HIGHER ALGEBRAIC K-THEORY FOR TWISTED LAURENT SERIES RINGS OVER ORDERS AND SEMISIMPLE ALGEBRAS

ADEREMI KUKU

ABSTRACT. Let R be the ring of integers in a number field F, Λ any R-order in a semisimple F-algebra Σ , α an R-automorphism of Λ . Denote the extension of α to Σ also by α . Let $\Lambda_{\alpha}[T]$ (resp. Σ_{α} be the α -twisted Laurent series ring over Λ (resp. Σ). In this paper we prove that

- (i) There exist isomorphisms $\mathbb{Q} \otimes K_n(\Lambda_\alpha[T]) \simeq \mathbb{Q} \otimes G_n(\Lambda_\alpha[T]) \simeq \mathbb{Q} \otimes K_n(\Sigma_\alpha[T])$ for all $n \ge 1$.
- (ii) $G_n^{\text{pr}}(\Lambda_{\alpha}[T], \hat{Z}_l) \simeq G_n(\Lambda_{\alpha}[T], \hat{Z}_l)$ is an *l*-complete profinite Abelian group for all $n \ge 2$.
- (iii) div $G_n^{\text{pr}}(\Lambda_{\alpha}[T], \hat{Z}_l) = 0$ for all $n \ge 2$.
- (iv) $G_n(\Lambda_{\alpha}[T]) \longrightarrow G_n^{\text{pr}}(\Lambda_{\alpha}[T], \hat{Z}_l)$ is injective with uniquely *l*-divisible cokernel (for all $n \geq 2$).
- (v) $K_{-1}(\Lambda)$, $K_{-1}(\Lambda_{\alpha}[T])$ are finitelz generated Abelian groups.

Contents

Introduction	1
Acknowledgements	3
1. Higher K-theory of $\Lambda_{\alpha}[T]$, $\Sigma_{\alpha}[T]$ (Λ arbitrary orders)	3
1.1. $K_n(\Lambda_{\alpha}[T]), G_n(\Lambda_{\alpha}[T]), K_n(\Sigma_{\alpha}[T])$	3
1.2. Finiteness of $G_{2(m+1)}(\Lambda_{\alpha}[T])$.	7
2. Mod- l^s and profinite higher K-theory of $\Lambda_{\alpha}(T)$	8
2.1. Mod- l^s theory	8
2.2. Profinite higher K-theory	9
2.3. Some computations	9
3. $K_{-1}(\Lambda), K_{-1}(\Lambda_{\alpha}[T]), \Lambda$ arbitrary orders	11
3.1. Finite generation of $K_{-1}(\Lambda)$, $K_{-1}(\Lambda_{\alpha}[T])$.	11
References	14

INTRODUCTION

Let R be the ring of integers in a number field F. The initial motivation for this work was a desire to obtain results on higher K-theory of the groupring RV of virtually infinite cyclic group of the form $V = G \rtimes_{\alpha} T$, where G is a finite group, α an automorphism of G and the action of the infinite cyclic group $T = \langle t \rangle$ on G is given by $\alpha(g) = tgt^{-1}$ for all $g \in G$.

Note that undestading K-theory of RV is fundamental to Farrel-Jones conjecture which asserts that K-theory an arbitrary discrete group H should have as "building blocks" the K-theory of virtually cyclic subgroups of H(see [8]). A group V is virtually cyclic if it is either finite or virtually infinite cyclic (i.e., contains a finite index subgroup that is infinite cyclic). For results on higher K-theory of grouprings of finite groups see [15, chapter 7] and associated references. There are two types of virtually infinite cyclic groups — one type of the form $V = G \rtimes_{\alpha} T$ as described above and the other of the form $V = G_0 *_H G_1$, where the groups G_0, G_1, H are finite and $[G_0: H] = [G_1: H] = 2$. For some results on higher K-theory of both types of groups see [15, 7.5] or [16]. In this paper, we obtain results on higher K-theory of twisted Laurent series ring that translate into results on grouprings $RV, V = G \rtimes_{\alpha} T$, as we now explain.

If α is an automorphism of a finite group G, we also denote by α the automorphism induced on RG by α and observe that for $V = G_{\alpha} \rtimes T$, $RV = (RG)_{\alpha}[T] = (RG)_{\alpha}[t, t^{-1}]$ is the α -twisted Laurent series ring over the groupring RG. Now, RG is an R-order in the semi-simple F-algebra FG and so, we endeavour in this paper to obtain general results on higher K-theory of $\Lambda_{\alpha}(T)$ where Λ is an arbitrary R-order in a semi-simple Falgebra Σ so that results on $(RG)_{\alpha}[T]$ become examples and applications of our results.

Note also that an *R*-automorphism of Λ extends to an *F*-automorphism of Σ which we also denote by α . We also study higher *K*-theory of $\Sigma_{\alpha}[T]$ and prove in 1.1.2(b) that there exist isomorphisms

$$\mathbb{Q} \otimes K_n(\Lambda_\alpha[T]) \simeq \mathbb{Q} \otimes G_n(\Lambda_\alpha[T]) \simeq \mathbb{Q} \otimes K_n(\Sigma_\alpha[T])$$

for all $n \geq 2$. Hence $\mathbb{Q} \otimes K_n(RV) \simeq \mathbb{Q} \otimes G_n(RV) \simeq Q \otimes K_n(FV)$ for all $n \geq 2$. Since we have shown in 1.1.2(a) that $G_n(\Lambda_\alpha[T])$ is finitely generated Abelian group for all $n \geq 1$, it follows that $K_n(\Lambda_\alpha[T]), K_n(\Sigma_\alpha[T])$ and hence $K_n(RV), K_n(FV)$ have finite torsion-free ranks for all $n \geq 2$.

We next investigate under what conditions $G_n(\Lambda_\alpha[T])$ could actually be a finite group and show in 1.2.1 that when F is a totally real number field with ring of integers R and Λ any R-order in a semi-simple F-algebra, then $G_{2(m+1)}(\Lambda_\alpha[T])$ is finite for all odd $m \geq 1$. Hence $G_{2(m+1)}(RV)$ is finite.

In section 2, we study profinite higher K-theory of $\Lambda_{\alpha}[T]$ and prove that $G_n^{\mathrm{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l) = G_n(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l)$ are *l*-complete profinite Abelian groups; div $G_n^{\mathrm{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l) = 0$; and that the map $G_n(\Lambda_{\alpha}[T]) \longrightarrow G_n^{\mathrm{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l)$ is injective with uniquely *l*-divisible cokernel. Corresponding results follow when we replace $\Lambda_{\alpha}[T]$ by RV.

In a final section, we prove that if F is an algebraic number field with ring of integers R and Λ any R-order in a semi-simple F-algebra Σ , then $K_{-1}(\Lambda)$ and $K_{-1}(\Lambda_{\alpha}[T])$ are finitely generated Abelian groups; $NK_{-1}(\Lambda, \alpha) = 0$ and $K_{-1}(\Lambda[t]) \simeq K_{-1}(\Lambda)$. That $K_{-1}(\Lambda)$ and $K_{-1}(\Lambda_{\alpha}[T])$ are finitely generated for arbitrary R-orders Λ generalize respectively similar results by D. Carter for $K_{-1}(RG)$ (G a finite group, see [4]) and by Farrell/Jones for $K_{-1}(\mathbb{Z}V)$ (see [9]).

Notes on notation. If α is an automorphism of a ring A, we shall write $A_{\alpha}[T] = A_{\alpha}[t, t^{-1}]$ for the α -twisted Laurent series ring over A. Note that additively $A_{\alpha}[T] = A_{\alpha}[t, t^{-1}]$ with multiplication given by $(at^{i}) \cdot (bt^{j}) = a\alpha^{-1}(b)t^{i+j}$ for $a, b \in A$. $A_{\alpha}[t]$ (resp. $A_{\alpha}[t^{-1}]$) is the subring of $A_{\alpha}[T]$ generated by A and t (resp. A and t^{-1}). Call $A_{\alpha}[t]$ the α -twisted polynomial ring over A. We also have inclusion maps $i : A \to A_{\alpha}[T], i^{+} : A \to A_{\alpha}[t]$ and $i^{-} : A \to A_{\alpha}[t^{-1}]$.

The augmentation map $\varepsilon : A_{\alpha}[t] \to A$ induces a group homomorphism $\varepsilon_* : K_n(A_{\alpha}[t]) \to K_n(A)$ and we put $NK_n(A, \alpha) := \ker \varepsilon_*$. Since ε is split by i^+ , we have $K_n(A_{\alpha}[t]) \simeq K_n(A) \oplus NK_n(A, \alpha)$.

If B is an additive Abelian group and m is a positive integer, we shall write B/m for B/mB and B[m] for the set of elements x of B such that mx = 0. We write div B for the subgroup of divisible elements fo B. If l is a rational prime, we write B_l for the *l*-primary subgroup of B. Note that $B_l = \bigcup B[l^s] = \lim B[l^s].$

Acknowledgements. Part of the work reported in this article was done while I was visiting University of Bielefeld, Germany and IHES, Paris. It was concluded and written up while I was visiting Max-Planck-Institut für Mathematik, Bonn, Germany. I like to thank the three institutions for hospitality and financial support.

1. HIGHER K-THEORY OF $\Lambda_{\alpha}[T]$, $\Sigma_{\alpha}[T]$ (Λ ARBITRARY ORDERS)

1.1. $K_n(\Lambda_{\alpha}[T]), G_n(\Lambda_{\alpha}[T]), K_n(\Sigma_{\alpha}[T]).$

1.1.1. Let R be the ring of integers in a number field F, Λ any R-orders in a semi-simple F-algebra Σ , α an R-automorphism of Λ . Then α can be extended to an F-automorphism of Σ (since $\Sigma = \Lambda \otimes_R F$). The aim of this section is to prove the following theorem.

1.1.2. **Theorem.** Let F be an algebraic number field with ring of integers R, Λ any R-order in a semi-aimple F-algebra Σ , α an R-automorphism of Λ . Denote the extension of α to Σ also by α . Let $\Lambda_{\alpha}[T]$ (resp. $\Sigma_{\alpha}[T]$) be the α -twisted Laurent series ring over Λ (resp. Σ). Then we have

- (a) $G_n(\Lambda_{\alpha}[T])$ is a finitely generated Abelian group for all $n \geq 1$.
- (b) There exist isomorphisms:

$$\mathbb{Q} \otimes K_n(\Lambda_{\alpha}[T]) \simeq \mathbb{Q} \otimes G_n(\Lambda_{\alpha}[T]) \simeq \mathbb{Q} \otimes K_n(\Sigma_{\alpha}[T])$$

for $n \ge 2$.

Before proving 1.1.2 we state the following consequence of the result.

1.1.3. Corollary. Let $V = G \rtimes_{\alpha} T$ be the virtually infinite cyclic subgroup where G is a finite group, $\alpha \in \operatorname{Aut}(G)$ and the action of T on G is given by $\alpha(g) = tgt^{-1}$. for all $g \in G$. Then,

- (a) $G_n(RV)$ is a finitely generated Abelian group for al $n \geq 1$.
- (b) $\mathbb{Q} \otimes K_n(RV) \simeq \mathbb{Q} \otimes G_n(RV) \simeq \mathbb{Q} \otimes K_n(FV)$ for all $n \ge 2$.

The proof of 1.1.2(b) will proceed in several steps (see theorems 1.1.5, 1.1.6, 1.1.7 below). However, we first recall the following result (1.1.4).

1.1.4. **Theorem** ([15, theorem 7.3.2] or [16]). Let R be the ring of integers in a number field F, Λ any R-order in a semi-simple F-algebra Σ . If $\alpha : \Lambda \rightarrow \Lambda$ is an R-automorphism, then there exists an R-order $\Gamma \subset \Sigma$, such that

- (1) $\Lambda \subset \Gamma$,
- (2) Γ is α -invariant.
- (3) Γ is (right) regular ring. In fact Γ is (right) hereditary.

1.1.5. **Theorem.** Let R be the ring of integers in a number field F, Λ any R-order in a semi-simple F-algebra, $\alpha : \Lambda \to \Lambda$ and R-automorphism of Λ , Γ an α -invariant order containing Λ as in 1.1.4, $\Lambda_{\alpha}[T]$ (resp. $\Gamma_{\alpha}[T]$) the α -twisted Laurent series ring over Λ (resp. Γ). $\varphi : \Lambda_{\alpha}[T] \to \Gamma_{\alpha}[T]$ the map induced by the inclusion $\Lambda \to \Gamma$. Then the induced homomorphisms $\varphi_n : K_n(\Lambda_{\alpha}[T]) \to K_n(\Gamma_{\alpha}[T])$ has torsion kernel and cokernel. Hence for all $n \geq 2$ we have $\mathbb{Q} \otimes K_n(\Lambda_{\alpha}[T]) \simeq \mathbb{Q} \otimes K_n(\Gamma_{\alpha}[T])$.

Proof. There exists a positive integer s such that $s\Gamma \subset \Lambda$ (see [19] or [15]). Put $q = s\Gamma$. Then q is an ideal of Γ and Λ . Put $B = \Lambda/\underline{q}$, $B' = \Gamma/\underline{q}$. Then we have cartesian squares

$$\begin{array}{cccc} \Lambda & \longrightarrow & \Gamma \\ \downarrow & & \downarrow \\ B & \longrightarrow & B' \end{array} \tag{I}$$

and

So, by [5] and [19], we have a long exact sequence

$$\cdots \longrightarrow K_{n+1}(B'_{\alpha}[T])(\frac{1}{s}) \longrightarrow K_n(\Lambda_{\alpha}[T])(\frac{1}{s}) \longrightarrow K_n(\Gamma_{\alpha}[T])(\frac{1}{s}) \oplus K_n(B_{\alpha}[T])(\frac{1}{s}) \longrightarrow K_n(B'_{\alpha}[T])(\frac{1}{s}) \longrightarrow \cdots$$
(III)

Now, Γ , B, B' are quasi-regular rings, so are $\Gamma_{\alpha}[T]$, $B_{\alpha}[T]$ and $B'_{\alpha}[T]$ (see [9]). If we write A for $B_{\alpha}[T]$ or $B'_{\alpha}[T]$, JA for the Jacobson's radical of A, then by [19] $K_n(A, JA)$ is s-torsion since s annihilates A and so from the relative sequence

$$\cdots \longrightarrow K_n(A, JA) \longrightarrow K_n(A) \longrightarrow K_n(A/J) \longrightarrow \cdots$$

we have $K_n(A)(\frac{1}{s}) \simeq K_n(A/JA)(\frac{1}{s})$. We now claim that $K_n(A)(\frac{1}{s}) \simeq K_n(A/JA)(\frac{1}{s})$ is torsion.

4

Proof of claim. Note that $A/JA \simeq (A'/JA')_{\alpha}[T]$ is a regular ring (see [9]) where A'/JA' is a finite semi-simple ring which is a finite direct product of matrix algebras over finite fields. Hence $K_n((A'/JA')_{\alpha}[T])$ is a finite direct sum of K-groups of the form $K_n((F_i)_{\alpha}[T])$ where F_i is a finite field. Also, $(F_i)_{\alpha}[T]$ is a regular ring and so $K_n((F_i)_{\alpha}[T]) \simeq G_n((F_i)_{\alpha}[T])$.

Now, for each F_i , we have by [15, theorem 7.5.3(iii)] or [16], that there exists a long exact sequence

$$\cdots \longrightarrow G_n(F_i) \longrightarrow G_n(F_i) \longrightarrow G_n((F_i)_{\alpha}[T]) \longrightarrow$$
$$G_{n-1}(F_i) \longrightarrow G_{n-1}(F_i) \longrightarrow \cdots \quad (\mathrm{IV})$$

where each $G_n(F_i) \simeq K_n(F_i)$ is a finite Abelian group for $n \ge 2$ — by [15, theorem 7.1.12] or by Quillen's result. So, from (IV) above, $G_n((F_i)_{\alpha}[T])$ is finite for all $n \ge 2$, i.e. $K_n((F_i)_{\alpha}[T]) \simeq G_n((F_i)_{\alpha}[T])$ is a finite Abelian group. Hence $(K_n(A'/JA')_{\alpha}[T])$, as a finite direct sum of Abelian groups of the form $K_n(F_i)_{\alpha}[T]$ is a finite group. Hence $K_n((A'/JA')_{\alpha}[T])(\frac{1}{s})$ is torsion. So, for $A = B_{\alpha}(T)$ or $B'_{\alpha}[T]$, $K_n(A)(\frac{1}{s}) \simeq K_n((A/JA)(\frac{1}{s}))$ is torsion and $\mathbb{Q} \otimes K_n(A)(\frac{1}{s}) = 0$.

So, by tensoring the Mayer-Vietoris exact sequence (III) with $\mathbb Q$ we get an isomorphism

$$\mathbb{Q} \otimes K_n(\Lambda_\alpha[T]) \simeq \mathbb{Q} \otimes K_n(\Gamma_\alpha[T])$$

for all $n \geq 2$.

1.1.6. **Theorem.** Let $R, F, \Lambda, \alpha; \Gamma, \Lambda_{\alpha}[T], \Gamma_{\alpha}[T]$ be as in 1.1.5. Let $\varphi_n : G_n(\Gamma_{\alpha}[T]) \longrightarrow G_n(\Lambda_{\alpha}[T])$ be the homomorphism induced by the exact functor $\mathcal{M}(\Gamma_{\alpha}[T]) \longrightarrow \mathcal{M}(\Lambda_{\alpha}[T])$ given by 'restriction of scalars'. Then for all $n \geq 2$, φ_n has fnite kernel and torsion cokernel and hence induces an isomorphism

$$\mathbb{Q} \otimes G_n(\Gamma_\alpha[T]) \simeq \mathbb{Q} \otimes G_n(\Lambda_\alpha[T])$$

Proof. First note that the exact functor $\mathcal{M}(\Gamma) \to \mathcal{M}(\Lambda)$ given by 'restriction of scalars' yields group homomorphisms $\delta_n : G_n(\Gamma) \to G_n(\Lambda)$. Now, by replacing the maximal order Γ in the proof of [15, theorem 7.2.3, p. 146] or [16] with the α -invariant order Γ containing Λ , as in 1.1.4, we have that for all $n \geq 1$, $\delta_n : G_n(\Gamma) \to G_n(\Lambda)$ has finite kernel and cokernel. The proof in [15, theorem 7.2.3] works for this Γ also. Now from [15, theorem 7.5.3(b)] or [16], we have the following horizontal exact sequence and hence a commutative diagram

 $\mathbf{5}$

By taking kernels and cokernels of vertical arrows in (V), we have a top (resp. bottom) horizontal exact sequence consisting of kernels (resp. cokernels) of the vertical maps. Since we saw above that δ_n has finite kernels and cokernels, we then have that $\phi_n : G_n(\Gamma_\alpha[T]) \to G_n(\Lambda_\alpha[T])$ has finite kernel and cokernel for each $n \geq 2$. Hence $\mathbb{Q} \otimes G_n(\Gamma_\alpha[T]) \simeq \mathbb{Q} \otimes G_n(\Lambda_\alpha[T])$. But $\Gamma_\alpha[T]$ is regular. Hence

$$\mathbb{Q} \otimes K_n(\Gamma_\alpha[T]) \simeq \mathbb{Q} \otimes G_n(\Lambda_\alpha[T]).$$

1.1.7. **Theorem.** Let $R, F, \Sigma, \Lambda, \alpha, T$ be as in theorem 1.1.2. Then for all $n \geq 2$, the map $\theta_n : G_n(\Lambda_\alpha[T]) \longrightarrow G_n(\Sigma_\alpha[T]) \simeq K_n(\Sigma_\alpha[T])$ indiced by the canonical map $\Lambda_\alpha[T] \longrightarrow \Sigma_\alpha[T]$ has finite kernel and torsion cokernel. Hence

$$\mathbb{Q} \otimes G_n(\Lambda_\alpha[T]) \simeq \mathbb{Q} \otimes G_n(\Sigma_\alpha[T]) \simeq \mathbb{Q} \otimes K_n(\Sigma_\alpha[T])$$

Proof. Note that the canonical (inclusion) map $\Lambda \xrightarrow{\rho} \Sigma$ induces a group homomorphism $\rho_n : G_n(\Lambda) \to G_n(\Sigma) \simeq K_n(\Sigma)$ (note that $G_n(\Sigma) \simeq K_n(\Sigma)$ since Σ is regular).

Now, by [15, theorem 7.5.3(b)] or [16], we have the following horizontal exact sequences and hence a commutative diagram

Now, from the commutative diagram

we have

$$0 \longrightarrow \ker \delta_n \longrightarrow \ker \beta_n \longrightarrow \ker \rho_n \longrightarrow \operatorname{coker} \delta_n \longrightarrow \operatorname{coker} \beta_n \longrightarrow \operatorname{coker} \rho_n \longrightarrow 0$$

Now, by the proof of 1.1.6, ker δ_n and coker δ_n are finite. Also by [15, theorem 7.2.2] or [12], ker β_n is finite and coker β_n is torsion for all $n \geq 2$. Hence from fiagram (VII) above, ker ρ_n is finite and coker ρ_n is torsion for all $n \geq 2$. It then follows from the diagram (VI) above that ker θ_n is finite and coker θ_n is torsion.

Proof of 1.1.2. (a) From [15, theorem 7.5.3(b)] or [16], we have an exact sequence

$$G_n(\Lambda) \xrightarrow{1-\alpha_*} G_n(\Lambda) \longrightarrow G_n(\Lambda_\alpha[T]) \longrightarrow G_(\Lambda) \xrightarrow{1-\alpha_*} G_n(\Lambda)$$

Also by [15, theorem 7.1.13] or [10] $G_n(\Lambda)$ is a finitely generated Abelian group for all $n \geq 1$. Hence $G_n(\Lambda_\alpha[T])$ is finitely generated for all $n \geq 2$. (b) That $\mathbb{Q} \otimes K_n(\Lambda_\alpha[T]) \simeq \mathbb{Q} \otimes G_n(\Lambda_\alpha[T])$ follow from theorem 1.1.4 i.e. $\mathbb{Q} \otimes K_n(\Lambda_\alpha[T]) \simeq \mathbb{Q} \otimes K_n(\Gamma_\alpha[T])$ and 1.1.5 i.e. $\mathbb{Q} \otimes G_n(\Lambda_\alpha[T]) \simeq \mathbb{Q} \otimes K_n(\Sigma_\alpha[T])$.

1.1.8. Remarks. Since by 1.1.2(a), $G_n(\Lambda_{\alpha}[T])$ is finitely generated Abelian group for all $n \geq 2$, it follows that $K_n(\Lambda_{\alpha}[T])$ and $K_n(\Sigma_{\alpha}[T])$ have finite torsion free rank just like $G_n(\Lambda_{\alpha}[T])$.

Hence if $V = G \rtimes_{\alpha} T$ is a vistually infinite cyclic group, then $K_n(RV)$, $K_n(FV)$ have finite torsion-free rank for $n \geq 2$.

1.2. Finiteness of $G_{2(m+1)}(\Lambda_{\alpha}[T])$. In this subsection, we investigate under what circumstances $G_n(\Lambda_{\alpha}[T])$ could actually be a finite group. We prove below (see theorem 1.2.1) that if F is a totally real field, then the group $G_{2(m+1)}(\Lambda_{\alpha}[T])$ is finite for all odd positive integers m. We state this formally:

1.2.1. **Theorem.** Let R be the ring of integers in a totally real number field F, Λ an R-order in a semi-simple F-algebra, $\alpha : \Lambda \to \Lambda$ and Rautomorsphim. Then for all odd positive integers m, $G_{2(m+1)}(\Lambda_{\alpha}[T])$ is a finite group. Hence in the notation of 1.1.2, $G_{2(m+1)}(RV)$ is finite.

The proof of 1.2.1 will make use of the following:

1.2.2. **Theorem.** Let F be a number field with ring of integers R, Λ and R-order in a semi-simple F-algebra Σ . Then (a) For all $n \geq 1$, $G_{2n}(\Lambda)$ is a finite group. (b) If F is totally real, then $G_{2m+1}(\Lambda)$ is also finite for all odd $m \geq 1$.

Proof. Part (a) is proved in [15] and [14]. See [15, theorem 7.2.7].

If F is a totally real number field with ring of integers O_F , a similar proof works. We only have to show that $K_{2m+1}(\Gamma)$ is finite if Γ is a maximal order in a central division algebra D over a totally real number field F with ring of integer O_F . Let the dimension of D over F be s^2 . We know from [15, theorem 7.1.11] or [11] that $K_{2m+1}(\Gamma)$ is finitely generated. We only need to show that $K_{2m+1}(\Gamma)$ is torsion. Let $\operatorname{tr} : K_{2m+1}(\Gamma) \to K_{2m+1}(O_F)$ be the transfer map and $i : K_{2m+1}(O_F) \to K_{2m+1}(\Gamma)$ the map induced by the inclusion map $O_F \to \Gamma$. Let $x \in K_{2m+1}(\Gamma)$. Then $i \circ \operatorname{tr}(x) = x^{s^2}$. But $K_{2m+1}(\Gamma)$ is finite since it is also finitely generated. \Box

Proof of 1.2.1. Assume that m is an odd positive integer. The we have an exact sequence

$$\cdots \longrightarrow G_{2m+2}(\Lambda) \xrightarrow{1-\alpha_n} G_{2m+2}(\Lambda) \xrightarrow{\beta} G_{2m+2}(\Lambda_{\alpha}[T]) \xrightarrow{\gamma} G_{2m+1}(\Lambda) \longrightarrow \cdots$$

where $G_{2m+2}(\Lambda)$ is finite by 1.2.2(a) and $G_{2m+1}(\Lambda)$ is finite by 1.2.2(b). So $G_{2m+2}(\Lambda_{\alpha}[T])/\operatorname{Im}\beta \simeq \operatorname{Im}\gamma$.

But Im β is finite and Im γ is also finite as a subgroup of the finite group $G_{2m+1}(\Lambda)$. Note that Im β is finite as a homomorphic image of the finite group $G_{2m+2}(\Lambda)$. Hence $G_{2m+2}(\Lambda_{\alpha}[T])$ is finite for all odd positive integers m.

2. Mod- l^s and profinite higher K-theory of $\Lambda_{\alpha}(T)$

2.1. Mod- l^s theory.

2.1.1. Let C be an exact category, l a rational prime, s a positive integer, $M_{l^s}^{n+1}$ the (n + 1)-dimensional mod- l^s -space, i.e. the space obtained from S^n by attaching and (n + 1)-cell via a map of degree l^s (see [3], [17], [15]).

If X is an *H*-space, let $[M_{l^s}^{n+1}, X]$ be the set of homotopy classes of maps from $M_{l^s}^{n+1}$ to X.We shall write $\pi_{n+1}(X, \mathbb{Z}/l^s)$ for $[M_{l^s}^{n+1}, X]$. If \mathcal{C} is an exact category and we put $X = BQ\mathcal{C}$, we write $K_n(\mathcal{C}, \mathbb{Z}/l^s)$ for $\pi_{n+1}(BQ\mathcal{C})$, we write $K_n(\mathcal{C}, \mathbb{Z}/l^s)$ for $\pi_{n+1}(\mathcal{C}, \mathbb{Z}/l^s)$ and $K_0\mathcal{C}, \mathbb{Z}/l^s$ for $K_0(\mathcal{C}) \otimes \mathbb{Z}/l^s$. We shall refer to $K_n(\mathcal{C}, \mathbb{Z}/l^s)$ as mod- l^s K-theory of \mathcal{C} .

2.1.2. From [15, 8.1.2] or [13], we have an exact sequence

$$K_n(\mathcal{C}) \xrightarrow{l^s} K_n(\mathcal{C}) \xrightarrow{\rho} K_n(\mathcal{C}, \mathbb{Z}/l^s) \xrightarrow{\beta} K_{n-1}(\mathcal{C}) \longrightarrow K_{n-1}(\mathcal{C})$$

and hence a short exact sequence for all $n \geq 2$

$$0 \longrightarrow K_n(\mathcal{C})/l^s \longrightarrow K_n(\mathcal{C}, \mathbb{Z}/l^s) \longrightarrow K_n(\mathcal{C})[l^s] \longrightarrow 0$$

where $K_n(\mathcal{C})[l^s] = \{x \in K_n(\mathcal{C}) \mid l^s x = 0\}.$

2.1.3. Examples.

- (i) Let A be a ring with identity and $\mathcal{P}(A)$ the category of finitely generated projective A-modules. We write $K_n(A, \mathbb{Z}/l^s)$ for $K_n(\mathcal{P}(A), \mathbb{Z}/l^s)$. We are interested in $A = \Lambda_{\alpha}(T)$. Note that $K_n(A, \mathbb{Z}/l^s)$ is also $\pi_n(BGL(A)^+, \mathbb{Z}/l^s)$.
- (ii) Let A be a Noetherian ring and $\mathcal{M}(A)$ the category of finitely generated A-modules. We write $G_n(A, \mathbb{Z}/l^s)$ for $K_n(\mathcal{A}, \mathbb{Z}/l^s)$.
- (iii) Let Y be a scheme, $C = \mathcal{P}(Y)$ the category of locally free sheaves of O_X -modules of finite rank. We write $K_n(X, \mathbb{Z}/l^s)$ for $K_n(\mathcal{P}(Y), \mathbb{Z}/l^s)$ and observe that for Y = Spec(A), A a commutative ring, we recover $K_n(A, \mathbb{Z}/l^s)$ as in (i).
- (iv) Let Y be a Noetherian scheme and $\mathcal{M}(Y)$ the category of coherent sheaves of O_Y -modules. We write $G_n(Y, \mathbb{Z}/l^s)$ for $K_n(\mathcal{M}(Y'), \mathbb{Z}/l^s)$ and when Y = Spec(A), where A is commutative, then we recover $G_n(A, \mathbb{Z}/l^s)$ as in (ii) above.
- (v) It follows from 2.1.2 that we have exact sequences
- $0 \longrightarrow K_n(\Lambda_{\alpha}[T])/l^s \longrightarrow K_n(\Lambda_{\alpha}[T], \mathbb{Z}/l^s) \longrightarrow K_n(\Lambda_{\alpha}[T])[l^s] \longrightarrow 0$ and

$$0 \longrightarrow G_n(\Lambda_{\alpha}[T])/l^s \longrightarrow G_n(\Lambda_{\alpha}[T], \mathbb{Z}/l^s) \longrightarrow G_n(\Lambda_{\alpha}[T])[l^s] \longrightarrow 0$$

2.2. Profinite higher *K*-theory.

2.2.1. Let \mathcal{C} be an exact category, l a rational prime, s a positive integer $M_{l^{\infty}}^{n+1} = \varprojlim M_{l^s}^{n+1}$. We define the profinite K-theory of \mathcal{C} by $K_n^{\mathrm{pr}}(\mathcal{C}, \hat{\mathbb{Z}}_l) := [M_{l^{\infty}}^{n+1}, BQ\mathcal{C}]$. We write $K_n(\mathcal{C}, \hat{\mathbb{Z}}_l)$ for $\varprojlim_{n} K_n(\mathcal{C}, \mathbb{Z}/l^s)$.

For more details on these constructions and their properties, see [15, chapter 8] or [13].

2.2.2. Examples.

- (i) For $C = \mathcal{P}(A)$ as in 2.1.3(i), we shall write $K_n^{\text{pr}}(A, \hat{\mathbb{Z}}_l)$ for $K_n^{\text{pr}}(\mathcal{P}(A), \hat{\mathbb{Z}}_l)$ and $K_n(A, \hat{\mathbb{Z}}_l)$ for $K_n(\mathcal{P}(A), \hat{\mathbb{Z}}_l)$.
- (ii) For $\mathcal{C} = \mathcal{M}(A)$ as in 2.1.3(ii), we shall write $G_n^{\text{pr}}(A, \hat{\mathbb{Z}}_l)$ for $K_n^{\text{pr}}(\mathcal{M}(A), \hat{\mathbb{Z}}_l)$ and $G_n(A, \hat{\mathbb{Z}}_l)$ for $K_n(\mathcal{M}(A), \hat{\mathbb{Z}}_l)$.
- (iii) For $C = \mathcal{P}(Y)$ as in 2.1.3(iii) we shall write $K_n^{\text{pr}}(Y, \hat{\mathbb{Z}}_l)$ for $K_n^{\text{pr}}(\mathcal{P}(Y), \hat{\mathbb{Z}}_l)$ and $K_n(Y, \hat{\mathbb{Z}}_l)$ for $K_n(\mathcal{P}(Y), \hat{\mathbb{Z}}_l)$.
- (iv) For $C = \mathcal{M}(Y)$ as in 2.1.3(iv), we shall write $G_n^{\mathrm{pr}}(Y, \hat{\mathbb{Z}}_l)$ for $K_n^{\mathrm{pr}}(Y, \hat{\mathbb{Z}}_l)$ and $G_n(Y, \hat{\mathbb{Z}}_l) = K_n(\mathcal{M}(Y), \hat{\mathbb{Z}}_l)$.

2.2.3. *Remarks.* From the results earlier obtained by this author for general exact categories, (see [15, chapter 8] or [13]) we can already deduce the following for $\mathcal{P}(\Lambda_{\alpha}[T])$ and $\mathcal{M}(\Lambda_{\alpha}[T])$.

(i) From [15, lemma 8.2.1], we have the following exact sequences for $n \ge 1$.

$$(a) \quad 0 \longrightarrow \varprojlim_{s} {}^{1}K_{n+1}(\Lambda_{\alpha}[T], \mathbb{Z}/l^{s}) \longrightarrow K_{n}^{\mathrm{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_{l}) \longrightarrow K_{n}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}/l) \longrightarrow 0$$

$$(b) \quad 0 \longrightarrow \varprojlim_{s} {}^{1}G_{n+1}(\Lambda_{\alpha}[T], \mathbb{Z}/l^{s}) \longrightarrow G_{n}^{\mathrm{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_{l}) \longrightarrow G_{n}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}/l) \longrightarrow 0.$$

(ii) From [15, theorem 8.2.2] we have for all $n \ge 2$,

(a) $\lim_{s} K_n^{\mathrm{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l)[l^s] = 0; \quad \lim_{s} K_{n+1}(\Lambda_{\alpha}[T], \mathbb{Z}/l^s) = \operatorname{div} K_n^{\mathrm{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l);$

(b)
$$\varprojlim_{s} G_{n}^{\mathrm{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_{l})[l^{s}] = 0; \quad \varprojlim_{s} {}^{1}G_{n+1}(\Lambda_{\alpha}[T], \mathbb{Z}/l^{s}) = \operatorname{div} G_{n}^{\mathrm{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_{l}).$$

(iii) Form [15, lemma 8.2.2] or [13], we have

(a)
$$\lim_{s \to \infty} K_n^{\rm pr}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l)/l^s \simeq K_n(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l);$$

(b)
$$\lim_{s \to \infty} G_n^{\rm pr}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l)/l^s \simeq G_n(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l).$$

2.3. Some computations.

2.3.1. The aim of this subsection is to prove theorem 3.3.2 below. Before stating the result, we first explain the construction of map φ in 2.3.2(c) below.

Note that for any exact category \mathcal{C} , the natural map $M_{l^{\infty}}^{n+1} \to S^{n+1}$ induces a map

$$[S^{n+1}, BQ\mathcal{C}] \xrightarrow{\varphi} [M_{l^{\infty}}^{n+1}, BQ\mathcal{C}], \quad \text{i.e.},$$
$$K_n(\mathcal{C}) \xrightarrow{\varphi} K_n^{\text{pr}}(\mathcal{C}, \hat{\mathbb{Z}}_l).$$

So when $\mathcal{C} = \mathcal{M}(\Lambda_{\alpha}[T])$ we have a map

 $\varphi: G_n(\Lambda_{\alpha}[T]) \longrightarrow G_n^{\mathrm{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l).$

2.3.2. **Theorem.** Let R be the ring of integers in anumber field F, Λ any R-order in a semi-simple F-algebra Σ , $\alpha : \Lambda \to \Lambda$ an R-automorphism of Λ , $\Lambda_{\alpha}[T]$ the α -twisted Laurent series ring over Λ . Then, for all $n \geq 2$:

- (a) div $G_n^{\text{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l) = 0.$
- (b) $G_n^{\mathrm{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l) \simeq G_n(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l)$ is an *l*-complete profinite Abelian group.
- (c) The map $G_n(\Lambda_{\alpha}[T]) \longrightarrow G_n^{\mathrm{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l)$ is injective with uniquely *l*-divisible cokernel.

Proof. (a) From 2.2.3(ii)(b), we have

$$\lim_{s \to s} G_{n+1}(\Lambda_{\alpha}[T], \mathbb{Z}/l^s) = \operatorname{div} G_n^{\operatorname{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l),$$
(I)

for all $n \geq 2$. Now, by theorem 1.1.1(a) $G_n(\Lambda_{\alpha}[T])$ is finitely generated for all $n \geq 1$. Hence $G_n(\Lambda_{\alpha}[T], \mathbb{Z}/l^s)$ is finite for all $n \geq 1$. In particular, $G_{n+1}(\Lambda_{\alpha}[T], \mathbb{Z}/l^s)$ is finite for all $n \geq 2$ and so $\lim_{k \to \infty} G_{n+1}(\Lambda_{\alpha}[T], \mathbb{Z}/l^s) = 0$ for all $n \geq 2$. Hence from (I), div $G_n^{\text{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l) = 0$ for all $n \geq 2$.

(b) We saw in (a) above that $G_n(\Lambda_{\alpha}[T], \mathbb{Z}/l^s)$ is a finite group for all $n \geq 1$. Hence in the exact sequence

$$0 \longrightarrow \varprojlim_{s} {}^{1}G_{n+1}(\Lambda_{\alpha}[T], \mathbb{Z}/l^{s}) \longrightarrow G_{n}^{\mathrm{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_{l}) \longrightarrow G_{n}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_{l}) \longrightarrow 0$$

we have $\varprojlim^1 G_{n+1}(\Lambda_{\alpha}[T], \mathbb{Z}/l^s) = 0$. Hence,

$$G_n^{\rm pr}(\Lambda_{\alpha}[T],\hat{\mathbb{Z}}_l) \simeq G_n(\Lambda_{\alpha}[T],\hat{\mathbb{Z}}_l). \tag{II}$$

Now, by 2.2.3(ii)(b),

$$G_n^{\mathrm{pr}}(\Lambda_\alpha[T], \hat{\mathbb{Z}}_l)/l^s \simeq G_n(\Lambda_\alpha[T], \hat{\mathbb{Z}}_l).$$
 (III)

So, from (II) and (III) $G_n^{\text{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l)/l^s \simeq G_n^{\text{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l)$ i.e. $G_n^{\text{pr}}(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l) \simeq G_n(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l)$ is *l*-complete. It is profinite since $G_n(\Lambda_{\alpha}[T], \hat{\mathbb{Z}}_l) = \varprojlim G_n(\Lambda_{\alpha}[T], \mathbb{Z}/l^s)$ where each $G_n(\Lambda_{\alpha}[T], \mathbb{Z}/l^s)$ is a finite group.

(c) Since for all $n \ge 1$, $G_n(\Lambda_\alpha[T])$ is a finitely generated Abelian group (see 1.1.1(a)), it follows that $G_n(\lambda_\alpha[T])_l$ is a finite group for each n. Hence $G_n(\Lambda_{\alpha}[T])_l$ has no non-trivial divisible subgroups. Hence by [15, corollary 8.2.1] or [13], kernel and cokernel of φ are uniquely *l*-divisible. But $G_n(\Lambda_{\alpha}[T])$ is finitely generated and so, ker $\phi = \operatorname{div} \ker \phi = 0$, as subgroups of $G_n(\Lambda_{\alpha}[T])$.

3. $K_{-1}(\Lambda), K_{-1}(\Lambda_{\alpha}[T]), \Lambda$ ARBITRARY ORDERS

3.1. Finite generation of $K_{-1}(\Lambda)$, $K_{-1}(\Lambda_{\alpha}[T])$. Let R be the ring of integers in a number field F, Λ any R-order in a semi-simple F-algebra Σ , α : $\Lambda \to \Lambda$ and R-automorphism of Λ , $\Lambda_{\alpha}[T]$, the α -twisted Laurent polynomial ring over Λ . We prove in this section that $K_{-1}(\Lambda)$ and $K_{-1}(\Lambda_{\alpha}[T])$ are finitely generated Abelian groups for arbitrary R-orders Λ in semi-simple F-algebras. Note that the proof in [9] by Farrel/Jones is for $\Lambda = \mathbb{Z}G$, G a finite group. Also D. Carter shows in [4] that $K_{-1}(RG)$ is finitely generated and here we show that this result also holds more generally for arbitrary orders.

Finally we prove also that $NK_{-1}(\Lambda, \alpha) = 0$ and so, $K_{-1}(\Lambda_{\alpha}[t]) \simeq K_{-1}(\Lambda)$.

3.1.1. **Theorem.** Let F be an algebraic number field with ring of integers R, Λ any R-order in a semi-simple F-algebra Σ , $\alpha : \Lambda \to \Lambda$ an Rautomorphism of Λ , $\Lambda_{\alpha}[T]$ the α -twisted Laurent series ring over Λ . Then

- (a) $K_{-1}(\Lambda)$ is a finitely generated Abelian group.
- (b) $K_{-1}(\Lambda_{\alpha}[T])$ is a finitely generated Abelian group.
- (c) $K_{-1}(\Lambda) \simeq K_{-1}(\Lambda_{\alpha}[t]).$

Proof. (a) Let Γ be a maximal *R*-order containing λ . Then, there exists a positive integer *s* such that $s\Gamma \subset \Lambda$. Then $\underline{q} = s\Gamma$ is an ideal of Λ and Γ . Put $B = \Lambda/q$, $B' = \Gamma/q$. Then we have a cartesian square

and hence a Mayer-Vietoris sequence

$$\cdots \longrightarrow K_1(B') \longrightarrow K_0(\Lambda) \longrightarrow K_0(\Gamma) \oplus K_0(B) \longrightarrow K_0(B') \longrightarrow K_{-1}(\Lambda) \longrightarrow K_{-1}(\Gamma) \oplus K_{-1}(B) \longrightarrow \cdots$$
(I)

Now by [1, prop. 10.1, p. 685], $K_{-i}(A) = 0$ for $i \ge 1$ and any quasi-regular ring A. Note that B, B' are finite rings and hence quasi-regular. Also Γ is quasi-regular. Hence for A = B, B' or Γ , $K_{-i}(A) = 0$ for $i \ge 1$. So the sequence (I) becomes

$$\cdots \longrightarrow K_0(\Lambda) \longrightarrow K_0(\Gamma) \oplus K_0(B) \longrightarrow K_0(B') \longrightarrow K_{-1}(\Lambda) \longrightarrow 0.$$
 (II)

To show that $K_{-1}(\Lambda)$ is finitely generated it suffices from (II) to show that $K_0(B')$ is finitely generated. Now B' is a finite Artinian ring and so, by [1, p. 465], $K_0(B') \simeq K_0(B'/JB')$ where JB' = radical of B'. But B'/JB' is a finite semi-simple ring and so, $K_0(B') \simeq K_0(B'/JB')$ is a finite direct sum of K_0 of (finite) fields each of which is isomorphic to \mathbb{Z} . Hence $K_0(B')$ is a (free) Abelian group of finite rank and hence is finitely generated. Hence $K_{-1}(\Lambda)$ is finitely generated.

(b) Let Γ be an α -invariant order containing Λ as in 1.1.3. Let s be a positive integer such that $s\Gamma \subset \Lambda$ and put $\underline{q} = s\Gamma$, $B = \Lambda/\underline{q}$, $B' = \Gamma/\underline{q}$. Then we have cartesian squares

$$\begin{array}{cccc} \Lambda & \longrightarrow & \Gamma \\ \downarrow & & \downarrow \\ B & \longrightarrow & B' \end{array} \tag{III}$$

and

and hence a Mayer-Vietoris sequence

$$\cdots \longrightarrow K_0(\Lambda_{\alpha}[T]) \longrightarrow K_0(\Gamma_{\alpha}[T]) \oplus K_0(B_{\alpha}[T]) \longrightarrow K_0(B'_{\alpha}[T]) \longrightarrow K_{-1}(\Lambda_{\alpha}[T]) \longrightarrow 0.$$
 (V)

where $\Gamma_{\alpha}[T]$, $B_{\alpha}[T]$ and $B'_{\alpha}[T]$ are quasi-regular (see [9]). If $A = \Gamma_{\alpha}[T]$, $B_{\alpha}[T]$ or $B'_{\alpha}[T]$ and T^n is the free Abelian group of rank *n* Then by [1, prop. 10.1], $K_{-i}(A) = 0$ for $i \ge 1$.

Also, by Serre's theorem $K_0(A) \to K_0(A[T^n])$ is an epimorphism (see [7]). Since $K_{-n}(A)$ is a direct summand of the cokernel of $K_0(A) \to K_0(A[T^n])$ we have $K_{-n}(A) = 0$ for $n \ge 1$. So from the exact sequence (I), we have $K_{-n}(\Lambda_{\alpha}[T]) = 0$ for $n \ge 2$ and $K_0(B'_{\alpha}[T]) \longrightarrow K_{-1}(\Lambda_{\alpha}[T])$ is an epimorphism.

By mapping the Mayer-Vietoris sequence associated with cartesian square (I) to the Mayer-Vietoris sequence associated with square (II), we have a commutative square

To prove that $K_{-1}(\Lambda) \longrightarrow K_{-1}(\Lambda_{\alpha}[T])$ is an epimorphism, it suffices to prove that $K_0(B') \longrightarrow K_0(B'_{\alpha}[T])$ is an epimorphism in the commutative diagram

$$\begin{array}{cccc} K_0(B') & \longrightarrow & K_0(B'_{\alpha}[T]) \\ & & & \downarrow \\ & & & \downarrow \\ K_0(B'/JB') & \longrightarrow & K_0((B'/JB')_{\alpha}[T]) \end{array}$$

where the vertical maps are isomorphisms. Also by [7, theorem 27], the map $K_0(B'/JB') \longrightarrow K_0((B'/JB')_{\alpha}[T])$ is an epimorphism. Hence $K_0(B') \longrightarrow K_0(B'_{\alpha}[T])$ is an epimorphism. So $K_{-1}(\Lambda) \longrightarrow K_{-1}(\Lambda_{\alpha}[T])$ is an epimorphism. Since by (a), $K_{-1}(\Lambda)$ is finitely generated, then $K_{-1}(\Lambda_{\alpha}[T])$ is also finitely generated.

(c) By definition, $K_{-1}(\Lambda_{\alpha}[t]) \simeq K_{-1}(\Lambda) \oplus NK_{-1}(\Lambda, \alpha)$. So it suffices to show that $NK_{-1}(\Lambda, \alpha) = 0$.

Let $\Lambda, \Gamma, B = \Lambda/\underline{q}, B' = \Gamma/\underline{q}$ be as in the proof of (a) (b). Then we have two cartesian squares

$$\begin{array}{cccc} \Lambda & \longrightarrow & \Gamma \\ \downarrow & & \downarrow \\ B & \longrightarrow & B' \end{array} \tag{VII}$$

and

where $\Gamma_{\alpha}[t]$, $B_{\alpha}[t]$ and $B'_{\alpha}[t]$ are quasi-regular as well as Γ, B, B' . Hence we have Mayer-Vietoris sequences

$$\cdots \longrightarrow K_0(\Lambda_{\alpha}[t]) \longrightarrow K_0(\Gamma_{\alpha}[t]) \oplus K_0(B_{\alpha}[t]) \longrightarrow K_0(B'_{\alpha}[t]) \longrightarrow K_{-1}(\Lambda_{\alpha}[t]) \longrightarrow \dots$$
(IX)

and

$$\cdots \longrightarrow K_0(\Lambda) \longrightarrow K_0(\Gamma) \longrightarrow K_0(B) \longrightarrow K_0(B') \longrightarrow K_{-1}(\Lambda) \longrightarrow \cdots$$
 (X)

where for $A = \Gamma$, B, B', $\Gamma_{\alpha}[t]$, $B_{\alpha}[t]$, $B'_{\alpha}[t]$, $K_{-i}(A) = 0$ for $i \ge 1$ (see [1, prop. 10.1]). By mapping (IX) to (X) and taking kernels, we have that

$$NK_{-1}(\Lambda, \alpha) = \operatorname{coker}(NK_0(\Gamma, \alpha) \oplus NK_0(B, \alpha) \longrightarrow NK_0(B', \alpha)).$$

So it suffices to show that $NK_0(B', \alpha) = 0$. Since B', $B'_{\alpha}[t]$ are quasiregular, the result follows from [6, lemma 2.4]. So $NK_{-1}(\Lambda, \alpha) = 0$ and hence $K_{-1}(\Lambda[t]) \simeq K_{-1}(\Lambda)$.

3.1.2. Corollary. let R be the ring of integers in a number field F, $V = G \rtimes_{\alpha} T$ a virtually infinite cyclic group where G is a finite group and the action of the infinite cyclic group T on G is given by $\alpha(g) = tgt^{-1}$ for all $g \in G$. Then $K_{-1}(RV)$ is a finitely generated Abelian group.

3.1.3. Corollary. Let α be an automorphism of a finite group G, R the ring of integers in a number field F. Denote the induced automorphism on RG also by α . Then $K_{-1}(RG) \simeq K_{-1}((RG)_{\alpha}[t])$ is a finitely generated Abelian group.

References

- [1] H. Bass. Algebraic K-theory. W.A. Benjamin (1968).
- [2] A. Borel. Stable real cohomology of arithmetic groups. Ann. Sci. Ecole Norm. Sup. (4) 7 (1984), 235–272.
- [3] W. Browder. Algebraic K-theory with coefficients Z/p. Lecture Notes in Math. 657. Springer, 40–84.
- [4] D.W. Carter. Localization in lower algebraic K-theory. Comm. in Algebra (7)8 (1980), 603–622.
- [5] R. Charrey. A note on excision in K-theory. Lecture Notes in Math. 1046. Springer (1984), 47–48.
- [6] F. Conolly and S. Prassidis. On the exponents of NK groups of virtually infinite cyclic groups. Car.Math. Bull. 45 No.2 (2002), 180–195.
- [7] F. T. Farrell and W.C. Hsiang. A formula for $K_1(R_{\alpha}[T])$. Applications of Categorical Algebra. Proc. Symp. Pure Math. 17. Amer. Math. Soc. (1970), 192–218.
- [8] F. T. Farrell and L.E. Jones. Isomorphisms conjectures in algebraic K-theory. J. Amer. Math. Soc. 6 (1993), 249–297.
- [9] F. T. Farrell and L.E. Jones. The lowwer algebra K-theory of virtually infinite cyclic groups. K-Theory 9 (1995), 13–30.
- [10] A. O. Kuku. K-theory of grouprings of finite groups over maximal orders in division algebras. J. Algebra (1) 91 (1985), 18–31.
- [11] A. O. Kuku. K_n , SK_n of integral group rings and orders. Contemporary Math. AMS **55** (1986), 333–338.
- [12] A. O. kuku. Ranks of K_n and G_n of orders and grouprings of finite groups over integers in number fields. J. Pure Appl. Alg. **138** (1999), 39–44.
- [13] A. O. Kuku. Profinite and continuous higher K-theory of exact categories, orders and group rings. K-theory 22 (2001), 367–392.
- [14] A. O. Kuku. Finiteness of higher K-groups of orders and group rings. K-Theory 36 (2005), 51–58.
- [15] A. O. Kuku. *Representation theory and higher algebraic K-theory*. Chapman and Hall (2007).
- [16] A. O. Kuku and G. Tang. Higher K-theory of grouprings of virtually infinite cyclic groups. Math. Ann. 323 (2003), 711-725.
- [17] J. Neisendorfer. Primary homotopy theory. Mem. Amer. Math. Soc. 232 (1980).
- [18] I. Reiner. Maximal orders. Academic Press. London (1975).
- [19] C. Weibel. Mayer-Vietoris sequence and mod-p-K-Theory. Lecture Notes in Math. 966 Springer (1982), 390–407.

MAX-PLANCK-INSTITUT FÜR MATHEMATIK, BONN, GERMANY *E-mail address*: kuku@mpim-bonn.mpg.de