general smooth P -
representation V and i ≥ 0 are obtained as the cohomology groups Di(V ) := hi(D(I•(V )))
for some resolution

I•(V ) : · · · → indPP0
(Vn)→ · · · → indPP0

(V0)→ V → 0
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of V by compactly induced representations. This is independent of the choice of the resolution
by Corollary 4.4 in [10]. Since D is not exact in the middle, we do not have D(V ) = D0(V )
in general.

2.3 The ring Λ`(N0)

As in [10] we fix once and for all isomorphisms of algebraic groups

ια : Nα

∼=→ Qp

for α ∈ ∆, such that
ια(tnt−1) = α(t)ια(n)

for any n ∈ Nα and t ∈ T . Since
∏

α∈∆Nα is naturally a quotient of N/[N,N ] we now
introduce the group homomorphism

` :=
∑
α∈∆

ια : N → Qp.

Moreover, for the sake of convenience we normalize the ια such that

ια(N0 ∩Nα) = Zp

for any α in ∆. In particular, we then have `(N0) = Zp. We put N1 := Ker(`|N0). The group
homomorphism ` also induces a map

Λ(N0) � Λ(Zp)

which we still denote by `. By [2] the multiplicatively closed subset S := Λ(N0) \ (π,Ker(`))
is a left and right Ore set in Λ(N0) and we may define the localization Λ(N0)S of Λ(N0)
at S. We define the ring Λ`(N0) := ΛN1(N0) as the completion of Λ(N0)S with respect to
the ideal (π,Ker(`))Λ(N0)S. This is a strict-local ring with maximal ideal (π,Ker(`))Λ`(N0).
Moreover, it is pseudocompact (c.f. Thm 4.7 in [9]).

2.4 Generalized (ϕ,Γ)-modules

Now since we assume that the centre of G is connected, the quotient X∗(T )/
⊕

α∈∆ Zα is
free. Hence we find a cocharacter ξ in X∗(T ) such that α ◦ ξ = idGm for any α in ∆. It is
injective and uniquely determined up to a central cocharacter. We fix once and for all such a
ξ. It satisfies

ξ(Zp \ {0}) ⊆ T+

and
`(ξ(a)nξ(a−1)) = a`(n)

for any a in Q×p and n in N . Put Γ := ξ(1 + pε(p)Zp) and ϕ := ξ(p).
The group Γ and the semigroup generated by ϕ naturally act on the ring Λ`(N0). Hence we

may define (ϕ,Γ)-modules (resp. ϕ-modules) over Λ`(N0) as Λ`(N0)-modules together with a
commuting and compatible action of ϕ and Γ (resp. just a compatible action of ϕ). The notion
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of (Λ`(N0),Γ, ϕ)-module refers to (ϕ,Γ)-modules that are finitely generated over Λ`(N0). We
call a ϕ-module M étale if the map

Λ`(N0)⊗ϕM → M

ν ⊗m 7→ νϕM(m)

is bijective.
The map ` induces a ϕ- and Γ-equivariant ring homomorphism

Λ`(N0) � ΛF (Zp)

onto Fontaine’s ring ΛF (Zp) which is the p-adic completion of the Laurent series ring o[[T ]][T−1].
Hence it gives rise to a functor from (étale) (ϕ,Γ)-modules over Λ`(N0) to not necessarily fi-
nitely generated (étale) (ϕ,Γ)-modules over ΛF (Zp). We may restrict this functor to pseudo-
compact (or less generally to finitely generated) étale modules. The main result of this short
note is that this restriction is exact.

3 Exactness of reduction on pseudocompact modules

3.1 A p-valuation on N1

We fix a simple root α0 in ∆. Since N0 is totally decomposed we can fix topological
generators nα of N0 ∩ Nα for any α in ∆ such that `(nα) = 1. Further, we fix topological
generators nβ of N0 ∩Nβ for each β ∈ Φ+ \∆. Hence the set

A := {nα0} ∪ {n−1
α0
nα}α∈∆\{α0} ∪ {nβ}β∈Φ+\∆

is a minimal set of topological generators of the group N0. Moreover, A \ {nα0} is a minimal
set of generators of the group Ker(`) ∩N0. Further, we put

bα :=

{
nα − 1 if α ∈ (Φ+ \∆) ∪ {α0}
n−1
α0
nα − 1 if α ∈ ∆ \ {α0}.

Now we define a p-valuation ω on N1 as follows. Any β in Φ+ can be written as a positive
integer combination β =

∑
α∈∆ mαβα of simple roots α. We denote by mβ :=

∑
αmαβ the

degree of β ◦ ξ which is a positive integer and is equal to 1 if and only if β lies in ∆. Further,
we fix a total ordering < of Φ+ such that the minimal element of Φ+ is α0 and whenever
mα < mβ for roots α, β in Φ+ then also α < β. As N0 is totally decomposed we may write
any element g in N1 as a product

g =
∏

α∈∆\{α0}

(n−1
α0
nα)gα

∏
β∈Φ+\∆

n
gβ
β

where gα and gβ are in Zp and the product is taken in the ordering < of Φ+ defined above.
We put

ω(g) := min
β∈Φ+\{α0}

mβ(vp(gβ) + 1)

for any 1 6= g in N1. Here vp denotes the additive p-adic valuation on Zp.
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Lemma 1. The function ω is a p-valuation on N1 \ {1}. In other words, we have

(i) ω(gh−1) ≥ min(ω(g), ω(h)).

(ii) ω(g−1h−1gh) ≥ ω(g) + ω(h).

(iii) ω(gp) = ω(g) + 1.

Proof. For the proof of (i) we are going to use triple induction. At first by induction on the
number of non-zero coordinates among (hβ)β∈Φ\{α0} we are reduced to the case when h is of
the form (n−1

α0
nα)hα or nhββ . For simplifying notation we put

n′α :=

{
n−1
α0
nα if α ∈ ∆ \ {α0}

nα if α ∈ Φ+ \∆.

So we have h = n
hα(h)

α(h) for some α(h) in Φ+ \∆. Now we use (descending) induction on mα(h)

and suppose that the statement (i) is true for any α(h) with mα(h) > m0 and we are given
an h with mα(h) = m0. For this we remark that once N0 is fixed the set {mβ}β∈Φ+ is finite.
Note that for any β in Φ+ \ {α0} the commutator [n′β

gβ , n′α(h)
−hα(h) ] is a product of elements∏

α n
′
α
iα with mα > mα(h) by the commutator formula in Proposition 8.2.3 in [11]. Hence by

further induction on the number of non-zero coordinates of g for a fixed m0 we are finally
reduced to the case when g = n′α(g)

gα(g) (and h = n′α(h)
hα(h)). The statement follows applying

the commutator formula in Proposition 8.2.3 in [11] once again.
Since we know (i) it suffices to check (ii) in the case g = n′α(g)

gα(g) and h = n′α(h)
hα(h) . For

these this is another application of the commutator formula cited above.
The assertion (iii) is clear from the definition using (i) and (ii).

Remark. The p-valuation ω extends to N0 by putting ω(nα0) := mα0 = 1.

3.2 The ideals Jn
In view of Lemma 1 we define for each positive integer n the normal subgroup N1,n in N1

as the set of elements g in N1 with ω(g) ≥ n together with 1. In particular, N1,1 = N1. We
define Jn(Λ(N1)) to be the kernel of the natural surjection Λ(N1) � Λ(N1/N1,n). Moreover,
we denote by Jn the ideal generated by Jn(Λ(N1)) in Λ`(N0). We further have the following

Lemma 2. N1,n is a normal subgroup in P0 for any n ≥ 1. In particular, Jn is the kernel
of the natural surjection from Λ`(N0) = ΛN1(N0) onto ΛN1/N1,n(N0/N1,n). Further, we have
ϕN1,nϕ

−1 ⊆ N1,n+1. Therefore there is an induced ϕ-action on each Λ`(N0)/Jn such that the
module Jn/Jn+1 is killed by ϕ for any n ≥ 1.

Proof. The proof of the fact that N1,n is normalized by nα0 is similar to the proof of Lemma
1. If t is in T0 then we have tnαt−1 = ntαα with tα in Z×p . Hence the first part of the statement.
For the second part we note that ϕnαϕ−1 = np

mα

α .

Note that the Jacobson radical Jac(Λ`(N0)) is equal to the ideal (π, J1) by definition of
J1. Moreover, for any element g in N1,nmaxβ∈Φ+ mβ is a product of pnth powers of elements in
N1, hence Jnmaxβ∈Φ+ mβ ⊆ Jac(Λ`(N0))n. In particular,

⋂
n Jn = 0.

Recall that Λ`(N0) is a pseudocompact ring (c.f. [9] Thm. 4.7).
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Lemma 3. If M is any pseudocompact module over Λ`(N0) then JnM and M/JnM are also
pseudocompact in the subspace, resp. quotient topologies.

Proof. It suffices to show that JnM is closed in M . By Lemma 1.6 in [1] and by the fact that
the pseudocompact modules form an abelian category ([6] IV.3. Thm. 3) we are reduced to
the case when M =

∏
i∈I Λ`(N0) with the product topology. However, in this case we have

Jn
∏

i∈I Λ`(N0) =
∏

i∈I Jn as Jn is finitely generated (Λ`(N0) is noetherian), and this is closed
in the product topology as Jn is closed in Λ`(N0) using once again that it is finitely generated
and hence pseudocompact in the subspace topology of Λ`(N0).

Lemma 4. If M is any pseudocompact module over the ring Λ`(N0) then the natural map
induces an isomorphism

M ∼= lim←−
n

M/JnM.

Proof. By Lemma 3 the submodules JnM are closed, and since Jnmaxβ∈Φ+ mβ ⊆ Jac(Λ`(N0))n

we have
⋂
n JnM = 0. The statement follows from IV.3. Proposition 10 in [6].

3.3 Main result

Proposition 5. Let M and N be pseudocompact étale ϕ-modules over Λ`(N0). Then in-
jective continuous maps (in the pseudocompact topology) M ↪→ N reduce to injective maps
M/J1M ↪→ N/J1N between the ϕ-modules over ΛF (Zp).

Proof. Let Kn be the kernel of the induced map from M/JnM to N/JnN . We assume
indirectly that K1 6= 0. We show that the natural map from Kn to K1 is surjective for
any n. For this we are going to use the following commutative diagram with some Xn and
Yn.

0 0 0y y y
0 −−−→ Xn −−−→ Kn −−−→ K1y y y
0 −−−→ J1M/JnM −−−→ M/JnM −−−→ M/J1M −−−→ 0y y y
0 −−−→ J1N/JnN −−−→ N/JnN −−−→ N/J1N −−−→ 0y

Yny
0

(1)

We remark immediately that by Lemma 3 all the modules in the diagram (1) are pseudo-
compact modules over Λ`(N0), and all the maps are continuous in the pseudocompact topo-
logies. Indeed, the pseudocompact modules form an abelian category ([6] IV.3. Thm. 3).
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By the snake lemma we obtain the exact sequence

0→ Xn → Kn → K1
δn→ Yn.

We claim that there does not exist any nonzero map from K1 to Yn. This would show that
Kn surjects ontoK1 for any n. As ϕ is flat over ΛF (S?), étale modules form an abelian category
over ΛF (S?). In particular, K1 is étale as it is the kernel of a homomorphism between the
étale modules M/J1M and N/J1N . Therefore if there is a surjective ϕ-equivariant ΛF (S?)-
homomorphism from K1 to some module A then we also have that ϕ(A) generates A as
a ΛF (S?)-module. On the other hand, J1N/JnN admits the filtration Filk(J1N/JnN) :=
JkN/JnN for 1 ≤ k ≤ n. This induces a filtration Filk(Yn) on Yn via the above surjection
in (1). Let us assume now that δn is nonzero. Then there is an integer k < n such that
δn(K1) ⊆ Filk(Yn) but δn(K1) 6⊆ Filk+1(Yn). Hence we get a nonzero map from K1 to
Filk(Yn)/F ilk+1(Yn) which we denote by δ′n. However, we claim that ϕ acts as zero on the
latter which will contradict to the fact that ϕ(δ′n(K1)) generates δ′n(K1). Indeed, we have a
surjective composite map

(Jk/Jk+1)⊗Λ`(N0) N � JkN/Jk+1N � Filk(Yn)/F ilk+1(Yn),

hence ϕ(Filk(Yn)/F ilk+1(Yn)) = 0 as we have ϕ(Jk) ⊆ Jk+1 by Lemma 2.
Now we have a map from the projective system (Kn)n to the projective system (K1)n which

is surjective on each layer, hence its projective limit is also surjective by the exactness of lim←−
on pseudocompact modules ([6] IV.3. Thm. 3). The statement follows from the completeness
of M (Lemma 4).

Whenever M and N are finitely generated over Λ`(N0) then they admit a unique pseudo-
compact topology (since Λ`(N0) is pseudocompact and noetherian [9] Thm. 4.7 and Lemma
4.2(ii)) and any homomorphism between them is continuous. So we obtain the main result of
this paper as corollary of Proposition 5.

Proposition 6. The functor from the category of étale (Λ`(N0),Γ, ϕ)-modules to the category
of étale (ΛF (S0),Γ, ϕ)-modules induced by the natural surjection

` : Λ`(N0) � ΛF (Zp)

is exact.

3.4 Vanishing of higher Tor-functors

Let M be a pseudocompact étale ϕ-module over Λ`(N0). Then M/(π, J1)M is also a
pseudocompact étale ϕ-module over the field Λ`(N0)/(π, J1) ∼= k((t)). Hence there is an index
set I such that we have an isomorphism of pseudocompact modules

M/(π, J1)M ∼=
∏
i∈I

Λ`(N0)/(π, J1)

by Lefschetz’s Structure Theorem for linearly compact vector spaces ([8], p. 83 Thm. (32.1),
see also [5]). Moreover, we have (π, J1) = Jac(Λ`(N0)), therefore we obtain a minimal pro-
jective cover of M

f :
∏
i∈I

Λ`(N0) �M
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which is an isomorphism modulo (π, J1).
In this section we need to assume that ϕ acts continuously on the pseudocompact module

M . Note that this is automatic if M is finitely generated over Λ`(N0).

Lemma 7. Let F =
∏

i∈I Λ`(N0) be a ϕ-module over Λ`(N0). Then F is étale if and only if
so is F/Jac(Λ`(N0))F over k((t)).

Proof. If F is étale then by definition so is F/Jac(Λ`(N0))F . Now assume that F/Jac(Λ`(N0))F
is étale. In other words the map

1⊗ ϕ : Λ`(N0)⊗ϕ,Λ`(N0) F → F (2)

is isomorphism modulo Jac(Λ`(N0)). Therefore (2) is for instance surjective as its cokernel
is pseudocompact and killed by Jac(Λ`(N0)). On the other hand, since F is topologically
free, we have a continuous section of the map (2). Since (2) is an isomorphism modulo
Jac(Λ`(N0)), so is this section. However, by the same argument as above this section also has
to be surjective and therefore is an inverse to the map (2).

Proposition 8. Let M be an étale pseudocompact ϕ-module over Λ`(N0) with continuous
ϕ-action. Then the action of ϕ on M can be lifted to F :=

∏
i∈I Λ`(N0) via the surjection f

in (3.4). Any such lift makes F an étale ϕ-module.

Proof. Let us define another continuous Λ`(N0)-homomorphism

g :
∏
i∈I

Λ`(N0) → M

ei 7→ ϕ(f(ei)).

We need to check that limi∈I ϕ(f(ei)) = 0 in the pseudocompact topology of M so that g
really defines a continuous homomorphism. This is, however, clear by the continuity of ϕ and
f . By the projectivity of F (Lemma 1.6 in [1]) we obtain a lift ϕlin

F

f

��
F

ϕlin

>>

g // M

which we define as the linearization of ϕ on F . Hence we define

ϕ(ei) := ϕlin(ei)

and extend it σϕ-linearly and continuously to the whole F . By construction this is a lift
of ϕ|M . The étaleness follows from Lemma 7 noting that by construction of (3.4) we have
F/Jac(Λ`(N0))F = M/Jac(Λ`(N0))M and the latter is étale as so is M .

Corollary 9. For any pseudocompact étale ϕ-module M over Λ`(N0) with continuous ϕ and
any i ≥ 1 we have

ToriΛ`(N0)(Λ`(N0)/J1,M) = 0.
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Proof. By Proposition 8 there is a projective resolution (Fi)i∈N of M in the category of
pseudocompact Λ`(N0)-modules, such that the Fi are étale ϕ-modules and the resolution is
ϕ-equivariant. By Proposition 5, the functor Λ`(N0)/J1 ⊗Λ`(N0) · is exact on this resolution.
The result follows noting that the modules

∏
i∈I Λ`(N0) are flat over the noetherian ring

Λ`(N0) as in this case an arbitrary direct product of flat modules is flat again.

Corollary 10. Let M be a pseudocompact étale module over Λ`(N0) with continuous ϕ such
that πM = 0. Then there exists an index set I such that M ∼=

∏
i∈I Λ`(N0)/π. In particular,

M is a projective object in the category of pseudocompact modules over Λ`(N0)/π.

Proof. By Proposition 8 we obtain a minimal projective cover F of M with F admitting an
étale lift of the ϕ-action on M . Since πM = 0 this factors through F/πF which is also étale
in the induced ϕ-action. Now we denote by K the kernel of the map from F/πF onto M .
Then K is also étale as these form an abelian category. Hence by Proposition 5 we obtain an
exact sequence

0→ K/J1K → F/(π, J1)F →M/J1M → 0.

However, the map F/(π, J1)F → M/J1M is an isomorphism by the construction of F (3.4)
showing that K/J1K = 0 whence K = 0 as K is pseudocompact.

4 An example
In this section we are going to investigate the so called Steinberg representation. For the

sake of simplicity (of the Bruhat-Tits building) we let G be GLd+1(Qp) in this section for some
d ≥ 1 and P be its standard Borel subgroup of lower triangular matrices. Recall that the
group P = NT acts on N by (nt)(n′) = ntn′t−1. This induces an action of P on the vector
space VSt := C∞c (N) of k-valued locally constant functions with compact support on N . It
is straightforward to see (cf. Example on p. 8 in [10] and [12] Lemme 4) that the subspace
M := C∞(N0) of locally constant functions on N0 is generating and P+-invariant. Moreover,
it is shown in [10] Lemma 2.6 that we have D(VSt) = Λ(N0)/πΛ(N0). We have the following
refinement of this.

Proposition 11. Let VSt be the smooth modulo p Steinberg representation of the group P .
Then we have D0(VSt) = D(VSt) = Λ(N0)/πΛ(N0), and Di(VSt) = 0 for any i ≥ 1.

For the proof of Proposition 11 we are going to construct an explicit resolution

I• : 0→ indPP0Z
(Vd)→ · · · → indPP0Z

(V1)→ indPP0Z
(V0)→ VSt → 0

of VSt using the Bruhat-Tits building of G. Here Z denotes the centre of G that will act
trivially on each Vi (0 ≤ i ≤ d). Since Z ∼= Q×p , Lemma 11.8 in [10] generalizes to this case
with the same proof, so we have D0(indPP0Z

(Vi)) = D(indPP0Z
(Vi)) and Di(indPP0Z

(Vi)) = 0 for
all 0 ≤ i ≤ d. In particular, we may compute Di(VSt) = hi(D(I•)).

Recall that the Bruhat-Tits building BT of G is the simplicial complex whose vertices are
the similarity classes [L] of Zp-lattices in the vector space Qd+1

p and whose q-simplices are
given by families {[L0], . . . , [Lq]} of similarity classes such that

pL0 ( L1 ( · · · ( Lq ( L0.
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Let BT q denote the set of all q-simplices of BT . We also fix an orientation of BT with the
corresponding incidence numbers [η : η′]. We choose a basis e0, . . . , ed ofQd+1

p in which P is the
Borel subgroup of lower triangular matrices and denote the origin of BT by x0 := [

∑d
i=0 Zpei].

Further, for all 1 ≤ i ≤ d let ϕi be the dominant diagonal matrix diag(1, . . . , 1, p, . . . , p) with
i entries equal to 1 and d + 1 − i entries equal to p and put xi := ϕix0. Then T+/T0Z
is clearly generated by the elements {ϕiT0Z}di=1 as a monoid. Moreover, for each subset
J = {j1 < · · · < jq} ⊆ {1, . . . , d} we define the (oriented) q-simplex

ηJ := {x0, xj1 , . . . , xjq}.

Now we define the coefficient system

VntηJ := C∞c

(
nt

(⋂
j∈J

ϕjN0ϕ
−1
j

)
t−1

)

for any n in N , t in T , and J ⊆ {1, . . . , d}; and Vx := 0 if η 6= bηJ for any b in P and
J ⊆ {1, . . . , d}. The restriction maps are the natural inclusion maps. Indeed, for any two
simplices η1 ⊆ η2 such that Vη2 6= 0 we have a b = nt in P such that ηi = bηJi for J1 ⊆
J2 ⊆ {1, . . . , d} and i = 1, 2 therefore Vη2 = ntVηJ2

is naturally contained in Vη1 = ntVηJ1

by extending the functions f in VntηJ to the whole N by putting f|N\nt(⋂j∈J ϕjN0ϕ
−1
j )t−1 = 0.

Later on we will often view elements of VntηJ as functions on N with support in supp(VntηJ ) =

nt
(⋂

j∈J ϕjN0ϕ
−1
j

)
t−1.

Note that Vη is either zero or equal to
⋂
x∈η∩BT 0 Vx. It might, however, happen that this

intersection is nonzero but Vη = 0 as η is not in the P -orbit of ηJ for any J ⊆ {1, . . . , d}. We
also see immediately that P acts naturally on the coefficient system (Vη) and this action is
compatible with the boundary maps. Moreover, we claim

Lemma 12. We have ⊕
η∈BT q

Vη ∼= indPP0Z
(Vq) (3)

with
Vq :=

∑
b0 ∈ P0, |J | = q
J ⊆ {1, . . . , d}

Vb0ηJ =
⊕

|J |=q,J⊆{1,...,d}

⊕
n0∈N0/

⋂
j∈J ϕjN0ϕ

−1
j

Vn0ηJ .

Proof. By construction Vq is a P0-subrepresentation of
⊕

η∈BT q Vη so we clearly have a P -
equivariant map from the right hand side of (3) to the left hand side. Since Vq contains VηJ
for any q-element subset J of {1, . . . , d} this map is surjective.

For the injectivity let b be in P with bηJ1 = ηJ2 for two (not necessarily distinct) subsets
J1 and J2 of {1, . . . , d}. Assume that b does not lie in P0Z. Then we have bx0 = ϕix0 and
bϕjx0 = x0 for some 1 ≤ i, j ≤ d. Hence b = ϕib0 for some b0 in StabP (x0) = P0Z with ϕib0ϕj
lying also in P0Z. This is a contradiction as ϕib0ϕ

−1
i is in P0Z, but ϕiϕj is not. It follows

that ηJ1 and ηJ2 are in different P -orbits of BT if J1 6= J2 (since dimFp Lϕix0/pL0 = pi for all
1 ≤ i ≤ d) and StabP (ηJ) ⊆ P0Z. The statement follows.
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Lemma 13. The coefficient system (Vη)η defines an acyclic resolution of the representation
VSt, ie. H0((Vη)η) = VSt and Hi((Vη)η) = 0 for all i ≥ 1.

Proof. By Lemma 12 we note immediately that the natural map⊕
η∈BT 0

Vη ∼= indPP0Z
(V0) = indPP0Z

(M)→ VSt (4)

is surjective since M generates VSt. On the other hand, if an element f in indPP0Z
(M) lies in

the kernel of the above map (4) then for some t in T+ the support of tf lies in P+. Hence
for proving that f lies in the image of

⊕
η∈BT 1

Vη we may assume that f has support in P+.
However, we claim that for any b in P+ and any element v in Vbx0 there is an element v0 in
Vx0 such that v− v0 lies in the image of

⊕
η∈BT 1

Vη. Indeed, if b = n0t for some n0 in N0 and
t in T+ (since P+ = N0T+) then v has support in n0tN0t

−1 ⊆ n0tϕ
−1
j N0ϕjt

−1 for any j with
tϕ−1

j ∈ T+. Hence v lies in V{n0tϕ−1x0,n0tx0} and the claim follows by induction on K =
∑d

i=1 ki

with tT0Z =
∏d

i=1 ϕ
ki
i T0Z. This shows that H0((Vη)η) = VSt.

For the acyclicity of the resolution (Vη)η we are going to use Grosse-Klönne’s local criterion
[7]. To recall his result we need to introduce some terminology. Let η̂ be a pointed (q − 1)-
simplex with underlying (q−1)-simplex η. LetNη̂ be the set of vertices z of BT such that (η̂, z)
is a pointed q-simplex. Each element z in Nη̂ corresponds to a lattice Lz with Lq−1 ( Lz ( L0

where (L0, . . . , Lq−1) represents η. We call a subset M0 of Nη̂ stable with respect to η̂ if for
any two z, z′ in M0 the lattice Lz ∩Lz′ represents an element in M0, as well. (By Lemma 2.2
in [7] this is equivalent to the original definition of stability in the case of the Bruhat-Tits
building.) By Theorem 1.7 in [7] we need to verify that for any 1 ≤ q ≤ d, any pointed
(q − 1)-simplex η̂, and any subset M0 of Nη̂ that is stable with respect to η̂ the sequence⊕

z, z′ ∈M0

{z, z′} ∈ BT 1

V{z,z′}∪η →
⊕
z∈M0

V{z}∪η → Vη (5)

is exact. Since our coefficient system is P -equivariant, we may assume without loss of gener-
ality that η = ηJ for some subset J ⊆ {1, . . . , d} with |J | = q − 1. Let M0 ⊆ Nη̂J be stable
with respect to η̂J (here η̂J corresponds to any fixed vertex of ηJ). Since the stabilizer of
η = ηJ is contained in P0Z, for any simplex ν ⊃ η we have ν = nνηJ ′ for some J ′ ⊃ J and
nν in N0 stabilizing η. In particular, supp(Vν) = nν

(⋂
j∈J ′ ϕjN0ϕ

−1
j

)
. Hence for any n0 in

N0 the coset n0

⋂d
j=1 ϕjN0ϕ

−1
j is either contained in supp(Vν) or disjoint from supp(Vν). This

means that we have

Vν = C∞c

(
nν
⋂
j∈J ′

ϕjN0ϕ
−1
j

)
=

⊕
n0∈nν

⋂
i∈J′ ϕiN0ϕ

−1
i /

⋂d
j=1 ϕjN0ϕ

−1
j

C∞c

(
n0

d⋂
j=1

ϕjN0ϕ
−1
j

)

and it suffices to check the exactness of the restriction of (5) to each coset n0

⋂d
j=1 ϕjN0ϕ

−1
j .

For any fixed n0 we multiply the restriction of (5) to the coset n0

⋂d
j=1 ϕjN0ϕ

−1
j by n−1

0 and
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obtain the sequence

⊕
z 6=z′∈n−1

0 M0∩{x0,...,xd}

C∞c (
d⋂
j=1

ϕjN0ϕ
−1
j )→

⊕
z∈n−1

0 M0∩{x0,...,xd}

C∞c (
d⋂
j=1

ϕjN0ϕ
−1
j )→ C∞c (

d⋂
j=1

ϕjN0ϕ
−1
j )

(6)
since the condition on n0 lying in nν

⋂
i∈J ′ ϕiN0ϕ

−1
i /

⋂d
j=1 ϕjN0ϕ

−1
j is equivalent to that n−1

0 ν
is a subsimplex of {x0, . . . , xd}. However, (6) is clearly exact and the lemma follows.

Proof of Proposition 11. At first we note that Lemma 11.8 in [10] generalizes to our case with
the same proof, ie. D(indPP0Z

(V )) = D0(indPP0Z
(V )) and Di(indPP0Z

(V )) = 0 for i ≥ 1 for any
smooth P -representation V with central character since Z ∼= Q×p here, as well. So by Lemmas
12 and 13 (and noting that Z acts trivially on each Vq) we may compute

Di(VSt) = hi(D(
⊕
η∈BT •

Vη)).

By Lemma 2.5 in [10] it suffices to show that for any 0 ≤ q ≤ d− 1 and any generating P+-
subrepresentation Mq+1 of indPP0Z

(Vq+1) there exists a generating P+-subrepresentation Mq of
indPP0Z

(Vq) such that Mq ∩ ∂q+1(indPP0Z
(Vq+1)) ⊆ ∂q+1(Mq+1). By (the analogue of) Lemma

3.2 in [10] (see the proof of Lemma 11.8 in [10]) we may assume that Mq+1 is of the form
Mq+1 = Mq+1,σ for some order reversing map σ from T+/T0Z to Sub(Vq+1) satisfying⋃

t∈T+/T0Z

σ(t) = Vq+1.

Here Sub(Vq+1) denotes the partially ordered set of P0-subrepresentations of Vq+1 and

Mq+1,σ =
⊕

t∈T+/T0Z

indN0tP0Z
P0Z

σ(t)

where indXP0Z
(V ) denotes the set of functions with support in X from P to V as a subset of

indPP0Z
(V ) for any P0Z-representation V and P0Z-invariant subset X of P .

Moreover, since we have for any n0 in N0

Vn0ηJ = C∞c

(
n0

⋂
j∈J

ϕjN0ϕ
−1
j

)
=
∞⋃
n=0

C∞c

(
n0

⋂
j∈J

ϕjN0ϕ
−1
j /

d⋂
j′=1

ϕj′N
pn

0 ϕ−1
j′

)

with finite sets

C∞c

(
n0

⋂
j∈J

ϕjN0ϕ
−1
j /

d⋂
j′=1

ϕj′N
pn

0 ϕ−1
j′

)
,

we may further assume (makingMq+1 possibly even smaller) that σ is induced by an unboun-
ded order reversing map σ0 : T+/T0Z → N ∪ {−1} with

σ(t) =
∑

n0 ∈ N0, |J | = q + 1
J ⊆ {1, . . . , d}

Vn0ηJ (σ0(t))
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where

Vn0ηJ (σ0(t)) := C∞c

(
n0

⋂
j∈J

ϕjN0ϕ
−1
j /

d⋂
j′=1

ϕj′N
pσ0(t)

0 ϕ−1
j′

)
(7)

for σ0(t) ≥ 0 and Vn0ηJ (−1) := 0. Now we put

Mq := Mq,σ0 :=
⊕

t∈T+/T0Z

indN0tP0Z
P0Z

∑
n0 ∈ N0, |J | = q
J ⊆ {1, . . . , d}

Vn0ηJ (σ0(t))

with Vn0ηJ (σ0(t)) defined as in (7). We claim that

Mq ∩ ∂q+1(indPP0Z
(Vq+1)) = ∂q+1(Mq+1). (8)

We now distinguish two cases whether q = 0 or bigger. In the case q > 0 the proof of (8) is
completely analogous to that of Lemma 13. We see by construction that ∂q+1(Mq+1) ⊆ Mq.
Hence we have the following coefficient system on BT concentrated in degrees q + 1, q, and
q−1. In degrees q+1 and q we putMq+1 andMq, respectively as subspaces of

⊕
η∈BT q+1

Vη =

indPP0Z
(Vq+1) and

⊕
η∈BT q Vη = indPP0Z

(Vq), respectively. Indeed, we have by construction

Mq+1 =
⊕

η∈BT q+1

Mq+1 ∩ Vη;

Mq =
⊕
η∈BT q

Mq ∩ Vη.

In degree q − 1 we put the whole indPP0Z
(Vq−1). We use Grosse-Klönne’s criterion in order to

show that the sequence
Mq+1 →Mq → indPP0Z

(Vq−1)

is exact which implies (8) as the kernel of the map from Mq to indPP0Z
(Vq−1) is exactly the left

hand side of (8) by Lemma 13. The proof proceeds the same way as in Lemma 13, but here
all the functions are constant modulo the subgroup

⋂d
j=1 ϕjN

pσ0(t)

0 ϕ−1
j where t only depends

on η (except for the case σ0(t) = −1 whence all the functions are zero and the exactness is
trivial). The sequence (6) remains exact if we replace C∞c (

⋂d
j=1 ϕjN0ϕ

−1
j ) by

C∞c

(
d⋂
j=1

ϕjN0ϕ
−1
j /

d⋂
j=1

ϕjN
pσ0(t)

0 ϕ−1
j

)
hence the statement.

For q = 0 we have to be a bit more careful, since the inductional argument in the proof of
Lemma 13 does not work here as it is not true that any v inM0∩Vn0tx0 is equivalent to some v0

in M0∩Vx0 modulo ∂1(M1). (Note that M0∩Vx0 = Vx0(σ0(1)) but M0∩Vn0tx0 = Vn0tx0(σ0(t))
and σ0(t) could be much bigger than σ0(1).) However, we claim that for any vt in M0 ∩Vn0tx0

with n0 in N0 and any t′ ≤ t in T+ there exists an element vt′ in

M0 ∩

 ⊕
n1∈N0/t′N0t′−1

Vn1t′x0
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such that vt − vt′ lies in ∂1(M1). The statement is derived from this the following way. Any
element m in M0 is supported on finitely many vertices {bitix0}li=1 of BT with ti in T+ and
bi in N0. Moreover, there is a common t′ in T+ with t′ ≤ ti for any 1 ≤ i ≤ l. Now if m lies
in M0 ∩ ∂1(indPP0Z

(V1)) then by our claim there exists an m′ in

M0 ∩

 ⊕
n1∈N0/t′N0t′−1

Vn1t′x0

 (9)

such that m − m′ lies in ∂1(M1). However, the map from (9) to VSt is injective since the
supports of functions in Vn1t′x0 and in Vn′1t′x0

are disjoint for n1n
′−1
1 not in t′N0t

′−1. It follows
that m′ = 0 hence m is in ∂1(M1).

For the proof of the claim let vt be in M0 ∩ Vn0tx0 for some n0 in N0 and t in T+. Then by
definition of Vn0tx0 the function vt is supported on

n0tN0t
−1 =

·⋃
n1∈tN0t−1/t′N0t′−1

n0n1t
′N0t

′−1 (10)

since t′ ≤ t implies t′N0t
′−1 ⊆ tN0t

−1. Moreover, vt is constant on the cosets of

t

(
d⋂
j=1

ϕjN
pσ0(t)

0 ϕ−1
j

)
t−1

by the definition of M0. We may assume by induction that t′ = tϕi for some 1 ≤ i ≤ d.
Hence for any n1 in tN0t

−1/tϕiN0ϕ
−1
i t−1 the pair {x0, t

−1n1tϕix0} represents an edge of BT .
Therefore we have

M1 ∩ V{n0tx0,n0n1tϕix0} = C∞c (n0n1(tϕiN0ϕ
−1
i t−1/t

d⋂
j=1

ϕjN
pσ0(t)

0 ϕ−1
j t−1)) (11)

and the map

πn0tx0 ◦ ∂1 : M1 ∩

 ⊕
n1∈tN0t−1/t′N0t′−1

V{n0tx0,n0n1tϕix0}

→M0 ∩ Vn0tx0

is surjective comparing (10) and (11). (Here πn0tx0 denotes the projection of M0 onto M0 ∩
Vn0tx0 .) The claim follows noting that

∂1(M1 ∩ V{n0tx0,n0n1tϕix0}) ⊆M0 ∩ (Vn0tx0 ⊕ Vn0n1tϕix0).

The following is an immediate corollary of Remark 6.4 in [10] using Proposition 11.
Corollary 14. The natural transformation aV defined in section 6 of [10] gives an isomorph-
ism

aVSt : V
∗
St → ψ−∞(D0(VSt)).

Remark. Proposition 11 (and also Lemmas 12 and 13) remain true in the following more
general setting with basically the same proof. Let G still be GLd+1(Qp) and V be a smooth o-
torsion P -representation with a unique minimal generating P+-subrepresentationM . Assume
further that nM ∩M = 0 for any n in N \N0. Then we have D0(V ) = D(V ) and Di(V ) = 0
for all i ≥ 1.
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