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1. Introduction

1.1. The goal of Enumerative Geometry is to study those concepts, principles and
methods that allow to answer questions that ask how many figures of some kind satisfy
a given list of conditions, the explicit contruction of the figures not being required (see
Schubert [1879]). It is important to remark that these tasks include the formulation of
criteria that guarantee a finite number of solutions.

1.2. In these notes we will be considering Schubert's method of degeneration to solve
enumerative problems and also how to get about certain difficulties arising from its
application in its original form, especially those related to the use of coincidence forr:nulas
as a means for deriving the key degeneration relations. Although Schubert's coincidence
formulas are not hard to establish, the way he uses them leads to the eomputation of
multiplicities which do not Beem easy to handle. For example, formula 13) on page 45 in
Schubert [1879] can be proved working on the blow up of p 3 x p3· along the diagonal,
but its applieation to the three dimensional system E of bisecants to aI-dimensional
system r of twisted cubics (as suggested on p. 167) leads to the computation, among
other terms, of Egp Ej set-theoretically this eycle represents the lines through p that are
tangent to a eubic in r, bu~ its multiplicities appear to be rather unclear.

1.3. In our discussion we will foens 'on the enumerative geometry of rational cubics. In
particular we will consider the following two examples:

(a) How many twisted cubics are tangent to 12 quadrics? (see Schubert [1879], p. 184,
and Kleiman-Str~mme-Xamb6[1987])

(b) How many cuspidal cubics in a plane go through 2 points, are tangent to 2 lines and
are such that the cusp and the inflexion move each on a !ine and being at the same time
colinear with a given point? (see Miret-Xamb6 [1988])



1.4. Remark. Problem (a) involves only one kind of condition, tangency to a quadric
surface, but the figures are noo-complete intersections in p3 aod thus not easily amenable
to analytie treatment. On the other hand, the figures in (b) are easier to parametrize,
but in this case 5 kinds of conditions are involved.

1.5. The number in (a), whose value is 5819539783680, was computed by Schubert, as a,

consequence of his work on the theory of characteristics for twisted cubics. This work was
awarded the Gold Medal of the Royal Danish Academy in 1875. It was recently verified
in Kleiman-Str~mme-Xamb6 [1987]. Here we will give a new and simpler proof of the
key degeneration relations for the first order characteristic conditions and will also show
that our approach yields all characteristie numbers, that is, including those involving the
second order condition P (going through a point). The number in (b), whose value is
55, has been computed for the first time, as far as the author knows, in Miret-Xamb6
[1987, 88]. These two worles summarize the research done to verify and extend the work
of Schubert and others on the enumerative geometry of cuspidal cubies. They are quickly
surveyed in Section 5.

1.6. Dur discussion will also lead us (see Section 3) to consider the enumerative theory
of quadratic varieties (or, more generally, quadratic chains) in projective space, to which
we will add a few observations. In partieular we give explicit expressions for the first
order conditions in terms of the first order degenerations, and comment on a new way of
deriving the expressions of the degenerations in terms of the first order conditions, start­
ing with the case of quadratie varieties on a projective line and then using an inductive
procedure, via hyperplane sections, for the general case. We also take care of how the
characteristie conditions restrict to the corresponding first order degenerations. Thus
the paper mayasweIl serve as a rather straightforward introduction to a fascinating
subject that has been studied following several approaches by many authors: Schubert
[1870, 1879, 1894], Van der Waerden [1938], Severi [1940], Semple-Roth (1949), Tyrrell
[1956], Kleiman [1980, 87}, Vainsencher [1982J, Finat [1983], Laksov [1982, 86, 87], De
Concini-Procesi [1983, 85], De Concini-Gianni-Traverso [1985], Casas-Xamb6 [1986}, De
Concini-Goreski-MacPherson-Procesi [1987], Kleiman-Thorup [1987], Bifet [1988], Bifet­
De Concini-Procesi [1988].

1.7. AB it is weIl known, Schubert and other 19-th century geometers computed thou­
sands of geometrie numbers, but the concepts, principles and methods they used have
generally been considered to lack asolid foundation and thus Hilbert included as Prob­
lem 15 in his famous list the quest for a "rigorous foundation of Schubert's enumerative
calculus" , explaining that this also inc1udes "to establish rigorously and with an exact
determination of the limits of their validity those geometrie numbers which Schubert es­
pecially has determined ... ". For an excellent introduction to this problem see Kleiman
[1987] and the references given therein.
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1.8. Base field. For simplicity we will take C, the field of complex numbers, although
most of the arguments and conclusions are valid over an algebraically closed field k of
characteristic p ~ 0, P =1= 2,3. Only occasionally we will make aremark on the positive
charactersitic case.

The n-dimensional projective space over the base field will be denoted pn and
PGL(pn) will be its group of automorphisms.

1.9. Acknowledgements. This paper is a written version of the lecture given on July
14 at the MPI Oberseminar. The author wants to thank the MPI for support during its
preparation.

2. Foundations

2.1. The study offoundations in this century, through the work ofmany mathematicians,
has afforded the tools that allow to handle constructs such aB "figures of some kind",
"conditions" and "number of figures satisfying ..." that appear in the demarcation of
enumerative geometry (see 1.1) in a way that matches current standards.

Thus the totality of "figures of some kind" (or classes of such under same equivalence
relation) will be in one to one correspondence with the (closed) points of some variety
X and a "system of figures" of dimension r is just an irreducible subvariety of X of
dimension r. For instance, when dealing with linear spaces or flags of such, we are lead
to the Grassmannian and flag varieties. Similarly, smooth quadratic varieties in pn may
be identified with the open set of P(82E~+ 1)' if pn = P(En+ l)j cuspidal cubics form
an orbit of PGL(P2) under the natural action on the space P(S3 E;) of all plane cubics;
twisted cubics form an orbit of P GL(P3) under its natural action on the Hilbert (or
Chow) scheme of curves of degree 3 and arithmetic genus 0 in P3.

2.2. Conditions. On the other hand, a simple way to deal with the notion of condition
is to think of a condition 0 as an algebraic (often rational) family of cycles 0 = {OthET
on X. For a given t, the points in the support lOt I of 0t are to be interpreted as the
figures satisfying 0 with datum t. The order of 0 is the codimension of the cycles 0t.

2.3. Example: Characteristic conditioDS. Given a d-dimensional irreducible family
X = {V} of n-dimensional projective varieties V ~ pN and an i-dimensional linear space
L ~ pN , let tLL ~ X be the subfamily of varieties that have a contact with L, that is,
such that there exists P E Ln V and a hyperplane H containing L such that (P, L) lies
in the conormal variety GV C pN X pN· of V (GV is the closure of the set of pairs
(P, H) E pN X pN· such that P E V is simple and Tp V ~ H). So tLL is a cycle on X
and the rational family tL. = {tLL}L is the i-th characteristic condition of the family X.
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Notice that for i ~ N - n - 1 the cyc1e J1.L is the cycle of V E X that intersect L. The
order of J1.i will be denoted ordx (J-Ld, if we want to declare to which family J-Li refers.

The characteristic conditions for the twisted cubics are usually denoted P, 11, P (to go
through a point, to intersect a line, to be tangent to aplane). Condition P has order 2
and J-L, 11 have order 1. In fact, quite generally, we have:

2.4. Proposition. Let X be a Eamily as above. Let V be a general member oE X, P
a general point on V and Lai-dimensional linear space chosen generically among those
that have a contact with X. Let Oi denote the dimension oE the contact locus oE L with V.
Then we have:

{
N - n - i iE i ::; N - n - 1

ordx (11..) =
,-, 1 + 8· iE i > N - n1 _

Proof: By "computo di constanti" one easily finds that

where d, is the dimension of the variety r, of i-dimensional linear spaces having a contact
with a given n-dimensional variety V at a general point P E V. If i ~ N - n -1, then r i

consists of the i-dimensional linear spaces L such that P E L. It is therefore clear that

d; = i(N - i).

Since in this case 0, = 0, we find that ordx (J-Ld = N - n - i .

.Assume now that i ~ N - n. In this case the condition that L has a contaet with V
at P is equivalent to the relations P E L and dim(L n Tp V) > i + n - N. From this it
is not hard to see that d, = (i + I)(N - i) - n - 1 and henee that ordx (J-Ld = 1 + 0,. 0

2.5. Example: fundamental conditions for cuspidal cubics. For plane cuspidal
eubics we have the characteristic conditions P,o, J1.1 (going through a point aod being
tangent to a line; usually they are denoted J.L and v, respectively) and the eonditions c,
v, y, z, w aod q which are defined as follows (see the picture page at the end): given a
point P aod a line L, CL (resp. VL, YL) is the eyc1e of cuspidal eubics that have the eusp
(resp. the inflexion, the intersection of the euspidal and inflexional tangents) on L, and
qp (resp. Wp, zp) is the eyele of cuspidal cubics whose cuspidal tangent (resp. inflexional
tangent, line joining the eusp aod the inflexion) goes through P. Such conditions will be
ealled fundamental conditions for the cuspidal cubics.

2.6. A convenient way to understand the construet "number of figures satisfying n times
er, m times ß, ... ", n . ord(a) + m . ord(ß) + ... = d, is to take it to mean the degree N
of the o-cyc1e

atl ... at.. ·• ßt l ... ßt
m

•••
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(assuming that it is a o-cyclej see 2.7), where (tl'.'.' tn,SI, ... ,Sm,.'.) is generic. This
number is denoted

2.7. Transversality. In many cases it can be guaranteed apriori that 2.6(*) is a O-cycle
and that the multiplicities in the intersection are 1. In such a situation N is indeed the
number of distinct figures satisfying the conditions, with data in general position.

"An interesting example of this occurs under the following circumstances. Suppose the
characteristic of the ground field is o. Let G be a connected algebraic group and assume
that G acta transitivelyon the parameter varieties T = {t}, S = {s}, ... and also on X.
Assume moreover that the relations 0, ß, ... are G-invariant. Then the intersection ie
finite and the multiplicities are aU equal to 1. Indeed, since for aU u E G and t E T we
have u (lXt) = 0:0' - 1 (t), our intersection is of the form

U 1 (O:t) ... U n ( D:t)(J ~ (ß.) ... u:n (ß.) . .. ,

where u1 , ••• , un , o~, ... , ffm , •.• are general in G and so the claim follows from the
principle of transversality of gen~ral translates (see Kleiman [1974]).

Ir the same conditions hold but char(k) = p > 0, then the multiplicities are all equal to
a fixed power of p, say pe, e ~ 0, so that N = pe N' , N' the number of distinct solutions.
Thus for this multiplicity to be > 1 it is necessary that piN. This in practice allows to
rule out multiplicities > 1 for all but a finite number of p.

These observations can be applied, for example, to the fundamental numbers of eus­
pidal eubics, taking G = PGL(P~). Indeed, in this case G acts transitively on P~, p~.

and on the family of euspidal eubics. Moreover, the fundamental eonditions are eertainly
projeetively invariant. Similar remarks ean be made for many other figures and eondi­
tions, like for the nodal and twisted cubies, taking as fundamental eonditions those listed
by Sehubert [1879] (p. 144 and pp. 163-164, respeetivelyj see also 5.1 below).

There are other more general transversalty statements which ean be applied where the
group does not act transitively, or even where there is no group aeting at aB: see Casas
[1987], Speiser [1988].

2.8. Characteristic numbers. Given a d-dimensional family X of n-dimensional
varieties V, the numbers

N ( ) - mo mN-l
X m o ,···, mN - 1 - JLo ••• J1.N _ 1 ,

where
N-1

(N - n)mo +... +2mN-n-~ + L: (1 + 0; )m; = d,
N-n-1
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will be called the characteristic numbers of the family X. Here JLi are the characteristic
conditions for the family X (see 2.3).

For example, if X is a family of plane curves, such that the generic member is irre­
ducible, then its characteristic numbers are Nx (i,j) = JL~JL{, i + j = d, for in this case
J1.o and J.L1 are simple conditions. The characteristic numbers of the family of twisted
cubics are the numbers

N(i,j, k) = pi v·p";, i,j, k 2:: 0, 2i + j + k = 12.

2.9. Contacts. According to the contact theorem of Fulton-Kleiman-MacPherson
[1982], the knowledge of the characteristic numbers of a family X suffices for the deter­
mination of the number, say Nx (W1 , ••• , Wd ), of varieties in X that have a simultaneous
contact with d given varieties W1 , ••• , Wd , in general position in pn. In fact the contact
theorem implies that

where, for a given projective variety W, TX (W) is the linear form in the variables
J.Lo, ••• ,JLN -1 defined by the relation

TX (W) = :E Ti (W)JLi

ord (~J)= 1

and Cx is the unique additive map from the group of homogeneous polinomials of degree
d, with integer coefficients, to Z such that Cx (JL~o ••• JL;;~11

) = N x (mo, ... , mN - d.
The expression Ti (W) in the formula denotes the j-th rank of W, that is, the number of
(n - j - 1)-dimensional linear spaces in a given general peneil that have a contaet with
W.

Thus the number N of twisted cubics tangent to 12 quadrics is given by

because if Q is a quadric then Ti (Q) = 2, j = 0,1,2. This reduces the eomputation of
Schubert's number 1.2 (a) to the calculation of the eharaeteristic numbers ni = vl~-i pJ.•
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3. On the characteristic numbers of quadratic varieties.

3.1. Remark. If X is a complete variety, then our number N = al'1 ßm •.• is equal to
the degree of the ~dimensional rational class [a]1'1 [ß]m .•. , so that in this case we are
lead to a computation in the intersection ring of X (such computations are orten referred
to as Schubert ealculus). Important examples of this situation are the Grassmannian
and Hag varieties.

3.2. Remark. Let us notice here, as did Sehubert, that Sehubert ealculus often gives
also insight into relations among eonditions for figures other than linear spaees and
Hags. Usually this is aceomplished by what we may eall "transfer of relations" by a
eorrespondenee (a pattern that repeats itself in many other situations). Assume

is a eorrespondenee between the smooth varieties X and Y, with q a loeal eomplete
interseetion morphism and p proper. Then for any relation R = 0 in the interseetion ring
of Y we get a relation P.. q" R = 0 in the interseetion ring of X.

For example, if X is a family of plane eurves of degree m in p3 and if we let Y be
the full Hag variety of p3, then we have a eorrespondenee between X and Y given by
assoeiating to eaeh curve in the family the Hags eonsisting of a point of the curve, the
tangent there and the plane where the eurve lies. So we ean transfer relations on Y to
relations on the family of eurves X. In particular, it is not hard to see that from the
relation

(p the condition that the point of the flag lies in a plane, h the condition that the
plane of the flag goes through a point) gives the relation P = hv - mh'J. The formula
T = h'J p-mh2 for the tripie condition T (tangeney to aHne) ean be dedueed similarly (see
Sehubert [1879], p. 40). The relation (*) itself is equivalent to the fundamental relation
satisfied by the hyperplane class on the projeetive bundle associated to the tautological
rank three veetor bundle on p3" .

3.3. When the variety X is not eomplete, then a natural strategy ia to try to find a
compactifieation X· of X in Buch a way that our numbera N ean beeomputed on X .. ,
that ia, so that

N ol<l'1ß·m=a ...
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where the star denotes closure in X·. This strategy works remarkably weIl for the space
of quadratic varieties of rank r (1 ~ r ~ n + 1). In this Section we will explain this
example, stressing how the numbers may be computed by reduction to the boundary of
the compactification (see 1.6 and the references given there).

3.4. Quadratics. We will write Sp to denote the space of non-degenerate quadratic
varieties of P. Notice that in a given projective reference,

,.(,.+3)

Sp ~ P ~ - V (det(aii )).

In particular Sp is smooth and

Pic (S,.) = Z/(n + 1)

(see Fulton [1984]).

More generally, let S~) denote the variety of rank r quadratic hypersurfaces (quadrat­

ics for short) in P, 50 that Sp = S~"+l). If Q is a quadratic, we shall write W(Q) to
denote its double locus and d(Q) = dim(W(Q)), so that r( Q) = n - d(Q) is the rank of

Q. The variety S~) comes equipped with a natural map

1r(r) : s~r) ---+ Gr (n - r, n),

which assigns to a given rank r quadratic Q the linear space W(Q). It folloW5 that S~)

is a smooth quasiprojective variety (see the proof of 3.5). On S;:) the characteristie
conditions J.l.o, • •• ,JLr - ~ have order 1. We shall let Vr_ 1 denote the Sehubert condition
that W(Q) intersects a given (r - 1)-dimensional linear space .

3.5. Proposition.

(a) Pie (S{ r)) is generated by [JLo J and [lIr- d.
(b) The following relations hold:

r[J.l.o] = 2(lIr _ d,
JL. = (i + l)JLo, for i = 0, ... ,r - 2.

Proof: Let r r = Gr,._ r (P) be the Grassmannian of (n - r)-dimensional linear spaces
in P, E' c Elrr the tautologieal bundle over r rand F the quotient of Elfr by E', so
that rank (E') = n - r + 1 and rank (F) = r. Then the composition

gives a map
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whose image ia the aubvariety Vr of quadratiea of rank ~ r. The fiber over a point Q E Vr

is naturally isomorphie to Gr n _ r (W(Q)). In partieular it follows that if D.. C P(S2 F+)
ia the irreducible subvariety of singular quadraties then we have an isomorphism

P - A ....., V - V - S(r)
U - r r-1 - p .

Under thia isomorphism the class JJ = Cl (Op (1)) corresponds to the class of J.Lo. Moreover,
if l ia the class of a codimension one Schubert cycle on r r (that is, the class in A l (rr) of
the variety lL of (n - r)-dimensional" linear spaces that meet a given (r -1)-dimensional
linear space L), then l = Cl (F) and 7r+ (t) = V r - l' Since Pie (P(8 2 F+)) is freely generated
by JJ and 11"+ (l), (a) is now clear. To see (b) it will be enough to prove that on P =
P(82 F-) we have

To see this, consider the composition

Op (-1) C-+ 8 2 F-IP C-+ Hom(FIP, FIP)

~ Hom(ArFIP, Ar F+IP)
~ 11"+ (Ar F)- 2 •

Since it is r-linear, it gives rise to a linear map

and hence a section of

whose zero locus is, by construction, the scheme D... This proves the first relation in (b).
To see the second relation, let L = P(L), where L ia a given general i-dimensional

linear space . Then degenerate quadratics on L form an irreducible hypersurface D.. i of
degree i + 1 in the space P(82 L) of all quadraties in L and this hypersurface pulls back
to (JLd L by the restrietion map P (82 E+) -+ P (82 L) . 0

3.6. Quadratic chains. Let P = P(E), E a vector space of dimension n + 1. Given
any strietly decreasing sequence I = (i1 > ... > ik ), k ~ 0, i l ~ n -1, i k ~ 0, we will be
interested in the space 8(1) = 8p (1) whose points parametrize "quadratie chains of type
1 in P". We define a quadratic chain of type 1 to be a sequence Q = (Qo, Q1" .. , Qk)
with the following properties: (a) Qo is a quadratie of P, (b) for j = 1, ... ,k, Qj is a
quadratie in W (Q j _ 1 ), and (c) Qk is non-degenerate. For a giyen k, there are (~) such
types. The dual of a quadratie chain of type I ia a quadratie chain of type 1+ , where
'. . 1Sj = n - Sj - •
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3.7. Characteristic conditions for quadratic chains. We introduce contact condi­
tions J.L~, ... ,J.L~- 1 on the variety S (1) of quadratic chains Q = (Qo, ... ,Qk) = (Qo, Q')
of type 1 as follows. Let L be an i-dimensional linear space. If i < n - i 1 - 1, then
(J.LI)L is defined to be the condition that Qo has a contact with L. If i = n - i 1 -1, then
(J.LI)L is defined to be 2vn - i 1 -1, where Vn - i1 -1 is the Schubert condition that the linear
space W(Qo) of double points of Qo intersects L. And if i > n - i 1 - 1, then (JlI)L ia
defined recursively to mean the condition that the quadratic chain Q' has a contact with
Ln W(Qo) (a condition Jli+n-i 1 for Q'). Then J.L{ is the family {(J.L1)L}L' They are all
simple conditions.

3.8. Complete quadratics. In order to find the characteristic numbers of quadratic
chains, we need to interprete them in terms of complete quadratics. Let

be defined, in coordinates, as A = (~,.) I---t Ai A,' The reason for taking this map is that
P(S~ (Ai E)) parametrizes quadratics in P(AiE), and the quadratic Ai A intersects the
Plücker embedding

precisely along the cycle. of i-linear spaces that are tangent to the quadratic A. Now the
closure of the graph of .A~ x ... x An _ 1 is the space of complete quadratic varieties, S;.
The group G = PGL(pn) acts on S; in a natural way. It turns out that S~ has the
following properties.

3.8.1. S; is smooth and the codimension k orbits are in one to one correspondence
with the strictly decreasing sequences 1 = (il > ... > i,;), where i 1 ~ n - 1, i k ~ 0,
o ::; k ::; n. Moreover, if 0(1) is the orbit corresponding to I, then there exists a natural
isomorphism 0 (I) ~ 8 (I) .

3.8.2. Let D(I) be the closure of 8(1). Then the subvarieties D(I) are smooth and an
orbit 8(J) is contained in D(I) if and only if I ~ J. Moreover, D(I) n D(I') = D(1U 1')
and the intersection is transversal. In particular D(I) = D (i 1) n ... n D (i k ) •

3.8.3. The restriction of the (closures of the) conditions Jlo, • •. ,Jln -1 to D(1) are the
(closures of the) conditions Jl~, .•• ,J.L~ -1' In particular the characteristic conditions for
D(I) restrict to the charaeteristic eonditions of D(J) if I ~ J. This implies that in
order to compute the eharaeteristie numbers for the quadratics we ean work on 8;. And
since this is complete, we can work directly with the rational classes of the characteristie
conditions (see 3.1 and 3.3).

3.9. Degeneration relations for quadratic chains. The closed orbits that have
codimension 1 in D(I) are the varieties D(I),. =: D(1U{j}) = D(I)nD(j), where 0 ::; j ::;
n - 1, j ~ I. These n - k varieties will be referred to as first order degenerations of D (I) .
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Next statement gives a formula that yields the rational c1asses of such degenerations in
terms of the characteristic conditions. A proof of it will be sketched at the end of this
Section.

3.9.1. Theorem. Let I be as belore. For 0 ~ j ~ n - 1, let 6(1),. be the rational class
D(I) . D(J'), so that for j rt. I we have 6(1),. = [D(I),.]. Then, with the convention that
an expression vanishes iE a subindex is out oE the range (0, n - IJ, we have:

6(I)n-"-1 = -J.L~-1 + 2J.L~ - J.L~+ l'

3.10. Characteristic numbers of quadratic chains. Statement 3.9.1 gives a proce­
dure for computing the characteristic numbers of all quadratic chains. In fact here we will
show how the previous formula allows to transform the computation of a characteristic
number on D(I) into computations of characteristic numbers on the first order degen­
erations of D(I), so that by iterating this step we may reduce the computation of any
characteristic number for quadratic chains to the eomputation of characteristic numbers
on D (n - 1, n - 2, ... , 1, 0), whieh is the variety of comp lete Hags (cf. De Concini-Procesi
[1983, 85}, De Concini-Gianni-Traverso [1985}).

In order to explain this we have to introduce some notations. Given a positive integer
r, we shall denote by A(r) = (a;,.) the matrix defined as folIows, where 0 ~ i,j ~ r - 1:

{

2ifJ'=i

~,. == -1 if j = i ± 1

o otherwise

Then it is easy to check that det(A(r)) = r+l, for a11 r. Let B(r) = (bi,.), 0 ~ i,J' ~ r-l,
be the r x r matrix defined by the relation

B(r)A(r) = (r + I)In

where I,. is the identity r x r matrix. Then it is easy to check that we have:

3.10.1. Lemma.
b.. = { (i + 1)(r - J') if i ~ j
'J (j + I)(r - i) if j ~ i

Let now I be a sequence as before. For each l in the range [1, k), let

I l =: [i l + 1, i l - 1 - 1], I; =: [n - i l - 1, n - i l - 2],

so that when j runs (increasing) on the range I; then n - J' - 1 runs (decreasing) the
range I l • We set Tl = i l - 1 - i l - 1, the number of elements in the interval I l (or
I;). Let J.L~. be the piece of J.LI with subindices in I; and 6(lht the piece of 6(1)

t

involving only the integers in I l , arranged in decreasing order. Finally let Zl be the row

(J.Ln - i t _ 1 - 1,0, ... ,0) + (0, ... ,0, J.Ln - it - 1) (Tl components in each summand). Then the
express ions in 3.9.1 corresponding to J' in the range I l can be written, in matrix form,
as follows:
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3.10.2. Lemma.

From this relation we obtain the following relation:

3.10.3. Proposition.

which written in explicit form is equivalent to the following relations:

(rl + 1)J.4{t+ 1 +j = L (p + l)(rt - i)c(I)n-i t -1-p

OS:p~j

In particular we have that

(n + 1)J.Lj = L (p + l)(n - j)cn - p-l + L (j + l)(n - p)cn - p- l'

OS:pS:j j< pS:n

These relations tell us, together with 3.8, that we may substitute conditions tLn-j-lJ

j i I, in a given characteristic number of D(I), in terms of of first order degenerations of
D(I) and conditions J.Ln-j-l with i E I, which has the effect of transforming, if 11[ < n,
the given characteristic number into ~ linear combination of characteristic numbers on the
first order degenerations and characteristic numbers for which the number of occurrences
of conditions of the form J.Ln-i-l, i ~ I, is one less that in the number we started with.
Iterating, at the end we will be reduced to compute only characteristic numbers on
the variety of complete Hags. Notice that if 111 < n then any characteristic number
involving only conditions J1.n-j-l for i E I is 0, by reasons of dimension. In any case
it is important to remember that J1.n-i-l = 2Vn -i-l for i E I, where Vn-i- 1 is the one
dimensional Schubert condition on i-dimensional linear spaces.

3.11. Proof of Theorem 3.9. Since the left members of the relations are obtained
intersecting D(n - i-I) with D(I) and the characteristic conditions restriet to the
characteristic conditions it ia enough to show that on S· we have

D(n-j -1) = -J.Lj-l +2p.j -tLj+l'

These are weH know relations. In the rest of this section we sketch a simple proof by
induction.
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On pI the quadratics are already complete and D(O) is a conic, so th.at 6(0) = 2J1.0.

The relations are therefore true for n = 1. Assume now n > 1. Take a hyperplane p'
and consider the linear projection Sp -+ Sp' given by restriction. The center of this
projection is the space of pairs of hyperplanes that contain P'. For any linear space W
we have also a linear projection Sw -+ Sw nP' given by restriction from W to W nP'. Ir
Q is a quadratic on W that does not contain W n P' (that is, such that P' intersects Q
properly) we will let Q n P' denote the image of Q by this map. Let now I be a sequence
as before. Define 1- as follows:

1- = { (i 1 -l, ,il; -1) ifil; > 0

(il - 1, , il;_ 1 - 1) if il; = 0

Then we have a rational map Sp (I) -+ Sp, (1-) defined by

which is regular at aH quadratic chains that are intersected properly by P'. In particular
it is regular for quadratic chains that do not satisfy V = (J..'~ _ 1 ) P , • Away from (the
closure of) this variety the map is smooth and pulls J..': - (0 ~ ;" ~ n - 2) back to J1.:.

Moreover, these maps are compatible in the sense that they fit together into a smooth
map of S; - V to S~, and D(;") is, for j > 0, the puB-back of D' (j - 1), which gives
the relation for D(j), j > 0, up to terms in J..'n-l- Since by duality the matrix of the
(8n - 1 , ••• , Öo) is simmetric with respect to both diagonals , this leaves undetermined only
the coefficient of J1.n-l in the expression of 80 , But it is easy to see that this coefficient
is -1 for n = 2 and 0 for n > 2 (for instance using 3.5). D

4. Characteristic numbers of twisted cubics

In this Section we derive in a new and more simple way the basic degeneration relations
used in Kleiman-Strf2Smme-Xamb6 [1987] to compute the characteristic numbers vi pl~-i.

our approach also aHows to compute all characteristic numbers pi vi p12 - ~i - i .

4.1. Proposition. Let Po, _.. , Ps be 6 points in p 3
, no {Dur oE them in aplane. Then

there is a unique twisted cubic C containing Po, ... , Ps' In particular p6 = 1.

Proof: The quadrics containing a given twisted cubic form a 2-dimensional system
which cuts out the cubic. Since six points in general linear position impose independent
conditions on quadrics, we see that there ia at most one twisted cubic containing the
points Po, . .. , Ps, and that if it exists it fiUSt be the scheme cut out by the quadrics
containing the points.

13



i = 1,2,3,

Now take E = (Po, ... , Ps; p.) as projective reference of p3 and let P6 _ (a) =

(ao ,al ,~ , as). By our hypothesis, ai #- 0 and if i #- J' then ai #- ai' Let

n~X· - a·Xo}i=-U 1 1

ao - ai

where Xo , ••• , Xs are the homogeneous coordinates of p3 with respect to E. Let Qii =

Q~;) be the quadrie defined by the equation XiY; - X;Yi = O. Then Ql1, Q13, Q23 are
independent quadrics containing Po, ... , P6 , so that if the cubic exists it must be cut out
by them. Since the equation of Q~;) mayaiso be written in the form

we see that Qii is a cone with vertex at the point Pk such that {1,2,3} - {i,j,k}.
Since the directrix of this cone is the conie through the projections of {Pi };~k from
Pk , we see that this cone has rank 3. On the other hand the lines Li and Li' where
Li := {Xo = Xi = O}, are rulings of Qii' From this it follows that Ql1 n QIS is the union
of the line LI and a cubic C that contains Po, ... , P6 • Since Q"l3 does not contain LI, it
follows that C is Ql1 n Ql3 n Q13' 0

4.2. Remark. Assume now that P6 moves on a generalline L. Thus

where (a), (ß) E L, (a) i- (ß). Then it is easy to see that

Q~~) = A1Q~~) + AILQ~~,ß) + IL1Q~~),
13 13 r 13 ,- 13

where

Q~;,ß) = (aa (ßi - ßi ) + (ßo (ai - Q;))XiXj + (~(ß; - ßo) + (ßi (ai - O:o))X;Xo+
(aj(ßo - ßi) + (ß;(ao - ~))XOXi'

which also is a cone with vertex PI; (same notations as in 4.1).

Let Cp.,JJ) be the twisted cubic going through the points Po, ... , P6, for general (A, p.).
When we let P6 move on L then Cp.,JJ) sweeps out a surface S. By the expression of Q~;)

above we see that S is contained in the octic surfaces obtained solving any two of the
three equations Q~;) = 0 for (A1 , Ap., J.L1 ) and imposing the unique relation (AJ.L) 1 = A1 J.L1 .

From this it follows that deg(S) ~ 8.

Another way of seeing this is the following. Take a second generalline L'. Parametrize
L' using points (a'), (ß') and parameters (A' ,p.'). Then the cubics through the five points

14



Po, ... , p. that meet L and L' are in one to one correspondence with the intersections
of the three curves Cii on the quadric L x L' obtained replacing (Xo , .•• , Xs ) in the

equations Q~;) = 0 by (a' A' + ß' p,'). These curves are efective cycles of type (2,2) on
L x L'. From this and the fact that the intersection number of any pair of such cycles is
8 it is not hard to see that there are at most 8 points in their intersection.

4.3. Schubert's space X·. Let X· be the "partial compactification" of the space of
twisted cubics X obtained in Kleiman-Str~mme-Xamb6[1987) and let p., 1/., p. be the
closures in X· of the charaeteristic conditions P, v, p. Given non-negative integers i, j
such that 2i + i ~ 11, we shalliet I\i = piVi pll-7.i- i be the I-dimensional system of
twisted cubies obtained interseeting the corresponding conditions with data in general
position. By transversality of general translates, in characteristie 0 it is a redueed eurve.
We shall write r:

i
= p. i v· i p. 11- 7.i - i to denote the intersection of the corresponding

closed conditions. We will refer to the systems r ii' or r;i' as eharaeteriatic systems of
twisted cubics. Now we will use the following facts:

4.3.1. X· is smooth.

4.3.2. X· - X is the union of two (disjoint) smooth hypersurfaces Da and D1 •

4.3.3.' Da ia isomorphie to the variety of planar nodal cubics, which is an orbit under
the action of PGL(PS

). We shalliet Po, va and Po denote the characteristie conditions
on Da.

4.3.5. D 1 is isomorphie to the variety parametrizing cubics consisting of a conie C
and a line L meeting C at a unique point Q. It is also an orbit under the action of
PGL(P3). We shall write Po, Vo and Po to denote the conditions on D1 corresponding
to the characteristic conditions of C; PL and VL the conditions corresponding to L
going through a point and meeting a line, respectively; and Q the condition that the
distinguished point lies on aplane.

4.3.7. From 4.3.4 and 4.3.6 it follows that if r ia a characteristic system then r.+ ia
a closed curve in X·, so that it coincides with the closure of r. It is a basic result in
Kleiman-Str~mme-Xamb6 [1987} that these closed characteristic systems are complete.

As we shall see, this is one of the crucial facts that allow to determine the characteristic
numbers of the twisted cubics without needing any further knowledge of the boundary of
X in same compactification. In other words, it plays the role that the compactification
does when the "compactify strategy" works.
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4.4. Theorem (degeneration relations). On X'" the following relations hold:

2v =3Do + D1

P =Do +D1

Proof: It will follow from paragraphs 4.5 to 4.10. o

4.5. We shall also use the fact, attributed to Ellingsrud in Piene [1985], that Pie (X) =
Zj(2). Then one easily sees that there exist integers a, b, c, d such that

2v'" - aDo + bDI , 2p'" - cDo + dD I ,

where - denotes the rational equivalence relation. As we shall see in next paragraph,
the knowlewdge of the coeflicients a, b, c, d, plus enumerative information on Do and D I ,

allow UB to compute all characteristie numbers.

4.6. Degeneration reduction. Let r be a characteristic system. Let 0:: be either v or
p and N = 0:: • r. By- 4.3.4 and 4.3.6 we have that N = 0::'" . r"'. Now this intersection
is the degree of the restrietion of 0::'" to r"'. Since r'" is complete, this degree coincides
with the degree 0/ the corresponding linear dass, that is, the degree of the restrietion of
the rational dass of 0::. If 20:: =pDo + qD1 , p, q integers, then 2N will coincide with
pdeg([Dol . r"') + qdeg((Dd . r"'). But since r'" intersects Do and D 1 properly the last
expression is equal to p(Do •r"') +q(DI • r"'). Let r D AI = (DIc • r"'). We will say that r D 0

and r D 1 are the degeneration numbers of r. It is clear then that

and hence

r - pi v!..' 11- ~i-i
D o - 0 opo ,

so that the computation of the degeneration numbers is reduced to the solution of other
suitable enumerative problems on the degeneration varieties D o and D 1 , which are weIl
understood.

4.7. Examples of degeneration numbers.
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The second step follows because aH other terms in the expansion are easily seen to vanish;
for instance, a conic does not go through 4 or more points in general position, and a line
does not go through more than 2, so that the only possible choice from the first factor
is p~Pi. But then from the other factor we have to chaose Va , for the line determined
by Pi cannot meet another line in general position. Finally we are easily reduced to
finding the number of conics through 5 points in aplane. The same argument gives also
(P6 P)D 1 = 20.

Here are a few other degeneration numbers, that will be used below, and which can
be obtained in a similar way:

(P 3
V

6
)D O - 12

(P3 V4. P)D o 36

(P 3
V S P~)Do =100

(P311~)Dl = 344

(PSlI4. p)D
1

=604

(PSlIS
P~)D 1 = 980

4.8. ? v~. Applying the principles explained in 4.5 we find that

2p6v~ = b(P511)D 1 = lOb.

Since, by 4.2, p511~ is at most 8, it follows that p 5 v'l = 5 and b = 1.

4.9. Now we get a relation between b and d expressing p5 vp in two different ways:

and so we get that d = 2.

4.10. To determine a and c we cannot use numbers containing p4.. Thus we look at
ps v 5 p and ps v4. p2

• Proceeding, as in 4.7, to express each of these two numbers in two
ways we will get two relations that allow us to determine a and c. In fact the relations
we obtain are the following:

3a = c + 7, 25a = 9c + 57,

so that a = 3, c = 2.

4.11. With the degeneration relations 4.4 and the degeneration reduction 4.6 we can
proceed to determine a11 characteristic numbers P'V"p12 - 2i -,. ofthe twisted cubics, much
as it is done in Kleiman-Strf6mme-Xamb6 [1987] for the 13 numbers V 12 - i pi, 0 ~ i ~ 12.
The actual computation is reduced to enumerative problems on Do and D 1 which are,
as aaid above, weil understood and verified. So altoghether we have:
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4.12. Theorem. The values of the eharacteristic n umbers pi vi pI 'J - 'Ji-i for the Eamily

oE twisted cubics agree with the values listed inSchubert [1879}, pp. 171-180.*

5. Fundamental numbers of plane cuspidal cubics

Here we give a quick survey of the results in Miret-Xamb6 [1987, 88] in order to form
an idea of how one may deal with the second example in paragraph 1.2.

5.1. Motivation. An important goal in the framework of Hilbert's 15th problem is
the verification of all the fundamental numbers for the twisted cubics. These are the
numbers involving, aside from P, LI and p, the conditions:

ß to have a 2-secant in a pencil,

u to have an osculating line in a pencil,

T to be tangent to a line,

and the dual conditions P', v', p', ß' (u and T are self-dual). Recall that a Une L through
a point Q of a cubic C is an osculating Une of C at Q if L is contained in the osculating
plane to C at Q. Notice that ß and u are simple conditions and that T is a third order
condition.

H we want to apply the method of degeneration, as explained in Section 4 for the char­
acteristic conditions, it is necessary to know how to deal effectively with the enumerative
geometry on the boundary components of some suitalbe partial compactification. Since
among such components there is one whose enumerative geometry is equivalent to the
enumerative geometry of cuspidal cubics, we see that a first step is to understand and
verify the fundamental numbers for the cuspidal cubics. In what follows we will survey
the results in this direetion for plane euspidal eubics and then return to example 1.2 b).
The enumerative geometry of space cuspidal cubics ean be worked out similarly, but
involving more eomputations.

5.2. Complete cuspidal cubics and degenerations. Ir we think of a euspidal cubic
as consisting not only of points, but also of the dual cubic and the complete triangle
whose vertices are c, v, y (singular triangle) then we can define the space of compete
cuspidal cubics S· as the compactification of the space S of cuspidal cubics with respect
to those structures, that is, S· is the graph of the map that assigns to a cuspidal cubic
the dual cubic and the singular triangle.

Schuber~ showed that S· - S contains at least 13 hypersurfaces, say D o , ••• , D1'J (see
the picture page at the end). Now in Miret-Xamb6 [1987] it is proved that

*The flut entry in the lIecond hble on p. 177 i. misprlnted aa p4 V S = 80, in.tead or p4 11 4 :::::: 80.
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S· is smooth in codimension 1,

by exhibiting S· aB the result of blowing up successively a smooth variety along centers
that are regularly immersed, and that

S· - S does not contain components other than the Di •

Then in Miret-Xamb6 [1988] we give a detailed geometrie description of aH the D i and
work out the enumerative geometry for the corresponding fundamental conditions.

5.3. Fundamental systems and degeneration numbers. We define fundamental
systems of cuspidal cubics aB I-dimensional systems defined by fundamental conditions.
By the nature of S· it foHows that the c10sed fundamental systems are complete curves
and so we can try to follow a procedure aB the one we have explained in Section 4. This
has been done in Miret-Xamb6 [1988). The key points are the computation of degenera­
tion numbers of fundamental systems (Section 9) and the derivation of the degeneration
relations for the first order fundamental conditions (Section 10). In this case the Pieard
group of S is and extension of Z/(5) by an infinite cyclie group generated by c (Theorem
1.3), so that in particular for any first order condition on S, 50: is rationally equivalent to
a multiple of c. This facts manifiests itself, on S· , with the presenee in the degeneration
relations of a term in c, in addition to a linear combination of the degenerations with
integer coefficients. For example, the degeneration relation for 5/-L is the following:

5#-1- =3e + 2Do + 3D + 6D4 + 2D6 + 3De + 4D7 + 3Ds + 9Dg + 9D'

where D = D 1 + D'J + D3 and D' = D10 + Du + D 1 'J'

5.5. #-I-'J v'J cvz = 55. Indeed, let N = #-I-'J v'J cvz. Then

where ~, a are the eoefficients of the degeneration relation given in the previous para­
graph.

The number N' = #-I-v'J c'J V z ean be 0 btained similarly. Notiee that the term in c3 that
comes from the e term in the degeneration relation is 0, so that N' is already a linear
combination of degeneration numbers only. Thus N itself can be expressed as a linear
eombination of degeneration numbers. We find N' = 9. Now the non-zero degeneration
numbers off = jjV2

CVZ turn out to be f Do = 2, f DlI = 27, f DlI = 1, f D • = 13, f DlO = 6
and f D 1:1 = 9, which finally gives

5N = 2 . 2 + 2 . 27 + 3 . 1 + 4 . 13 + 9 . 6 + 9 ·9+ 3N' = 275,

so N = 55.
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5.6. Final remark. The list of all fundamental numbers for plane cuspidal cubics is
tabulated in the last Section in Miret-Xamb6 [1988]. This not only has verified Schubert's
results,* we believe for the first time, but has also gone deeper into the geometry of
cuspidal cubics and has completed the tables that Schubert gave more than a century
ago.
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