
Geodesic loops and periodic geodesics on a

Riemannian manifold diffeomorphic to S3.

Regina Rotman

July 4, 2006

Abstract

Let Mn be a closed 2-connected Riemannian manifold, such that
π3(M

n) 6= {0}. In this paper we prove that either there exists a
periodic geodesic on Mn of length ≤ 6d, where d is the diameter of
Mn, or at each pont p ∈ Mn there exists a geodesic loop of length
≤ 2d.

Introduction and main results.

In 1951 L. Lusternik and A. Fet proved that on any closed Riemannian
manifold there exists at least one periodic geodesic. Their proof uses Morse
theory on the space ΛMn of all continuos maps f : S1 −→ Mn. In a
similar way one can show that at every point p of a closed Riemannian
manifold there exists a non-trivial geodesic loop based at that point. The
later statement also follows from a well-known result by J. P. Serre [Sr] that
states that for any two points of a closed Riemannian manifold there exist
infinitely many geodesics connecting them.

It is, therefore, reasonable to ask whether there is a connection between
the length of a shortest periodic geodesic/ geodesic loop at a point and
other geometric parameters of a manifold. For example, in 1983 M. Gro-
mov asked whether one can bound above the length of a shortest periodic
geodesic l(Mn) on Mn by c(n)vol(Mn)

1

n , where vol(Mn) is the volume of
Mn and c(n) is a constant that depends on the dimension of M n only. A
similar question can be asked about the relationship between l(M n) and the
diameter of a manifold d. In particular, one can state the following
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Conjecture A. Let Mn be a closed Riemannian manifold of dimension n.
There exists a periodic geodesic of length ≤ c̃(n)d, where d is the diameter
of the manifold.

Moreover, it is possible that the length of a shortest periodic geodesic is
always bounded by 2d.

Similarly, one can conjecture

Conjecture B. Let Mn be a closed Riemannian manifold of dimension
n. Then there exists a geodesic loop of length ≤ 2d, where d is the diameter
of Mn at every point p ∈ Mn.

Theorem 0.1 below asserts that for every closed Riemannian manifold
with π1(M

n) = π2(M
n) = {0} and π3(M

n) 6= {0} either Conjecture A or
Conjecture B is true.

In [R3] we have established that for every point p ∈ M n the length of a
shortest geodesic loop at p, where Mn is a closed Riemannian manifold of
dimension n is bounded by 2nd and even ≤ 2qd, where q = min{πi(M

n) 6=
{0}}. However, the question about whether the length of a shortest geodesic
loop is bounded by 2d at each point of Mn still remains unanswered for
simply connected manifolds, even when M n is diffeomorphic to S2 and even
in the case of convex metrics on a 2-dimensional sphere.

Note that prior to [R3] there existed only the result of S. Sabourau [S2]
asserting that the shortest length of a non-trivial geodesic loop on the whole
manifold is ≤ k̃(n)d, where k̃(n) = (8·3n

−2)d
3 . In this case the base point p

is not prescribed.

We would also like to mention that the length of a shortest geodesic
loop cannot be uniformly bounded in terms of the volume of a manifold at
each point p ∈ Mn. That is, there does not exist a constant k(n), such

that lp(M
n) is bounded above by k(n)vol(Mn)

1

n for every p ∈ Mn. As an
example consider an ellipsoid E that is also a surface of revolution, that is
a surface generated by an ellipse that is rotated around its major axis. Let
R denote its polar radius and p ∈ E be its north pole. All the geodesic
loops based at p are ellipses, (in this case the geodesic loops also happen to
be periodic geodesics) (see fig. 1). Therefore, when the smaller semiaxis is

fixed and R goes to infinity, the ratio lp(E)√
A(E)

approaches infinity as well.

However, one can estimated the shortest length of a geodesic loop on the
whole manifold by volume, as it was first indicated by S. Sabourau in [S2].

It is easy to see to prove the following
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Figure 1: There is no uniform volume bound for the length of a shortest
geodesic loop at a point.

Observation C. Let Mn be a non-simply connected closed Riemannian
manifold. Then both the length of a shortest periodic geodesic and the length
of a shortest geodesic loop at each point p ∈ M n are bounded by twice the
diameter of a manifold.

Proof. Let us begin by taking an arbitrary non-contractible map f : S1 −→
Mn, where S1 is subdivided into small segments, in such a way that the
diameter of each edge in the triangulation of f(S1) induced by f is smaller
than some small positive δ. Let D2 be the 2-disc that is triangulated as a
cone over the triangulation of S1. We will attempt to extend f : S1 −→ Mn

to D2, which is impossible. Thus, as an obstruction to this extension we
will obtain a non-contractible loop based at a prescribed point p ∈ M n of
length ≤ 2d+δ. Then we can obtain a non-contractible periodic geodesic by
minimizing the length in the free homotopy class of the loop. We can also
obtain a non-contractible geodesic loop based at p by shortening this loop
while keeping p fixed. The extension process will be inductive on skeleta
of D2. Let us begin by extending to the 0-skeleton of D2. The center
of the disc p̃ ∈ D2 is the only additional vertex of D2, (the rest of the
vertices are coming from S1). We will map p̃ to the point p ∈ Mn. Next
we will extend to the 1-skeleton. Consider an edge [p̃, ṽi], where ṽi is the
vertex in the triangulation of S1. We will map this edge to a minimal
geodesic segment [p, vi] connecting the point p with vi = f(ṽi). Finally, we
will extend to the 2-skeleton of D2. Take a 2-simplex [p̃, ṽi, ṽi+1]. The
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boundary of this simplex is mapped to a closed curve of length ≤ 2d + δ,
made of two minimizing geodesic segments and a “small” edge [vi, vj ] of
length ≤ δ.

The map of the boundary of at least one of such simplices must be non-
contractible, since, otherwise, we could have extended f : S1 −→ Mn to the
whole disc D2. Thus, we obtain a non-contractible loop based at p of length
≤ 2d + δ.

Letting δ approach 0 we obtain a non-contractible loop based at p of
length ≤ 2d. 2

We would like to note in passing that there are numerous volume esti-
mates for the length of a shortest periodic geodesic on non-simply connected
manifolds, especially in the case of surfaces. The first such results are due
to C. Loewner, P. Pu, followed by R. Accola, C. Blatter, C. Bavard, Ju.
Burago and V. Zalgaller, J. Hebda, T. Sakai and others (see [BgZ], [CK]))
M. Gromov’s generalized the above results for the class of 1-essential mani-
folds, which include all aspherical manifolds as well as manifolds homotopy
equivalent to projective spaces.

In the case of simply connected manifolds, the only curvature-free es-
timates exist for manifolds diffeomorphic to the 2-dimensional sphere, (see
[C1], [M], [NR1], [S1], [R1], [R2], [B2]). In particular, these results imply
Conjecture 2 for surfaces.

At present there are no known similar curvature-free upper bounds for
the length of a shortest closed geodesic l(M n) in the general case of a closed
Riemannian manifold Mn, though such bounds do exist for stationary 1-
cycles and geodesic nets, ([NR2]), [R4], [R5]) and minimal surfaces, ([NR3]).
Moreover, one does not know if the length of a shortest periodic geodesic
can be estimated in terms of diameter or volume for any diffeomorphism
type of simply-connected manifold Mn for n ≥ 3.

Even for a manifold diffeomorphic to S3 the only known estimate is this
of C. B. Croke, who found that on a manifold M n diffeomorphic to S3

the volume is bounded below by min{l(M n), D(Mn)}, where D(Mn) is the
minimal distance between the antipodal points, (see [C2]).

In this paper we will prove the following

Theorem 0.1 Let Mn be a 2-connected closed Riemannian manifold with a
non-trivial 3rd homotopy group. (For example, M n can be diffeomorphic to
S3). Then either the length of a shortest periodic geodesic on M n is bounded
above by 6d, or at each point p ∈ Mn there exists a geodesic loop of length
≤ 2d.
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In particular, we obtain curvature-free upper bounds for the
min{β(Mn), l(Mn)}, where β(Mn) denotes the supremum of the length of a
shortest geodesic loop at p taken over all of p and l(M n) denotes the length
of a shortest periodic geodesic on Mn.

F. Balacheff proved in [B1] an analog of our result in the case of simply
connected manifold Mn with a non-trivial second homotopy group. He
showed that in this case, either there exists a periodic geodesic of length
≤ 4d or for every p ∈ Mn there exists a geodesic loop of length ≤ 2d
based at p. In [R3] we strengthened his result by showing that on closed
Riemannian manifolds with a non-trivial second homology group with no
periodic geodesics of length ≤ 4d for every p ∈ M n there exists at least
three geodesic loops of length ≤ 2d based at p.

The proof of our theorem uses a modified version of M. Gromov’s exten-
sion technique used by him in [G]. It also uses our technique of contraction
of k-spheres in Mn, (in our case, for k ≤ 3) using continuous homotopies
of 1-dimensional objects. Note that the homotopies do not use sweep-outs
of spheres by these 1-dimensional objects. As in [R3] the proof will make a
repeated use of Lemma 1.1 and of the following well-known

Observation D. Let Mn be a complete Riemannian manifold. Let p ∈ M n.
Suppose that the length of a shortest periodic geodesic l(M n) is greater than
L. Then given any piecewise differentiable closed curve γ : S1 −→ Mn, of
length ≤ L there exists a length decreasing homotopy contracting γ to a point
that depends continuously on a curve γ. In other words the space of closed
curves of length ≤ L on Mn can be contracted to Mn, regarded as the space
of closed curves of length 0 on Mn by a homotopy that decreases lengths.
Moreover, this homotopy can be chosen so that closed curves obtained dur-
ing the homotopy of a curve γ(t), t ∈ [0, 1] are geometrically the same, but
have opposite orientation when compared to the curves obtained during the
homotopy of a curve −γ(t) = γ(1 − t).

A standard proof of this assertion involves the Birkhoff curve-shortening
process, (cf. [C] for the details).

The starting point for the proof of Theorem 0.1 will be a non-contractible
map f : S3 −→ Mn from the standard sphere with a fine triangulation, that
we will then try to extend to D4 triangulated as a cone over S3. That will
be done by induction on the skeleta of D4. Technically, the main difference
with the approach of [R3] will be in the way we extend to the 4-skeleton
of D4. We would like to note that a similar technique will not lead to a
similar estimate for the length of a shortest periodic geodesic in the case
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of a closed Riemannian manifold without other topological restrictions, as
it will require a stronger assumptions about the length of a geodesic loops,
(other than that their length is > 2d at some point p ∈ M n).

1 The proof of Theorem 0.1.

Lemma 1.1 Let Mn be a Riemannian manifold.

Let γ1(t), γ2(t) be two curves connecting the points p, q ∈ M n of lengths
l1, l2 respectively. Consider a (not geodesic) loop based at p γ2 ∗−γ1, that is
a product of γ2 and −γ1. If this loop is contractible to p by a path homotopy
(that is, as a loop based at p) without the length increase then there is a path
homotopy (that is a homotopy that fixes the end points) Hτ (t), τ ∈ [0, 1],
such that H0(t) = γ1(t),H1(t) = γ2(t) and the length of curves during this
homotopy is bounded above by 2l1 + l2.

Proof. Let H̃τ (t) denote a homotopy that connects γ2 ∗ −γ1 with a p, (see
fig. 2 (a) and (b)). Then below is a path homotopy between γ1(t) and γ2(t)
satisfying the required properties. γ1 ∼ H̃1−τ ∗ γ1 ∼ γ2 ∗ −γ1 ∗ γ1 ∼ γ2, (see
fig. 2 (a)-(g)). The length of curves during this homotopy is ≤ 2l1 + l2.

γ
2 (t)γ 1 (t)

p

q

γ 1 (t) γ
2 (t)

p

q

H
~

τ (t)

γ
2

γ 1∗−

(a) (b)

(c) (d) (e) (f) (g)

Figure 2: Curves γ1 and γ2 are path homotopic.

2

(A similar argument is used by C.B. Croke to prove Lemma 3.1 in [C1].)

Proof of Theorem 0.1. Let f : S3 −→ Mn be a non-contractible map
from the 3-dimensional sphere S3 that is triangulated so that the diameter
of simplices in the triangulation of f(S3) induced by f is smaller than some
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positive small δ. Let D4 denote the 4-disc triangulated as a cone over
the triangulation of S3. The proof will be by contradiction. Assume that
l(Mn) > 6d and that lp(M

n) > 2d at some point p of Mn. We will extend
f to D4, thus reaching a contradiction. Firstly, we will extend f to the
0-skeleton of D3. Let p̃ ∈ D3 be the center of this disc. We will let
the image of p̃ be the given point p ∈ Mn. Secondly, we will extend to
the 1-skeleton by assigning to an edge [p̃, ṽi] that connects the center of
the disc with the vertex ṽi a minimal geodesic segment [p, vi] that connects
the point p with the vertex vi = f(ṽi). Next we will extend to the 2-
skeleton. Take an arbitrary 2-simplex σ̃i = [p̃, ṽi1 , ṽi2 ]. Its boundary ∂σ̃2

i =
[p̃, ṽi1 ] − [p̃, ṽi2 ] + [ṽi1 , ṽi2 ] is mapped to a closed curve of length ≤ 2d + δ

by the previous step of the extension procedure. Using our assumption that
the length of a shortest periodic geodesic is greater than 2d + δ, this closed
curve can be contracted to a point by a length-decreasing homotopy.

The 2-simplex is then mapped using this homotopy Its image will be
denoted as σ2

i . At the next step we will extend to the 3-skeleton. Take
an arbitrary 3-simplex σ̃3

i = [p̃, ṽi1 , ṽi2 , ṽi3 ]. By the previous step of the
extension, its boundary ∂σ̃3

i = Σ3
j=0(−1)j [ṽi0 , ...

ˆ̃vij , ..., ṽi3 ], where ṽi0 = p̃.
We will denote [p̃, ṽij ] = ẽj and [p, vij ] as ej . Since [vi1 , vi2 , vi3 ] can be made
arbitrarily small we will pretend here that it is a point q for the sake of
simplicity of the exposition. The details of why it is possible to treat small
simplicies as points will be explained in the remark below.

Consider the image of its 1-skeleton. It consists of the three edges
e1, e2, e3. Here is the main idea behind the extension to the 3-skeleton:
1. In order to extend to the 3-skeleton, it is necessary to contract
f |∂σ̃3

i
to a point.

2. This homotopy can be viewed as a 1-parameter family of 2-
spheres, that begins with f(∂σ̃3

i ) and ends with a point.
3. Here is how we will obtain this 1-parameter family of spheres.
We will begin with the 1-skeleton formed by e1, e2, e3 and will ap-
ply Lemma 1.1. This lemma allows us to “move” e1 to e2, thus
resulting in a 1-parameter family of “skeleta”. Using this family,
we construct a 2-sphere that “fills” any given skeleton, by gluing
the three discs, that are obtained by contracting three pairs of
curves without the length increase.

More specifically, by assuming that there are no “short” periodic
geodesics and no “short” geodesic loops based at p, we can contract
f : ∂σ̃3

i −→ Mn to a point as follows:
By our assumption, there is no geodesic loops based at p of length ≤
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2d. Therefore, we can apply Lemma 1.1 to conclude that there is a path
homotopy between e1 and e2 that passes through curves eτ12 , 1 ≤ τ12 ≤ 2
of length ≤ 3d. Now, let us define S2

τ12
. Take the two points p and q joined

by two geodesic segments e2, e3 and the curve eτ12 , that now replaces e1

in the 1-skeleton of the future sphere S2
τ12

, (see fig. 3 (a)). Furthermore,
we have assumed that there is no periodic geodesics of length ≤ 4d(< 6d),
therefore, both curves e2 ∗ −eτ12 and eτ12 ∗ −e3 are contractible to a point
by the length decreasing homotopies mentioned in Observation D, (e.g. by
the Birkhoff curve-shortening process). Let us call the discs obtained during
these homotopies (D2

2)τ12 , (see fig. 3 (b)) and (D2
3)τ12 respectively. These

discs change continuously with τ12. This is due to the fact that in the absence
of “short” periodic geodesics, the length-decreasing homotopy is continuous
with respect to the initial curve.

S2
τ12

is obtained by gluing the three discs: σ2
i0,i2,i3

, (D2
2)τ12 and (D2

3)τ12
along their boundaries, just as we glue simplices in the boundary of a 3-
dimensional simplex, where one of the simplices is a point.

Note that at the time τ12 = 1, S2
τ12

is the original sphere and at the time
τ12 = 2 it is a sphere that is essentially obtained from two discs that are
geometrically the same, but have opposite orientations, which are then glued
along their common boundary. That is, we begin with two points p and q,
join them with three segments two of which coincide: e2, e2, e3. Next obtain
three discs, one of which is degenerate: it is obtained by contracting a curve
e2 ∗−e2 along itself. As it is mentioned above, the other two discs coincide,
but have opposite orientation: one is obtained by contracting e2 ∗ −e3 and
the second one, by contracting e3 ∗ −e2, (see fig. 3 (c)). So, obviously,
the sphere that we obtain is contractible along itself. Thus, we obtain a
homotopy between f |∂(σ̃3

i
) ans a constant map. We will map simplex σ̃3

i

using the above homotopy.

Let us denote the image of a 3-simplex σ̃3
i0,...,i3

= [ṽi0 , ṽi1 , ..., ṽi3 ], where
ṽi0 = p̃ by σ3

i0,...,i3
.

Finally, we will extend our map to the 4-skeleton. Let us consider an
arbitrary simplex σ̃i0,i1,i2,i3,i4 = [p̃, ṽi1 , ṽi2 , ṽi3 , ṽi4 ]. Its boundary is mapped
to the following 3-sphere Σ4

j=0(−1)jσi0,..,̂ij,...,i4
.

Here are the main ideas behind the extension to the 4-skeleton:

1. In order to extend to the 4-skeleton, it is necessary to construct
the homotopy that contracts this sphere to a point. Again, without
loss of generality, assume that simplex [vi1 , ..., vi4 ] is so small that it can, for
our purposes, be treated as a point q. Each of the four edges [p, vij ] will be
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S      can be contracted to a point.2
2

e 3

e 2

e 1 e 2

τ12

Moving        to      
will lead to a 
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2
S    .

τ12
e

e 2

e 3
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q

1−skeleton.

τ12
e e 2

e 3

τ12
A sphere S         "fills" the2

This disc stays the same.

1−skeleton.

e 1 e 2

e 3

e 1 e 2

e 3

p

q

A sphere S       "fills" the
1
2

(a) (b)

(c)

Figure 3: Construction of S2
τ12



10

denoted by ej .
2. This homotopy can be viewed as a 1-parameter family of 3-
spheres, that starts with the sphere f(∂σ̃3

i ) and ends with a point.
3. This 1-parameter family is constructed as follows: We con-
sider the 1-skeleton that consists of the edges e1, e2, e3, e4 and apply
Lemma 1.1 to “move” e1 to e2. This corresponds to a 1-parameter
family of 1-skeleta. During the previous step we have already
learned how to construct 3-discs from 1-skeleton. The desired 3-
spheres are constructed by generating four 3-discs, that are then
glued as in the boundary of a 4-simplex, (taking into account that
the fifth disc is just a point).

Here are the details of the proof.
By applying Lemma 1.1 we can see that e1 is homotopic to e2 by a path

homotopy along the curves eτ12 , 1 ≤ τ12 ≤ 2 of length ≤ 3d. This results in
a 1-parameter family of curves. Let us consider the new 1-skeleton of the
future 3-sphere S3

τ12
in which eτ12 has replaced e1. For each τ12 we will then

construct a 3-sphere that “fills” the new 1-skeleton. That we will construct
a 1-parameter family of 3-spheres want S3

τ12
that continuously depends on

τ12. This family of spheres will generate the required 4-disc.
The sphere S3

τ12
will be made of four discs (D3

i )τ12 , i = 1, 2, 3, 4 that will
be glued as four simplices in the boundary of the 4-simplex, in which the
fifth simplex is taken to be a point.

As τ12 will change from 1 to 2 the disc (D3
1)τ12 will be constantly equal

to σ3
i2,i3,i4

.
Next, let us construct (D3

2)τ12 . This will be done by taking two points
p, q, connected by three segments: eτ12 , e3, e4, (see fig. 4(a)), by constructing
a 2-sphere that “fills” this 1-skeleton and, finally, by constructing a family of
spheres that begins with this given sphere and ends with a point. A sphere
S2

τ12
is constructed, of course, by considering the three closed curves that

result from eτ12 , e3, e4 and by contracting each to a point without the length
increase, using the assumption that all the periodic geodesics are “long”.

Just as we have done when we extended the map f to the 3-skeleton, we
can continuously deform this sphere to a point as follows:
1. We have constructed S2

τ12
by taking three closed curves e3∗−eτ12 , e4∗−e3,

eτ12 ∗ −e4 and contracting them to a point, (see fig. 4(b)).
2. At the next step we will apply Lemma 1.1 again. It implies that there
exists a path homotopy that connects e3 with e4 along the curves eτ34 , 1 ≤
τ34 ≤ 2 of length ≤ 3d. This is due to the fact, that the loop e4 ∗ −e3 is
contractible to p without the length increase, (see fig. 4(c)), since all the
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τ12
e τ 34

e e4

p

q

e4e3Moving           to            will
generate a 1−parameter family
of 2−spheres.

τ12
e e4

τ12 2This is S  (       ,       ).   It is 
2

contractible to a point along itself.

τ12
e e3

e4

1−skeleton is ‘‘filled" by

τ12
e e3 e4

τ12
e e4

τ 34
e

S 2 τ12( , τ 34 )12
τS
2

(a) (b)

(c)

p

q

1−skeleton is ‘‘filled" by

Figure 4: Constructing (D3
2)τ12 .
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loops based at p have length greater than 2d.

3. As e3 moves to e4, we construct a family of 2-dimensional spheres
S2(τ12, τ34) that continuously depends on τ34 and that coincides with S2

τ12
,

when τ34 = 1. That is, we consider a 1-skeleton consisting of eτ12 , eτ34 , e4

and we obtain a 2-sphere by gluing the three discs that result by length-
decreasing homotopies contracting the three closed curves obtained from
this 1-skeleton to a point. This is analogous to the first step, but applied
to eτ12 , eτ34 , e4 instead of eτ12 , e3, e4. Note that when τ34 = 2, we obtain a
sphere, consisting essentially of a 2-disc taken twice with the opposite orien-
tation, that can be contracted to a point. This family of spheres corresponds
to a 3-disc (D3

2)τ12 . Note that at τ12 = 1 it is σ3
i1,i3,i4

and at τ12 = 2 it is
−σ2

i2,i3,i4
.

4. The other two discs (D3
3)τ12 and (D3

4)τ12 are similarly constructed. (D3
3)τ12

is constructed by “filling” the 1-skeleton that consists of eτ12 , e2, e4 and
(D3

4)τ12 is constructed by “filling” the 1-skeleton that consists of eτ12 , e2, e3.
Note that at the time τ12 = 2, both (D3

3)2 and (D3
4)2 degenerate into two

discs of dimension 2 that are geometrically the same, but have opposite
orientation that are contracted to a point along themselves.

5. We finally, glue the four 3-discs to obtain a sphere S3
τ12

. Note that S3
1 is

the original sphere and S3
2 is a sphere that is obtained by gluing σ3

i2,i3,i4
and

−σ3
i2,i3,i4

, and so it is contractible to a point. We will map σ̃4
i0,...,i4

to the
disc σ4

i0,..,i4
generated by this family of 3-spheres. We have, thus, extended

the map to the 4-skeleton, reaching a contradiction.

2

Remark. Here we explain why we can treat small simplices coming
from the fine triangulation of Sk as points, (in our case k = 2 or 3).

The explanation will be provided only in the two-dimensional case. It
is, however, similarly true for k = 3. Let us look at a 2-sphere that is
constructed from a a small singular 2-simplex [vi1 , vi2 , vi3 ] in Mn and a
point p ∈ Mn as follows: Connect the point p with vij , j = 1, 2, 3 by some
minimal geodesic segments ej, j = 1, 2, 3. Next contract each of the three
closed curves ej + [vij , vij mod 3+1

] − ej mod 3+1, where j = 1, 2, 3 without the
length increase, (see fig. 5(c)).

In order to construct a new sphere S1, take a point q ∈ [vi1 , vi2 , vi3 ] and
connect it with each vertex vij by a small segment σj in [vi1 , vi2 , vi3 ], j =
1, 2, 3. Define e∗j = ej ∗ σj , j = 1, 2, 3

The closed curves of the form e∗j mod 3+1 ∗−e∗j are contractible to a point
without length increase, thus generating the three discs. Gluing them as in
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the boundary of a 3-simplex results in S1, (see fig. 5(d)).

Also Lemma 1.1 can be applied to the digons e∗j mod 3+1 ∗−e∗j , j = 1, 2, 3
that are contractible as loops to p without length increase and thus, e∗j is
path homotopic to e∗j mod 3+1 and the length of curves in this path homotopy
is bounded by 3d + 3δ.

One can easily show that S0 and S1 are homotopic, when δ is small
enough. The intermediate spheres St are depicted on fig. 6. Therefore, if
S1 is not contractible S0 is not contractible as well.
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Figure 5: Small 2-simplex can be ignored.
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