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Chapter I. Introduction and statement of results 

The main theorem of this paper gives a relation between the heights of 

Heegner divisor classes on "the Jacobian of the modular curve Xa(N) and the 

first derivatives at s - 1 of the Rankin L-series of certain modular forms. 

In the first six sections of this chapter. we will develop enough background 

material on modular curves, Heegner points, heights, and L-functions to be able 

to state one version of this identity precisely. In §7 we will discuss some 

applications to the conjecture of Birch and Swinnerton-Dyer for elliptic 

curves. For example, 

We will show that any modular elliptic curve over Q whose L-function has a 

simple zero at s -1 contains points of infinite order. Combining our 

work with that of eoidfeld [12), one obtains an effective lower bound for the 

class numbers of imaginary quadratic fields as a function of their dis crimi-

nants (8). In 19 we will describe the plan of proof and the contents 

of the remaining chapters. 

Many of the results of this paper were announced in our Comptes Rendus note 

[17). A more leisurely introduction to Heegner pointB and Rankin L-series may 

be found in our ear~ier paper [133. 

§I. The Curve Xa(N) over Q 

Let N ~ 1 be an integer. The curve X· XO(N) may be informally de­
~ace of 

scribed over Q as the compact1ficstion of the)moduli of elliptic curves vith a 

cyclic subgroup of order N. It is knovn to be a complete. non-singular, geo-
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metrically connected curve over ~. Over a field k of characteristic zero. 

the points x of X correspond to diagrams:' 

(1.1) ~ E -+ E' 

where E and E' are (generalized) elliptic curves over k and ~ is an 

isogeny over k whose kernel A is isomorphic to ~/N over an algebraic clo­

sure k. The function field of X over Q is" generated by the modular invar-

lants j(x) - j(E) and j'(x) - j(E') these satisfy the classical modular 

equation of level N $N(j,j') - 0 (2]. 

The cusps of X are the points where j (x) - j' (x) - co. They correspond 

to diagrams (1.1) between certain degenerate elliptic curves, where A - ker~ 

meets each geometric component of E (7. 173ffj. There is a unique cusp where 

E has 1 component and a unique cusp where E has N components; these are de-

noted and 0 respectively and are rationsl over Q. 

§2. Automorphism5 and correspondences 

The canonical involution w
N 

of X takes the point x - ($ 

the point 

(2.1) wN(X) - (~' E' ... E) 

E ... Et) to 

where ~' is the dual isogeny. TIlls involution interchanges the cusps and 

o • 
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The other modular involutions wd of X correspond to positive divisors 

d of N with (d,N/d) - 1. Let D and D' denote the unique subgroups of 

ker~ and ker~' of order d, and define wd(x) by the composite isogeny 

(2.2) Wd(x) (E/D ... E/ker~ :: E' ... E'/D'). 

These involutions form a group W ~ Aut~(X) isomorphic to OZ/2)t. where t 

1s the number of distinct prime factors of N. The group law is given by 

wd wd ' - vdtl • where d" - dd'/gcd(d,d,)2 • 

For an integer m ~ 1 the Hecke correspondence Tm is defined on X by 

(2.3) Tm (x) - r(xd • 
c 

where the 8um is taken Over all subgroups C of order II in E which are d1a-

joint from ker~. and Xc is the point of X corresponding to the induced 

isogeny (RIC'" E'I+(c» • This endomorphism of the group of divisors on X 18 

induced by an algebraic correspondence on X x X which is rational over Q. 

When (m,H) - I the correspondence T 
II 

1s self-dual, of bidegree 0l(m). rd. 
dim 

Let J be the Jacobian of X its points J(k) over any field k of 

char~cterist1c zero correspond to the divisor classes of degree zero on X 

which are. rational over k. The correspondences T 
m 

induce endomorphisms of 

J over ~ we let 11~ End~(J) be the commutative sub-algebra they generate. 
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§3. Heegner points 

Let K be an imaginary quadratic field whose discriminant D 1s relatively 

prime to N. Let 0 be the ring of integers in K. let h denote the claso 

number of K-- the order of the finite group PicCO) , and let u denote the 

• order of the finite group 0 /±l. We have u - 1 unless D - -3.-4 • when 

u - 3,2 respectively. 

We say x: (E'" E') is a Heegner point of discriminant D on X 1f the 

elliptic curves E and E' both have complex multiplication by O. Such 

points will exist if and only if D is congruent to a square ~mod 4N) • In 

this case, there are 2t. h Heegner points on X, all rational over the Hilbert 

class field H - K(j(E» of K. They are permuted simply-transitively by the 

abelian group W x Gal(H/K) We remark that there are also Heegner points with 

non-fundamental discriminants and with discriminants not relatively prime to N 

on X [13]. but we will not consider them in this paper. Also. we shall 

assume throughout that D is odd, hence square free and congruent to 1 (mod 4). 

Fix a Heegner point x of discriminant D; then the class of the divisor 

c - (x) - (~) defines an element in J(H). A fundamental question. first 

posed by Birch [3 ]. is to determine the cyclic module spanned by c over the 

ring ltGal(H/K)] , which acts as endomorphisms of J(H) • Our approach to this 

problem uses the theory of canonical heights, as developed by Neron and Tate. as 

well as the L-series assciatcd by Rankin to the product of two modular forms. 

We will show (Theorem 6.3) that the eigencomponent C
f 

of c is non-zero in ,X 
J(H) 8 t if and only if the first derivative of an associated Rankin L-series 
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L(f,X,s) is non-zero at s - 1. (Here f i8 an cigcnform of weight 2 for 

the Heeke algebra T and X a complex character of Gal{H/K).). 

§4. Local and global heights 

For each place v of H, let Hv denote the completion and define the 

valuation homomorphism II H* +m* by: 
v v + 

{

OO _ lal 2 

lal -v 
~v(a) 

if H :: t 
v 

if Hv is non-archimedean, 
with prime TI satisfying 
v(TI) - I and finite residue 
field of order qv 

* For any a € H ,almost all of the local terms \a\v are equal to I, and we 

have the product formula: nlal - 1 • v v 

Ncron's theory gives a unique local symbol <a.b>v with values 1n m • de-

fined on relatively prime divisors of degree zero on X over H 
v [27J. 

This symbol Is characterized by being hi-additive, symmetric. continuous, and 

equal to 

(4.1) <a,b>v - log\f(a)\v a f.mxlog\f(x>Iv 

whenever a - f.mx(x) and b - div(f) • One enn obtain formulae for the local 
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symbol using potential theory when v is arch1medean and intersection theory 

when v is non-archimedean (14). 

If a and b are relatively prime and defined over H , the local symbols 

<a,b>v are zero for almost all places v and the sum 

(4.2) <atb> - r<a,b> v 
v 

depends only on the images of a and b in J(H) • by (4.1) and the product 

formula. The symbol <,> defines the global height pairing on J x J over the 

global field H and the quadratic form 

(4.3) heal - <a,a> 

is the canonical Tate height associated to the class of the divisor 2{G) , 

where 0 is a symmetric theta-divisor in J. Since this divisor is ample, h 

defines a positive definite quadratic form on the real vector space J(ll) " 1R 

[24] • This form may be extended to a Hermitian form on J{H) 9 ~ in 

the usual manner. 

§5. L-series 

\ 2TIint Let f(t) - l a e be an element in the vector space of new forms of 
n~l n 

weight 2 on fO(N) ([1], [34]). Thus is D cu~p form of weight 2 

and level N which is orthogonal to any cusp form get) - p.O(dT) • where go 

has level NO properly dividing N and d is a positive divisor of NINO' 
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We define the Petersson inner product on forms of weight 2 for r 0 (N) by 

(5.1) (f,g) - J f(T)g(T) dxdy 

ro(N)\~ 
T - x + iy 

where the integral is taken over any fundamental domain for the action of rO(N) 

on the upper half plane ~ • 

Let 0 be a fixed element in Gal(U/K) • This group is canonically iso­

morphic to the class group C~ of K by the Artin map of global class field 

theory. Let A be the class corresponding to 0 • and define the theta-

series 

(5.2) 6 A(T) .. 2~ + I e 2'11'lfi!!-: I r (n)e2'11'inT 
ot.£A n~ A 
~ integral 

where, for n ~ 1 , r A(n) is the number of integral ideals ~ in the class of 

A with norm n. This series defines a modular form of weight 1 on rl(D) • 

* with character E: (Z./n) .... ± 1 associated to the quadratic extension KIf), 

(sec, e.g., (19]). 

Define the L-function associated to the newform f and the ideal class A 

by 
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(5.3) LA(f,s) - r 1-28 t' -8 
. £Cn)n • L Bnr A(n)n 

n~l n~1 

(n,DN)-l 

The first sum is the Dirichlet L-function of £ at the argument 2s - 1 • with 

the Euler factors at all primes dividing N removed. (These factors were not 

removed in our announcement [17], which is in error. Also, there we denoted 

this L-series by Lo(f,s) , and 6
A

(T) by 6o (T) .) 

If f is an eigenform under the action of the Heeke algebra 11 , no~l-
ized by the condition that al - 1 , and X is a complex character of the ideal 

class group of K, we define the L-function 

(5.4) L(f ,X,s) .. f(A)LA(f ,s) • 

This has a formal Euler product, where the terms for p t Nn have degree 4. 

The terms where pin or p ftN have degree 2. and the terms where p21N 

have degree 0 [13]. 

It is not difficult to show that the series defining LA(f,s) and the 

Euler product for L(f,X,s) are absolutely convergent in the right half-plane 

R(s) > 3/2. Using "Rankin's method," we shall show 

Proposition 5.5 The functions LA(f,s) and L(f,X,s) bave analytic continua-

tions to the entire plane, satisfy functional equations when s is replaced by 

2 - s , and vanish at the point s .. 1 • 
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§6. The main result 

We recall the notation we have established: x is a Heegner point of dis­

criminant 0, which we have assumed is square free and prime to N t and c is 

the class of the divisor (x) - (~) in J(R) • The quadratic field K - ~(ID) 

has clasa number h and contains 2u roots of unity; the element a in the 

Calois group of R/K corresponds to the ideal class A under the Artin isomor-

phism. Finally, < ,.> denotes the global height pairing on J(H) 8 c: and ( • ) 

the Peterson inner product on cusp forms of weight 2 for rO(N) • 

~ a 2nimT Theorem 6.1 The series gA(T) - L <c,T c >e is a cusp form of weight 2 
~l m 

~ rO(N) which satisfies 

(6.2) 
2101 1/ 2 

(f,gA) - u 2 LA(f.l) 
8n 

for all f in the space of newforms of weight 2 .2!!.. r 0 (N) • 

By using the bilinearity of the global height pairing. we can derive a 

corresponding result for the first derivatives L'(f.X.l) • when f 1s a normal-

ized eigenform and X is a complex character of the class group of K. We 

identify X with a character of Gal(H/K) • and define Cx - rx-1(a)ca 
a 

in the 

x-eigenspace of J(H) 8 c. (This is h times the standard eigencomponent.) 

Finally, we let cX,f be the projection of 

of J{H) 8 C under the action of 1r (131. 

c to the f-isotypical component 
X 

Then We have 
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• ) 8n
2
(f.f) h"( ) 

Theorem 6.3 L (f .X,l - 2 1/2 Cx f • 
hu Inl ' 

Here fi is the canonical height on J over H t as in (4.3). The 

discrepancies in the constants of (6.2) and (6.3) from those in our announce-

ment (17J come from the fact that there we were considering the global height 

on J over Q. The heights over H. K and ~ are related by the formula 

(6.4) <a,b>H - h<a,b>K - 2h<a,b>Q 

We remark also that the quantity - 8n2(f,f) is equal to the period integral 

Iwf U
2 

- JI Wf A iWf • where wf - 2nif(T)dT 1a the cigendifferential asaociat­

X(C) 
ed to f. Thus (6.3) may be re-wr1tten in the more attractive form 

(6.5) 
IW

f l
2 

" 
LI(f.X,l) - u21nl1/2 ~(cX~f) 

We recall that when Inl > 4 t u· 1 • 

§7. Applications to elliptic curves 

Let E be an elliptic curve over Q The L-function L(E.s) is a 

nirichlet series ~ a n-s defined by an Euler product which determines the 
n~l n 

number of points on E (mod p) for all primes p (35]. This product con-

verges in the half plane R(s) > 3/2 , but it Is generally conjectured that 

the function f(T) ~ a e21finT 
n~l n 

is a newform of weight 2 and level equnl to 
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:the conductor N of E [38,35]. In this case, the function 

it [!Y 8!y' /2-
.1. (E,a) - 0 f( /N)Y y - N a (211") 8 r(s)L(E,s) is entire and satisfiea a 

f~ctional equation 

(7.1) * * L (E,a) - ± L (E,2-s) • 

This conjecture may be verified for a given curve by 8 finite computation, and 

we viII assume it is true for all of the elliptic curves considered below. 

The conjecture of Birch and Svinnerton-Dyer predicts that the integer 

r - ords_1L(E,s) is'equal to the rank of the finitely generated abelian group 

E(Q) of rational points. This conjecture alao gives an exact formula for the 

real number L(r)(E,l) of the form: 

(7.2) L (r) (E,l) - a.n.R , 

where n is the real period of a regular differential on E over Q, R­

det«Pi,P
j
» is the regulator of the global height pairing on a basis 

<PI' ••• ,P
r
> of E~~) 8 Q ,and a is a non-zero rational number (for 

which there is also 8 conjectural description in terms of arithmetic 

invariants of the curve) [35]. We will combine Theorem 6.3 vith a 

theorem of Waldspurger to obtain the folloving result, which may be 

viewed as an exotic contribution to the problem of finding rational solutions 

of cubic equations: 
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Theorem 7.3 Assume that L(E,l) GO. Then there is a rational point P in 

* E(Q) such that L'(E,I) - a.n.<P,P> !!!h a £ Q • In particular: 

1) !! L'(E,l); 0 ,~ E(Q) contains elements of infinite 

order. 

2) !! L'(E,l) ; 0 and rank E(~) - 1 • then formula (7.2) !~ 

true for home non-zero rational number a • 

If the sign in the functional equation (7.1) is -1 and the point P con 

structed in theorem (7.3) is trivial in E(Q) 8 Q , then the order r of 

L(E,s) at s - 1 must be at least 3. One example vhere ,this happens is the 

following (for a proof that P is trivial in this case, see [17] o~ [39]): 

Proposition 1.4 The elliptic curve E defined by the equation -139l • 
3 2 

x + lOx - 20x + 8 ~ ords_IL(E,s) a rank E(Q) - 3 • 

f8. Application to the class number problem of Gauss 

As well as providing some support for the conjecture of Birch and 

SWinnerton-Dyer, Propositlon 7.4 furnishes a crucial hypothesis in Goldfeld's 

attack on Gauss's class number problem for imaginary quadratic fields [12]. 

Suppose K has discriminant D and class number h - h(D) , then one has the 

estimate: 

Theorem 8.1. For any C > 0 there is an effectively computable constant 

Kee) > 0 such that h(D) > K(E)(losIDI)l-C • 

For the analytic details of Goldfeld's method, see Oesterle (28). In fact, 

Oesterle gives a sharper final result: 
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h(D) > JC: log IDI 

IT (t + 2//P) 
plD 

for some effectively computable constant Ie. In fact, it has recently been 

shown by Mestre [26], using some work of Serre, that Proposition 7.4 is also 

true for the elliptic curve def ined by y2 - Y - x3 - 7x + 6, a curve of much 

smaller conductor (5077 rather than 714877), and using this curve, one obtains 

quite good estimates. For example, Oesterle and Mestre have shown that h(D) > 

5
1
5 log In! for IDI prime, sufficient (in combination with previous results of Mont­

gomery and Weinberp-er) to show that the smallest D with heD) - 3 is - 907 • 

§9. The plan of proof 

We will noy summarize the contents of the remaIning chapters, and will in-

dicate hOY these results fit together to yield a proof of theorem 6.1. 

We begin with the question of calculating the global pairings <c,T c(J> 
,-m 

for those m which are prIme to N. Set d - (x) - (0) since the cuspidal 

divisor (0) - (m) has finite order in J(~) we have <c,T co> - <c.T dO> • 
m m 

On the other hand, it is easy to show that 

Proposition 9.1 The divisors c and T dO are relatively prime if and only 
m 

II N > 1 and r A (m) - 0 • 

In the cases'where the hypotheses of (9.1) are met, we may calculate 

<c.T dO> 
m 

as the sum of Neron's local symbols <CoT dO> • 
m v The general case 

can be treated using (4.2) and a mild extension of Neron's local theory [14]. 

We will treat the case when rA(m) ~ 0 , but will assume for simplicity that 

N > 1 throughout. For a detailed consideration of the case N - 1 , see 

[18) • 

In Chapter II the archlmedean local symbols <c.T dO> are expressed in m v 

terms of a Creen's function for the Riemann surface X([) - fo(N)\?* with the 
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two distinct points and 0 marked. In Chapter III the non-archimedean 10-

cal symbols <c,T dO> are determined using intersection theory on a modular m v 

arithmetic surface with general fIbre X. In both cases, there is consIderable 

simplification when we consider the sum r <c,T dO> over all places of 

1
m v 

vp 
H di-

viding a fixed place p of ~ 

In Chapter IV we wIll use RankIn's method and the theory of holomorphic 

•. f . ( ) t 211 imT prO]ectlon to md for each k S!: 1 a cusp form CPA T .. l. a A e of 
m~1 m, 

weight 2k on rO(N) which satisfies 

(9.2) (f , CPA) (2k-2)I IDI1/2 L;'(f,k) 

for all f in the space of newfonns of weight 2k and level N. (The function 

LA(f,s) for k>1 is defined as in (5.3) but with n 1-2s replaced by n2k-1-2s 

it satisfies a functional equation for s .... 2k-s and vanishes at s - k.) The 

existence of some cusp form satisfying (9.2) follows from the non-degeneracy 

of the Petersson inner product on the space of new forms, which also shows that 

~A is well determined up to the addition of an old form. We shall give explicit 

formulas for the Fourier coefficients am,A for those m~l which are prime to N. 

The computations are independent of those in Chapters II and III and are carried 

out in more generality: not only is k arbitrary. but the condition 

D. square (mod 4N) is relaxed to teN) - 1. These more general results are 

also inter~sting as discussed in §§3-4 of Chapter V. 

\-lhcn k"'l and D I! s'!lI.ln' (mod 4N). the formula obtained for 8
m

•
A 

agrees (up t( 

a factor u
2

) with the slim of the local heip,ht contributions < c. T dO> , so 
m v 

we have the identity 

(9.3) <c.TcO> 
m 

2 
u am, A ( m:: 1 • (m.N) • 1 ) 

for the global height pairing. A formal argument (§1 of Chapter V) shows that 

the series gA(T) = I <c T co> 21TimT 
m::1 'm' e is a cusp form of weight 2 on r O(N) , 
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and (9.3) shows that 8A differs from u 2 1j1A by an old form. Theorem 6. t then 

follows from equation (9.2). The rest of Chapter V is devoted to the proofs 

of its various corollaries and generalizations. 
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fEapter II. Archimedean local heights 

In this chapter we compute the local symbols <c, T dO> as defined 
m v 

in §4 of the Introduction for archimedean places v of H. We recall the 

notation: c" (x) - (m) , d .. (x) - (0) where 0 and are cusps an4 x 

a Heegner point of discriminant D-nK on XO(N) and 0 E Gal(H/K). 0" 0A for 

some ideal class A E elK. 

§1. The curve XOW) ~ t 

In Chapter I we gave the modular description over ~ of the curve X-XO(H) • 

its automorphisms and correspondences, and of Heegner points. We nOw describe 

this allover the complex numbers C this is of course the most classical 

and familiar description. 

An elliptic curve E over t is determined up to isomorphism by the homothety 

type of its period lattice L: E(C) 81 C/L. If x - (E ~E.') is a non-cuspidal 

point of X, and we write E(C) =£/L, E'(c:) .. t/L'. then we can modify by a 

homothety to obtain L':DL, tp '" identity. Then L'/LOI.ZINL, so we can choose 

an oriented basis <Wi ,w2 > of Lover 1l ("oriented" means Im(w
1

liJ
2

) > 0 ) 

such that 1. . , 
<W l 'if12> 18 a basiS for L • The point z .. wl /w2 then lies in !. 

the complex upper half-plane, and the point xEX(C) uniquely determines z 

up to the action of 

a b I r .. fO(N) .. {(cd) EPSL
2

(Z) cRO(modN)}. 

Conversely, any Z E r\! determines a point id 1 
x .. (C/<z,1>-4:/<E,y» of 

X(£). Thus 

( X .... (cusps})(C) ;: r OW)\!!, • 

The compactification is given by X(t) =rO(N)\U*, where H*" HUp1(~) with 
~ --

the usual topology. We have 

where 

((cusps})(C) .. r O(N)\p1(~) ; II (Z/fd Z)· 
ill 
d>O 

fd .. (d,N/d) and the map is given by 

~ (m. n E:Z. (m .... )-1) d _ (n.N). tn/d) -1~ (."od £.) 
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(one easily checks that nld is prime to fd and that the definition depends 

only on the class of ~ modulo r). In particular, the number of cusps is 

r cHfd} 
dIN 

n (p[v/21 +p[(V-O/2]) 

pvln 
v>O 

The curve X over C 'has the following automorphisms and correspondences: 

The action of complex conjugation c E Gal(C!R) on X(C) is induced by 

c{z) -'2 ( z E!!.* ) 

the minus sign arises because for a lattice LeC with oriented basis <w1.wZ> 

the conjugate lattice c(l) has oriented basis <-wI ,w2>. and the formula is 

compatible with the projection map !!. .. r'~ because 
-1 0 

(0 ,) normalizes r. 

canonical involution wN of X is induced by the Fricke involution 

wN(z) -'/Nz (zE.!i*) ; 

more generally, for any positive divisor d of N with (d,N/d)-1 the 

involution wd E W is induced by the action on .!,!.* of any matrix 

(1.1) ( 
d71 7l ) 

wd E Nll dll ' det wd - d 

The Hecke correspondence 

(1.2) T '(z) 
m 

T 
m 

(mE"N, (m,N)-') 

I yz 
yE r\RN 

det y" m 

acts by 

where ~ - ~~ ~). It is easily checked that these descriptions over C 

agree with the modular interpretations of c, wd and Tm given in Chapter ~. 

The 

Finally, we give the descript ion over t of the Hl'cgncr points. Let K 

be an imaginary quadratic field, D its discriminant, 0 its ring of integers; 

we suppose N is prime to D. Recall that a Heegner point on X was a 

non-cu!:pidal point X" (E ~ E') such that both E :lnd E' have complex 

multiplication by O. Then E(e) ",elL. E'(r.) =e/L' wliC'rc Land L' e C 

are rank , modules over 0; we can change by a homothety to ensure that L 

and L' are in K, and then both are (fractional) ideals of K. If we choose 

L'::>L, q> aid, L/L'e><7LINZ as before. then n" LL,-l is an integral ideal 

(-~ po ... ) ... ,_ (prU) - (N:U) _ p ,_<i.-D» -Z3 U -W) iii 
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of norm N and is primitive ("primitive" means Oln ;Z/NZ or equivalently 

that n is not divisible as an ideal by any natural number >'). Thus L - a , 

L' - an- 1 for some fractional ideal a of K and some primitive ideal neO of 

norm N. Conversely, given any such a and n. the elliptic curves cIa and 

c/an-1 over C have complex multiplication by 0 and the isogeny cIa -+ (/an-1 

induced by ide def ines a lIeegner point on X. Clearly two choices a
J

• n, 

and a
2

• n
2 

define the same Heegner point iff a
2 

->.a , for some >. EKl( and 

n 1 c n
2

• Hence we have a ,: 1 correspondence 

{ 

Heegner points } 

x E X(C) 

ide -1 
(CIa -clan ) 

_ {pai~s.(~,n~. AEClK • neO a} 

prlmltlve ldeal of norm N 

([aJ.n) 

where Cl
K 

is the ideal class group of K. The action of c on x corresponds to 

(A • n) (A • it) .. (A -1 • Nn -1 ) 

while Gal(H/K) c elK acts by multiplication on A and trivially on n 

( H "'Hilbert class field of K). The Atkin-Lehner operators permute the 

possible choices of n. More specifically, let 
r rs 

N - P,' ... ps (r i > 0) be 

the prime factorization of N. The existence of Heegner points for K on X 

is equivalent to the requirement that all Pi split in K (if N were divisible 

by an inert prime, it could not be the norm of a primitive ideal, and we are 

supposing N prime to D), so there are precisely 28 primitive ideals n 

of norm N. namely the ideal s 

. ideals of K dividing Pi' 

r , rs 
PI "'Pa 

The effect of 

where Pi is one of thc two prime 

wd (dIlN) on a Heegner point is 

to map it to another Heegner point with A replaced by A[~J, where ~ -(d,n), 

n obtained by m.,kinp, the opposite choice of and an for all p. 
1 

d. In particular, 

i) w
N 

acts on lIeegner points by (A, n) ... ( A[n], it) ; 

p. 
1 

dividing 

ii) the group Gal(H/K)xW (W; (ZI'lL)B the group of Atkin-Lehner operators) 

acts freely and transitively on the set of all Heegner points of discriminant 

D on X. 
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It will also be useful to have a description of Heegner points in terms 

of coordinates in Ji. There is a 1:1 correspondence between primitive ideals 

n cO of norm N and solutions a of 

(1. 3) a € 'Il./2NZ • 62 
II D (mod 4N) 

(notice that B~ is well-defined modulo 4N if B is well-defined modulo 2N) 

given by 

n .. (N B+ID '-2·~) .. 1l N + 7l B +10 
2 

The point in H corresponding to a Heegner point x c (¢/a -4¢/an-1) with 

an -1 integral is then the solution T of a quadratic equation 

(1.4) 

with 

(1.5) 

A-r2 + BT + C - O. A> 0, n2 
- 4AC .. D, A Ii! 0 (mod N), B B B (mod 2N) 

a .. Z'A + Z B+ID 
2 

-1 -1 B+/D 
an .. 7l'AN + Z-2- • N

K
/

C1
(a) .. A • 

Indeed, a point T € H gives rise to an ell iptic curve r./Z, + Z with complex 

multiplication by 0 iff T is the root of a quadratic equation AT2+BT+C - 0 with 

integral coefficients and discriminant D, and the requirement that ~T have the 

same property implies that N IA; then n2
!i D (mod 4N) and one checks easily that 

the class of B (mod 2N) is an invariant of T under the action of r O(N) on H 

and that this invariant corresponds to the choice of n as in (1 .3). 

For more details on the contents of this section we refer the reader to [13]. 

n. Archimedean heights for XO{N) 

Let S be any compact Riemann surface. Recall from §4 of Chapter 1 that 8 

heieht symbol on 5 is a real-valued function <a,u>(" ..;a,b> defined on 

divisors of degree 0 with disjoint support, and satisfying 

(2.1) 

a. <a,b> is additive with respect to a and b; 

b. 

c. 

< a, lm.(y.) > is continuous on 5'lal with respect to each 
j J J 

variable y. (I a I denotes the support of El) 
J 

<tn.(x.),b>- Ln.loglf(x.)1
2 

if b=(f), a principal 
1 1 • 1 1 

1. 
divisor. 
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Such a symbol is unique if it exists since for fixed a the difference of any 

two symbols b t-> <a.b> would define a continuous homomorphism Jac(S}-4R 

and hence vanish identically. Now fix two distinct points xO. Yo E S and set 

G(x.y) - «x)-(xO) • (y)-(yO» (x. yES, X" YO' y" xO' x 'I y) • 

Then the biadditivity of <. > implies the formula 

<atb> .. L n.m. G(x. ,y.) 
•• 1. J 1. J 
1.J 

(2.2) a - Ln. (x.) • 
1. 1. 

for b· ~m.(y.) 
J J 

at least if lal ~yo' Ibl px
O

' Conversely. a function G(x,y) will define 

via (2.2) a symbol satisfying (2.1) if for fixed xES the function y ~ G(x,y} 

is continuous and harmonic on 5, {x ,x
O

} and has logarithmic singularities of 

residue +1 and -1 at y"'x and y=x
O

' and similarly with the roles of x and y 

interchanged. (Here the terminology "g has a logarithmic singularity of residue 

C at Xo 11 means that g(x) - C log I p (x) 12 is continuous in a neighborhood of x
O

' 

where p(x) is a uniformizing parameter at x
O

.) To prove this, we note that the 

symbol defined by (2.2) is obviously bi-additive and is continuous in all y. f/. la I 
J 

because the logarithmic singularities of G(X
i 

,y) at y=Xo cancel (since deg a 

= 0), so (2.1a), (2.1b) are satisfied; equation (2.1c) is also satisfied because 

the function x ~ log If(x) 12 - <x,{O> is harmonic and has no singularities (the 

logarithmic singularities at x·y. E 1(01 
J 

this constant drops out in (2.1c) because 

cancel) and hence is a constant, and 

Ln. - O. Notice, however, that the 
1. 

axioms we have imposed on G determine it only up to an additive constant (which 

of course has no effect in formula (2.2»; to make sure that G{x,y) is exactly 

«x)-{xo) • (y)-(yO» we mllst impose one extra condition. e.g. G{xo'Y) - 0 for 

some y E 5\ {x
O

} • 

Now take S XO(N) (.:) r O(N) 'H U {cusps} and xo c CD, YO - 0 (we assume 

N> 1, so Xo f yO)' We want to construct a function G{x,y) satisfying the 

properties above, i.e. a function G on H x H satisfying 

a. G(yz,y'z') -G(z,z') Vz,z'EH, l,y'EfO(N) 

(2.3) 
C(z.z') - e~ loglz-z' ,2 + 0(0 is t:he order 

G(z,z ') is continuous and harmonic for z f/. fO(N) z' h. 

.:z:' ~.:z:. ",here e 
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of the stabilizer of z in rO(N); 

d. For zEH fixed, G(z,z') -= 4lTY' +0(0 as z' -x' +iy' ~CD 

and G(z,z') - O( 0 as z' -4 any cusp of r 0 (N) other than CD 

similarly, for z' fixed G(z,z ') - 41T ~ + O( 1) as z: .. x + iy --.. 0 

and G(z,z') -0(0 as z --.. any cusp of rO(N) other than o. 

The conditions in c. and d. come from noting that a uniformizing parameter for 

( ) . ez Xo N at a pOlnt represented by zEH has the form p(z') - (z'-z) (t +O(z'-z» 

h ·l ·f .. d 0 2niz d -hi/Nz . I 
101 1 e unl OrDll.Zlng parameters at co an are e an e , respectIve y. 

The most obvious way to obtain a function with the invariance property a. is to 

average a function g(z ,z ') satisfying 

a'. g(yz,yz') - g(z,z') 

over ro(N) , Le. to set G(z,z') 

b. - c. we would also like 

Vy E PSL
2

(R) 

L g(z,yz'). To achieve the properties 
yUo (N) 

be. g(z,z') is continuous and harmonic in each variable on 

HxH" diagonal; 

cr. g(z,z') - log Iz-z'1 2 +O(1) for z' --.. z • 

A function satisfying a'. - c'. is given by 

(2.4) g(z,z') log Iz-z'\2 

\'Z-z'1 2 

Unfortunately, the sum of g(z,yz') over r O(N) diverges (although only barely) 

for this choice of g. To resolve the difficulty, we modify the condition of 
. . • 2 ~7 a2 

harmonlclty to lIg - cg wIth c > 0, where h - Y (a;:(T + ay-r) denotes the 

Laplace operator on H. obtaining a function for which r g(z,yz') converges and 

which is an eigenfunction of the Laplacian wilh eigenvalue c, and then take the 

limit as (~O, subtracting off any singularities. Condition a' requires 

that g be a function only of the hyperbolic distance between z and z' t or 

equivalently a function Q of the quantity 1 + 1~-z:12 (which is the hyperbolic 
yy 

cosine of this distance). The equation 6g = Eg then translates into the ordinary 

differential equation 

.x .. p.xo a4:1 S"!, a a.xal{l'\ • '" <-- ,z 0)0 + '71.z-"'I~ol ~a _ (.z".,,)!) 
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2 d 2 d 
«l-t )dtT + 2t'dt + c) Q(t) • 0 • 

This is the Legendre differential equation of index s-1, where c - s(s-O with 

s > 1 • The only solution (up to a scalar factor) which is small at infinity is the 

Legendre function of the second kind Qs-l(t), given by 

(2.5) Qs-1(t) .. j (t + {t 2 _, cosh u)-s du (t >', s > 0) 

0 

or 

(2.6) Qs_,(t) 
r(s)2 2 s 2 

2f('2S') (Vt) F(s,s; 2s; Vt) (t > t, sEC:) , 

where F(a,b; c; z) is the hypergeometric 

function. From either of these closed formulas one easily deduces the asymptotic 

properties 

(2.7) Qs_,(t) 
1 

(t'wO, .. -"2 log (t-1) +0(0 

(2.8) Qs-1 (t) - OCt -s) (t --.. 00) 

The first implies that the function 

(2.9) gs(z,z') -2 Q (1 + 1 z-z ' 12 s-' ~) (z,z' EH ,zlz') 

satisfies axiom c' ahove and the second, that the sum 

(2.l0) GN.S(z,z') r YEro(N) gs(z,yz') (z,z' EH, z' ~ rg{N)z) 

converges absolutely for s> 1. The differential equation of Qs-l implies 

(2.11) 6. z GN, s (z ,z ' ) 

while the property 

(2.12) 

- hz' GN,s(z,z') - s(s-1) GN,s(z,z') 

GN,s(Yz,y'z') G
N 

(z,z') 
,s 

(ZIt ro(N)z} • 

( V y , y' E ro (N) ) 

is obvious from the absolute convergence of (2.10) and the property a ' of &s(z,z') 

The function GN,s(z,z') on (H/ro (N» 2 ..... (diagonal) is a well-known object 

called the resolvent kernel function for ~(N) its properties are discussed 

extensively in [20. Chapters 6-7] (note that Hejhal' s normalization is 
411 

times 
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ours). In particular, the series defining G
N 

converges absolutely and locally 
,s 

uniformly for Re{s) > 1 and defines a holomorphic function of s which can be 

extended meromorphically to a neighborhood of s .. 1 with a simple pole of residue 

-12 
-12 N- 1 n (1 +1.)-' 

piN p 

(2.13) KN [SL
2
(Z} : ro (N) ] 

(independent of z,z') at B· 1. We could thus "renorlIkllize" at scI by forming 

the limit lim [GN (z,z') -~,] • But this function would not be harmonic in 
8+1's s-

z or z'. since 

[ 
KN ) 

tJ. ;~~ [GN,s(z,z') -8=1 J • lim [s(s-1) G
N 

s(z,z')1 .. KN 'I 0 • 
s+1 ' 

To get a harmonic function of z, we should instead subtract from GN,s(z.z') 

K 
a ~(N)-invariant function of Z having the same pole -.lL, at 

5-
5=1 and the same 

eigenvalue s(s-1). Such a function is -411E
N

(z,s) 

(2.14) EN(z,S) r Im(yz)B 
y€ro (N) 

where 

(z € H, Re ( s) > 1) 

is the Eisenstein series of weight 0 for the cusp 00 of ra (N). Since we want 

our function G(z,z') to have its singularities at z~O and z'=oo • we should 

in fact subtract -411 E(wNz,s) and -411 E(z' ,5) from GN.s(z,z') » where 

wN: Z t--) -I/Nz is the involution of Xo(N} interch;mp,ing 0 and 00; we must 

then add back a term ~, ' since we have subtracted off the pole of s-

We therefore set 

K 

GN,s twice. 

(2.1S) G(z,z') lim [G
N 

(z,z') +4nE
N

(w
N

z,s) +41TE
N

(z',s) +-.lL] + C, 
8+1 ,8 a-I 

yith a constant C still to be determined, /lnd claim that it possesses all the 

properties (2.3). Indeed, (2.3a) and (2.3b) are obvio\ls from the definition 

of GN.s(z,z') and the preceding discussion, and (2.31') f0110 .... s from (2.7). 

It remains only to check the behavior of the function (2.15) at the cusps, i.e. 

that it has the correct logarithmic singularities as '/.. goes to 0 or z t to 

and is bounded at all other cusps; we would also like to choose the constant 

in (2.15) so that G(z,zt) ~a as z -?oo • We must therefore know the 
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expansions of GN,s and EN at all cusps of XO{N). For EN thi"s is easily 

obtained from the elementary identity 

(2.16) EN(z, s) N -s n (l-p - 2 s) -1 • r ~ E ( .!'! z , s) 
piN dIN d d 

where \.I (d) is the Mobius function and E(z,s) a E, (z,s) the Eisenstein 

series for SL
2
(Z), because for SL

2
(Z) all cusps are equivalent to ao , where 

E(z,s) has the well-known expansion 

(2.17) E(z, s) y s + cjl ( s) Y 1-5 + a (e -y) (y a: Im(z) --> ao) 

(2.18) H8) 
ret) r(8-1-) t(2s-1) 

f(s) ~ 

(By a(e -Y) in (2.17) and below we mean a function which is not only a(e -y) --

actually. a(e -cy) for any c < 211 -- for fixed s> 1 but is holomorphic in s at 

8=1 and is a(e -Y) uniformly in a neighborhood of s=l.) For G
N 

we have the 
,s 

expansion 

(2.19) GN,s(z.Z') 
_ ~ E (' ) l-s -y 

28-1 N z ,s Y + a(e ) (y = Im(z) -4 ao) 

at 00 (see [20J,(6.5); this expansion is obtained by. calculating the Fourier-

development of G
N 

(z.z t) 
,5 

similar expansion, so that 

with respect to z). At other cusps there is a 

l-s -Y 
GN,s(z,z')-a(s)Y +a(e} where Y-Im(yz) 

for some y E SL
2 

(ll) transforming the cusp in question to 00. Hence as z tends 

to any cusp other than 0, the expression in square brackets in (2.17) has the 

form 
l-s -Y 

n(s) Y + B(s) + a(e ) , where a(s) and 8(s)· have at most simple poles 

at s .. 1 and o(s) + £Hs) is holomorphic there; letting s-40 1. we obtain a 

function of the form ologY + B +O(e-
Y

} t and the harmonicity of this requires 

that a = O. Hence (2.15) is bounded as z tends to any cusp other than O. At 

0, we find from (2.16) and (2.17) 

EN(wNz,s) 
s l-s 

Im(wNz) + a(Im(wNz) ) 

so the same argument shows that G(z,z') has an expansion 

(z -4 a) , 

-Y 
4nY + a log Y + B + a(e ) 
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as Y - Im(wNz) -~ ~ CD , where again n must be 0 (by direct computation 

or because G is harmonic). This proves the assert ions of (2. 3d) for %, and 

the assertions for z' are proved similarly or by noting the symmetry property 

(2.20) G(z ,t; ') - G(w
N
%', wNz) 

Finally, we must determine the constant in (2.15) so that G(z,z'} vanishes as 

z -+co. By (2.19) we have 

G(z,z') 
1-8 ICN-y 

lim [41TE
N

(Z',s) (1-k=f)] + lim [411E
N

(w
N
z,s)+S-f]+C+0(e } 

s+1 8+1 

a8 y --). co. Since 

-Ie 

41T EN(z' ,5) - ;i:lf + 0(1) 
l-s 2 

- L- • (log y + 2) (s-1) + O(s-1) 28-1 

as s -+ 1. the first limit equals - KN (log Y + 2) 

evaluated by (2.16) - (2.IS) : 

The second limit is 

EN(wN%,s} - N-s n (1 - p -28) -1 • L \.I(~) E(dz,s) 
piN diN d 

N -8 n (I _ P -28) -1 [TTC1-P-2S.') ~(s)y'-s + o(e-Y») 
pIN piN 

lim ( 411 EN(w %,s) + 5L] 
8+1 N 8-1 

IC
N 

log Y + AN + O(e -y) 

\lith 

_ -2s+1 

AN - lim [411N s.(s) TT ~- + ~ 
s+1 piN 1 - p-2s s-1 

(2.21) 
KN [ log N + 2 log 2 - 2y + 2 £ (2) -2 L ~] r;; piN p' - 1 

, 

(here y. Euler's constant and we have used ~(1) "-y • r ~ (1) .. - 2 log 2 - y , r 2 
1 

e(28-1) • 25-2 + Y + 0(6-1». Hence 

G(z.z') -2K
N 

+ AN + C + O(e-Y) 

y --. 0> • so we must have C - 2KN - AN • Summarizing. we have proved: 

Proposition 2.22. Let x. Xl be distinct non-cuspidal points of XO(N) (C) 
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~ 

< (x) - (00) , (x') - (0», lim [G
N 

(z,z ') + 411 EN(wNz,s) + 411 EN(z' ,s} +~] 
s+1 ,s s-1 

- AN + 2KN 

where z, z' €H are points representing x and x' and G
N

• s , EN' IC
N

, ~N are 

defined by (2.10), (2.14), (2.13) and (2.21), respectively. 

We would also like a formula of the same kind for < (x) - (00) • Tm «x') - (0»' 

where T is the mth Heeke operator (m >'0 prime to N). Since T maps each m m 
cusp to itself, we have 

< (x)-(m) ,Tm«x'}-(O}», - G(z,z')lz,T
m 

- r G(z.y%'} 
yEr\RN 

det y - m 

{cf. (1.2}). The operator Tm acts on constants by multiplication \lith 

# { y € r\1); • det y" m } 0 , (m) 

and on EN(z'.s) by multiplication with 

I. d 
dim 
d>O 

m 0-2s+1 (m) - m d S S f 1-28 

d m 

(this can be seen easily from the definition or from (2.16) and the corresponding 

statement for SL2(Z». Finally, it is clear from the definition of G
N

,8 that 

GN ( z t Z ') I ,T 
,6 Z m r Yf~/{!I} g8(z,yZ') 

det y - m 

Putting all this together, we obtain 

Proposition 2.23. ~et 

with x (Tmx'. Then 

m ~ I, (m,N) .,, x, Xl fXO(N)«) non-cuspidal pointa 

< (x) - (0)) • Tm«x') - (0» >c lim(G: (Z,Zl) +4'1o,(m) E (w Z.5) 
5+1 ,s N N 

s a (m)K 
+ 4 nm 0, 2 (m) EN ( z I , s) + .:...L=-:.Ji 

- s &-1 

o,(m».N + 20 , (m}K
N 

with z, z', EN' "N' AN as in Proposition 2.22. a)m)= L d
V 

dim 
and 
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cm
N 

(z,z') 
,8 

1 _ \' (az'+b 
2 l. g z, ---) 

a,b,e,dEZ s cz'+d 

Nle, ad-be" m 

As a final remark, we observe that the functions c
N 

and G
m
N have the 

,a ,8 

invariance property 

(2.25) G: , B ('101 d z , 'W d Z ' ) Gm (z,z') 
N,s 

for any dl N, where wd _ are the Atkin-Lehner operators as in (1.1). This property. 

which follows easily from (2.24) and the invariance of gs(z,z') under z 4 yz , 

z' ~ yz' (y € SL20R» , is compatible with the fact that the height pairing is 

invariant under automorphisms. 

§3. Evaluation of the function G
m
N 

at Hecgner points 
,s 

According to the results of §2, in order to computc the height pairing 

< e,T dO> 
m v 

c .. (x) - (00), d· (x) - (0), a E Gal(H!K) (x - Heegner point) 

at an archimedean place v of H, 'We must evaluate the functions G
m
N at the ,a 

corresponding points of X(H
v

) -X(C) • These points were described in §1 and shown 

to be parametrized by pairs (A,n) , where A E Cl
K 

and ncO is a primitive ideal 

of norm N, the corresponding point 'A,n ErO(N)\HcX(C:) (or rather, a represen­

tative of it in H) being a root of a quadratic equation as in (1.4). Since 

o • a A e: Gal(H!K) acts by TA1,n ~ TAlA-l,n ' we need only consider values 

(3.1) Gm (, - , ' ) 
N,a AI,n A2 ,n 

where the arguments are lIeegner points associated to the ~ n and to ideal 

classes A" A2 satisfying A,A;' - A. Here we mtlf;t IlSSlime r A (m) .. 0 since other­

wise the value (3.') is not defined; we will discuss th~ modifications for the 

case rA(m).JOinIS. 

The expression (3.1) depends on the choice of n. On the other hand, the 

function C:,s is invariant under the action of the Atkin-Lehner operators wd 

by (2.25), and we saw in §1 that these act on the lIccgner points by 
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TA,n ~ TA[t~rl ,an~-l where Din, N(~)-d. 

We can therefore replace Al and A2 by 
-1 -1 

Al [~] , A
2[1l] and n by na-l~ in (3.1) 

without affecting the value of this expression. This substitution does not change 

either 
-1 

A,A2 (- A) or A, A
2

[tt]-1 Hence the sum 

(3.2) 
m 

YN,s(A;B) L 
A1 ,A 2tClK 

G
m
N ( TA n' 'A n) ,s 1, 2, (rA(m) - 0) 

AlA;l_A 
Al A2 [nl-l .. 8 

is indcpendcnt of n. The summation here is very small: If K has prime discrimi-

nant, so that IClKI is odd, it reduccs to a single term (Le. we have just re-indexed 

the quantitics (3.1», while in general it has 2
t

-
1 

terms if {A} = {Bn} and is 

empty othetvisc; here is the number of prime factors of n and {A} denotes the 

genus of A, i.e. the class of A in Cl
K

!2Cl
K 

ot (Z!'lJ1.) t-l . (Notice that all ideals 

n 'With N(n)" N belong to the same genus, so the condition on A, 8 is independent 

of n, as it should be.) In this section 'We 'Will obtain formulae for (3.1) and for 

the slightly cruder invariant (3.2); the latter will be much nicer (as can be expected 

since the dependence on the choice of n has been el imina ted) • By sutmling further 

we obtain an even simpler expression for the yet cruder invariant 

(3.3) 
m 

YN,s (A) L 
A1 ,A 2 ECIK 

Gm 
(, • ,. ) 

N,s Al,n A2 ,n BELK Y:,a(A;8) 

A1Ail .. A 

Of course, (3.3) is all we need to compute the total contribution L <c,d
o

> to 
vloo v 

the global height pairing from all of the archimedean places of H. since these 

places are permuted transitively by Gal(H/K) ~CIK' However, in Chapter V 'We will 

sec that some interest attaches also to the individual terms (3.1). 

We now start the calculation of (3.1). In (2.24), suppose that z - T, and 

z' - '2 are Heegner points with the same n. i.e. that they satisfy quadratic 

equations A.,~ + B.T. + C. 
1 1 111 

as in (1.4) with the same 8. Then for .. (a b) E R.. 
Y c d -"N 

we have 

gS(YT t ,T 2) 
\yT 1 -';> 12 ) 

-2 Qs-t ( t + 2Im(YT
1

)Im(T
2

) 
2nN ) 

- 2Qs-l (1+ Inl det(y) 
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\lith 

(3.4) n - A1A2 ICT T +d't, -a't, -b1 2 
N , 2 

Since n is a rational mUltiple of the norm of an clement of K, it is rational. 

In fact, a direct calculation gives 

t [ 2 ( D - B1B2 2 2 N c C t C2 + ad -bc) --2-- + a C,A2 + d A,C
2 

- cdB,C
2 

2 
+ acC,B2 + b A,A2 + bdA,B

2 
- baB , A

2
] , 

n 

(J.5) 

and this is integer because At' A2 and c are divisible by Nand B,B2 II 62 • D (mod 2U). 

Hence 

G: , s ( '( 1 ' 't 2 ) 
... m 2nN) 

- 2 r p (n) Qs-l (1 + ;rDj 
n-' 

where pm(n) is the number of y - (~ ~) E ~/{.t1} satisfying ad -bc"m and (3.4) 

or (3.5). To see what kind of an expression pm(ri) is, consider the simplest case 

when N=l, 0"-4 and T ,-T 2- i , so A,-A2-C,""C 2"', B ,""B
2
"0 • 

2 2 2 2 
n .. a + b + c + d - 2(ad - bc) • 

Then (3.5) becomes 

so pm(n) counts the number of 4-tuples (a.b,c.d) EZ4 (up to sign) satisfying 

(a-d)2 + (b+c)2 - n. (a+d)2 + (b-c)2 _ n+4m, 

i.e. (apart from a congruence condition modulo 2) pm(n) is the product of tbe 

numbers of representations of n and of n + 4m as sums of two squares. The ansver 

in general will be similar. However. since (3.5) is so complicated we will stop 

using the language of quadratic forms and shift to that of ideals in quadratic 

fields. We start by redoing the proof that the number n defined by (3.4) is 

inlegral. Given y ., (~ ~) E ~ we define tvo numbers a, 6 E K by 

(J.b) 

From 

0.7) 

a 

-1- -1 
T. EA. a. -a. 

1 1 

Cl,T2 +d12 -a" -b. e Ct,'2 +dt 2 -at, -b • 

(compare (1. 5» . c f (N) • nil and n I a
i 

we have 

-1--1 
a f a, a

2 
-, -, B E a, a2 n 

It follows that the two numbers 

,., -.r.-",_ • _ t 
,Z""t'T/1,1\.U1T7 

(3.8) 

are in Z • Also 

(3.9) 

and 

(3.10) 

2. .. A,A
2 

N(a) , 
-1 

n - N A,A2 N(a) 

2. - Nn .. A,A2 
a 6 

det (lr a) 

A,A2 det [C' T2) (a b) ('t 1 ':(1) ] 
-1 '(2 c;d 1 , 

101 det (y) 

A,A 2a II A,A
2

6 (mod 1» ., 

where D'"' ern) is the different of K (the last equation holds because A, T l' A2T2 

are integral and ). a I (mod D) for any ). EO). Conversely, given any a and 6 in 

K , we can think of the real and imaginary parts of (3.6) as a system of 4 linear 

equations with rational coefficients in 4 unknowns a,b,c,d and solve for a,b,c,d. 

The simplest way is to notice that 

CT, + d 

aT 1 +b 

a-6 A 
't

2
-t

2 
.. -To (a-B) 

T 2 (CT 1 + d) - a 
T2a -'t 2 6 

't 2 -T2 

.. A2 (-In T 2a -'(26) 

If a and 6 satisfy (3.7) and (3.10) then the right-hand sides of these two 

-1 equations are in and 
-1 

a,b.c,d EX na, -h"Zt , +Z a, .. ZT, +Z , respectively. so 

and Nlc. If also the integers 2. and n defined by (3.8) satisfy 1 .. nN + miDI 

then (3.9) shows that det(y) .. m • We have proved: 

Proposit ion 3. II. Let A,. A2 be two idenl classes of K. n a primitive ideal of 

~ N and "\ (i .. I, 2) nil integrnl ideal in Ai ~ n I ili' N(a
i

) - Ai' Then 

we have: ----for mEl:. rA1A;1(m)"0 

G
m 

CT , T ) 
N.s Al.n A2 .n 

GO 2nN) 
-2 I pm(n} Qs_I(l +;-ror 

n-l 

where 

m m 
p (n) • PA

1
.A

2
.n(n) { 

-, -, -1 -1 / I I (Cl, B) E (a 1"3"2 x a 1 a
2 

n) {± Il 

N(a) .. Nn+m I D I • N( S) .. ANn • A,A
2

a 5 A, A
2

6 (mod D) } 
A1A2 lA2 
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(The condition rA1Ai1(m) .. 0 is required to ensure that n in (3.8) is strictly 

positive.) 

To understand the expression pm(n) better, consider first the case when 

n R 0 (mod 0). Then A
t
A

2
a and A , A

2
a are automatically 0 (mod D) , so pm(n) breaks 

up as a product 

pm (n) A1 ,Az,n 

(3.12) 

where u .. f (J of units of K, 

1 -1- -t I 9.. 2' I {a fat a2 N(a) .. A1Az 

)( II {aEa~'a;tn I N(a) .. A~~2} 
2 

2u r A1A2'lCO rAIA2[nrdn) (n B 0 (mod D» 

t-Nn+mlol and, as usual, rA(n) denotes the number 

of integral ideals of norm n in the class A. Another easy case is when n ~ 0 (mod D) 

but D is prime. -t--, -1-1 
In this case, exactly half of the pairs a, BEat a2 )( at a

2 
n 

satisfying A
t
A

2
N(a) - nN +mlDI , A,A

2
N(B) = nN satisfy A

t
A

2
a E A,A

2
13 (mod P), namely 

exactly one of (a,13) and (a,- S) for any n, a (this is because a quadratic residue 

mod 0 has exactly two square roots mod 0) • Hence 

(3.13) m 
PAl ,A2 ,n (n) u 

2 
r A 1 A '21 (nN + miD I) r A 1 A 2 [ n] -1 (n) x { ~ °r n 

D n (D prime) • 

A formula generalizing (3.'2) and (3.t3) is 

(3.'4) A A I PA A (n) 
l' 2ECIK l' 2,n 

{ 
u2o(n)rA(nN+mIDl>rB{n) if {A}· {8n} , 
o othervise, 

AIA;lcA 
A

1
A

2
[n]-1-B 

where now D is arbitrary, A and B are any two ideal classes of K, {A} and {Bn} 

denote the genera to which A and Bfn] belong. and 

(3.' 5) 6(n) TI2 
pi (n,D) 

Indeed, if D is prime then the slim in (3.14) reduces to a single term (since elK 

has odd order) and (3.14) is identical with (3.13), while if nIlO(modO) the sum 

in (). '4) has 2
t

- 1 or 0 terms according as {A} .. {Bill or not and these terms are 

all equal to the expression in (3.12) (note that 6(n) _2 t in this case). To 

prove (3.14) in general. we fix some A,. A2 satisfying the conditions on the left 
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(if there are no such then {A}" {Bn} and the formula is trivial). The other 

classes in the sum are obtained by replacing At and A2 by AtC and A2e with C
2 

trivial, i.e. by replacing representatives at' a 2 of At' A2 by a1c, a2c with 

c 2 principal, say c
2 

- (y) , y E KX. If we also replace a and B by a/N(C) and 

ely we obtain a new solution of (3.7) and (3.8). Thus the only question is how 

many of the 2t - 1 choices of [el lead to a, 13 satisfying the congruence (3.10). 

This congruence is equivalent to a congruence modulo p for each of the primes p 

dividing D; each of these t congruences is true if pin (both sides are 0) 

and true up to sign if prn (both sides are non- 0 and they have the same square). 

But the change of at' a
2

, a, a described above changes the ratio a:B by a factor 

y/N(C) of norm 1. i.e. by a number of the form r+s/D with rand s p-integral 

and r2 E 1 (mod p) for all plD • The 2 t - 1 classes of c with [e]2 trivial 

correspond in this W.:ly to the values ±r (mod D) with r2 II 1 (mod D) • The formula 

(3.14) is now obvious. Combining it with Proposition 3.t1, we find: 

Proposition 3.16. 

m 
YN,s{A;B) 

The invariant YN
m 

(A;B) ,s defined by (3.2) is given by 

- 2u
2 , 2nN 

L 6(n)rA(nN +m!DI)rB(n)Qs_1(1 +mror) 
n=1 

(6(n) as in (3. t5» if {A} .. {BIl} and is 0 othervise. 

Summing over all B, we obtain: 

Corollary 3.17. 

m 
't'N.s(A) 

The invariant ymN (A) defined by (3.3) is givt'n by 
,s 

2 ~ I I 2nN 
- 2u L 6(n)R{AIl} (n)rA(nN +m D )Qs-l(t +UilDT) 

n=t 

where R{AIl} (n) is the number of integral ideal s of norm n in the genus {An}. 

Since a number cannot be the norm of an ideal in more than one genus, 

R{AIl} (n) is either R(n) or 0, where 

R(n) AE~l rA(n) 
K 

L (E.) 
m 

min 

is the total number of representations of n as the norm of an ideal of o. 
Which of these two alternatives occurs depends only on values of genus 
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characters. In particular, if (n,O) -1 then R{Att}(n) can be replaced by R(n) 

in (3.17) because 

rA(nN +mlol> 010 .. (A(nN+m\O\». +1 (Vp\O) .. (~) .. +1 (Vplo) 
p p 

.. R{An}(n) - R(~) 

(A • any integer. prime to 0 which is the norm of an ideal in the genus (A}). 

In general. there will be one genus condition to be satisfied for each prime 

dividing (n,O). and we could replace the product 

by 

o(n)R{An} (n)rA (nN +mlol> (n 2) .R{An}(n)rA(nN+m1nl) 
p \ (n,O) 

I 

IT (1 + C (nN:; I D I ) ) • R (n) r A (nN + min I ) 
pl(n~O) p 

where £ is the homomorphism from the group of norms of fractional ideals of K p 

to {:to defined by t (Na)", for a principal, t (n) = (~) for nEZ, ptn • 
; P p P 

However. for later purposes we will prefer to leave the formula for "m
N 

(A) 
.s 

in the form given in 3.17. 

§4. Final formula for the height (r
A 

(m) - 0 ) 

Let c - (x) - (00) , d· (x) - (0), OK 0AE Gal(II/K), m prime to N. We 

still assume that rA(m). O. so that the divisors C' and Tml' have disjoint 

support. We want to compute 

< C , T dO> :-m ... I 
vi'" 

< c , T dO> 
m v 

where tht> sum is over the ~ archimcdean places of 1\. Since these places are 

permuted simply transitively by Gal(tI/K) o<Cl
K

, thi~ C'Cl'lals 

~ «TA n)-(OO),T«TA )-(0»") 
A

1
,A

2
ECIK l' m 2'" ~ 

A1A;1-A 

where n is any integral ideal of K of norm N and the T
A

," arc the points in 

1\ described in §I. Applying Proposition 2.23, we find 

< c ,T dO > m CIO 
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lim ["mN (A) + 4no1 (m) I EN(WNTA n' s) 
s~l ,s A ECI I' 

1 K 

+ 4 '!Tm s a (m) \' E (T ) hK 0 1 (m) K 
1-2s A l. NAn's + N 

2EC1 K 2. s-l 

- ~o,(m)AN + 2hKo , (m)KN 

Using (2.16). we have 

I E ( AECI NWNTAn,li) 
K • 

r E(or ) 
AECI NAn'S 

K • 

N-S n (1_p-2s)-1 1. lJ(dj L E(~T ,8) 
piN dTN d A(eI

K 
d A,n 

where E(z,s) is the Eisenstein series for SL
2

(71). Since each TA,n solves a 

quadratic equation aT
2 

+ bT + C 1C 0 of discriminant D with Nla. the points 

*TA•n for diN also s.1tisfy quadratic equations over Z of discriminant n. 

It is then easy to sec that the inner sum on the right-hand side of (4.1) is 

independent of d and equals ! E(TA,S) , where tA is any point in H satis-

fying a quadratic equation of discriminant D corresponding to the ideal class 

A. As is well-known (and elementary), E(TA.S) is a simple multiple of the 

partial zeta-function 

r:K{A,s) a . r 1 
lntegral N'('ifS 
[a]-A 

namely 

E(TA,s) -s s/2 -1 
2 lui ul;(2s) l;K(A,s) 

where 1I as usual is ()(lp-half the number of units of K. Sincp 

the Dcdckind 7.pta-fllnct ion of K, we deduce 
I cK(A,s)c CK(s) 

< C , T dO >00 
m 

lil:J 
5 '1 

m 22-slnls/2nu s (K(s) 
YN (A) + s -s (c 1 (m) + m "1_2 (m» -(-) 

,s N n (1 +p ) s l; 2 s 
piN 

hl\.Ul(m)O::N] _ h a (m)A + 2h
K

IJ
,

(m)K
N s-I K 1 N 

Substituting into this the expansion 
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eK(s) r,;(s)L(s,c) ( dn) .. (E.) ) 
n 

( S~, ... Y ... 0(8-1») (L(l,£) ... L'(l.e)(s-1) ... 0(5-0 2 ) 

and the formula L( 1 ,e) - n~/ullDT , we obtain 

Proposition 4.2. Let x E Xo (N) be a Heegner point for the full ring of integers 

of an imaginary quadratic field K, c" (x) - (co) , d .. (x) - (0) • ° EGal(H/K) , 

m ElN prime to N, ~ A E elK the ideal class corresponding to ° under the 

Artin isomorphism. Suppose m is not the norm of :tn integral ideal in A. Then 

< c • T dO >", 
m lim [ym (A) 

s~1 N,s 

hKo,(m)KN 
s-l 

... ~KN[(lOg~ +2 L l~~l +2+2 L (Z) -2!!.L'(l,C»)O (m) 
lUI piN P r,; 1 

+ 2 d log~] 
dim d 

with ymN (A) as in Corollary 3.17. Here D, hK and t(s.e) denote the discrimi-
,5 ----

~, class number and L-function of K and KN the constant defined in (2.13). 

§5. Modifications when r A (m) " 0 • 

Since the point x occurs with multiplicity rA(m) in the divisor T (xo). 
m 

the divisors c and Tmdo arc not relatively prime' in the case when rA (m) ~ 0 • 

Although the global height pairing <c, TmdO> is well-defin('d, Neron's theory 

does not give a canonical decomposition into local terms <c.T dO> m v We will 

first discuss how a local symbol can be defined by choosing a tangent vector at 

x, then calculate this symbol when v is an archimc(k.1n place of H. 

We recall a procedure for defining a local symbol for two divisors 3 and 

b of degree zero on a general curve X over 11, whose common support is equal 

to the point x [14J. Let g be any uniformizing paral,leter at x, i.e •• any 

function on X with ord/g). 1 , and define 

(5.1) <a ,b> - lim { <3 ,b> - ord (a) ord (b) log I g(y) I } 
v y~x y v x x v 
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where a is the divisor obtained from a by replacing every occurrence of the y 

point x in a by a nearby point y which does not occur in b. This limit 

exists by the standard properties of local heights. If g' is another uniformizing 

parameter and gIg' has the value a at x, then 

(5.2) -:a,b>~ <a,b>v + ordx(a) ordx(b) log lal
v 

• 

In particular, the sum L <atb> is independent of the choice of g, by the 
v v 

product formula; this sum is equal to the global height pairing of the classes 

a and b [14]. 

Let at be the l!0n-zero tangent vector at x which is determined 

b ag .. 1. 
y at Another consequence of (5.2) is that the local symbol <a,b>v 

ad· depends only on the tangent vector at an not by the full cholce of g. By 

(5.2), this pairing is unchanged if we multiply a~ by a root of unity a, 

since lal v '" for all v. 

We now apply this procedure to the computation of the. local symbols 

<c, T dO> on XO(N). We have ord (c) .. 1 and ord (T dO) .. rA(m); if g is 
m v x x m 

a uniformizing parameter at x, then 

(5.3) 

where 

<c,T dO> 
m v 

c = (y) - (00) 
y 

lim { <c , T dO> - rA(m) log I g(y) I } 
y m v v y-+-x 

The trick is to normal ize the function g at 

to make the computation of each local symbol as simple as possible. 

this, we introduce the differential 

(5.4) w n
4

(z) ~ a- 2ni n4 (z) dz 
q 

x so as 

To do 

where n(z)" q14 IT (1 - qn) is the Dedekind eta-function. This differential 
n 

is well-defined only up to a 6th root of unity, but this will be sufficient 

for our purposes by the remark above. If x is not an elliptic point on XO(N) 

1 • a so u = • then w 1S non-zero at x and we may tnke our tangent vector at to 

be dual to w. The uniformizing parameter g then satisfies 

w 2 3 d 
( g + a

2 
g + 3

3 
g + ••• ) ~ 

g 
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in a neighborhood of x. In general, w has order 1. - 1 at x and we may 
u 

normalize g 80 that 

w ( g 1/u + higher degree terms)!!a 
g 

in a nei~hborhood of x. The reasons for this normalization will become 

clearer when we compute the heights at non-archimedean places in the next 

chapter. Here we observe that for a complex place v we have 

(5.5) log Ig(y) I - u log I 2ni n4 (z) (w- z) I -. 0 v v 

as y + x, where z and ware points in the upper half-plane which map to 

x and y on XO(N) (e) • 

(5.6) 

From Proposition 2.23 and the formulas (5.3), (5.5) we find 

<c,T dO> 
m v lim 

s+1 
r I gS(Z,yzl) + 4no , (m)EN(w

N
z,s) 

y E RN/±1 
det yam 

yz'';'z 

-t urA(m) lim {gs(z,W) - log 12nin
4

(z) (w-z)l v } 
w .. z 

s 0 , (m)ICN 
... 4nm o'_2s(m)ER(z' ,s) + s - 1 - 0, (m) ON + 2ICK) 

( z, z' points in H mapping to x, xO) 

because in the terms gs(w,yZ') with yz'fz and in the term EN(wNw,s) we 

can carry out the limit W" z simply by replacing w by z, and there are 

u r,,(m) values of y with yz'-z. Formula (5.6) is ide~tical to the formula 

in Proposition 2.23 if we define Gm
N 

(z,z I) 
,8 

on 1 y if z ( T m z') for all z, z' € H by 

(5.7) G
m
N 

(z.z ') ,s L y E RN/±1 gs(7.,yz') 

det y • m 
yz 1 .; z 

(which was previously defined 

+ L 
y E ~I±' 

lim (g (z,w) - log 12ni r)(z)4(z-w) ,2) • 
w .. z 5 

det y .. m 
yzl .. Z 
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Hence Proposition 4.2 is true without the restriction r A (m) .. 0, provided that 

we define ymN (A) 
,8 

by (3.3) but with the new definition of Gm
N ' ,8 

In calculating 

this invariant, we find that the terms in (5.7) with yz I;' z give exactly the 

expression in 13 and that their total contribution to ymN (A) is the infinite 
,s 

sum in Proposition 3.11 (the ·condition yz Ir/-Z translates into the condition n > 0 

in this sum). The second slim in (5.7) equals tg (z) , wlH~re t is the number s _ 

of y E ~/±1 of determinant m with yz I·Z (for z, Zl as in (5.6) this number 

is urA(m» and gs(z) is the renormalized value of gs(z,z) defined by the 

limit in (5.7). Using the asymptotic expansion 

Qs-1 (t) 1 t+' ( r 1 r') 2 log t-T - y(s) - r(1) + 0(1) ( t ..... 1 ) 

we find 

gs (z) 4 2 r' - log 12n (z - z) n(z) I ... 27 (s) 2 rrl (1) 

By Kronecker's first limit formula, this is equivalent to 

8
s 

(70) r
l 

r l 
2 [0 11" ] .. - 2log 2n + 27<s) + 27<1) ... ;- lim 2 c;(2a)E(z,o) - a=T 

0'" 

where E(z,s) as usual denotes the Eisenstein series of weight zero on SL
2

(Z). 

The identity 2
s

C;(2s)E(TA,S) -ulol
s/2

C;K(A,s) mentioned in §4 now gives 

L AECI gS(TA) 
K 

[ r 1 r' ]. [2U I 0/2 2h ] 2h res) +r(1) -log 2n + ol!m, -;- 01 C;K(o) - o:T 

[ rl L' 1 ] 2h -res) - log 2n + L(1 ,e) ... 2log 101 

The total contribution to ymN (A) of the terms with yzl .. Z is the product of 
,8 

this with the number t '" ur,,(m). Summ:uizing, we have: 

Proposition 5.8. Proposition 4.2 remains true when m is th(' norm of nn ideal 

in A, provided that the local symbols <c,T dO> in the dcfinition of <c,T dO> 
- m v m ... 

are def ined bv (5.3) wi th the choice of g explained above and the invariant 

ymN (A) is defined by (3.3) with G
m
N 

as in (S.l). This invari.1nt is given by ,s ,s 

m 
YN, s (A) 

expression in (r' L' 1 ) 
Corollary 3.17} + 2hurA(m) -=r-<s) -10g2n -tT,-<1,d + 2"log 101 • 
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Chapter III. Non-archimedean local heights 

In this chapter we will compute the local symbols <c,T dO> 
m v for all non-

lrchimedean places v of H, always under the assumption that m is prime to 

I • denote the ring of Assume that v divides the rational prime A 
v 

p let 

'.ntegers in the completion Hv n a uniformizing parameter In flv t and 

1 - pf the cardinality of the residue field A I~. Let 
v W denote the comple-

:ion of the maximal unramified extension of A then 
v 

~ is a prime element in 

and F - wIn Is an algebraic closure of AvI~. 

We first reduce the calculation of Neron's local symbols <a,b>v on rela-

!:ively prime divisors of degree zero on X over H 
v 

to a problem in arithmetic 

ntersection theory. Let ! be a regular model for X over Av 0 and let A 

lnd B be divisors on ! which restrict to a and b on the general fibre. 

IU A has zero intersection with every fibre component of ! . we have the 

iEormula [14] 

(0.1) <a.b>v - -(A· B)log q • 

In the next section we will describe a regular model ! for X over Z 

htch has a modular interpretation; we will then ditJcUSB the reduction of 

leegner points on ! and use (0.1) to obtain the intersection formula 

(0.2) <CoT dO> - -(x· T x<)log q ... m v - m- I 

where 1! 

and ° x 

and 

over 

° 1! 

H • 
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are the sections of X 8 A 
v corresponding to the points x 

The rest of the cllapter is devoted to a calculation of the intersection prod­

uct (x· T xO) 0 which is unchanged if we extend scalars to W. We first iden­- ~ 

tify the components of the divisor T xO , then establish the formula 
~ 

° Ito (x • T x ) - -2 L Card Hom (x,x )d 
- ~ n~l w/~n - - egree m 

(0.3) 

where Hom (x,xO) 
w/~n --

is a suitable group of homomorphisms between thc diagrams 

of elliptic curves representing ~ and ° x 

Using (0.3) and Deuring's results on singular liftings of ordinary elliptic 

curves, we show that (x • T xO) a a when p is split in K. When p is non­- ~ 

split:" in K , the curves corresponding to !. and ° x have supersingular reduc-

tion and the groups Hom (x,xO) 
w/nn --

can be calculated using the arithmetic of 

certain orders in the definite quaternion algebra over Q of discriminant p. 

Next we discuss the modifications necessary in the computation of <c.T dO> 
m v 

when the divisors c and T dO 
m 

are not relatively prime. Finally. we make the 

orders in our quaternion algebras completely explicit and obtain a formula for 

I <C,Tmdo>v in terms of the ideal theory of O. For example, when rA(m) - 0 
vTp 
and p is inert in 0, our final formula is 

f 
° 2 <c,T d > - -u log m v 

v p . 
p L ordp(pn)rA(mlnl-nN)O (n)R{Aaw} (nip) 
«~ ... o n N 

n:::O(mod p) 
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~here:~ is an ideal of 0 ~ith ~ - (lr) for all primes liD. 

Because ~e must treat all non-archimedean placeB of II. including those 

dividing N. m • or D ~here there are some complications, the argument often 

becomes fairly intricate. Here ~e ~i11 illustrate the main ideas in the case 

~ere m - 1 and v divides a rational prime p ~hich is prime to ND. We 

shall also assume that o x are rA(l) - 0 • so 0; 1 and the points x and 

distinct over H. 

By (0.2) and (0.3) we have 

(0.4) «x) - (m},(xr ) - (0» _ <c,dO> 
v v 

1 \' 0 - - 2 L Card(Isom (x ,x}}log q 
n~l wlnn - - v 

The sum in (0.4) is zero unless ~ and ~O intersect (mod n) • Dcuring'a 

theory shows (~. ~O) - 0 ~en p splits in K; since we are assuming that 

(p,D) - 1 we must have p inert in K and hence log qv -~ log p. The en­

domorphism ring R of ~:(mod n) is an Eichler order of index N in the defl-

nite quaternion algebra B of discriminant p • and the group 

Is isomorphic to the left R-module RA • TIle points ~ and 

Hom (xO,x) 
a WITT - -

x will intersect 

(mod n) if and only if this module is principal; if this is so, the integer 

o 
Card(Is09w/TT(~ ,~» is the number of generators. 
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Each generator gives a solution to a certain equation in ideals of D , as 

~e will now show. Let q be a prime with q :: -p(mod D) i then (q) _ ct~. " 

splits in the field K and B is the algebra K. Kj with the relations ja - aj 

for a ( K and j2 __ pq • 
Using reduction theory, one can sho~ that for 

some place v diViding p the order R is given by the set of all a + aj €. B 

with 
-1 -1 -1 • 

a €.!lJ , 6 €.!lJ ~ ~, and a - 6 is integral at all primes dividing 

!lJ. If ot. is an ideal in the class of A • then 

(0.5) o 
HOllly/n(~ .~} -1 -1 -1 -

ReX. - {a + 6j a E:!lJ ex., e E: ~ OJ. ~ ot" • 

a - 8 integral at !lJ}. 

TIlis module is prinCipal if and only if it contains an element b -a + aj with 

reduced norm Nt> .. Nt + pqrtl - NO\,. Assume b is a generator; if we define the 

integral ideals 

(0.6) 

these satisfy the identity 

(0.7) 

-1 r: - (a)!I>oc. ') 

-1- -1 
t:. I - (S)!lJ1.n. ()(... 

N.:.+pNNc' -Inl. 
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Letting n - pNc' and 1 - R c , we have a solution to the equation 

i + nN - IDr with n = 0 (mod p) and rAe!) r o. Conversely, such 

solutions will yield generators for Rcn, and contribute to the height 

in (0.4). We remark that this method is quite similar to that used in 

evaluating GN,s at Heegner points in Chapter II. Indeed the function 
m ~ Chapter II 

p (n) introduced in Proposition 3.111counts certain elements of norm m 

in an Eichler order of discriminant N in the split quatemion algebra 

over q. 
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§ 1. The curve Xo (N) ~ z: 

A model! for XO(N) over Z was proposed by Deligne-Rapoport [7 J. and 

given a modular interpretation when N was square-free. The general case was 

treated by Katz-Mazur [21], using ideas of Drinfeld [9]. We review this theory 

belovo 

Let ~~r (N) be the algebraic stack classifying cyclic isogenies of degree 
o 

N between generalized elliptic curves over S 

(1.1) cP £+£' 

such that the group scheme A - kercp meets every irreducible component of each 

geometric fibre. The condition that cP is cyclic of degree N means that 10-

cally on S there is a point P such that 

N 
(1. Z) A - l [aP] 

a"l 

8S Cartier divisors on E. When N is invertible on S • this hypothesis is 

equivalent to the assumption that A is locally isomorphic to ZIN when N 

is square-free it is equivalent to the assumption that A is locally free of 

rank N • 

Let ! be the coarse moduli scheme associated to the stack "~r (N) ([9]. 2)4-
o 

243, [21] 407ff).TIle scheme !8Z[I/N] is smooth and proper over Zl[l/N]. 

On the other hand, if p is a prime dividing N , the scheme .! 8 zIp is 

both Singular and reducible over zIp. We will need a modular interpretation 

of its irreducible components. Write N u p"M with (p,M) = 1. Then 

~ 



J 
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!. 9 ZIp has (n+l)-lrreduclble components ~ b • indexed by pairs of non-nega-
a, . 

tive integers with a + b - n. The component ~.b is isomorphic to 

~(M) 8 zIp • and occurs with multiplicity ~(pc) in ! 8 zIp • where c­

min(a,b) • In termS of the modular equation, this decomposition of the fibre is 

reflected in Kronecker's congruence 

~N(j,j') -
11 (a-c b C 

a-tb-n 4>M jP .j ,p -c)Hp ) (mod p) 

c-min(a.b) 

All of the components ~,b intersect at each supersingular.point of ! 

over F: these are the points x - (~ : E ~ E') where E and E' are super-

singular elliptic curves. The non-supersingular points of :T 
alb 

over F cor-

respond to diagrams where the groupsclleme 

b 
~ a x 7l./p x zlM • 

P 

A - ker4> is isomorphic to 

For a geometric point ~ - (4) E ~ E') of ! over an algebraically 

closed field k. we define Au~(~) 

which make the diagram 

to be the group of all isomorphisms 

E....!-E' 

(1.3) ftl Itf' 
E~E' 

(f,f') 

commutative. This is a finite group, which contains <±l> it may also be de-
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scribed as the automorphism group of the pair (E,A) • The strict Henselization 

of X· at the point ~ is isomorphic to the quotient of the strict 

Henselization of ... ·/(r (N) at the corresponding point m by the group 
o 

Autk (~)/ <±l> (7, p. 172]. Using this fact, and results of Drinfeld [9 ] and Katz-

Mazur [21, p. 166], one obtains the following 

Proposition 1.4 ! is regular over Z , except at the supersingular points ~ 

in ci}aracteristics piN where Aut/~)'" <±l> • 

The subscheme Cusps of ! is finite over Z with one irreducible com-

ponent Dlsp(d) for each positive divisor d of N. The component Cusp(d) 

corresponds to diagrams of Neron polygons where A - ker~ is isomorphic to 

~d x N[/dZ. It has 4>(f) geometric points, where f ~ gcd(d,N/d) • and one 

has an isomorphism Cusp(d) ::: SpecZ[~f] • 

The section of ! is the component Cusp(N) and the section Q is 

the component Cusp(l) • These sections reduce to the components ~,O and 

9'0 in characteristic p respectively. In general, the reduction of the 
,n 

multi-section Cusp(d) lies on the component ~,b (mod p) , where 

ord (d) [21, Chapter 10]. 
p 

§2. Homomorphisms 

a -

Let S be n complete local ring with algebraically closed residue field 

k . and let ~ a (¢ E ~ E') and X (~ F ~ F') be two S-valued points of 

! which are represented by diagrams of cyclic N-isogenies. Assume further 

that the points ~ and X have non-cuspidal reduction. We define the group 

HomS(X'~) to be set of all homomorphisms (f,f') over S which make the dia-
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gram 

(2.1) fl-4}'f' 
E--t-E' 

~ 

commutative. Addition of homomorphisms is defined using the group lays in E 

and E' • Then HomS(~'~) is a left module over the ring EndS(~) a HomS(~'~) • 

and a right module over Ends(~) ; in these rings multiplication is defined by 

composition of homomorphisms. Using the fact that k is algebraically closed. 

one can check that the definition of Hom
S 
(~,~) 

chosen to represent the points ~ and z. 
is independent of the diagrams 

The ring EndS(~) is either % • an order in an imaginary quadratic field, 

or an order 1n a definite quaternion algebra of prime discriminant over 

4l (B 1 • We define the degree of a non-zero element (f,f') in Homs(Z'~) 

to be the positive integer deg f - deg ft • Then the set of elements 

HomS(~'~)deg_m of a fixed degree m ~ 1 is finite, and admits a faithful action 

by the fini t'e group Auts (~) - EndS (~) degl • 

§ 3. Heights and intersection ~ducts 

Let x - (4) E" E') be a lIeegner point of discriminant D on X over 

X 8 h - v We recall that H , and let ~ denote the corresponding section of 

hv is the ring of integers in the completion Hv ' and that the place v bas 

residual characteristic p. 
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Since N is prime to Dh _ disc(H/~) , the special fibre xeA 
- v 

has the 

shape described in §l. Since elliptic curves with complex multipiication have 

potentially good reduction, the sections ~ and o 
~ do not intersect the divi-

Bar Cusps in the special fibre. They reduce to supersingular points if and 

only if the rational prime p is not split in K (29). 

Noy suppose p divides N then p is split in K and x and o 
~ have 

ordinary reduction (mod n) • We wish to determine the component ~ b of the a, 

special fibre yhieb contains the reduction of ~. Let -n. c 0 be the ideal an-

nihi1ating ker~; since this isogeny is cyclic of degree N t we have 

Oln, ::: zlN. Hence the place v divides -n,. or .i\., but not both. 

Proposition 3.1 The sections ~ and o 
~ reduce to ordinary points in the compo-

~ JlQ,n 

$n,O 

if vl~ 

if vl'fl" • 

Proof. If vl~ the group scheme ker~ is etale over h , so is isomorphic to 
--- v 

Z/N over F. Hence the reduction lies in $0 ' the component containing ,n 

Cusp(l) - Q • If v I-n. the group scheme ker~ is isomorphic to ~ n x Z/H 

F • so the reduction of ~ lies in the component .~,O 
p 

containing Cusp(N) 

Since 0 fixes K. the kernel of the isogeny ($0: EO + EtC) defining 

also annihilated by ~. Hence o 
~ reduces to the same component as ~ . 

o 
x 

over 

10 

Corollary 3.2 One of the divisors .£ - (~) - (~) ~". (~o) - (Q) has zero in-

tersection yith every fibral component ~,b of X 8 1\ • 

Proof. Indeed, .£ has this property if vln-, and ~ has this property 1f 

vln.. Since v divides .n. • .n. .. N • one of these possibilities must occur. 
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We now return to the general case, and reduce the calculation of the local 

height symbol to that of an arithmetic intersection product. 

Proposition 3.3 Assume m ~ 1 is prime to Nand rA(m) - O. Then we have 

the formula 

<c,T da> - -(x • T xa)log q 
m v - m-

Proof. By resolving the quotient singularities at the supersingular points on 

! over Z , we may obtain a regular model !reg • Neither the Heegner points 

nor the cusps are affected by this resolution. so by Corollary 3.2. one of the di-

visors ~ and ~ have zero intersection with each fibra! component of !reg 8 Av 

The same is true for ~ and T~, as the Heeke operators preserve fibral com­

ponents when m is prime to N. The general theory of heights then gives the 

identity (cf. (0.1» 

<c,T da> - -(c· T da)log q 
m V - m-

We now use the additivity of the intersection product to obtain 

(c • T da) - (x • T xa) - (x • T 0) - (~ • T x
a

) + (~ • 0) 
- m- - m- - m- - m- --

a 
But (~. T~) - (~ • Tm~ ) - 0 ,as ~ and the points ~ in the divisor 

T xa have potentially good reduction, 3nd 
~ 

N > 1. This completes the proof. 

(~ • Q> .. 0 36 we have assumed that 
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§4. An intersection formula 

In the computation of the product (x • T xa) 
- m-

in Proposition 3.3, we may 

extend scalars to ! ~ W ,where W is the completion of the maximal unramified 

extension of A. We may then apply the considerations of §2 to the points ~ 

and a 
.! over the complete local rings W and 

an algebraically closed residue field F - wIn 

For example, we have 

(4.1) En~(~) ... En~(~a) - 0 

wilt for n ~ 1 • as these have 

(4.2) a 
Hoffiy(~ ,~) t:: A as a left O-module 

where A is the ideal class of K which corresponds to a under the Artin 

isomorphism. Formula (4.2) is usually proved by embedding W into C and using 

the theory of lattices [23]. 

where the curves Ea and E,a 

A direct algebraic proof was given by Serre [29] 

in a x are denoted Hom(o:..,E) and Hom(OL,E') 

respectively, for an ideal c... in the class of A. 

If we identify the elements g(l in a 
HO~(~ ,~) with elements a in the 

ideal Ot , then the degree of the iRogeny ga is equal to No/NOt.. We have the 

following refinement of Proposition 8.1 of Chapter 1. Assume as usual that m 

is prime to N. 

Proposition 4.3 TIle multiplicity of the point 

.!.2. r A (m) • 

x in the divisor T xa is equal 
m 
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Proof. By the definition of Tm «2.3) of Chapter I). the multiplicity of x 

in T xO is equal to the number of isogenies g of degree m m a in 

° 0 ~= Homw(~ .~) - HO~l(x .x) • modulo the left action of the group 0* = Autw(E 

which identifies isogenies with the same kernel C. This number is therefore 

equal to the number of integral ideals t - (a)/~ of norm m in the class of 

A-I. or equivalently to the number rA(m) of integral ideals ~ - (a)/~ of 

norm m in the class of A. 

In the next two sections we shall establish the following intersection 

formula (0.3). 

Proposition 4.4 Assume m is prime to N and rA(m) -,0. Then 

° I\,O (x • T x ) - 2' L Card(Hom (x ,x)d ) 
- m- m~l W/nn - - eg n 

Since the reduction of homomorphisms gives an injection ([30J, [15]) 

(4.5) 

{ 

0 0 
Hom +l(x .x) ~ Hom (x .x) 

Wlnn - ~ Wlnn - -

Ilnd lt0mw(~O .~) - ::;lllom I n (~O .~) 
W n 

for n ~ 1 

the terms in the sum (4.4) are all zero for n sufficiently large. We shall 

henceforth use the notation hn(~ '~)deg m for the integer 

kard Hom n (.Y .~) deg m 
2 wIn 

§5. The divisor T xO 
ur-
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To prove Proposition 4.4 we need a concrete description of the components of 

the divisor T xO 
m-

over w • and some knowledge of their intersection products. 

To obtain this. we will use the theory of canonical and quasi-canonical liftings, 

as developed ~n [15). 

Since m is prime to N. the points y in the divisor T xa 
m 

are all 

Heegner points over H in the sense of [13] and En~(y) B 0y is an order 

of conductor dividing m in K. When m is prime to P. the residual charac-

teristic of v, the points y are all rational over W 8 ~p and each is the 

canonical lifting of its reduction 1. [15, 31]. In this case. we also have the 

formula 

(5.1) 

as any isogeny f 

h (xO'~)deg m n- r hn(~'~)deg 1 ., 

° l..€Tr?-

of degree m between a 
~ and ~ over Wlnn 

by its kernel. which lefts uniquely to a group scheme C of order 

is determined 

a 
m on ~ 

over W • Then f 
o 

induces an isomorphism between ~ - ~ and ~ over w/nn 

° f 

~a 
~"7.. 
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Assume now that t 
• r , where t ~ 1 and (r,p) - I • The points m - P z 

in the divisor T xCI are rational over \oJ 8 Clp 
but the points y in the divi-r 

Bor T xCI .. IT t(z) are rational over ramified extensions of W 8 ~p and the 
m 

z: p 
corresponding sections y over the ring class extensions W are quasi-canonical y 

liftings (of level pS, with 0 ~ s ~ t ) of their reductions [15]. Let 

1.(s) be the divisor over W obtained by taking the sum of a point of level s 

with all of its conjugates over W. We then have the decomposition 

(5.2) T z os 
t-

P 

r 
OSsSt 

t-s+l 

r 1.(6) j 
j""l 

I z.(s) 
OSsSt 
s:::t(2) 

I 1.(s) 
OS9~t 

if P splits in K 
s s-l deg 1.(s) .. p - p 

if P is inert in K 
s s-1 deg 1.(s) D p + P 

if p is ramified in K 

deg 1.{s) _ pS 

Eichler's congruence [11] 

(5.3) T t:: Ft + Ft - 1 F' + Ft - 2F,2 + ••• + FIt (mod~» 
p 

s ~ I , 

s ~ 1 ") 

s ~ 0 • 

where F is the Frobenius correspondence and F' is its transpose, shows that 

~ach point r in the divisor yes) is congruent (mod ny> to a canonical 

lifting Yo of level zero over W. TIle fundamental negative congruence of 

[15} then gives 

(5.4) 1.$ Yo 
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(mod n
2

) 
Y 

when s ~ 1 • 

When p is split or ramified in K, the point YO occurs 1n T tZ • 
p 

§6. Deform"ations and intersections 

Proposition 6.1 Let ~ and 1. be sections which intersect properly on E 

~ W and reduce to regular, non-cuspida1 points in the special fibre. Then 

Proof. 

(1. • ~) .. r hn(Y'~)deg 1 • 
n~l 

In the case when Autw/n(~) - <±1> f Proposition 6.1 follows from the 

fact that the completion of the local ring of ! at ~ is the universal 

deformation space for the diagram (~: E 4 E') over W. Hence (r·~) - k 

k if there is an isomorphism between ~ and 1. over WIn t but not over 

wkk+l. This agrees with the right hand side of (6.1), as 

kard Hom n (y,~) deg 1 -{ 
2 Win 

o 

n S k 

n > k • 
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When Autw/n(~); <±l> one can modify the above using the local ring of the 

stack ~r (N)' Alternatively. one can consider the pull-back of our situation 
o 

to a modular cover ! 1! over W where the corresponding objects are rigid. 

For example. ! could classify data of the type (~: E ~ E') togethcr with a 

full level M structure. for an integer M ~ J which is prime to Nand p. 

Here we do have the identity 

(6.2) (Y • x) - I Card(Isom n(Y.x» 
n~l win 

by the arguments above. where y and x are sections of y. Let y be a 

section with fcY) - ~ and write f*(~) - L(x!) on !. By the general behav­
i 

ior of the intersection pairing under finite proper morphisms, 

* (~ • ~) - (f~,~) - (y,f ~) co I(y,xv)' 
i 

Using (6.2) and re-arranging the sums. we find 

(~ • ~) - L (LCard(Isom (y,i ». 
n~l i wlnn v 

But LCard(Isom (j,x
i
» D f2~ard(Hom (r'~)d 1) which establishes the 

i W/Trn W/Trn eg 

proposition. 
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The case m - 1 of Proposition 4.4 is an immediate ~rollary of 6.1. and 

the case where m is prime to p follO\o1s from Proposition 6.1 and formula (S.l). 

The real miracle occurs at the places v which divide m • Write m co pt • r 

as in §5. We split into three cases. depending on the behavior of p in K. 

When p splits in K, Proposition 4.4 follows from the fact that both sides 

of the identity are equal to zero. The right hand side vanishes because ~ and ~a 

have ordinary reduction, so Deuring's theory [8 ] gives an isomorphism 

a a HoDly(~ .~) ::r Hom n (~,~) for all n ~ 1. Since we_ have assumed that 
wIn 

r
A 

(m) '. 0 , thesc groups contain no elements of degree m. The left hand side 

is zero as every component ~(s)j in the decomposition (5.2) of T x
a 

m-
is con-

gruent to a canonical section Yo of level zero in this divisor. If ~ inter-

sects ~(s) then ~:: Yo (mod n) This forces ~ to be equal to Yo ' as 

they are both canonical liftings of their reductions. Hence x - Yo occurs in 

a Tmx ,which contradicts our hypothesis that rA(m) - 0 • 

Now assume that p is inert in K • and let ~(s) be the components in 

T t~ with s:: t(2) as in (5.2). All of these components are congruent to a 
p 

fixed Yo of level zero and by (5.4) we have 

J[;r hn(~·~)d.g 1 + I hl(~'~)deg 1 {t even 
n~l Yo - z 

(T z· x) -t- -
P 

t odd t+2 
--2-- hl(~'~)deg p Yo - z(p) 

Summing over all z € Trx and using (5.1) for r prime to P. we obtain 
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t;' 0 t 0 
L hn{x ,x)d + -2 hl{x ,x)d 
~l - - eg r - - eg r 

t even, 

(x • T x
O

) -- m-

t+l hl{XO'~)deg pr 2 - t odd • 

In the first case, an isogeny f ~O -+ ~ of degree rover W Inn - yields an 

isogcny t/2 of degree p m over w/nn+t /2. In the second case, an isogeny 
t-l 

[ : ~o -+ ~ of degree r p 
t+l 

over WIn yields an isogeny p-Z-[ of degree m 

W In-r • 

Finally, assume that p is rami Hed in K with prime factor .t . For 

each 

'1..(8) 

Thus 

Z £ T x
O 

we have the decomposition r T t~ - I J..(8) 
P OSsSt 

is congruent 

(T t! • ~)-

(mod n ) 
y to !. if t is even. and to 

n~l n - - eg - - eg { r h (z,x)d 1 + t h1(z,x)d 1 

p a ° I h (z ,x) d 1 + t h(l ,x) d 1 
n~l n - - cg - - eg 

8S in (5.2); each 

ztt if t is odd. 

t even ~ 

t odd • 

Summing over all 
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Z € T xO and using (5.1) for r prime to 
r 

L ° 0 
n~l n - - eg r - - eg r 

(x • T xO) ... 
- m-

{ h (x ,x)d + t h1(x ,x)d 

a'» OOy 
~ h (x ,x)d + t hl{x ,x)d 

n~l n - - eg r - - eg r 

p , we obtain 

t even, 

t odd • 

In the first case, an isogeny f 

t t/2 
isoge~y r f - P f of degree 

ao 
isogeny f: ~ j> -+ ~ of degree 

a 
~ -+ x 

mover 

rover 

of degree rover w/nn yields an 

w/nn+t. In the second case, an 

Wlnn yields an isogeny 

t a J f : ~ .... ~ of degree mover w/nn+t 

§7. QU3ternionic formulae 

We now turn to the calculation of the right hand side of Proposition 4.4. 

First, we record an important result which was established in its proof. 

Proposition 7.1 If (x • T x
o) - 0 • - m-

splits in K and rA(m) - 0 • then p 

a ° Hom (x ,x) - Hom..(x ,x) 
wlnn - - w - -

This group Proof. In this case, for all n ~ 1 . 

contains no clements of degree m , by the assumption that rA(m) - 0 • 

p in 

Henceforth in this section, we will asswne p has a unique prime factor 

K (in particular, p does.!!£! divide N ). Then ~ and a 
x have su-

persingular reduction (mod n) and En~/n(~) m R is an order in the quaternion 

algebra B over Q which is ramified at ~ and p. The reduced discriminant 



-59-

of R is equal to Np; R 9 Z 1s maximnl in B 8 Q t and for all t ~ p 

. p {fa b) p } 
R 8 21 ~s conjugate to the Eichler order \c d : c ; 0 (mod N) 1n B 8 ~1 • 

The embedding 0 - Endw(~) + R - Endw/n(~) given by reduction of endormor­

phisms extends to a ~-llnear map K + B. This in turn yields a decomposition 

(7.2) B - B+ + B_ - K + Kj 

* * where j is an clement 1n the non-trivial coset of N .(K )/K • The decompo-
B 

sition (7.2) is respected by the reduced norm: N(b) - N(b+) + N(b_) • 

Proposition 7.3 1) { n-l} End (x) - b £ R : D • ~~ = 0 mod p(NO) • 
whn - - J 

2) Hom (x 
0 

t x) ;:t End (x)· at in B t where OL is any ideal in the class 
W/rrn - - w/TTn - - --

of A. If the isogeny ~: ~o + ~ corresponds to b E: B t then degct> .. Nb/Not. • 

~. Let ,g - (~ E + E') be the diagram of p-divisible groups over W cor-

responding to ~. Since ~ has supersingular reducrion the p-divisib1e groups 

E and E' are both formal groups of dimension 1 and height 2. Since p is 

prime to N ~ is an isomorphism and End (~) - End (E) 
w/nn - w/nn for all n ~ 1 • 

... 
The ring End, (x) - R - R 8 Z is the maximal order in the quaternion 

~ n - p p 

division algebra B - B 8 q over q • By the results of (15) we have y p p 

End (x) - {b E R~ 
'W/nn - .r 

n-l} DNb_ = 0 mod P(Np) • 
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But a fundamental theorem of Serre and Tate [31] states that: 

End (x) - End ·1 (x) n End (x) t 
W/nn - -W n - wlnn -

which gives 1). Part 2) follows from the fact that ~o = Hom(~~) for any 

ideal 0\. In the class of A. 



-61- -62-

Corollary 7.4 • ~ rA(m). 0 • l).!fp Is inert in K and v i9 

a place dividing p in H, then q - p2 and 
-- v --

H • then 

° " 1 (x. T x ).. L 2:(1 + ord ONb » 
- m- b€RcJ±l p-

tfu"'IIfloc.. 

2) !! p is ramified in K and v is a place dividing p in 

k qv - P ~ k is the order of [.p] in C~K and 

(x • T xO) - I ord (DNb ) • 
- m- b€R.i11 P -

tfu .. ~"" 

Proof. We will use Propositions 4.4 and 7.3. Combining these results yields 

(.!. • T xo) -!.2 r Card{b € RCI'\.., Nb - mNn.. 00b 
m- n~l 

{

!.(l + ord (Nb_» L 2 p 

be: RlL! ~l 
Nb-nt:-.. ord (ttfu ) 

p -

We remark that when p I D • ord (Nb ) 
p -

is always odd. 

n-l} 
- 0 mod pNp 

P 1 D 

P I D • 

§8. Modifications when rA(m) ~ 0 

In this case, the divisors c and T dO are not relatively prime, and the 
m 

computation of the local symbol <c.T dO> uses the tangent vector alat at 
m 

x which is defined in §5 of Chapter II. Recall that alat is defined up to a 

6th root of unity, and Is dual to the I-form w - n4(q)~ at x when u - I • " q 

We will adopt the convention that 

(8.1) (x • x) a ordv(a) 

where a a/at is a basis for the free W-module T~. Then the intersection 

formula (0.2) continues to hold. The reason for our particular choic~ of tan­

gent vector is the following." 

Lemma 8.2. !! v does not divide N • ~ 

ord (a) - ~ r Card(Aut (~» - Card(Autw(~) 
v nH w/nn 

I \' new - 2" L Card(Aut (~». 
n~l W/nn 

In particular, we see that a/at generates T X if and only If Aut (x)-~ W/nn -

AutW(~). TIlis is a completely general fact. which like (6.1), has noding to 

do with ~ being a Heegner point. It only requires that ~ reduce to a oon-

cuspidal point of the special fibre. 

~. The differential W is defined on a cyclic cover y' of degree 6 of 

the curve Y a X
O

(1) • which corresponds to the commutator subgroup of PSL2~) • 

The compositum X' over X still is cyclic of degree 6, as it is totally 
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ramified over the rational cusp ~ • 

xyX'~ 
~~y. 

y 

Over :t[1/6] • y' 1s an elliptic curve with good reduction and w is a 

Neron differential. Since the covering ~'~ I' is ramified only at the cusp 

of y' and the fibres dividing N • we may calculate the relationship betveen 

w • Wand Tx! for primes v (6N via an analysis of the ramification in the 

cover X' X over the section x. This comes from extra autornorphisms 

(mod n) , and we recover the formula of (8.2) exactly as in (6.1), 

TIle argument for primes dividing 2 and 3 is more involved, and we will 

not give it here. Ye simply note that when N - 1 • so X - Y and X' .. y' , 

we have the explicit formulae 

(8.3) a - j(x)2/3(j(x) _ 1728)1/2 j(x) ; 0, 1728, 
mod}l(, 

~ 26 • 34 
j(x) - 1728, 

29 • 33/ 2 
j(x) - 0 • 
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If v does not divide ruN , then Proposition 4.4 Bnd Lemma 8.2 give 

(8.4) o 1 ~ new 0 
(x • T x ) - -2 L Card(Hom (x ,x)d ). 

m n~l w/nn - - eg m 

The quaternionic formulae for the right hand side Corollary 7.4 remain true, prc-

vided we sum over those b e R with b l 0 Another way to express this con-

dition is to insist that b r/: 0 this is necessary if the terms 

Corollary 7.4 are to make senseI 

ord (Nb ) 
p -

When v 1m , formula (8.4) must be modified slightly, as the u rA (m) cle­

O 
ments in Homy(x ,x)deg m/(±l) which do not appear on the right hand side ac-

tually contribute to intersections of x with its quasi-canonical liftings ~ 

which occur in T xo­
In-

A count of these liftings, together with their levels, 

as in §5 gives the correction term. 

Proposition 8.5. ASSUMe that v docs not divide N. 

1) If p is inert in K ~ 

o 1 ~ 1 
(~ • T~ ) • 2 L (1 + ord (Nb_» + 2 u rA(m)ord (m) 

bcRCl/±l p p 
lNb-mlNC\. 
b_~O 

2) If p is r~mifled in K then 

(x • T x
O

) a lord (DNb ) + u rA(m)ord (m) 
- m- beW!l p - p 

IN'b=mt-;tt 
bjO 

ir 
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3) If p - j • f is split in K and vis then 

o 
(x • Tmx ) • u rA(m)kj 

where k~ ~ 0 and k j + ~ - ordp(m) • 

When v\N Lemma 8.2 remains true. provided ~ reduces to the same com-

ponent as the cusp In our case, this occurs when vl1V. Using the ac-

tion of W'N on w • one can show that the tangent vector "d/"dt spans the 6ub-

module (N)~ X when vliV • Hence 
~-

Proposition 8.6. Assume that v\N • Then 

(x • T xo) -
- m- {

o if v/W 
- u rA (m)ordp(N) if v\1V. 
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§9. Explicit quaternion algebras 

We now seek a formula for the Bum 

(9.1) <c,T dO> 
m p defn. L <c,T dO> VIP m v 

The case when p splits in K can be handled in;mediately. 

Proposition 9.2 !i p splits in K, then 

o 
<c. T d > = -u rA(m)h ord (mlN)log p • 

m p p 

o 
~. By Propositions 8.5 and 8~6) <c.Tmd >;- u rA(m)jflog qv with j + j- ... 

~ r 
ord (m/N) • 

p 
On the other hand I log q - h log p • 

vlj> v 

We now assume that v divides a prime p which remains inert in K. PiA 

an auxiliary prime q with (s) _ (.:.E.) 
9. 9. for all primes £ID. Such 

primes exist by Dirichlet's theorem and must split (q) - <J- • «l- in K • The 

quaternion algebra B wi th Hilbert symbol (D,-pq) Is ramified only at and 

p • nnd we have a splitting: B .. K + Kj "'1th 
j 2 __ pq 

We ",ish to find a convenient model for the order R: En~/n(~) of COrol­

lary 7.4 as a subring of B. Recall that R has reduced discriminant N~ and is 

locally an Eichler order at all finite £ I p. A global order S with this 

local behavior is given by 



t 
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{ -1 -1 -1 0 } S.. a + ~ j : a (; ~ ,~£ ~ OJ.. ~ , a :: a mod t 

where the congruence is for all primes '1 of 0 dividing ~. By a fundamental 

result of Eichler [10, p. 118) there is an ideal -(. of 0 such that R~ - ,"S 

inside B. If 0\. is an ideal In the class A corresponding to ° (as in 7.4). 

we have 

(1.3) Rat... {a + 8j 
_ ord

f
(6) 

a (; ~ ~. 8 ( ~-l~ -~ ~ ~-1 ~ • .(:: (-I) B mod 8
J

} 

The class $ of the ideal ~ depends on the place v which divides p. 
O~ 

If VI .. v we find {,.., - t-J:. , so fiJI - 8lJ. ~ • Hence the different classes 

of ideals which arise are permitted stmply transitively by Gal (H/K) • If we 

sum over all primes v dividing p • this class will drop out of the final for-

mulas. 

We nov consider the local sums in Corollary 7.4. Assume b .. a + Bj .E: R~ 

satisfies 

(9.4) 
{ 

Nb - Na + pqNa - mNO(.. 

Nb_ - pqNB ; 0 • 
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If we define the integral ideals of 0 

(9.5) 

{ 

J:. - (a)~ ot.-1 

r.' .. (e)!:tl~f\.-~-l~~l 

then r!. is in the class A-I and ~' 2 -1 
is in the class Am [~ ] • Further-

more, we have the identity: 

(9.6) NJ! + NpNJ:!' - mini 

TIle integer n c NNe' is non-zero and ord (n) - ord (Nb ). Recall that u-r' p p_ 

Card(O*/±l) and for any integer n define o(n} - 2card{£I(n.n)}. We shall 

prove 

Proposition 9.7 If P is inert In K, then 

<c.T dO> 
m p r A(m}h u ordp (m) log p 

- u
2
10g p l ordp(pn)rA(mIDI-nN)6(n)R{A h}(n/p) 

O<n<~ ~ 
N 

n~O(mod p) 

Proof. We will use Proposition B.S and the fact that <c,T dO> -m v 

-210g p(x • T xo) ,as q = p2 
- m- v The first term is clear, so it remains to cal-

culate the sum over b 
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in the different R~. 

Let us start with a pair of ideals ~ and S:!' in the classes of A-I and 

-1 2 2k-l I I A[~n ]~ which satisfy (9.6). If n - pNc' - p n' then N~ - m n - nN • 

We will try to construct clements b a a + Bj in R satisfying (9.4) by 

* reversing formulas (9.5). This defines a and B up to units in 0 ; what-

ever generators we take, the fact that mN~- Na + pqNB is integral implies that 

a :: ±/3 mod Of for all j I!i'. If we lll8Y adjust the signs so that 

_ ord,,<&') a = (-1) 1 e we will obtain an element in Rat. But we will always get an 

element in R'~, at a place v' conjugate to v by an element of order 2 in 

Gal(n/K) • Thus each pair O=,t!.') contributes to the sum L (x • T xO) 
vip - m-

some 

elements of weight 
1 2"(1 + ordp (JNb_» The total number of elements which 

2 
arise from this pair is equal to 2· u • o(n) since we only count b up to 

sign, this gives Proposition 9.7. 

The case when v divides a prime p which is ramified in K is quite 

similar. Let j> be the prime which divides (p) in K and let f be the order 

of (r] in C£.(K). There are hlf factors v of .p in H, each of residual 

degree 
f 

p To obtain models for the orders R:- En~hr(~) in (7.4), we let 

q be a rational prime with (..s..) .. el ) for all pi -/: p which divide n 
p' p' 

and (.::..'l) .. -1 • Then q" ",.cr. splits in K and B has Hilbert symbol 
p 

(n,-q) • We have a splitting B - K + Kj with j 2 • _q • 

H~re we find that 

(9.8) 

Ro-.. - {a + Sj a £ f~-k. , 8 £ yrl'-l~-l:n-"{. 6--1 Oi, a ( 
ordt~) 

_ -1) J. mod Of} 
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where '! divides ~ • The class of -t is well defined in the quotient group 

C£(K) /[~] by the place v. An element a + Bj .. b € R~ with Nb - ni'lot and 

Nb ~ 0 gives integral ideals 

{ 

Q-l 
1:. - (a) Nat.) 

\:' '" (S)f)1-:n--l"rt Ii-I) 

(9.9) 

which lie in the classes of A-I 
-1 2 

and A[VV ]$ respectively. "Both are di-

visible by J ' and their norms satisfy 

(9.10) N~ + N INc' .. mini. 

The integer n - N r:.' is non-zero, and ord (n) cord (DNb ) • 
p p-

the proof of Proposition 9.7, we find: 

Proposition 9.11. 

<c,T dO> 
m p 

If p is ramified in K, then 

rA(m)h U ordp(m)log p 

Arguing as in 

2 -u log p I ord (n)rA(m\nl-nN)o(n)R{A }(n/p) 
~ p ~~lv 

O<n< N 

n=O(mod p) 

\I 
.. ~ 
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Chapter IV. Derivatives of Rankin L-series at the center of the critcal strip 

In this chapter we will study the values of a certain L-series of Rankin type 

and of its-first cerivntiv~. ThiH L-Rp.ries is determined by the following data: 

i) An ideal class A in an imaginary quadratic field K. We fix the 

follo\ling notations: D is the discriminant of K, c(n) = (Q) the associated 
n 

Dirichlet character (an odd primitive character of conductor 101), elK the 

class group and h = elK the class number of K, w ( :c 2. 4 or 6) the number 

of units of K, r
A 

(n) the number of integral ideals of norm ,n 

in the class A if n i! t , r
A 

(0)" .!. w • 

ii) A cusp form 
nev 

f E S2k (rO(N», where k is any positive integer and 

is a positive inteeer which \Ie assume prime to D Here snew (r (N» 
2k a is 

n 

the space of cusp forms of weight 2k and level N which are orthogonal 

(\I.r.t. the Peters;,on product) to all oldforms (= forms g(dz) \lith g of level 

H<N, dMIN); it is spanned by ne\lforms (Hecke eigenforrns) but ve do not assume 

that 

fez) 

(0.1) 

f is a nevform. We vrite I a(n} 
n=l 

and L(f,s ) for the Hecke L-series 

211inz 
e 

r a(n) 
1 

Given this data, \Ie define a Dirichlet scries 

... 

for the Fourier expansion of 

-8 
n 

LA (f,s) by 

LA (f,8) .. L (N) (2s-2k+1,e) I a(n) r A (n) 
-s 

n 
n=1 

. . . . (1{)(2 ) \' () -23+::k-l d ~ l.e. as the product of the Dlrlchlct L-funct10n L s-2k+l,£ = J. E n n an -uc 

(ntN)""l 
convolution of L(f,s) \lith the zeta-function L rA(n) r;-s of the ideal class 

A We viII shov that L A( f,s) extends analytically to an entire function 

or 6 (this is the reason for the inclusion of the factor 1.(1'1) (2s-2k+l ,C) in 

(0.1» and :>utisfie~ the functional equation 

(0.2) L~(f,S) -2s s I 13 (2 ( ) . = (2n) N Drs) LA f. s - d N) 1.1 (f. 2k -3) • 

In particular, if c(N) +1 then LA (f,s) vanishes Ilt s=k the main 

result of this ('hapter viII be a formula for the Jerivlltive L' (r,k) in 
A 

this case, We will also obtain a formula for the value of I~(f.k) if E(N)--l 
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(and more generally for all the values t. ~(f ,r), r - 1,2, •••• 2k-1 ) ; 

this case is much simpler. The case which is related 

to Heegner points on XO(N) is k and c(p) ·'1 for 

nll primes p dividing N (i.e. D a aquare modulo 4rl) • HO\lever, doing the 

computations for arbitrary even \lcight not only involves no extra vor~, but actual_ 

simplifics things, since for forms of veight 2 there are extra technical 

difficulties (connected with the non-absolute convergence of Einenstein series 

and Poincare series in this \leight) vhich obscure the exposition, so that it is 

convenient to first treat the general case and then discuss the modifications 

necessary when k=l The case \lhen k=l and c(N)= 1 but c(p) is not 1 

for all piN is also interestine, oince it turns out thut the formula \Ie obtain 

for L'A (f ,1) in that case is related to the heieht of 0. Heeener point on II 

modular curve associated to a group of units in the indefinite quaternion alge­
bra over Q ramified at the set of primes p \.Tith ord p(N) odd dnd (: (p) ... -1 . 
The case k=l, c(N) "-I is related to special points on a l'urve associated to a 
d~finitc quaternion algebra over IQ. ('-or octails, see §3 of Chnptcr V.) 

One case of the theorem is particularly striking and should be mentioned, 

ecpecially as it permit:; one to understand the presencc of the factor L(n) (2:>+2k-:i 

in (O.l) and the form of the fUllctional equation (0.2). If X :CI
K 

.. C· is an 

ideal class character of K, then \Ie CUll form the function 

(O.3) LK(r,X,s) L x(a) a(N(a»N(a)-s 
a 

L X(A) 
I<IECl

K 

LA (1',0) • 

and clearly the propertic3 of these functions (analytic continuation, fW1ctional 

equation. derivative at s=k) can be read off from those of the functions (0.1) 

and conversely. Now 5UPPO:;C that X is a genus character. i.e. a character 

vith values :t:1. R·~call til'lt such charucters correspond to decomposi tiOllll of 0 

as a product or tva dis~rimilJullts 01' quadrllt ic fields (or1f~ real and one imaginary). 

the chnrtlct~r X
D 

corr'esponriing to the decompo:;i tioll 1) D· 0 
1·1)2 1 2 

being 

churacterized by the pl'operty X (n) = CD (II (a»)" fn (r-l(a» 
1 2 

for integral idenln 

a prime to D (here C

Di 
is the Dirichlet cl13.rnctcr associated to Q( !Di» 

The L-series LK( So ._X) of such a character is equal to the product of t.hc tva 
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Dirichlet L-series L(s,eD.). On the other hnnd, if f€ S2k(ro(N» is a Hecke 
1 

eigenform, then the L-series of f has the form 

L(f,s) 1 -5\ , n -( 1---0 -p -=1'81\)( 1 - 13
p 

-
p p 

p2k-l (PfN), 

a +/i =a(p), 0pap ={ 0 (piN), p p 

and a simple calculation shows that the convolution of this with LK(s,x) equals 

L(N)(2S+2k-l,£)-1 times the product of the two "twisted" Hecke L-series I,(f,(;O.'s) 
1 

l CO. (n) a( n) n-
s 

n 1 
Hence we have the identity 

(0.4) LK( f ,X
01

'
02

,6) L(f,£o ,5) L(f,£o ,6) 
1 2 

( f an eigenform) • 

On the other hand, it is well-known that the twisted L-s~ries L(f.£O .• s) has an 
1 

nlyt' . . d f' ., f ()-s s/2
1 

IS ( ) an 1C cont1nuatlon an a unctlonal equatlon wlth gamma- actor 2n N 0i r 0 

and sign 
k 

(-1) co.(-N)w • where 
1 

w = ±l is the eigenvalue of f with respect to 

the Atkin-Lehner involution 
-k -2k -1 

WN: fez} .... N z f(Nz)' When we multiply these two 

functional equations we obtain a functional equation for LK(f.X,s) with gamma-

fuctor and sign as in (0.2), independent both of the value of wand of the 

choice of (genus) character. (The fact that the sign of the functional equation 

does not depend on the eigenfonn chosen shows that this functional equation 

. neve (» . ., 
1S true for any element of S2k rO N , unllke the 51 tUlltlon for the Hecke 

L-serieo L(f,s) which has a functional equation only if f is un eigenfunct.ion 

of W
N

.} If c(N)=l then one of the tva L-ncries on the rieht-hand side of (0.4), 

say the first, vill have a functional equrltion ~ith a minus sign nnd the other 

a functional equation with a plus Gign. and our mllin result will specialize to a 

formula for the product V(f,Cn .k)IAf,c ,k). If' 1'.=1 IWli t.he eigcnfol'lD f 
1 D2 

ha~ integral Fourier coefficients, then the value of \..Ili~; pruduct will uc related 
n 

to the height or/point defined over Q on the twint by III of t.he ~lliptic curve 

associated t.o 1'. This is the situation ",hidl wns ntwlied extensively (numerically) 

by Birch and Stephens (4,5]. 

The plan of this chapter is ns follovs. In ~l we will apply "Rankin's method" 
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to obtain a formula for LA (f.s) as the Petersson scalar product of f vith 

the product of a theta series and a non-holomorphic Eisenstein series. This 

product is a modular form on rO(NO) nnd must be traced dO\lll to roCl{) to get 

a (non-holol'!1orphic) modular form ~ bf level N whose Peters son nrocuct 'With f 8 • 

also gives the desired i-function. Thin is carried out in §2, vhile §3 contains 

the e~lculution of the Fourier coefficients of i s 
In §4 \Ie check that each 

of these Fourier coefficients satisfies a functional equation in B and calculate 

their value or derivative (depending on the sign of the functional 'lquation) at 

the symmetry point. 'I'his establishes the functional equation (0.2) and gives 

a formula for LA (f ,k) or L'A(f,k} as the !lcalar product of f vith a 

certain non-holomorphic modular form III of level N. The final step. carried 

out in §5. is to replace 0 by a holomorphic modular form ('I) havin~ the same scalar 

product with f this is done by menns of the holomorphic projcction operator 

of Sturm [3)]. 'l'he modification!) needed to treut the case k = 1 are described 

in §6. It is suggested that. at least on a first perusal, the reader mentally 

restrict to the case N= 1, k> I, 101 prime, since the ideas of the proof are 

the same here as in the p,enernl case but many of the calculations (e.g. those of 

§2 and §6) can be omitted or drastically shortened. Even the case N=l, k=l is 

interesting, for even thuugh there are 110 cusp forms f in this case, the function 

III still makes sense arlll the fact that its Fourier coefficients are identically 

zero gives non-trivial information about the value of thc> clas!31cal modular 

function j(z) at quadratic imaginary arguments. thin !limplest case is discussed 

in [181. 

Convc>nt ions. For z (II we write x, y for the re:ll and im.lginary parts 

of z and q for e 2'1!iz The functions e2nix (x f() and e2nia/n (a f.Z/nZ) 

will be denoted c(x) and cn(a) , respectively. If a is an integer being 

considered modulo another integer n to which it is prime, then a* denotes 

the inverse of a (mod n) thlls the notat ion en (a*b) impl ies that (a ,n) - 1 

~ 
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and means e2nicfn with ac II b (mod n). If f is a function on II , k e:Z 

and y - (: :) e: GL;OR) , then flky has the usual meaning in the theory of 

( I ) ) ( k/2 -k az+b . modular forms: f k Y (2 .. ad-be) (cz+d) f(cz+d)' If N 18 a natural 

number and X a Dirichlet character modulo N, then we denote by i\ (f O(N) ,X) 

the space of functions f: f( -4: satisfying f Ik y - Xed) f for all y _ (: :> 
e: rO(N) and having at most polynomial growth at the cusps (i.e. (flky)(z) _ O(ye) 

as y-+'" for all ye:SL 2 (Z) and some C>O) and by ~(rO(N),X) and Sk(rO(N),X) 

the subspaces of holomorphic modular forms and holomorphic cusp forms, respectivelYi 

the character X is omitted from these notations if it is trivial. 

§ 1. Rankin's method 

The assumptions are as in §O: D is a fundamental discriminant, A 

ideal class of ~(ID), and f(z) .. I n(n) qn a cusp form in 

some integer N prime to D .. Let 0A denote the theta-series 

(1.1) ° A(Z) L 
n-O 

r (n) qn 
A 

w r qNo.) fA 
). (a 

Snew(f (N» 
2k 0 

an 

for 

where a is any ideal in the class A and A-N(il). It is known that e
A 

belongs to M,<rO(D),c). (In §2 we will give the transformation behavior of 

8
A under all of 

r(s+2k-1) L 
(4n)s+2k-' n .. 1 

SL 2 (Z) .) Hence we have (for Re(s) large) 

a(n) rA (n) 

s+2k-l 
n 

J I a(n) r (n) e -4 n ny s+2k-2 
o n=1 A y dy 

ex> ; 1 
f f f(x+iy) 
o 0 

SA (x+ry-y dx yS +2k-2 dy 

f J 
r 0\11 

vhcrc r", { In 
±(O 1) , nfn}, actinR on 

f(z) -(-) s+2k dx ~y o z y 
A y 

II by intrger translation. 

mental dotn..'lin for this action C:ln be chosen to he U y r» where F 
y 

A funda-

is a 

fundamental domain for the action of rOO-I). X"NIOI. anu y runs over a 

sel of rig!lt coset represcntat ives of rO (}O 

modulo r~ Hence the last expression can be rewritten as 

2 jf f(z) ~ ys+2k dx
1
dy 

y E roo \f 0 (M) yF A y 
2 If f(yz) 6

A
(yZ) Im(yz)s+2k dx1dy 

y F y 

r ff f(z) 6 (z) c(d) y5 2k dx tr 
.y-:t:(~ d) e:f..,\fO(M) F 'A (cZ+d)2k-l Icz+d/ 2s Y l' 

where we have used the invariance of dx 2dY under SL
2 

(R) and the transfon:utic'l 
y 

properties of f and SA under r O(M). In the last expression we can inter-

change the summation and integration. We obtain: 

r(s+2k-1) 

(4n)s+2k-1 
LA (f, s+2k-1) If f(z) 

F 
° A(z) Es(z) /k dx lr 

y 

(C, 0A Es) rO(M) 

where E denotes the Eisenstein series s 

Es(z) = EM,c,2k-l,s(z) L (N) (2s+2k-l.C> I c(d) ~ 
( • • 2k-l I I' 

i c d) E r ..,\r OeM) (cz+d)' c7.+d\ 

1 
'2 L 

c, d E Z 
C sO (mod M) 

(d ,M) .. 1 

~----L 
(cz+d) 2k-l Icz+d I Zs 

in M
2k

_
t
(f

O
(M),c) and ( , )r (M) 

o 
the Peters son scalar product on rO(H). 

(The reason for including the factor L(N)(s-2k+I,c) in the definition (0.1) io 

now clear.) The process we just used to express the convolution of the L-serieu 
of t'.lO modular forms as a scalar product involving an Eisenstein series was first. 
used by Rankin and S{'lberg in 1939 and is commonly referred to as "Rankin's mcthot 

We no\ ... use the principle (f.g)r (M) .. (f,Tr~g)f (N) 

o 0 
f <:: SZk (f O(N» and r,d12k (rO(M», where Tr~ is the trace map 

M. 
TrN • M2k (ro(M» - M

2k
(f

O
(N» , 

This gives 

-s-2k+l 
(4n) f(s+2k-l) L

A
(f,s+2k-l) 

g - I g/2k Y 
Y f f 0 OO\f 0 (N) 

M 
( f • Tr

N
( 0 E-» 

A S 

for any 

where nolo1 the scalar product is taken on r/l(N). In the> definition of Eo:; 



l 
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the condition (d .M) .. 1 can be replaced by (d ,N) a 1 since c(d) = 0 otherwise. 

and this condition in turn can be dropped if we insert a factor 

( p - Mobius function) which vanishes if (d,N) > 1. Hence 

where 

E (z) 
S 

E( 1} 
s 

1 
2" L p(c) 

elN 
L 

c,d € :it 
Hie. e\d 

~~ 
(cz+d)2k-l Icz+dl 2s 

L u(e)de) 
2s+2k-l 

e 
(N/e)-s E(1)(!!.z) 

8 e 
elN 

is defined like E but with N 
B 

replaced by 

L \J(e) 
el(d.N) 

(Le. M by D); 

the last line is obtained by replacing c, d by c/N'. dIe. Note that the 

only non-trivial terms are those with e square-free and prime to D. Now 

when we form M 
TrN(OA Es) the terms with 

because any system of representatives of 

e > 1 contribute terms of level N/e < N. 

fO(M)\ro(N) is also a system of 

representatives for M N 
fO(e-)\fO(e-) • since f is orthogonal to modular forms 

of level smaller than N, these terms contribute nothing to the scalar product 

and can be omitted. (Actually. the definition of s~~w involves only the scalar 

products with ho10morphic forms. but the scalar product of f with any non-

hololllOrphic form g is equal to its scalar product with a holomorphic form g 

of the same level, as we will see in §5, so this doesn't matter.) We have proved: 

Proposition 1.2. Let D be a fundamental discriminant, N ~ 

and define a function ~s- ~s,AEM2k(rO(N» Ex 

where 

- ND (1) 
~s(z) Q Tr

N 
(OA(z)E s (N z» 

o A is the theta-series defined in (1.1) and 

E(\) (z) 
s 

1 
"2 I 

c,d EZ 
Dlc 

~~ 
(cz+d) 2k-1 \c7.+d \29 

prime to D. 

the non-holomorphic Eisenstein series of level 101, weight 2k-l and Neben-

~ c. Then for any f E s~~w (r 0 (N» we have 

-s-2k+l s 
(4,.) N" r(s+2k-1) LA (f ,s+2k-1) ( f , ~_) 

s 

""OtT 1M nln' "0 _:l ;1111nssp 
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Remark. The proof used only the orthogonality of f with modular forms g 

of level strictly dividing N and not the orthogonality of f with functions 

g(dz) with d > 1 and g a form of level dividing N/d. The effect of this 

second property of new . h· .. 1 2 1 h . f E S2k 1.5 t at 1.n Proposl.t1.on • on y t e Fourler 

coefficients of ~ with index prime to N are relevant. Thus to prove the 
s 

functional equation (0.2). for instance, it suffices to prove the corresponding 

functional equation for the coefficients ~(s.y) defined by 

00 

(1.3) ¢s (z) I ~(s,-y) e(mx) 
m =-co 

for m prime to N, since then the difference between o 
s 

and its image 

under the asserted functional equation is automatically orthogonal to f. In 

the same way, in giving formulas for the values of LA(f.s) at special points 

or for its derivative at s =k it will suffice to study the corresponding values 

or derivatives of Am(s,y) for (m.N)"1. It would not, in fact. be difficult 

to study the coefficients with (m,N) > 1 as well, or to retain the terms with 

e > 1 which were omitted in the proof of 1.2, and thus obtain formulas valid for 

all f E S2k<fO(N» , but this would complicate the notations and calculations 

and is pointless since one can always reduce to the case of newforms. 

§2. Computation of the trace 

The function ~s(7.) is defined .'lS a trace from fO(ND) to rO(N). To 

compute its Fourier development, we will need the expansions of 0A (z) and 

E~ 1) (z) at the various cusps of r 0(0). These cusps are in 1: I corrcspondence 

~ 
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with the positive divisors of D. (This is because D is not divisible by 

16 or the square of an odd prime; in general, to describe a cusp of rO(n) one 

must specify a divisor n r of n nnd an element of (~/(n',~)Z)*.) We write 
n 

o for ID I, 0 , for the divisor, 6
2 

- 0/6 , for the complementary divisor. 

The numbers 0 , and °2 can be written uniquely as the norms of integral ideals 

~ 1 and a 2 of K which are products of ramified primes. If (0 , ,°
2

) - 1, then 

we can uniquely write 0i" 1Di I with D, and D2 discriminants of quadratic 

fields and D,D2 .. D i we then have the associated Dirichlet characters c. -
1 

CD. (mod 0.) 
1 1 

and genus character XD -D as in §O. For odd D this is always 
1 Z 

the case, while for even D we can also have. (6 , ,° 2
) .. 2 _ Since the latter 

case is ~~re complicated, we restrict our attention in the next several sections 

to the case D odd, and discuss briefly what happens for even D 

in §8. 

It will be most convenient for our purposes to havc formulas for the 

behavior of 
°A 

and E( 1) 
s 

for all matrices in SL2(Z), not just a system of 

representatives for fO(ND)\[O(N) since later on we will need information 

about the Fourier development of ~s at all cusps of rO(N) rather than just 

at co. We begin with E( 1) 
s 

For each decomposition D - D,'D2 we define, 

with the notations just introduced, 

(2 _ 1) (Dl) (z) 
Es 

, 
- 2" L 

m,n EZ 
D21rn. 

this is compatible with the notat ion 

(1(m)c2(n) 
2k-t 

(m~+n) 

S 
Y 

Imz+nl2s 

E (1) 
s 

and belongs, as is easily checked, 

to M2k_
1
(f

O
(D),c) • For y • <: :) f SL2(~) with (c,D) - 62 we have 

E(t)1
2k

_
1

y 
s -} I 

m,n fa': 
D:m 

-} L 
m.n (ll 

mdOinc (D) 

c(n) yS ------:;....:--= 
(m(a~+b)+n(cz+d)]2k-l Im(az+h)+n(cz+d)1 2s 

£.. (:lO-bm) -.L 
(mz+n)2k-l Imz t nl 2s 

where in the sccond line we have replaccd (m,n) by 
-1 

Y (m,n). Now 
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rod iE nc (mod D) d(an-bm) EO (ad-bc)n - n, dan-bm) E (ad-bc)m - m (mod D) 

and hence, since (c,d) =, and (c,D)" °
2 

imply (c,D,)" (d,D2) -1 

c(an-bm) & c , (an-bm)c 2(an-bm) - c , (c)c , (m)cZ(d)c2(n) • 

The condition md B nc (mod D) is equivalent to the two conditions D21m and 

n 51 c*md (mod D,), where c* 

c*md + no,. and choosing c* 

is nn inverse·of c (mod D, ) _ Replacing n by 

to satisfy c*!! 0 (mod D2) • so that c
2

(mc*d+o , n) 

.. c2(0,)c 2(n) we find 

(1), y 
E 2k-' s 

, 
.. 2" I 

m,n EZ 
D21m 

Cl(c)c 1(m)c2(d)C 2(ol)c2(n) yS 

( * _,2k- 1 1 * 12s mz+mc d+o11v mz+mc d+o 1 n 

(Z.Z) CD (c) r.
D 

(do) 6-s- Zk+1 E(Dl)(Z+c*d 
1 2 1 1 --} S 01 

y = (~ ~) f SLZ(71). (c,D) '" ID21, D,D2 -D ) 

Wc now turn to eA' Here the corresponding formula is 

Lemma 2.3. 
a b 

..&!:. "Y'" (c d) E PSJ'2 (7Z) , (c ,D)"10
2

, ,0
1

• D 2"D ~ 

eA'l"Y 
.. £ (c/o)£ (d)K(D )-1 6-!X (A) e (z+cwd) 

Dl 2 D 1 1 D· D AV 6 
2 1 2 1 1 

.lilu:.r.e. K (D 1 ) ~ 1 QI. according as D, >0 Q.I: 

~ 0; - (D , ) • 

Dl <0 

the ideal clnss of th~ il,lcal {), 

~ V, is 

Proof: It will suffice to treat the case a b 
c-02• Indecd, Ie t "Y - (c d) be an 

it will suffice to treat the c."lse c· °2 • Indeed, let y _ (a b) 
c d be an 

arbitr.:lry el('ml'nt of SL 2 (;7.) with (c ,D) .. 62 and choose x E 7. so that 

CX Ii d6
2 

(mod D, ) and 

SL
2

(Z) , and th(' matrix 

(x,DZ) c' . 
-1 

YO ." H, 

Th<.>n we can find a rMtrix Y 1 .. (~2~) in 

(Clx-b6;.>. . . 
cx-d~ ) 1S in r OeD) so 

GAI,y '" 0A l ,yOY," (ax-bt5 2) 0A I,y , 

( ) 
-1 _1 +6* 

C 1 (C)f.. 1 6
2 

L
2
(a)c

2
(x)-c

2
(x)K(D 1 ) 6 2 X . (A) 0AV (~) 

1 0 1 D2 1 6 1 

by the special case c =n 2 of (2.3), and this prove~ (2.3) in general. 

assume c = 6') and writ.e 

So 
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'" I e(No.) a 
A Ea A (c + 1;» -1 1;----

c(cz+d) 

ith A, w as in (1.1). The number N(>')/A is integral and its value modulo 

- 62 depends only on A (mod a~2) • Hence 

e (az+b 
A cz+d) 

_ 1 
W r ; c ( N(A) 

).. Ea/a~2 c ~) r e(N(A+~) i) 
~ Eall2. A 

n the other hand, the Poisson summation formula gives 

r e(NO.+~) z) 
lJ Eb 

io-i r N(v) 
N(b)Z v E ~-lit -1 e( --z-) e( Tr ).v) 

or any zEn and any fractional ideal b of K (consider the left-hand side 

s a periodic function of A E 4:/b and compute its Fourier development), RO this 

an be rewritten 

S (az+b 
A cz+d) 

-i (cz+d) 

w of I e (a N~» L e(AN(v)c(cz+d» e(Tr AV) 
)..€a/ait 2 c v Ea-1,,;lit-1 

r, replacing v by v/62 ' 

e A 1, y - -i t C(v) e( AN(v) (z +!!» ---r 
",6 2 v Ea-1"ll c 

ith 

C(v) L 
" E a/a~2 

, N(A) 
e (a-

A
-) e (Tr >.v) • 

c c 

hoose "0 E a so that the ideal (AO)a -1 is prime to 1)2' Then as ~ runs 

ver a set of representatives for O/1l2 (0 .. r:ing of inter,ers of K) the numbers 

OU give a system of representatives for il / a"2' so 

C(v) L Co (R N(u» eo (Tr "OV\I ) 
lJ(Olil

2 
2 '1 

ith R .. aN(>'O)/A. Note that Tr().Ov\I) E'Z because -1 -I 
~OVII (t'l, ell , and that 

is prime to 62 , Hence, choosing an inverse R* of R (mod 6
2

) which is 

ivisible by D

" 

"'e find 

e 02 (RN(IJ) + Tr(AOv\J» • eo (RN (u) + RR *TrOO v~» 
2. 

, . ..,_Znln"Zn'~/n'ol 

so 

C(v) 
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eo (RN(~+R*A~v'» eo (-R*N(AOV» , 
2 2. 

- e (-R* N(A v» • O
2 

a ~ELod eo(RN(~» 
2 2 

Because °2 is square-free and completely ramified, one can choose the 

integers modulo 02 as a system of representatives for 0 1~2' so 

lJ E b/D C O2 (RN(~» 
2. 

L e (R 2 
n E71/6 0 n) 

2. 2. 

- K(D2) o~ £D
2

(R) 

by the usual evaluation of Gauss sums. Also, 

d * e(AN(v) (z +c» e
c 
(-R N().·ov» e( AN(v) (z + d-R*N(Ao) IA 

• 2. ) ) 

* .. e ( N (a ~ ,) N (v) Z +c d) 
01 

because d-R*N(AO)/A is 

cD (d) XD 'D (A) because 
2 1 2 

Therefore 

&0 (mod 6
2

) and 

R = aN(b) with 

Ed (mod 01)' and £0 (R) 
2. 

-1 
b = O'O)a in the class A-1 

SA /, y 
-iK(D") 1 \' *d ~ Co (d) xo •o (A) W l e(N(ad,)N(v)~) 

1 2 12. v Ea- 1,,-1 0 1 

and this completes the proof of (2.3) since K (O,)I(02)=i 

From (2.3) and (2.4) we find for •• (~ ~) E rO(N) with 

and 9A-'O'1-1'"0AV, 

(c,D) - °2 

E(1)(NZ) 0A (z) 12k y s 
(1) I a bN I a b 

(Es 2k-l (c/N d) )(Nz) (OA 1 (c d) )(z) 

-s-2k+l -1 -l 
c , (c/N)c2(do , )6, £,(c/0 2)c2(d)K( 0 ,) 0 , Xo .o (A) • 

1 2 • 

• E(Od (Nzt(c/N)*d) 
S 01 

0AO (ztC*d) 

1 °1 

.. c , (N)K(D )-1 6-s-2k+} X (A) E(D 1 >(N7.+c*d) 
t I 01'0 2 S °1 

o (Z+c *d 
At\ -6-

1
) 

",here we have used COl (° 2) l02 (6 t) = 1. The trace from ro(ND) to rO(N) is 

of rO(ND)\rO(N), 
. . \' 6 . (a b) glven by summing over lOlln 1 representatIves c d 

the representatives being characterized by the value 6
2 

- (c,D) and by the 

t 
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residue class of c*d modulo 6 , - 0/02 • lIence 

,.... ND (0 
~s(z) .. TrN (Es (Nz) 0A (z» 

cD (N) XD D (a) r 1 1· 2 

D - D1·D2 K{D1) 6~+2k-lh 
r E(Dl)(N~} 0 (~) 

(mod 6
1

) S 01 AVt '\ 

t CDl(N) XD fLea) ( ( 
L --''----..::::..1.1...::~~ D l) 

D '" Dl 002 K(D ) 6s+2k-3/Z Es (Nz) 
1 1 

°AV
1
(Z) )1 U

D, 

where Un (n Eli) is the usual operator 

U 
n 

f(z) 1 
n I f(~ 

(mod n) n) 
I A (y) e(mx) ..... y. A (y/n) e(mx) 

m EZ m m Ell mn 

on functions on J( of period 1. But for any function f on J{ of period 

we have 

(f(z) 0AV,<Z) IUol .. (f(6 2 Z).()AV/ 62z» luo .. (f(6 2 z) 0lz» IUa • 

because e (0 2 z) and 0A (z) have the same n-th Fourier coefficient for 
APt 

any n divisible by °2 {since AV 1 • AV2 and any integral ideal of norm 

n is ~ times an integral ideal of norm n/6
2
}. Hence we obtain finally: 

Proposition 2.4. Assume (D,2N) -1. Then the function '0 (z) defined in Pro-
------ s 

posit ion 1.2 is given by 0
S

• (Es(Nz)OA(z»IU
1DJ 

• uhere 

E (z) 
s I 

Co (N) Xo n (A) (D) 
1 ;:2k-3/2 E8 1 (ID1 Iz) • 

0-01·D, K(Ol) Inll 

H~re the sum is over all decompositions of 0 as n product of two fundamental 

discriminants D1 and D
2

• 

K(O,) • 1 ~ i according as 

series (2.\). 

Xo D is the corresponding gl'nus character, 
l' 2 

0 , > 0 or n 1 < O. and r.(U 1 ) 

s 
is the Eisenstein 

Note that Es depends on N :tnd A (or at least 011 N modllio 0 and 

on the genus of A); however,we omit this dependence in our notation. In the 

Cllse k-2, 10/ .. p price and C(N)"'l , Es(z) 
.. (1)() . -5-t (p) 
1S sImply E pz -1P E (z). 

5 s 
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§ 3. Fourier expansions 

Let Es(z) be the combination of Eisenstein series defined 

in Proposition 2.4 and write 

E ( z) = E e (n , y) e (nx) 
s nE:iZ s 

(z=x+iyEH) • 

Then Proposition 2.4 gives the Fourier expansion 

(30 1 ) ~ A (z) s, L 
nE:iZ 
R..~ 0 

cs(n,¥)rAC!.) e-2n 9.y/o C(N~+!.x) 

Nn+R..eO(mod D) 

(6=101 as before). The coefficients esCn,y) are described by 

the following two propositions. 

Proposition 3.2. The nth Fourier coeffiCient of E Cz) is --- s 
given by 

es(O,y) L(2s+2k-l,c) (lSy)S + ~5~) V
s

(O)L(2s+2k-2,c) (6y)-s-2k+2 

if n=O and by 

tC!\) - s - 2 k + 2 , c (n , d ) 
e (n,y) =!7r (oy) Vs(ny) [ 2s+2k-2 

s lyO dl n d 

d>O 

if n/O I where (n,d) fA(n,d) is defined by 

t (d), 

0 

I-Na) 
D, D2 

if 
r. (n,d) 

X DoD (A) 
1 2 

if 

n 
(d'd,D) * 1 

n 
(d'd,D) 

ld,D)=/D2 1,D
7

D2 =D , 



and Vs(t) (sECC, tElR) 

Vs(t) '" f 
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is defined by 

-2nixt dx e 
(x+i) 2k-l (x2 +1) s 

(Re (s) > 1-k) • 

Proposition 3.3. The function VB (t) ocurring in 3.2 has the 

following properties: 

Then 

where 

a) Vs(O) (_1)kni2-2s-2k+3 r(2s+2k-2)/r(s)r(s+2k-l). 

b) For t*O the function Vs(t) continues holomorphically 

to all 5 and satisfies a locally uniform (in 5) esti-

mate Vs(t) =ltIO(1)e-2nltl ( 1 t I .. (0) • 

c) For t*O , set V*(t)=(nltlr S
-
2k

+1 r(s+2k-l) Vet) • s s 

V~ (t) is entire in s and satisfies v:(t)=5gn(t)V;_2k_2S(t) • 

d) 

e) 

Let r be an integer satisfyi~ O~r~k-1 • Then 

(t<O) , 

{ 

0 
V (t):: 
-r 2ni(_1)k-rp (4 n t)e-2nt 

k,r (t > 0) , 

Pk,r(t) is the polynomial 
2k-2-2r r r (-t)j 

(t/2) E (j) (2k-2r-2+j J I 
j=O 

For t< 0 , the derivative with r p ::p0ct to s of Vs(t) 

at the symmetry point of the funcllvnal equation is 

given by 

diJs Vs (t) I s=l-k - 2niqk_l (4nltl)e- 2 ':!t (t < 0) , 
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~ 

00 k-l 

f 
(x-l) -xt 

k e dx 
x 

(t>O) • 
qk_l(t) 

~. We have 

£0 (N) Xo • ° (A) 
, , 2 (01) 

es(n,y) E 
0=0

1
• O2 

K{O )6s+2k-3/2 e s (n/6 2 ,o2Y)' 
, 1 

where e (0,) 
s 

°21n 

is defined by 

E (0,) (n,y) 
s 

E e (O, ) . 
nE7l s (n,y)e(nx) 

The computation of the Fourier development is standard. The terms 

with m=O 
in (2.1) give 0 unless 0,=1 (since ID 1 1>1-£,(0)=0), 

s 
while if 0,=1,0

2
=0 they give L(2s+2k-',£)y . On the other 

hand, the poisson summation formula gives the identity 

with 

E 
iEZl (z+1) 2k-'1 z+i 12S 

-2s-2k+2 E 
y rEZl 

Vs(ry)e2trirX 

VS(l) as in Proposition 3.2, so 

E;"')(Z) - t,(2'·:k-"C)y' if D(1 

otherwise 

n -2k+t n -28 s y 
,S2s+2k-1 

2 

E c,(m~) r £2(n) E (mz+o::-+i) Imz+6+il 

mel n(mode
2

) tE"71 2 2 

C,(6
2

)y-S-Zk+2 £, (m) 
E 2s+2k-2 r (;2 (n) r V (rmy)e (rmx+ ~n ) 

62s+2k-1 
2 

m=1 m . n(mod 6
2
). rEZl s 2 

J 
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But 

L n(mod 6 ) £2 (n) e (rn) 
2 °2 

£2(rh:::(0 )6 1/ 2 
2 2 

(Gauss sum), so this equals 

'Hena:! 

while 

£1 (02 ) K(02) 

62s+2k-3/2 
2 

e(O,) (O,y) 
s 

y-S-2k+2 r £1 (m)c2 (r) 

m>O m2s+2k-2 

rE2Z 

v s (I11¥) e (t:1TIX) • 

{ 

L(2s+2k-',c)yS 

V
s

(O)L(2S+2k-2,c)y-S-2k+2 

o 

if 0,=1,.0
2

=0, 

if 0.=0, O2= 1, 

otherwise, 

(0,) (n,y) e s 
C l (6 2 ) K(02) ( c l (m)C 2 (n/m») -s-2k+2 
02s+2k-3/2 L, 2s+2k-2 y Vs(ny) 

2 m n m 
m>O 

for n;' 0 • For the coefficients of E s this gives 

B (; (N) -s-2k+2 
e (O,y) • L(2s+2k-t,C)(oy) + ~ V (O)L(2s+2k-2.c)(Oy) 

8 lrO 5 

3 ( cO(mo2)cn (n/mo2») 
. -s-2k+- E E 1 2 -s-2k+2 

cs(n,y) .. 16 2 IFoIJi02 COl (-N)xDjDz (A) mln/'~2 (m6

z
)2s+2k-2 Y vlny) 

D21n m>O tnl0) , 

where we have used K(02)/K(01) = ie
O 

(-1) . The inner sum 
1 

rewritten ~ -2s-2k+2 
O<dln (0

1 
(d) c

O2 
(n/d)d , since the only 

zero terms here are those of the form d=md
2 

(021n and 

can be 

non-

O2 must 

be prime to n/d). This gives the formula stated in Proposition 3.2. 
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We now give the proof of Proposition 3.3. The inteyral defining 

Vs(t) can be found in several standard tables, where it is ex­

pressed in terms of Hhittaker functions, but the resultn fC'und in 

various tables do not agree and we prefer to give direct ph)ofs 

of all the properties needed. We start with a). We havo 

Vs(O) - J 
. 2k-l k-t.( 

(X-1) dx D -2i r (-I)J 2~-t) f 
(x2+t)s+2k-l j-O 2J+l 0 

x2k-2j-2dx 

(x2+0s+2k-1 

2k-1 where we have expanded (x-i) by the binomial thcor~m and 

discarded the odd terms in the integrand. The integral ()cC"l1rring 

in the sum equals ~ r (k-j-~) r (s+k+ j-~) Ir (s+2k-l) (bet." function) 

so using the duplication formula for the gamma function, WQ find 

k 3-2k-2s k-t k-t-j , 
V (0) - (-1) 2 . lIif(2s+2k-2) E (-1/4) (2k-OI (s+k-'2) .•• (st-k+j-!). 

s r(s+2k-1)r(s+k-1) j .. O (2j+t)I(k-t-j)1 2 

That the sum equals S (s+') •.• (s+k-2) can be checked hy hand 

for small valves of k and by a tedious induction arqum~nt in 

general. A different method, which is less elementary but works 

directly for all k, uses the Henkel integral formula for 

l/r(s) 

Va (0) (_1)k-l i f dx 
(1+ix)s(1_ix)S+2k-' 

(_l)k-l i f 
f(s+2k-l) 

(_n k - 1 j 
r(s+2k-l) 0 

foo -u(l-ix) s+2k-2
d 

d e u u y. 

(l+ix}s 0 

(

-1+1<0 ) -2u s+2k-2 I -s -uz e u (- Z) e uz 
-1- 1<0 

dU 

(z=-1-1x) 



(-1) k 

f(s+2k-l) 
f 
o 
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-2u s+2k-2 (2ni 5-1) d 
e u r (5) u u 

= 2ni(-1)k2~2S-2k+2r(26+2k_2) 

f(s)f(s+2k-l) 

This proves a) and the meromorphic continuation of Vs (t) when 

t=O • 

Now suppose t :> 0 and de fine v: (t) a s in c). 

Then 

v~ etl f (X_i)2k-1 ([ u s +2k- 2 e-nt (X
2

+1lu dU) e-2nitx dx 

J u s +2k- 2 e -nt (u+l/u) f e -nbJ(:x+i/u) 2 (x_.i)2k-l dx du • 

o 

In the inner integral we move the path of integration from 

Im(x) = 0 to Im(X) _1 and make the substitution u 
i v x=- U + ru (vEE) to obtain 

v~ (t) f 
us+k-l -nt(u+l/u) f -n tv2( u 1/ 2 _1/2)2k-l du e e v+ +u dv -

o • u 

This integral converges for all s and is clearly an even func-

tion of s+k-l (replace u by l/u) , so we have obtained the 

meromorphic continuation and functional equalion of Vs(t) for 

t> a ; the proof for t < 0 is exactly similar. If we wish, we 

can use the last formula to write V;(t) in terms of standard 
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functions: expanding ( 
1- 1)2k-1 

v+u ~U-2 by the trinomial theorem 

we obtain the expression 

(-1) k-a(2k-1)! 
v*(t) - i 

8 
r 

a,b,c~O (2a)lblcl 
2a+b+c"2k-1 

f(a+; 1:? JeD s+k+'l::£-l -nt (u+.!) 
Jl+;z u 2 e U du (nt) 

2(-Oki .. --:TT2 
t 

r 
a,b,c2:0 

2a+b+c-2k-l 

(2k-O I 
a!b Ic I 

o 

( 
_1)a 

4nt Ks +k_ 1+(b_c)/2(2TIt) (t>O) 

for V;(t) as a linear combination of K-Bessel functions, the 

functional equation now following from Kv(z)=K_v(z) by inter­

changing band c • For k=1 the formula simplifies to 

v~ (t) -2i ( ) r.- Kl (2 1f t) + Kl (21ft) (k=l,t>O). 
t't 2'+s 2 6 

In any case,we have proved the functional equation c). The esti-

0(1) -2nltl mate V*(t)=J~ e in b) follows easily from the above 
s 

integral representations or from the explicit formulas in terms 

of Kv (2nt) • 

For d), we note that 

v (t) 
-r 

r 

J (x-i) -2nixt 
2k e dx 

(x+i) -l-r 

for rEll, O$r!ik-l (for r=k-l the integral is only conditio-

nally convergent; we could also treat the cases r=k,k+l, .•. ,2k-2 

by using the functional equation). The integrand has a pole only 

at x=-i, so if t < 0 we can move the path of integration up to 

~ 



+iw to get V_r(t) 

to -iCXI to get 
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o , while if t> 0 we can move it down 

V_r(t) :: -21fi Res ( (x-i,r -2nixt ) 
x=-i 2k-l-r e (x+i) 

-2ni 
r 
L 

j::O 
(:r:, 
J ( 

-2nixt ) ~2i)j Resx=_i e,2k-1-2r+J 
(x~i 

(-1)k-r2ni Pk (41ft) e-21ft 
,r 

Finally, suppose t<O and consider the integral defining 

Vs(t} near s = l-k • The integrand is well-defined in the x-plane 

cut along the imaginary axis from -iCXI to -i and from +i to 

+i oo 
, and we can deform the path of integration upwards to a path 

C circling the half-line [i,ioo ) in a counterclockwise direction 

(from -£+ioo to i-i& to +e:+ioo). The new integrand converges for 

all s (this, by the way, shows that Vs(t) , and not only V:(t) , 

is entire in s for t <0 , and a similar argument applies for 

t > 0 if we deform the path of integration downwards to circle 

( -iw, -i] ; this complets the proof of 3. 3b, which up to now we had 

only established with "meromorphically" in pl ace of "holomorphically"), 

and we can differentiate undcr the integral sign to obtain 

~ V (t) Is=i-k as s - J 
C 

2 -2nitx log (x +l)e dx (t<O) • 
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The function log(X
2

+1) is continuous on C and changes by 

2ni as one passes from one side of C to the othel" across the 

branch cut [i,ioo ) • Therefore 

a i oo k-l 
as v s (t) I s= l-k = -21f i f (x-i) 1, e -21fitx dx 

(x+i) 
(t < 0) , 

i 

and replacing x by 2ix-i we obtain the formula given in e). 

This completes the proof of Proposition 3.3. 

From equation (3.1) and Propositions 3.2 and 3.30 we obtain 

a finite formula for the Fourier coefficients of ~s(z) at 

argumen ts s = -r ( r = 0, 1, ..• , k-l) as polynoml.als in ! of 
y 

degree r 

Corollary 3.4. For rE~, O.;r:;k-l, we have 

i (z) 
-r Jo C,Lm

N
, en,r(Y) r,A(m'-nN) c

2
•

imr 

where 

with 

for 

{ 

-r I,(2k-2r-l,c) (Ny) 

n l-k fL(l,c) - C(N)nL(O,dJ (Ny) 
eO,r(y) 

en,r(y) (_l)k-r c(N) 211 (Ny)r-2k+2 p (4nNny) 
76 k,r 6 

if r<k-l, 

if r = k-l , 

dr.n '",A.(n,d) d2r-2k+2 

d>O ( n > 0 ) 

Pk,r ~~~_"~.:"~~, c..o\(n,d) as in 3.2. (We have written en,r(Y) 

( ~l) 2nNIlY/cS ) c_ r n, to e . 

In particular, ¢O,A is a holomorphic modular turm; this, of 

coursc, was clear ~ priori since the definition of the Eisenstein 

series £ s (z) shows tha tit is holomorphic in z at s = 0 • 
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§ 4. Functional equation; preliminary formulae for LA(f,k) and ~(f,k) 

We wish to prove the functional equation for L}f ,s) given in (0.2). In 

view of Proposition 1.2 and equation (3.1), this will follow from the ~dentity 

(4.1 ) e*(n,y) 
8 

:- 'If-
S 

6
s 

r(s+2k-l) es(n,y) - - c(N) ei_2k_s(n,y) 

for nEZ satisfying 

(4.2) Nn + 1 :: 0 (mod D) for some 11 ... N(a), a..-integral ideal in .A. 

From the first equation of Proposition 3.2 and (a) of Proposition 3.3 we obtain 

e*(O.y) (s+k){s+k+I) ••• (s+2k-2)( n-s 6s f(s+k)L(2s+2k-l.£») {6y)s 
s 

~-s s-~ 2-2k-s 
- £ (N) (2-k-s) (3-k-s) ••• (-s)[ n <5 f(s-+:k-!i)L(2s+2k-2,£») (6y) , 

and this proves (4.1) for n - 0 since the two expressions in square brackets are 

interchanged under s-+2-2k-s by the functional equation of L(s,£). For nlO 

we have 

* ) . ) I Ik 2k-l -2k+-! * e (n,y --l£(N n 'If 6 Y V (ny) 
s s 

r c,in.d) (Inl/d2)s+k-l 

dTn 
d>O 

with V:(t) 

of V:(ny). 

as in (e) of Proposition 3.3. In view of the functional equation 

therefore. (4.1) viII follow from the identity 

(4.3) ~(n , In lId) - - c (N) sgn(n) ~(n.d) 

for n satisfying (4.2) and d a positive divisor of n. We clln assume that 

n (d 'd' D) • 1 since otherwise both sides of (4.3) are zero. Then D decomposes 8S 

D - DOD'D", ID'I - (d.D) • ID"I - (J,D) 

with DO' D' • D" discriminants nnd DO prime to no Th~ discriminants Dl 

and DZ in the definition of e(n.d) are then DOD" and n' • respectively, 

while the corresponding discriminants for c(n,lnl/d) are UOU' and D" . Hence 

e(n.d) 
n 

[Do (d)cD,,(d)cD' (-N(j) XDOD".D' (A) • 

Inl 
dn'd) 

In I. loJ 
(Do (do,e D, (7)cD,,(-N sgn(n) d) XDoD' .D"U.) 
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All terms in these two expressions take on values in ttl} , and the product is 

dn,d) dn l!!.l) , d £Do(lnl> £D'D,,(-Nsgn(n» XDo.D'D"(A,) , 

which equllis CD (-N) sgn (n) because (4.2) implies that XD .D'D,,(A) - cD (1) 
o 0 

- £Do (-Nn) . This completes the proof of the functional equation. 

The functional equation suggests that we look at the syuunetry point s - l-k 

or, more specifically, at the value or derivative of L~{f,s) there, depending 

whether £: (N) IS -lor c (N) :a 1. We consider first the former case. Here we 

can apply Proposition 1.2 and Corollary 3.4 with r'" k-l to find: 

Proposition 4.4. Suppose e:(N) - -1. Then the value of LA (f ,s) at the symmetry 

point of the functional equation is given by 

22k+l k+l 
~_.:.:..T! ___ (f i) 
(k-l) I 'fi ' L,if,k) 

where i E M2k (f 0 (N» has the Fourier expansion 

with 

i(z) I ( L rno 0in)r .... (mo-Nn)Pk 1{4'1l'Nn
y

) +!!. r (m») l-k 2nimz 
m=O O<n~N - 6 u:.( y e 

OJ. (n) .. L £.4,(n.d) • 
dTn 
d>O 

k-l . 
Pk-l (t).. r (k-l (-t)J 

j-O j) 11 

Nole that the coefficients of ~ are polynomials in y -1 of. degree k-l • 

For k"" 1 the function ~ is a holomorphic modular form (but not a cusp forml. 

Now consider the case £ (N) .. 1. Here ve have to compute the derivative 

of e
s 

(n ,y) with respect to s at s - l-k. There are three cases. according 

to th!.' sign of n. If n = 0 then the formulas at the beginning of this sect ion give 

2e (O.y) Is=l-k as s 

l-k k-l 
n 6 3 * I 
(k-f)! as es(O,y) s=l-k 

l-k k-l 
1f 6 3 -5 25 S I 

= 2 (k-l)! 3s(f(s+2k-l)'Il' 6 y L(2s+2k-l.£)] sml-k 

l-k r' 62 L' 
2L(1,e:) (6y) (r(k) +10g7 + 21:(1.£)] 
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If n ia positive, then the sum cen,d) d in Proposition 3.2 vanishes f 
-2s-2k+2 

at 8 - l-k, so 

...!e (n,y) Is- 1- k as 8 

d n 

21 IS-k~ y-k+l V (ny) I. (; (n,d) log d 
I-k dTn 

If n is negative. then it is instead the factor V 6 (ny) in 3.2 which vanishes 

at 6 - 1-k, 60 

...!e (n.y) Is- I - k as 6 -i IS y dSVS(n,y) s"l-k· c(n.d) -k~ -k+l a I t 
d n 

Substituting for VI_k(ny) ( n > 0) and ~aa (ny) Ilk ( n < 0) from parts 
s s s- -

(d) and (e) of Proposition 3.3. and combining with (3.1) and Proposition 1.2, 

we find: 

Proposition 4.5. Suppose £(N)" 1. Then the derivative of L.,4(f.s) at the 

symmetry point of the functional equation is given by 

where 

LA,(f .k) 

i eB2k (r O(N» 

22k+l1(k+l 

(k-1) I 116 ( f » I ) 

has the Fourier expansion 

~(z) - r (- L meS o~ (n) rimcS-Nn) Pk-l (4n~NY.) 
m"- O<n'lf 

h r' L' 
+ U r,A (m) (log y + r(k) + log No - log n + 2L (l .c) ) 

... 
L o.(n) ~(m6+Nn) q (4nnNY) ) 

n-l k-l 6 
l-k 2n1mz 

y e 

with o ... (n) Bnd Pk-l (t) as in Proposition 1 •• 4. qk-l as in Proposition 3.3e. and 

olen) I. EA(n,d) log ~ 
dIn d

2 ( n> 0 

d>O 

. Nk-l/6 3 Q \ 
(The function i 15 -2-n- as S s"l-k' In tIll' formllla for its mth Fourier coefficient 

.... e have replaced n by -n in the third term; the f u-sl twtl terms arc absc-nt if m < 0 .) 

Propositions 4.4 and 4.5 are the preliminary formulas for L,..4.( f. k) and 

LA(f,k) referred to in the section heading. We now make them more explicit by 
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giving a simple closed formula for the arithmetical functions 'l(n) and ~ (n) • 

Let {n} be the genus of any integral ideal of K satisfying 

N<n) :: I: (N) N (mod D) 

(this is independent of the choice of f'l.). {An.} its product with the genus of 

the ideal class .A. and (ss in Chapter II) 

RUn} (n) - number of integral ideals of norm n in the genus {,At'\.} 

6 (n) .. 2s, s .. number of prime fnctors of (n.D) 

Then we have 

Proposition 4.6. a) Let n be an integer satisfying (4.2) and c(N)n<O. TIWI 

°A(n) 6(n) R{Anl(lnl) 

b) ~~ n> 0 And '(;(N) -1. Then 

with 

ap(n) 

O~ (n) ptn 
a (n) log p 

P 

1 (ordp (n> + 1) : (n> RC"ne! <!> 
ordp (n) 6 (n) RL~1lcl (p) 

if c(p) .. 1 

if c(p)--l, 

if c(p)" 0 , 

where in _t_!~~two CA~ {C} is the genus of any integral ideal with 

N(e) :; -p (mod D) • 

Rem:lrks. 1. The gc-nus of C in b) if' well-defined, since if c(p) - -1 then 

-p is prime toN <lnll dc-termincs a genus by the usual correspondence 

{gencra of K} .-LL {x E C:Z/IJZ.) * I dx) • l} I c:&./rrz) *2 

while if (p) = 0 then the genus characters of C corresponding to all pr Ime 

of D are determined (we must have (N('f» = (:~» and the genus 
p p 

div iSl)1s p' t p 

character corresponding to p is therefore also fixed (the product of the genua 

characters corresponding to all prime divisors of D is the trivial character). 

o. 000 o P.o. P. 00 , p •.. , 
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Explicitly, we could take C" 1} when c(p) - -I and C'" "FI when c{p)" 0. where 

'1 1s a prime ideal satisfying N(,):: -p (mod D) in the first case and in the 

second case , is the prime divisor of p' in K and t1f any prime ideal with 

N(",) :: -1 (mod Dip) • 

2. The numbers ap(n) in~) are all even, since 6(n) 1s even if n is 

divisible by a ramified prime and ord
p 

(n)+l is even if n is divisible by an 

inert prime p with R(n/p)'; O. This is of course as it should be. because 

under the assumptions of (b) we have I cA(n.d)'" 0 , as shown at the beginning 

d1n' 
of this section, and consequently 0 ;"'(n) .. -2 1. cln •d ) log d • 

dln 
Proof. a) We assume for definiteness that c (N) - -I and n is positive (1.e. 

the case needed for Proposition 4.4); the opposite case is exactly similar. If 

n 
is prime to D then the formula is very easy: in this case we have ~(n.d)" c(d) 

for all divisors d of n (since D
2

" I, Dl - U in the definition of cA) and 

consequently ain)" y. c(d) - R(n) , the total number of representations of 

dTn 
as the norm of an integral ideal of K; from (4.2) it follows that any such 

representation belongs to the genus {An} • In general. write 
VI Vs 

n .. PI •• ·ps nO 

n 

with (nO,D) - 1. Any divisor d of n with (d,~,D)" 1 has the form 

\.I 1 \.Is I d _ PI ••• ps dO with dO nO and lJ
i 

- 0 or Vi for l'8ch i. The function c ... (n,d) 

is multiplicative In d for n fixed, 1.e. c,A(n,d'd") .. [in,d') 'A,(n,d
lt

) for 

dld"\n (d' d")" 1 Indeed let D" D' 'D' - D"'D" - D·D be the Sl>littings , •• , 121212 

of 'D occurring in the definition of c,A for 

then D2 - DiD; and consequently 

d', dOl and d'd", respectively; 

cin.d') [A(n.d") (OI(d')c.D,(-N~) Xn'.o,(A)· lntl(dtl)[D,,<-N*,',) XD"'D"(A) 
1 2 17 1 '} 12 

CD OIl(d')Co,(dll)CD,(-Nld,ndll)' c n D,(dll)Cu.,(d')COII(-Ntd,nd") 
12 2 '} 17 2 2 

(t any norm from the ideal class A prime to D) 

CD (d'dOl)C
D 

(-N2. d ."d") 
1 2 

cA(n,d'd") 

Hence 
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o),(n) 
\.11 lJ s 

cin.PI ) .• ,cin,ps )c;.<n.dO) I I r 
\.lIE {O,V

1
} lJsE{O.vs } d oTllo 

s \I 

11 ( 1 + ~(n.p/». 1. £(dO) 
i-I doTno 

The sum equals R(n
o
) , and this in turn equals R(n) because there is a 1: 1 

correspondence between integral ideals of norm nO and of norm n given by' 

VI v 2 
multiplication with 3'1" .rs s • where fi .. (Pi)' If R(n) - 0 then both sides 

of our identity are zero and we are done. If not, then the ideals of norm n 

all belong to the same genus. 

\I 

To complete the proof. we must show that £A{n.Pii) 

os 1 for all i if and only if this genus coincides with {,A1t}. 1.e. if and only 

if the values of every genus character X on these two genera agree. It suffices 

to consider X associated to prime divisors p of D. since these generate the 

group of genus characters. If p}n, then the condition to be checked is just 

(!!.) .. CN~) 
p P 

for some 2. prime to p representable as the norm of an ideal 1n A • 

and this follows from (4.2). If p divides n, then p is one of the Pi' Every 

V ~ 

ideal of norm n has the form r/- with N(M) =n/p/. and the value of X on 

this ideal is given by 
v v 

X (r/M) '" X (r/) X(ff') 
Vi Vi 

CD (Pi ) CD (n/pi ) • 
1 2 

where D2 is the prime discriminant associated to Pi (1.e. ID21 - Pi' Di :: 1 (mod 

and DI - D/D2 . But these are the same 0
1 

and D2 as occur in the definition 

v 
of cin,d) for d'" Pi 

1 
• 80 

Vi ,vi Vi 
cin ,Pl ) tD (Pi )c D (-Nn/P i ) 

1 2 
Xn '0 (..4) 

1 2 
X(r~im) X(flA) 

and we are done. 

b) This case is rather similar. By Remark 2, we have 0; (n) - r a en) log 
pTn p 

with a (n) .. -2 ) \,.(n,d) onl (d). Write n=pvn1 with p}n l · The divisors of n 
p dTn P 

have the form p11d
1 

with 0 ~ IJ S v, d1lnl. so using the multiplicativity proved 

in part (a) we find 

V 

ap(n) -2 L u ~~(n,pu). Y. cinl,d1) 
\.1=0 dtTnl 

~ 
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If c (p) - +1 then c",(n,plJ) .. c(plJ) - 1 [or all lJ, so 

V· I cA(n,d 1) 
dlln l 

v r cin,plJ) J. cin,d1) - ~(n) , 
\.1-0 dllnl 

and this was shown at the beginning of the section to be zero under the hypotheses 

of (b). Hence a (n) - 0 In this case. 
p 

If c (p) ... -1 , 'then the same argument 

shows that r c
A

(n,d 1) - 0, and consequently a (n) IS 0, if v is even, since 
d l lnl p v v v 

then L £,(n,p\.l) - L (_l)ll oJ O. If v 1s odd, then L U c..(n,p\.l) - -1+2-3+ ••• -v 
1 lJ-O lJ-O u"'O 

- -2 (,,+1), so a (n) 0: (,,+1) 1 ~ (n ,d
1
). If d

1 
is a divisor of n 1 and D· DID2 

P dlln l . 

the corresponding decomposition of D, then 

v " (,,(n,d 1) - c .... (n l P ,d l ) - £D
2

(P )£.ln1,d l )" XDI.D2(c)~(-nl,d1)" cAc(-n1,d1), 

with C as 1n the statement of the proposition. Therefore r c 1 n ,d 1) .. o~C ( -n I) 
dlTnl 

- 6(n
1

)R{A.cn}(n
l

) by part (a), and this is what we W'lOt since 6(n l ) '" 6(n) and 

R{.4clI} (n
1

) - RUcn.} (nIp). Finally, suppose piD. Then St(n,pU) vanishes fOT 

0< lJ < v , 80 

ap(n) - -2vcA(n,pv) y. ~(ntd1) - -2v y. cj,(n,p"d l ) - 2v r t..«o,d l ). 
d l Tnl d l Tnl d l Tn1 

where for the last equality we have used the identity ':.A.(n,d)'" - c).(n,n/d) proved 

at the beginning of the section and replaced d
l 

by nl/dl. A computation like 

the one above gives cin,d l ) .. ~trv-1 (-nl·d l ) in this case, so using part (a) 

again we find 

ap{n) 2vo "'Crv- l (-n l ) 2v6(n 1) R v-l}(nl)' 
{AllCr 

and the deRi red resul t follows in this casC' beCaU5l' ~: (n) ". U. (n
l
) and 

R 1 (n l ) a R (nIp). 
{Ar1Cf\'- } {AYl.C} 

This complete'S the proof of Proposition 4.6. 

We remark that the formula in b) implies that fl,,(n) is always a multiple 

of the logarithm of a single prime numher. [Specifically: It is 0 if n is 

divisible to an odd power by more than one prime inert in K and equals 
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(ord
p

(n)+1)6(n)R{An}(P) logp if there is a unique such prime p. If there is 

no such prime, then n is the norm of some ideal; let Q be the norm of an ideal 

prime to D lying in the genus of the product of this ideal with {An}; then 

Ci) • -1 for an odd number of prime divisors p of 0, and 0A(n) equals 

6(n) ord
p 

(n) R(n) log p if there is exactly one such p and 0 if there is more 

than one.] Actually, this property of ° A can be seen a priori: under the 

\' -5 
hypothesis of b), the sum L cA(n,d) d vanishes at s - 0 and has derivative 

din 

equal to ~oA(n) there, and since this sum has an Euler product (by the multi-

plicativity of do-+- c
A 

(n,d) proved above), we see that 0,\ (n) can be non-zero 

only if exactly one Euler factor of this sum vanishes at s"' 0, and is then an 

integer multiple of the corresponding log p • 

15. Holomorphic projection and final formulae for LA (f, r) and L,\ (f ,k) , k > 1 

In Sections 3 and 4 we obtained formulae for sp~cial values of LA(f,s) 

and of its derivative in the critical strip as the scalar products of f with 

certain non-holomorphic modular forms. We would like to have instead formulae 

expressing these values as scalar products of f with something holomorphic. 

To do this we will use a "holomorphic projection lerrana" due to Sturm [33] which 

we now state and (since our hypotheses are slightly different from Sturm's) prove. 

Proposition 5.1. Let ~EM2k(r0(N» be a non-holomorphic modular form of 

weigl!.t 2k> 2 and level N with the Fourier expansion a;(z} - I am(y) e 21!imz , m--
and suppose th:tt (all a)(z) .. O(y-C} as y. lm(z) .• "" for some C > 0 and every 

2k ' 

a E SL
2
(Z). Define 

a 
m 

(4T!m) Lk-I 
(2k-=2fj- I a (y) e -4 1Tmy 2k-2 o m y dy (m>O) • 

h h f . "'() \' 211 imz . . f . 
I-~~I~.£!!. '*' 7. L, am e 15 :1 holomorplllc cusp orm of wl'lght 2k 

mel 

and leVel N and s:ltisfics (f,ell) - (f,~) fur all f ES
2k

(f0(N» 

Proof. For m> 0 define the Poincare series Pm(z) by 



here 

nd 

p (z) 
m 

1 Z 
r",·±(O ,) 

-\0\-

I e
211imz 

y € r",,\ro(N) 12k y a b I 
(c d) €r",,\fo(N) 

2 . az+b 
(cz+d) -2k e 'nmcz+d 

as earlier. The series is absolutely convergent because k> " 

the function Pm belongs to S2k(rO(N». Let p* be the series obtained 
m 

')Y replacing every term in the series defining Pm by its absolute value. 

.Je have the estimate 

Then 

p*(z) 
m ~ r 

(~~) €r ... \SL z(71) 
I 

2nim az+b 
(cz+d)-2k e cz+d I 

~ le2niz l + I Icz+dl-
2k 

(~ ~) € r",,\SLtZ) 
CfO 

_ e-2ny + y-k(ECz,k)-yk) 

OCy 1-2k) (y+oo) 

~ince for any s> 1 the Eisenstein series E(z,s) for SL2 (71) satisfies 

(z,s) .. yS +O(y'-s) as y+QC). Moreover, since we have replaced r O(N) by 

L
2

(Z) in the above estimate, we automatically have the same estimate on 

*1 Q for any Q € SL
2

(71). It follows that the rO(N) -invariant function 
m 2k 

*( z) I~(z) I y2k is bounded by O(y 1-c) as y +co and similarly for its 
m 

omposition with any element of SL2(Z). Hence in the integral defining 

he Petersson scalar product of P and ~ it is legitimate to replace P by m m 

ts definition as a series and interchange the summation and integration. 

his gives 

(i, P ) 
m 

--::--r-2 ,..., 2k - 2 I e nlmz 4)(z) y dy 

r. \1( 

COl -4nmy () 2k-2 d 
e A Y Y Y 

o m 

y the standard unfolding trick. On the other hand. the map f - (~, f) is 

antilinear map from S2k(f
O

(N» to «: I so is reprC'sentcd by (<Il,.) for 

Isome holomorphic cusp form <Il. L bm qm. The above l'omputat ion wi th a; replaced 

Y <Il shows that 

(<.D, Pm) 

1 
I -411my 2k-2 

e b Y dy 
o m 

(2k-2) t 
(41Im)2k-1 bm 
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so the equality (<.D,P)" (~.P) gives b =a as desired. 
m m m m 

As a special case of Proposition 5.', if a; is a non-holomorphic modular 

form of weight 2k which is stlk111 at the cusps in the sense of the proposition 

(i.e. (~I a) (x+iy) .. O(y -c) as y + CD for all a), and if the Fourier coefficients 

of a; are polynomials of degree :;2k-2 itl y' then we obtain a holomorphic 

modular form having the same scalar product with all f € S2k (r O(N» by 

dropping any terms y -j and rep lac ing any term y -j e 211 imz ( m> 0, 0 ~ j S 2k-2 ) 

b 
{2k-2-j)t (4 )j 2nimz 

y (2k-2) I nm e • We can apply this special case to the functions 

of Corollary 3.4 and Proposition 4.4. 

In Corollary 3.4, the function a; is already holomorphic if r - O. as 
-r 

we remarked there, so there is nothing to do. If r;;: 1 , then k> t (since 

o ~ r::; k-l) and a; is small at the cusps in the above sense (this is clear 
-r 

at 00 since the constant term of a; is a multiple of y-r and the other terms 
-r 

are O{e-211Y); at the other cusps it can be seen by going back to the definition 

of a; as the trace of the product of a theta function and an Eisenstein series 
-r 

and looking at the expressions for their Fourier developments at the cusps). 

Hence Proposition 5.1 applies to show that the holomorphic projection of 45 -r 

is the function 

a 
m,r 

o ... ~ a m 
-r t, m r q 

m::1 ' 
with 

2k-1 [moJNl "" -411my 2k-2 d 
(~~~)-(. L rA(mo-nN)!en,r(y)e y y 

n-O 0 

since e (y) is a polynomial in 1/y of degree ::;2k-2. the integral is a sum 
n,r 

of ordinary gamma integrals. Performing the calculation we find 

where 

(5.2) 

with 

(5.3) 

11 
m,r 

b 
m,r 

(_n k - r 22k-t dN) rl1l 2k- 1- r 

(2k-2)! Nr IDI2k-r-l/2 bm,r 

L r,A(m!nl-nN) P
k 

(Nn.m!nl) n (n) 
O:::n:imlnl/N ,r 2k-2r-2.A 

Pk,r(X,y) 
i (~) (2k-2+j-r) (-x)j yr-j 

j=O ] r 

~ 



(5.4) °21,A(n) { 
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1 
- '2£(N) L(-21,c) 

r EA (n,d) (n/d) 21 
nld 

if naO 

if n>O • 

(We have used the functional equation of L{s,£).) Now Proposition 1.2 gives: 

Theorem 5.5. Let A be an ideal class in an imaginary quadratic field of 

discriminant D, N an integer prime to 0, and r and k two integers 

satisfying 0:5r<k-1. For mi:O define b by equations (5.2)-(5.4). 
-- --- m,r 

~ I b qm is a modular form of weight 2k and level N (and a cusp 
m;:O m,r 

form if r" 0) and 

LA(f.2k-l-r) -
<_1}k-r(2Tf}2(2k-1-r) 

(2k-2-2r)I 

22k- 1 

(2k-2)I 
c(N) rI (f Lb qm) 

IDI2k-r-l/2 ' m,r 

for any f in the space spanned by newforms of weight 2k and level N. 

Here we h<\ve omitted the case r - k-1 , since the formula is slightly 

different (cf. Proposition 3.2) and we will treat this case in a moment, but 

we have included the case r - 0 , which, as just observed, can be treated 

without holomorphic projection. Note that the coefficients b are rational 
m,r 

numbers and in fact that all summands in (5.2) except the end terms n"O and 

n - m I 0 lIN are integers, and even the end terms are not too far from being 

integers (ye have ) . 1 .. .!. 
r A (0 - 2u 2 for any 0<-4 and 0H,A (0) € 71. for any 

0< -41-3) • 

For r - k-1 t corresponding to the centrnl point of the critical strip, 

the formula is similar but there are various simplifications. We can suppose 

that teN) --1 since otherwise LA(f,k) -0 by the functional equation. Then 

Proposition 3.2, and consequently Theorem 5.5, are the snme as before except 

that the terms with n-O must be doubled. However, the [unction 00,A(n) can 

be evaluated by the formula in Proposition 4.6, and th£' polynomial Pk,k-I 

expressible in terms of a well-known function, namely 

Pk ,k-1{X'y) 
k-1 

Y Pk-1(1 - 2x/y) , 

is 

where P
k

-
1 

denotes the (k-1) st Legendre polynomial. (Actually, the polynooials 

Pk,r can always be expressed in terms of standard orthogonal polynomials, 

namely r (2k-2-2r 0) 
Pk,r(x,y) .. Y P r '(1-2x/y) , vhere 

r o=r 

p(a,Jn 
n 

are 
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Jacobi polynomials, but these are much less familiar functions.) Thus Theorem 

5.S for r=k-1 takes on the form: 

Theorem 5.6. ~ 0, A, N be as in the last theorem, c(N) - -1 , and let k be 

any integer i:1. !E!. mG:O define 

I k -1 [ h " 2nN ~J 
bm,A - (miD) rA(mlOI) u + 0<n:;;~IDI/N6{n) R{An}{n} rA{mIOI-nN} Pk-,{'-;roy 

with 6{n), R{Anl en) as in Proposition 4.6. Then r b
m 

A qm is a modular form 
m~O r' 

of weight 2k and level N (and a cusp form if k,ll) and 

LA (f ok) 
(2Tf)2k 22k- 1 (k-1)! 

(2k-2)! IDl k- lh ( f , I b A qm) 
m, 

m 

for any f in the space spanned by newforms of weight 2k and level N. 

Theorems 5.5 and 5.6 give all values of LA(f,s) at integral points 

within the critical strip, since the points to the left of sok can he obtained 

by applying the functional equation. Note that the expression for b A in m, 

Theorem 5.6 can be simplified by dropping the term rA(mIDI)~ and changing 

the summation conditions to O! n ::;: ml DI/N, since 6(0) - 2t (t - number of 

prime factors of D) and R{An} (0) - h/2
t

u {each genus contains h/2t - t ideal 

classes, and rA(O) -1/2u for each ideal class). 

As an example of Theorem 5.6, take N-5, k-2 and D--p, where p is 

a prime satisfying p II J (mod 4), (~) - -1 , and sum over all ideal classes A. 

since S4(r
O
(S» is spanned by a unique eigenform f .. q_4q2+2qJ+8q4 

we have (f. L bmqm) - b , cr.f) 
ILA([,S).LCf,s)Lc(f,s). where 

where 

3/2 L.--r L(f ,2) Le(f ,2) 
b4n 

R(n) " I (~) 
din p 

nnd h(-p) 

for any form L b qm in this space. Also 
m m 

( • (il)' Hence Theorem 5.6 gives 

I b
"

A .. ph(-p) + I (p-l0n)R(n)R(p-5n) 
1 ~ n< ~ 

must be replaced by 1 
") for p" 3 • The 

first values o[ the ('xpression on thl' right-hand side of this formula arc 

p 3 7 23 43 47 67 83 103 107 127 163 167 223 227 263 283 

b , 49 2S 121 361 25 289 25 169 81 121 2025 121 

(Wll.f7' o 
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in accordance with the theorem of Waldspurger-Vigneras [36]. they are all squares. 

In general, there is some simplification in Theorem 5.6 if we sum over A. 

Indeed. for any n, 1 €:N we have 

I R{An}(n)rA(R.) {I} R{An} R{A} (R.) R(n)R(t) orO. 

where R(n) - r c(d) is the total number of representations of n as the norm 
dIn 

of an integral ideal of K and we must take R{n)R(R.) or 0 depending whether 

the genus of an ideal of norm nR. (if there is one) is en} or not. This is 

a question of the values of genus characters associated to the primes p dividing 

N. For I. - ml D I - nN. -N" N(n) (mod D) these conditions are automatic for pfn 

since .t. N(n)n (mod p). Hence we have 

o(n) l R{An}(n) rA(mlDI- nN} 
A . 

R (n) R (m I D I - nN) n ( 1 ... t (nN -In I D I ) ) 
pi (n,D) p nN 

where C is the homomorphism IIl lC 
.... {±1} defined by (; en) = (!'..) for p}n, p p p 

£ ( ) _ (.!!U..LP.) (cf. remarks at the end of §3 of Chapter II). Thus the formula p P P 

for I LA (f .k) .. L(f ,k)L
c 
(f .k) is a little simpler than the formula for the 

individual LA(f,k). as might be expected. 

This completes our discussion of the values of LA (f ,5) at integer points 

in the critical strip. We turn now to the derivative at s=k, under the 

assumption that teN) - 1 • so that LA (f ,k) vanishes. We must apply Proposition 

5.\ to the function ~ of Proposition 4.5. We assume k> 1 (the case k-l will 

be the subject of the next section). Then the growth conditions at the cusps 

required in Proposition 5.1 arc satisfied. Indeed. at .0> this follows from 

the Fourier expansion given in Proposition 4.5, since (denoting by am(y) the 

f f ·· f 2 iI i mT. d . I' () O( k -1 ) ( ) coc lClcnt 0 e an USlnp, t lC estlmates P
k
-\ t = t , qk-l t 

k-I -t C I: 
OCt e), GA.(n) "O(n ). rA(n) "O(n » we have 

am(y) I 
O(mk+l:) 

O(y l-k log y) 

O( Imlk+l:e -4n lml y ) 

( m> 0) 

(m-O) • 

( m < 0) 

and hence - 1~ ,... ~(z) - O(y log y) • At the other cusps. tr> has an expansion of 
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the same type and satisfies the same estimate. as we can see by going back to 

the definition of ~ in terms of theta and Eisenstein series. Hence we can 

apply Proposition 5.1 to get 
,... t m 

(f • Ill) .. (f, L a q ) 
~I m 

with 

a 
m 

J a (y) e-41lmy y2k-2 d 
o m y 

- r moG,l,(n) r
A

(m6-Nn) jp (41lnNy) /-1 e-41lmy d 
O<nS"N 0 k-l 6 Y 

h () [ feD k-l -411 my ( r' ~ ... u rAm y log y e dy'" -(k) ... log ~ o r w 

... 2!f(1,e:) ) [l-l e-
4nmy 

dy ] 

- LOA en) r A (m6+nN) f q (41lnNy) l-I e -4nmy d 
n=1 0 k-I 6 Y 

TIle.first integral is elementary and was already evaluated for the proof 

of Theorem 5.6: 

f (4nnNY) k-l -4nmy d 
Pk-I 6 Y e Y 

o 
(k-I)! nN 
(4nm)k Pk- t (l- 2m6 ) • 

where Pk - I is the (k-I)st Legendre polynomial. The values of the next two 

integrals follow immediately from the definition of the gamma function: 

J
eD k-l -4nmy 

y log y e dy 
= a! ( ([;;l9) I s=k 

(k-1) r r' 
(41lm) k ( r(k) - log 41lm)' • o 

f
eD k-l -4nmy 

y e dy 
o 

(k-l) I 

(4nm) k 

Finally, substituting into the last integral the formula for qk-l given in 

Proposition 3.3c, we find 

f (4nl1N1) k-l -4nmy d 
qk-l 6 Y e Y 

o 

'" GO k-l 4nnNyx 

f k-l -411my f (x-l) ---0-
y e ---::r- e dx dy 

o 1 x 

(k-t) I 
.~ 

(llnm) 

k-l f (x-t) dx 

1 xk (1 + nN x) k • 
mlS 

The last integral is clearly elementary, since we can write the integrand by 

a partial fraction decomposition as a linear combination of terms x-j and 

~ 



( 

.~. 

(1 + nN x)-j 
m6 

substitution 
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with ISjSk. Explicitly, if we set z-1 + 2:~ t then.. 'tru­
rz::r t • 

X - 1 +1Z+T e glves 

J 
k-l 

(x-I) dx j dt 

\ xk ( 1 + !:lx)k 
2 - (z+ {z2-1 cosh J' 

and this is the standard integral'representation of 

2 Qk-I (z) where Qk-l is the Legendre function of the secon.!. 't:.inl as 

in Chapter II. This function is indeed elementary; it is defin~ll \-] the 

properties 

{ 

Qk-l(z) - ~Pk-l(Z) 
C>.7) 

-k 
Qk_'(z) "o(z ) 

log :~! + (polynomial in z) • 

( z .... (I» 

Putting all this together, and renormalizing slightly by writin..i; 
(L.T;"-l(k-1)1 a 

(2k-2) I m,A 

for am' we obtain the following theorem; since this is the basic :esult of 

this chapter (for k> 1 ), we have repeated our assumptions and 1:I.:-.:a1..':.oos. 

Theorem 5.B. Suppose k> 1 , N ~ t • and A an ideal class in a::. ::..xn. ... :rinary 

quadr:ltic field K of discriminant D with D c(N) .. t (c" (-;) ) . f:::- each 

m > 0 define 

am,A 
k-I f \" 2nN 

m - L miDI °A(n) rA(mIDI-Nn) Pk- t (l- iiiTDT) 
O<ns N 

h (r' NIDI L' \ + ~rA(m) 2 r (k)-21og2iT+ log--;- +2T.(t,1..\} 

GO . 2nN] 
- 2 r 0A(n) rA(mIDI+ nN) Qk-l(1 +;ror) , 

n-l 

where h. u and rA(n) are d('fined 85 usual, 0A(n) and 0A(n) 1~~ t.':e 

arithmetical functions occurrinB in Propositions 4. 1,-[,.6, 

Pk_,(Z) 
t-k 2 ~ (_1)n (k-t)(2k-2-2n 

OSnS (k-t) 12 n k-t) 

k-I-':::l 
Z 

is the (k-t)~ Legendre polynomial. and Qk-l(z) is the (k-J)~ Lt2;::er.t:e 

function of tht' second kind, defined by the properties (5.7). Ti.:;') .L\e 

functicn 2 a A qm is a cusp form of weight 2k and level N if:.:.C have 
c~t m, 

LA(f,k) 0 , 
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4k-l 2k m) 
2 ., ( f. r 8

m
,A q 

m::O 
LA(f,k) 

for all f in the space spanned by newforms of weight 2k and level N. 

16. The case k-I: final formula for LA(f," 

Theorem 5.8 breaks dO\lTl for forms of weight 2 for several reasons: 

Proposition 5.1 is not true for k - 1 , the function ~ of Proposition 4.5 

is not small at the cusps, and the infinite series in the definition of 8
m

,A is nr 

• 1 z+1 longer convergent (because the functlon QO(z) - IlogZ-T -1 
is only O(z ) 

8S z-+(I». In this section we will discuss the modifications needed to take 

care of these difficulties. 

In the Fourier expansion of i in Proposition 4.5, all terms with mlO are 

exponentially small as y" Im(z) goes to infinity, while the meO term has 

the form (A log y + B) y'-k + O(e -cy) for suitable constants A, Band c> O. 

Thus when k-t the function i grows like A log y + B rather than having the 

-c decay behavior O(y ) required in Propostion 5.'. The same is true at the 

other cusps, as we shall sec, i.e. we have 

(6. I) (~12a)(z) A~ log y + BI; + O(y-£) as y .... oo 

( a E SL2~)' a( ... ) - 1;. £ > 0 ) 

at II cusp I;EQu{r.o}. A priori, for a function l€M
2
(r

O
(N»' satisfying 

this grovth condition there are 211 constants A~ and B( to deal with, where 

H is the number of cusps of r O(N). This number is the sum over all positive 

divisors NI of N of ¢«N1,N/N t » (¢ .. Euler function), the invariants of 

a cusp r.., ~ bt'inr, N," (c ,N) and the class of 
-I 

(c/N,) a modulo (N
I 

,N/N 1) • 

However, for our particular fune-lion ~ the coefficients A( and B( will turn 

out to depend only on the first invariant N,. We now formulate the analogue 

of Prop0sition 5.1 for functions of this type. 

Proposition 6.2. Let ?(z) L a (y) e211imz 
m"'-oo m 

be a function in M
2
(r

O
(N» 
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satisfying the growth condition (6.1) at all cusps ~, and suppose that the 

coefficients Af. and B~ depend only on the greatest common divisor NI of N 

and the denominator of e, ~ Ae - A(N I)' Be - B(N J). Let {a (M), 13(M) : MIN} 

be the solution of the non-singular system of linear equations 

(6.3) r (M'~J )2 a(M) 
MTN M 

A(N
1

) ( NJIN ) t 

(6.4) M {13(M) + a(M) log~} 
f 

(M,Nt )2 ( 2 

M N M 
B(N I ) ( NIIN ) • 

Then there is a holomorphic cusp form 

(t, f) - (i, f) ~ fES 2 (f
O

(N» 

t - I am e2nimz E S2(f
O

(N» 
m=J 

and with am given by 

(6.5) a 
m [ 

CIOf -411my S -I ] 
lim 41lm a (y) e y dy + 24a(l) 0l(m) s 

s-+O 0 m 

satisfying 

+ 24e(J)ol(m) + 48a(l) [oj(m)-ol(m) (log 2m + i +t(2»] 

for (m,N)-1 (oJ(m)Dl.d, o)'(m)Drdlogd). 
dim dim 

Proof: Suppose first that A(NI)-B(N)-O for all NJIN, i.e. that '¥ 

satisfies the growth conditions of Proposition 5.1. The proof of Proposition 

5.) goes wrong for k-J because the series defining the majorant P: diverges 

(due to the pole of E(z,s) at s-I). To get around this. we use "Heeke's 

trick": we replace Pm (m ~ I) by the absolutely convergent series 

s 2 • az+b r 1 y nlllTz+a 
(~ghr ... \ro(N) (cz+d)2Icz+dI2s e 

p (z) 
m,s 

r ySe2nimzl y 

fw\fo(N) 2 

, ( Re(s) > 0 

and then continue analytically to 8-0. The series p* - p. 
m,s m,a 

( a'" Re (s) ) 

obtained by replacing every term of P by its absolute va lue is majorized 
m,s 

-1-0 
by O(y ) by the same calculation as in the cas{' k> I , thp O( )-constant 

being itself OC..!.) as 0-+0. Hence if O<o<£:. i -O(y-£:) at each CURP, 
o 

then the calculation used for 5.1 is justified and gives 

(lop -) 
m,s 

J e -2nimz i(z) yS dy 

r",,\H 
f 
... -41Tmy s 

- e am (y) Y dy 
o 
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(we have replaced s by s in the Petersson scalar product to get a holomorphic 

function of s). As before, we know a p4io~ that there is a holomorphic cusp 

form ~ ... L a qm having the same scalar products with holomorphic forms as 1, 
m~1 m 

and replacing 1 by ~ in the last formula gives 

(~tP _) 
m,s Jot> -41lmy s d 

a e y y 
m 0 

f(l+s) 

(4nm) 1+s 
a 
m 

Furthermore, the function P - lim P is known to be a holomorphic cusp 
m s-+o m,s 

form of weight 2 (this is proved by computing the Fourier coefficients of 

P as functions of s), so by the defining property of ~ we have 
m,s 

a 
m 

4nm lim (t,P _) - 4nm (~.p ) 
s-+O m.s m 

• fn> -4nmy s 
4nm 11m e a (y) y dy 

s+O 0 m 

4nm(l,p
m

) 

where the limit is taken through values of s tending to 0 with Re(s) positive. 

This is equivalent with (6.5) since all a(M) and SCM) are 0 in thi-s case. 

We now turn to the general case, where l satisfies (6.1). Consider the 

Eisenstein series 

E (z) - r y
8

12 y 
2,s y£ r \SL (Z) 

00 2 

! r I-L 
2 (c,d)-I (cz+dr Icz+dl

2s 

which is absolutely convergent for Re(s) > 2 and defines a non-holomorphic 

modular function of weight 2 on SL
2 

(71). This function is orthogonal to 

holomorphic cusp forms by the calculation above (E
2
,s is just the function 

P for Nal with m=O) and has the form yS+c(s)y-l-s+O(e-Y) as y-+ .... 
m.s 

where c (5) and the coefficients in the O( )-term are holomorphic near s-O. 

Hence the two functions 

E(z) E2 ,S(Z}'S_0 F(z) • ~E (z)1 
as 2,s s-o 

where '5-0 is defined by holomorphic continuation or simply as the limit 

for s ..... O. belong to M
2

(SL2(l:». 

E(z) + O(..!.) 
y 

F(z) 

are orthogonal to cusp forms. and satisfy 

log y + OC.!..log y} 
y 

~ 
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a8 y + CD • Hence if we have a function i in M2 (SL
2 

Ct» satisfying 

i(z) - A log y + B + O(y-c) for some constants A and B, then we can subtract 

A F(z) + B E(z) from i to obtain a new function having the same scalar products 

with holomorphic forms as i and which is O(y-c) at infinity, 80 we can find 

the holomorphic projection of i 'by applying the result already obtained to 

this function. For a function of higher level satisfying (6.1) with arbitrary 

A( and Bf;' we would in general have to subtract off the analogues of E(z) 

and F(z) defined using the analogue of E2 (z) ,s for all cusps of r O(N) • 

However, under the hypothesis of 6.2 that A, and B, depend only on the g.c.d. 

of N and the denominator of f;, ,we nced only work with the functions E(Mz) 

and F(Mz). where M runs over the positive divisors of N. To see this, we 

must compute their behaviour at the various cusps. 
a 

Le t I; • c. (a , c) .. 1, 

,M ,1 
a - (H.NI)a. c - (H,Nt)c, (c ,N)-N

t 
• 

a a' 
Then for MIN we have Me - cr with 

(a' .c')-I • 
a a' 

Complete ,(c) and (c,) 
a b at b' 

to matrices a - (c d)' a' - (c' d') in 

SL
2

(Z) and let z. z' 

a'z'+b' az+b 
c' z ' +d I - M cz+d and 

E2 ,S(Hz) 12 a 

be related by c'z'+d' - (M,N) (cz+d). Then 
M 

, (M,Nl)2 
Y - H Y so as y+II) we have y , + CD a 1 so and 

-2 az+b 
(cz+d) E2 (M--;-d) ,s cz 

)2 2' '+b' Q!~~L (c'z'+d')- E (a z ) 
~ 2,s c'z'+d' 

2 
(M.N;) E (z ') 

M 2,s 
2 

(M~21) (y,8 + O(y,-I-s) ) 

2+28 
(H,N) y8 + O(y -1-8) 

M2+8 

Sctting s - O. or differentiating in s and then setting 8·0, we find 

2 
E(Mz) 1

2
Q - (M,N,I) + O(.!.) , 

M y 

2 2 
F(Mz)1

2
o • (M,:,}) (logy + 10g(H'~1) ) + O(~lul.Y) 

as y .... "". It follows that thc function LM\N { o(H)F(Nz) + S(M)E(Mz) } , 1.:'hich 

is orthogonal to cusp forms. has the expansion A(N I) log y + B(N
1

) + O(y -I log y) 

at t:. if oeM) and SCM} satisfy equations (6.3) and (6.4). and hence that we 

have a decomposition 
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'i(z) • i·(z) + I {a(M) F(Mz) + a(M) E(Mz) } 
!-lIN 

where i* E H2 (r 0 (N» has the same Petl!rBSOn scalar products with holomorphic 

cusp forms as i does and is small at the cusps. Hence i and i* have the 

same holomorphic projection ~ , and, by what has already been proved, the mth 

Fourier coefficient of ~ is given by 

where 

a 
m 

• fm -411my * s 4mn hm e a (y) y dy 
8+0 0 111 

i*(z) - r. a:(y) e211imz 
111 

Let 

E(z) I c(m.y) e 21!imz I-'(z) 
111- _00 

r f(m,y) e 21!imz m--
be the Fourier developments of E(z) and F(z) Then for m prime to N we have 

a:(y) - Bm(y) -a(l)f(m,y) - a(l)e(miY). Hence to establish (6.5) we must show 

that for m>O 

j -4nmy 8 e(m,y) e y dy 
0 

j -411my 8 f(m,y)e y dy 
0 

- ~ 0
1 

(m) + 0(1) • 
um 

6 -I 12 12 
- - 0 (m) s - - 0 1 (m) + - 0 (m) (log 2m + I 

mn J urn J 11m 1 

+ L(2» + 0(1) 
t 

as s + O. The first equation is trivial sincc e(m.y) - - 240
1 

(m) for m > 0 • 

To prove th~ second we need to know the Fourier coefficients f(rn.y). which we 

compute by working out tIl<' Fourier expansion of E
2

•
s

• The identity 

(cz+d) \ cz+tl\2e 

y8 2i a( ys+1 ) 
S+T "5Z Icz+dI 2S +2 

implies E2 (z) - 2i...1 -;~E(z,s+1). wherc E(z,s) is thc Eisenstein serit's of ,s s+ oz 

weight 0 on SL
2

(71); the wcll-known Fourier expansion 

S lI
l r(s-!)t;(2s-l) l-Q 2~ \' \_Il-s I' 2T1i 

E(z.s) - y + --r-(s)d2s) y + l'(s)r.(2s) m~O u~ 0 25 - 1 (m}Ks _ 1 (2l! t:W)e 

a (m} ... 1. d
V

, K (x) • K-BeRncl function) then gives 
\I dTm v 

(where 

E () s nisr(s+Dr.(2s+l) -1-8 \' () 2nimz 
z .. y • I Y + L e m.y e 

2,s I (st:..)r.(2s+2) m;O 2.s 
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e 2 ,s(m,y) 02 I (m) e
2nmy (~ - 2nm) (/YK I ( 2n lmly» • s+ oy S+2 

Integration by parts gives 

I+t -I-t ~ 

J -4wmy s 211 m f s-I -2nmy 
o e 2 ,t(m,y) e y dy - - r(2+t}t;(2+2t) °J+2t(m) SaY K1+t (2nmy ) e dy 

for m~1 and 0 < t < Re(s). The integral is tabulated and equals 

r(s+t+l )r(s-thr' . ;} I 
+j. SInce f(m,y) - -;;-t e2 t(m,y) a ' we get 

r(s+I)(4nm)S 0, t-

af[ I+t -1-t ] 
J f( ) -4nmy s d a -2n m r(s+ul)r(s-t) ( ) 

m,y e y y - ° m o at (4nm)s+J r (2+t)r(s)t;(2+2t) 1+2t It-a 

r(s+t) [ n 1;' I] - - 24 +1 20)' (m) + oJ (m)(log-+ 'Y - I - 2-(2) +-) 
(4nm)s m t; s 

( 'Y - Euler's constant), and the Laurent expansion of this near s .. a begins as 

given above. 

This completes the proof of Proposition 6.2, except that we still have to 

verify that the system of equations (6.3) and (6.4) always has a solution, i.e. 

that the 0a(N) xoa(N) matrix 

~ - {CN(N I ,M) }N
1 

,MIN 

2 
C (N ,M) .. ~ 
NI ~. 

is invertible. Since the coefficients CN(NI,M) are mUltiplicative (i.e. 

C \I (f\l"p,np\1p) - nc \L(p"P, pPp ), the matrix G~, for Nan p \lp is the Kronecker 
np p p'" -,.. 

product of the matrices 

C 
-pv 

C v ' so it suffices to check this for N _ P v • 
-pp 

-2 -4 -6 -2v 
p p p P 

I 
-2 -4 -2v+2 

p p p 

I I 
-2 -2v+4 

p p 

-2 
P 

I 

and one sees by inspection that this is invertible with inverse given by 

the tridiagonal matrix 

But 
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p2 -I a a 0 

_p2 p2+1 -I a 0 

a _p2 p2+1 -I 0 

(6.6) c-1. 1 
--pv 7-1 

a a 0 -p2 p2+1 -I 

a a a a _p2 p2 

This completes the proof of 6.2. Moreover, since we know the inverse of ~ 

we can solve the equations (6.3) and (6.4) explicitly and in particular give 

a formula for the numbers a( 1) and IH 1) occurring in (6.5): 

Proposition 6.7. Let the notations be as in Proposition 6.2. Then 

a( 1) 

tHO 

6- 1 L ~~·A(Nl) t 

NIIN NI 

6- 1 I JJC:~l) (B(N l ) - 2 A(N 1) log NI ) 
NIIN 1 

-2a(t) r~ 
piN p -1 

where JJ() is the Mobius function and 6 a TI(1_p-2) .. I JJ(Nt)· piN NllN N 

Proof: We have C~'("Nl) = 6- 1 JJ~t) by (6.6) and the multiplicativity 

property of ~, so the formula for a( 1) follows immediately from (6.3). 

Rewrite (6.4) in the form 

L CN(N pM) ann 
MIN 

(M N )2 
.. B(N l ) - r CN(Nl,H) a(M) log ~ .. B(NI ) + L s (N l ) log p, 

HIN P P 

where r denotes a sum over all primes dividing Nand 
p 

s (N l ) .. L CN(Nl.H) a(H) (v (M) - 2 min {v (NI),v (M)) ) 
P MIN P P P 

The formula for C~'(l,Nl) just given yields 

a( 1) 6-1 I JJ(Nl ) [B(N) + 
N)IN Nl 

Is (N)log p] 
p P 

We must show 

I JJ(Nt ) s (N
l

) 

NIIN Nl P 
- 2 L J.1(Ni ) A(N

1
) (v (N

l
) + +,> 

N)IN NI P P 

By definition of a(H) we have 

s (N) - I I CN(Nl,M)C~t(M,N2)(V (}O-2min{v (M),v (N l )}) A(N 2)· 

p ~IINN2IH p P P 

tJrit:e N _pV N , 'W'it::h p}N~ and N.-p"N: 'With N:IN' then t::hp rntJlrir-lic- .... .-i"it-v ~ 
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Sp(N1 ) N!tN' [M,tN' CN,(N~,M') C;!(M"N~)] 
OS"S" 

x[ r C ,,(p).,pll)C-~(pll,p") (lI-2min{lI,).})] A(p"N;) •. 
1S11S" P p 

The first expression in square brackets is oN 'N' (Kronecker delta) by definition. 
1 2 

Hence 

r ~(N~l) s (N
1

) - L ~(~P { 5 (N~) - ~ s (pN~) } 
NllN Nl P N~IN' Nl P P P 

r J.I(~P A(p"Ni) r [lIC ,,(l,pll) -";'(lI-2)C ,,(p,pll) ]C-~(pll.pJC) • 
Ni IN' Nl V-I P P P P 

OS K~" 

The expression in square brackets equals 
-2p 

2 p • and 

-1 

1 
(" • 0) " p2-1 r -2P C- 1( lJ Ie) p p" P ,p 1 (" .. 1) 

_ J.I«(> (" + _'_) 
p " ,p2-1 

\.1-1 p2-1 

0 (K > 1) 

by (6.6). This completes the proof. 

To apply Propositions 6.2 and 6.7 we need the coefficients A(N,) and 

B(N,) for our particular function i. They are givcn by the following: 

Proposition 6.S. Lct ~ be the function of Proposition 4.5 for k-l, t(N)-t. 

Then a; satis(ies the hypotheses of Proposition 6.2 with 

A(N 1 ) 
• ~ c(N1)N 1 

2u 2 N 
N2 6 L' 

n{N 1 ) - A(N l ) (1og11;- -y+2y<',c») (N1!N), 

where h, u, t have the usual meaning. y .. Euler's ('onst;tnt. 

Proof: The case N1-N follows directly from the Fourier l'xpansion at infinity 

given in Proposition 1..5, since. as remarked already. all terms in this expansion 

except the term 
h _Nct.y L' 2 . u r A (m) ( log-;- - y + 21.( 1 .C> ) l' 1r1mz for m=O arc exponent iall~' 

small as y ... ..,. To obtain the corresponding result .Jt other cusps, we must 

go back to the definition of as as ro 2as I ' 2n dS s s=O 

. ,.... ND (1)) 
wah ~s =Tr

N 
(8A(z)E

s 
(Nz) 

as in Proposition '.2, and use the formulas given in §§2-1 for the Fourier 

A~L""""~~VJ~IU!-.:Illu.u al.l:::J ua4:::J INI~N 4:)1"" :Nvd-"l N puc ;N{d '-t::J~~ .Nt'\d_-N a'=l1~M 
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. f ° d E( 1). h . expanS1.ons 0 A an s 1n t e van.OUB cusps. 

Let E; €pl(~) be a cusp, N, the greatest common divisor of N .:nnd the 

denominator of f;, and choose a matrix (1 € SL
2

(Z) sending .. to €.. By 

definition of the trace operator we have 

For each 

¢ I a - r 0A(Z)E(t)(Nz)I y 
s 2 yEro(ND)\ro(N)a s 2 

a b) 
y - (c d in the sum we have (c,N)-N , since 

-1 
yC1 E r o(~." 

a' -N 2a. c' =c/N, ' where 
a' a 

N2 "N/N, then cr - Nc and (a' ,c') -, • 

Let 

Choose 

a matrix a' b' 
y' .. (c' d') E SLZ (Z) and define z' by Nyz - y'z' , c'z'+-d' -~(cz+d) 

Nz 
as in the proof of Proposition 6.2. Then 

0A(Z)E(1)(Nz)I y 
s 2 

(OA(z) I y) (l~(1) (Nz) I y) - (OAI y) (z) • -N
' 

0/\1)1 y')(z') 
1 s 1 1 z:f"l 

By Lemma 2.3 and formula (2.2) we have 

I c -1 -~ 
(6

A 
y)(z) .. ED (-6 )ED (d)K(D 1 ) 6 1 X

D 
D (A)6

AV 
(z) 

1 z 2 l' 2 1 

(E(nl y')(z') .. c (c'}c (d'6) 6-s - 1 E{D l ) (z'+c*d) 
s 1 Dl D2 1 1 S 61 

where D" Dl 'D 2 is the decomposition of D into fundamental discriminants 

with (c,D) '" ID21 and 6." ID.I. Note that (c' ,D) & (c,D) because !oJ is prime 
1. 1. 

to D. As y'" 00 we have 

°AV(z) .. ..!.. + 
1 2u 

{ 1.(2,.',<) y' •.•• if Dl - 1 , 

E(t)(z) -8 
if D2 - I • - V

s
{0)L(2s.c)y + ••• 

8 

othetvise. 

(here" "denotes exponentially small terms), the first by defini~lon of 

the theta-series .:lnd thl' second by the cal!'ulations in the proof of Proposition 

3.2. If Dl =, then c and c' are divisibll." by D, so 
-1 -1 

d-a wN 20"l' -Nzd' 

(mod D) nnd E
D2

(dd')"dN 2 ). If 0,=1 then c and c' areprirneto D and 

CD (ce') :dc2 /Nl) "'c(toll)' Also c(N l ) .. c(N 2) since we are assumin~ dN)· t. 
1 

and K( 1) ., 1 • K(D)'" i. Hence 
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2u N 2 '1 ! 
....!.. e:(N 1 ) Le2s+1 E)(N y/N

2
) s + ••• if nlc , 

(9A(Z)E(1) (Nz» I y 
S 2 

6-~2E(Nl) V (0)L(2s.E) (N
1
Y/N

2
)-s+ 

2u1. N2 s if (c ,n) .. 1 

. . . otherwise • 

since the collection of left cosets ro(ND)\ro(N)a contains one coset of 

elements Y with Dlc -and Inl cosets of Y with (c.D)",. we deduce 

(i I a)(z) 
8 2 

s .. ....!.. e:(N
,

) [L(2s+1,E) (N
1
y/N

2
) 

2u N2 
iVs(O) - TiJTI72 L(2s,E) (N

1
y/N

2
) -s J + 

as y +eo, and the result follows by substituting V (0) '" _ n!r(s+j> . 
s r(s+l 1. and 

computing the derivative at 8" 0 • 

Combining Propositions 6.7 and 6.8, we find 

a(1) - ~ N- 1 6-1 ~ ~(N,)E(Nl) 
2u 2 L N 

NIIN 1 

h -1 .. 2UT N Tr (1 +~)-' 
piN P 

a( 1) a(t) (logN
6 

- y + 2!?<"E) - 2 L ~) 
n L piN p2-1 

for our function i We still have to calculate the integral in (6.5). From 

Proposition 4.5 we have 

am(y) - Am log y + Bm + L 
n .. 1 

C 
mn 

q (4nnNy 
o 6 ) 

for m> O. where we have made the abbreviations 

h 
Am m ~ rA(m) , 

No L' 
Bm - Am (log-;- - y + 2T(l,d) - L o,\(n) rA(mo-Nn) 

l:.n:sllff- : 
C

Iml 
- - 0A(n) rA(mo+Nn) • 

Hence 

J -4nmy s 
a (y) c y dy 

o m 
r(s+1) r' 

(41rm)S+1 Am r(s+1) -A logllnm + n ) m m 

+ \ C I (4nnNy) .-/lnmy s d 
L mn qo 6 l Y y. 

n-=' 0 

The first term h3s the finite limit -'-(-A y -A 1or,l,nm +B ) 
41Tm m m' m as 

The integral in the infinite sum is given by 

s +0 • 
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co ( eo _ 4n:5NY x ) -4nmy s I I.!. e dx e y dy 
o 1 x 

r(s+1) OO( nN -5-1 
(4nm) s+1 I 1 + -x) dx 1 meS -x 

At s"O this equals 

1 1""( 1 ') - -- dx 4nm 1 x x +meS/nN 

while as n .... 00 it equals 

1 
4nm log (1 + roeS ) 

nN 

r(s+t) leo [nN -s-1 -s-2 -8-2 ] dx 1 r(s+t) -8-2 
(4nm) 5+ 1 1 (meS x) + O(n x ) x - ;.;T (4nnN/6) 6+1 + O(n ), 

the O( )-constant being uniform near s~O. On the other hand, the Legendre 

function Qs(x) satisfies 

QO( 1+2t) ~ log (1 + i) 
Qs(1+2t) _r_(}s_+t)~( [t-s - 1 +O(t-s-2)] as t -+ Q) , 

so we can write 

f (4nnNy) -4nmy s d 
qo 6 e y y 

o 
2r(2s+2) Q (1 + 2nN) + t (s) 

(4 nm) S+"lr(s+2) s mo n 

-s-2 c 
with tn (s) .. O(n ) as n'" Q) and tn (0) .. O. Since C

mn 
.. O(n) for any c > 0, 

the series L C t (5) 
n mn n 

converges uniformly near 5"0 and vanishes at s=O. IIence 

f ( -4nmy s 2r(2s+2) ~ 2nN 4nm a y) e y dy c B -A (y+ log4nm) + S I..C Q (1+-~) + o(t) 
o m m m (4nm) r(s+2) n=l mn s mu 

a8 s-+O. and putting this into (6.5) we obtain 

a 
m 

Bm-Am(y+logllnm) + lim [ 2r(~s+2) r C Q (1+ 2nN) + 24a(1) 0 1(m) 
s ... o (4nm) r(s+2)n_1 mn s mo s 

. 1 ~' + 246(1) 0l(m) + 48a(1) o~(m) -48a(1) 0l(m) (log 2m +"2 + t(2» 

an expression which can he further simplified by multip1ying the expression in 

(4nm)Sr(s+2) . 
square ,bnlckcts by --r(~2-) - to replace the 11m lerm by 

~s+ s ... 0 

lim[2 r C Q(1+2n~) + 24a(Ool(m)] + 24a(1)°1(m)(log41Tm+y-1). 
s"'O n=l mn s mu 

(The argument just described was already used in the case N=m=l in [18], p. 218.) 

Putting into this the expressions for a(1), 6(1), Am' Bm and C
mn 

given above, l 
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and combining the resulting formula with the assertion of Proposition 4.5~~~-~~-~"~--" 

obtain our main result: 

Theorem 6.9. Let D, A, h, u, c have their usual meanings, N a natural number 

with c(N) - 1 • Then there exists a holomorphic cusp form ~A(z) - L am A e2wimz 
m-l ' 

of weight 2 and level N such that 
2 

i) LA(f,O"O, LA(f,,)_8~(f'~A) for any cusp form f in the space 

spanned by newforms of weight 2 and level N. ~ 

. . ) h th . ff·· f '" f . N·· b 11 t e m Fourler coe lC1.ent 0 "VA -2!. m pr1me to 1.S glven y 

\' h [NIDI L' ] 
am,A - 1 I.

m
l
D

I °A(n) rA(mIDI-nN) + ut'A(m) log4n2m -2y+2T<',c) 
:;;n:;;,-

. [ ~ ( 2nN hK 1 ] + llmO -2 1., 0A{n) t'A(mIDI+nN) Qs 1 +iiili5l) - ij'l0,(m) 8 
s-+ n-

hK [ (N "\,.!.£!LP I; , L' ) \' m ) + U2 o,(m) logm + 2 I. 2-1 + 2 + 2~(2) - 2![<1,e:) + L d log'(f2 • 
pIN p dIm 

where o,(m) - )' d, K - -12/NTI{1 +~~, 0A and 0A as in Pt'oposition 4.6. 
dTm pIN p 
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C\\apter V. Main identity, consequences and generalizations 

In the first section of this chapter we combine the results of Chapters 

II - IV to prove the theorems stated in §6 of Chapter 1. The proofs of their 

variou~ consequences for the Birch-Swinnerton-Dyer conjecture are given in 12. 

The application to the problem of estimating class numbers of imaginary 

quadratic fields was described in Chapter I and will not be discussed again • 

These results involve only the special case of the calculations of 

Chapter IV when the weight of the modular form f is 2 and its level is a 

norm in lhe imaginary quadratic field K. The corresponding results when 

these aStlUmptions are dropped are discussed in §3 (weight 2 but arbitrary 

level) nnd §4 (higher weight). The results described in §3, relating the 

values of L
A

(f,1) or LA(f,1) to heights of Heegner points of more 

general types than those discussed so far in this paper, have been proved, 

but th,·ir proofs will be postponed to a later paper. The case k> 1 is 

discusr.rd in §4, where we describe a conjectural interpretation of the 

formula for LA(f,k) in terms of heights of higher-dimensional "Hcegner 

cycleH" and state a conjecture according to 

which certain combinations of special values at Heegner points of the 

resolvl'nt kernel function 
m , 

GN,s(z,z ) of Chapter II are logarithms of 

algebr.ti,· numbers belonging to the Hilbert class field of K. 

St. ~!I:hts or Heegner points and derivatives of L-serics 

The notations and assumptions are again as in Chapters II and III: it 

is aSlHlm<,d that every prime divisor of N splits in our im.,ginary quadratic 

field", x €XO(N)(H) is one of the Hecr,ncr points associated to K (H as 

usual lll .. Hilbert class field of K). c denotes the class of (x) - (co) in 

Jac(XO(N» (II), A is an ideal class of K and 0 the corresponding element 

of G .. Gal(H/K). The first assert ion of Theorem 6.1 of Chapter I was that 

the funrtion gA (z) = 1 <c,T co> qm 
00::1 m 

is a cusp form of lJeight 2 on r O(N) • 



-121-

This in fact has nothing at all to do with Heegner points: if y and z are 

any two points of JO(N)(Q) then r <y, T z> qID is a cusp form of weight 2 
mi!1 m 

and level N. In fact, if a is any ~-linear map from the Hecke algebra T to 

c , then r aCT ) qm 
m~1 m 

is such a cusp form. The proof of this is a simple 

formal argument; since it may not be familiar to all readers, we give it here. 

If J is ~lny abel ian variety over ~ and S its cotangent space at the 

origin, then endomorphisms of J act faithfully on S. Take J to be the 

Jacobian of XO(N); then S can be identified with the space of cusp forms of 

weight 2 and level N having rational Fourier coefficients. Hence the map 

~ -+ End~(S) is injective (recall that ~ is defined as the subalgebra of 

EndQJ spanned by the Heeke operators T
m

). In particular, dimQ T is finite 

and bounded by d
2

, where d .. dim
Q 

S .. dime.: S2(r
O

(N». For each mEN let 

am: S -+Q be the map sending a cusp form to its mth Fourier.coefficient, and 

define a map 6: yxS .... Q by aCT ,f) .. at (Tf). We claim that 6 is a perfect 

pairing (and hence that di~ T" d). Indeed, if for some fES the map 

!l("£) vanishes identically then am(f) -at(Tmf) "'a(Tm,f) =0 for all m, so 

f-O; conversely, if for some TET the map 'HT,'} vanishes identically 

then for any f E S we have 8
m 

(Tf) .. a 1 (TmTO .. a 1 (TTmO .. 6(T, TmO cO for all 

m and consequently Tf .. 0, so the injectivity of n- .... EndQ(S) implies T - 0 • 

The facl that 6 is a perfect pairing means in particular that any a EHo~('Il',C) 

can be represented as a(·,f) for some f E S®C. and then r n(T ) qm .. f 
m:::1 m 

This proves that gA is a cusp form on rO(N) as claimed. To identify 

it, we must :look at the formulas for its Fourier coefficients. With d· (x) - (0) 

as lIsual we have <c.T co> - <e,T dO> because c and d give the same class in 
m m 

J(H)®Q by the M.anin-Orinfeld theorem. For til(' latt{'r symbol we have the 

dt'composition <c,T dO> C L <c,T dO> ""here if Icl n IT dOl *~ the local 
m v m v m 

symbols <e , Tmd o >v must he defined as in §5 of Chaptt.·r 11. The formula for the sum of 

the archimedean local symbols given in Propositions 4.2 and 5.6 of Chapter II 

can be written more simply by using the first part of Proposition 4.6 of 

Chapter IV as 

for 

<c,T dO> m GO 
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lim [-2U2 I cA(n) rA(nN+mIDI) Q _1(1+ 2t~) - hKO:(7) ] 
s -+ 1 n .. 1 8 m 8 

+ hK[ IJtm) (lOgm + 2 I 102s...r + 2 + 2~2) - 2!f<l,C»)+ r d log~] 
plN P I: dim 

+ hurA(m) [2L~(1,£) - 2y - 210g2n + log 101] 

(m,N) .. 1 , where 0A (n).. }' £A (n,d) 
dtn 

with £A(n,d) ( .. 0, 1 or -0 as in 

Proposition 3.2 of Chapter IV and 

h = ~, D '" OK' U" ~ 

K'"K .. .:.13 n -L 

the class number, discriminant J t number of units of K; 

N N piN p+l ' 
o,(m)" L d , Y=Euler's constant; 

dim 
Qs-l(t) = Legendre function of the second kind. 

Similarly, we can combine the formulas for )' <c,T dO> given in Propositions 
vip m v 

9.2, 9.7 and 9.11 of Chapter III for all p and rewrite the result using the 

second part of Proposition 4.6 of Chapter IV as 

° <c, Tmd > finite - u
2 L O<n~ mIOIINoA(n) rA(mIDI-nN) 

N 
+ hur A (m) log iii 

for (m.N) = 1 , where 0;' (n) C }' £A (n .d) log ~. Adding the last two 
dtn 

formulae, we find the identity <c,T co> = u 2 
a A for (m,N) '" 1 • where a A 

01 m, m, 

is the mth Fourier coefficient of the cusp form defined in Theorem 6.9 of 

Chapter IV. But this means that gA and 2 \ m 
U l.a Aq 

01, 
differ by an old 

form in S2(rO(N}), so they have the same Petersson scalar product with any 

f in the space sr.-mned by newforms of weight 2 and level N, which is just 

assertion of Theorem 6.1 of Chapter I. 

As an aside, we mention that the function g is not quite independent of 

the choice of Heegncr point x (as erroneously asserted in our announcement (17]). 

but this is true> up to thp :luJition of an old form, which is all we need. That 

<c, Tmco> is indepcnde>nt of the choice of x when (m,N) '" 1 follows from the fact 

thal any t""o choices of x ':lre related by the action of an cleme>nt of GxW. ""here 

W is the group of Atkin-Lehner involutions. and this action commutes with that 

of Tm for (m.N)" 1. (It also follows, of course, from our computation of the 

~ 
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height.) 

We now turn to the second main result of §6 of Chapter I, Theorem 6.3, 

which is a consequence of the first and of the formalism at the beginning of 

this section. For X a character of G set Cx - r X-1 (0)CO 
; then 

O'tG 

<CX,TmCx> 
'\' -1( T '\' -1' 0 

< LX T)C, L X (0) T C > 
T 0' 

r X(T-10) < c T, T cO'> 
m 

O,T 

h I x(o) < c, T cO' > 
a m 

m 

by the invariance under G of the height pairing on J(lI) (which we have extended 

to J(H)®C as a hermitian pairing). Now let fES2(r
O

(N» be a normalized 

newform. In our basic identity LA (f, 1) a 811
2
u-

2 Inl-l/2 (f ,gA' we can 

replace (f ,gA' by (gA ,f) because both f and gA have real Fourier coefficients. 

Hence 

L I (f,X,1) I x(A) LA(f,!) 
_ 8w 2 

~ (IX(A)gA' f) 

On the other hand, \' x(A) gA .. ~ L <c , T c > qm 
A m::l X m X 

by the calculation just given. 

Extend {O to a basis f 1 .. f, f2' ••• , fd of S2(ro(N» consisting of the 

normalized newforms together with a basis of the space of oldforms (chosen for 

convenience to have real Fourier coefficients). Then the fo~,lism at the 

J (H)~ct ) can be 

vritten as a sum of components transforming like the f., say c - 1 c(j) 
J X j_' X 

beginning of this section implies that C
x 

(or any clement of 

with T c(j) 
m X 

a (f.) c(j) (in particular, c(l) is the f-isotypical component 
m 1 X X 

(") (") 
<CX,TC

X
>· La (f.)<c l,C J =-, so * X(A)gA. 

m • • m J X X 
1,] 

cX,f of c x )' Then 

t '\' < (i) (j) > f h .L. C x .cx j' Combining this with the last identity and observing 
1,] 

that (f. to .. 0 for j'; 1 • 
J 

L'(f,X,D 

ve find 

2 d 
8n \ (i) (1) 
hu~ i::, <c X • C x > (f ,0 

But <c ( i) , c ( 1) > - 0 
X X 

for i'; t since 
( i) 

eX and 
(1) 

eX are eigenvectors with 

different eigenvalues of some Tm' (m.N)" 1 , so the sum reduces to a single 
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term ·S(c f> (f,f). This gives Theorem 6.3 of Chapter I. 
X, 

We end this section by giving three important corollaries of the main 

theorem which were already mentioned in our announcement [171. 

Corollary 1.1. ~ f E S2(r O(N» be any ncwform and X any character of 

Gal{H/K). Then LI(f,X,1) ~O • 

This follows immediately from tle formula for L I (f,X,I) since both the 

Peters son product and the global height pairing are positive definite. Notice 

that Corollary 1.1 is what would be predicted by the Riemann hypothesis for 

L(f ,x,s) , according to which the largest zero of the real function L(f ,X,s) 

on the real axis should occur at s .. 1 • 

Corollary 1.2. Let fES 2(r
O

(N» be any newform and X any character of 

Gal(H/K). Then either all conjugates L(fa ,Xa ,s) (a E Gal('ij/fl» have a 

simple zero at s" 1 or else all have a zero of order ~ 3 • 

Indeed. each L(fa,Xa.s) 

equation, and L I (fa ,Xa ,1) .. 0 

has an odd order zero at s .. 1 by the functional 

iff the Heegner point cXa,fa E J(H)0C vanishes 

(again by the formula for LI(f.x,l) 

of the height pairing). But c a fa X , 
only if cX,f does. 

together with the positive-definiteness 

equals c a 
X,f 

and hence vanishes if and 

A consequence of Corollary 1.2, also mentioned in (17], is the analogous 

statement for the ordinary Heeke L-series: 

Corollary t .J. Let f be any newform of veight 2 and fa (of: Gal(~/Q» ~ 

conjugate of f. Then 

ordsal L(f,s) - 0 

ord s =1 L(f ,5) - , 

ord
s

_
1 

L(f .s) ~ 2 

ord
s

=1 L(f ,s) i:: 3 

---
a ordsal L(f ,s) a 0 

a ord
s

_
t 

L(f ,s) • t 

a ord
s

_
1 

L(f ,5) ~ 2 

a ordsc1 L(f .s) ~ 3 • 

Indeed. L(f,1) is known to be equal to the product of a non-vanishing 

period vith an algebraic number which is conjugated by a when f is, so the 
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first statement is clear. Since L(f,s) and L(fa,s) satisfy the same 

functional equation, their orders of vanishing at s .. 1 have the same parity. 

Hence all the statements of Corollary 1.3 will follow if we show that L(f,1) _ 0, 

L' (f ,1) ;. 0 ... L' (fa, 1) ;. 0 • The assumption implies that L(f,s) (and hence 

L(fa,s» haa a functional equation with a sign. -1 TIl en 

for any K -IQ(/D) as in this paper the twisted function Lc U ,s) r c(n) a(n) n -8. 
where ten) .. (~) as usual t will have an even order zero by virtue of the 

functional equation of L(f,s)Lc(f,s) uL(f.l,s). According to a theorem of 

W.:tldspurger ([361. Th. 2.3, (37), Th. 4), we can choose K so that Lc{f,t) 

(and hence also L (fa, 1» is non-Zero. Then the result follows from Corollary c 

1.2 and the identity L'(f.1)Le:(f,1) OlL'(f,l.1) • 

Corollaries 1.2 and 1.3 are interesting in view of a general conjecture 

that the order of vanishing of an odd-weight motivic L-function at the symmetry 

point of its functional equation should be invariant under Galois conjugation 

[61. 

§2. Comparison with the conjecture of Birch and Swinnerton-Dyer 

In §7 of Chapter I we described several applications of our main theorem to 

the Birch - Swinnerton-Dyer conjecture for an elliptic curve E over ~. under 

the assumption that the L-series of E coincides with that of a modular form f. 

We recall that this condition can be verified by a finite computation for any 

given elliptic curve E/Q. If it is satisfied. the modular form f is necessarily 

a Heeke eigenform of weight 2 with Fourier coefficients in Z conversely, given 

any such f t the periods of the elliptic differential Wf = 2ni f (z) dz - I a qn ~ 
n~l n q 

with L{EO,s)~I.(f.s) [25], def ine an ell iptic curve ("strong Weil curve") EO/~ 

and by Faltinp,s' theorem any elliptic curve with L(E,s) =L(f,5) is isogenous 

to EO and hence admits a covering map n: XO(N) -t- E (N .. level of f) defined 

over ~ and sending the cusp co to Of E(~). For thp. rest of this section \ole 

suppose given a ne\olfonn f of weight 2 and- level N and an elliptic curve E over 

~ related in this way. 
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TIle assertion of TIleorem 7.3 of Chapter I was that under these circum-

stances the quotient of L'(E,1) by the real period of a regular differential 

of E/~ is a non-zero rational multiple of the height of some point in E(Q) 

This implied in particular that rk E(~) >0 if L'(E,!):/O and showed that, 

if L' (E.O'; 0 and rk E(~) '" 1, then the Birch - Swinnerton-Dyer conjectural 

formula for L' (E,O holds up to a non-zero rational factor. In this section 

we show how to prove this by applying the results of the last section to the 

trivial character XcI. Since- L(f ,X,s) in this case is equal to the L-seriea 

of E over the imaginary quadratic field K, we will actually be working over K 

rather than Q, and here our result will be even more precise: if ord
a

_
t 

LeE/K.s) 

os 1 t then rk E(K) ~ 1 t and if ord
s

=l L(E/K.s) '" rk E(K) .. 1 then the Birch­

Swinnerton-Dyer conjectural formula for L I (ElK, 1) holds up to a non-zero 

rational .oquMe~ This last result will suggest a conjecture relating various 

arithmetical invariants of ElK which can sometimes be verified by descent 

arguments. 

Finally, we will give some consequences of our main identity for the 

Birch - Swinnerton-Dyer conjecture for certain abel ian varieties over ~ of 

dimension larger than 1, as stated in our announcement (17 J • 

Let E. f. wf and 'Il' be as above and let W be a Ncron differential 

on E (this is unique up to sign). Then 'Il'*(w) = c w
f 

for some non-zero 

integer c and we nonnal ize the choice of W so that c> o. It is 

generally conjectured [25] that c divides the index of 'Il'*H , (X
O

(N) ,Z) in 

H,(E,Z) (for the strong Weil parametrization, this is the conjrcture that 

cO'" 1 ) , but we will not assume this here. 

Let x be a Heegner point of discriminant D on XO(N) Then the point 

Y. 1T(X
O

) 

aEGal(II/K) 
L n(x)" 

(1 E Gal (H/K) 
PK 

where the sum is taken with respect to the group law on E(H), belongs to 

E(K). Up to sign, it is independent of the choice of the Heegner point x. 

~' 
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and we have the formula 

h(P
K

) - ~(cl.f) 0 deg(w) 

where the canonical heights are taken on the abelian varieties E and Jac(XO(N» 

over K. The degree of 1f also appears when we compare periods: 

1w1 2 ff Iw h w\ - c2IwfI2/deg(n) 
defn. E(C) 

Consequently, Theorem 6.3 of Chapter I ~ith X - 1 gives the identity 

Theorem 2.1. LI(E/K,t) - Ilw~2h(PK)/c2uiIDI1/2 • 

llow assume that P
K 

has infinite order, so L I (E/K.n rf o. The conjecture 

of Birch and Swinnerton-Dyer then predicts that E(K) has rank lover 7L and 

gives an exact formula for the first derivative in terms of arithmetic invariants 

of E. For each place p of K which divides N. let mu be the order of the 

finite group of connected components in the Neron model for E over °
11

, Since 

p-p • p is a rational prime, we have mp '" mp and hence {writing m 
p 

for this 

common value} m'm-" m 2 • P P p 
Put m· n m 

piN p 
Finally, let IwKI denote the 

order of the Tate-Shafarevitch group of E over K i this integer is conjecturally 

finite and. if so. is a square [35]. Then the conjecture of Birch and 

Swinnerton-Dyer predicts the identity 

L' (E/K.1) I 11111112 om2 'h(P
K
)' ~I / Inl ' /

2 
[E(K) :ZP

K
]2 

[35]. Theorem 2.1 confirms this up to a rational square and suggests: 

Conjecture 2.2. If P
K 

has infinite order in E(K) t then it generates a 

subgroup of finite index and this index equals c'rn'll,-Im 1'/2 K K • 

Not ice that in Conjecture 2.2 the integer m .is an invariant of E over 

* ~ t the integer ~ - Card(O IH) is an invariant of K, and the group W K 

is an invariant of E over K. The integer c is an invariant of the para-

rnetrization n of E over Q. which also enters into the definition of the 

point P
K

• However, if nl is another parametrization of E we have 
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nE 0 1f' -n
E 

O1r for some integers n, n' ~ 1. Hence n'c' -nc 

so Conjecture 2.2 is independent of the para~etrization chosen. 

and n 'I'K - nPK • 

We hencl![orth 

assume that 1r is the parametrization of minimal degree for E i this minimizes 

the index of 7l P K in E(K). 

since the index of ZP K in E(K) 

Conjecture 2.2 implies the simpler 

is certainly divisible by t - IF.(~) tori. 

conjecture 2.3. !!. E(K) has rank " then the integer c' m - uK • 1 ill "I , /2 is 

divisible by t. 

(Notice that this makes sense even without knowing that ill" is finite, 

since in considering the divisibility of IlHK I by a natural number n we may 

replace WK by its n-torsion subgroup, which is known to be finite.) 

Conjecture ~.3 can be attacked using descent techniques. In many rnses, 

t divides the term c· m , which depends only on E over Q. For exdJUl' Ie, 

when N - 11 there are 3 curves to consider. 

E c m t 

EO - J O(l1) I 5 5 

Eo/ll5 - J1(1l) 5 1 5 

Eol ((1./5) 1 1 1 

However. the identity t - cm does ~ always holdi when N - 65 - S'13 we 

have 2 curves. with invariants: 

E c m t 

EO - JO(6S)/<wStW13> 1 1 2 

EO/ (ll./2) 1 4 2 
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Conjecture 2.3 for the curve E'" EO predicts tlH.'.t if K is imaginary quadrat-

Ie where 5 and 13 are split, then either 

{

a) K - Q(i) Cuo ~ a 2), or 

b) UKE!K)2 r 0 , or 

e) rank(E(K» > 1 • 

Using results of Kramer [22], one can ahow that for K ~ ~(i) the 2-Sclmer 

group of E over K has rank ~ 4 over ~!2. lienee either b) or c) 1a true. 

We now show how these results concerning the Birch - Swinnerton-Dycr 

conjecture over K can be used to prove the statements concerning the same 

conjecture over ~ stated in Theorem 7.3 of Chapter I. This theorem is trivial 

if L'(E,I)"O (take P=O), so we can assume ord
s
=! LeE,s) = 1. In particular, 

the sign of the functional equation of L(E,s) "L(f,s) is -1, so flwN"f. 

As in §1 \We choose a K by Waldspurger's theorem so that LeU,!),O. The 

function Lc (f, s) is the L-series of E' over ~. where E' is the twist of E 

by K (Le. the elliptic curve defined by Dy2., x 3 + ax + b, where y2 '" x 3 
+ ax + b 

is a 1-1eierstrass equation for E). By the theory of modular symbols [25), \We 

have 

L(E',!) a' 0' 

\Where 0' is the fundamental real period of the Ncron differential w'" w/llol 

on E' and a' is a rational number, which by our choice of K is non-zero. We 

also have the identity 

~wf 0 ~ .. (E(R):E(R) J • fl • fl' • 
10 1 

If \We take p. P K + ~ E E(~), and combine Theorem 2.1 and the last two 

formulas, we obtain the desired fonnula L' (E, 1) .. an h(P) with a E ~x • 
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Finally, we recall that the Birch - Swinnerton-Dyer conjecture applies to 

abelian varieties defined over number fields, not just to elliptic curves; our 

result says something about this more general case. Namely, let f .. l an qn 

be a Heeke eigcnform of ,,,eight 2 and level N whose Fourier coefficients do 
totally rea 

not lie in Q but instead generate a{number field K
f 

of degree m (Le. f 

lies in an m-dimensional irreducible representation of the Hecke algebra over 

~). Then one can associate to f an m-dimensional abelian variety AO!Q 

which is a quotient of the Jacobian of XO(N) The L-series of A
O

' or of 

any abel ian variety A isogenous to AO over ~, is given by 

(2.4) L(A/~,s) IT L(fa , s) 
a:K f 4R 

Now assume that 

flwN .. f, so Lhat the sign of the functional equation of L(f ,s) is -1. 

Then by Corollary 1.3 we know that the order of vanishing of L(A/IQ,s) at 

s = 1 is either m or ~ 3m, depending \Whether L'(f, 1) is non-zero or zero. 

Moreover. (2.4) gives the identity L(m)(A,s) '" nL'(fa,t). We now imitate 
a 

the argument for the case m = t to sho\W that ord
s

'" L(A/~,s) = m implies 

that rk A(<<[) ~ m (the space A(<<[) "n contains the m-dimensional subspace 

spanned by the c l,fO ) and that if equality holds the Birch - Swinnerton-Dyer 

formula for L(m)(A/~,,) is true up to a non-zero rational multiple. 

53. Genpr .• l iZl'd lIeegnpr points and their relat ion to I.-series 

In §1 we related thp m~in theorem of Chapter IV, undpr the assumptions 

k=1 and 

(3.1) f. (p) .. 1 f ,) r all piN , 

to thl' compuLalilllls in Chapters II ami III of heights of Heegner points on 

XO(N). I!owevpr, <l f,bnce at Theorem 6.9 of Chapter IV sho .... s that the formula 

for LA(f, 1) when k=1 and c(N)=1 is of essentially the sace nature when 

(3.1) is not fulfilled as when it is. !'!or(>over. Theoreo ~.6 of Chapter IV (for 
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k-1). giving LA (f ,1) when E(N) - -1. also has a similar (though much simpler) 

form. We would therefore expect that there is again a connection with the heights 

of Heegner-like points on some algebraic curve. TIlis is indeed the case and 

will now be described briefly. The detailed proofs, which follow the lines of 

the height computations:in this paper, will be given in a Inter paper: the 

simplest case, When N is prime and c(N)"-1, is worked out in detail in (16). 

Then 

Let S be the finite set 

s { p p prime, ord (N) odd. 
p 

dp) .. -, } 

(-I) lSI. c(N), so the parity of lsi corresponds to the sign of the 

functional equation of LA(f.s). If lsi is even. so that LA(f,s) has an 

odd order zero at s=l, we define B to be the indefinite quaternion algebra 

over- ~ ramified at S ("indefinite case"), while if lSI is odd. so that 

ord
s

_
1 

LA (f .s) is even, we take for B the definite quatemion algebra over 

Cl ramified at S U {oo} ("definite case"). Since every prime which ramifies 

in B is inert in K, there is an embedding j:K .... B. Let R be an order in 

B ~tdch contains j (0) and has reduced discriminant N _ Such global orders 

exist [151; in the indefinite case they are unique up to conjugacy whereas in 

the definite case there are finitely many conjugacy classes. The group 

r - R
X

/{:t1) embeds as a discrete subgroup of the real Lie group G. (B®R) x IRK. 

In the indefinite case, the group G is isomorph ic to PGL
2

(R) and 

r+ - rOPGL;(R) is an infinite Fuchsian group which Hcts discretely on H. If 

(3.1) holds then r+ = ro(N) and we are in ~h(' case studied in this paper; in 

all other cases the curve r+\H is a compact Riemann surface. An important 

theorem of Shimllra [32} states that this curve has a canonical mod<>l X over Q. 

This model is characterized by the fields of rationality of its special points 

and has a modular description as the coarse moduli of polarized abel ian surfaces 

with endomorph isms by R. The Hecke correspondpncc5 arc rat ional over fl and 

determine the zeta-function. The embedding j: 0 .... R gives rise to a Heegner 

point x of discriminant D on X, rational OV(,T the pilbert class field H of K. 
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The group Pic(O) acts freely on the set of Heegn(,T pointH of discriminant D. 

the action being described vin conjugation in Gal(II/K) by ShinaJra' s reciprocity 

law. The generalization of our main identity says tJ'/1t the coefficients am,A 

in Theorem 6.9 of Chapter IV are given by a fixed multiple of <x. T x 01..> 
m 

where <- ,> is the height pairing on Pic(X) defin('rl using the Neron-Tate theory. 

The necessary height computations arc similar to thu~c in Chapters II and III of 

12 IT £(n) -1. • 
to:: - - - (' +~) winch occurs 1n 

N piN p 
as in the sp~cial case.(2.13) of Chapter 

this paper. For instance, the number 

Theorem 6.9 of Chapter IV arises (just 

II) as the residue of the resolvent kernel function (;s for X(e) at s-l. 

In the definite case, G oc S03(R) CPGL
2

(C) and r is n finit.e group which 

acts on p'(e:). The quotient r\F ' ([) is again n (;ompacl Riemann surface. noW' 

always of genus 0, and one can again construct a cilnonicnl model of this curve 

over Q it is simply r\y, where 

Y is the curve of genus 0 over G1 which corresponds to Lhc quaternion algebra 

B 
n 

To define Hecke operators one must work with th .. disjoint union X - il r.\'.­
i", 1 

where n is the class number of Rand r i is the plulective unit group of 

the right order of-the ith left ideal class. (This union is a natural double 

coset space in the adclic point of view.) The reprctF-'ltatinn of the Heeke algebra 

on Pic(X) QtZn then gives rise to the classical theory o[ Brandt matrices (16]. 

Again j: O .... R gives a Heegner point x of discrimin:lIlL D on X, this time 

defined Illr('ady over K, and PicCO) acts fre('ly on \.\.e 'H-t of such Heegner 

points. We define a height: pairing < • > on Pic(X) by netting <x.y> equal 

to 0 if x and yare on different components of 1. .and tn I r i I if x and y 

are both on the component r i\ Y. Our main identity In thib case says that the 

coeffic ients 

multiples of 

bm,A occurring in Theor('m 5.6 of Cllilpt.-r IV (for k-1) are fixed 

<x, T xOA,. 
m 

An ar~ument 1 ike that iI- \, of this chapter permits 

us to d('ducc a relationship hctw('cn L(f,X.n and ;X,.f· x y • f > for a ncwform 

f f S2(fO(N» and ch~r,Jct('r X: Cl
K 

.... eX, where x ( ic the obvious eigenco~Jl'::nc, 
. .. f1~_ . ~. 

Slnce x f l1es l~ l-dImens10nal space 3S K varl(>r;, tlle theorem of Waldspu:rg~r 
1, 
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and Vigneras (cf. [36]) that L(f,1,1) is proportional to the square of an 

element of Kf follows immediately. 

§4. The case k> 1 higher weight cycles and an algebraicity conjecture 

We now return to the hypothesis (3.1), but assume that k> 1. Recall 
\.I~..!}m~ t!.J 

that for sEC and m f~ined an invariant y
N
m (A) in Chapter II 

,s 
m A "m T Ta by YN () - L G

N 
(x,x ) , where 

,8 TEG's 

x is a Heegner point of discriminant 0, 

a is the element of G" Gal (H/K) corresponding to A, and 

G
m
N - GN IT , G

N 
the resolvent kernel function for fo(N). 

,6 , S m ,s 

If rA(m) -10, then some of the terms in the sum defining Y;.s(A) become 

infinite and the definition of m 
Y N,B (A) has to be modified as explained in 

§5 of Chapter II. The final formula obtained for y
N
m (A) 

.s 
(Proposition 

s.B of Chapter II) can be expressed using Proposition 4.6(a) of Chapter IV as 

m 
Y N, B (A) 

2 ~ 2nN 
- -2u L aA(n) rA(nN+mIDI) Qs-l(1 + ~ 

n-1 

( r' 1 L') + 2 hu r A (m) r( s) - log 2n + 2" log 101 + T( 1, t) 

Comparing this with the formula for 8 m,A in Theorem 5.8 of Chapter IV, we 

see that we have the following analogue for higher weight of the main identity 

proved in 11 

Theorem 4.1. Suppose 0.1) is satisfied, k ~m integer grf'att'r than 1. Then 

there is a holomorphic cusp form 0 .. L a A qm E S2k(rO(N» 
m~1 m, 

satisfying 

4k-l 2k 
2 _ ( . n"..... (f, ~ ) LA(f,k) 

and wi th am•A (m prime to N) 

k-I 
m m 
~ YN,k(A) (4.2) am,A 

Since p ( 2nN k-l 1 -;rrr)rA(mlDI-nN) 

Ill'W 
for .111 f (S2k (r O(N» 

h k-l N 
+ U r A (m) m log iii 

L mini °A(n)rA(m~-nN)Pk_l(l -~) 
O<nST 

is rat ional and 0 A (n) is a rational linear 
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combination of logarithms of primes (indeed, by the re~3rk following Proposition 

4.6 of Chapter IV, a nonnegative even integral multiple of the logarithm of a 

single prime). equation (4.2) expresses a m•A as a finite sum of values of 

G~,k at Heegner points plus a finite Bum of rational multiples of logarithms 

of prime numbers. TIlis is reminiscent of the situation for °k c 1 and Buggests 

that there should be an interpretation of the right-hand side of (4.2) as Borne 

sort of a height. In fact such an interpretation has been provided by Deligne, 

who found a definition of Iieegner vectors Sx in the stalks nbove Heegner 

points x of the local coefficient system Sym2k- 2(!.!.') (!.!.' .. first cohomology 

group of the universal elliptic curve over XO(N» and of a height pairing 

< , > such that <sx' Tmsxo > = am,A. The height pairing is defined as the 

Bum of local heights characterized by axioms similar to those of §4 of Chapter I, 

and these can be calculated using intersection theory at the finite -places and 

values of a certain eigenfunction of the Laplace operator (which turns out to 

be GN,k) at the archimedean places. Moreover, the definitions can be carried 

over to the case when 0.1) is not satisfied (now with XO{N) replaced by the 

. d • 2k-2{ 1) f .. curve dlscusse In.§3 and Sym !.!. by the local coc flClent system 

r+\Hxw or llri\p ' «:)xW, where W is the unique (2k-1)-dimensional irreducible 
1 

representation of nX/Qx) and one again gets a formula relating the heightn 

of the Heegner vectors to the values of LA(f,k) or LA{f.k) as calculated 

in Chapter IV. However, the global significance of the sum of the local heights 

is not yet understood (e.g.: under what circumstances does the height pairing 

vanish?), so that we do not get applications of the sort given for k - 1 • 

However, even in tilt' absence of a complete height theory. the identity (4.2) 

is not devoid of interest. Suppose, for instance, that there are no non-zero 

CliSp forms of weight 2k on r O(N). Then am,A 

(4.2) gives us an expliLit formula for Y; k(A) 

must v.1nish for (,:tch m, and 

as a r,l tiona 1 1 inca r comb ina t ion . 
of logarithms of rational primes. If S2k(r

O
(N» is not O. we replace m 

GN•k 

by the function 

GN •k .>.. (z,. z 2) 
\ k-l m 
L >.. m GN k(zl.z2) 

m=1 m , 
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where .!. - ()'m}m~1 with 

i) Am EZ, Am· 0 for all but finitely many m, 

ii) I A a - 0 for any cusp form La qm E s2k(r
o

(N» , 
m~1 m m m 

and (for convenience) 

iii) lm - 0 for m not prime to N 

(we call such a A a relation for S2k(r
O
(N»). Then (4.1) implies that the 

invariant 

YN .k,A (A) - I m
k

-
1

). Y~ k (A) 
_ m-1 m. 

L G (T T 
T EG N, k ,l x ,x a) 

is a rational linear combination of logarithms of prime numbers: 

Corollary 4.3. Suppose (3.1) is satisfied. k> 1 • Let A be a relation 

for S2k (r O(N» and A an ideal class of K. Then 

\' k-1 m 2 t k-1 '() (I 2nN 
Y (A) '" l. 'Amm hurA(m) 10gN + u l. Amm 0A n r A m DI-nN) Pk-t(1 -~). 
N,k,! m>O m,nEZ. mlDr 

miDI ~ nN > 0 

In particular, 
Dk- 1 

exp(~ YN,k,lCA» is a rational number, and in fact a rational 

square unless ID\ is prime. 

To prove the last statement, mUltiply both sides of the formula by Dk - 1/u2 • 

Then the terms in the second sum with miDI> nN > 0 are even integral combinations 

of logarithms of rational primes. because k-1 Dk-1 p (1 -~) r (mIDI-nN) 
m k-1 mlDr' A and 

Am arc integers and 0A(n) is an even multiple of the logarithm of a prime. In 

th~ terms with miDI· nN (these can occur only for N" 1 , since we are assuming 

both til and D prime to N) we lose a factor 2u because 

factor of 
k-1 k-1 

m D (cancell ing at least the ll) because 

rA (0) .. 2~ but gain a 

p (-1) ( ... (_Ok-1 ) 
k-1 

has no denominator. If D has more than one prime factor, then the extra factor 

of 2 in these terms is gained b£'cause the numbers a (n) 
p 

in Proposition 4.6 of 

Chnpter IV are divisible by 4 rather than just 2 wl1('n Din (because 416(n» 

Similarly, the first sum in 4.3 multiplied by Dk - 1/u2 is nlways an integral 

multiple of log!:! and this multiple is even if IDI is not prime because 21h • 
n 

Let us return for a moment to the case k c 1, and consider the interpreta-
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tion of the formula for YN,k,l(A) 

the individual terms G
N 

1 ,(x~ ,XOT
) 

, 'o!. 

there. We know from Chapter II that 

in the definition of YN,1.!(A) are 

the local height pairings at archimedean places of the divisors 

rAT «x)-(m» and (xO)-(O). On the other hand. the action of the 
m~1 m m 

Heeke operators on JO(N» is the same as that on S2(rO(N». so the fact 

that l is a relation for s2<rO(N» means that 1. A T a is a princiPlll iii m m 

divisor for any divisor a of degree O. In particular. rAT «x)-(",,» 
m m m 

- (~) for some rational function ~ on XO(N) defined over H, and thon 

the axioms for the local height pairings imply 

< I ). T «x)-(m» .. (xO)-(O» 
m::1 m m v I ¢CxO) I 

log "1"tOf" v 

for any place v of H. In particular, the numbers G
c 

(x T x aT ) 
11,1,! ' 

are 

the logarithms of the absolute values of the conjugates of an algebraic 

number lying in the class field H. It is then natural to expect that thr. 

same thing happens for k> 1 

conjecture 4.4. Let the hypotheses be as in Corollary 4.3 and fix a Ue('gner 

point x and :10 embedding H ""+[. Then there exists a number a EU" ,!Iuch 

T O~ 2 1-k I T I that GN,k,l(x,x ) .. u D log a for all TE:G"'Gal(n/K). 

This conjecture is at least compatible with Corollary 4.3, which, if the 

conjecture is true, gives an explicit formula for the prime decomposition 

of the absolute norm of the number a. In fact, one can give a more prl'rise 

version of Conjecture 4.4, based on t'le form of the expression for YN,k.~ (A) 

in 4.3, 'Which predicts 'Which ideal a generate's and hence spe'cifies a up to 
(The details will be givrn in a later paper.) 

a unit./Togl'thcr with 4.4, which specifies the absolute values of a at 

archimeJ£'an places, lhis determines a up to a root of unity and also allu'ws 

num£'rical computations to check the conjecture. We cnd wi th nllmerical ('xamplc;; 

to illu~trate 4.3 and 4.4. We take the simplest case: D --p with p:> J li 

prime congrllent to 3 (mod 4). A .. [0) the trivial ideal class, N'" I, h .. :: 

and A (1,0,0, ••• ) (this is permissible since S4 (SL 2 (Z» .. {a} ). TIu'n 
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'YN k ). (A) equals r G(z} where the sum is over all h(-p) points z EH/SL
2

(Z} 
, '- z 

satisfying a quadratic equation of discriminant -p over 7l and G(z) _ 

G, ,2(Z'Z) 

primes with 

(defined as in §5 of Chapter II by a liMiting procedure). For 

• 1+i? h(-p) - 1·, Corollary 4.3 glves a fomula for G( 2 ), e.g. 

G( H· i 17 . -2-·) 

G(1 + i143 --2 ---} 

G{ 1+il163 
2 ) 

12 - log 7 - 2 log 3 - T log 5 , 

2 56 729 
- log 43 + 43 log ~ 

2 223356737,9125 
- log 163 + ill log 3163,13523"229138,2791 

TIle reader can check these numerically using the expansion (to be proved in 

a later paper) 

(4.5) 
G(t + iy) 21T 1191;(3) -2 (8 480 240) -21TY - "3 y - h2 Y - - ny - li'2yT e 

( 282876 + 283968 + ~ > e -41TY + O(e -61TY) 
lIy 1T y 

(with an O( )-constant of about 108). For the prime p = 31 with class number 

h( -p) - 3, Corollary 4.3 gives 

G( 1+i:n> + G( 1+i(3T) + G(~) 2 - log 31 - TI log 3116,18,762330 

and Conjecture 4.4 (or rather, the more precise form of it mentioned above) 

predicts 

G{1+ilIT -2-) - - log 1131 
2 1TS~1I311113 6 10 

3Tlog~~~ 
IT lIOn 

for some n E1l, whcre 0 RJ 1.465571232 is the real root of 0
3 

- 0
2 - 1 - 0 and 

the IT are the prime clements (of nonn q) 
q 

IT,-0+1, IT'.I-3/lTl' 11 11 -30-4, ll u1 """/lT 11 , 11 17 "'-0+), 11 23 --30+5, 1I3}-30+1 

. If' 1 () ( . ( . (' + i fIT ) ) f . 'lb In t Ie lC d ~ 0 wInch equa ll'l Q J --2-- ,till' rea 1 sub 1 cl d of the III ert 

class field of (J1(Ml». Using (4.5), the> reader can check that this holds 

numerically to at least 15 places with n" 61. 
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On canonical and quasi-canonical 1ifting9 

Benedict H. Gross 

1. Let F be a field complete with respect to a discrete valuation, with fi-

nite residue class field. Let A be the ring of integers in F. let n be a 

prime element 1n A, and let q be the number of elements in the residue 

field A/nA • 

Let k be an A-algebra, with structural map i A ~ k. A formal A-module 

(G,g) of dimension lover k is, by definition [l,§lJ: 

(1.1) a commutative fonnal group G of diml'nsion 1 over It. 

(1. 2) a homomorphism g: A ~ En'\. (G) which induces the map 1 on 

the tangent space: En~{Lie G) = k • 

If k is a field anJ ker i-nil. , the endomorphism g(n) is either zero 

or a purely inscparable isogeny of degree 
h q for some integer h ~ 1 • In 

the latter case, we say (G,g) has height h If (G.g) and (G' ,&') :lrc 

two formal A-modules over the A-algebra k, we define: 

(1.3) HO~{{G,g},(G' ,g'}). {r ( Ho~{G,G') fog. g'of} • 

If k is a separably closed field, the height is a c,lmp1ete isomorphism invar-

iant of a formal A-module, and any value h ~ 1 can occur. TIle ring Elldk(r.,~) 

of a Connal A-module of height h over a sepnrably closed field 1:.; isotn~'rl'hlc 

to the maximal order in the division algebra B of invariant l/h over F 

[l,Prop.1.1]. 
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Henceforth we will u~unlly drop the g in our notation. 

2. Let K denote a sepncable quadratic extension of F, let 0 be the ring 

of integers in K, let p be a prime element in 0, and let qf denote the 

cardinality of the residue field O/pO. We have f - 2 if 0 is unramified 

over A i otherwise f - l. Let W be the ring of integers in the maximal 

unramified extension M of K. 11wn p is a prime of Wand W/pW - It. is 

algebraically closed. 

Let G denote the unique formal A-module of height h· 2 over It.. TIle 

ring R - En~(G) is isomorphic to the maximal order in the qunternion divi­

sion algebra B over F. Fix an embedding 

(2.1) a O~R 

Buch that the action on Lt~(G) - It. is the reduction m.3p (mod p) Via a 

the formal A-module G inherits the structure of II formal O-module of height 1 • 

Proposition 2.1 There is a fonn.11 O-modulc G.. over W unique up to W-iso-

morphism, which red,!-lces to r. (mod p) • 

Proof. Lubin llnd Tate [4 J cun~tru("t a fonna1 O-module 
-- f 

g, over 0 with 

r,{p) [xl - px + x
q Since c; h0l9 hci~ht 1 over O/pO , it becomes isomor-

phic to Gover W/pW - k , .... hich 1::1 I'£'p.lrab1y closed. Since height 1 

O-modulea have a triviOll ul'formatlon Sp:lCC rS;l,prop.4.2) the lifting ~ is 

unique up to W-isomorphism. 
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3. We shall henceforth consider the formal· O-module .£ constructed In (2.1) 

as a formal A-module over W , with reduction G of height 2 over k. We 

will refer to Q 8S the canonical lifting of the pair (G,a) we note that 

Eo~(Q) - 0 and En~/pw(~) - R • 

For 0 ~ 1 we define R I" Eod (G) 
0- W/p~-

give!> injections: . 

• so Ra ... R • 

homomorphismB (mod pO) 

(3.1) Rn =-.,.... R
lI

_ I ~ Rn_2 =--t- •••• c:.-..;... RI~-r R 

Since W Is Henselian, we also have: 

(3.2) 

Proposition 3.3 

(\ 
o:!o 

R • 0 • o 

For n ~ I we have R - 0 + pnR • 
n 

TIle reduction of 

Proof: We nhall first show that Rn_l/Rn is isomorphic to O/pO as an 0-

module. 

QlOoslng co-ordinates, we may assume ~ is given by II formal r:roup law 

~(x,y) ovcr Wrlx,y1J , and appcnl to the formal cohomology theory developed 

by Lubin-Tatc [5,~2J ilnd LJrJnfcld [l,§41. Let Gl(x,y) be the p.utinl deriva­

tive of G(x,y) l kll x,y J] wlth respect to x. Then G
I 

h.1!> constnnt term 

1 , so '\ (O,y) is an invertible power flcries in k[[y]] • 

For an ~ndomorphism f(x) C R
n

_
1 

we define the series: 

TIle data: 

(3.4) 
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-1 0f(x,y) D G1(O,G(f(x},f(y») in k[[x,y]]. 

-1 Sf(x) - G1(O,f(x)} in k[[x]J • 

{

6(f)(X'Y) - 0f(x,y)[f(Q(x,y» - Q(f(x),f(y»] 

0a(f) (x) = Bf(x) [f(a(x» - a(f(x»] a € A 

define a symmetric 2-cocycle of the formal A-module ~ [l,pg 571] with coef-

ficlents in pn/pn+l. The cohomology class of (6,6) depends only on the 
a 

class of f (mod Rn) • we denote the resulting map: 

(3.5) 0. 
n 

Rn_1fR
n 

«="-+ H2 (Q, pn fpn+1) 

Applying an to the endomorphism p 0 f , we find: 

6(p O f)(x,y) - 0pof(x,y)[pof(~(x,y) - ~(pof(x),p.f(y»J 

- apof(x.y)(pOf(~(x,y» - pOQ(f(x),f(y»J 
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as p is an endomorphism of Gover W. Writing a f (x ,y) - c (x, y) at (x ,y) 
- f po p 

and recalling that p(x) - px + xq • we find: 

6(po!)(x,y) - c (x,y) 
p 

• p • 6(f)(x,y) + a pof [f (!!.(x ,y» l - !!.(f (x) ,f (y» q f] 
- c (x,y) • p • 6(f)(x.y) p 

(mod pn+2) 

Similar arguments apply to 0a(pof) • 80 by (3.5) the O-module 

nihilated by p. Furthermore, we have a commutative diagram: 

(3.6) 
an : f"-ltR. C • U

2
(!!.,;}t

pn
+l) 

an+l R/RD+l~H2(.Q,pn+1/pn+2) 

Rn_I/RD is an-

Since Rand R 1 arc both free O-modules of rank 2 which contain n n-

o • Rn_l/Rn is a cyclic 0-modu1e. H~nce it is isomorphic to OlpO or is 

trivial. hie will ehow that Rn_t/R
n

:: O/p for all n;;t 1 1Iy (3.6) it 

nufficc8 to I5how that R/RI is 8 non-trivial O-module. 

First assume that 0 is unramificd over A. In this case ve take 
2 

p .. n so p(x) - nx+ x
q 

and the formal module g is defined over A. 

Hence f (mod p) is rational over the finite field AIT. of q elements, 
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and j(x) - x
q 

defines an endomorphism (mod p) • To show that j(x) does 

not come from the reduction of an endomorphism (mod p2) , we compute (cf. 

(3.4) ) 

6 (j) - (nq-ll)xq + tcrms of htgher d·egree. n 

Since the coefficient of xq is non-zero (mod p2) • this shows that 

2 2 2 
0.1 (j) ; 0 In H (.Q,p/p ) '" pw/p W [5]. In this case we have R" 0+ OJ • 

of 

have 

Next aSSume that 0 is tamely ramified over A. so the charactcristic 

A/n is odd and 0 .. A[p] with 
2 

2 
P - n • 

n(x) - nx+(p+pq)xq+xq 
In this case, 

Since p(x) - px+xq we 

R - O+Oj where j2 _ u 

* is a unit of A which is not a square in (A/n) Hence j(x) - vx + ... 

where v
2 = u in W/p and vq t v (mod p). Then 

6 (j) - (v-vq)(p+pq)xq+terms of higher degree. n 

Since the coefficient of xq is non-zero (mod p2) t this shows that 

a
1 

(j) ; 0 • 

Finally, assume that 0 is wildly ramified over A with different 

ideal V - (pc). Then the residue characteristic of A/n is equal to 2 • 

If 0 .. A[p] then p satisfies the EiscnHtein equation x2 - ax + n .. 0 

with ordp (2p-a) - e. Since 2p has odd valuation and a has even 

valuDtion, therc is no cancellation and 2:: 0 (mod pC-I) In this case 
-. * the group F /liK is generaterl by a unit u with orJn(u-l) - e-I nnd 

with 2 
The maxhn.'ll order R .. 0 + P l-e (1 +j ) B - K+ Kj j - u . R Is given by 

and the element pl-e(l+j) i8 a unit whose residue class does not lie In 

* (A/n) An argument sImilar to the tamely ramified case now shows that 

6 (pl-e{l+j) 1 0 (mod p2) n 
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By the remarks preceding (3.6) we have R :> 0 + pnR • n-
rings have the same index in R, they are equal. 

Since both of these 

4. There is a further description of the suhrings Rn' whicll is quite useful. 

• • By the theorem of Skolem-Noether, there is all element j to B IK such that 

conjugation by j induces the non-trivial automorphism of Kover F. When 

o is unramified over A we may choose j to be a Frobeniua clement sa~isfying 

2 0 2 _ e-l 
j - w. When is ramified over A we may choose j with j = 1 (w ). 

where D - (we) is the discriminant. In any case, we obtain a decomposition 

(4.1) B - K + Kj - 8+ + B_ 

The reduced trace and reduced norm of an element b - b+ + b_ are given bYI 

(4.2) 

{

Tr(b) - Tr(b+) 

~(b) • ~(b+) +m(b_) • 

and we have the following characterization of the ringe 

rr~t£siti~n ~.3 for n ~ 0 ve hage 

R • (b c B Tr(b) £ A • rn(b) ( A • rn(b ) = 0 
n -

- {b (R D· IN(b_) = 0 mod 1T • ONp)u} 

It • 
n 

mod nl-e+nf} 

..;a-

Proof: We first observe that R is the sub ring of all b € B with Tr(b) and 

N(b) in A. Thus the two descriptions above are equivalent. 

If 0 is unramified over A, e - 0 and f - 2. Then R ~d + OJ and 

by (3.3) we have R _ 0 + pnj 
n 

Since IN(pnj) has valuation 1 + 2n • this 

gives the result. 

O h If 0 is ramified over A, e ~ 1 and f - 1. Then R - + p .(l+j) 

O l-c+o l-e+o 
and R· + p (l+j) by (3.3). Since ~(p ) has valuation n 

1 - e + n , this gives the result. 

5. Recall that H is the quotient field of W, the maximal unremified exten-

sion of O. Let T denote the Tate module of the formal O-module £ over 

W: T - lim C (M) • Then T is a free O-module of n - n 
- p 

of Cal (H/H) • Put V - T 80 K • 

rank 1 with an action 

If T C T' C V is an A-submodule of V with T'/T finite, then I' 

givcs rise to an isogenous formal A- module £' over M. If wa let r be 

the finite A-module associated to T'/T in V/T ~ £(M)torsion. then an ex­

plicit isogeny f: C * C' is given by Serre's formula (3, pg 298], 

(5.1) f(x) - nC(x,y) 
r-

From this we can conclude that £' and f are both rational over the integers 

W, of the finite extension H' fixed by the subgroup of Gal (H/H) stabiliz-

fng It. Since each y lies In the maximal ideal of M, we have: 
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(5.2) Q' :: C (mod p') 

where p' is a prime element of W· • 

The endomorphism ring 0' - EndW,(Q') is the order of all a £ 0 which 

stabilize the A-lattice T'. Since thIs contains A, ther~ are two possl-

bilities: 

a} O' - 0 

b) 0' • A + wSO • 0 for some s O! 1 • 
s 

In the first case, G' is isomorphic to C and W· • W • In the second case 

we say that C' is a quasi-canonical lifting of level s of the pair (Cta) • 

Proposition 5.3 1) Quasi-canonical liftings Q' exist for all levels 

!...LL. 

2) The liftinBs of level s are rational over the integers 

w' of the abelian extension H' of K with norm group 0* 
S 

• in K 

are permuted simply transitively under the action of the Galois group 

They 

s. s." s-l Gal(M'/M):: (Oln 0) I{Aln A) • which has OLder Q (1./ + 1) if 0 is unrnmi-

fled over A and s 
if 0 is ramified over A • S 

3) The formal modulus of the height 2 A-module Q' has 

valuation 1 in W' In particular, the A-modules f and C' are not iso-

morphic (mod p,2) 

Proof: 1) To construct a lifting level s • write T c Ot and take 
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T' - W-s(O • t) - n-SAt + T 
s TIlen T'IT A/nsA and clearly 

{a ( 0 : aT' C Til - Os 

2) The theory of Lubin-Tate (4] shows that H' is the ring class field 

with norm group 0*. Since mUltiplication by 0* permutes the choices for T' s 

transitively. the Calais group (O/nsO)*/(A/nsA)· permutes the different quasi-

canonical I1ftings of level s simply transitively 

3) The Newton polygon for nc(x) looks like: 

t~~ 
~--- , --=====--=-

, 
f ,1 

if 0 is unramified over A, and like: 

2 

L~~- (1. f) 

-----------=- . --i---

~ 

if 0 is ramified over A. We may factor the cyclic isogeny f as 8 compo-

aition: 

Q --r+ Ql --y""" £2"'" •.•• -"" !!a - C' 
o 1 

where ker f1 A/nA is a ~-cnnonlcal A-submodule of the n-torslon of C
i 

• 

By Lubin's thea ry (2). the Newton polygon for n 
G

i 
has a break at the point 

(q, if o is unramified Over A • and at the point 1 
(q'1) 

q 
if 
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o is ramified over A. Since the y-coordinate is the reciprocal of the de­

gree [W':wl, the formal modulus of £' has pi-valuation one [5). 

Since the formal modulus of the lifting £ lies in pW, it has p'-valua­

. tion greater than or equal to deg[W':W] ~ 2. Hence the groups £ and Q' 

are not isomorphic '(mod p.2) • 

6. One can extend the results of the proceeding 3 sections to liftings of di­

visible A-modules of height 2, in the sense of Drinfeld [l,§4). When A - ~ 
P 

this theory was developed for the p-divisible groups of ordinary elliptIc curves 

by Serre and Tate [6); we sketch the general theory here in the hope that it may 

clarIfy some-of our 'terminology. 

Over a separably closed field k the divisible A-modules of height 2 are 

either formal modules or isomorphic to H x (F/A) ,~lere H is the unique for­

mal A-module of height 1 and (F/A) is the unique ctale A-module of height 

1 • The canonical lifting £. ~ x (F/A) to W has En~(Q) - Endw/pw(Q) • 

O-AXA. 

By Serre-Tate [6), the other liftings of G - H x (F/A) to Ware classi-

1 fied by elements in the A-module Ext (F/A,~) • ~(w) • The quasi-canonical 

liftings £' correspond to A-torsion points h in ~(W). If h has order 

W
S the lifting £' of level 8 is rational over the abelian extension 

W' • W[h] o~ degree qS-l(q - 1) • All of the quaRi-canonical liftings of this 

level are permuted simply transitively by the Galois group and have endomorphism 

ring End .(G') - 0 - {(a.b) ( A x A : a = b (mod wB
)}. Finally, G' i~ con-

'" - s 
2 

gruent to Q (mod pi) but not (mod p' ) 

is a uniformlzing parameter in W· • 

this follows from the fact that h 
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