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Chapter I. Introduction and statement of results

The main theorem of this paper gives a relation between the heights of
Heegner divisor classes on-the Jacobian of the modular curve XO(N) and the
first derivatives at s = 1 of the Rankin L-series of certain modular forms.
In the first six segtiona of this chapter, we will develop enough background
waterial on modular curves, Heegner points, heights, and L-functions to be able
to state one version of this identity precisely. 1In §7 we will discuss some
applications to the conjecture of Birch and Swinnerton-Dyer for elliptic
curves. For example,
we will show that any wmodular elliptic curve over Q vhose L~function has a
simple zero at s = 1 contains points of infinite order. Combining ocur

work with that of Goldfeld [12], one obtains an effective lower bound for the

class numbers of imaginary quadratic fields as a function of their discrimi-
nants (§8). In §9 we will describe the plan of proof and the contents

of the remaining chapters.

Many of the results of this paper were announced in our Comptes Rendus note
[17]. A more leisurely introduction to Heegner points end Rankin L-series may

be found in our earlier paper [131].

§1. The Curve XO(N) over @

Let N 21 be an integer. The curve X = XO(N) may be informally de-
space of
scribed over Q as the compactification of th?)moduli of elliptic curves with a

cyclic subgroup of order N . It is known to be a complete, non-singular, geo-
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metrically connected curve over @ . Over a field k of characteristic zero,

the points x of X correspond to diagrams:

(1.1) $ : E+E'

where E and E' are (generalized) elliptic curves over k and ¢ 1s an
isogeny over k whose kernel A 1is isomorphic to Z/N over an algebraic clo-
sure k . The function field of X over Q 1is: generated by the modular invar-
iants j(x) = J(E) and j'(x) = J(E') ; these satisfy the classical modular

equation of level N : ¢N(j,j') =0 [2].

The cusps of X are the points where j(x) = j'(x) = ® . They correspond
to diagrams (1.1) between certain degenerate elliptic curves, where A = kerd
meets each geometric component of E [7, 173ffl. There 1s a unique cusp where
E has 1 component and a unique cusp where E has N components; these are de-

noted ® and 0 respectively and are rationmal over Q .

§2. Automorphisms and correspondences

The canonical involution w_. of X takes the point x = (¢ : E~+ E') to

N
the point

(2.1) wN(x) = (¢' : E' + E)

vhere ¢' 1s the dual isogeny. This involution interchanges the cusps * and

0.
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The other modular involutions Y4 of X correspond to positive divisors
d of N with (d,N/d) =1 . Let D and D' denote the unique subgroups of

ker¢ and kerd' of order d , and define vd(x) by the composite isogeny
(2.2) wd(x) : (E/D + E/ker$ = E' + E'/D'),

These involutions form a group W € Aut_(X) isomorphic to m/2)t , where ¢t

Q
is the number of distinct prime factors of N . The group law is given by

"d "d' - "du » where 4" = dd'/gcd(d,d')z o

For an 1ntegey: m 2 1 the Hecke correspondence Tm is defined on X 'by
2, ' -
(2.3) T, (x) g(xc) .

vhere the sum is taken over all subgroups C of order m in E which are dis-

joint from kerd¢ , and x_ 18 the point of X corresponding to the induced

c
isogeny (E/C -+ E'/¢(C)) . This endomorphism of the group of divisors on X 48
induced by an algebraic correspondence on X X X which is rational over Q.

When (m,N) = 1 the correspondence 'l‘u is self-dual, of bidegree ol(m) - Ld.
d|m

Let J be the Jacobian of X : 4ts points J(k) over any field k of
characteristic zero correspond to the divisor classes of degree zero on X
which are rational over k . The correspondences Tm induce endomorphisms of

J over Q ; we let TE EndQ(J) be the commutative sub-algebra they generate.

4

§3. Heegner points
Let K be an imaginary quadratic field whose discriminant D 1s relatively

prime to N . Let O be the ring of integers in K , let h denote the class

number of K-~ the order of the finite group Pic(0) , and let u denote the
*

order of the finite group 0 /t1 . We have u =1 unless D = -3,-4 , when

u= 3,2 respectively.

We say x : (E + E') 1s a Heegner point of discriminant D oan X 41f the
elliptic curves E and E' both have complex multiplication by 0 . Such
points will exist if and only if D 1s congruent to a square (mod 4K) . In
this case, there are 2t . h Heegner points on X , all rational over the Hilbert
class field H = K(j(E)) of K . They are permuted simply-transitively by the
abelian group W X Gal(H/K) . We remark that there are also Heegner points with
non-fundamental discriminants and with discriminants not relatively prime to N
on x [13], but we will not consider them in this paper. Also, we shall

assume throughout that D 1is odd, hence square free and congruent to 1 (mod 4).

Fix a Heegner point x of discriminant D ; then the class of the divisor
c = (x) ~ (») defines an element in J(H) . A fundamental question, first
posed by Birch [ 3], is to determine the cyclic module spanned by c¢ over the
ring 'ItCz:il(H/K)] , which acts as endomorphisms of J(H) . Our approach to this
problem uses the theory of canonical heights, as developed by Néron and Tate, as
well as the L-scries assciated by Rankin to the product of two modular forms.
We will show (Theorem 6.3) that the eigencomponent cf'X of ¢ 18 non-zero in

J(H) 8 ¢ 1if and only if the first derivative of an associated Rankin L-series
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L(f,X,8) 18 non-zero at s =1 ., (Here f is an cigenform of weight 2 for

the Hecke algebra T and X a complex character of Gal(H/K), ).

S4. Local and global heights

For each place v of H , let Hv denote the completion and define the

valuation homomorphism l]v : H: *'F:‘ by:

oz = fa|? £ m =¢
lal, =

q;v(a) if H_  1s non-archimedean,

with grime m satisfying
v(n) = 1 and finite residue
field of order q,

*
For any a ¢ H , almost all of the local terms ‘a]v are equal to 1 , and we

have the product formula: g'ulv =1.

Néron's theory gives a unique local symbol <a,b>v with values in R , de-
fined on relatively prime divisors of degree zero on X over Hv [271.
This symbol is characterized by being bi-additive, symmetric, continuous, and

equal to
(4.1) <a,b> = 10g|f(a)|v = meloglf(x)lv

whencver a = me(x) and b = div(f) . One can obtain formulae for the local

—6-

symbol using potential theory when v 1is archimedean and intersection theory

when v is non-archimedean [14].

If a and b are relatively prime and defined over H , the local symbols

<a,b>  are zero for almost all places v and the sum

4.2) <a,b> = 2<a,b>v
v
depends only on the images of a and b in J(H) , by (4.1) and the product
formula. The symbol <,> defines the global height pairing on J x J over the

global field H and the quadratic form
4.3) h(a) = <a,a>

is the canonical Tate height associated to the class of the divisor 2(0) ,
where O is a symmetric theta-divisor in J . Since this divisor is awmple, ﬁ
defincs a positive definite quadratic form on the real vector space J(H) 8 R
[24) . This form may be extended to a Hermitian form on J(H) @ € in

the usual manner.

§5. L-series
Lee  f(1) = z aneznmT be an clement in the vector space of new forms of
nz1
weight 2 on FO(N) (11}, (341). Thus f 18 a cusp form of weight 2
and level N which is orthogonal to any cusp form g(1) = go(dt) , where 25

has level No properly dividing N and d 1s a positive divisor of N/No .
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We define the Petersson inner product on forms of weight 2 for I‘O(N) by

.1) (f,g) = I £(1t)g(t) dxdy T = x + iy
Ty M\A

vhere the integral 1s taken over any fundamental domain for the action of I‘O(N)

on the upper half plane é .

let O be a fixed element in Gal(H/K) . This group is canonically iso-
morphic to the class group ClK of K by the Artin map of global class field

theory. Let A be the class corresponding to O , and define the theta-

series

' 1 2niNex
(5.2) B,(1) ==+ } e ~ . 1 rn)e
A 20 cA nEO A

2nint

-q_. integral

where, for n 21, rA(n) is the number of integral ideals o in the class of

A with norm n . This serfes defines a modular form of weight 1 on l‘l(D) N
*

wvith character € : (X/D) + % 1 associated to the quadratic extension K/Q

(see,b e.g., [19]).

Define the L-function associated to the newform f and the ideal class A

by

-8
1-28 -8
(5.3) L, (£,8) = I e(@a + § ar(n)n .
A n21 ‘ a1 ® A
{n,DN)=1

The first sum is the Dirichlet L-function of € at the argument 238 - 1 , with
the Euler factors at all primes dividing N removed. (These factors were not
removed in our announcement [17], which is in error. Also, there we denoted

this L-series by La(f,s) , and OA(T) by 80(‘1') )

If f 1s an eigenform under the action of the Hecke algebra T , normal-
ized by the condition that a = 1, and X 1is a complex character of the ideal

class group of K , we define the L-function
(5.4) L(f,X,8) = ?((A)LA(f,s) .

This has a formal Euler product, where the terms for p I ND have degree &4 .
The terms where p[D or p ﬂN have degree 2 , and the terms where pzlu

have degree 0 [13].

It is not difficult to show that the series defining L,(f,s) and the
Euler product for L(f,X,8) are absolutely convergent in the right half-plane

R(s) > 3/2 . Using "Rankin's method," we shall show

Proposition 5.5 The functions L,(f,s) and L(f,X,8) have analytic continua-

tions to the entire plane, satisfy functional equations when s is replaced by

2 - s , and vanish at the point s =1 .
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§6. The main result

We recall the notation we have established: x 1s a Heegner point of die-
criminant D , which we have assumed is square free and prime to N, and ¢ 1s
the class of the divisor (x) - (®) in J(H) . The quadratic field K = Q(vD)
has class number h. and contains 2u roots of unity; the element O 4in the
Galois group of H/K corresponds to the ideal class A under the Artin isomor-
phism. Finally, <,> denotes the global height pairing on J(H) B € and ( ,)

the Peterson inner product on cusp forms of weight 2 for FO(N) o

c0>e2m|'m.r is a cusp form of weight 2

Theorem 6.1 The series gA(T) - z <c,'1‘m
. m21

en Ty(N) which satiafies

2).11/2
(6.2) (f.g,) = 1’—-;'}-‘-’-1—- L} (£,1)
u

for all f in the space of newforms of weight 2 on FO(N) .

By using the bilinearity of the global height pairing, we can derive a
corresponding result for the first derivatives L°'(f,X,1) , when f 4is a normal-
ized eigenform and X 1s a complex character of the class group of K . We
identify x with a character of Gal(H/K) , and define ° = %x-l(o)co in the
X-eigenspace of J(H) 8 €. (This 1s h times the standard elgencomponent.)
Finally, we let ¢

o f be the projection of cx to the f-isotypical component

of J(H) 8 € under the action of T [13]. Then we have

-10-
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Theorem 6.3 L'(f,x,1) = o8 fe 1y,

Theorem 6.3 mZ|p] /2

Here B is the canonical height on J over H, as in (4.3). The
discrepancies in the constants of (6.2) and (6.3) from those in our announce-
ment [17] come from the fact that there we were considering the global height

on J over Q. The heights over H, K and Q are related by the formula

(6.4) <a.b>H - h<a,b>K - 2h<n,b>Q

We remark also that the quantity’ an(f.f) is equal to the period integral

&nflz = JI we A IG; , where we = 2nif(1)dt 1is the eigendifferential associat-
X(c)
ed to f . Thus (6.3) may be re-written in the more attractive form

2
wl?
(6.5) L' (£,x,1) = —z—lrf)—lm Reley ) -
u

We recall that when |D| >4, um=1l.

§7. Applications to elliptic curves

Let E be an elliptic curve over @ . The L-function L(E,s) 1is a

Dirichlet series Z a“n'-9 defined by an Euler product which determines the
n2l
number of points on E (mod p) for all primes p {35]. This product con-

verges in the half plane R(s) > 3/2 , but it is generally conjectured that
2ninT

the function f(1) = z a e is a newform of weight 2 and level equal to
n2l
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:the conductor N of E [38,35]. In this case, the function

4 -
- L*(E.B) - r f(%)ys —yl = N s,2(217) Sr(s)L(E,s) is entire and satisfies a
(V]

functional equation

(7.1) LE,0) = £ L"(E,2-8) .

This conjecture may be verified for a given curve by a finite computation, and

we will assume it is true for all of the elliptic curves considered below.

The conjecture of Birch and Swinnerton-Dyer predicts that the integer
r = orda_lL(E,a) 1s ‘'equal to the rank of the finitely generated abelian group
E(Q) of rational points. This conjecture also gives an exact formula for the

real number L(r)(E,l) of the form:

(7.2) L, = aar

vhere 1 is the real period of a regular differential on E over Q , R =
det(<P1,PJ>) is the regulator of the global height pairing on a basis

<P1, eee P2 of E(Q) 8 Q, and a is a non-zero rational number (for

which there is also a conjectural description in terms of arithmetic
invariants of the curve) [35). We will combine Theorem 6.3 with a
theorem of Waldspurger to obtain the following result, which may be

viewed as an exotic contribution to the problem of finding rational solutions

of cubic equations:
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Theorem 7.3 Assume that L(E,1) = 0 . Then there is a rational point P 4n

*
E(Q) such that L'(E,1) = a.Q.<P,P> with aeQ . In particular:

1) If L'(E,1) ¥ 0, then BE(Q) contains elements of infinite

o ggt.

2) 1f L'(E,1) ¥ 0 and rank B(Q) = 1 , then formula (7.2) is

true for 4ome non-zero rational number a .

If the sign in the functional equatfon (7.1) 18 ~1 end the point P con-
structed in theorem (7.3) is trivial in E(Q) 8 Q , then the order r of
L(E,s) at s =1 must be at least 3 . One example where this happens is the

following (for a proof that P is trivial in this case, see [17] or [39]):

Proposition 7.4 The elliptic curve E defined by the equation -139y2 -

x>+ 10x - 20x + 8 has ord _ L(E,s) = rank E(Q) = 3 .

§8. Application to the class number problem of Gauss

As well as providing some support for the'conjecture of Birch and
Swinnerton-Dyer, Proposition 7.4 furnishes a crucial hypothesis in Goldfeld's
attack on Gauss's class number problem for imaginary quadratic fields (12].
Suppose K has discriminant D and clags nuzber h = h(D) , then one has the

estimate:

Theorem 8.1. For any € > 0 there is8 an effectively computable constant

k() > 0 guch that h(D) > x(e)(log|nPP~€ .

For the analytic details of Goldfeld's method, see Oesterlé [28]. 1Ia fact,

Oesterlé gives a sharper final result:
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two distinct points =« and 0 marked. In Chapter III the non-archimedean lo-
(8.2) h(D) > x_log ID| o . N sul
T +2/Vp) cal symbols <c,de >v are determined using intersection theory on a modular

piD arithmetic surface with general fibre X . In both cages, there is considerable

for some effectively computable constant x . 1In fact, it has recently been simplification when we consider the sum Z <C'de0>v over all places of H di-

. - 4 v
shown by Mestre [26], using some work of Serre, that Proposition 7.4 is also viding a fixed place p of Q . Ip

true for the elliptic curve defined by yz—y-x3-7x +6, a curve of much
smaller conductor (f5077 rather than 714877), and using this curve, one obtains In Chapter IV we will use Rankin's method and the theory of holomorphic
s s : 2nimt
quite good estimates. For example, Oesterlé and Mestre have shown that h(D) > projection to find for each k21 a cusp form ¢A(1) m§1 am,Ae of
gls-log ID for ID} prime, sufficient (in combination with previous results of Mont~ weight 2k on I‘O(N) vwhich satisfies
gomery and Weinberger) to show that the smallest D with h(D)=3 is -907. (2k-2)1 1/2
(9.2) (f .¢A) = IK-T-7R ID! Li(f,k)
§9. The plan of proof 2 n
We will now summarize the contents of the remaining chapters, and will in- for all f in the space of newforms of weight 2k and level N. (The function

» . . . . 1- .

dicate how these results fit together to yield a proof of theorem 6.1. LA(f,s) for k>1 is defined as in (5.3) but with n 2s replaced by aZk-1 23;

o it satisfies a functional equation for s-+2k-s and vanishes at s=k.) The
We begin with the question of calculating the global pairings <c,:1‘mc g existence of some cusp form satisfying (9.2) follows from the non-degeneracy
for those m which are prime to N . Set d = (x) - (0) ; sizce the cus:idal of the Petersson inner product on the space of new forms, which also shows that
divisor (0) ~ (=) has finite order in J(Q) we have <c,T c> = <c,T d°> . ¢4 is well determined up to the addition of an old form. We shall give explicit
On the other hand, it is easy to show that formulas for the Fourier coefficients am'A for those mzt which are prime to N.

Proposition 9.1 The divisors ¢ and deo are relatively prime if and only The computations are independent of those in Chapters I1 and III and are carried
£ N>1 and ry(m) = 0 out in more generality: not only is k arbitrary, but the condition
if and r, .

D = square (mod 4N) is relaxed to €(N) =1 . These more general results are

; .1) are met, we may calculate )
In the cases where the hypotheses of (9.1) are met, y also intereating as discussed in §§3-4 of Chapter V.

[+
° éron’ ymb 1 case
< > t f Neron's local symbols <c,T d > . The genera .
C'de as the sun o Ymoowv When k=1 and Desquare (mod 4N), the formula obtained for 3 A asgrees (up tc
,

f Néron's local theory [14]. )
can be treated using (4.2) and & mild extension o en i a factor u?) with the sum of the local heipght contributions < c, de°>v » SO

We will treat the case when 1,(m) # 0 , but will assumc for simplicity that we have the identity

N > 1 throughout. For a detalled consideration of the case N = 1 , see

0) = 2 =
(18]. (9.3) <c,Tmc u am,A (m21, (m,N)=1)

o for the global height iring. A formal t 1 of Chapter V) sh that
In Chapter II the archimedean local symbols <c,T d"> ~ are expressed in 8 ght pa Iid argument (§1 of Chapter V) shows tha

. 2nimt . .
* the serie 1) = <c,T %> f
terms of a Green's function for the Riemann surface X({) = TO(N)\§ with the s s gA( ) m§1 c,Tc>e 1s a cusp form of weight 2 on I‘O(N) ’
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and (9.3) shows that By differs from u’¢A by an old form. Theorem 6.1 then
follows from equation (9.2). The rest of Chapter V is devoted to the proofs

of its various corollaries and generalizations.
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Chapter II. Archimedean local heights

In this chapter we compute the local symbols <c ,Tm da>v as defined
in §4 of the Introduction for archimedean places v of H. We recall the
notation: c= (x) ~(=) , d=(x)-(0) where 0 and = are cusps and x
a Heegner pé)im: of discriminant D=D, on XO(N) and 0 €Gal(H/K), o= oy for
some ideal class AEC[K .

§1. The curve XO(N) over €

In Chapter I we gave the modular description over Q of the curve X -XO(N) .
its automorphisms and correspondences, and of Heegner points. We néw describe
this all over the complex numbers € ; this is of course the most classical
and familiar description.

An elliptic curve E over € is determined up to isomorphism by the homothety
type of its period lattice L: E(C)®C/L. If x=(E 2OIi') is a non-cuspidal
point of X, and we write E(€)=C/L, E'(€)=C/L', then we can modify by a
homothety to obtain L'DL, ¢ = identity. Then L'/L~Z/NZ, so we can choose
an oriented basis <uw;,w,> of L over Z ("oriented" means Im(wxmz) >0)
such that <‘°vF‘f"z> is a basis for L'. The point z = w,/u, then lies in H,
the complex upper half-plane, and the point x €X(€) uniquely determines 2z
up to the action of

T o= o) = (G Y ersi,@ | cu0 (moam ).

Conversely, any 2z EI‘\& determines a point x = (C/<2,l>-—i‘—j~C/<:,;¢->) of
X(C) . Thus .
(X ~{cusps})(C) = FO(N)\E .
The compactification is given by X(€) SPO(N)\L{* , where _li* -_I_IUP'(Q) with

the usual topology. We have

({cusps})(€) = T (N\P'(Q) = (z/£,2)*
0 Jll"i« d

da>0
vhere fd = (d,N/d) and the map is given by

B (m.n€Z, (mond=13) o2 d=t¢nNY . (s Y Cood £.3
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(one easily checks that n/d is prime to fd and that the definition depends

only on the class of % modulo T'). In particular, the number of cusps is

T oe(e) = T—T(p[v/zl +p[(\:-1)/21) .
dIN d pVIn
v>0

The curve X over € has the following automorphisms and correspondences:

The action of complex conjugation c €Gal(C/R) on X(C€) 1is induced by
e(z) = -¥r (zen*) ;

the minus sign arises because for a lattice L<C with oriented basis <w,,w,>

the conjugate lattice c(l) has oriented basis <-&,,3,>, and the formula is

—01 ?) normalizes I . The

canonical involution vy of X 1is induced by the Fricke involution

compatible with the projection map H-+T\H because (

we(z) = -1/Nz (z €0*);

more generally, for any positive divisor d of N with (d,N/d)=1 the

involution deH is induced by the action on .H: of any matrix

(1.1) w, €

dZ Z
d

NZ dZ) , det vy - d .
The Hecke correspondence Tm (m€N, (m,N)=1) acts by
(1.2) Tn;(Z) - ): Yz ,

Y€ I‘\RN
det y=u

where Ry = (N: Z) . It is easily checked that these descriptions over €

agree with the modular interpretations of ¢, vy and Tm given in Chapter I.
Finally, we give the description over € of the Heegner points. Let K

be an imaginary quadratic field, D its discriminant, 0 its ring of integers;

we suppose N is prime to D. Recall that a Heegner point on X was a

non-cuspidal point x-(Eng') such that both E and E' have complex

multiplication by 0 . Then E(C)=¢€/L, E'(C) =C/L' where L and L'c€C

are rank ! modules over 0 ; we can change by a homothety to ensure that L

and L' are in K, and then both are (fractional) ideals of K. If we choose

L's>L, ¢ =id, L/L'«Z/NZL as before, then n = LL"_1 is an integral ideal

€77 pS=) wm _(P/v) T (NFu) =P e (p=(uTm) “Z3ucm) =

-1 8_

of norm N and is primitive (“"primitive" means O/n=Z/NZ or cquivalently
that n is not divisible as an ideal by any natural number >1). Thus L=2a,
I..'-Eu‘l-1 for some fractional ideal a of K and some primitive ideal nc0 of

norm N . Conversely, given any such a and n, the elliptic curves €/a and

- : . -1
c/an 1 over € have complex multiplication by 0 and the isogeny €/a-+t€/an

induced by idc defines a Heegner point on X. Clearly two choices a, n,

and a,, n2 define the same Heegner point iff a, -Xa‘ for some A€K and

n‘ =n2 . Hence we have a 1:1 correspondence

Heegner points pairs (A,n) , A€C1x , ncO a
{ x € x(€) } { primitive ideal of norm N }
ide -1
(¢/a—>¢/an )  +—il (la}, m) ,

vhere C1K is the ideal class group of K. The action of ¢ on x corresponds to

(A,m) — (X ,d) =(A ,m™h

while Gal(H/K) = CIK acts by multiplication on A and trivially on n
(H=Hilbert class field of K). The Atkin-Lehner operators permute the
possible choices of n. More specifically, let N = p:-‘...p:B (ri>0) be
the prime factorization of N. The existence of Heegner points for K on X

is equivalent to the requirement that all P; split in K (if N were divisible
by an inert prime, it could not be the norm of a primitive ideal, and we are
supposing N prime to D), so there are precisely 2° primitive ideals n

r T,
of norm N, namely the idcals p‘l...pss where B, is one of the two prime

“ideals of K dividing p; - The effect of w, (d||N) on a Heegner point is

to map it to another Hcegner point with A replaced by A[d] , where & =(d,n),
and an N obtained by making the opposite choice of " for all P; dividing
d . 1In particular,

i) wy acts on Heegner points by (A,n) » ( Aln}, 1) ;

ii) the group Gal(H/K)xW (W = (Z/2Z)® the group of Atkin-Lehner operators)
acts freely and transitively on the set of all Heegner points of discriminant

D on X.
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It will also be useful to have a description of Heegner points in terms
of coordinates in H. There is a 1:1 correspondence between primitive ideals

ncl of norm N and solutions B of
(1.3) B €Z/2MZ , 82 &D (mod 4N)

(notice that 8'? is well-defined modulo 4N if 8 is well-defined modulo 2K)
given by

B+/D
2

)—zn«zzﬁ—*i@.

n = (N,

The point in H corresponding to a Heegner point x = (€/a — ¢/an_1) with

-1 . . . . .
an integral is then the solution t of a quadratic equation

(1.4) Al +Br+C=0, A>0, B -4AC =D, A=0(mod N) , Bag (mod 2N) ,
with

. B+VD -1 -1 B+/D
(1.5) a-2A+z~—i—-, an = =Z-AN '+ Z 7 s NK/Q(a)-A.

Indeed, a point tT€H gives rise to an elliptic curve €/Zt+Z with co.mplex
multiplication by 0 iff 1 is the root of a quadratic equation A12+Br+C-0 with
integral coefficients and discriminant D, and the requirement that f:" have the
same property impliés that N|A; then BZHD (mod 4N) and one checks easily that
the class of B (mod 2N) is an invariant of t under the action of I‘O(N) on H

and that this invariant corresponds to the choice of n as in (1.3).

For more details on the contents of this section we refer the reader to [13].

§2. Archimedean heights for XO(N)

Let S be any compact Riemann surface. Recall from §4 of Chapter 1 that a
height symbol on S is a real-valued function <.:l,b>c = <a,b> defined on

divisors of degree 0 with disjoint support, and satisfying

a. <a,b> 1is additive with respect to a and b

b. <a, ij(yj) > is continuous on S\[al with respect to each
(2.1) variable yj ( |a| denotes the support of a) ;

c. <2ni(xi) ,b> = Zniloglf(xi)l2 if b=(f), a principal

1
divisor.
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Such a symbol is unique if it exists since for fixed a the difference of any
two symbols b +—> <a,b> would define a continuous homomorphism Jac(S) —R

and hence vanish identically. Now fix two distinct points X0 yOES and set
Glx,y) = <(x)=(xy) , (¥)-(yq)> (x,y€S, xfyq, y¥x5, x94y) .

Then the biadditivity of < ,> implies the formula
(2.2) <a,b> = 1:):jnimj G(xi’yj) for a = Eni(xi) , b= Imj(yj) R

’
at least if [a| 3y0, Ib} 3)(0‘ Conversely, a function G(x,y) will define
via (2.2) a symbol satisfying (2.1) if for fixed x €85 the function y +» G(x,y)
is continuous and harmonic on S\ (x,xo} and has logarithmic singularities of
residue +! and -1 at y=x and Y=Xq and similarly with the roles of x and y
interchanged. (Here the terminology " g has a logarithmic singularity of residue

C at x," means that g(x) -C log|p(x) '2 is continuous in a neighborhood of Xg

(]
where p(x) is a uniformizing parameter at X .) To prove this, we note that the
symbol defined by (2.2) is obviously bi-additive and is continuous in all yj ¢ lal

because the logarithmic singularities of G(xi,y) at y=x, cancel (since dega

0
=0), so (2.1a), (2.1b) are satisfied; equation (2.1c) is also satisfied because
the function x +3 log If(x)lz- <x,(f)> is harmonic and has no singularities (the
logarithmic singularities at x-'yj € | (£)] cancel) and hence is a constant, and
this constant drops out in (2.1c) because Zni-o. Notice, however, that the

axioms we have imposed on G determine it only up to an additive constant (which L

of course has no effect in formula (2.2)); to make sure that G(x,y) is exactly

<(x)—(x0) R (y)—(y0)> we must impose one extra condition, e.g. G(xo.y) =0 for

some y €S\ (xo} .
Now take S = XO(N) (€) = TO(N)\HU{cusps) and X3 = @ ¥g =0 (we assume
N>1, so xoslyo). We want to construct a function G(x,y) satisfying the

properties above, i.e. a function G on HxH satisfying

a. G(yz,y'z') = G(z,z'") vz,z'€EH, y,y'GI‘O(N) B

b. G(z,z') 1is continuous and harmonic for le"o(N)z' ;
(2.3)

c. GC(z,z') = e loglz—z"2+ 0(1) as z' —> 2 . where e_ is the order
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of the stabilizer of z in I’O(N) H
d. For z€H fixed, G(z,z') = 41y’ +0(1) as z'=x'+iy' —w
and G(z,z') =0(1) as z' — any cusp of l‘o(N) other than o« ;

similarly, for z' fixed G(z,z') -lm'ﬂ% +0(1) as z=x+iy — 0

and G(z,z') =0(1) as z — any cusp of I‘O(N) other than 0.

The conditions in c. and d. come from noting that a uniformizing parameter for
XD(N) at a point represented by z€H has the form p(z') = (z'-z)ez(i +0(z'~-2)) ,
while uniformizing parameters at o and 0 are e2ﬂiz and e-Z"i/NZ, respectively.
The most obvious way to obtain a function with the invariance property a. is to

average a function g(z,z') éatisfying
a'. glyz,yz') = g(z,z') Yy EPSL,(R)

over I‘O(N) , i.e. to set G(z,z') = z " g(z,y2z") . To achieve the properties
YETG (N)
b. -c. we would also like
b'. g(z,z') 1is continuous and harmonic in each variable on
HxH~diagonal;

c'. glz,z') = log |z-z'|2+0(1) for z' — z .
A function satisfying a'. -c'. is given by

(2.4) glz.zh) = log 222

l?—z'lz
Unfortunately, the sum of g(z,yz') over I‘O(N) diverges (although only barely)
for this choice of g. To resolve the difficulty, we modify the condition of
harmonicity to Ag=cg with €>0, where A = y2 (-52;—72- + -say%) denotes the
Laplace operator on H, obtaining a function for which Eg(z,yz') converges and
which is an eigenfunction of the Laplacian with eigenvalue ¢, and then take the
limit as ¢ — 0 , subtracting off any singularities. Condition a' requires
that g be a function only of the hyperbolic distance between z and z', or
equivalently a function Q of the quantity 1 + l—%—li (which is the hyperbolic
cosine of this distance). The equation Ag=¢g then translates into the ordinary

differential equation

IDpao @Yl ST "I Dagym "z ¢— ,Z SE (1)0 + | sZ=2 |80 "0 = (,z°z)D °D
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d? d

(-AHfr v e v 0w -0

This is the Legendre differential equation of index s-1, where ¢ =s(s~1) with

s>1 . The only solution (up to a scalar factor) which is small at infinity is the

Legendre function of the second kind Q . (t) , given by
s-1

(2.5) Q, (&) = T (t +/E7=T cosh u) ®du (t>1, 5>0)
o]
or
2
(2.6) Q_,(6) = 2—‘;7(%; (729° Fls,8328595)  (£>1, s€0) ,

where F(a,b;c;z) is the hypergeometric

function. From either of these closed formulas one easily deduces the asymptotic
properties

2.7 Qu_y() = -3log (t=1) +0(1) c~n,

(2.8) Q_(6) = o™ (t 5 .

The first implies that the function

12
(2.9) gs(z,z') = -2Qs_1(1+M:-L)

2y (z,z' €H , z¥#z")

satisfies axiom ¢' above and the second, that the sum

(2.10) G s(Z.Z') - ): g (z,yz")

(z,z' €H, z' € I,(N)z)
N vely(n) ® o

converges absolutely for s> 1. The differential equation of Qs_‘ implies
] - [] - - [ .
(2.11) AZGN’s(z,z ) AZ,CN.B(z.z ) s(s=-1) GN'S(z,z ) (z' € ,(N)z) ,

while the property

(2.12) CN,S(YZ'Y'Z') = GN‘S(z,z') (VYY,Y' €L(N))

is obvious from the absolute convergence of (2.10) and the property a' of gs(z,z') .

\

The function GN s(z,z'; on (H/l’o(N))z\(diagonal) is a well-known object

called the resolvent kernecl function for I (N) ; its properties are discussed

extensively in [20, Chapters 6-7] (note that Hejhal's normalization is & times
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ours). In particular, the series defining GN,s converges absolutely and locally
uniformly for Re(s) >1 and defines a holomorphic function of s which can be
extended meromorphically to a neighborhood of s=1 with a simple pole of residue
(2.13) Ky TSUT—;f_Fa(ﬁYT « -2y IIE(H%)-'
(independent of z,z') at s=1. We could thus "renormalize" at s=1 by forming
the limit :-i:;‘ [GN'S(z,z') -{—_&1-] . But this function would not be harmonic in
z or z', since
A[lim[G (z ')--Kij] = lim[s(s-1) G, (z,z")] = 0
Linley 4 ,Z py 83;1 s(s N,s(%0% ) N £0 .

To get a harmonic function of 2z, we should instead subtract from GN 8(z,z')
»

[
a T (N)-invariant function of z having the same pole s—f“ at s=!1 and the same

eigenvalue s(s-1) . Such a function is -/anN(z,s) , where

(23'1’) EN(Z:S) = z Im(yz)8 (z€H, Re(s)>1)
YEFQ(N)

is the Eisenstein series of weight 0 for the cusp « of IL(N) . Since we want
our function G(z,z') to have its singularities at z=0 and z'=w , we should
in fact subtract =4m E(wNz,s) and -4mE(z',s) from Sy 8(z,z') , where

L]

Wyt oz -1/Nz is the involution of X,(N) interchanging 0 and o; we must

X

then add back a term -;_N—‘ , since we have subtracted off the pole of GN R twice.
]

We therefore set
I3

(2.15) G(z,2") = i:‘;. (6 o(zs2") +4n B Cupz,e) wan Ry (z'ys) + 2800+ c,
with a constant C still to be determined, and claim that it possesses all the
properties (2.3). 1Indeed, (2.3a) and (2.3b) are obvious from the definition
of CN‘a(z,z') and the preceding discussion, and (2.3¢) follows from (2.7).

It remains only to check the behavior of the function (2.15) at the cusps, i.e.
that it has the correct logarithmic singularities as 2z goes to 0 or z' to =

and is bounded at all other cusps; we would also like to choose the constant

in (2.15) so that G(z,z') — 0 as z — = . We must therefore know the
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expansions of CN,s and EN at all cusps of XO(N) . For EN this is easily
obtained from the elementary identity

- ~2g. -
(2.16) EN(z,s) = N sﬂ(l—p 3y t. z —“—((Tg—)- E(%z,s) ,

pIN diN
where u(d) 1is the M&bius function and E(z,s) = El(z,s) the Eisenstein
series for SLZ(Z) , because for SLZ(Z) all cusps are equivalent to o , where

E(z,s) has the well-known expansion
(2.17) ECz,8) = y%+ ¢(s)y ' + 0(e™) (y=Im(z) —> ) ,

rd) ris-d g(2s-1)

(2.18) o(s) = T(s) (7s)

(By O(e-y) in (2.17) and below we mean a function which is not only O(e-y) -
actually, O(e-cy) for any c<2n-- for fixed s> 1 but is holomorphic in s at

s=1 and is O(e 7) uniformly in a neighborhood of s=t.) For G we have the

N,s
expansion
(2.19) Gy s(z,z') = - E‘;—z!— EN(z‘,s) y"8 + 0(e V) (y =Im(z) —> o)

at = (sece [20],(6.5); this expansion is obtained by calculating the Fourier-
development of GN’s(z,z') with respect to z). At other cusps there is a
similar expansion, so that CN,s(z.z') = a(s) Y‘-8+0(e—Y) where Y =1Im(yz)

for some YESLZ(B) transforming the cusp in question to «. Hence as z tends
to any cusp other than 0, the expression in square brackets in (2.17) has the
form a(s) v 8(s) +0(e_Y) » where a(s) and B(s) have at most simple poles
at s=1 and a(s) +8(s) 1is holomorphic there; letting s-»1, we obtain a
function of the form « 1ogY48+0(e‘Y) , and the harmonicity of this requires

that a=0. Hence (2.15) is bounded as z tends to any cusp other than 0. At

0, we find from (2.16) and (2.17)

EN(sz,s) = lm(wNz)s + O(Im(uNz)'_s) (z —>0) ,

so the same argument shows that G(z,z') has an expansion 4nY +alogyY +8 +0(e_Y)
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ag Y = Im(wNz) = —N-Izz—l-}-—)w » where again o must be 0 (by direct computation
or because G is harmonic). This proves the assertions of (2.3d) for z, and

the assertions for z' are proved similarly or by noting the symmetry property
(2.20) G(z,z') = G(wNz' ,wNz) .

Finally, we must determine the ‘constant in (2.15) so that G(z,z') vanishes as

z —> o . By (2.19) we have

G(z.z‘) - 11m[lan (z',s) (1~ L)] +lxm[AnE(wzs)+ N]-0-C+()(e )

g+1 s+
as y — oo , Since

1-8

GnEy(z',8) = o), 1 =1 = (logy+2) (s-1) +0(s-1)7

as s —> 1 the first limit equals -y (logy+2) . The second limit is

evaluated by (2.16) - (2.18) :

EyGoz,s) = N TT-p2971 . § 2@ ey,

pIN d(N S
- N TTa-p7297! [TTu-p’zs") o) y'™® +0(e“’>] .
pIN pIN
[ 4 -
:ET [ 4n EN(wNz.s) + -;_81-] = xglogy + Nt o(e™)
with
1- ~25+1 xy
A = lim [&aN%e(e) TT —“Bop o By
s+1 piIN 1P 8-l
(2.21)

= xyllogN + 2102 - 2y + 250 (2)-22 P‘;}—"_&{i]
PIN

1] 1 ‘
(here y= Euler's constant and we have used L-(1) -y , L—(-—) *~2log2-vy ,
T r "2

1
t(2s-1) = 353 + y + 0(s-1) ). Hence

Glz,z') = =2 + A, +C+ o(e™Y)

as y — o , so we must have C-Z(N-AN . Summarizing, we have proved:

Proposition 2.22. Let =x, x" be distinct non-cuspidal points of XO(N)(C) .
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Then

<(x) = (=), (x')-(0)>c = lim[G, (z,z )+lmE (w z s)+1mE (z',8) 4—&-]

8+1 N,s

—AN+2KN .

where =z, z'€H are points representing x and x' and G e E A, are

N “n* n

defined by (2.10), (2.14), (2.13) and (2.21), resnectlvelz.

We would also like a formula of the seme kind for < (x) - () , Tm((x') -(0))

where Tm is the mth Hecke operator (m>0 prime to N). Since Tm maps each

cusp to itself, we have
CE =D, T () -0 = 6(z,2)| W T = ] Glzyz")
YET\Ry
det y=m

(cf. (1.2)). The operator Tm acts on constants by multiplication with

#{YENR, ,dety=m) =« o (m) = ] 4
dim
d>0

and on EN(z',s) by multiplication with

s - 8 1-28
m °—25+1(m) m % d
djm

(this can be seen easily from the definition or from (2.16) and the corresponding

statement for SLZ(Z)). Finally, it is clear from the definition of Gy , that

G, (z,z")] ,1T = ) )
N,s z'' m Y(".RN/(ii} Ss(Z.YZ )
dety=m

Putting all this together, we obtain

Proposition 2,23. Let w21, (m,N) =1, x, x' FXO(N) (€) non-cuspidal points
with x€Tx'. Then

<(x) = (), Tm((x') - (0)) ¢ * :il'n[CN (z,z") OIo'm‘(m) EN(wNz.s)
o, (m)x

s ' _I{
4+ 4mm 01_25(m) EN(z ,8) + ]

- v.‘!l(m)lN *2(‘)1(1'11)«H

with z, 2', Egs Ky XN as_in Proposition 2.22, cv(m)=d§ a¥ , and
m
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(2.24) ¢ (2,2 = &+ I g (z, 2230,y
N,s 2 a,b,c,dez s cz'+d
N|c, ad~bc=m
As a final remark, we observe that the functions GN s and G;l s have the
» ?

invariance property
2. m t - n '
(2.25) GN'B(wdz,wdz ) GN's(z,z )

for any dIN , where w, are the Atkin-Lehner operators as in (1.1). This property,

d
which follows easily from (2.24) and the invariance of gs(z,z') under z —> yz ,
z' — yz' (y ESLz(IR)) , is compatible with the fact that the height pairing is

invariant under automorphisms.

§3. Evaluation of the function GE s 2t Hecguer points
’
According to the results of §2, in order to compute the height pairing
<c,'1'md° e © =(x) =(e) , d=(x)~-(0), o€Gal(H/K) (x = Heegner point)

at an archimedean place v of H, we must evaluate the functions G:'B at the
corresponding points of X(Hv) =X(€¢) . These points were described in §1 and shown
to be parametrized by pairs (A,n) , where A€ Cl; and nc0 is a primitive ideal
of norm N, the corresponding point TA’n€I‘0(N)\HCX(C) (or rather, a represen-
tative of it in H) being a root of a quadratic equation as in (1.4). Since
a-uA€Gal(H/K) acts by TA; . —> TA;A"’,n , we need only consider values
3.1 c:’B(TAhn'.rAhn)
where the arguments are leegner points associated to the same n and to ideal
classes AI’AZ satisfying AIA;‘ =A . Here we must assume rA(m) =0 since other-
wise the value (3.1) is not defined; we will discuss the modifications for the
case rA(m) ¥0 in §5.

The expression (3.1) depends on the choice of n. On the other hand, the
function G:'s is invariant under the action of the Atkin-Lehner operators Y3

by (2.25), and we saw in §1 that these act on the Heegner points by
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-rA,nt——) TA[3]!,Bna where 2a]n, NQ) =d .
We can therefore replace A‘ and Az by A1[ﬁ]~‘, AZ[I)]_1 and n by nﬁ_‘ﬁ in (3.1)
without affecting the value of this expression. This substitution does not change
either A‘A;' (=A) or A1A2[n]_1 . Hence the sum

m Jn
(3.2) Ty, sAB) = Al,A§€C1x Cx,s AL ,m * TA 1) (ry(m) = 0)

AjAZ A
AAz[n)"1=B

is independent of n. The summation here is very small: If K has prime discrimi-
nant, so that ]Clxl is odd, it reduces to a single term (i.e. we have ju_st: re—indexed
the quantities (3.1)), while in general it has Zt-‘ terms if {A} = {Bn} and is
empty otherwise; here t is the number of prime factors of D and {A} denotes the
genus of A, i.e. the class of A in C1K/2C1Kt><(Z/Z:r'..)t_l . (Notice that all ideals
n with N(n) =N belong to the same genus, so the condition on A, B is independent
of n, as it should be.) In this section we will obtain formulae for (3.1) and for
the slightly cruder invariant (3.2); the latter will be much nicer (as can be expected
since the dependence on the choice of n has been eliminated). By summing further

we obtain an even simpler expression for the yet cruder invariant

(3.3) Yy (A = N Gy (x ' T ) = T oYy (AB) .
N,s A1 As€CIg N,s' Ap,n’ Az,n BeClx N,s
A1AZ=A

Of course, (3.3) is all we need to compute the total contribution ): <c,da>v to
Ve
the global height pairing from all of the archimedean places of H, since these

places are permuted transitively by Gal(H/K) mCIK . However, in Chapter V we will
see that some interest attaches also to the individual terms (3.1).

We now start the calculation of (3.1). In (2.24), suppose that z=T, and

z' - T, are Heegner points with the same n, i.e. that they satisfy quadratic

. 2 . . ab
equations A.T, + B.t. + Ci as in (1.4) with the same 8. Then for 'r-(c d)E RN

we have

|YTI‘T212 20N

21m(y1l)lm(rz)) = —ZQs-i(H !Dl det(y))

g (Y1) - -2q,_, (1~




. - MAz - -bl2
(3.4) n M Icr‘12+d~r1 at, bl .

Since n is a rational multiple of the norm of an element of K , it is rational.

In fact, a direct calculation gives

- l 2 _ D- BB, 2 2 =
n X [c C,C, + (ad ~be) 3 +aCA, +d7AC, cdB C,
(3.5) 2
+ acC.B, + b"AA, + bdAB, ~ baB, A, ],

and this is integer because A‘, AZ and c¢ are divisible by N and B BZ“ leb(mod 2N).

1
llence

m T 20N

CN'B(T‘,TZ) Zn)-:‘ pmq _ 1+ mTD‘)
where p"(n) is the number of y= (z :)GRN/(:J} satisfying ad~-bc=m and (3.4)
or (3.5). To see what kind of an expression pm(n) is, consider the simplest case

when N=1, D=-~4 and <t /=1,=i, so Al-A2=C1=C2=1 , B

12T, =B,=0 . Then (3.5) becomes

1 72
n= az+b2+c2+d2-2(ad-bc) .

so p"(n) counts the number of 4-tuples (a,b,c,d) €ll' (up to sign) satisfying
(ti-'d)2 + (bﬂ:)2 =n, (a#d)2 + (b--c:)2 = n+4m ,

i.e. (apart from a congruence condition modulo 2) pm(n) is the product of the
numbers of representations of n and of n+4m as sums of two squares. The answer
in general will be similar. However, since (3.5) is so complicated we will stop
using the language of quadratic forms and shift to that of ideals in quadratic
fields. We start by redoing the proof that the number n defined by (3.4) is

integral. Given y= (: g) €RN we define two numbers a, BE€EK by

(3.6) a = c1‘?2+d72-a1 b, B = c1,1,+dtr,-ar, -b .

1 1°2 2 ]
From Ti€A;‘3i-a;1 (compare (1.5)), c€(N) =nn and n|ai we have

1= -1 -1
a 2

2 no.

(3.7) a € a: ., BE a:‘a

It follows that the two numbers

LA R TN P} BN fTamy Tyt vmr

-1
(3.8) R = A‘AZN(G) s, mn =N A,AZN(B)

are in Z . Also

a B
£ - Nn = A‘Az det (-B &
- -1 T,y (8 by 7, T,
Ah, dec [ (_, ,‘1) GGt Y ]
(3.9) =[] det (v)
and
(3.10) A‘Aza " AIA?_B (mod D) -,

where D =(/D) 1is the different of K (the last equation holds because A11‘. AZ'Z
are integral and A=A (mod D) for any A€0 ). Conversely, given any a and B in
K, we can think of the real and imaginary parts of (3.6) as a system of 4 linear

equations with rational coefficients in 4 unknowns a,b,c,d and solve for a,b,c,d.

The simplest way is to notice that

ct, +d = -75-(0 By ,

- - . T,0-1,8 - Az _
at, +b Tz(CT‘ +d) ~a -—ﬁ — 7= (rzu 128) -
If o« and B satisfy (3.7) and (3.10) then the right-hand sides of these two
equations are in na;‘ = NZ1‘ +Z and a;‘ - 211 +Z , respectively, so a,b,c,d€Z
and Nlc. 1If also the integers ¢ and n defined by (3.8) satisfy £ =nN +m|D]

then (3.9) shows that det(y) =m . We have proved:

Proposition 3.11. Let AI'AZ be two ideal classes of K, N a primitive ideal of

norm N and ai (i=1,2) an integral ideal in Ai with nlai N N(ai)-Ai . Then

for m€N, rMA;l(m) =0 we have:

n ¥ m 2nN
GN.S(TIM A, .n) - 2 nzl e () Qg1+ m)

where

1

m o e BEL
p (n) = DA;,A;,n(") = # {(u,B) €(a‘ 3, xa a, n)/{tl) l

N(a) ="'AL::—32—D-L, N(B) =

Nn
vl A‘AzasA‘Azﬁ (mod D) }
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(The condition rA;AII(m) =0 is required to ensure that n in (3.8) is strictly
positive.)

To understand the expression pm(n) better, consider first the case when
na0 (mod D) . Then AIA2° and A|A28 are automatically O (modD), so o™(n) breaks

up as a product

-1

m 1 = =1 £
pA“AZ'n(n) = -i-é{uEa a, | N(a) =-=—}

1 AA2
-1_-1 Nn
(3.12) x# {B€a a,'n | N(B)=m—2—}
2
= 2u rAlA.Z.l(l) rA],Az[ll]_l(n) (n= 0 (mod D)

where uu% # of units of K, %L=Nn+m|D| and, as usual, rA(n) denotes the number

of integral ideals of norm n in the class A. Another easy case is when n# 0 (modD)
1

but D is prime. In this case, exactly half of the pairs a, 8€ 5;152_‘ xa;1a; n
satisfying AIAZN(Q) =nN +m|D] , AIAZN(B) =nN satisfy A1A2uEAIAzB (mod D) , namely

exactly one of (a,B) and (a,-8) for any a, B (this is because a quadratic residue

- mod D has exactly two square roots modD). Hence
m 2 1 Dfn .
(3.13) pA;.Az,n(n) =y rAlAzl(nNer[DDrAIAz[n]-l(n)x{z Dfn (D prime) .

A formula generalizing (3.12) and (3.13) is

(3.14) I o (@) = { u?6(n)x, (nN+m{D|)rg(n) if {A) = (Bn) ,
. Ay LA ECIy ApAun Y otherwise,
A A=A
AA,[n]"2=B

where now D is arbitrary, A and B are any two ideal classes of K, {A)} and {Bn)
denote the genera to which A and B[n] belong, and
(3.15) §a) = TT 2 .

pl(n,D)
Indeed, if D is prime then the sum in (3.14) reduces to a single term (since Cll(
has odd order) and (3.14) is identical with (3.13), while if n =0 (modD) the sum

in (3.14) has Zt—,

or O terms according as {A}={Bn} or not and these terms are
all equal to the expression in (3.12) (note that §(n) =2% in this case). To

prove (3.14) in general, we fix some A‘, AZ satisfying the conditions on the left
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(if there are no such then {A}#{Bn} and the formula is trivial). The other
classes in the sum are obtained by replacing Al and AZ by AIC and AZC with C'2

c, a,C with

a 2

trivial, i.e. by replacing representatives a

of A,, A2 by a,

1* 72
c2 principal, say cz-(y) , YEK‘ . If we also replace a and 8 by a/N(e) and
B/y we obtain a new solution of (3.7) and (3.8). Thus the only question is how
many of the Zt-l choices of [£] lead to a, B satisfying the congruence (3.10).
This congruence is equivalent to a congruence modulop for each of the primes p
dividing D; each of these t congruences is true if p|an (both sides are 0)

and true up to sign if p[n (both sides are non~0 and they have the same square).
But the change of a‘, aZ' a, B described above changes the ratio a:B8 by a factor
y/N(c) of norm 1, i.e. by a number of the form r+sYD with r and s p-integral

-1 classes of € with [x:]2 trivial

and rzrs"l (mod p) for all p|D . The 2
correspond in this way to the values #r (mod D) with r251 (mod D) . The formula

(3.14) is now obvious. Combining it with Proposition 3.11, we find:

Proposition 3.16. The invariant y: s(A;B) defined by (3.2) is given by
’

2 2aN
Y:’S(A;B) = - 2u f 6(n)r, (nN +m|D|)rB(n)QS_I“ *m“p )

n=1

(8(n) as in (3.15)) if {A}={Bn} and is O otherwise.

Summing over all B, we obtain:

Corollary 3.17. The invariant y: 8(A) defined by (3.3) is given by
’

" 2 7 2nN
YN,s(A) = - 2u “Z‘ §(RIR 4y ()T, (0N +m'D|)QS_1(1 *ﬂﬂ’ ,

where R(An)(n) is the number of integral ideals of norm n in the genus {An}.

Since a nuwber cannot be the norm of an ideal in more than one genus,

R{An)(n) is either R(n) or 0, where

D
R(n) = ¥ rn) = ] (D
AECIK A mjn

is the total number of representations of n as the norm of an ideal of 0.

Which of these two alternatives occurs depends only on values of genus
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characters. In particular, if (n,D) =1 then R(Au}(n) can be replaced by R(n)

in (3.17) because

r (N +m[D]) £0 = (&“;“Jﬂl)-n wplp) = A2yt (vpln)

* Ram®™ = R

(A = any integer prime to D which is the norm of an ideal in the genus (A}).
In general, there will be one genus condition to be satisfied for each prime
dividing (n,D) , énd we could replace the product
6(n)RMn)(n)rA(nN +mlpp) =~ (TT 2) -R{An)(n)rA(nN +m|D|)
pl(n,D)
by

|

’

{1+ EP (“"—"nglﬂ)) * R(n)r, (nN +m|D])

pl(n,D)

where Ep is the homomorphism from the group of norms of fractional ideals of K
to {%1} defined by EP(Na)'ﬂ for a principal, Ep(n)=(%) for n€z, pfn.
However, for later purposes we will prefer to leave the formula for y: s(A)

>

in the form given in 3.17.

§4. Final formula for the height (rA(m) =0)

Let c=(x)-(®), d=(x)-(0), o=oA€Gal(ll/K) , m prime to N. We
still assume that rA(m)-O, so that the divisors c¢ and ‘I’mdo have disjoint
support. We want to compute

o o
<, T diy = ] o<e,Td%
Ve

where the sum is over the h|< archimedean places of H. Since these places are
permuted simply transitively by Gal(H/K) mCIK , this cquals

<(1y n)_(m)'rm((TAz,n)—(O))3 ,

A AjECTy 10

-1
AAT=A
where N is any integral ideal of K of norm N and the TA g are the points in
’

H described in §1. Applying Proposition 2.23, we find

34—

s+1

<c,1d%, = um[y“‘ (A) + 4no, (m) E, (w1 , 8)
m N,s 1“‘A1€XC1 NTUNTA LT

h o (m)K
+4m’s,_, (m) ) E (1 »6) + ]
1~2s AZ€CIK N''A,,n

- hKol(m) AN + 2!11((110!:);:N .
Using (2.16), we have

) E(thn,x,) - ): E(-rAn,s)

AECIK A€C1K

- NS TT (-p729)7! § U(dds) z E(gtA’“,s)
pIN d[n AcCl,
where E(z,s) 1is the Eisenstein series for SLz(Z) . Since each TA,n solves a
quadratic equation arz +br+c=0 of discriminant D with N|a, the points
%TA,R for d|N also satisfy quadratic equations over Z of discriminant D .
It is then easy to sce that the inner sum on the right-hand side of (4.1) is
independent of d and equals iE(TA,s) , where ) is any point in H satis-
fying a quadratic equation of discriminant D corresponding to the ideal class
A. As is well-known (and elementary), E(1A,s) is a simple multiple of the

partial zeta-function

t . (A,s) = ) —Ts—' R
K 2 integral N(a
(a]=A
namely
Es) = 2701 P uce ™ ¢ (A0

where u as usual is one-half the number of units of K. Since ;CK(A.S)"CK(S)

the Dedekind zeta-function of K, we deduce

<c,T d%, - lim[ (A)*———l_]__l‘ﬂ(c () +mSo. - (myy KD

s*1 N° I o(1ep D) 1-2s 7(2s)
pIN
hyo(m) oy
+ T - hKU‘(m)XN + thoi(m)xN

Substituting into this the expansion
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L) = t(s)Ls,0) Cetm) =)

- (5_11 +y +0(s-1) ) (L(1,e) + L'(1,e)(s-1) + 0(s-1)2)

and the formula L(1,e) -ﬂhK/uu/IDI , we obtain

Proposition 4.2. Let xEXO(N) be a Heegner point for the full ring of integers

of an imaginary quadratic field K, c=(x)-(o), d={(x) -(0) , o€Gal(H/K) ,

mEN prime to N, and A€ CIK the ideal class corresponding to o under the

Artin isomorphism. Suppose m is not the norm of an integral ideal in A. Then

h
@ - xmn ]

o .
<c,'1‘md S = ;im[ 5=1

m
YN,s
N logp oy _o L
+ han[(logm *2p)|jn pi-1 +2+2 c(2) 27(1,¢) a,(m)
+ ] dloggr
dim

with Y: s(A) as in Corollary 3.17. Here D, hl( and L(s,e) denote the discrimi-
»

nant, class number and L-function of K and N the constant defined in (2.13).

§5. Modifications when rA(m) $0.

Since the point x occurs with multiplicity To(m) in the divisor Tm(xc).
the divisors ¢ and deq are not relatively prime in the case when ra(m) £0.
Although the global height pairing <c,de°> is well-defined, Néron's theory
does not give a canonical decompositiox} into local terms <c,deo>v . We will
first discuss how a local symbol can btl: defined by choosing a tangent vector at
x , then calculate this symbol when v is an archimedean place of H.

We recall a procedure for defining a local symbol for two divisors a and
b of degree zero on a general curve X over H, whosc common support is equal
to the point x [14]. Let g be any uniformizing parameter at x, i.e., any
function on X with ordx(g) =1, and define

(5.1) <a,b> = yl_i,n:‘ { <ay,b>v - ord (a) ord (b) log lg(y)]V } ,
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where ay is the divisor obtained from a by replacing every occurrence of the
point x in a by a nearby point y which does not occur in b. This limit
exists by the standard properties of local heights. If g' is another uniformizing

parameter and g/g' has the value a at x, then
(5.2) <_a,b>", = <a,b>v + ordx(a) ordx(b) log|a|v .

In particular, the sum X<a,b>v is independent of the choice of g, by the
v
product formula; this sum is equal to the global height pairing of the classes
a and b [14].
Let .8_3. be the non-zero tangent vector at x which is determined
g

by Sy =1. Another consequence of (5.2) is that the local symbol <£a,b>v

depends only on the tangent vector -a—% and not by the full choice of g. By

(5.2), this pairing is unchanged if we multiply 5% by a root of unity a,
since [a|, =1 for all v.

We now apply this procedure to the computation of the.local symbols

g : :
<c,T d°>  on XO(N) . We have ordx(c) =1 and ordx(dec) =r (m); if g is
a uniformizing parameter at x, then

g . a

(5.3) <c,de > = lim <cy,de % " rA(m) log [g(y)]V ,
where cy=(y) =(=) . The trick is to normalize the function g at x so as
to make the computation of each local symbol as simple as possible. To do

this, we introduce the differential
(5.4) w = nl‘(z) _d_qfl = 2ni n[.(z) dz ,

where n(z) = qsl"-r]IU -qn) is the Dedekind eta-function. This differential

is well-defined only up to a 6th root of unity, but this will be sufficient
for our purposes by the remark above. If x is not an elliptic point on XO(N) ,
so u=1, then w is non-zero at x and we may take our tangent vector =2 to

at

be dual to w. The uniformizing parameter g then satisfies

w = (g+32324a3g3+...)ig&
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in a neighborhood of x. In general, w has order %-1 at x and we may

normalize g so that

t/u + higher degree terms )ﬂé&

in a neighborhood of x. The reasons for this normalization will become
clearer when we compute the heights at non-archimedcan places in the next

chapter. Here we observe that for a complex place v we have
(5.5) log Ig(y)lv - u log | 2ni na(z) (u-z)lv — 0

as y+x, wvhere z and w are points in the upper half-plane which map to
x and y on XOCN)(C) .

From Proposition 2.23 and the formulas (5.3), (5.5) we find

0 - 1% ,
ety Tl [ yeRzN/ngs(z’Yz )+ bnoy(mIEy(wyz,e)
det y=m
yz'#z

(5.6) +u rA(m) lim {gs(z,\’) - log Iz"i“l‘("'-) (“-Z)lv}

w2z

a, (m)x,,
+ anso‘_zs(m)ﬁn(z',s) + -.LST‘_I‘. ] -0 MOy +2¢))
(2,2’ points in H mapping to x,x°)

because in the terms ga(w.yz') with vyz'#z and in the term EN(wNw,s) we
can carry out the limit w-+z simply by replacing w by z, and there are
UTA(N) values of y with yz'=z. Formula (5.6) is ideatical to the formula
in Proposition 2.23 if we define G:’s(z.z') (vhich was previously defined

only if z('l‘mz') for all z,z'€H by

(5.7) C“Nl s(z.z') = z gs(z,'rz')
* YGRN/11
dety »nm
yz' 4z
" . 4 2

+ Z lim (gs(z,u) - log |2nin(z) " (z-w) | ) .
YE /11 W2z
det y =m

yz' =2
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Hence Proposition 4.2 is true without the restriction rA(m) =0, provided that

m
N,s *

this invariant, we find that the terms in (5.7) with yz'¢ z give exactly the

we define Y: s(A) by \(3.3) but with the new definition of G
»

expression in §3 and that their total contribution to ys,s(A) is the infinite
sum in Proposition 3.11 (the‘'condition yz'¥z translates into the condition n>0
in this sum). The second sum in (5.7) equals tga(z) » where t is the number
of y€RN/t1 of determinant m with yz'=z (for z, z' as in (5.6) this number
is utA(m)) and 85(2) is the renormalized value of gs(z.z) defined by the

limit in (5.7). Using the asymptotic expansion

Guy® = 1ot - (K -Ln) v o (ent

we find
- 2
gs(z) = - log |2n (z - %) n(z)"l + 2%(8) - 2-‘;.;(1) .

By Kronecker's first limit formula, this is equivalent to

T’ T' 2 .. o n
g (z) = =-2log2n +2—(s) + 2——(1) + = 1im]| 2 (20)E(z,0) - — | ,
8 r r T g a-1

vwhere E(z,s) as usual denotes the Eisenstein series of weight zero on SLZ(Z).

The identity 2SC(2S)E(1A,S) -ulDlslzl‘,K(A,s) mentioned in §4 now gives

r rt . 2u). 0/2 2h
AE)%IlKgs(TA) = Zh["r(s) *‘r—(l) - log 21!] + (]l:ml[TIDl LK(O) - '5_—'-]

= 2| Es) - tog2n + K1, + L1og |p]
TS & L' 708 .

The total contribution to Y:; 8(A) of the terms with yz'=z is the product of
r .

this with the number t =urA(m). Summarizing, we have:

Proposition 5.8. Proposition 4.2 remains true when m is the norm of an ideal

ir_\ A, provided that the local symbols <c,deo>v in the definition of <c,’l'mda>"°

arc defined by (5.3) with the choice of g cxplained above and the invariant

Y;‘ S(A) is defined by (3.3) with G: s 38 in (5.7). This invariant is given by
» *

m . expression in r' - L’ 1 )
Ty, sA C Corollary 3.177 * 2*““'A(’“)("r'“) log 2n +5=(1,€) + 7 1og D] | .

In calculating
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Chapter ITI. Non-archimedean local heights

In this chapter we will compute the local symbols <c,deo>v for all non-

irchimedean places v of H , always under the assumption that m 1is prime to

i - Assume that v divides the rational prime p ; let Av denote the ring of
.ntegers in the completion Hv s T a uniformizing parameter in Av , and

- pf the cardinality of the residue field Av/v . Let W denote the comple-

-ion of the maximal unramified extension of Av ; then 7 is a prime element in

1 and F = W/m 1s an algebraic closure of Av/w .

We first reduce the calculation of Néron's local symbols <a,b>v on rela-
-ively prime divisors of degree zero on X over Hv to a problem in arithmetic
intersection theory. Let X be a regular model for X over Av , and let A
ind B be divisors on X which restrict to a and b on the general fibre.
(f A has zero intersection with every fibre component of X , we have the

formula [14]

(0.1) <a,b> = -(A * B)log q .

In the next section we will describe a regular model X for X over Z
shich has a modular interpretation; we will then discuss the reduction of

feegner points on X and use (0.1) to obtain the intersection formula

(0
(0.2) <e,T d> = -(x * T,xog q ,
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g
where x and x  are the sections of X @ Av corresponding to the points x

and xG over H .

The rest of the chapter is devoted to a calculation of the intersection prod-
uct (x * TmE?) , which is unchanged if we extend scalars to W . We first iden-

tify the components of the divisor Tmzv , then establish the formula

1 Z Card Hom “(EJE?)

(0.3) (x-T x%) =
o n21 W/

N

degree m

where Hom / n(i,gé) is a suitable group of homomorphisms between the diagrams
of elliptiz :urves representing x and 5? .

Using (0.3) and Deuring's results on singular 1iftings of ordinary elliptic
curves, we show that (x ¢ ngé) = 0 when p 1is split in K . When p 18 non-
split in K , the curves corresponding to x and 5? have supersingular reduc-
tion and the groups Hom / n(g,z?) can be calculated using the arithmetic of
certain orders in the de?iﬁite quaternion algebra over @ of discriminant p .
Next we discuss the modifications necessary in the computation of <c.de°>v
when the divisors c¢ and dec are not relatively prime. Finally, we make the

orders in our quaternion algebras completely explicit and obtain a formula for

% <c,deo>v in terms of the ideal theory of 0 . For example, when rA(m) -0
vip ’

and p is inert in O , our final formula is

(] 2
<¢, T d > = -u“log p ) ord (pn)r, (m}D|-nN)8(n)R (n/p)
v A
vgp i °<n<2£_121 P { VY}

nz0(mod p)
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uhere;ap is an ideal of 0 with é%@ - G%b for all primes £|D .

Because we must treat all non-archimedean places of H , including those

dividing N, m , or D where there are some complications, the argument often

becomes fairly intricate. Here we will illustrate the main ideas in the case
where m =1 and v divides a rational prime p which is prime to ND . We
shall also assume that rA(l) =0 ,8 0¢1 and the points x and <’ are

distinct over H .

By (0.2) and (0.3) we have

(0.4) <G = (@), &) - (0>, = <c,d%

(SN

ag
] card(1som (x%,x))10g q
a2l W v

The sum in (0.4) is zero unless x and 59 intersect (mod ) . Deuring's
theory shows (x - 5?) = 0 when p splits in K ; since we are assuming that
(p,D) =1 we must have p 1inert in K and hence 1log q, =2 log p . The en-
domorphism ring R of x (mod ) 18 an Eichler order of index N in the defi-
nite quaternion algebra B of discriminant p , and the group Homw (1?,5)

is isomorphic to the left R-module RA . The points x and }? wl{I intersect

(mod m) 4if and only 1f this module is principal; if this is so, the integer

Card(lsomu/ﬂ(zé,z)) is the number of generators.
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Each generator gives a solution to a certain equation in ideals of 0 » 88
we will now show. Let q be a prime with q = -p(mod D) ; then (q) = OL- Ei
splits in the field K and B s the algebra K+K; with the relationsja = of

for @ € K and jz = -pq . Using reduction theory, one can show that for

some place v dividing p the order R 1s given by the set of all a + Bj ¢ B

with a e @71 , Be Eﬂ-lq:lur, and a - 8 1s integral at all primes dividing

@ . If o is an tdeal in the class of A, then

0.5) Homy, (0 = Ru=fa+ 8y 1ac DT, 8@ v,

a - B integral at @D},

This module is principal 1f and only 1f it contains an element b =a + Bj with

reduced norm tb = N1 + pqtB = Na.. Assume b 18 a generator;1f we define the

integral ideals

: E - @@y
(0.6) “1— -1
£ - (@ga Tt

these satisfy the identity

0.7) We + pN Nc' = |p| |
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Letting n = pNr' and £ = Nc, we have a solution to the equation
£+ 0N = |D] with n = 0 (mod p) and r,(2) # 0 . Conversely, such
solutions will yield generators for Rov and contribute to the height
in (0.4). We remark that this method is quite similar to that used in
evaluating Gy s At Heegner points in Chapter II. Indeed the function
o . ’ . of Chapter II
p (n) introduced in Proposition 3.1T)counts certain elements of norm m

in an Eichler order of discriminant N in the split quaternion algebra

over Q.

vy

§1. curve XO(N) over Z’

A model X for XO(N) over Z was proposed by Deligne-Rapoport [7 1, and
given a modular interpretation when N was square-free. The general case was
treated by Katz-Mazur [21], using ideas of Drinfeld [ 9 ]. We review this theory

below.

Let u'f(r ™) be the algebraic stack classifying cyclic isogenies of degree
0

N between generalized elliptic curves over §
(1.1) ¢ : E+E'

such that the group scheme A = ker¢ meets every irreducible component of each
geometric fibre. The condition that ¢ 1s cyclic of degree N means that lo-

cally on S there is a point P such that

N
(1.2) A= J [aP]
a=1
as Cartier divisors on E . When N 1is invertible on S , this hypothesis 1is
equivalent to the assumption that A is locally isomorphic to Z/N ; when 7 N
is square-free it is equivalent to the assumption that A 1is locally free of

rank N .

) Let X be the coarsc modull scheme associated to the stack ."(FO(N) (l91, 234-
243, [21] 407ff). The scheme X 8 Z[1/N] is smooth and proper over z{1/M] .

On the other hand, if p 1is a prime dividing N , the scheme X 8 z/p 1s

both singular and reducible over Z/p . We will need a modular interpretation

of its irreducible components. Write N = pnM with (p,M) =1 . Then
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X0Z/p has (n+1)-}rreducible components 5§'b , indexed by pairs of non-nega-
tive integers with ‘a+b=n. The component Sg,b is isomorphic to »
%(H) ® Z/p , and occurs with multiplicity ¢(p%) in Xez/p, where c =
min(a,b) . In terms of the modular equation, this decomposition of the fibre is

reflected in Kronecker's congruence

a-c¢  _b-cy $(p%)
oy = @H(j" 4t )
c=min(a,b)

(mod p)

All of the components 82 b intersect at each supersingular point of X
’
over F : these are the points x = (¢ : E+ E') where E and E' are super-
singular elliptic curves. The non-supersingular points of 32 p over F cor-
’

respond to diagrams where the groupscheme A = ker¢ 1s isomorphic to

uaxz/pbxzh{.
P

For a geometric point x = (¢ : E~+ E') of X over an algebraically
closed field k , we define Autk(g) to be the group of all isomorphisms (£,f')

which make the diagram

$

E ——E'
(1.3) ‘ fk ltf'
E—ii—»ﬁ'

commutative. This is a finite group, which contains <:1> ; it may also be de-
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scribed as the automorphism group of the pair (E,A) . The strict Henselization
of X at the point x 1is isomorphic to the quotient of the strict
Henselization of L#}O(N) at the corresponding point m by the group |
Autk(g)/<il> [7, p. 172]. Using this fact, and results of Drinfeld [ 9 ] and Katz-

Mazur [21, p. 166], one obtains the following

Proposition 1.4 X 1is regular over Z , except at the supersingular points x

in characteristics p[N where A“tp(i) #o<E>

The subscheme Cusps of X is finite over Z , with one irreducible com-
ponent Cusp(d) for each positive divisor d of N . The component Cusp(d)
corresponds to diagrams of Néron polygons where A = ker¢ 1is isomorphic to
ug * Mz/dZ . It has ¢(f) geometric points, where f = gcd(d,N/d) , and one

has an isomorphism Cusp(d) = SpecZ[uf] .

The section ® of X 1is the component Cusp(N) and the section 0 is
the component Cusp(l) . These sections reduce to the components J:,O and
5% n in characteristic p respectively. In general, the reduction of the

?
multi-section Cusp(d) 1lies on the component 32 b (mod p) , where a =
’

ordp(d) [ 21, Chapter 10].

§2. Homomorphisms

Let S be a complete local ring with algebraically closed residue field
k,and let x=(p :E+E') and y : (y : F+F') be two S-valued points of
X which are represented by diagrams of cyclic N-isogenies. Assume further
that the points x and y have non-cuspidal reduction. We define the group

Homs(z,g) to be set of all homomorphisms (f,f') over S which make the dia-
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gram

(2.1) fl l £

commutative. Addition of homomorphisms is defined using the group laws in E
and E' . Then Homs(x,i) is a left module over the ring E“ds(?i) - Homs(}_,_)g) N
and a right module over E“ds(l) s in these rings multiplicatvion is defined by
composition of homomorphisms. Using the fact that k 1is algebraically closed,
one can check that the definition of lloms(z,g(_) is independent of the diagrams

chosen to represent the points x and y .

The ring E“ds(i) is either Z , an order in an imaginary quadratic field,
or an order in a definite quaternion algebra of prime discriminant over
Q@ (8]. We define the degree of a non-zero element (f,f') in Homs(z,g)
to be the positive integer deg f = deg f' . Then the set of elements
Homs(z'l‘-)deg,m of a fixed degree m 2 1 1s finite, and admits a faithful action
by the fintt:e group A“ts(l‘.) - Ends(l)degl .

§3. Heights and intersection products

Let x = (6 : E= E') be a Heegner point of discriminant D on X over
H , and let x denote the corresponding section of X 8 Av . We recall that
Av is the ring of integers in the completion Hv , and that the place v has

residual characteristic p .
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Since N 1is prime to Dh = disc(H/Q) , the special fibre X ® Av has the
shape described in 81. Since elliptic curves with complex multiplication have

potentially good reduction, the sections x and _>_<_°

do not intersect the divi-
Bor Cusps in the special fibre. They reduce to supersingular points if and

only if the rational prime p is not split in K [29].

Now suppose p divides N ; then p 4s split in K and x and 50 have

ordinary reduction (mod ) . We wish to determine the component .‘F; b of the
»

special fibre which contains the reduction of x . Let #. < 0 be the ideal an-

nihilating kerd ; since this isogeny 18 cyclic of degree N , we have

O/ = Z/N . Hence the place v divides & or o , but not both.

Proposition 3.1 The sections x and _}50 reduce to ordinary points in the compo-

nent %.n if vin
Fo 1f vin .

Proof. If Vll: the group scheme ker¢ 1s étale over Av » 80 is isomorphic to
Z/N over F . Hence the reduction lies in -‘9(') o * the component containing
»
Cusp(l) =0 . 1If vin the group scheme ker¢ 1is isomorphic to U a x Z/M over
P
F , 8o the reduction of x 1ies in the component 9"‘,0 containing Cusp(N) = = .
Since 0 fixes K , the kernel of the isogeny (¢0 s EO E'o) defining 50 is

also annfhilated by n . Hence 5_0 reduces to the same component as x .

Corollary 3.2 One of the divisors ¢ = (x) - (=) , d = (50) - (0) has zero in-

tersection with every fibral component 3; b of X8 A.
1

Proof. 1Indeed, ¢ has this property 1if v[f» » and d has this property if

VI; . Since v divides f * v = N , one of these possibilities must occur.
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We now return to the general case, and reduce the calculation of the local
) §4. An intersection formula

height symbol to that of an arithmetic intersection product.
- In the computation of the product (x ° Tmn_(f’) in Proposition 3.3 , we may

Proposition 3.3 Assume m 21 1s prime to N and rA(m) = 0 . Then we have

extend scalars to X BAH , where W 138 the completion of the maximal unramified

the formula extension of A . We may then apply the considerations of §2 to the points x

and _:50 over the complete local rings W and WA for m21 , as these have

a o1
<c,T d> = —(x * T x)logq an algebraically closed residue field F = W/v .

For example, we have
Proof. By resolving the quotient singularities at the supersingular points on

X over Z , we may obtain a regular model Kreg . Neither the Heegner points

nor the cusps are affected by this resolution, so by Corollary 3.2, one of the di- (4.1) Endw(x) - Endw(xo) -0
visors c and d have zero intersection with each fibral component of X8 gnp . o
- - - v (4.2) Hom (x”,x) = A as a left O-module
The same is true for ¢ and de_ , as the Hecke operators preserve fibral com-
ponents when m 18 prime to N . The general theory of heights then gives the
identity (cf. (0.1)) where A 1is the ideal class of K which corresponds to o under the Artin

isomorphism. Formula (4.2) is usually proved by embedding W into € and using
<°'de°>v - —(c - ngc)log q the theory of lattices [23]. A direct algebraic proof was given by Serre [291]
where the curves E° and E'C in 3(_0 are denoted Hom(&,E) and Hom(x,E')

We now use the additivity of the intersection product to obtain .  respectively, for an ideal o in the class of A .

If we identify the elements 8y in Homw(ﬁc,gg) with elements @ in the

a o] (<]
(c - T4 ) =(x - ToX ) - x - Tm(_)) - T X Y+ (= 0) ideal ot , then the degree of the isogeny g, 1s equal to Na/to. We have the
following refinement of Proposition 8.1 of Chapter I. Assume as usual that m

But (x - T.0 = (= ¢ Tm:_c_c) =0, as x and the points y in the divisor . is prime to N .

T x° have potentially good reduction, and (w» * 0) = 0 as we have assumed that o
o= - - Proposition 4.3 The multiplicity of the point x 1in the divisor 'l‘mx is equal

N > 1 . This completes the proof.
to rA(m) .
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Proof. By the definition of Tm ((2.3) of Chapter I), the multiplicity of x
in meo is equal to the number of isogenies 8y of degree m 1:;

o = Honh(_)go,g) - Homﬂ(xq,x) , modulo the left action of the group O* & Aut"(g
which identifies isogenies with the same kernel C . This number is therefore

equal to the number of integral ideals (} = (a)/ oo of norm m 4in the class of

A

, or equivalently to the number r,(m) of integral ideals = (x)/ ot of
A

norm m 1in the class of A .

In the next two sections we shall establish the following intersection

formula (0.3).

Proposition 4.4 Assume m is prime to N and r,;(m) =.0 . Then
anc T, ihen

x - 12% =3 ] card(ton

[
L w/n“(}' ’E)deg o

Since the reduction of homomorphisms gives an injection ([30], [15])

Hom +1(5°,5_)L->Hom “(gc_c,z) for ne1 ,
Wi i w/m

(4.5)

o}
and HO%(_)EO,]_(_) - anom y n(_:_c_ X))
h W/n

the terms in the sum (4.4) are all zero for n sufficicently large. We shall

henceforth use the notation hn(y_ 'E)deg o for the integer

52~

Lcard Hom n(_y »X)

2 Wi

deg m

§5. The divisor Txo
Jhe divisor 1 x

To prove Proposition 4.4 we need a concrete description of the components of
the divisor Tmz_:_o over W , and some knowledge of thecir intersection products.
To obtain this, we will use the theory of canonical and quasi-canonical 1liftings,

as developed in [15].

Since m is prime to N , the points y 1in the divisor meo are all
Heegner points over H in the sense of [13] and EndH(y) = Oy is an order
of conductor dividing m in K . When m 1is prime to p , the residual charac-
teristic of v , the points y are all rational over W B Qp and each is the
canonical lifting of its reduction y [15, 31). In this case, we also have the

formula

g
6.1 h(x ’?-(-)deg m ) n'<'='deg 1 ?

as any isogeny f of degree m between 50 and x over W/m" 18 determined
by its kernel, which lefts uniquely to a group scheme C of order m on _:50

n
over W . Then f {nduces an isomorphism between ):"52 and x over W/n :
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Assume now that m = pt *r, where t 21 and (r,p) =1 . The points =z [15} then gives
in the divisor Trxc are rational over W 8 Qp but the f)oincs y in the divi-
g 2
gor me - ZT t(z) are rational over ramified extensions of W 8 Qp and the (5.4) Y.* Yo (mod ny) when 8 21 .

zp
corresponding sections y over the ring class extensions Wy are quasi-canonical

1liftings (of level p8 , with 0 £ 8 £t ) of their reductions [15]. Let When p 4s split or ramified in K , the point Yo occurs in T £ -

P
y(8) be the divisor over W obtained by taking the sum of a point of level s

with all of its conjugates over W . We then have the decomposition 86. Deformations and intersections

Proposition 6.1 Let x and y be sections which intersect properly on X

over W and reduce to repular, non-cuspidal points in the special fibre. Then

r t-s+l
2 ‘\L(e):l if p splits in K
< = -
0ssst  j=1 degz(s)-ps_pzzl 821, 4+ = Th (7.0
= nsy B deg 1
(5.2) T t_z_~< z y(8) if p 4is inert in K
P 0<ss<t 8 8-1
83t (2) deg y(8) = p +p 821, Proof. In the case when Aut,, (x) = <t1>, Proposition 6.1 follows from the
fact that the completion of the local ring of X at x {is the universal
Z y(s) if p d4s ramified in K deformation space for the diagram (¢ : E+ E') over W . Hence (y * x) =k
\Oss<t deg y(s) = p° 820 K
gy P B ) if there is an isomorphism between x and y over W/m , but not over
W/Uk+1 . This agrees with the right hand side of (6.1), as
Eichler's congruence [11]
1 n<k
.3 T, = P e R e Et (medp) Teard wom  (yx0,. -
P w/at T deg 1
0 n>k.

where F 1is the Frobenius correspondence and F' {1s its transpose, shows that
each point y in the divisor y(s) 1is congruent (mod 'ny) to a canonfcal

1lifting Yy of level zero over W . The fundamental negative congruence of
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b Aut“/“(z) f <f1> one can mo<.ufy the above using the local ring of the ) The case m = 1 of Proposition 4.4 is an immediate worollary of 6.1 , and
stack V‘(I‘O(N) . Alternatively, one can consider the pull-back of our situation the case where m 4s prime to p follows from Proposition 6.1 and formula (5.]).
to a modular cover Y 3 X over W vhere the corresponding objects are rigid. The real miracle occurs at the places v which divide m . Write m = pt e r
For example, Y could classify data of the type (¢ : E + E') together with a as in §5. We split into three cases, depending on the behavior of p in K.

full level M structure, for an integer M 2 3 which is prime to N and p .
When p splits in K , Proposition 4.4 follows from the fact that both sides

of the identity are equal to zero. The right hand side vanishes because x and 50

Here we do have the identity

have ordinary reduction, so Deuring's theory [8 1] gives an isomorphism
(6.2) G %~ ): Card(Isom n(y.x)) Homw(xo,x) = Hom (xc,x) for all n 21 . Since we have assumed that
: nzl w/m = 1 wmm o -
) rA(m) = 0 , these groups contain no elements of degree m . The left hand side
g
i r in the d iti 5.2) of T x 1s con-
by the arguments above, where ¥ and X are sections of Y . Let y be a . 8 zero as every component x(s)j n the decomposition ( ) m—

* ~ ruent to ical 38 f level in this divisor. If x inter-
section with £(3) =y and write £ (x) = I(Xi) on Y . By the general behav- gruen a canonical sectlon y, of level zero In ° =
i

sects th = mod ) . This for to b ual to as
ifor of the intersection pairing under finite proper morphisms, ec ¥(s) en X =Y, ¢ ) hls forces x to be eq X

they are both canonical 1liftings of their reductions. Hence x = Yo occurs in

mec , which contradicts our hypothesis that rA(m) =0 .

* ~
@+ ® = (£5,0 = F.£ 0 = [FZ).
1 Now assume that p 1is inert in K , and let y(s) be the components in

T 2 with 8 = t(2) as in (5.2). All of these components are congruent to a

P
Using (6.2) and re-arranging the sums, we find fixed Yo of level zero and by (5.4) we have
(g -x = 1 (] card(Ison 5.3, .
n2l § w/ " v ) hn(i’-*-)deg 1 Y3 hl(—z"i)deg 1 t even
nz2l Yy -z,
(T ,z+x) =
But ZCard(Iaom n('i,xi)) = -)z'-Card(Hom n(y-'l)deg 1) which establishes the P 42 t odd
i W/ W/ =5~ h, (z,x)

2 1'='~deg p - P

proposition. Yo" 2

Summing over all z ¢ T x and using (5.1) for r prime to p , we obtain
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~
o4 t g
n;_lhn(i 'i)deg rt2 h1()—(- ’i)deg r £ even,
CRE TP
t+l o
2 hl(_’i '-’S)deg pr t odd.

In the first case, an isogeny f : 50 + x of degree r over W/t yields an

isogeny ptlz of degree m over \»J/'n'm't/2 . In the seconctl iase, an isogeny

f : 350 + x of degree r p over W/m yields an isogeny p 2 f of degree mun
t+l .

Win .

Finally, assume that p 1is ramified in K with prime factor }3 . For

each z ¢ Ttxo we have the decomposition T 2" ): y(s) as in (5.2); each
] 0sss<t

y(s) 18 congruent (mod ﬂy) to z 1if t is even, and to _z& if t 1s odd.

Thus

) h (z,x)

+t hl(in_() t even
n21

deg 1 deg 1 ’

(T .z x)=
pt g [¢]
) ho(z X4, 1 * e

WX)
n2l deg 1
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Summing over all z ¢ 'I‘rx(I and using (5.1) for r prime to p , we obtain

a ag
I (x7,%) + t h,(x,x) t even
asy ® deg r 1 deg r )
(x - Tmzz_o) =
ag, og
Ih G Pm,,  +enG S0 t odd .
a2l T T “es T ~’deg r

In the first case, an isogeny f : ic + x of degree T over w/n“ ylelds an

/2 ntt

isogeny j:tf L pt f of degree m over W/m « In the second case, an
' ao -

isogeny f : x + x of degree r over W/ yields an isogeny

}:tf : io + x of degree m over w/in™tt |

§7. Quaternionic formulae

We now turn to the calculation of the right hand side of Proposition 4.4.

First, we record an important result which was established in its proof.
[}
Proposition 7.1 If p splits in K and rA(m) =0, then (x - Tm)_:_) =0 .

Proof. In this case, Hom p n(zo,i) - Homw(l(_o,l(_) for all n 21 . This group
Wim

contains no clements of degree m , by the assumption that rA(m) -0 .
Henceforth in this section, we will assume p has a unique prime factor

P 1in K (in particular, p does not divide N ). Then x and EO have su-

persingular reduction (mod w) and Endw/"(a(‘) = R 1is an order in the quaternion

algebra B over Q which is ramified at ® and p . The reduced discriminant
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i of R isecqualto Np; ROZ is maximnlai‘:: B8 Qp » and for all 24 p But a fundamental theorem of Serre and Tate [31] statea that:
‘i R®Z, fs conjugate to the Eichler order {(c d) :¢ =0 (mod N)} in BOQ, . '
End = (0 = Endw/"(gg) ! Endw/ﬂn(i) ’

! The embedding 0 = End (x) + R = Endw/,"(gc_) given by reduction of endormor- W/

phisms extends to a Q-linear map K + B . This in turn ylelds a decomposition

which gives 1), Part 2) follows from the fact that 50 * Hom(ey,x) for any

ideal & in the class of A ,

(7.2) B=B +B_ =K+K]

X &
where J is an element in the non-trivial coset of N (K )/K . The decompo-
B

sition (7.2) is respected by the reduced norm: #N(b) = N(b+) + (b)) .

Proposition 7.3 1) End n(_)g) ~{beR:D- ®&b_ = 0 mod p(l\}))n-l} .
W/
2) Hom n(EU» X) 2 End n(i) *ot in B, where oL is any ideal in the class
w/n w/m

of A, If the isogeny ¢ : _J_ga + x corresponds to b € B, then degd = Nb/Ne .

~

Proof. Let X = (a : E E') be the diagram of p-divisible groups over W cor-

responding to x . Since x has supersingular reduction the p-divisible groups

E and ﬁ' are both formal groups of dimension 1 and height 2 . Since p 1s

prime to N , a is an isomorphism and End n(_:Z) = End y “(E) for all n21.
W/ Wi

The ring Endw/,"(g) - RP'- R® Zp is the maximal order in the quaternion

division algebra BP =B 8 Qp over Qp . By the results of [15]) we have

a -1
End (%) = be R, : Db =0 mod piNp)™ )} .
W/t P - P
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Corollary 7.4. Assume rA(m) =0 . 1) If p 4s imert in K and v 1is

a place dividing p im H , then q_ = p2 and

(x,T x°) = L4 4 ord_aw )
m bez‘{u/tl 2 P
Nb=miNoo

2) If p is ramified in K and v 1s a place dividing p in

H , then qv-pk where k is the order of ({pl im CEK and

(x+Tx) = [ ord (b)),
w beRa/tl -
Nb=ml e

Proof. We will use Propositions 4.4 and 7.3. Combining these results ylelds

(x + 15 = 3 ] cardlb ¢ Rov, t = min, DNb_ =0 mod pip™ 1}

n2l
1
-2-(1 + ord (&b ))
- P - P I b,
beRa/tl
No=wie ordp(mb_) P | D .

We remark that when p l D, ordp(Nb_) is always odd.
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§8, Modifications when rA(m) ¥0

In this case, the divisors c¢ and deo are not relatively prime, and the
computation of the local symbol <c,'l‘mdo> uses the tangent vector ?/3t at
%x which is defined in §5 of Chapter II. Recall that 3/9t 4s defined up to a

6th root of unity, and is dual to the l-form ® = nl‘(q)%‘1 at x when u=1.

We will adopt the convention that
(8.1) (x * x) = ordv(a)
where a 9/3t 1is a basis for the free W-module Tx)i . Then the intersection

formula (0.2) continues to hold. The reason for our particular choice of tan-

gent vector is the following.

Lemma 8.2, If v does not divide N , then

ord (@ =3 ] Catd(Autu/ﬂn(_:g)) - Card(Aut ()

n2l
-3 1 card(aut™ ) .
nzl W/m

In particular, we see that a/fat generates T X if and only if Aut (x) =
x= wl“n -

A“tw(i) . This is a completely general fact, which 1ike (6.1), has noffing to

do with x being a Heegner point. It only requires that x reduce to a non-

cuspidal point of the special fibre.

Proof. The differential « 1s defined on a cyclic cover Y' of degree 6 of
the curve Y = Xo(l) , which corresponds to the commutator subgroup of PSLZW) .

The compositum X' over X still is cyclic of degree 6 , as it is totally




ramified over the rational cusp = ,

N\
AT

Over Z[1/6] ,.If 18 an elliptic curve with good reduction and w is a
Néron differential. Since the covering X' + Y' 4is ramified only at the cusp
of Y' and the fibres dividing N , we may calculate the relationship between
w e+ W and Txé for primes v [ 6N via an analysis of the ramification in the
cover X' »_g- over the section x . This comes from extra automorphisms

(mod 7) , and we recover the formula of (8.2) exactly as in (6.1),

The argument for primes dividing 2 and 3 1is more involved, and we will

not gi&e it here. We simply note that when N =1, s0o X =Y and X' =Y',

we have the explicit formulae

(8.3) e = 103G - 17282 50 # 0, 1728,
modpz
= 26 . 3& J(x) = 1728,
= 27 . 33/2 jx) =0 .
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If v does not divide mN , then Proposition 4.4 and Lemma 8.2 give

a new o3
8.4 x T = = Card (Hom
(8.4) ( X ) nzl ard (Ho w/“n(}_ D eg m

) .
The quaternionic formulae for the right hand side Corollary 7.4 remain true, prec-

vided we sum over those b € R with b ¢ 0 . Another way to express this con-—
dition is to insist that b_# 0 ; this is necessary if the terms ordp(Nb ) ir

Corollary 7.4 are to make sensel

When v|m , formula (8.4) must be modified slightly, as the u rA(m) cle-

a
ments in Homw(x ,x)deg m/(il) which do not appear on the right hand side ac-
tually contribute to intersections of x with its quasi-canonical liftings y
which occur in Tmicu. A count of these 1iftings, together with their levels,

as in §5 gives the correction term.

Proposition 8.5. Assume that v does not divide N .

1) If p 1is inert in K then

g 1 - 1
(X *Tx) =3 1 (+ord b)) +%ur,(mord (m
e 2 beRet/21 P 2 A P
INb=mNev
b_#0

2) If p is ramified in K then

(x =T xo) = ord (DNb ) + u r,(m)ord (m)
- bcRgdil p- A P
Nb=ma
b_f0
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3) If p=5%+} 1s split dn K end v|f then

p
(x * me ) =u rA(m)k

5

vhere k, 20 and k, + = ord (m) .
lc-S-; p()

y 3

When v}N Lemma 8.2 remains true, provided x reduces to the same com-
ponent as the cusp © . 1In our case, this occurs when VIN . Using the ac-
tion of Wy on © , one can show that the tangent vector 3/3t spans the sub-

module (N)“rxg when v|% . Hence

Proposition 8.6. Assume that v|N . Then

0 1f viw

- 1) - _
- urA(m)ordp(N) if v|1v .
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§9. Explicit quaternion algebras
We now seek a formula for the sum
ag - a.
(9.1) <e,T d >p defn. v%;c,de >, .

The case when p splits in K can be handled immediately.

Proposition 9.2 If p splits in K, then
<c,de0>p=—uz}\(m)h ordp(m/N)log P .

Proof. By Propositions 8.5 and 8,6, <c,deU>va~ urg@plog q, with 3o+ jf_ =

ord (w/N) . On the other hand } log q_ =h log p .
’ Iy
We now assume that v divides a prime p which remains inert in K . Fix
an auxiliary prime gq with (%) - (:QP—) for all primes EID . Such
primes cxist by Dirichlet's theorem and must split @ = %" q, in K . The
quaternion algebra B with Hilbert symbol (D,-pq) 1is ramified only at <« and

p , and we have a splitting: B = K + Kj with jz = -pq .

We wish to find a convenient model for the order R = E“dw/ﬂ(i) of Corol-

lary 7.4 as a subring of B . Recall that R has reduced discriminant N» and 1is

locally an Eichler order at all finite 2 #p . A global order S with this

local behavior is given by
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If ve define the integral ideals of 0

S={c+B3:ac 9—1,859'101:14\—,a56 modof}

%= ()@ oL
where the congruence 1s for all primes ¥ of 0 dividing @ . By a fundamental (9.5
v -17-1,--1
result of Eichler [10, p.118] there is an ideal T of O such that R$ =S K (B)@cp» SA
inside B . If o6t is an ideal in the class A corresponding to G (as in 7.4),
we h - -
¢ have then  1is in the class A 1 and ' is in the class Aw?'[oE» 1] .  Further-
more, we have the identity:
- ord, (6)
(33) Rum{a+Bj :0e @ Ib\., B e 9"101,'1:‘,22 tla , «=2(-1) £778 mod Qj} .
(9.6) N + Npbg' = mfp|
The class & of the 1deal +* depends on the place v which divides p .
‘ - -
If v'i=vw we find 4' ={r , 80 B =B+ ¥ . Hence the different classes The integer n = pNgt' 13 non-zero and ord (n) = ord (tb_) . Recall that u
* Card{2|(n,D)}
of ideals which arise are permitted simply transitively by Gal(H/K) . If we Card(0 /1) and for any integer n define &(n) = 2 ’ - We ghall
sum over all primes v dividing p , this class will drop out of the final for- prove
mulas,

Proposition 9.7 If p {1s imert in K , then
We now consider the local sums in Corollary 7.4. Assume b = a + B € RoL

satisfies M
<c,de >p = - rA(m)h u ordp(m)log P
- uzlog p ) ord (pn)r,(m|D|-oN)&(n)R (n/p) .
Ip P A (Aupv)
0<n<m
&b = Na + pqhNB = mNoc . - N
nZ0(mod p)
(9.4) a
tb_ = pqNB # 0 . Proof. We will use Proposition 8.5 and the fact that <e,T d"> = |
-2log p(x * Tmzc_o) »as q = b2 . The first termm is clear, so it remains to cal-

culate the sum over b
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in the different Rot.

Let us start with a pair of ideals @ and R' in the classes of A—l and

-1. 2 -
A[Dpn 1®8° which satisfy (9.6). If n = pNg' = ka L' then Ng = m|D| - aN .

We will try to construct elements b =a + B8] in R satisfying (9.4) by
*
reversing formulas (9.5). This defines « and B up to units in 0 ; what-

ever generators we take, the fact that mNa = Na + pqNf 1is integral implies that

a = *f mod 0;_ for all fl@ . If we may adjust the signs so that

i

a = (—l)ord{(G)B we will obtain an element in Ret. But we will always get an
element in R'%t , at a place v' conjugate to v by an element of order 2 in

Gal(#/K) . Thus each pair (EK,t') contributes to the sum X (x Tmio) some

vip
1
elements of weight 5(1 + otdp(JNb_)) . The total number of elements which
arise from this pair 1s equal to 2 ° u2 * 8(n) since we only count b up to

sign, this gives Proposition 9.7.

The case when v divides a prime p which is ramified in K {is quite
sim{lar, Let j> be the prime which divides (p) in K and let f be the order
of [P] in CL(K) . There are h/f factors v of p in H, each of residual
degree pf . To obtain models for the orders R = E“dw/-n(f) in (7.4), we let
q be a rational prime with (;3,-) = (;%) for all p' # p which divide D
and (:l—’q) = ~1 . Then q = ‘1,' C‘T; splits in K and B has Hilbert symbol

(D,-q) . We have a splitting B = K + Kj with j2 = -q .
Here we find that

(9.8)
ordf (@)

Ra={a+Bf :ac f@”h , Be y@’laL‘lnzé“li, a = (-1) mod O}
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where ¥ divides @ . The class of 4 is well defined in the quotient group
CL(K) /[P] by the place v . An element « + Bj = b ¢ Re with Nb = mNotand

Nb_ # 0 gives integral ideals

1

L= (A m._,

(9.9)

.- -15-1 -1
o (B)qu\« ¢ ]éﬂ. s

which lie in the classes of A_l and A[oin:l]wz respectively. ‘Both are di-

visible by ? , and their norms satisfy
(9.10) e + N Ng' = o|D],

The integer n = W 1s non-zero, and ordp(n) = ordp([ﬂb_) . Arguing as in

the proof of Proposition 9.7, we find:

Proposition 9.11. If »p is ramified in K , then

<c,T ¥ = - rA(m)h u ord (m)log p
m P P

_uzlog P 1 ordp(n)rA(m|Dl—nN)6(n)R{Aq‘PN} (n/p)

0<u<&t!q—]ll-

n=0(mod p)
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Chapter IV. Derivatives of Rankin L-series at the center of the critcal strip

In this chapter we will study the values of a certain L-series of Rankin type
and of ite first derivativa. This L-series is determined by the following data:
i) An ideal class A in an imaginary quadratic tield K . We fix the

folloving notations: D is the discriminant of K, e(n) = (%) the associated

Dirichlet chearacter (an odd primitive character of conductor |D|), ClK the

class group and h = ClK the class number of X, w (=2, 4 or 6) the number
of units of KX, ﬁA(n) the number of integral ideals of norm «n

in the class A if n21, r (0)= 1 .
A w

new

ii) A cusp form f € S2k

(FO(N)), where k is any positive integer and N

. - . . . new -

is a positive integer which we assume prime to D . Here S2k (FO(N)) is

the space of cusp forms of weight 2k and level N which are orthogonal
(w.r.t. the Petersson product) to all oldforms (= forms g{dz) with g of level

M<N, dM|N ); it is spanned by newforms (Hecke eigenforms) but we do not assume

- .
that f is & newform. We write Z a(n) e2u1nz for the Fourier expansion of

n=1 @
£(z) and L{(f,s) for the Hecke L-series ] a(n) n s
1

Given this data, we define a Dirichlet series LA(f,s) by

(0.1) (o) = tM@s2c,e) T oalm) g tm)
n=1
~2542¢c-1
i.e. as the product of the Dirichlet L-function éxk2s—2k+l,c)= } cln)n and e
(n,N)=1

convolution of L{f,s) with the zeta-function z rA(n)r;s of the ideal class

A . MWe will show that Léiys) extends analytically to an entire function

(N

of s (this is the reason for the inclusion of the factor L )(23-2k+1,c) in

(0.1)) and satisfies the functional equation

(0.2) Ly(f,s) = (20" 5% p|%1(s)? L, (fis) = - el 1.: {f,2k-3) .

In particular, if e{(N) = +1 then LA (f,s) vanishes at s=k ; the main
result of this chapter will be a formula for the derivative Lk (f,k) in

this case. We will also obtain a formula for the value of L (f,k) if e(H)=-1

A

(and more generally for all the values L, (f,r), r = 1,2,...,2k-1);
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this case 1is much simpler. " The case which is related

to Heegner points on XO(N) is k=1 and €(p) =1 for

gll primes p dividing N (i.e. D a square modulo LN ). However, doing the

computations for arbitrary even weight not only involves no extra work, but actual |
simplifies things, since for forms of weight 2 there are extra technical
difficulties (connccted with the non-absolute convergence of Eigscnstein series
and Poincaré series in this weight) which obscure the exposition, so that it is
convenient to first treat the general cuase and then discuss the modifications
necessary when k=1 . The case when k=1 and e(N)=1 but e(p) is not 1
for all p|N is also interesting, since it turns out thut the formula we obtain
for L:&(f,l) in that case is related to the height of a Heegner pointon &
modular curve associated to a group of units in the indefinite quaternion alge-
bra over ) ramified at the set of primes p with ordp(N) odd dna e(p) =-1.
The case k=1, g€(N) =-1 is related to special points on a curve associated to a
definite quaternion algebra over §. (For details, see §3 of Chapter V.)

One case of the theorem is particularly striking and should be mentioned,
especially as it permits one to understand the presence of the factor L(“)(23+2k~3
in (0.1) and the form of the functional equation (0.2). If x:ClK - ¢* is an
ideal class character of K, then we can form the function

~3
(0.3) L(fXs) = f x(a) a(N@N(a) = 1 x(A) L, (f.8),
a AEC1
K
and clearly the properties of these functions {analytic continuation, functional
equation, derivative at s=k ) can be read off from those of the functions (0.1)
and converscly. Now supposc that X 1is a genus character, i.e. a character
with values #1. Raecall that such charucters correspond to decompogsitions of D
as a product of two discriminants of quadratic fields (one rcal and one imaginary),

the character corresponding to the decomposition D = DX.D being

Xpy-D, 2

characterized by the property X (n) = CD (1 (a) = (N(a)) for integral ideals
1 2

a prime to D (here . is the Dirichlet character associated to Q(/Bi)) .
i

The L-series LK(s,x) of such a character is equal to the product of the two
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Dirichlet L-series L(a,cD
i

eigenform, then the L-series of f has the form

). On the other hand, if f€ szk(ro(n)) is a Hecke

2k-1
p (ph0),

L(f,s) = I| — —gl - ==+ , a +B =a(p), a B -_-{
p (I=ay P )-8, %) " Tpp o (pln),

and a simple calculation shows that the convolution of this with LK(s.x) equals
L(N)(2a+2k—l,e)_1 times the product of the two "twisted" Hecke L-series L(f’cD-’s)
i

-8
= eD.(n)a(n) n . Hence we have the identity
n Yi

(0.4) L (£,X

Dl‘Dz’B) L(f,cDI,s) L(f,cnz,s) ( £ an eigenform) .

On the other hand, it is well-known that the twisted L-series L(f.cD.,s) has an
i

analytic continuation and a functional equation with gamma-factor (2n)‘8NS/2|Di|sr(a)

and sign (—l)ch.(—N)v , where w=4#1 1is the eigenvalue of f with respect to
e |

K, -2k, -1

f(Nz

the Atkin-Lehner involution Wy f(z) » N "z . When we multiply these two
functional equations we obtain a functionzl equation for LK(f,X,s) vith gemma-
factor and sign as in (0.2), independent both of the value of w and of the
choice of (genus) character. (The fact that the sign of the functional equation

does not depend on the eigenform chosen shows that this functional equation

new

is true for any element of SZk

(ro(N)) , unlike the situation for the Hecke
L-serics L{(f,s) which has a functional equation only if f 1is an eigenfunctién
of WN.) If e(N)=1 then one of the two L-scries on the right-hand side of (0.L),
say the first, will have a functional equation gith a minus sign and the other

a functional equation with a plus sign, and our main result will specialize to a

formula for the product L‘(f,enl,k)L(f,c k) . If k=l and the eigenform f

A
D,
has integral Fourier coefficients, then the value of this product will Le related

a
to the height of/point defined over Q on the twist by Dl of the elliptic curve
associated to f . This is the situation which was studied extensively (numerically)

by Birch and Stephens [4,5].

The plan of this chapter is as follows. In 51 we will apply "Rankin's method"
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to obtain a formula for LA (f,s) as the Petersson scalar product of f with
the product of a theta series and a non-holomorphic Eisenstein series. This
product is a modular form on TO(ND) and must be traced down to PO(H) to get

a (non-holomorphic) modular form Q& of level R whose Petersson product with f
also gives the desired L-function. This is carried out in §2, while §3 contains
the calculution of the Fourier coefficients of 35 . In 84 we check that each

of these Fourier coefficients satisfies a functional equation in s and calculate
their value or derivative (depending on the sign of the functional aquation) at
the symmetry point. This establishes the functional equation (0.2) and gives

a formula for LA(I‘,k) or L'A(f,k) as the scalar product of f with a

certain non-holomorphic modular form 6 of level ﬁ . The final step, carried

out in §5, is to replace - by a holomorphic modular form @ having the same scalar
product with f ; this is done by means of the holomorphic projection operator

of Sturm[33}. The modifications needed to treat the case k=1 are described

in §6. It is suggested that, at least on a first perusal, the reader mentally
restrict to the case N=1, k>1, {D| prime, since the ideas of the proof are

the same here as in the general case but many of the calculations (e.g. those of

§2 and §6) can be omitted or drastically shortened. Even the case N=1, k=1 is
interesting, for even though there are no cusp forms f in this case, the function
® still makes sense and the fact that its Fourier coefficients are identically

zero gives non-trivial information about the value of the classical modular

function Jj(z) at quadratic imaginary arguments; this simplest case is discussed

in [8].

Conventions., For z€H we write x,y for the real and imaginary parts

2niz 2nix

of z and q for e . The functions e (x€C) and eana/n

(a €Z/nZ)
will be denoted e(x) and e“(a) , respectively. If a 1is an integer being
considered modulo another integer n to which it is prime, then a* denotes

the inverse of a (mod n) ; thus the notation cn(a*b) implies that (a,n) =1
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and means eznlc/n with acsb (mod n) . If f is a function on 51 , kez

and y = (: 2) € GL;(R) , then f|ky has the usual meaning in the theory of
modular forms: (f!ky) (z) = (nd—bc)klz(cnd)-kf(-i—:-:—g-) . If N is a natural
number and X a Dirichlet character modulo N » then we denote by ﬁk(FO(N),x)
the space of functions f:H —¢ satisfying flky = x(d) £ for all y = (ﬁ :)

€ I‘O(N) and having at most polynomial growth at the cusps (i.e. (fIkY)(z) = O(YC)
as y-+e« for all yESLz(Z) and some C>0) and by Mk(l‘O(N),x) and Sk(l‘o(N) »X)

the subspaces of holomorphic modular forms and holomorphic cusp forms, respectively;

the character X 1is omitted from these notations if it is trivial.

§1. Rankin's method
The assumptions are as in §0: D is a fundamental discriminanct, A an
ideal class of Q(/D), and f(z) = Za(n) qn a cusp form in S‘Z\EW(FO(N)) for

some integer N prime to D . Let 0  denote the theta-series

A

n
a.n 86 ) A

n=0

1 N(X) /A
s L a

M€ a
where a is any ideal in the class A and A=N(a) . It is known that OA

belongs to P('(I'O(D),c) . (In §2 we will give the transformation behavior of

GA under all of SLZ(Z) .) Hence we have (for Re(s) large)

I(s+2k-1) ¢ a(n) 1 (n) }" E -4y s+2k=2
- - = a(n) r (n) e y dy
((‘“)S‘*Zk 1 ast ns+2k 1 0 n=1 A
R 5+2k-2
= | fix+iy) BA(xﬁyi dx y dy
0 0

= e gyt gy

ra\nt y
where T_ = {z((‘) ‘;) » n€Z}, acting on H by integer translation. A funda~

mental domain for this action can be chosen te be U YF, where F is a
Y

fundamental domain for the action of \"O(M) » X=NIDI, and Y runs over a

sct of right coset represcuntatives of FO(M)

module T . Hence the last expression can be rewritten as

/[ (2T yS o &y L LIf 100 5T tmtyn ™ __de;d
y

)
Y€ l‘m\l‘o(M) Y

— (d) 8 2k dxd
1 If €(2) o, (2) < — Ly _Z.X
Y= DETNT (0 F N L PTG ’

vhere we have used the invariance of é%z under SLZ(R) and the transformatiocn
properties of f and SA under I‘O(M) - In the last expression we can inter-—

change the summation and integration. We obtain:

T (s+2k~1) T E oy 2k dxd
BT fstzen - fF] £(z) 0 2) E.(z) y .71

- (£, 8, E5)1"0(14) ’

where Es denotes the Eisenstein series

e(d) y°

(z) = L(N) (Zs+2k~i 'C) N 2k-1 2
(0 @ ETNT (M) (cz+d) lcz+d]

Es(z) = E

M,e,2k-1,8

S z e(d) )’8
c, d€Z  (cz+d) 7! Jezea)?®
c=0 (mod M)
(d,M) =1

in MZk_‘(FO(M),c) and ( , )l" ) the Petersson scalar product on I‘O(M) .

(The reason for including the factor L(H)(s-2k¢1,c) in the definition (0.1) is

now clear.) The process we just used to express the convolution of the L-series
of two modular forms as a scalar product involving an Eisenstein series was first
used by Rankin and Selberg in 1939 and is commonly referred to as "Rankin's methoc

.. M
We now use the principle (f,g) = (f,Tr g) for any
ro(H) N I‘O(N)

fGSzk(r‘o(N)) and ;;EFka(I‘O(M)) , where Tr: is the trace map

M ~ ~ -
Trg s M (P (M) =W (F.(N), g ) glo, vy .
N &0 2k 0 ¥ €T GONT (W) 2k

This gives

-s=2k+1

(4m) T(se2k=1) L (f,842k-1) = (f, Tr:( 0, B,

where now the scalar product is taken on Fa(N) . In the definition of E_
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the condition (d,M) =1 can be replaced by (d,N) =1 since ¢(d) =0 otherwvise,

and this condition in turn can be dropped if we insert a factor z u(e)
el(d,N)
( u = Moébius function) which vanishes if (d,N) >1 . Hence
1 €(d) y?
E(z) = = Z u(e) X
8 2 elN c,d € Z . (t':z.+d)2k ! |<:z+d|28
Mjc, eld
- u{e)e(e) =s (1) N
Tevak-1. (Ve) T BTG,
e|N o

where Eg‘) is defined like Es but with N replaced by 1 (i.e. M by D);

the last line is obtained by replacing c, d by c¢/N', d/e . Note that the
only non-trivial terms are those with e square-free and prime to D . Now

. M . .

when we form TrN(OAEs) the terms with e >1 contribute terms of level N/e <N,

because any system of representatives of I‘O(M)\I‘O(N) is also a system of

M

representatives for FO(E)\rO(g) . Since f 1is orthogonal to modular forms

of level smaller than N, these terms contribute nothing to the scalar product

new
2k

products with holomorphic forms, but the scalar product of f with any non-

and can be omitted. (Actually, the definition of § involves only the scalar

holomorphic form E is equal to its scalar product with a holomorphic form g

of the same level, as we will see in §5, so this doesn't matter.) We have proved:

Proposition 1.2. Let D be a fundamental discriminant, N 2 { prime to D,

and define a function 58- ss,AEﬁZk(FO(N)) by

(

8

8 (2) = o, @E 2

where GA is the theta-series defined in (1.1) and

5

F‘s“)(z) . | e(d) y

c,d€Z (cz+d) 267 Icz+d123
Dlc

the non-holomorphic Eisenstein series of level {D|, weight 2k-1 and Neben-

new
typus c¢ . Then for any f652k (I‘O(N)) we have

@) TR (a2 1) Ly (8 se2ken) = (£, B)

5

211 mm nuer ©o6 . 3 Sunssy
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Remark. The proof used only the orthogonality of f with modular forms g
of level strictly dividing N and not the orthogonality of f with functions
g(dz) with d>1 and g a form of level dividing N/d. The effect of this

second property of f €s"®™ is that in Proposition 1.2 only the Fourier

2k
coefficients of gs with index prime to N are relevant. Thus to prove the
functional equation (0.2), for instance, it suffices to prove the corresponding

functional equation for the coefficients Am(s,y) defined by

(1.3) Ss(z) = T AL(s,y) e@x)

m=—w

for m prime to N, since then the difference between ?55 and its image

under the asserted functional equation is automatically orthogonal to f. 1Im
the same way, in giving formulas for the values of LA(f,s) at special points
or for its derivative at s=k it will suffice to study the corresponding values
or derivatives of Am(s,y) for (m,N) =1. It would not, in fact, be difficult
to study the coefficients with (m,N) >1 as well, or to retain the terms with

e >1 which were omitted in the proof of 1.2, and thus obtain formulas valid for
all f €52k(I‘O(N)) , but this would complicate the notations and calculations

and is pointless since one can always reduce to the case of newforms,

§2. Computation of the trace

The function Esm is defined as a trace from I‘O (ND) to FO(N) . To
compute its Fourier development, we will need the expansions of OA (z) and

1 .
Ei )(z) at the various cusps of I‘O(D) . These cusps are in 1:1 correspondence




il

-79-

with the positive divisors of D . (This is because D is not divisible by
16 or the square of an odd prime; in general, to describe a cusp of I‘O(n) one
must specify a divisor n' of n and an element of (Z/(n'.;?r)l)* .) We vrite

§ for |p|, 8, for the divisor, 6,=6/8; for the complementary divisor.

The numbers &, and 8, can be written uniquely as the norms of integral ideals

2, and 3, of K which are products of ramified primes. If (6,,6,) =1, then

we can uniquely write 6, =|[D,| with D, and D

1 N discriminants of quadratic

fields and DID2=D; we then have the associated Dirichlet characters € -

cDi (mod 6i) and genus character as in §0. For odd D this is always

Xp. .
01 D,
the case, while for even D we can also have . (51,62) =2 . Since the latter
case is more complicated, we restrict our attention in the next several sections

to the case D odd, and discuss briefly what happens for even D

in §8.

It will be most convenient for our purposes to have formulas for the

behavior of OA and Ei‘) for all matrices in SLZ(Z), not just a system of

representatives for I‘O(N'D)\FO(N) , since later on we will nced information

about the Fourier development of ‘55 at all cusps of T'O(N) rather than just

N

at o . We begin with Es

For each decomposition D = D"Dz we define,
with the notations just introduced,

8

(Dy) 1 €, (m)e,(n) y
.1 EVYV(z) = = ¥ =
s 2 m,n €% (mz*n)Zk‘ lmz+n|2s
D,|m
(n

this is compatible with the notation Es and belongs, as is easily checked,

~ ab s
to M2k-l(r0(D)’c) . For y = (_ ;) €5L,@) with (c,D) = &, we have

EU)[ v = 3 e(n) y®

s 2kt 2 m,n €Z [m(a:-.+b)+n(cz*d)]2k-‘ |m(az¢h)+n(cz*d)I?'s

D;m
) ¢ (an=bm) ys
2 n.n €7Z (x:\z~1-x\)2k-1 lmz'rnlzs
mdsnc (D)

where in the sccond line we have replaced (m,n) by y—‘(m,n). Now

ey T T
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md =nc (mod D) d(an-bm) = (ad-bc)n=n, c(an-bm) = (ad-bc)m=m (mod D}

and hence, since (c,d) =1 and (c,D) =62 imply (c,D‘) =(d,D2) =1,
e{an~bm) = c,(an-bm)cz(an-bm) = r_‘(c)c‘(m)cz(d)cz(n) .

The condition md snc (mod D) 1is equivalent to the two conditions Dzlm and

n&c*nd (mod D]) , where c*

is an inverse -of ¢ (mod D‘) . Replacing n by
c"md+n61 , and choosing c* to satisfy c*=0 (mod D2) , so that cz(mc*dl-dln)

- C2(5|)t:2(n) , we find

ey ()¢, (me, (d)e,(6,)c,(n) y°

E(‘)l Y 1
s 2kl m,n €Z (mz*mc*d+61r02k—1 Imz*mc*c:l+61n|28
D, |m
- ~s=2k+1 _(Dy) z+c*d
(2.2) ch(c) r.Dz(d61) &, E;( 5 )

b
(v=( Q €sL,@, (c,0)=[p,], DD,=D) .

We now turn to 6, . Here the corresponding formula is ;

A
ab
d

Lemma 2.3. For Y=(C

)€ PSLz (n)., (c,D)= |D2[ ,nl.nz-b we have

3

-1 _i
AR ep, (/8,0 (x5,

z+ckd
A ('T‘)

Xp.p W 8y
1 2 1 1

shere  «(D,) demotes ! or i accordingas D,>0 or D, <0 gand D, s
the_ideal class of the ideal 2, with ﬂf = @) .
Proof: It will suffice to treat the case c-ﬁz. Indecd, let Y--(::l :) be en

it will suffice to treat the case ¢ -62 . Indeed, let y = (2 g) be an

arbitrary element of SLZ(Z) with (c,D) = 62 and choose x €7 so that

cx ads, (mod D,) and (x,D.) =1. Then we can find a matrix vy, =(. ) in
2 1 2 1 5, x
. -1 ax-bé, -« PR
SLZ(Z) , and the matrix Yo T YV (cx—ddz ) s in I‘O(I)) , SO

01y = 0y lyvgry = (ax-béy) 8y Iy,

-1,-1 z+87%
= £1(e) 6,08, ¢, (@), (x) e, ()w(D,) "6 2 xD;'Dz(A) GAUI (—gf-—)

by the special case ¢ =82 of (2.3), and this proves (2.3) in general. So

assume ¢ =6, and write
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b -
AEED = 0 Gen = 1y Ay, Lo

6 —_—
A €a c(cz+d)

ith A, w as in (1.1). The number N(A)/A is integral and its value modulo

-62 depends only on A (mod aﬂz) . Hence

@zhy 1 I e (M) I evosm®) .
Atcz+d Y )ea/ad, © A uEad, A

n the other hand, the Poisson summation formula gives

ié_é

I eOsn)z) O

I T, L, e(-X9 e(rrav)
B

vEh

or any z€H and any fractional ideal b of K (consider the left-hand side
s a periodic function of X €C/k and compute its Fourier development), so this

an be rewritten

(az+b
A'cz+d

) = ut (cz{d) z e (aN—(Al-)—) z e(AN(v)c(cz+d)) e(Tr Av)
wé r€afan, © veaTfizlam?
r, replacing v by v/62 .

- d
o,l vy = =X C(v) e( AN(V) (z+9))
Al w62 veZ“la;‘ ¢

ith

N
c(v) = z e (a——=) e (Tr Av) .
A€ajap, € AT e

hoose AOEa so that the ideal (Xo)a-‘ is prime to 1\2 . Then as p runs
ver a set of representatives for 0/02 (0= ring of integers of K) the numbers

oV give a system of representatives for a/ﬂﬁz , so

cv) -~ 1 e, (RN(u)) e, (Trigvm)
uweo/a, 8 8 ’

ith R = aN(XO)/A . Note that Tr(,\ovu) €Z because )\ \mEﬁ;'cﬁ-‘ , and that

0

is prime to 62 . Hence, choosing an inverse R* of R (mod 62) which is

ivisible by D, , we find

|

e62(RN(U) *Tr()\ovu)) = eéz(RN(u)okR*Tr(onu))

P S S
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= e, (RN(u+R™\'v")) e (—R*N(luv)) ,
§, e 8,

80

cv) = ey (R*NOGW) - ] e (RRGD) .
2 weg/oa, °2

Because 62 is square-free and completely ramified, one can choose the

integers modulo 62 as a system of representatives for 0/152 , 80

2 1
e, (RN(u)) = ): e, (Rn“) = «k(D,) 62 e (R)
uEl);/ﬁz 82 n€z/s, %2 2 "2,

by the usual evaluation of Gauss sums. Also,
*
- A
(AN (2 +) e (RO = (AN (2 + SRECIy

*
= e(N@d,) N(v) 2294,
1 5,

because d-R*N(Xo)/A is =0 (mod 62) and =d (mod 6‘), and €p (R) =
2

ep (@) ¥, . (A) because R=aN(h) with h=() 3a~' in the class A7t .
2 D,-D, Y

Therefore
. Cik(Dg) 1 z+c*d
opliy = = o, @ X p W g vea{_xa_lem(ad,mw 5 )

and this completes the proof of (2.3) since» K(D')K(Dz)‘i and eA“D,,":uAD‘ .

From (2.3) and (2.4) we find for j=(2 2) €T (N) with (c,D) =6
e a 0 2

e

o o @l v = @V G e (o 1,3 D@
= ey le/Meytas 67 e (ers e, w78 Xp,.p, A *
. Ez(;Dx)(Nz*((;:N)*d) 0A0|(z_¢6£:‘_d)
- ¢ () TNeTs T2k Xp,p, A si"l’(n’*;:“) ew‘(“::d)

where we have used ch(éz)Lbz(ét) =1. The trace from I'O(ND) to l"O(N) is
. . . ab
given by summing over 25110 8§, representatives (C d) of I‘O(ND)\I‘O(N) .

the representatives being characterized by the value 62- (¢,D) and by the
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_8[’_
residue class of c¢*d modulo 6‘-6/62. Hence
~ - ND,.(1) § 3. Fourier expansions
3, (2) Try (E_ " (Nz) 8, (2))
ep, N Xy p (@ ; 3 Let E_(z) be the combination of Eisenstein series defined
- : 5251321/2 . Einl)m—z@u_) eAU (—zstl) s
D =D;+D; x(D))§, j (mod 8,) : LI in Proposition 2.4 and write
e, (N) x (a)
- 2 Dy Dy Py o (z) )‘ v,
D=D..D 65+2k 3/2 8 AD' Dy
=D;D, x(D,)6, E_(z) = L e _{(n,y)e(nx) (z=x+iy€H) .
s s
nez
where U“ (n €N) 1is the usual operator
Then Proposition 2.4 gives the Fourier expansion
1 +j
u e f(z) - ] E(z—nl) , ) Am(y) e(mx) ~— ) Amn(y/n) e(mx)
j (mod n) m€Z mEZ N 2nly/6 _ Nn+&
(3.1) ¥_,0z) = L e_(n,r, () e 2"HY/S o(NneL
. . s,A s §'A §
on functions on M of period 1. But for any function f on H of period 1 ES%

we have Nn+£20 (mod D)

(£(2) BAD‘(z) luéx = (f(czz)nm!(azz)) lug = (£8,2) eA(z))lu6 ;

(6=1Dl as before). The coefficients es(n,y) are described by
because eAﬂ (6,z) and eA (z) have the same n-th Fourier coefficient for
1

the following two propositions.
any n divisible by 8, (since  AD, = AD, and any integral ideal of norm

n is 3 ctimes an integral ideal of norm n/62) . Hence we obtain finally: h
Proposition 3.2. The n Fourier coefficient of Es(z) is

Proposition 2.4. Assume (D,2N) =t . Then the function 38(2) defined in Pro- given by

position 1.2 is givenby 68 - (gs(Nz)eA(z))|u , where

ID]

o (N) Xp .p (A)

(Dy) e (0,y) = L{2s+2k-1,€} (6y) 5 + i“g’ VS(O)L(25+2k-2,c)(dy)-s-ZK*‘
E(z) = E Y (Ip,l2) .
[3 5+2k=3/2 g 3
D=D,-D; x(D,) |, |
Here the sum is over :;ll decompositions of D as a product of two fundamental if n=0 and by

discriminants D' and D

2 )(DI‘D2 is the corresponding genus character,

k(D)) = t or i according as D, >0 or D, <0, and EiD‘) is the Eisenstein e (nyy) = ;%E‘) (5Y)—S—2k*2 Vs(ny)d)lln ‘;%—-S(—'-:—é—g)_—i
series (2.1). d>0
Note that Es depends on N and A (or at least on N modulo D and if ny0 , where ¢(n,d) = (A(n'd) is defined by
on the genus of A ); however,we omit this dependence in our notation. In the 0 if (d,g,D) -
case k=2, |D]=p price and c(N)=1, Es(z) is simply Ei‘)(pz)-ip_s-}ﬁip)(z). £(n,d) =

n n _
601(d)e02(-Na) XDI'DZ(A) if (d,5.0D) =1,

(d,D)=lDzl ,D7D2=D ,



and Vs(t)

Proposition 3.3.
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(s€dC, t€ER) 1is defined by

@ -2n1ixt
vs(t) = 2 2
—o  (x+1) k-1

dx
(x2+1)s

(Re (s) > 1-k) .

Th
e function Vs(t) ocurring in 3.2 has the

following properties:

k . .-2g-
a) V_(0) = (-1)*m127%572K*3 £ o60k-2) /T (s) T (s42k-1) .

b) For

t+0
the function vs(t) continues holomorphically

to all s and satisfies a locally uniform (in s) esti-

mate Vs (t) =it}

c) For

h *
Then Vs(t)

oM mamlel 1y, L,

_ =s-2k+1
t+0 , set Vg(t)—(nltl)s F(s+2k-1) V_(t) .

is entire in s and satisfies V* \
t)= * .
s( )=sgn(t) 2—2k-2s(t, *

d) Let r be an integer satisfying O0<r<k-1 . Then
0
v_r(t) . - , (t<0) ,
_y k- -2nt
211 (=1""Tpy (Amtle n (t>0) ,
where Py, (t) 1is the polynomial (t/2)2k-2-2r g (5 (-t)} .
—= j=0 37 (2k=2r-2+3]11

e) For t< 0 , the derivative with reaspect to s of V_(t)
=== = s

at the symmetry point of the functional equation is
given by

a -—) -

2V ()] = ~2mig_ (nlene Tt (r <o),
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where

e dx {(£>0) .

q-q (8) = {

Proof. We have

e, (NXp.p (A)
1 D1D

e (n,y) = E > 2__ 1) (nss. .6y
PRI A s+2k-3/2 8 2'°2
D=Dy D, K(D,) &y
D,in
where e;DT) is defined by
E;D‘)(n,y) = L eéD1)(ﬁ,y)e(nx) .

n€EzZ

The computation of the Fourier development is standard. The terms

with m=0 in (2.1) give O unless D1=1 (since |D1l>1 ~c1(0)=0),
while if D1=1,Dz=D they give L(2s+2k-1,s)ys . Oon the other
hand, the Poisson summation formula gives the identity

1 =y—25-—2k+2 5 vs(ry)e2"irx

L
ez (z+2)2k—1l2+2|25 r€z

‘with Vs(t) as in Proposition 3.2, so

L(25+2k-1,6)y° if D=1
Ef“ﬂ(z)- 1
s 0 otherwise
s o« - -
sl Iogng) I e, T (mze 242072 Nmze g 48 2s
.525 m=1 n(mod§,) [13/3 2 2
-5=2k+2
€. (8.)y ¢ w g, (m
12 1 n
- T - L e.(n) I Vv (rmy)e(raox++=) .
6§S+2k—‘ =1 m25+2k 2 n(mod 62) 2 €7 8 62
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But

- z e.(n) e} = ¢ (r)x(D )51/2
n(mod 8,) 2 6y 2 22

(Gauss sum), so this equals

51(62)K(02) e1(m)c2(r)

TSe2 p L2y (o) e (o)
525+2k-3/2 25+2k-2 syl e () .
2 m>0 m
rez
Hence
L(2s+2k-1,€)y" i D=1,D,=D,
e oy = 1 v on2si2k-2,00yTF2 if =D, D,=1,
0 otherwise,
while
(8,) x(D,) €, (m)e, (n/m)
(D) . 51%% 2 1 2 —s2k +2
e, (n,y) Eig:ii:§75- mfn —~;5§73Y:3—_ y Vs(ny)
2 m>0

for n#0 . For the coefficients of ES this gives

-8-2k+2

e, (0,) = L(28+2k=1,0) (69 ° + SR v_(0)L(25+2-2,6) (6y) ,
3 CD(m62)CD (n/méz)
. ~8=2k+= 1 2 ~a-2k+2
e (n,y) = ig 7% Looe (-N)x, .. (A) I — 1y v {ny)
s D=D;D, D, Db, mlw/s, (m62)2542k 2 s
Dzln m>0 {(n#0),

where we have used K(Dz)/K(D1) = icD (-1) . The inner sum can be

1

-2s-2k+2

rewritten € (d)cD (n/d)d ., since the only non-
1 2

z
0<din "D

zero terms here are those of the form d=md2 (Dzln and D must

2
be prime to n/d). This gives the formula stated in Proposition 3.2.
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We now give the proof of Proposition 3.3. The integral defining
Vs(t) can be found in several standard tables, where it is ex-
pressed in terms of Whittaker functions, but the resultf found in
various tables do not agree and we prefer to give direct proofs

of all the properties needed. We start with a). We have

© .y2k-1 k-1 . o .
v = f EER_dx . gy g (—1)3(§¥+2) | _xPR2y,
-0 (x7+1) j=0 J V] (x2 8+2k-1

'
+1) E

1 by the binomial thcorem and

where we have expanded (x-i)zk—
discarded the odd terms in the integrand. The integral Occurring
in the sum equals % F(k—j—%) P(s+k+j—%)/?(s+2k-1) (beta funCtion)‘F
so using the duplication formula for the gamma function, we find

ky3-2k2s oo 0y Cun "I e

F(s+2k-1)T(s+k-1) §=0  (2j+11(k=1-j)1

-1 k;:'

1
vs 0) = (sfk’-z—)...(stkﬁ'j-%) .

That the sum equals s(s+1)...(s+k-2) can be checked by hand
for small valves of k and by a tedious induction argument in
general. A different method, which is less elementary but works

directly for all k , uses the Henkel integral formula for

1/T(s) :
k=1, dx
V_(0) = (=1)" 1 f =
s - (144x) S (1-1x) ST 2K
k-1, = w
(-1) i f 1 - { e—u(l—ix)usoZR—zdu v
T'(s+2k-1) —= (1+ix}~ 0
k=1 = , Vede
(-1 { e~ 2u S*2k-2 { (-2) S %Zg. | au
T (s+2k-1) 0 - feo

(z==1-1x)
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k w
. =1 [ e"2us+2k-2 (2ni us—1) du
I(s+2k-1) I'(s)
_ 2ni(=1)K2a728-2k+2p 5 ok

F(s) T (5+2k-1)

This proves a) and the meromorphic continuation of Vs(t) when

t=0 .
Now suppose t >0 and define vi(t) as in c).

Then

]

© P ) 2
v (t) f (x-i)2K1 (I uS*t2k=2 -t (xT+nu du) em2mitx oo
0

e

WS*2K2 e (ue1/u) g e—ntu&+1/u)2(x_ 2k-1

iy dx du

!
O §

In the inner integral we move the path of integration from
Im(x) = 0 to Im(x) = -% and make the substitution

I S
xX= u+.7ﬁ' (vER) to obtain

2k—1
- ° 2 1/2. -1/2
s+k-1e Tt (u+1/u) [ e ntv (v+u ;u

v;(t) = u

O 8

-0

This integral converges for all s and is clearly an even func-
tion of s+k-1 (replace u by 1/u) , so we have obtained the
meromorphic continuation and functional equation of Vs(t) for
t>0 ; the proof for t<0 is exactly similar. If we wish, we

can use the last formula to write V;(t) in terms of standard
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+

2k-1
functions: expanding (V+E—i2——) by the trinomial theorem

we obtain the expression

(-H¥22Kk-11 r(a+1n9 1

s+k+—-——-1 =nt(u+—)

aef’ H I e U du

ve(r) = i z
8 a,b,c20  (2a)!blct
2a+b+c=2k-1

L2k
t‘ 2 a,b,c20
2a+b+c=2k~1

(2k-1)1 ( -1\?

alblc! Z;E) Kg ek 14 (bc) 72 278 (£>0)

for V;(t) as a linear combination of K-Bessel functions, the
functional equation now following from Kv(z)=K_v(z) by inter-

changing b and ¢ . For k=1 the formula simplifies to

vi(r) = 22 (x1 (2mt) + K, (2ﬂt)) (k=1,£>0) .
Yt 3+s 58

In any case,we have proved the functional equation c). The esti-

mate V;(t)=lﬂ0(1)e~2nlt[

in b) follows easily from the above
integral representations or from the explicit formulas in terms

of Kv(Zwt) .

For d), we note that

h (x-i)r -2uixt
v_(t)y = —_—5—— ©
r o (x+1)2k 1-r

dx

for r€Z , 0sSrsk-1 (for r=k-1 the integral is only conditio-
nally convergent; we could also treat the cases r=k,k+1,...,2k-2
by using the functional equation). The integrand has a pole only

at x=-i1 , so if t <0 we can move the path of integration up to
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+i® to get V_r(t) =0 , while if t>0 we can move it down
to ~ie to get

r
V__(t) = =274 Resxz_i.(———iéliL——- e—2HLXt )

(x*i)Zk—1—r

5 r ) 3 e—2n1xt
= -27ni z s} €21)° Res___ —————e————
. 3 x==1i (x*i)Zk 1-2r+j

-r =271t
2mi pk,r(4"t) e .

Finally, suppose t <0 and consider the integral defining
Vs(t) near s = 1-k . The integrand is well-defined in the x-plane
cut along the imaginary axis from -iw to -i and from +i to
+i~ , and we can deform the path of integration upwards to a path
C circling the half-line [i,i» ) in a counterclockwise direction
(from -e+iw to i-je¢ to +e+ie ). The new integrand converges for
all s (this, by the way, shows that Vs(t)  and not only V;(t) '
is entire in s for t <0 , and a similar argument applies for
t>0 if we deform the path of integration downwards to circle
(~i=,-1] ; this complets the proof of 3.3b, which up to now we had
only established with "meromorphically" in place of "holomorphically"),

and we can differentiate under the integral sign to obtain

(x'-i)k—1

(x+1) X

-2nitx

3 2
¥ vs(t)|s=i-k = - é log (x"+1)e dx (t<0) .
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The function log(x2+1) is continuous on C and changes by
2ni as one passes from one side of C to the other across the

branch cut [i,iw) . Therefore

Le k-1
_a_ag Volt) [ goqoy =-2mt f LX) om2mitx g,
i (x+1)

’

and replacing x by 2ix-i we obtain the formula given in e).
This completes the proof of Proposition 3.3.

From equation (3.1) and Propositions 3.2 and 3.3d we obtain
a finite formula for the Fourier coefficients of 3;(2) at

arguments s=-r (r=0,1, ... + k-1) as polynomials in % of

degree r g

Corollary 3.4. For reEg r 0<rs<k-1, we have

©

5_r(z) = ( I mé ©n r(y)rA(mG—nN)) o2rimz ,
m=0 OS“STT '
where
L(2k-2r-1,¢) (Ny) % if rek-1,
e (y) = -
0,x [L,e) - e L0, ] () 27K 5r royog,
= (_nnk-T 27 r-2k+2 4nNn 2r-2k+2
h, e = N e Ty Py () dfn n,d) a
d>0 (n>0)

with p, . as in 3.3d, ¢,(n,d) as in 3.2. (We have written e {y)

n,r
for e_r(n,gy)ean"y/é.)

In particular, 36 A is a holomorphic modular furm; this, of
’
course, was clear ua priori since the definition of the Eisenstein

series rs(z) shows that it is holomorphic in z at s=0.
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§4. Functional equation; preliminary formulae for LA(f,k) and I;;(f,k)

We wish to prove the functional equation for L.‘(f,e) given in (0.2). 1In

view of Proposition 1.2 and equation (3.1), this will follow from the fidentity

.1) e*(n,y) = n%6" M(st2k-1) e_(n,y) = -c(N)ef_,. ()

for n€X satisfying
(4.2) Nn+£ = 0 (mod D) for some 2 =N(a), a=integral ideal in A.
From the first equation of Proposition 3.2 and (a) of Proposition 3.3 we obtain

eX(0,y) = (s+k) (8+k+1) . .. (s+2k-2)[ n~36°T (s4+k)L(25+2k-1,€) ] (6y)°

- £ (N) (2-k-8) (3-k-8) . . . (=8)] 17 %657 IP (a4} L(2542k-2,€)] (8) 27 2%7% |

and this proves (4.1) for n=0 since the two expressions in square brackets are
interchanged under s-*2-2k-s by the functional equation of L(s,c)} . For n#0
we have

k 2k-1 6—2k+% 2)s+k—Al

e} (n,y) ==ie) [n] y V3 (oy) % ¢(n.d) (Jn/d
d|n

da>0
with V;(t) as in (c) of Proposition 3.3. In view of the functional equation

of V;(ny) , therefore, (4.1) will follow from the identity
(4.3) gln, [nl7d) = e sgntn) ci(n,d)

for n satisfying (4.2) and d a positive divisor of n. We can assume that

(d.%.b) =1 since otherwise both sides of (4.3) are zero. Then D decomposes as
p-pp'o", [p'] = (D), 0" = (GD)

with Do. D', D" discriminants and D0 prime to n . The discriminants I)l

and D2 in the definition of €(n,d) are then DOD" and D', respectively,

while the corresponding discriminants for e(n,|n]/d) are UOD' and D" . Hence

clnyd) = op (epn(@ep (NG Xp pupi )

I I In
c(n,%-') = ‘Do(%!)cn'(T)CD"('N53“(“) d) XDOD'-D"(A) .
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All terms in these two expressions take on values in {t1} , and the product is
nj
cmd) e, 5h = ep (nl) epupu(-Nogn@ ) Xy iy
which equals €. (-N) sgn(n) because (4.2) implies that X son(A) = e ()
D Dy+D'D D,
- cDa(-Nn) .  This completes the proof of the functional equation.
The functional equation suggests that we look at the symmetry point s=1-k
or, more specifically, at the value or derivative of LA(f,s) there, depending
whether e(N) =-! or e(N)=1. We consider first the former case. Here we

can apply Proposition 1.2 and Corollary 3.4 with r=k-1 to find:

Proposition 4.4. Suppose €(N)=-1. Then the value of LA(f,s) at_the symmetry

point of the functional equation is given by

22k+l k+1

T .
LA(f,k)‘ m (£, &)

where $E§2k(F0(N)) has the Fourier expansion

3z) = ] ( ZM UA(n)rA(md-Nn)pk_l(ﬂgﬂx) +% r‘((m)) )'l—k o2ninz
m=0 0<n$~§-
with
k-1 3j
) U e e
o, (n) d{n en.d) Ppp (8 jZO PO .
d>0

Note that the coefficients of & are polynomials in y—1 of degree k-1.
For k=1 the function & is a holomorphic modular form (but not a cusp form).
Now consider the case €(N)=1. Here we have to compute the derivative

of es(n,y) with respect to s at s=1l-k. There are three cases, according

to the sign of n. If n=0 then the formulas at the beginning of this section give
1-k k-1
2 S S S R
3s es(O.y) ls=1-k (k-1)1 3s es(O.y) |s=l—k
iRkt -s.2s_ s

3
=2 FolT(s+2k-1)7 "6y L(2s+2k-1,00) | )

DT
' 2
= 21(1,e) 6 MU R0 4105 4 z-LE'—(x,c)] )
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If n is positive, then the sum { e(n,d) d-zﬂm2k+2 in Proposition 3.2 vanishes
din

at s=1-k, so

3 ~k#s -k+l
'a';ee(n:y)l - 214 .Hiy

g=l-k Vl_k(ny) d{:(n,d) logd .

If n is negative, then it is instead the factor Vs(ny) in 3.2 which vanishes

at s=1l-k, so

2 (n ~k+s y—k+l

)
5s %™ gy = -1 8 E"a(“'y”sﬂ-k.d{n“n'd) )

Substituting for Vl_k(ny) (n>0) and _a%vs(n)')ls-l-k (n<0) from parts
(d) and (e) of Proposition 3.3, and combining with (3.1) and Proposition 1.2,

we find:

Proposition 4.5. Suppose €(N)=1. Then the derivative of LA(f,a) at the

symmetry point of the functional equation is given by
2Zlu-l“k-!-l
L!(f,k) = £,3
A0 = esle (1,8

where 55§2k(T0(N)) has the Fourier expansion

z) = ] (- s Oj(n)tx(mG—Nn)pk_l(w)

M=~ 0<n£-lT' 6

h T L'
+ 5 rA(m) (1ogy + —r—(k)+log NS - logn + Z—f(l,c))

pot 4nnN 1-k 274
- nzl oA(n) ri(m6+Nn) Uy (——"—g—l)) y eSTimE

with OA(n) and pk—l(t) as in Proposition 4.4, G-y 88 in Proposition 3.3e, and

oy(m) = { €, (n,d) log:"g (n>0) .
din
d>0
k-1
(The function & is E_ﬁ._a th

57 35 s‘s=l-k' In the formula for its m
we have replaced n by -n inthe third term; the first two terms are absent if m<0.)
Propositions 4.4 and 4.5 are the preliminary formulas for LA(t',k) and

Lj(f,k) referred to in the section heading. We now make them more explicit by

Fourier coeffident
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giving a simple closed formula for the arithmetical functions c‘J‘(n) and '?A'(“) .

Let {n} be the genus of any integral ideal of K satisfying
N() £ e(N)N (mod D)

(this is independent of the choice of ), {An} 1its product with the genus of

the ideal class A, and (as in Chapter II)

R(An)(n) = number of integral ideals of norm n in the genus {Ax}

&(n) = 2° , 8 = number of prime factors of (n,D) .
Then we have

Proposition 4.6. a) Let n be an integer satisfyinpg (4.2) and e(N)n<O . Tha

o, m = 8@ R L (fa) .

b) Suppose n>0 and ‘e¢(N)=1. Then

o'(n) = a_(n) log p
A g

with
V] 1f e(p)=1 ,
a ) = (ord (n) +1) 6(n) R(Ancl(%) 1f e(p)=-1,
ord_(n) 6(n) R(Anc)(l;') 1f e(p)= 0 ,

where in the last two cases {¢} is the genus of any integral ideal with

N(¢) = -p (mod D) .

Remarks. 1. The genus of ¢ in b) is well-defined, since if e(p) =-1 then

~p 1s prime to N and determines a genus by the usual correspondence

{genera of K} L

(e @)t | e = 11/ @)t

while 1f ¢ (p) =0 then the genus characters of ¢ corresponding to all prime

F’;(,‘?-)) = (—;I.’*) ) and the genus

character corresponding to p is therefore also fixed (the product of the genuc

divisors p'#p of D are determined (we must have (

characters corresponding to all prime divisors of D 1is the trivial character).
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Explicitly, we could take C=7 when €(p)=-1 and C=9%¥ when e(p) = 0, where
% is a prime ideal satisfying N(v’) z—p (mod D) in the first case and in the
second case ¥ is the prime divisor of p in K and v any prime ideal with

N(z) = -1 (mod p/p) .

2. The numbers ap(n) in (b) are all even, since §(n) 48 even 1f n 1is

“divisible by a ramified prime and ordp(n)+1 is even 1f n 1is divisible by an
inert prime p with R(n/p) #0 . This is of course as it should be, because

under the assumptions of (b) we have cA(n,d) =0 , as shown at the beginning

of this section, and consequently o_';:n‘), - —2d nt:A(n,d) logd .

Proof. a) We assume for definiteness that e(N)=~1 and n is positive (i.e.
the case needed for Proposition 4.4); the opposite case is exactly similar. If

n 1is prime to D then the formula is very easy: in this case we have g‘(n,d) = g(d)
for all divisors d of n ksinc;e Dz- 1, Dl-D in the definition of CA) and
consequently OA(n) = d)}nc(d) = R(n) , the total number of representations of n
as the norm of an integral ideal of K3 from (4.2) it follows that any such
representation belongs to the genus {An} . In general, write n = p: ...pzs n,
with (nO,D)-l .  Any divisor d of n with (d,%,D)-l has the form

d= p‘;l...p‘;“do with doln0 and g = 0 or vy for cach 1. The function cA(n.d)
is multiplicative in d for n fixed, i.e. EA(n,d‘d") = cA(n.d')&(n.d") for

4'd"|n, (d',d") =1. Indeed, let D = D!-Dj = Dy-D} = D D, be the splittings

172 1
of ‘D occurring in the definition of <% for d', d" and d'd", respectively;

then D, = DiD'ZI and consequently

t " L] - L‘_ . 1" - _I.‘,
¢ (n,d") ¢y(n,d ) - ED;(d )tD;( N XD;.D;(A) [D'x'(d )CD'?'( Ngw) XDY-D;(A)

- ‘lez

(% any norm from the {deal class A prime to D)

" _ n - " an
= cDI(d'd )cDZ( Nl————d,d") CA(n'd a")

Hence

4 0y, " ' = L
u(d.)ED;(d' )503 (—NQ d'd") chD;(d )Cnlzv(d )chzv( NL dldll)
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o, (n) = ) aee { t:.A(n,p‘;l)...A(n,;:j B)CA(n’dO)
u €0} u €10, 1 dglng &
8 v
- ﬂ(l+g‘(n,pii)) . } c(dy) -
i=1 dging

The sum equals R(no) , and this in turn equals R(n) because there 1s a 1:1
correspondence between integral ideals of norm g and of norm n given by
multiplication with 37\;1...30:3 , where 5912- (pi) . If R(n) =0 then both sides
of our identity are zero and we are done. If not, then the ideals of norm n
all belong to the same genus. To complete the proof, we must show that cA(n,p\;i)
=1 for all { if and only if this genus coincides with {An}, i.e. if and only
if the values of every genus character X on these two genera agree. It suffices
to consider X associated to prime divisors p of D, since these generate the
group of genus characters. If p}n , then the condition to be checked is just
(%) = (:g&) for some { prime to p representable as the norm of an ideal in A,
and this follows from (4.2). If p divides n, then p 1is one of the Py .u Every ’
ideal Aot.' nonﬁ n has the form g:in with N(m) =n/}:n\;i , and the val;xe of x on
this Aideal is given by

X(pyim) = X(g ) Xtm) = ch<pzi> cnz(n/p‘;i) '
where I)2 is the prime discriminant associated to p, (1.e. |02| =Py DLE 1 (mod
and Dl“D/D2 . But these are the same Dl and 02 as occur in the definition
of cA(n,d) for d-p:i s BO

e ) - "Dl(p:i)tnz(-Nn/p:i) ¥, -0, A - x(p, im) X @A)

and we are done.

b) This case is rather similar. By Remark 2, we have o‘A'(n) - % ap(n) log
with ap(n) =-2 d%ﬂt"(n,d) ordp(d) . Write nﬂpvn1 with p}nl . The dgv:sors of n
have the form p"dl with Ogpsyv, dlln1 , so using the multiplicativity proved

in part (a) we find

v
a(m = -2 § weln,p") . efn, ,d,) .
P 4=0 A d4;Tn, A1l




—99-.

If e(p) =+l then cA(n,pu) = c(pu) =1 for all y, so

v
u
v»d{ CA(n'dl) - Zc"(n,p) )i cA(n.dl) - :;"(n) »
1M =0 dyiny
and this was gshown at the beginning of the section to be zero under the hypotheses

of (b). Hence ap(n) =0 in this case. If c(p)=-1, ‘then the same argument

shows that % cA(n,dl)-O , and consequently ap(n) =0, if v 1is even, since
v diim 7, v
then ZcA(n,p“) = ): (—1)“,( 0. If v is odd, then Zou c‘((n,p") = ~142-3+...-v
=0 u=0 . u=
1 ¥ .
- —E(v-ﬂ), so ap(n) = (v+1)cl %,‘ CA(n’dl) . If dl is a divisor of n and D DlpZ
171

the corresponding decomposition of D, then
v v - - = -1
efnid)) = e nyp 2dy) = enz(p ) gy(n;,d)) an'Dz(C) g (-nd)) = e ( n.d,),
with ¢ as in the statement of the proposition. Thercfore e, (n,d,) = o, (-n,)
d “IA 1 Ac' 1
1
= 6(nl)R(Acn)(“l) by part (a), and this is what we want since 6(n1) =&6(n) and
R(Acﬂ)("l) - R{Acn)(n/p) . Finally, suppose pID. Then a(n,pu) vanishes for
O<u<v, so
a (n) = -2vey(n,p’) e(n,d,) = -2v J e, (n,p’d;) = 2v € (a,d;)
p AP }A’l d%A'l PRI Side U
dylm 11 1™
where for the last equality we have used the identity cA(n,d) --cA(n,n/d) proved

at the beginning of the section and replaced d by “l/dl . A computation like

1

the one above gives CA(n’dl) = v—l(”"l'dl) in this case, so using part (a)

3
Acp
again we find

ap(n) - ZVOACB’V_!(-“‘) - 2\’6(“1) R‘Anc

Fv—l)(“l) ’
and the desired result follows in this case because 4(n) =2«‘n(n1) and

n = R n . This completes the proof o roposition 4.6.
1 ) p hi 1 i f of P iti 4.6
ne

R
{Ancp¥-1) U
We remark that the formula in b) implies that ni(n) is always a multiple

of the logarithm of a single prime number. [Specifically: It is 0 if n is

divisible to an odd power by more than one prime inert in K and equals
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(ordp(n)ﬂ)é(n)R(Aﬁ}(p) logp if there is a unique such prime p. If there is
no such prime, then n is the norm of some ideal; let Q be the norm of an ideal
primec to D lying in the genus of the product of this ideal with {An}; then
;pQ) =~1 for an odd number ;:f prime divisors p of D, and ai(n) equals

&§(n) ordp(n) R(n) logp if there is exactly one such p and 0 if there is more
than one.] Actually, this property of G‘A can be seen a priori: under the

hypothesis of b), the sum 2 cA(n,d) d™®  vanishes at s=0 and has derivative
din

equal to —%o"\(n) there, and since this sum has an Euler product (by the multi- ;
plicativity of de cA(n,d) proved above), we sce that oA(n) can be non-zero
only if exactly omne Euler factor of this sum vanishes at s=0, and is then an

integer multiple of the corresponding log p .

§5. Holomorphic projection and final formulae for LA(f,r) and LA(f,k) ,» k>t

In Sections 3 and 4 we obtained formulae for special values of LA(f,B)
and of its derivative in thec critical strip as the scalar products of f with
certain non-holomorphic modular forms. We would like to have instead formulae
expressing these values as scalar products of f with something holomorphic.

To do this we will use a "holomorphic projection lemma" due to Sturm [33] which

we now state and (since our hypotheses are slightly different from Sturm's) prove.

Proposition 5.1. Let $Eﬁ2k(l‘o(N)) be a non-holomorphic modular form of

2nimz
»

weight 2k >2 and level N with the Fourier expansion ¥(z) = ): am(y) e

o= —o

and suppose that (3‘2‘?)(2) ..p(y-r‘) as y=Im(z) += for some ¢>0 and every

a€ Sl.z(l) . Define

2k=1 o
. (4nm) - -4wmy 2k-2
W TaenT [ e Ty Ty (o)

Then the function ®(z) = } a
m=1

and level N and satisfies (f,0) = (£,3) for all LEs, (T)()) .

eh ™ s a holomorphic cusp form of weight 2k

m

Proof. For m>0 define the Poincare series Pm(z) by
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. -2k 2w im—H;:b
- T (cz+d) e

P(2) = ) e
" (2 B €T AT,

Znimzl

2 Y
Y ET \T,(N)
Wwhere I‘m-t((; f) as earlier. The series is absolutely convergent because k> 1t,
ind the function P belongs to SZk(I’o(N)) . Let P; be the series obtained

by replacing every term in the series defining Pm by its absolute value. Then

e have the estimate

P;(z) H

)
(@ B er\sL, @)

s IQZHiZt +

)
@ % erasL @
c#0
-2, y-k ( E(z,k) ‘}'k)

I-2k)

= O(y (y+e)

since for any s>1 the Eisenstein series E(z,s) for SLZ(E) satisfies

E(2,8) = y®+0(y' %)

as y-o. Moreover, since we have replaced I‘O(N) by
SLZ(l) in the above estimate, we automatically have the same estimate on
?;lna for any a€SL2(Z) . It follows that the I'O(N)-invariant function
P:l(z) ]3(:)‘}'2]‘ is bounded by O(y‘_e) as y+w and similarly for its
Fomposition with any element of SLZ(Z) . Hence in the integral defining
Fhe Petersson scalar product of Pm and & it is legitimate to replace Pm by
its definition as a series and interchange the summation and integratiom.
This gives

(3,0) - [ QIrimz g,y 22y Te”’"“‘” a () y*72 gy

T\ 0

by the standard unfolding trick. On the other hand, the map f= (D, ) is
hn antilinear map from SZk(I‘O(N)) to €, so is represented by (®,¢) for

some holomorphic cusp form @ = 2 bmqm. The above computation with ? replaced

by @ shows that
& =4 2k-2 (2k-2)1
= [ e vy gy - P

(o,P ) —%=T
o 0 (4mm) m
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so the equality (0,Pm) = (s,Pm) gives bmzam as desired.

As a special case of Proposition 5.1, if @ is a non-holomorphic modular
form of weight 2k which is small at the cusps in the sense of the proposition
(i.e. (Do) (x+iy) =0(y %) as y~+= for all a), and if the Fourier coefficients
of & are polynomials of degree =2k-2 in %, then we obtain a holomorphic

modular form having the same scalar product with all f ESZk(I‘O(N)) by

dropping any terms y—', and replacing any term y_J e2'n1mz (m>0, 0gjs2k-2)

(2k-2-j)1

TN | (4rm)? ezrllmz . We can apply this special case to the functions

by
of Corollary 3.4 and Proposition 4.4.

In Corollary 3.4, the function 3—: is already holomorphic if r=0, as
we remarked there, so there is nothing to do. If r21, then k>1 (since
0sr=k-1) and $—r is small at the cusps in the above sense (this is clear
at o singe the consta.nt term of 5_!_ is a multiple of y—r and the other terms
are O(e_Z“Y) ; at the other cusps it can be seen by going back to the definition
of 3—:: as the trace of the product of a theta function and an Eisenstein series
and looking at the expressions for their Fourier developments at the cusps).
Hence Proposition 5.1 applies to show that the holomorphic projection of 8_{
is the function O_r= q"l with

mz1 T

(mm) 261 [m&/N]

= _ 7 ~47my 2k-2
3m,r DT Lo rp(m6-al) foen.r(’) e y  d

y

Since e r()v) is a polynomial in 1/y of degree S$2k-2, the integral is a sum
£

of ordinary gamma integrals. Performing the calculation we find

. ) (__ﬂk—r 22k-'1 c(N) r! “2k—1—r .
L (2k-2 N7 p) 2T mr
where
(5.2) b = Y t,(m|D} -nN) P, (Nn,m!D) o (n)
TF G <nsm|Dl /N A k,r 2k-2r-2,A
with

r . . .
2k~2+3~ =
(5.3 B Goy) = jzo 5 AT (o) ¥
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6.0 - - %c(N) L(-2%,¢) if n=0 ,
. o n) =
' 2,4 )I: :A(n.d) (n/d)z" if n>0 .
nld

(We have used the functional equation of L(s,e).) Now Proposition 1.2 gives:

Theorem 5.5. Let A be an ideal class in an imaginary quadratic field of

discriminant D, N an intcger prime to D, and r and k two integers

satisfying O0sr<k-1, For m20 define b . by equations (5.2)-(5.4).
’

Then 2 b rqm is a modular form of weight 2k and level N (and a cusp
\'0 L d

form if r¥#0) and

2(2k=1~r) 2k-1

k-r
(-1) (2rm) 2 e(N) r! (t, zb qm)

L,(f,2k-1- -
A( i (2k-2-2r)! (2k-2)1 |pjk-T-¥2 m,T

for any f in the space spanned by newforms of weight 2k and level N,

Here we have omitted the case r=k-1, since the formula is slightly
different (cf. Proposition 3.2) and we will treat this case in a moment, but
we have included the case r=0, which, as just observed, can be treated
without holomorphic projection. Note that the coecfficients bm,r are rational
numbers and in fact that all summands in (5.2) except the end terms n=0 and
n=m|D|/N are integers, and even the end terms are not too far from being
integers (we have rA(O) -'-2‘: - —% for any D<-4 and ou’A(O) €2Z for any
D<~-42-3).

For r=%-1, corresponding to the central point of the critical strip,
the formula is similar but there are various simplifications. We can suppose
that €(N) = -1 since otherwise LA(f,k) =0 by the functional equation. Then
Proposition 3.2, and consequently Theorem 5.5, are the's:xmc as before except
that the terms with n=0 must be doubled. However, the function GO,A(n) can
be evaluated by the formula in Proposition 4.6, and the polynomial Pk,k—l is

expressible in terms of a well-known function, namely

k-1
Pk,k—l(x'y) =y Pk_i(l—ZK/y) ,

where P, denotes the (k-1)st Legendre polynomial. (Actually, the polynomials

Pk,r can always be expressed in terms of standard orthogonal polynomials,

namely Pk,r(x,y) =" p5_2‘(—2-21"0)(1-2x/y) , where Pf‘c’ﬁ) are
) - ) ~ 0=0 7 o
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Jacobi polynomials, but these are much less familiar functions.) Thus Theorem

5.5 for r=k-1 takes on the form:

Theorem 5.6. Let D, A, N be as in the last thcorem, e(N) =~-1, and let k be

any integer 21. For m20 define

k-1 h 2nN.
boa ™ (mlD) {rA(mll)l) 3t ) 8(n) Rpyny () r, (miD|-nN) Pk_‘(h;?m)

0<nzm|D{/N

ith R . ) P 6. m .
with 6&(n), (An)(n) as_in Proposition 4.6. Then m);obm/\q is a modular form
of weight 2k and level N (and a cusp form if k¢t) and

(2my 2% 2251 (k_1yy
(2k-2)1 |DIK~%

Ly(£,k) = (f, E‘bm‘A ™)

for any f in the space spanned by ncwforms of weight 2k and level N.

Theorems 5.5 and 5.6 give all values of LA(E,s) at integral points
within the critical strip, since the points to the left of s=k can be obtained
by applying the functional ecquation. Note that the expression for bm,A in
Theorem 5.6 can be simplified by dropping the term rA(mIDI)g and changing
the summation conditions to O0<n<mlDI/N, since &(0) =2% (t= number of
prime factors of D) and R(An)(o) = h/2tu (each genus contains h/2t—‘ ideal
classes, and rA(O) =1/2u for each ideal class).

As an example of Theorem 5.6, take N=5, k=2 and D=-p, where p is
a prime satisfying p=3 (mod 4), (%) =~1, and sum over all ideal classes A.
Since SI‘(['O(S)) is spanned by a unique eigenform f = q—6q2+2q3+8q6- ces
we have (f, Ebmqm) - b‘(f,f) for any form Ebmq‘n in this space. Also
: m

iLA(f'S) =L(f,s) Lz(f’s) , where ¢= (-‘-’-) . Hence Theorem 5.6 gives

3/2

L(f,2) Lc(£,2)

—_—2l LRl - - - -
P—rblon .0 ; bI,A ph(~-p) + I (p-10n)R(n)R(p-5n)

13n<
5

where R(n) = '2(%) and h(-p) must be replaced by —;- for p=3. The
din

first values of the expression on the right-hand side of this formula are

|3 7 23 43 47 67 83 103 107 127 163 167 223 227 263 1283

P
b,‘l 11 49 25 121 361 25 289 25 169 81 12% 2025 1 121

Frey es A N "

J
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in accordance with the theorem of Waldspurger-Vignéras [36], they are all squares.

In general, there is some simplification in Theorem 5.6 if we sum over A .

Indeed, for any n, Lt €EN we have
iR(An)(“) e - {i} Rian) Riay(®) = R(R(L) or 0,

where R(n) -d)l:nc(d) is the total number of representations of n as the norm
of an integral ideal of K and we must take R(n)R(Z) or O depending whether
the genus of an ideal of norm n& (if there is one) is {n)} or not. This is
a question of the values of genus characters associated to the primes p dividing

N. For f=m|D}-nN, -N=N(n) (mod D) these conditions are automatic for pin

since 2£sN(n)n (mod p) . Hence we have

o™

6(n) § Rigpy() ry(miDl-nl) = R(n) R@@IDI-o8) ] (1 .t (Eﬁ’:@))
A pl(n,D) pon

where Ep is the homomorphism Q*~+{%1} defined by Ep(n) =(%) for pin,
l:p(p) - (P#R) (cf. remarks at the end of §3 of Chapter II). Thus the formula
for ;LA(f,k) = L(f,k)Lc(f,k) is a little simpler than the formula for the
individual LA(f,k) , as might be expected.

This completes our discussion of the values of LA(f,s) at integer points
in the critical strip. We turn now to the derivative at s=k, under the
assumption that €(N) =1, so that LA(f,k) vanishes. We must apply Proposition
5.1 to the function & of Proposition 4.5. We assume k> 1 (the case k=1 will
be the subject of the next section). Then the growth conditions at the cusps
required in Proposition 5.1 arc satisfied. Indeed, at o this follows from

the Fourier expansion given in Proposition 4.5, since (denoting by am(y) the

2nimz

coefficient of e and usinpg the estimates pk—l(t) =*O(tk_‘), qk_‘(t) -
ott¥ ™1™, oi(m) =0(n), rp(m) =0(n%) ) we have
o(m ) (m>0) ,
1-k
am(y) - oy log y) (m=0) ,
o(|mf**€e4nImly (m<0)

k

and hence ®(z) = 0(y1- logy) . At the other cusps, #® has an expansion of
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the same type and satisfies the same estimate, as we can see by going back to
the definition of ® in terms of theta and Eisenstein series. Hence we can
apply Proposition 5.1 to get (£,3) = (f, Za q™ with
m21 ®
@

(2k=2) § - ~4wmy 2k~-2
Py =) a_ [a ) e ¥ dy

@0 1‘ - -
= = T s o) ry(mehn) [p  (RTANY) KT mhmmy 4,
0<HST 0

k-1 N§

h r ~4n r
+ :‘-rA(m) [ ({y logy e mydy *(-—r-(k) + logT

1 ® - -
+2L—L(l,e)) fyk 1e A"mydy]
0

T £ 4Ny, k-1 _—4n
- n=Z=| OA(n) rA(mémN) {)qk—l(_-d_x) y e T dy .V

The first integral is elementary and was already evaluated for the proof

of Theorem 5.6:

. 4moNy, k-1 -4mmy o k-D1 _ DN
(f)vk-,( Ty e dy wmk Pt 223

where Pk-t is the (k-1)st Legendre polynomial. The values of the next two

integrals follow immediately from the definition of the gamma function:

r k=1 ~4mmy 3¢ _T(s . =prert .o .
gy log y e dy P .(7‘—"—“‘_52?)‘91( m( r(k) loglanm) ’

k=1 -4umy (k-1)1
dy = ——p
({ y € v (4nm)

Finally, substituting into the last integral the formula for U1 given in

Proposition 3.3e, we find

. k-1 . 4rnNyx
k-1 ~bnmy (1) -
R

o«

'!)’
0

iy 4naN k-1 -4nmy
(f) Q¢ 6]-) y e dy

e dx dy
X
-1 ¢ =% ax

K
(4nm) xk(l+:nl:~x)k

The last integral is clearly elementary, since we can write the integrand by

a partial fraction decomposition as a linear combination of terms x 3 and




tadsiiladida
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(1+ ﬂx) i with 1sjsk. Explicitly , if we set z-l*Z%%, ther. the
substitution x = 1 + ‘:: et gives
[ oo la | i
k -
T x (1+ z—z-lx)k ~= (z+ /z?=1 cosh t)k

and this is the standard integral representation of
2 Qk ‘(z) , where Qk 1 is the Legendre function of the second wind as
in Chapter II. This function is indeed elementary; it is defired t7 the

properties

Qk_'(z) = 2 P _ l(z) log o7 +' + (polynomial in z) ,

G.7

Q_((2) = 0(z™) (z+w)

Gn -
(Zk=2)1

for a . we obtain the following theorem; since this is the basic zesult of

Putting all this together, and renormalizing slightly by writicg

this chapter (for k> 1), we have repcated our assumptions and mr-zilens.

Theorem 5.8. Suppose k>t , N21, and A an ideal class in an imerinary

quadratic field K of discriminant D with ¢(N) =1 (c-(g) ) . Frz each

m>0 define

k-1 [ 20N
- -

X al(n) r,(mIDl - Nn) P )
RETR AN " o

(l ,"J,\
‘

a
m,A 0<

+ %rA(m) ( (k) ~2log2m + logmm

T ZnN
- zn§| og(n) 1y (miDl+ 0N} Q _ (1457 ]

where h, u and rA(n) are defined as usual, OA(n) and c'{(n) 1me the

arithmetical functions occurring in Propositions 4.4-4.6

-k -n"° (k I)(

Osns (k-1)/2

2k-2-2n, k=1-/a
)z

(z) = 2 k-1

P

is the (k-1)st Legendre polynomial, and Qk-1(2) is the (k-1)st Legerize

function of the sccond kind, defined by the properties (5.7). Than 2ie

functicn 2 a a4 is a cusp form of weight 2k and level N anf «e have

LA(E.k) = 0,

a
m
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k=12 i
H -
LALE ) (Zk z)mT X 3,49 )

for all £ in the space spanned by newforms of weight 2k and level N.

§6. The case k=1: final formula for Li(f,l)

Theorem 5.8 breaks down for forms of weight 2 for several reasons:

Proposition 5.1 is not true for k=1, the function & of Proposition 4.5

is not small at the cusps, and the infinite series in the definition of & A is nc

longer convergent (because the function Qo(z) = %—log:—zz-:—:- is only O(z—l)
as z=o), In this section we will discuss the modifications nceded to take
care of these difficulties.

In the Fourier expansion of 3 in Proposition 4.5, all terms with mf0 are
exponentially small as y=Im(z) goes to infinity, while the m=0 term has
the form (Alogy + B)yl_k +0(e %) for suitable constants A, B and c>0.
Thus when k=1 the function ¢ grows like Alogy + B rather than having the
decay behavior O(y-c) required in Propostion S.1. The same is true at the

other cusps, as we shall see, i.e. we have

6.1) (lye)(z) = A logy + B +0(y %) as  y-+e

£

(uGSLzm), a(=)=E , €>0)

at a cusp £€Qu{=}. A priori, for a function $cﬁ2(ro(u))- satisfying

this growth condition there are 2l constants AE and BC to deal with, where

H is the number of cusps of YO(N) . This number is the sum over all positive
divisors Nl of N of 0((NI.N/N‘)) (¢ = Euler function), the invariants of

a cusp £ B% being NI = (c,N) and the class of (c/N,)-'a modulo (Nl'N/NI) .
However, for our particular function § the coefficients A( and B( will turn

out to depend only on the first invariant N We now formulate the analogue

|-
of Propusition 5.1 for functions of this type.

2nimz . .-
Z am(y) e be a function in MZ(I‘O(H))

m= ~=

Proposition 6.2, Let ¥(z) =
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satisfying the growth condition (6.1) at all cusps £, and suppose that the

coefficients Aﬁ and BE depend only on the greatest common divisor N, of N

= A(N)), B, = BON;) . Let {a(M), B(M) :M|N}

and the denominator of £, say A

€
be the solution of the non-singular system of linear equations
" 2
(6.3) ) LB s = A (nny,
M|N
2 2
(6.4) { LLNY (g0 +au) tog My o pew)) (njln)y .
M|N

« .
Then there is a holomorphic cusp form ¢ = E a Zmimz

£ € SZ(I‘O(N)) satisfying
(e, f) = (9, £) for all fE€ SZ(I‘O(N)) and with a given by

~4imy s
Y y

(6.5) a = lim [lnrmTa Y)e dy + 24a(l)o,(m) s-']
om 1

8+0

+ 248(1) o, (@) + 48a(1) [0](m) ~ o, (m) (log 2m + } + ‘—c'(z) )]

for (m,N)=1 (ul(m) = y d, Ul'(m) = Z dlogd ).

dlm dim
Proof: Suppose first that A(Nl)-B(Nl)ao for all NllN , i.e. that %
satisfies the growth conditions of Proposition 5.1. The proof of Proposition
5.1 goes wrong for k=l because the series defining the majorant P; diverges
(due to the pole of E(z,s) at s=1). To get around this, we use "Hecke's

trick": we replace Pm (m21) by the absolutely convergent series

8 ;. az+b
2vimz 1 ZWIB!-—W
Pogm = T Ry . ! revrwny Avesery rol SN
m,s T_\To(N) 2 @ H)ﬂr..,\l‘o(N) (cz+d) lcz+d|
( Re(s)>0)
and then continue analytically to 8=0. The series P =P (o=Re(s))

m,s m,o

obtained by replacing every term of Pm s by its absolute value is majorized
’

by O(y_l-a) by the same calculation as in the case k>1, the O( )~constant

being itself 0(—:;) as 0+0. Hence if O<a<e, & =0(y °) at each cusp,

then the calculation used for 5.1 is justified and gives

- -2mimZz ~ £ =4
(3, Pm ) = I e 2nimz () ysdy - Ie nmyam(y) ys dy
0

»S
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(we have replaced s by 5 in the Petersson scalar product to get a holomorphic
function of s). As before, we know a prionl that there is a holomorphic cusp
form ¢ = ): a, qm having the same scalar products with holomorphic forms as ¥,

mx1
and replacing ¥ by ¢ in the last formula gives

g I(1+s)
~4wmy s 8
® ) . = d [ S i A .
(e, m.s) 8n ée y <y (,mm)lﬂ; 2

Furthermore, the function P = lim P R is known to be a holomorphic cusp
s+0
form of weight 2 (this is proved by computing the Fourier coefficients of

Pm s 38 functions of s ), so by the defining property of ¢ we have
’

a = 4nm lim (¢,Pm’§) - lmm(*#,Pm) - hnm(z,f'm)
s+ 0

= 4m lim fe—4
s+00

"a (yy*ay ,

where the limit is taken through values of s tending to 0 with Re(s) positive.
This is equivalent with (6.5) since all a(M) and B(M) are 0 in this case.
We now turn to the gencral case, where ¥ satisfies (6.1). Consider the

Eisenstein series

8 ! 1 8
EZ'S(Z) ) ye I‘w\ng(Z)y le Tz (c,g)-l (cz+d¥ fez+d| 8
which is absolutely convergent for Re(s) >2 and defines a non-holomorphic
modular function of weight 2 on SLZ(Z) . This function is orthogonal to
holomorphic cusp forms by the calculation above (EZ,s is just the function
Pm,s for N=1 with m=0) and has the form ys+c(s) y-’_s+0(e-y) as y-+w,
where c(s) and the coefficients in the O( )-term are holomorphic near s=0 .

llence the two functions

. 3
E(z) = EZ'S(Z)]S_O , F(z) = 5—552’5(2”3-0 R

where | is defined by holomorphic continuation or simply as the limit

s=0
for s%0, belong to ﬁz(SLz(Z)) , are orthogonal to cusp forms, and satisfy

E(z) = l+0(-;—,-) , F(z) = logy + O(-:;logy)
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as y-+«, Hence if we have a function ¢ in ﬁz(SLza)) satisfying

¥(z) = Alogy + B + O(y_c) for some constants A and B, then we can subtract
AF(z) +BE(z) from ¢ to obtain a new function having the same scalar products
with holomorphic forms as ¥ and which is O(y-c) at infinity, 80 we can find
the holomotp{\ic projection of ¢ by applying the result already obtained to
this function. For a function of higher level satisfying (6.1) with arbitrary
AC and BE » we would in general have to subtract off the analogues of E(z)

and F(z) defined using the analogue of E, (z) for all cusps of Ty .

2,8

However, under the hypothesis of 6.2 that A(. and BC depend only on the g.c.d.

of N and the denominator of £, we nced only work with the functions E(Mz)
and F(Mz), where M runs over the positive divisors of N. To see this, we
must compute their behaviour at the various cusps. Let £ = %, (a,c) =1,
a _ a' (- M LI 1
(c,N)-Nl . Then for M|N we have Mc o wvith a L,N; a, ¢ -(—H—’Tl)c .
a a' : ab a' b, .
(a',c')=1l. Complete ‘(c) and (c') to matrices a = (c d)' a' = (c' d') in

SL,(Z) and let z, z' be related by c'z'+d' = (—“%{’-“J-)-(czlrd) . Then

a'z'+b' _ | az+b

M, N2
T id and y'= S—lil)—-y » 80 88 y+= we have y'+« also and

E, ;0] e - (cz+d) 2 EZ'S(MZ::)
" ‘(M—r:?)_z (c'z'*d')—z‘:z,s(%)
- ("}f - E,et")
- %‘—‘;L’—z (3% + 0%
- ‘”_':‘%ﬁy” + o8y

Setting s=0, or differentiating in s and then setting s=0, we find

2 2 2
E(Mz)\zu - ﬁ-’)—:;L)— + 0(-;7) , F(Mz)lzu - g—'-;;l)— (logy + 103—91'—ng~) + 0(-yl-1u;_y)

as y +«. It follows that the function [, {a(M)F(Mz)+B(M)E(Mz) ), vhich

M|N
is orthogonal to cusp forms, has the expansion A(Nl) log y + B(Nl) *O(yml logy)
at £ if a(M) and B(M) satisfy equations (6.3) and (6.4), and hence that we

have a decomposition
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F(z) = *(z) + ] {a(M) F(Mz) + B(M)E(Mz))
MIN

where ?Eﬁz(ro(ﬂ)) has the same Petersson scalar products with holomorphic
cusp forms as ¢ does and is small at the cugps. Hence % and ?* have the
same holomorphic projection ¢ , and, by what has already been proved, the mth
Fourier coefficient of ¢ is given by
4 . ¢ ~4rmy & 8
a = 4m lim [e a*(y) y dy
s+0 0 o

where ¥*(z) = Xa;(y) eZumz . Let
m

E(z) = Z e(m,y)ehimz, F(z) = 2 £(m,y) e21!1’.mz
m-—@ m-—@

be the Fourier developments of E(z) and F(z) . Then for m prime to N we have
a;(y) - am(y)—a(l)f(m,y) - B(1)e(m;y) . Hence to establish (6.5) we must show

that for m>0

Je@n e ™ P ay - - Lo @ romy,

0

T - - 2

(]) f(m,y) e Anmy y® dy = - }% Ol(m) L ;‘T‘;O;(m)'* %ol(m)(log 2m +

+ 2@+ o)

as s8+0. The first equation is trivial since e(m,y) = -2Acl(m) for m>0.
To prove the second we need to know the Fourier coefficients f(m,y), which we

compute by working out the Fourier expansion of E The identity

2,8 °

1
] y® 24 a( vt )
(cz+d) |cz+d|“® S 0z jez+d] 5+
2i 3

implies E?,,s(z) =T DZE(z,s*i). where E(z,s) is the Eigenstein series of

weight 0 on SLZ(Z); the well-known Fourier expansion

i s | .
s, rT(s-1)0(2s-1) t-a _ __ 2n b-s 2ni
E(zis) =y + oY I‘(s)f.(Zssm;oM 051 MWK _y (2nlcly)e

(where av(m)= a’ . Kv(x) = K-Besnecl function) then gives
dim
i .
e oS _ T osT(s+1)c(2s+1) -1-s 2nimz
B, 7Y T TTncen Yt L e, @ e

m#0
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2%t |78 2 3
ez,s(m.y) - _uﬁ)ri('sn)?(zs«» Opgey (e oy (W - Zﬂm)[v’;l(sﬂ(zﬂmly)) .

Integration by parts gives

* 1+t -}-t o
~hrmy s - o2 m s~} ~2nmy
gez't(m.Y) e y dy T2e D)2 (2720) 9542 @ s(f)y Klﬂ(any) e dy

for m2] and O0<t<Re(s). The integral is tabulated and equals

r(s+t+l)r‘(s—t)n} . ?
T(oe1) (4rm)s* . Since f(m,y) Rez’t(m,y)h_o, we get

< -4amy s 3 -2n;+tm-!~tl‘(s+t+l)l‘(s—t) ]
£(m, dy = —‘
({ ) Y e am (e ez 1026 ‘t'o

I(s+1)

- =24
(4mm) 5

20;(m) + ul(m)(log-:;:-**y -1 -2%—(2) +%)]

(Y= Euler's constant), and the Laurent expansion of this near s=0 begins as
given above.

This completes the proof of Proposition 6.2, except that we still have to
verify that the system of equations (6.3) and (6.4) always has a solution, i.e.

that the ao(N)xoo(N) matrix

2
@, 8,)
Sy = WPl iy s GW = R

is invertible. Since the coefficients CN(N‘,M) are multiplicative (i.e.

) Vp X u . Vp
C y(pPnpP)y=nC, (pP,p"P), the matrix C, for N=Ip is the Kronecker
Np P pP =N

product of the matrices Ep P’ so it suffices to check this for N-pv . But

Y

( -2 -4 -6 -2v
1 p ases
Lo -2 -4 p-zwz
o1 ptr oL T

Epv - :

1 1 1 ee. p? .
1 1 |

and one sees by inspection that this is invertible with inverse given by

the tridiagonal matrix
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\

p2 -1 0 o0

-pZ2p2+l -1 0 ees

1 1 0 -p2 p2+1 -1

6.6 c, = = :

0 0 0 vees -2 p2+l -1
o 0o o0 ... 0 -p2 pZJ

This completes the proof of 6.2. Moreover, since we know the inverse of EN
we can solve the equations (6.3) and (6.4) explicitly and in particular give

a formula for the numbers a(1) and B(1) occurring in (6.5):

Proposition 6.7. Let the notations be as in Proposition 6.2. Then

a(t) = &' 7 —}—”?)'A(N,) ,
NiIN 1

sy = ¢ 7 E (aon) - 2400, 10g ) - 2a(D) 21—;’,5_—‘1’- ,
Ny IN 1 plN

where p( ) is the Mobius function and § =W(1—p_2) = 2 E(—;?-)— .
N pIN Ny IN

Proof: We have C;“(i,N!) = f“—’%ﬁ by (6.6) and the multiplicativity
E— 1

property of Cy» 80 the formula for a(1) follows immediately from (6.3).

Rewrite (6.4) in the form

2
T cu@y 1 800 = B - T cu(n,,M a(m 1og L = (v 4 Js (w) 10g
MIN MIN p P

where ): denotes a sum over all primes dividing N and
P

sp(M) - M%:NCN(N“M)G(M)(vp(M)-me(vp(Nl),vp(M)}) .

The formula for C;‘(l,Nl) just given yields

B(1) = ! ) -——1L”(]:‘ ) [BOyy) + ZSP(NA) log p |
NyIN T2 p
We must show
p R s oy - -2 RO o (v g e i)
N In NP NN N1 P L
By definition of a(M) we have

-1 .
s,(N;) = HEN Nz):mcﬂ(ul,n) Cy (MN,) (v () - 2min {v (M) ,v (N))}) ACN,) .

Urite N =pYN' with plN' and N, =p N! with NIIN' : then the muleiplicariviesy
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property of C. and C_1 gives

- -N
-1
N = C.,(N!,M* (M7 N
%M NJN' [M'§N' e (N3 1) Cygr (O Nz)]
0sxksv

![ Z c ,(p 'Pu)C (P P ) (u- men(u,k))] A" N3 .
1Susv p¥

The first expression in square brackets is § (Kronecker delta) by definition.

NIN;
Hence
1
) ooy - ) P—‘—‘fil{s Y - —”(pn)}
NN NP NN M P
p(N u -1, y x
- 7 -——1-A( “N{) )', [uc \,(l,p)—-—(u acy ol 1y ep ) -
NiIN' Ni u=1 P
OSKu\J
The expression in square brackets equals Zp-zu , and
-1
(x =0) 3
-2 2-1 ( 1
ZP"C L%p) = " "‘L}z),(—)(‘*p:.q)
u=1 =7 (k=1 P
p2-1
0 (k>1)

by (6.6). This completes the proof.
To apply Propositions 6.2 and 6.7 we need the coefficients A(NI) and

B(N1) for our particular function @ . They are given by the followings:

};rogosition 6.8. Let ® be the function of Proposition 4.5 for k=1, £(N)=1.

Then ® satisfies the hypotheses of Proposition 6.2 with

2
Ay - o SN oy - A (1epME -y a2 L0)  on o,

where h, u, ¢ have the usual meaning, ¥ = Euler's constant,

Proof: The case N;=N follows directly from the Fourier cxpansion at infinity

given in Proposition 4.5, since, as remarked already, all terms in this expansion

anz

except the term —rA(m)(log—l Y+2-—-(1 e))e for m=0 are exponentially

small as y - e ., To obtain the corresponding result at other cusps, we must

go back to the definition of @ as «'-,—_g-—a-'&; | , with @ =T P (g (z)E(‘)(Nz))
2m 3s slgq s N A s

as in Proposition 1.2, and use the formulas given in §§2-3 for the Fourier

AtATAUOXIUdI3 g Byl usyl ! L,NJIN 4Y3Itm SN da Iy pue ,Nid YITo Nad = a231a
’ H x a N, . T W NQ N T
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(§)]

expansions of 84 and E_ in the various cusps.
Let & EP‘(Q) be a cusp, N1 the greatest common divisor of N and the
denominator of £, and choose a matrix uGSLZ(l) sending « to £ . By

definition of the trace operator we have

88| a = ¥ eA(z)E?)(Nz)I Yy .
2 Y €T 4 (ND)\T'(N)a 2

For each y = (2 3) in the sum we have (c,N) =N, since ya™! €r,(¥) . Let
1
. where NZBN/N‘ ; then -E—r- N% and (a',c') =\ ., Choose
] L]
a matrix v' -(z, :.) €SL2(Z) and define 2z' by Nyz = y'z', ¢'z'+3! --Nl(cz'*d)
2

' =N,a, c'=c/N

as in the proof of Proposition 6.2. Then
(1 (1) 1,10

e M|y = (@I VE Gl v = ] @ Dy ey

By Lemma 2.3 and formula (2.2) we have

(BAlly)(z) = ‘Dl('&g;)cnz(d)‘(bx)_‘ 6;3)(

Dy 'Dz(A) eAvl(z) ,

(‘) ' ' ' ' -s5=1 (Dl) z'+c*d
(Es IIY)(Z) EDI(C )sz(d §;) 8y Eg ( N )
where D = D,+D, is the decomposition of D into fundamental discriminants

with (c,D) =|D,| and Gi- IDil . Note that (c',D) = (c,D) because N is prime

to D. As y~= < ywe have

eAvl(z) - '-21- + L.,

A(2541,6) y° 4 ... if Dy=1t,
e = { vAOL(s, ey e i Dym 1,
. otherwise,

(here ".

.." denotcs exponentially small terms), the first by definiztion of

the theta-series and the second by the calculations in the proof of Proposition
3.2. If Dy=1 then c and ¢' are divisible by D, so d-n-‘-Nza’—‘-de'
(mod D) and cnz(dd') =¢(N,). If D,=1 then ¢ and c' are prime te D and
ch(cc') =e(c2/N1) =e(N,). Also e(N;) = ¢(N,) since we are assuming ¢(N) =1,

and x(1) =1, k(D) =i . Hence
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2‘u BN L2ert, e /)% + en iE Dl
(GA(z)ES)(Nz))Izv - 2u1 ‘(N"’) V_(0)L(25,e) (Nyy/N) ™+ ... if (c,D) =1,
P otherwisge ,

Since the collection of left cosets I‘O(ND)\PO(N)Q contains one coset of

elements y with D|c -and |D| cosets of y with (c,D)=1, we deduce

~ (0
(Oﬁ|1u)(z) - 2—:}-%—)-[L(Zs+l,c)(le/N2) -I——’l—;v}l,(zs ) (Ny/N) %1+ ...

3 1
P . _ TT(s+y) .
as y-=+«, and the result follows by substituting VS(O) —}I‘(sﬂ i and

computing the derivative at s=0.,

Combining Propositions 6.7 and 6.8, we find

a() = Syt oy BGDE®) | h e 1—[-(,+e(p1)_) y !

2u? N, IN N, 2u? pIN ’
8 L' lo
(1) = a(1) [log-ﬁ -y + 2310 - ngN?s__lxz)

for our function & . We still have to calculate the integral in (6.5). From
Proposition 4.5 we have

- 4wnNy
a (y) A logy + B+ nzl Com o€ ; )

for m>0, where we have made the abbreviations

h
A - o rA(m) ’

m
N§ L'
B, - Am (log—;- -y + ZT(1,€)) - z uf'\(n) rA(mtS—Nn) .
1sng
Cm‘_1 - - aA(n) rA(mG*Nn) .
Hence
iy 4mmy s T'(s+1) r
gam(y)c y dy = (——;E—;TAm I,(s+l) —A log 4nm + B )
T . GynN ~4mm s
) nzl Con b{ qO(_TX) Ty ay

The first term has the finite limit ——‘——(—A y -A log 4nm +B_ ) as s-=+0 .
4nm m m m

The integral in the infinite sum is given by
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w 4,00 4mnN @
L ——(;-lx ~4nmy s . _TI(s+1) ( aN_ \s-1 dx
(})’({;e dx)e y~ dy _T(Anm)s* { I+m6x -

At s8=0 this equals

1 (1 1 1 )
4nm {(; x*md?nN)dx 4nm log (1+E§) ’
while as n-~ o it equals

I‘(sﬂ) }' [( "5' O(H-s—zx-s-2)] dx _ 1 I'(s+t) 8-2

Cnmy 577 s+1 (4nnN/8)s+T * ol ")

the O( )~constant being uniform near s=0. On the other hand, the Legendre

function Qs(x) satisfies
Q. (142r) = lIog(l+—1—)
0 2 [

2 . —em
Q(1+2t) = %[t sl o¢c”8 Y| as tow

§0 we can write

(lmnNz ~4nmy Say = 2I(2s+2) ZnN
IqO 8 ) e oy (4nm) S T (s+2) Q * ) tE (5)

8-2

with cn(s)=0(n— ) as n- e and cn(0)=0. Since Cm=0(nc) for any ¢>0,

the series Zcm cn(s) converges uniformly near s=0 and vanishes at s=0. Hence
n

2(2s%2) v o (1+258) 4+ o(1)

‘. ~4nmy s
4mmfa (y)e dy = B -A (y+logbmm) + ——2£572)
(f) m y y y m m g (4nm) r(s+2) n=t mn s

as 8-20, and putting this into (6.5) we obtain

2r(2s+2) w 20N, . 24a(1)a,(m) ]
= - 4 2oNy , Z4all)o; (m)
2y B —A (y+log ﬂm)+sli":) (4—11m)-5l'—(s_+2_)nz1c Qs(l+m6) * 5

+ 268(1) 0,(m + G8a(1) 0} (m) ~48.a(1) oy (mH(log 2m + £ + £(2))

an expression which can be further simplified by multiplying the expression in

(4nm) 51 (s+2) .
T(Gss) to replace the sl-l’"b term by P

square ,brackets by

1im[2 ) Con Qs (t+2"“) +2£‘_"_(M] + 26 a(1) 0, (m)(log 4mm +y=-1) .
s=+0 n=1

(The argument just described was already used in the case N=m=1 in (18], p. 218.)

Putting into this the expressions for a(1), B(1), L Bm and Cmn given above, J'
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and combining the resulting formula with the assertion of Proposition 4, 5jmseee oo

obtain our main result: - Chapter V. Main identity, consequences and generalizations

Theorem 6.9. Let D, A, h, u, € have their usual meanings, N a natural number

. . . v 2wimz In the first scction of this chapter we combine the results of Chapters
with €(N) =1, Then there exists a holomorphic cusp form OA(z) - Z L
. ! II - IV to prove the theorems stated in §6 of Chapter I. The proofs of their
of weight 2 and level N such that :

8% . various consequences for the Birch ~ Swinnerton-Dyer conjecture are given in §2.
i) LA(f,l) =0, LA(f.\) = —/_g_(f‘@A) for any cusp form f in the space

The application to the problem of estimating class numbers of imaginary
spanned by newforms of weight 2 and level N, and

quadratic fields was described in Chapter I and will not be discussed again.

ii) the o? Fourier coefficient of o for m prime to N is given by

These results involve only the special case of the calculations of

N!Dl L'
aa,A T 7 ):mID 0(n) ry(wiDI-nN) + -—rA(m) [108 ZY*ZT“-C)] Chapter IV when the weight of the modular form f is 2 and its level is a
nsT -

bl norm in the imaginary quadratic field K. The corresponding results when

v tin [ <2 | oy rGintom) o (1o 2 - 2o L] Y P
8=0 n=1 these asgumptions are dropped are discussed in §3 (weight 2 but arbitrary

h N . log P m
+ ‘u—f[ﬂ"(m) (1°8m +2 )I:N Pl b 2+ 2% (2) - 2“'(‘ €)> *dg d 1°3'5:‘]’ level) and §4 (higher weight). The results described in §3, relating the
m

values of LA(f,l) or L"&(f,i) to heights of Heegner points of more

where o (m) = } d, k= -12/NTT(!+——E}) o, and 0;‘ as_in Proposition 4.6.
dim

pIN general types than those discussed so far in this paper, have been proved,

but their proofs will be postponed to a later paper. The case k>1 is
discussed in §4, where we describe a conjectural interpretation of the
i formula for L&(f,k) in terms of heights of higher-dimensional “Heegner
cycles'" and state a conjeccture according to

which certain combinations of special values at Heegner points of the
m .

resolvent kernel function GN s‘(z,z‘) of Chapter 1I are logarithms of
’

algebraic¢ numbers belounging to the Hilbert class field of K.

§1. Heiphts of Heegner points and derivatives of L-series

The notations and assumptions are again as in Chapters II and III: it
is assumed that every prime divisor of N splits in our imaginary quadratic
field x, xEXQ(N)(H) is one of the Heegner points associated to K (H as

usual the Hilbert class field of K), ¢ denotes the class of (x) -(=) in

Jac(XO(N))(H), A is an ideal class of K and o the corresponding element
of G =GCal(H/K). The first assertion of Theorem 6.1 of Chapter I was that

the function gA(z) = E <c,Tmc°> qm is a cusp form of weight 2 on I‘O(N) .
m21
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This in fact has nothing at all to do with Heegner points: if y and z are
any two points of JO(N)((—D , then Z'<y,'1‘m;:>q"l is a cusp form of weight 2
and level N. In fact, if a is anym})—linear map from the Hecke algebra T to
¢, then Z1Q(Tm) qm is such a cusp form. The proof of this is a simple
formal argn\lx;ent; since it may not be familiar to all readers, we give it here.
If J is any abelian variety over Q and § its cotangent space at the
origin, then endomorphisms of J act faithfully on S. Take J to be the
Jacobian of XO(N) ; then S can be identified with the space of cusp forms of
weight 2 and level N having rational Fourier coefficients. Hence the map
T + EndQ(S) is injective (recall that T is defined as the subalgebra of
EndQJ spanned by the Hecke operators Tm)' In particular, dim T is finite

Q
and bounded by d2, where d = dim S = dimc SZ(I‘O(N)). For each m€N let

Q
a: S +Q be the map sending a cusp form to its mth Fourier.coefficient, and
definc a map B: TxS=Q by B(T,f) -a,(Tf) - We claim that B is a perfect
pairing (and hence that dimQ T =d). Indeed, if for some f€S the map
B{-,f) vanishes identically then am(f) -a,(’l‘mf) =B(Tm,f) =0 for all m, so
£=0; conversely, if for some T€ T the map B(T,+) vanishes identically
then for any f €S we have am(Tf) Ga‘(TmTf) -al(TTmf) -B(T,Tmf) =0 for all

m and consequently Tf=0, so the injectivity of T~End (S) implies T=0.

Q
The fact that B is a perfect pairing means in particular that any a GHOmQ('lX'.C)
can be represented as f(-,f) for some f €SoC, and then Z n(Tm) qm = f .

This proves that B is a cusp form on TO(N) as claimcm(;.‘ To identify
it, we must look at the formulas for its Fourier cocfficients. With d =(x) - (0)
as usual we have <c,Tmc°> - <c,dec> because ¢ and d give the same class in
J(H)®Q by the Manin-Drinfeld theorem. For the latter symbol we have the
decomposition <c,de°> = z<c,'rmd°>v where if |c|n ledol +9 the local
symbols <c,‘rmd°>v must be defined as in §5 of Chapter 11. The formula for the sum of
the archimedean local symbols given in Propositions 4.2 and 5.6 of Chapter II

can be written more simply by using the first part of Proposition 4.6 of

Chapter IV as
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. 2 v 20N hxo(m)
<<:,’l‘md°>°D = sliu; [-Zu nzl cy(n) rA(nleDI)Qs_‘(Hmnm—) - —;—%]

N lo [ _ ,L' m
+ hx[o‘(m)(log-rn—r + 2P§N—p,&_—]ﬁ +2 0+ 2242) ZT(1,6)>+d%:mdlog?-]
L]
+ hurA(m) [2L—L(1,£) - 2Y - 2log2n + log IDI| ]

for (m,N) =1, where oA(n) = ); eA(n,d) with :A(n,d) (=10, { or -1) as in
din
Proposition 3.2 of Chapter IV and

h=hK . D=DK, u=uy the class number, discriminant, % number of units of K3

-12 P ,
K=K, =—= 1 , o, (m) = z d , Y=Euler's constant;
N N pIN pH ! dim

Qs__,(t) = Legendre function of the second kind.
Similarly, we can combine the formulas for ; <c,de°>v given in Propositions
vip
9.2, 9.7 and 9.11 of Chapter III for all p and rcwrite the result using the

second part of Proposition 4.6 of Chapter IV as

- o? I i r,(mibl=on) + hur(m) logh

<c ,de°>
O<n g miDI/N

finite

for (m,N) =1, where oA(n) = d§n eA(n,d) logant . Adding the last two
formulae, we find the identity <c,Tmc°> = u2 am’A for (m,N) =1, where am,A
is the m'D Fourier coefficient of the cusp form defined in Theorem 6.9 of

Chapter IV. But this means that B4 and u2 Xam,Aqm differ by an old

form in SZ(I‘O(N)) » so they have the same Petersson scalar product with any

f in the space spanned by newforms of weight 2 and level N, which is just
agsertion of Theorem 6.1 of Chapter I,

As an aside, we mention that the function g is not quite independent of
the choice of Heegner point x (as erroneously asserted in our announcement um,
but this is true up to the addition of an old form, which is all we need. That
<c,Tmc°> is independent of the choice of x when (m,N) =1 follows from the fact
that any two choices of x are related by the action of an element of GxW, where
W is the group of Atkin-Lehner involutions, and this action commutes with that

of Tm for (m,N) =1. (It also follows, of course, from our computation of the




-123-

height.)
We now turn to the second main result of §6 of Chapter I, Theorem 6.3,

which is a consequence of the first and of the formalism at the beginning of

this section. For X a character of G set ey = g x (o) c? ; then
[

-1 T -1, ]
<cx,Tmcx> = <§x (e, ‘); x (o) 'l‘mc >

) x('r-la) <c’, Tmc°>
a,T

h ()’: x(0) <c, Tmc°>

by the iavariance under G of the height pairing on J(il) (which we have extended
to J(H)®oC as a hermitian pairin'g). Now let fESz(I‘O(N)) be a normalized
newform. In our basic identity Li(f,l) = 8’«2u'2|D(""’2 (f,gA) we can
replace (f,gA) by (gA,f) because both f and B4 have real Fourier coefficieats.

Hence
3 an ‘
' » = A 1(£,1 = x(A » £f) .
L'(£,x,1) { x{ )LA( ) W(; )BA

On the other hand, x(A) g4 -‘1; z <¢_,T.c.>q" by the calculation just given.
mzt X ®X

Extend {f} to a basis fo=f, £, .00 £4 of SZ(I‘O(N)) consisting of the
normalized newforms together with a basis of the space of oldforms (chosen for
convenience to have real Fourier coefficients). Then the formalism at the
beginning of this section implies that <y (or any clement of J(H)eC ) can be
(6]

X

is the f-isotypical component °

d
‘written as a sum of components transforming like the f., say cx - X c
j=1

. ) i) . : (1)
with Tmcx am(fj) cx (in particular, y

(1) (i)
Sy f of cx) . Then <cX,Tmcx> = irj am(fj) <cx ,cXJ >, so ; X (A) gy =
. . ’
% 2 <c;1). C;J)) fj . Combining this with the last identity and observing
iyj

that (fj.f)-o for j¢#1, we find

2
8n (i) (1)
L'(f,X,1) - <c c. > (£,f) .
1Ay huiIDI]L 5 X ’ X »
But <c)((l).c)((')> = 0 for i¥1 since cil) and c§(1) are eigenvectors with

different eigenvalues of some Tm’ (m,N) =1 , so the sum reduces to a single
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term *ﬁ(cx £) (f,f) . This gives Theorem 6.3 of Chapter I.
’
We end this section by giving three important corollaries of the main

theorem which were already mentioned in our announcement [17].

Corollary 1.1. Let f ESZ(PO(N)) be any newform and x any character of

Gal(#/K) . Thean L'(f,X,1)20 . -

This follows immcdiately from the formula for L'(f,X,1) since both the
Petersson product and the global height pairing are positive definite. Notice
that Corollary 1.1 is what would be predicted by the Riemann hypothesis for
L(f,X,s) , according to which the largest zero of the real function L(f,X,s)

on the real axis should occur at s=1.,

Corollary 1.2. Let f ESZ(I‘O(N)) be any newform and X any character of

Gal(H/K) . Then either all conjugates L(fu,xa.s) (a€Gal(Q/Q) ) have a

simple zero at s=1 or else all have a zero of order 23 .

Indeed, each L(fc,xa,s) has an odd order zero at s=1 by the functional
equation, and L'(fu,xa,i) =0 iff the Heegner point cx“,fu € J(H)o€ vanishes
(again by the formula for L'(f,X,1) together with the positive-definiteness
of the height pairing). But cx(’,fa ecquals c:’f and hence vanishes if and

only if ¢ does.

X,f

A consequence of Corollary 1.2, also mentioned in [17}, is the analogous

statement for the ordinary Hecke L-series:

Corollary 1.3. Let f be any newform of weight 2 and £ (ac€ Gal(Q/Q) ) any

conjugate of f . Then

ords“l L(f,s) =0 D ordl;.‘I L(fu,s) -0,
a

ords=‘ L(f,s) =1 - Ords-l L(£%,8) = 1,

ord__, L(f,s) 22 - ord _ L(t%s) 2 2,

ords=, L(f,s) 23 - ordssi L(f“,s) 23 .

Indeed, L(f,1) 1is known to be equal to the product of a non-vanishing

period with an algebraic number which is conjugated by a when f is, so the
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first statement is clear. Since L(f,s) and L(fu,s) satisfy the same
functional equation, their orders of vanishing at s=1 have the same parity.
Hence all the statements of Corollary 1.3 will follow if we show that L(f,1) =0,
L'(£,1) 40 = L'(fu,l) #0 . The assumption implies that L(f,s) (and hence
L(fa,s)) has a functional equation with a sign -1 . Then
for any K =Q(vYD) as in this paper the twisted function Le(f,s) = Zc(n) a(n)n ®,
vhere ¢g(n) = (g) as usual, will have an even order zero by virtue of the
functional equation of L(f,s)LC(f,s) =L(f,1,8) . According to a theorem of
Waldspurger ([36), Th. 2.3, [37), Th. 4), we can choose K so that Ls(f,l)
{and hence also Lc(fu,‘l)) is non~zero. Then the result follows from Corollary
1.2 and the identity LU(E, DL _(£,1) =L'(£,1,1) .

Corollaries 1.2 and 1.3 are interesting in view of a general conjecture
that the order of vanishing -Of an odd-weight motivic L-function at the symmetry

point of its functional equation should be invariant under Galois conjugation

[e].

§2. Comparison with the conjecture of Birch and Swinnerton-Dyer

In §7 of Chapter I we described several applications of our main theorem to
the Birch - Swinnerton-Dyer conjecture for an elliptic curve E over §, under
the assumption that the L-series of E coincides with that of a modular form €.
We recall that this condition can be verified by a finite computation for any
given elliptic curve E/Q. If it is satisfied, the modular form f is necessarily
a Hecke eigenform of weight 2 with Fourier coefficients in Z 3 conversely, given
any such f, the periods of the elliptic differential we =2ni £(z) dz = ): aq

n21 q

define an elliptic curve (“strong Weil curve™) EOIQ with L(E,,s) =L(f,s) [25],

0°S
and by Faltings' theorem any elliptic curve with L(E,s) =L(f,s) is isogenous
to EO and hence admits a covering map n: XO(N)-*E (N= level of f) defined
over Q and sending the cusp © to O€E(Q) . For the rest of this section we

suppose given a newform f of weight 2 and-level N and an elliptic curve E over

Q related in this way.
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The assertion of Theorem 7.3 of Chapter I was that under these circum-
stances the quotient of L'(E,1) by the real period of a regular differential
of E/Q is a non-zero rational multiple of the height of some point in E(Q) .
This implied in particular that rk E(Q) >0 if L'(E,1) #0 and showed that,
if L'(E,1)#0 and rk E(Q) =1, then the Birch - Swinnerton-Dyer conjectural
formula for L'(E,1) holds up to a non-zero rational factor. In this section
we show how to prove this by applying the results of the last section to the
trivial character X=1. Since-L(f,X,s) in this case is equal to the L-series
of E‘over the imaginary quadratic field K, we will actually be working over K
rather than @ , and here our result will be even more precise: if ordssi L(E/K,s)
=1, then rk E(X) 21, and if ords'=l L(E/K,s) =tk E(K) =t then the Birch ~
Swinnerton-Dyer conjectural formula for L'(E/K,1) holds up to a non-zero
rational square. This last result will suggest a conjecture relating various
arithmetical invariants of E/K which can sometimes be verified by descent
arguments.

Finally, we will give some consequences of our main identity for the

Birch - Swinnerton-Dyer conjecture for certain abelian varieties over Q of

dimension larger than 1, as stated in our announcement [171.

Let E, £, we and 7 be as above and let w be a Néron differential

on E (this is unique up to sign). Then 7*(w) =cuw for some non-zero

f

integer ¢ , and we normalize the choice of w so that c¢>0. It is
generally conjectured {25] that ¢ divides the inqex of n*HI(XO(N),Z) in
H'(E,Z) (for the strong Weil parametrization, this is the conjecture that
ey = 1), but we will not assume this here.
Let x be a Heegner point of discriminant D on XO(N) . Then the point
Py = ) S ¥ )%
o €Gal(l/KR) o €Gal(H/K)

where the sum is taken with respect to the group law on E(H), belongs to

E(X) . Up to sign, it is independent of the choice of the Heegner point x,
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and we have the formula
-~
h(PK) - s(c‘,f) * deg(w) ,

where the canonical heights are taken on the abelian varieties E and Jac(xo(N))
over K. The degree of w also appears when we compare periods:
lmlz - ” loauwl = czﬂwf|2/deg(‘n) .
defn. E(€)

Consequently, Theorem 6.3 of Chapter I with X=1 gives the identity
Theorem 2.1. L'(E/K,1) = "wllzﬁ(PK)lczui |Dl”2

Now assume that PK has infinite order, so L'(E/K,1) #0. The conjecture
of Birch and Swinnerton-Dyer then predicts that E(K) has rank | over Z and
gives an exact formula for the first derivative in terms of arithmetic invariants
of E. For each place p ott K which divides N, let my be the order of the
finite group of connected components in the Neron model for E over 0n . Since
pePp=p is a rational prime, we have mp=mﬁ and hence (writing mp for this

common value) u\p-miﬂmp2 . Put m= Tl @ . Finally, let IlﬂK| denote the

piN
order of the Tate-Shafarevitch group of E over K; this integer is conjecturally
finite and, if so, is a square [35] . Then the conjecture of Birch and

Swinnerton-Dyer predicts the identity

' 2 2, 2 = . 1/2 ] 2
LUER, D = floll® e n o her) - | /D] TE®) cZRy]

[35]). Theorem 2.1 confirms this up to a rational square and suggests:

Conjecture 2.2. 1f Py has infinite order in E(K) , then it penerates a

subproup of finite index and this index equals c-m-uK-lmKII/2 .

Notice that in Conjecture 2.2 the integer m 48 an invarlant of E over

*
Q , the integer u. = Card(0 /+1) 4s an invariant of K , and the group LUK
{s an invariant of E over K . The integer ¢ 1is an invariant of the para-
metrization 1© of E over Q , which also enters into the definition of the

point PK . However, if w' 1s another parametrization of E we have
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“I’-: o' =ng°%® for some integers n, n'21. Hence n'c'=nc and n‘l"'( =nP,
s0 Conjecture 2.2 is independent of the parametrization chosen. We henceforth
assume that w is the parametrization of minimal degree for E; this minimizes

the index of ZPK in E(K) .

Since the index of ZPK in E(K') is certainly divisible by t = }E(qQ)

Conjecture 2.2 implies the simpler

tor

Conjecture 2.3, If E(K) has rank 1, then the integer ce+m* ' IURKI'/Z is

divisible by t.

(Notice that this makes sense even without knowing that mk is finite,
since in considering the divisibility of IﬂlKl by a natural number n we may
replace ll.lK by its n-torsion subgroup, which is known to be finite.)

Conjecture 2.3 can be attacked using descent techniques. In many cases,
t divides the term c¢c*m , which depends only on E over Q . For example,

when N = 11 there are 3 curves to consider,

E c m t
Ey = Jo11) 1 5 5
Eg/ug = 3,(11) 5 1 5
Byl @/5) 1 1 1

However, the identity t = cm does not always hold; when N = 65 = 5°1) we

have 2 curves, with invarfants:

E | e | = 1 ¢

Eo - J0(65)/<v5.w13> 1 1 2

50/ @&/2) 1 4 2

K"®
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Conjecture 2,3 for the curve E = Eo predicts that 1f X 1s imaginary quadrat-

ic where 5 and 13 are split, then either

a) K= Q) (s0 u =2), or
b) UKE/K), # 0, or

c) rank(E(K)) > 1,

Using results of Kramer [22], one can show that for K # Q(1) the 2-Selmer
group of E over K has rank 2 4 over Z/2 . Hence either b) or ¢) 1s true,
We now show how these results concerning the Birch - Swinnerton-Dyer
conjecture over K can be used to prove the statements concerning the same
conjecture over @ stated in Theorem 7.3 of Chapter I. This theorem is trivial
if L'(E,1) =0 (take P=0), so we can assume ords=l L{E,s) =1. In particular,
the sign of the functional equation of L(E,s) =L(f,s) is -1, so f[wN=f .
As in §1 we choose a K by Waldspurger's theorem so that Ls(f,l) #0. The
function Lc(f,s) is the L-~series of E' over Q, where E' is the twist of E
by K (i.e. the elliptic curve defined by Dy2-x3+ax +b, where y2=x3 +ax+b
is a Weierstrass equation for E). By the theory of modular symbols [25), we

have
L(E',1) = o' Q' ,

where 0' is the fundamental real period of the Néron differential w' =w//[D]
on E' and a' is a rational number, which by our choice of K is non-zero. We

also have the identity

wz 0
'—Ll'llﬁ' [ER):ER)] « 02 - 0O,
D

If we take P = PK+—F7( € E(Q), and combine Theorem 2.1 and the last two

formulas, we obtain the desired formula L'(E,1) = aQ h(P) with a€Q*.
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Finally, we recall that the Birch - Swinnerton-Dyer conjecture applies to
abelian varieties defined over number fields, not just to elliptic curves; our
result says something about this more general case. Namely, let f = Zan qn
be a Hecke eigenform of weight 2 and level N whose Fourier coefficients do

totally rea
not lie in Q but instead generate ambLeT—fild Kf of degree m (i.e. f
lies in an m-dimensional irreducible representation of the Hecke algebra over
Q). Then one can associate to f an m-dimensional abelian variety AO/Q
which is a quotient of the Jacobian of XO(N) . The L-series of AO , or of

any abelian variety A isogenous to A, over §, is given by

0

(2.0 L(A/Q,s) = T Le®, 8) .
a:K. <R

f
Now assume that
f]wN = f , so that the sign of the functional equation of L(f,s) is =-1.
Then by Corollary 1.3 we know that the order of vanishing of L(A/Q,s) at
s=1 is either m or 23m, depending whether L'(f,1) is non-zero or zero.

Moreover, (2.4) gives the identity L(m)

(A,s) = lgL'(fu.l) . We now imitate
the argument for the case m=1 to show that ords“ L(A/Q,s) = m implies
that rk A(Q) 2 m (the space A(Q) ®R contains the m-dimensional subspace

spanned by the <y f“) and that if equality holds the Birch - Swinnerton-Dyer
’

formula for L(m) (A/Q,1) is true up to a non~-zero rational multiple.

§3. Generalized Heegner points and their relation to L-series

In §1 we related the main theorem of Chapter IV, under the assumptions

k=1 and
3.1 e(p) = 1 for all p|N ,

to the computations in Chapters 11 and III of heights of Heegner points on
XO(N) . However, a glance at Theorem 6.9 of Chapter IV shows that the formula
for LA(E,\) when k=1 and e€(N)=1 is of essentially the same nature when

(3.1) is not fulfilled as when it is. Morecover, Thcorem 5.6 of Chapter IV (for
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k=1), giving LA(f,l) vhen €(N) =~-1, also has a similar (though wuch simpler)
form. We would therefore expect that there is again a connection with the heights
of Heegner-like points on some algebraic curve. This is indeed the case and
will now be described briefly. The detailed proofs, which follow the lines of
the height computations:in this paper, will be given in a later paper; the
simplest case, when N is prime and €(N)=-1, is worked out in detail in [16].

Let S be the finite set

S = {p]| p prime, ordp(N) odd, e(p)=-1} .

Then (-l)lSI

=¢(N) , so the parity of IS| corresponds to the sign of the

functional equation of LA(f,s) . If |s| is even, so that LA(f,s) has an

odd order zero at s=1, we define B to be the indefinite quaternion algebra

over- @ ramified at S ("indefinite case"), while if ISl is odd, so that

ords_1 LA(f,s) is even, we take for B the definite quaternion algebra over

Q ramified at SU({») ("definite case"). Since every prime which ramifies

in B is inert in K, there is an embedding j:K—B. Let R be an order in

B vhich contains j(0) and has reduced discriminant N. Such global orders

exist [B); in the indefinite case they are unique up to conjugacy whereas in

the definite case there are finitely many conjugacy classes. The group

T = Rx/{tl) embeds as a discrete subgroup of the real Lie group C= (B@R)llﬁx.
In the indefinite case, the group G is isomorphic to PGLZ('R) and

r*- rﬂPGL;(R) is an infinite Fuchsian group which acts discretely on H. If

(3.1) holds then T = T (N) and we are in the case studied in this paper; in

all other cases the curve F*\H is a compact Riemann surface. An important

theorem of Shimura {32] states that this curve has a canonical model X over Q.

This model is characterized by the fields of rationality of its special points

and has a modular description as the coarse moduli of polarized abelian surfaces

with endomorphisms by R. The Hecke correspondences are rational over @ and

determine the zeta-function. The embedding j:0 -+ R gives rise to a Heegner

point x of discriminant D on X, rational over the Hilbert class field H of K.
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The group Pic(0) acts freely on the set of Heegner points of discriminant D,
the action being described via conjugation in Gal(#/K) by Shimura's reciprocity
law. The generalization of our main identity says that the coefficients a0 A
in Theorem 6.9 of Chapter IV are given by a fixed multiple of <x, me0A> N
where <, > is the height pairing on Pic(X) defined using the Néron-Tate thcory.
The necessary height computations are similar to thuse in Chapters II and III of
this paper. For instance, the number x =- ',Ti% TITU + 1:ipl)-.‘ which occurs in
pIN

Theorem 6.9 of Chapter IV arises (just as in the special case,(2.13) of Chapter

II) as the residue of the resolvent kernel function G, for X(€) at s=1.

In the definite case, CNSO3(R) cPCLZ(C) and T 18 a finite group which
acts on P‘(c) . The quotient I‘\r‘(t) is again n compact Riemann surface, now
always of genus 0, and one can again construct a canonical model of this curve
over @ : it is simply T\Y, where

Y is the curve of genus 0 over Q which corresponds to the quaternion algebra

n
B. To define Hecke operators one must work with the disjoint union X = || I‘i\"'
i=1

where n is the class number of R and I‘i is the projective unit group of

the right order of - the ith

left ideal class. (This union is a natural double
coset space in the adélic point of view.) The repreg¢entation of the Hecke algebra
on Pic(X) «z" then gives rise to the classical theory of Brandt matrices {16].
Again j:O0-R gives a Heegner point x of discriminant D on X, this time
defined already over K, and Pic(0) acts freely on the et of such Heegner
points. We define a height; pairing < , > on Pic(#) by setting <x,y> equal

to 0 if x and y are on different components of X and to |I‘i| if x and y
are both on the component I‘i\Y . Our main identity in this case says that the
coefficients bm,k occurring in Theorem 5.6 of Chapter IV (for k=1) are fixed
multiples of «<x ,mecA> . An argument like that is. 31 of this chapter permits
us to deduce a relatjonship between L(f,x,1) and ’Xl £ ,th> for a newform
fESz(I‘O(N)) and character y: CIK - €", where X, f ic the obvious eigencompmer

fixed *
Since X, ¢ lies ihl-dimcnsional space as K varies, the theorem of Waldspurger
’
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and Vignéras (cf. [36]) that L(f,1,1) 1is proportional to the square of an

element of Kf follows immediately.

§4. The case k>1: higher weight cycles and an algebraicity conjecture

We now return to the hypothesis (3.1), but assume that k>1, Recall
rime to N m

that for s €€ and mE;-ﬁ Ywe defined an invariant Yy s(A) in Chapter II
’

m m T _10
by Yn,s(A) TEGGN’B(X ,X ) , where
x is a Heegner point of discriminant D,
g is the eclement of G=Gal(H/K) corresponding to A, and

m .
GN,s GN,sle N GN,s the resolvent kernel function for I‘O(N) .

If rA(m) # 0, then some of the terms in the sum defining YS s(A) become

infinite and the definition of 7‘;; s(A) has to be modified as explained in
’

§5 of Chapter II. The final formula obtained for y: S(A) (Proposition

5.8 of Chapter II) can be expressed using Proposition 4.6(a) of Chapter IV as
m 2 v 2nN
n|
YN.ﬁ(A) 2u nzioA(n) rA(nNﬂnlDI) Qs-l“ * ml!)f

+2hur,(m) ﬁ(s;)- 1o 2-n+llog|D| + L:(1 €)
A T 8 2 L ’

Comparing this with the formula for a A in Theorem 5.8 of Chapter IV, we
’
see that we have the following analogue for higher weight of the main identity

proved in §1t :

Theorem 4.1. Suppose (3.1) is satisfied, k an _integer greater than 1. Then

there is a holomorphic cusp form © = ) an A q" € $,, (To(M))  satisfying

mz1

LI(f,k) = 21 2K (£,0) for all festo™(r )
At =y (B for all 15, (I

and with a (m prime to N) given by
—— "m,A

k-1
m m \ ' _ _2nN
4.2) A" T,r*n,k(") - m 0<n2<‘“'”' oA () 1y (mIDI-nN) P, (1 -2
"N

. 20N . . ' . . :
Since P __ (1 -m)rA(mlbl—nN) is rational and o,(n) is a rational linear
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combination of logarithms of primes (indeed, by the remark following Proposition
4.6 of Chapter IV, a nonnegative even integral multiple of the logarithm of a
single prime), equation (4.2) expresses a 4 3sa finite sum of values of

G:,k at Heegner points plus a finite sum of rational multiples of logarithms

of prime numbers. This is reminiscent of the situation for ‘k=1 and suggests
that there should be an interpretation of the right-hand side of (4.2) as some
sort of a height. In fact such an interpretation has been provided by Deligne,
who found a definition of lileegner vectors 5, in the stalks above Heegner

2k-2(_H_l) (}1‘ = first cohomology

points x of the local coefficient system Sym
group of the universal elliptic curve over XO(N)) and of a height pairing

<,> such that <s_,T s
x

nSx0 > am,A . The height pairing is defined as the

sum of local heights characterized by axioms similar to those of §4 of Chapter I,
and these can be calculated using intersection theory at the finite places and
values of a certain eigenfunction of the Laplace operator (which turns out to

be GN,k) at the archimedean places. Moreover, the definitions can be carried
over to the case when (3.1) is not satisfied (now with XO(N) replaced by the

21(“2(21_1) by the local coefficient system

curve discussed in §3 and Sym
I‘*\HKH or ll[‘i\l"1(c)xw, where W is the unique (2k-1)-dimensional irreducible
representati;n of B*/Q*), and one again gets a formula relating the heights
of the Heegner vectors to the values of LA(f,k) or Li(f,k) as calculated
in Chapter IV. However, the global significance of the sum of the local heights
is not yet understood (e.g.: under what circumstances does the height pairing
vanish?), so ;hac we do not get applications of the sort given for k=1,
However, even in the absence of a complete height theory, the identity (4.2)
is not devoid of interest. Suppose, for instance, that therc are no non-zero
cusp forms of weight 2k on FO(N) . Then am,A must vanish for each m, and

(4.2) gives us an explivit formula for (A) as a rational linecar combination

m
YN,k
of logarithms of rational primes. If S. (F (N)}) 1is not 0, we replace G

2k°0 N,k

by the function

m
GN‘k’l(z,,zz) = X lm m GN,k(zl’zZ) N




e
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where A = “m}mzl with -

i) Ay €Z, lm-O for all but finitely many m,
ii) Aa =0 f -
mg‘ 2 %n or any cusp form Zamq ESZk(I‘O(N)) ’

and (for convenience)
iii) Am-O for m not prime to N

(we call such a A a relation for SZk(ro(N)) ). Then (4.1) implies that the

invariant
v k-
Y A = ol YR () = G T, x™°
Nk, mz‘ m T, -rgc N,k,l(x »x )

is a rational linear combination of logarithms of prime numbers:

Corollary 4.3. Suppose (3.1) is satisfied, k>1. Let ) be a relation

for Szk(l‘o(N)) and A an ideal class of K. Then

1 nN

k-1
A mw oj(n) r,(miDI-nN) P (‘I-T—-‘).
w,n€z © Av A k-1 miD
riDl2aN> 0

k- m 2
Nk, a4 - mZOX‘“m hur, (m) logg + u

k-1
. D . .
In particular, exP(T Yy K X(A)) is a rational number, and in fact a rational
A At

square unless |D| is prime.

To prove the last statcment, multiply both sides of the formula by Dk.‘/u2 .

Then the terms in the second sum with m|D| >nN>0 are even integral combinations
of logarithms of rational primes, because mk_lbk-|P (1 ——ﬂan) r,(mID}|-nN) and

P ’ k=1 ol * TA

A, are integers and cxi(n) is an even multiple of the logarithm of a prime. In
the terms with m|D] =nN (these can occur only for N=1, since we are assuming
both m and D prime to N) we lose a factor 2u because rA(O) -2_‘u but gain a
factor of = DX (cancelling at least the u) because Pk__l(-I) (-(-l)k—l')
has no denominator. If D has more than one prime factor, then the extra factor
of 2 in these terms is gained because the numbers ap(n) in Proposition 4.6 of
Chapter IV are divisible by 4 rather than just 2 when D|n (because 4}6(n)).

k“‘/uz is always an integral

Similarly, the first sum in 4.3 nultiplied by D
multiple of logs and this multiple is even if |D] is not prime because 2|h .

Let us return for a moment to the case k=1, and consider the interpreta-
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tion of the formula for N K A(A) there. We know from Chapter II that
[ F YN

the individual terms (x*,x°")  in the definition of Yy 1 1(A) are
» A

Cn,1,0

the local height pairings at archimedean places of the divisors

) A, Tp(G)~(=)) and (x%)-(0) . On the other hand, the action of the
mz1 .
Hecke operators on JO(N)) is the same as that on SZ(I‘O(N)), so the fact

that A is a relation for SZ(TO(N)) means that {xmwma is a principal
m
divisor for any divisor a of degrce 0. In particular, Elm'l‘m((x)—(n))
m
= (¢) for some rational function ¢ on XO(N) defined over H, and thon

the axioms for the local height pairings imply

e}y 0y - ¢(x%

<m);1 A Tl G =(=)) [ (x)~(0) > log |W‘v

for any place v of H. In particular, the numbers GN 1 ', x°h
] 9

are
the logarithms of the absolute values of the conjugates of an algebraic
number lying in the class field H. It is then natural to expect that the

same thing happens for k>1:

Conjecture 4.4. Let the hypotheses be as in Corollary 4.3 and fix a Heegner

point x and an embedding H<+C€. Then there exists a number a€n” Ruch

(xT ’xor) = u2D1-k log |a

that G Tl for all T €G =Gal(i/K) .

Nk, A
This conjecture is at least compatible with Corollary 4.3, which, if the
conjecture is true, gives an explicit formula for the prime decomposition
of the absolute norm of the number a. In fact, one can give a more precise
version of Conjecture 4.4, based on t'te form of the ecxpression for YN,k,X(A)
in 4.3, which predicts which ideal a‘ generates and hence specifies a up-‘to
(The details will be given in a later paper.)
a unit. / Together with 4.4, which specifies the absolute values of a at
archimedean places, this determines a up to a root of unity and also allows
numerical computations to check the conjecture. We end with numerical examples
to illustrate 4.3 and 4.4. We take the simplest case: D=-p with p>3 4
prime congruent to 3 (mod 4) , A = [0] the trivial ideal class, N=1, k=3

and X = (1,0,0,...) (this is permissible since SI‘(SLz(Z)) ={0}) . Then
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YNk A(A) equals 2 G(z) where the sum is over all h(-p) points z GH/SchZ)
2Ky A z .

satisfying a quadratic equation of discriminant -p over Z and G(z) =

G1 2(z,z) (defined as in §5 of Chapter II by a limiting procedure). For
’

ivp.
primes with h(-p) = 1, Corollary 4.3 gives a fomula for G(—‘-—t—;-—2 y €.8.

c(l-lzi—'/z) ~log 7 - 210g3 - Ziog 5 ,

1+i/43 2 56729
G(“"?F‘"') log 43 + Zi-log FTIT35E

1+1/T€§ 2 22335673719125
G(=—=—) = - log 163 + Te3 log 3TET175,302591707573T *

The recader can check these numerically using the expansion (to be proved in

a later paper)

1oy o 20 _119c(3) =2 _ . _ 480 _ 240 \ -2ny
C(E*xy) T Ty (8 Y "—;—y-y)e

283968 70992 ~4my ~6ny
= + —r=)e + 0(e )

(4.5)
- (282876"’*}—— T2y
(with an O( )-constant of about 108). For the prime p=31 with class number

h{(-p) =3, Corollary 4.3 gives

- - log 31 - 32—1 log 31161181782330

1+i/31, 1+1737,
7 °*C

e NN

G(

and Conjecture 4.4 (or rather, the more precise form of it mentioned above)

predicts

Su_31_13 _6 _30
1+iv31 _ _ 2 LEOE Fot B EIRRIR
G(—-—E——o log w3, 3T log a1 o ,

. 3 2
for some n€Z , where 0%1.465571232 is the real root of 0 -0°~-1=0 and
the "q are the prime clements (of norm q)
my=8+1, mg=3/my, my, =30-4, Tagy =HU/my s Ty =043, m,, =-30+45, Ty, = 3641

in the field Q(0) (which equals Q(j(l—i%~il)), the real subfield of the Hilbert

class field of Q(v¥-31)). Using (4.5), the reader can check that this holds

numerically to at least 15 places with n=61.
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On _canonical and quasi-canonical liftings

Benedict H. Gross

1. let F be a field complete with respect to a discrete valuation, with fi-
nite residue class field. Let A be the ring of integers in F, let T be a
prime element in A , and let g be the number of elements in the residue

ficld A/mA .

Let k be an A-algebra, with structural map 1 : A+ k . A formal A-module

(C,g) of dimension 1 over k is, by definition [1,51]:

(1.1) a commutative formal group G of dimension 1 over k

(1.2) a homomorphism g : A~ Endk(C) which induces the map 1 on
the tangent space: Endk(Lie G) =k .

If k 1s a fileld and ker 1 = nA , the endomorphism g(n) {s either zero
or a purely inseparable isogeny of degree qh for some integer h 21 . In
the latter case, we say (G,g) has height h . If (C,g) and (G',g') are

two formal A-modules over the A-algebra k , we define:
1.3 llomk((c,g),}((l',g'))- {f ¢ Hom, (G,G') : fog = g'of} .

If k 1ia a scparably closed field, the height is a complete i{somorphism invar-
fant of a formal A-module, and any value h 2 1 can occur. The ring Endk(c,g)
of a formal A-module of height h over a separably closed field {s Isomerphic
to the maximal order in the division algebra B of invariant 1/h over F

(1,Prop.1.73.

-2~

Henceforth we will usually drop the g in our notation.

2. Let X denote a separable quadratic extension of F , let 0 be the ring
of integers in K , let p be a prime element in O , and let qf denote the
cardinality of the residuc field 0/p0 . We have f = 2 1f 0 is unramiffied
over A ; otherwise f =1 . Let W be the ring of integers in the maximal

unramified extension M of K . Then p 1s a prime of N' and W/pW = k 1s

algebraically closed.

Let G denote the unique formal A-module of height h = 2 over k . The
ring R = Endk(c) i3 isomorphic to the maximal order in the quaternion divi-

sion algebra B over F . Fix an embedding
(2.1) a: 0<R

such that the action on Liek(G) = k 1is the reduction map (mod p) . Via a ,

the formal A-module G inherits the structure of a formal (O-module of height 1 .

Proposition 2.1 There is_a formal O-module G over W , unfque up to W-iso-

morphism, which reduces to G (mod p) .

Proof. Lubfn and Tate [4) construct a formal O-module G over 0 with

{

g(p) [x) = px + x1

Since G has height 1 over 0/p0 , it becomes isomor-
phic to ¢ over W/pW = k , which {s separably closed. Since height 1
0-modules have a trivial deformation space [5;1,prop.4.2] the 1lifering G 1is

unique up to W-isomorphism.




3. We shall henceforth consider the formal O-module G constructed in (2.1)
as a formal A-module over W , with reduction G of height 2 over k . We
will refer to G as the canonical lifting of the pair (G,a) ; we note that
Endw(g) = 0 and Endw/Pw(g) = R ,

For n 21 we define R = End G , so RO = R . The reduction of

. n-1 W/p
homomorphisms (mod p') gives injections:

S ey S ve s &R <R
3.1 Rn Ru—l Rn-2 1 —>_

Since W 18 Hensclian, we also have:

(3.2) N R =0.

n0

Proposition 3.3 For n 21 we have R = 0+ p"R .

Proof: We shall first show that Rn__l/Rn is isomorphic to 0/p0 as an O-

module.

Choosfing co-ordinates, we may assume G 1s given by a formal group law
G(x,y) over Wilx,yll , and appeal to the formal cohomology theory developed
by Lubin-Tate [5,52] and Drinfeld [1,541. Let Cl(x,y) be the partial deriva-
tive of G(x,y) € klix,y}]] with respect to x . Thea G, has constant term

1
1, so Cl(o,y) is an invertible power series in k{([y]] .

For an endomorphism f(x) ¢ Rn- we define the series:

1

-

agGay) = 6 (0,6(£6),EN™  1a kllx,y)] .

BeG) = 6 (0,£GN™  tn KC[x1] .

The data:

(3.4) A(E) (x,y) = o (6, yILE(G(x,y)) - G(E(x),£(y))]
Ga(f)(x) = Bf(x) [f(a(x)) - a(£(x))] acA

define a symmetric 2-cocycle of the formal A-module G [1,pg 5711 with coef-
ficients in pn/pn+1 . The cohomology class of (A,Ga) depends only on the
class of f (mod Rn) » we denote the resulting map:
n+l

(3.5) O.n : Rn_]‘/RnHﬂz(g,pn/p

)

Applying o to the endomorphism p ° f , we find:

A(pef)(x,y) = ﬂpof(x,y)[p°f(g(x,y) =~ G(pef(x) ,pef(¥y))]

- ap,f(x.y)[p°f(§(X.y)) - peG(f(x),£(y))]




v

Similar arguments apply to 63(p°f) ,» 80 by (3.5) the 0O-module R

4
E
¥
b
3
:
b
3
#
4
k-
3

F

—5-

a8 p 1s an endomorphism of G over W . Writing upof(x,y) - cp(x.y)uf(x,y)

f
and recalling that p(x) = px + x3 » we finds

£ £
Alpef)(,y) = e (x,y) « p + M) (x,y) +ap,f[f(E(X-y))q - GUEG) £y ]

n+2)

cp(x,y) *p ¢ ACE)(x,y) (mod p

n-1
nihilated by p . Furthermore, we have a commutative diagram:

2 n, ntl
(3.6) @ R /R S——> H(G,p /p" )
p )
2 n+l, n+2
a4 ¢ RY/R L E—rHI(G,pT M)

Since Rn and Rn-l are both free O-modules of rank 2 which contain

0, Rn—llkn is a cyclic 0-module. Hence it is fsomorphic to 0/p0 or is

trivial. We will show that Rn-I/Rn = 0/p for all n21 ; by (3.6) it

suffices to show that R/R1 is a non-trivial O-module.

First assume that 0 15 unramified over A . In this case we take

2
p=1 s0 p(x) = nx+x? and the formal module G 1s defined over A .

Hence G (mod p) 1is rational over the finite field A/t of q elements,

/Rn is an-

and j(x) = x3 defines an endomorphism (mod p) . To show that j(x) does
not come from the reduction of an endomorphism (mod pz) , we compute (cf.,

(3.4))
6“(1) = (‘nq-'n)xq+tems of higher dégree.

Since the coefficicnt of x7 18 non-zero (mod pz) » this shows that

ul(J) $0 in Hz(g.p/pz) = pwlpzw [5]. 1In this case we have R = 0+03 .

Next assume that 0 1is tamely ramified over A » 80 the characteristic
of A/m is odd and 0 = Alp) with pz =T . Since p(x) = px+x3 we
have 7(x) = ﬂx+(p+pq)xq+xq2 « In this case, R = 0+0j where jz -u
is a unit of A which is not a square in (A/'n)* . Hence J(x) = vx+.,.

where v2 Zu in Wp and v Z v (mod p) . Then

6“(1) - (v—vq)(p+pq)xq+terms of higher degree.

Since the coefficient of x9 is non-zero (mod pz) , this shows that

o) fo.

Finally, assume that 0 1is wildly ramified over A with different
ideal D = (Pe) - Then the residue characteristic of A/n is equal to 2 .
If O = Alp] then p satisfics the Eisenstein equation xz-nx+'n -0
with ordp(Zp—a) = e . Since 2p has odd valuation and a has even
valuation, there is no cancellation and 2 = 0 (mod pe-l) . In this case
the group F*/NK* is generated by a unit u with ordn(u—l) = e~1 and
B = K+Kj with jz = u . The maximal order R is given by R = 0+pl-e(H-j)

1-
and the element p e(.H-j) is a unit vhose residue class does not lie in

*
(A/1) . An argument similar to the tamely ramified case now shows that

6,17 (143) 7 0 (mod p?)




-

By the remarks preceding (3.6) we have Rn 20+ an « Since both of these

rings have the same index in R , they are equal.

4. There 18 a further description of the subrings Rn » which is quite useful.
By the theorem of Skolem-Noether, there is an element J e B“/K‘r such that
conjugation by J induces the non-trivial automorphism of K over F . When
0 1s unramified over A we may choose j to be a Frobenius element satisfying
jz = W. When 0 1is ramified over A we may choose j with jz =1 (ne'.l) .

where D = (7%) 1is the discriminant. In any case, we obtain a decomposition
(4.1) B=K+Kj=B +B_

The reduced trace and reduced norm of an element b = b+ +b_  are given by:

Tr(b) = 'rr:(b+)
(4.2)

W(b) = &(b) +®(b) ,

and we have the following characterization of the rings lu .

Proposition 5.3 For n 2 0 wve have

od nl'ehf}

"
o

R“-(ch:Tr(b) e A, IN(b) €A ,MNb)

0 mod T ¢ ONp)“}

={bcR:De+INGD)
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Proof: We first observe that R {is the subring of all b € B with Tr(b) and

N(b) 4in A . Thus the two deacriptions above are equivalent.

If 0 45 unramified over A, e =0 and £ = 2 . Then R=d+0§ and
by (3.3) we have Rn -0+ pnj . Since N(p“j) has valuation 1 + 2n , this

gives the result.

If 0 is romiffed over A, e21 and f=~1. Then R=0 + pl-e(l-i-j)

l1-c4n l-ein

and R = 0+p (1+§) by (3.3). Since N(p ) has valuation

l-e+n, this gives the result.

5. Recall that M 1is the quotient field of W , the maximal unramified exten-

slon of 0 . Let T denote the Tate module of the formal O-module G over

W: T=1lnG n(ﬁ) . Then T 1s a free 0-module of rank 1 with an action
fi

— P
of Gal(M/M) . Put V=T 80 K.

If T<T ©V 18 an A-submodule of V with T'/T finite, then T'
gives rise to an isogenous formal A- module g' over M. Ifwe let T be
the finite A-module associated to T'/T in V/T = E(i)totsion + then an ex-
plicit isogeny f : G+ G' 1s given by Serre's formula (3, pg 2981:

«

(5.1) f(x) = NG(x,Y)
r

From this we can conclude that G' and f are both rational over the integers
W' of the finite extension M' (ixed by the subgroup of Gal(M/M) stabiliz-

ing T' . Since each Y lies in the maximal ideal of M , we have:




4 et b

TR

(5.2) G'=C  (mod p")

where p' is a prime element of W' .

The endomorphism ring 0' = Endw,(g') ig the order of all a € 0 which
stabilize the A-lattice T' . Since this contains A , there are two possi-

bilities:

a) 0*=0

b) 0' = A+ 1°0 = 08 for some 8 2 1 .

In the first case, G' is isomorphic to G and W' = W . In the second case

we say that G' 4is a quasi-canonical lifting of level s of the pair (G,a) .

Proposition 5.3 1) Quasi-canonical liftings g' exist for all levels

s 21.

2) The lifrinps of level s are rational over the integers

* *
W' of the abelian extension M' of K with norm group 08 in K . They

are permuted simply transitively under the action of the Galois group

Gal(M' /M) = (0/1°0)*/(A/m®A)" , which has ouder ¢® (¢ 4 1) if 0 {s unrami-

fied over A and q° 4if O 1s ramified over A .

3) The formal modulus of the height 2 A-module G' has

valuation 1 in W' . In particular, the A-modules G and G' are not iso-

morphic (mod p'z) .

Proof: 1) To construct a lifting level s , write T = Ot and take
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T' = ﬂ'B(O8 ©t) =W At + T . Then T'/T = A/1°A and clearly

facO0:o01'" cT'} = o, .

2) The theory of Lubin-Tate [4] shows that M' 1is the ring clase ficld
* *

wvith norm group 0B . Since multiplication by 0 permutes the choices for T'
* *

transitively, the Galois group (0/n°0) /(A/n°A) permutes the different quasi-

canonical liftings of level 8 eimply transitively

3) The Newton polygon for nc(x) looks like:

] } R\f‘:%—;)

. ~~ (4,¢)
— |
+ —— A
- ; "

if 0 is rémified over A . We may factor the cyclic isogeny f as a compo-

sition:

S G ¢E

<+ ...—>>GC ~g'
0 1 -

2

where ker f1 = A/TA 1is a non-canonical A-submodule of the "-torsion of G, .

i
By Lubin's theory [2], the Newton polygon for LS has a break at the point
i
(q, ) 1f 0 1s unramified over A , a 1
- » and at tl i -
qi 1(q+1) e point (q, i) if

q
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0 is ramified over A . Since the y-coordinate is the reclprocal of the de-
gree [W':W) , the formal modulus of G’ has p'-valuation one [5].
Since the formal modulus of the lifting G lies in pW , it has p'-valua-

- tion greater than or equal to deg[W':W] = 2 . Hence the groups G and G'

are not isoworphic ' (mod p'z) .

6. One can extend ;he results of the proceeding 3 sections to liftings of di-

visible A-modules of height 2 , in the sense of Drinfeld [1,54]. When A = Zp
this theory was developed for the p-divisible groups of ordinary elliptic curves
by Serre and Tate [6]; we sketch the general theory here in the hope that it may

clarify some- of our'terminology.

Over a separably closed field k the divisible A-wodules of height 2 are
either formal modules or isomorphic to H X (F/A) , where H is the unique for-
mal A-module of height 1 and (F/A) is the unique étale A-module of height
1 . The canonical Ufting G = H X (F/A) to W has End (C) = EndH/pH(E) -

0= AXA.

By Serre-Tate [6], the other liftings of G = H X (F/A) to W are classi-
fied by elements in the A-module Extl(F/A.ﬁ) = H(W) . The quasi-canonical
liftings G' correspond to A-torsion points h in H(W) . If h has order
7 the lifting G' of level s {8 rational over the abelian extension
W' = Wh] of degree qsnl(q - 1) . All of the quasi-canonical 1iftings of this
level are'permuted simply transitively by the Galois group and have endomorphism
ring Endu.(g') - 0s = {(a,b) e AXA :a=b (mod %)} . Finally, G' s con-
gruent to G (mod p') but not (mod p'z) ; this follows from the fact that h

is a uniformizing parameter in W' .

1.

2.
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