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NONCOMMUTATIVE LOCAL ALGEBRA AND REPRESENTATIONS
OF CERTAIN RINGS OF MATHEMATICAL PHYSICS.

Alexander L. Rosenberg

INTRODUCTION.

The Weyl algebra is one of the most important objects in mathematical phy-
sics and representation theory of Lie groups and Kac-Moody algebras.

Recently, T. Hayashi introduced a quantized version of the Weyl algebra
[H]. This algebra can be thought as a deformation of the Weyl algebra which is
compatible, in a certain sense, with the defined by Jimbo [J] and Drinfeld [D]
’quantization’ of the universal enveloping algebras.

One of the purposes of this work is to find a way to describe the left spe-
ctrum and irreducible representations of the quantized (and non-quantized) Weyl
and Heisenberg algebras. We show that this can be achieved for a much larger
class of hyperbolic rings the simplified version of which appeared first in
[R3]. The class of hyperbolic rings contains the (quantized) Weyl algebras, the
introduced in [KS] quantized Heisenberg algebras, the (quantized) enveloping al-
gebra of the Lie algebra sl(2), the coordinate ring of the quantum group SL q(2)
and a lot more (cf. [R4]).

Since the language of rings and ideals is not convenient for the study of
the spectrum, we switch from a hyperbolic ring H over a ring R to a hyperbolic
category ¥ (=H-mod) over a category #£ (=R-mod). Here ’over’ means that there is
a natural (forgetting) functor ¥ from ® to & As a reward for changing the set-
ting and means, we get a complete description of the spectrum of the functor ¥.
Reflected back to rings, these results provide, in particular, a complete des-
cription of the left spectrum of any hyperbolic ring over a commutative noethe-
rian ring, and much more. [ was not able to achieve this in [R4] using the ring-
theoretical approach.

A brief outline of the contents:

Section 0 may be viewed as a continuation of Introduction: we recall the
definitions of the quantized Weyl and Heisenberg algebras, and define the ment-
oned above hyperbolic rings.



Section | contains the necessary for what follows facts of the introduced
in [R5] noncommutative local algebra: the spectrum of an abelian category, its
connection with localizations etc..

In Sections 2, 3 and 4, we study the skew polynomial and the skew Laurent
categories. The prototypes of these categories are the category of modules over
the skew polynomial and the skew Laurent polynomial rings respectively. Although
here these categories are investigated for the sake of hyperbolic categories,
they are of independent interest.

In Section 5, we define a hyperbolic category over an abelian category and
study some of its properties. Principal examples of hyperbolic categories are
the categories of left modules over hyperbolic rings.

Section 6 fulfills the main goal of the work. It contains the description
of the part of the spectrum of a hyperbolic category which is naturally related
with the spectrum of the underlying abelian category.

In ’Complementary facts’, we discuss iterated hyperbolic categories and so-
me of the applications of the obtained in Section 5 general results to hyperbo-
lic rings of Weyl and Heisenberg type which are natural generalizations of the
corresponding quantized algebras.

A curious observation is that. all hyperbolic rings of Weyl type are natu-
rally related with the quantized enveloping algebras, exactly in the same sense
as Hayashi’s algebras are.

I would like to thank Max-Plank-Institut fiir Mathematik for hospitality and
excellent working atmosphere.

0. QUANTIZED WEYL AND HEISENBERG ALGEBRAS AND HYPERBOLIC RINGS.

0.1. The quantized Heisenberg and Weyl algebras. Recall that the quantized Hei-
senberg algebra, Hq(]), over a field & is generated by the set of elements
{xl.. Yp Zi' i € J} subject to the relations:
R S U B
-l _
Wit 4N Ty
for all i e J,

Py T 20T e T
forall i, je J, i#]
The introduced by T.Hayashi [H] quantized Weyl algebra Wq(]) is the quo-

tient algebra of the algebra Hq(J) obtained by adding the relations

(X - )y =0 = gl - vy



forall ie J
Clearly W (J) is the conventional Weyl algebra.

0.2. From the quantized Heisenberg algebra to hyperbolic rings. The spectral and
representation theory of these algebras is pretty well understood in case when
the set J consists of only one element, because in that case both, Heisenberg
and Weyl quantized algebras happen to be hyperbolic rings over commutative noe-
therian rings. And the spectrum and irreducible representations of such rings
are essentially (but not completely) described in [R3].

Recall that the introduced in [R3] (actually in [R2]), hyperbolic ring
R{8,£} is the associative ring generated by a commutative ring R and the in-
determinables x, y which satisfy the relations:

xr = O(r)x, ry = y¥r) for all r e R,

=& yx=90()
where ¥ is an automorphism of R, and & is an element of R.

The hyperbolic rings appeared as a result of an attempt to single out the
biggest natural commutative subring in Uq(sl(Z)), U(si(2)) and some other
algebras. One can try to do the same with the quantized Heisenberg algebra
Hq(J).

Notice that (xiyi)zj = zj{xiyi) for all i, j € J, and, moreover, the

morphism of the ring k[(zi)'(ti)] of polynomials in variables Zp M i e J,

to the quantized Heisenberg algebra Hq(J) which sends Z; into Z; and .
into the product xy;, is injective. This implies that the ring Hq(J) is ge-
nerated by the commutative (polynomial) ring R:= k[(zi)'(ti)] and the elements
Xp Zp i € J, subject to the relations:

xro= ﬁl(r)xi, ry; = yiﬁl(r)
Xy = Y=l - g
5=

for all for all r e R and i j e J, where j # I
Here 13i is an automorphism of the ring R defined by

_ _ -
Ofz) = qzp Bf6) = q 4 + qzp

and

%y =y oy <y
it j i

-1 _ ) . - 3!
Note that ﬁi (t[.) = q(ri Zi)’ e yx 131. (ti).



These  relations  suggest the definition of (multi-dimensional) hyperbolic
rings.

0.3. Hyperbolic rings. Let R be an associative ring with unity, {ﬂi| i € J}
a family of pairwise commuting automorphisms of R. {E_,!.| i € J} a family of
central elements of R  such that ﬁi{Ev.) = &j for any ij € J such that i #
j. Denote the data (9.,5,| i € J} by ©, and let R/©] be the ring genera-
ted by R and by indeterminables X, ¥p 1 € J, which satisfy the relations:

x"r = ﬂi(r)xi’ ryI = ylﬁi(r) (1)
for every r € R; )
Xy = E.uia x5 = ﬁi-'(ﬁ) (2)
for every i € J; )
xfyj = ijiv xlxj = xjxi’ yiyj' = yjyi (3)

for any i, j € J such that i # j.
Due to the relations (2), we call the ring R{©®] hyperbolic.

0.4. Examples. It was shown already that the quantized Heisenberg algebra is a
hyperbolic ring. Now take as R the quotient ring of the polynomial ring
k[(zi),(tl.)] by the relations , )

Zl(r!.(1~q)+qzi)=l, ie J

Define the automorphisms ﬁi, i € J, by the same formulas, as for the

Heisenberg quantized algebra Hq(J); i.e.

8,z) = qz, O1) = q—[l‘i + gz,
for all { € J, and

. 1.} =
g O

t.
. . . J
if j#i

One can check that the morphism of the hyperbolic ring R{©}  defined by
the data © = (O,,|] i € J} to the Hayashi’s Weyl algebra which sends ¢
into z; and t; into XYp { € J, 1is an isomorphism. m

0.5. Iteration. For any subset [ < J, denote by ©|I the data {ﬂi’&‘il i €
I}. The ring R{O|1} shall be identified with the corresponding subring of
R{®). Note that, for any i € J-I, the automorphism ﬁi can be extended to an
automorphism, Gl., of the ring R{O|I] by setting

Bi(xj.) = .'Cj and Bl{yj) = yj for any j e I

(The only thing to check is that the maps Oi respect the relations. They



do thanks to the commutativity of {ﬂi| i e J)
xjﬂi(r) = Gi(xjr) = Bl{ﬂj(r)xj) =

o ﬁioﬁ]{r)xj = ﬁjoﬁi(r)xj = xjﬁi( r);
and similarly for yj.)

Clearly the elements ﬁi, i e JI, belong the the center of the ring
R[{O|1}, thanks to the equalities ﬁj(ai) = };i for every j € I, since

xf = O )x = g forall je L

This shows that the ring R{O®} is naturally isomorphic to the ring
R'(©'), where R = R{O|f}, © = {8},{;,1.| ie JI.

Thus, if the set J is finite, the problem of description of the spectrum
and representations of the ring R{®} can be reduced to the corresponding prob-
lems in case when Card(J) = 1.

But, wusing this reduction, we are facing the investigation of hyperbolic
rings over noncommutative coefficient rings which does not look a priori very
promising. It occurs, however, that the problem becomes much easier to handle if
the language of rings and left ideals is replaced by the language of categories.

This transition leads to the notion of a hyperbolic category. A remarkable
fact is that the switching to hyperbolic categories allows to obtain a complete
description of the left spectrum of a hyperbolic ring over a commutative noethe-
rian ring which T was not able to get in Chapter II using the language of rings
and modules.

1. NONCOMMUTATIVE LOCAL ALGEBRA.

A detailed exposition (including proofs) of the presented in this section
facts can be found in {R5].

1.1. A preorder in abelian categories. Fix an abelian category &  For any two
objects, X and Y, of the category 4 we shall writte X > Y if Y s a
subquotient of a coproduct of a finite number of copies of X, ie. if, for

some finite &k, there exists a diagram (k)X < U Y, where the left ar-
row is a non-zero monomorphism, and the right one is an epimorphism; (k)X is a
direct sum of & copies of X. One can show that the relation > is a preorder
on Obd

1.2. The spectrum of an abelian category. Let M be a nonzero object of the
category «. We write M € Specd if, for any nonzero subobject N of M, we



have: N » M. Since M » N, we can say that M € Spec# if and only if it is
equivalent with respect to the preorder > to any of its nonzero subobjects.

Denote by  Specd  the ordered set of equivalence classes (with respect to
> ) of elements of Specd. The set Specd shall be called the spectrum of the
category 4.

1.3. Spectrum and simple objects. Clearly every simple object of the category 4
belongs to  Specd.  Moreover, we shall see in a moment that two simple objects
are equivalent if and only if they are isomorphic.

1.3.1. Proposition. Let M  be a simple object of the category 4, and let N
be an object of 4. Then the following conditions are equivalent:

(a) N is isomorphic to (k)M for some (finite) k;

(b) M >~ N.

In particular, if N and M are simple objects, then N > M if and only
if the objects M and N are isomorphic.

1.4. The spectrum and exact localizations. Recall that a full subcategory S  of
the category « is called thick if the following condition holds:
the object M in the exact sequence
0 s M— M > M"'— 0
belongs to S if and only if M’ and M" are objects of S.

It follows from the universal property of localizations that the map
Ov+—— KerQ
gives a bijection of the equivalence class of exact localizations of the catego-
ry 4 onto the set of thick subcategories of 4.
Here (as everywhere) KerQ is the full subcategory of 4 generated by ail
objects which are annihilated by Q.

1.4.2. Proposition. Let @Q: 4 —— B  be an exact localization of an abelian
category 4. For any P € Specd, either Q(P) equals to zero, or Q(P) be-
longs to SpecB.

For any M € Obd, consider the full subcategory <M> of & defined as
follows: Ob<M> consists of all objects N such that the relation N > M  does

not hold.

1.4.3.1. Lemma. For any two objectss, M and M, of the category 4, the fol-



lowing conditions are equivalent:
(a) M >~ M’;
(b) <M'> c <M>.

Thus, the map Mr—-> <M> identifies the ordered set of equivalence clas-
ses of objects of « (the order is induced by ») with ({<M>| M e Obd), D).

For any subcategory T of the category &, let T denote the full sub-
category of 4  generated by all objects M  such that any nonzero subquotient
of M has a nonzero subobject from T.

1.4.3.2. Lemma. For any subcategory T of 4,
(a) the subcategory ¥ is thick;
() (T7) =T.
Call a subcategory T of 4 a Serre subcategory if T = T .

1.4.3.3. Proposition. If an object M  of the category 4  belongs to  Specd,
then <M> is a Serre subcategory of .

Thus, according to Proposition 2.3.2, to any point <M> of Specd an
exact localization, @ M> 4 — 4/<M>, corresponds.

1.4.4. Local abelian categories and Ilocalizations at points of the spectrum. A
nonzero object M  of an abelian category £ will be called quasifinal if N >
M for any nonzero object N of the category 4.

In other words, a nonzero object M is quasifinal if and only if

<M> = {0} = <N>.
N € Ob«-{0)

Clearly a quasifinal object of the category £ (if any) belongs to  Specd,
and every two quasifinal objects of & are equivalent.

1.4.4.1. Definition. An abelian category £ is called local if it has a quasi-
final object. m

1.4.4.2. Lemma. The following properties of an abelian category 4  are equiva-
lent:
(a) 4 is local and has simple objects;



(b) any nonzero object of 4  has a simple subquotient, and all simple ob-
jects of 4 are isomorphic one to another.

1.4.4.3. Example. The category of left modules over a commutative ring & s
local if and only if the ring % is local. m

1.4.4.4. Proposition. Ler & be an abelian category. For any object M  of the
category 4 such that <M> is a thick subcategory of 4,  the quotient catego-
ry &/<M> is local.

In particular, for any abelian category 4 and any object P  from Specd,
the quotient category H/<P> is local.

1.44.5. Corollary. If M is a simple object of an abelian category 4  then

d/<M> is a local category with a unique up to isomorphism simple object.

The last assertion follows from the fact that if @ 4# — B is an exact
localization and M a simple object of the category 4, then either QM) = 0,
or (@(M) is a simple object.

1.5. The topology t and Zariski topology. The least requirement on the topology
on Specs# is that it should be compatible with the preorder >. This means that
the closure of any point <P> € Spec# should contain the set
s(<P>):= [<P'>| <P'> ¢ <P>)

of specializations of that point. The topology T as the strongest among the
topologies which have this property.

Call a full subcategory B of the category £  topologizing if it contains
a taken in 4  coproduct of any two of its objects and the following condition
holds:

if in the exact sequence 0 — M'—5 M > M" — 0 the object M be-
longs to B, then M’ and M" belong to B.

Call a full subcategory B of the category £ left closed if it is topo-

logizing, and the inclusion functor B —— &4 has a left adjoint functor. One
can show that the subsets

SpecB = {<P>| P € Specd  ObB/,
where B8 rmuns through the family of ali left closed subcategories of &, is
the set of closed subsets of a topology which is called (in [RS]) the Zariski
topology and is denoted by 3t.



1.6. Supports. The support of an object M of an abelian category 4 is the
set, Supp(M), of all <P> € Specd such that M » P.

1.6.1. Proposition. (a) For any short exact sequence
0 L > M > N > 0,
Supp(M) = Supp(L) U Supp(N).

(b) For any set Z of objects such that there is a coproduct @ X,
Xe E

Supp( ® X)= U Supp(X)
€ = Xe =

1.6.2. Proposition. For any subset W  of Specd, the full subcategory  4W)
of # generated by all objects M such that Supp(M) < W is a Serre subcate-

8ory-

1.7. The left spectrum of a ring. Let £ be the category R-mod of left modu-
les over an associative ring R  with unity. Since each module from  Spec(R-mod)
is equivalent to any of its cyclic submodules, we can take into consideration
only the modules R/m, where m runs over the set I[R of left ideals of the
ring R.

The set of all left ideals p of the ring R such that R/p  belongs to
SpecR-mod is denoted by Spec[R and is called the left spectrum of R.

1.7.1. Lemma. For any two left ideals m and n of the ring R, the relation
R/m > R/n is equivalent to the following condition:

(#) there exists a finite set 'y of elements of the ring R  such that the
ideal (m:y):= {z € R| zy € m} s contained in the ideal n.

1.7.2. Corollary. A left ideal p  belongs to the left spectrum if and only if,
for any x € R-p, there exists a finite subset 'y of R such that

((p:x):y) = (pryx) < p.

1.7.3. Remark. If m is a two-sided ideal of the ring R, then, evidently,
R/m > R/m" if and only if m is conntained in m’. In particular, if the ring
R is commutative, then the left spectrum Spec[R coincides with the set  SpecR

of prime ideals of R. m

1.8. Associated points. For any object M of an abelian category 4, denote by
Ass(M) the set of <P> € Specd such that P is a subobject of M. The points



of Ass(M) are called associated to M elements of the spectrum.
Here we need only the very first simple facts about this notion:

1.8.1. Lemma. For any short exact sequence, 0 > M’ > M > M” > 0,
Ass(M’) < Ass(M) ¢ Ass(M’) U Ass(M").

1.8.2. Corollary. For any finite set Q  of objects of an abelian category 4,
we have:

Ass( © X) = U Ass(X)
Xe Q Xe Q

1.9. The relative spectrum. The spectrum of a functor ¥ from an abelian cate-
gory B to an abelian category 4 is the ordered set Spec(y) of all pairs
(<M>,<P>) such that there is an object M’ of B such that <M> = <M’> and
<P> € Ass(3(M’)). The order in Spec(y) 1is induced from SpecB X Specd.

Note that, given a functor 3§  the description of Spec() is reduced to
the description, for any <P> € Specd, of the fiber of Spec(y) over <P>
which is the set of all <M> € SpecB such that <P> € Ass(M).

Explicitly, the object of this work is the description of the spectrum of
certain ’forgetting’ functors.

2. SKEW POLYNOMIAL AND SKEW LAURENT CATEGORIES.

Fix an auto-equivalence O of a category 4 Define the category (0]
as follows.

Objects of 4/0] are all the pairs (M,v), where M € Obd, v is an ar-
row ®M —— M. Morphisms from (M,v) to (M) are all the morphisms f €
4(M,M’) such that the diagram

of

oM —— M’

S AP

M — - M’
is commutative.

2.1. Example. Let & be an automorphism of an associative ring with unity R.
Let R[x,®] be the ring of polynomials in x with coefficients from R  with
the multiplication determined by the property
rx = xb(r) for any r € R.
Let O be the auto-equivalence of the category R-mod  of left R-modules

10



determined by the automorphism ¢; ie. ¥ sends
a module (M, A: R ® M —— M) into the module (M, Ao(® ® idM)).
It is easy to see that the category R-mod[8] is equivalent to the catego-
ry Rix®]-mod of left R[x,®]-modules. m

2.2, Example: filtrations and gradings. Fix an additive category 4.  Denote by
54  the category of Z-filtered and by ©®4  the category of  Z-graded objects
over «. There are two standart functors from 3F4 to Gd:

the functor 6G: M\— & M /M

n n-
nei
and the functor H which assigns to a filtered object M=(M — M | neD)
the graded object HM):= & M .
nei

Denote by T the auto-equivalence (translation) 64 —— 0G4, 1]'Mn= Mn-l;
and consider the category Gs(T].

Let  364{T] denote the full subcategory of the category ©«/%¥] generated
by all the pairs (M,u), where uw: TM —— M is a monoarrow. There is a func-
tor H: 34 —— 3I64/T] which assigns to any filtered object M=(Mn~—>Mn +1| nez)

the graded object HM):= @ M~ and the canonical monomorphism THM) —s WM.
neiz

2.2.1. Lemma. The functor o is an equivalence of the category 34 of filte-
red objects and the subcategory 3GL[T] of GA[T].

2.2.2. Note, If P is an abelian (or Grothendieck) category, then such is
G4{T]. While the category 3« is not abelian. m

2.3. The subcategory of ’skew double points’ and the category of chain comple-
xes. Given an auto-equivalence O of a category &, let Dd4f{3] denote the
full subcategory of the category 4{®]  generated by all objects (M,d) such
that do®d = 0. It is easy to check that 9«4/0] is a topologizing subcategory
of «4/8]. We call D«#f8] the subcategory of skew double points. We denote the
cohomology functor (M,d)——— Ker(d)/Im(0d) by H.

2.3.1. Example. The -category Cd of chain complexes is naturally identified
with the subcategory 9€«£/T] of double points of the category €«4/T] from Ex-
ample 2.2. Clearly the defined above cohomology functor coincides, in this case,
with the usual one. =

11



2.4. Functors F 8 and  FoM Fix an additive category 4 and its auto- equiva-
lence 9. Denote by F 8 the forgetting functor
48] — 4, (Myv)—— M, Homsa[8®] 3 fi—— f € Homd.
Obviously, the functor F 9 is faithful and exact.
Let O~ be the left (and right) adjoint functor to §; and let
¢ Nﬁ—)[dﬁ, o Id‘aw)——>ﬁ13"

be adjunction isomorphisms.

Suppose that the category 4  has countable coproducts. Then this data pro-
vides us with the functor F ﬁ" from 4 to #4[8] which assigns to any object

M of the category 4 the pair ( & (ﬂ)nM, vﬂ), where
n=0

vy © (O (8)'M) —— B ("M = M & 9% (9)"M)
n20 n20 nz20
is the morphism (OM,id). The definition of F ﬂ"‘ on morphisms is obvious.

2.4.1. Lemma. The functor F ﬁA is left adjoint to F e

Proof. For any object M  of the category, # there is the canonical mor-
phism

NM) = M & (D (8)"M)

): (1 M' ): M — 1
>
n:zl

8°Fy
Let (M,v) € Obd{8]. The morphisms

idM, ﬂ(n)v:= yodve..o® v M — s M, n 21,
determine the cannical morphism

A=M(Mv)): FgroFy(M)=M & (& (8)"M) —— (M,v)
T nz2l
It is left to the reader to check that thus defined functor morphisms,

’Y.’ Idﬂ—)FﬂOFﬁA and l.' FﬂA" ﬂ———)ld,id(ﬁ),
are the adjunction arrows; i.e.

FohoYFg = deﬁ . AFgreF My = IdFﬁ. .

2.4.2. Corollary. Suppose that the category 4  has countable products. Then the
functor F 9 has a right adjoint functor.

Proof. Note that the map which assigns to any object (M,u) of the catego-
ry 48] the pair (Mu"), where N M —— 9NM) is the adjoint to "
arrow, and acts identically on morphisms, induces an equivalence of categories.

€ df0]P ——— P,

By Lemma 2.4.1, the forgetting functor ‘Fﬂﬁ: LPrP) 4P has a

left adjoint. Therefore, since the diagram

12



4[0]%P ¢ £OP [§79P ]

op ‘
Fyg \ / Fan

4P

is commutative, the functor F ﬂO-D has a left adjoint functor. which means that
the functor F g hasa right adjoint functor. m

2.5. The functor J g Consider the natural embedding
J ¥ d —— 48]
which assigns to every M € Oba the pair (M, 0) € Ob«[8] and acts identically
on morphisms.
Clearly the functor Jﬁ is fully faithful.

2.5.1. Lemma. The functor J 3 has left and right adjoint functors. In particu-

lar, the functor J 8 is exact.

Proof. 1) Denote by v* the morphism adjoint to v :
Vo= Yoy - M —— M.

Let ~J 8 be the map which sends any object (M,v) of the category (8]
into Ken(v*) and any morphism f (M,v) —— (M’V') into the unique morphism
"Jﬁf . Ker(v) —— Ker{v’*) such that the diagram

A‘]ﬁf
Ker(v:) ———— Ker(v'?)
K(v™) l f l k(') 1
M > M’

is commutative.
1 A -] =
Evidently, ~J 8 J 8 1d

For any (M,v) € Ob#[8], «x(v) is a morphism from (Ker(v),0) to (M)
and the map x : (M,v) —— K{(v) is a functor morphism

Jﬁo“Jﬂ — Idsd(ﬂ)‘

It is easy to verify that (xid ﬂ) are adjunction morphisms.
2) Dually, the functor Jg" which sends an object (M) of the category
4{8] into  Coker(v) and a morphism from (M,v) to (M’Y) into the corres-

ponding morphism from Coker(v) to Coker{V'), is left adjoint to the functor

Jﬁ. n

13



2.6. Proposition. /) If 4 is a Grothendieck category, then 4[®] is a Gro-
thendieck category for any auto-equivalence .

2) If 4 is a Grothendieck category of finite rype, then the category
4[0] is also of finite type.

Proof. 1) The implications
A is abelian = 48] is abelian
4 satisfies the property AB5 = so does 48]
are straightforward.

If V is a generator of the category 4, then, since the functor F 13" is
left adjoint to the forgetting functor, F ﬂ"(V) is a generator of the category
4{0].

21) If M is an object of finite type of the category 4, then F ﬂ"‘M’
is of finite type.

In fact, let € be a directed subset of subobjects of F ﬂ"‘M’ such that
sup Q = F ﬁ"M’. Since the functor F 9 is compatible with colimits (as any func-
tor which has a right adjoint), the last equality means that

sup{FﬁN| Ne Q} = FﬁoFﬁ"M’.
Since the subobject
M) M—— FﬁFﬁ"M’
is of finite type, it is ’contained’ in
FﬁiN: FﬁN —_— FﬂFﬁ"M’
for a certain subobject iN.' N — F ﬂ"M’ from €. Thanks to the universal
property of the functor F ﬂ", the arrow iN is an isomorphism.

2.2) Now let (M,v) € Ob«4{3]. By hypothesis, M is the supremum of a di
rected subset O=(i,x V —— M/} of its subobjects of finite type. Consider the
directed diagram of morphisms AG®:={AMM)-F ﬁAiV . F 6"‘V — M : iV € O} (here
MM) is the adjunction morphism F o oFgM —— M). Since the functor Fg* s
compatible with colimits, the canonical morphism

colim{Fﬁ"V : z'v € 0 —> Fﬂ"M
is an epimorphism. Since the adjunction arrow AMM) is also an epimorphism, the
canonical morphism  colimA® —— (M,v) is an epimorphism. This means that M
is a supremum of the family of the images of morphisms
MM)oFﬁ"iV: Fﬁ"V — M.
Since, according to the heading 2) of the proof, the objects F ﬁ"V are of

finite type, their images are also of finite type. =
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3. THE SKEW LAURENT CATEGORY.

Define the skew Laurent category,  4[{0])/4, as the full subcategory of the
category  «£[0] generated by all objects (M,u) such that « is an isomor-
phism.

3.1. Example. Let © be an automorphism of an associative ring R and ¥ the
induced by 8  auto-equivalence of the category R-mod  (cf. Example 2.1). The
corresponding to this data skew Laurent category is naturally equivalent to the
category of left modules over the ring R[xx ;8] of skew Laurent polynomials.

Recall that Rfxx':0] = S R as a right R-module, with the multiplication
n € 2%
determined by

rx = x8(r) forall re R
(cf. Example 2.1). m

3.2. Lemma. The skew Laurent category — A[0]/d4 is equivalent to the quotient
category A[O]/J 13’4)_'

Proof. Tt is clear that the right adjoint to the localization
Q: 4[] —— A[ﬁ]/{Jﬂsd)"
functor takes values in the subcategory «f3J/d.

On the other hand, if s is an arrow from #4/®}/4 such that Qs is in-
vertible, then, since the subcategory {0}/« is thick, both Ker(s) and
Cok(s), belong to the intersection of (J ﬁd)_ and 4/8)/4 which is zero. The-
refore s is an isomorphism. =

3.3. Proposition. The forgetful functor  A[0]/d —— 4 is right adjoint to
the functor 8= ( @& d"u, where 9= W for every positive integer n,

and

is defined by the arrows
U et — 9 ne oz,

such that L is the identical morphism if n L, and 1= od", where o© s

2
the adjunction isomorphism QeW—— Id, if n < 0.

Proof is left to the reader. m
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4, A PART OF THE SPECTRUM OF A SKEW POLYNOMIAL CATEGORY.

What we really are going to study is a part of the spectrum of the forget-
ting functor § : 40 —— 4, (Mu)— M, fr—— f (cf. 1.9).

4.1. The case of local ’base’ category. Suppose that the category &4 is local
with a quasi-final object P.

4.1.1. Lemma. Let (M,u) be an object of Specd{8] such that <P> € Ass(M).’
Then Supp(M) = {<P>}.

Proof. We can assume that there is a moncarrow i@ P —— M. Take the
adjoint to i morphism 7ir AF 13(P) —— (M,u). Since (M,u) is an object of
the spectrum, the image of *i is equivalent to (M,u). This implies that

Supp(M) < Supp(,@,0"(P)) = gOSupp(ﬂ"(P» = [<P>}. .
n-

Consider the full subcategory «(<P>) of &4 generated by all objects M
such that Supp(M’) = {<P>}. Since {<P>} is a closed subset, 4(<P>) is a
Serre subcategory of 4.  Thanks to the ®-stability of <P>, the subcategory
A(<P>) is ¥-stable. Therefore we can (and will) replace the local category d
by its Serre subcategory J(<P>); i.e. we assume that Specd = [{<P>].

Suppose now that the category d has simple objects (or, equivalently,
objects of finite type). Then we can assume that the quasi-final object P  is
simple. Clearly the object M, being equivalent to the image of

N @aY(P) —— M,

is semisimple (since the image of the semisimple object ngof}n(P) is semisimp
le). Therefore we can replace the category &4 by its full (obviously, U-stable)
subcategory of semisimple objects.

4.2. Proposition. Ler &4 be a semisimple prime category; and let O be an au-
to-equivalence of 4. Then there exist a skew field D and an automorphism 8"
of D  such that the category  4[Q] is equivalent to the category  D[x,0"]-mod
of left Dfx,3"]-modules.

Proof. Fix a simple object W  of the category 4.  According to Lemma
1.3.1 the functor 4W, }; X —— LWX) is an equivalence of the category 4
and the category Q-mod of left modules over the skew field 2 = 4W,W). The
functor ¥  determines an auto-equivalence ¥  of the category Q-mod.  Since
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Q is a skew field, any auto-equivalence of the category Q-mod is determined
by an automorphism of the skew field 9. =

Call an abelian category B prime if SpecB contains a generator of B,

4.3. Proposition. Let 4 be a semisimple prime category; and let O be an au-
to-equivalence of 4. Then the category  4[0] is prime; and every object from
Speca[8]  which is not a generator of the category  4{%] is equivalent to a
simple object.

Proof. 1) According to Proposition 4.2, the category 48] is equivalent
to the category Q/x9"J-mod for some automorphism 3" of the skew field Q.
The ring 2fx,8"] ts euclidean. In particular, it is a principal (left and
right) ideal domain. Clearly the zero ideal of the ring Q/x9"] is completely
prime; in particular, it belongs to the left (and right) spectrum of 2fx,9"].
Therefore the category 2fx,0"J-mod is prime (cf. Example 1.3.0).

2) By [R3, Proposition 10.1.1], if R is a left and right principal ideal
domain, then every nonzero ideal from SpecR is equivalent to a maximal left
ideal; and every maximal left ideal is of the form Rg, where g is an irredu-
cible element of the ring R. m

4.4. Points of Specs#{0] over U-stable elements of Specd. Let (Mu) be an
object of Specd{®] such that there is a monoatrow P —— M for some P €
Specd such that P = O(P).

The Serre subcategory <P> is invariant with respect to 0. This implies
that the functor ¥  induces an auto-equivalence 3"  of the quotient category
&/<P> such that the diagram

o >

0| |e

a/<p> — % yep>

(where Q@ = Q <P> is the locatization at <P>) is commutative. Clearly the fun-
ctor ¥ is determined unigely up to isomorphism.
Evidently, the localization Q : # —— #/<P> determines a functor
Q : d[¥] —— M<P>[V]
which also is a localization. This implies that (M u'):= Q' (Mu), being non-
zero, belongs to Specd/<P>[¥].

17



Since the object (M,u), being from Specs{0], is defined uniquely up to
equivalence by its localization, (M’u’), and the category &/<P> is local,
the problem is reduced to the case of studied in 4.1.

4.5. From Specd/¥] to Specd(O)/d. The functor J g 4 — 4{8] identifies
Spec4  with the part of Specd/#] which consists of all (M,v) € Specd[®] such
that v = 0.

4.5.1. Lemma. Let (M,v) € Spec#{®], and v # 0. Then v is a monomorphism.

Proof. Note that
v Is a monoarrow if and only if Vv is a monoarrow.

Suppose that Ker(v) # [0]. Since the object (M,v) belongs to
Spec4[8], (Ker(v),0) is equivalent to (M.v), ie. (M,v) is a subquotient
of the direct sum (n)(Ker(v*),0) of n copies of (Ker(v),0). But this means
that v equals to zero. m

4.5.2. Example. Consider the subcategory  D#4{0] of skew double points of the
category &4[%] (cf. 2.3). Clearly 94[0] contains the image of the embedding
Jﬂ Jd —— 48], M—— (M, 0).

On the other hand, since the subcategory D«#/®] is topologizing,
Specdd[Q] = Specd[V] n Obd4[V].
Evidently, for any (M,u} € Obd«{8], the arrow u cannot be monomorphic.
Hence, by Lemma 4.5.1, Specd[8]  Obd4[9] consists of all (P,0), where P €
Specd; i.e. Specd4[8] coincides with the image of Specd in Spec#[Q]. m

Thus, Specd/d] = V(4) U U(4), where
V(4) = {<P,0>| P € Specd} =~ Specd,
is the defined by the embedding J 9 Zariski closed subset, and
U(a) = (<(Mu)>| (Mu) € Speca[8], u is a monoarrow|
is the complement to V(«) Zariski open subset.

The localization functor Q: 4/8] —— 4[0)/4 (cf. Lemma 3.2) defines an
embedding of the open set U(«4) into the spectrum of the skew Laurent category
4[8)/4. Therefore a way to study U(d) is to investigate first the spectrum of
the category  «[0]/d, which is of independent interest, and then try to single
out the image of U(«4) in the spectrum of {0}/«

4.6. Skew Laurent category over a local category. Assume that the category &
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is local. Let (M,u) € Speca[0]/4 be such that a quasi-final object P of «
is a subobject of M. This implies, as in 4.1, that there is a nonzero morphism

ANy @ VP ——— M
ne #

(- the adjoint arrow to the monomorphism i P —— M) such that the image of
A is equivalent to M. In particular, since ¥P) is equivalent to P,
Supp(M) = {<P>].

If the category & has simple objects, then the object M is semisimple,
and it follows from Proposition 4.2 that the full subcategory of semisimple ob-
jects of the category A[BJ/4 is equivalent to the category of left modules
over the ring D[x,x";B] of skew Laurent polynomials with coefficients in a
skew field D.

4.7. Points of Specd/8J/d4 over U-stable elements of Specd. Let <P> € Specd
be a ®U-stable element; and let (M,u) be an object of Specd[¥}/4  such that
<P> € Ass(M). The defined in 4.4 localization

Q' A[0] —— M<P>[V],

where ©° is the induced by O auto-equivalence of the category d<P>  (cf.
4.4), induces the localization Q": #{8)/d —— d<P>[O'[/d<P>.

Since the category «4<P> is local, and the object (M,u) is determined
(up to equivalence) by its image, Q"(Mu), in A<P>[Y']/4<P>, one can use the
the result of 4.6 to obtain-the description of the equivalence class of (M, u).

One of the consequences of these facts is the following

4.7.1. Proposition. The canonical embedding U(d) ———— Specst[O]/d induces the
bijection of the subset  [<(M.u)>| Ass(M) contains a 0O-stable element) onro
the similar subset of Spec#[0]/d.

Now, instead of going on with the study of the remaining part of
Specs[3)/4, we shall switch to the hyperbolic categories. The reason for this
sudden abandon is that any skew Laurent category is equivalent to a hyperbolic
category of a special type. Hence we shall safe some effort by investigating
first the spectral picture of hyperbolic categories (which 1is, anyway, our first
priority) and then applying it to the skew Laurent categories.
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5. THE HYPERBOLIC CATEGORIES.

Let © be an auto-equivalence of an additive category «; and let & be
an endomorphism of the identical functor of 4.
Denote by 4{8,E} the category objects of which are triples (vMn),
where M € Ob4 and vy M —— O(M), N (M) —— M are arrows such that
ney = &M) and Yo = &B(M).
Morphisms from (yMmn) to (Y,M',nY) are those morphisms f from M
to M’ for which the diagram

n

M—Y oM M

fl l () Jf

m—Y oMy, w

1S commutative.
The category (0,5} will be called hyperbolic.

5.1. Example. Let R be an associative ring, © an automorphism of R, & € R
a central element, and R(8.E'} the related to this data hyperbolic ring (cf.
1.5); i.e. R{8E} is generated by R and by two elements, x and y, sub-
ject to the relations:
xr = O(r)x, ry = yd(r) for all r € R;
xy =&, yx=9E)

The category R{0,E'J)-mod is hyperbolic.

Namely, R{9,£J-mod is equivalent to the category 4{8,f}, where 4 =
R-mod, © is an auto-equivalence of the category & induced by the automor-
phism & (cf. 2.1), & is the endomorphism of the identical functor, Id,
which assigns to every R-module M the action of the element & on M; ie.
Ew) ;= &'w foreach we M u

5.2. Lemma. Suppose that the endomorphism & in the definition of the category
4{8,E] is an isomorphism. Then the category  4{8,5} is equivalent to the cate-
gory 4[8]/4 of skew Laurent polynomials.

Proof. By definition, for every object (v,M,m) in 4{6,E}, we have:
ney = &M), and yem = EO(M) (0
If & is an isomorphism, then, in particular, &M) and EB(M) are iso-
morphisms which implies that both y and 1  are isomorphisms. So, the claimed
equivalence #{8,§] —— «[6]/4 is given by
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(M) —— (VM) (2)
Clearly the quasi-inverse to (2) functor assigns to an object (vM) the
object (VM.E(M)oy'). m

5.3. The monad associated with (0,£). Assume that the category « has coun-
table coproducts. Fix a quasi-inverse to 8 functor, 6%  and, for any negative
integer n, denote by 6" the functor 8. Let 8° denote the functor

® . M—s o M)
€

n r4 nelZ

(as usual, 00:=Id).
And let ‘€ denote the morphism 6°.8° —— 0° given by the arrows

‘ nam n+m
§nm:99———->0 , n,me I,

where

€ = id: 979" —s 0"

if n and m are both nonnegative or both nonpositive;

for n 2 m 2, the arrows
cg . ene,\m en‘m’ ;g . eme/\n e/\n'm’
n,-m n,-n
¢ . aAllgin aAlt-m ¢ . oAl n-m
L O L R A —

are defined by the following recurrent formulas:

19 4
gn,-m'— E"n-l,-m+|

0" (ho0rER)ONT

‘é-n,m_ ‘E~'-n+1,m-l

oe,\n-l(aom-l)em-l,
where
Al BoBAM—— Id and AN Id —— 6760
are adjunction isomorphisms.
One can check that (9'.“";) is a monad with the unity e Id — 8®*  which
. identifies /d with the summand 90.

5.4. Proposition. The hyperbolic category  4{6,E} is equivalent to the category
(8°, ‘€)-mod of ( 0°, ‘€ )-modules.

Proof. 1) To every object (y,Mm) of the category «#{6,E/ one can assign
a morphism v: M — M given by the arrows
ng= id: 0%M) = M —— M,

n = Moo’ ': 8"(M) ——— M,

and

M= e8I 8 (M) ———— M
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I

for n 2 1. Here M = ’*’yl: M) —— M is the adjoint to 7y morphism.
Clearly the composition of the action v  and the unity of the monad (8°°E)
is the identical arrow: vee(M) = idM.

The condition mey = &(M) implies that (M,v) is an (0',‘&)-module; ie.
that vo‘E(M) = voB°v.

In fact, the diagram

g
enem(M) n, m , en+m(M)

n
va 1 J' vn+m
v

6" (M) n s M

is commutative without any conditions on Yy and mn if n and m are both
nonnegative or both nonpositive.
We have:

(a) Vo', (M):= MM)oONER(M): 0°O(M) —— M,
V_ BNV 1= Y00 = ReBMyeBM = AeBAEQ(M);

(b) if m 22,
Vipey By M7= Moo o(R0°0)8™ (M)

\"-108"\Vm'.= Vo8 Mo...068" ') = }\-°9A§9(M)°B"9(11o...oBm_zﬂ).

(c) Similarly,
Vo'l (M) = & (M):= EM) M (M),

Vloev_l:= T‘nBY": T]ne()\,oe’\'y) = T]O)LA-IO"BGNY = A-A-IC’BGA(T]O'Y) = &(M)O).A-I(M)

(we have used here the equality OA = Ar'9);

Vion® Sy ™) = Yho...o BN 2yng(Eohn oA (),
and

VBV = MeB(Yte.. o8IV = EoMNT (M)oBON Y. 08 Y

- AL A=l _ ‘
= Y o...00 n 2Y"°(§°7\' he (M) = Viem® 2;l,-m(M)°

S . — v 8" :
This implies that v __ o &n'm- v,e0'v ~forany n,me z

2) On the other hand, a (B',‘&)-module, (M,v), is uniquely defined by
the arrows v: eNM) —— M and v oM) —— M.
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Denote by 7y the adjoint to v_, morphism M —— 6%M) which is unique-
ly defined by the equality v = MM).8™y. We have:

V. o0V = E | (M)i= MM)BEB(M),

v, 09"‘V|= MM)OO"’Yoe"Vl= MM)oeA(‘YOVl).

Therefore, since A(M) is an isomorphism and 6" is an equivalence (actu-
ally, we need only monomorphness of A and faithfulness of 6%), Yov = EO(M).
Similarly, it follows from the equalities

VeBv = E _ (M):= EM)oM (M)
and

Vo8V = V oB(AefMy) = vlok"'leoeef"y = (vlo'y)ol""(M).

Therefore, since AA' s an isomorphism, the equality
(v, )M (M) = EM) A (M)
implies that VoY = E(M). u

5.5. Corollary. The forgetting functor 5§ : 4(0f)] ——— 4  has a left adjoint
Sfunctor.

Proof. The forgetting functor (O.,‘E_,)-mod —_— 4 is right adjoint to
the functor which assigns to an object v in 4 the (6',‘@)-module

(0°(V),&(V)). =

5.6. The -category ﬂ{B,&}Op . The category 4{6,&}0‘0 is naturally isomorphic to
the category 4”7 {60,§°}0P , where &° s the image of & in %P, 0%= 0°°
the dual to 6" auto-equivalence. The isomorphism in question assigns to an ob-
ject  (yMm)° of the category A{O,&]Op the object (y*",M°n*°) of the ca-
tegory £°P(8°£°) and acts in an obvious way on morphisms.

5.7. The adjoint hyperbolic category. We name this way the category  4(67\EN/,
where &N = Go0MB.07', G is the adjunction isomorphism 6" —— Id. It is
easy to check that the map that assigns to the triple (yMmn) € Ob4{8,E}] the
triple  (MAM,y"), where nt= 0Meo (M) and Yv= o(M)o8Y, is an equiva-
lence of categories, ‘W: 4(8,] —— A(BNEN

5.8. An analog of Verma modules. Fix an autoequivalence ¢ of an abelian cate-
gory 4 and an element & of 4(4):= End(ld 4).
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Let A& denote the full subcategory of 4 generated by all objects V  of

4 such that &(V) = 0. It is clear that gaé is a topologizing subcategory.
Set

0= 00 -4 — 5 u
Toix0
and let g,  be the functor morphism 6 +— 86, which is defined by morphisms
g, = &6 68— 80" for i21, and g ;= 0: Id — 6,
And let h_  denote the functor morphism 6.6 s 6, defined by

h“.: id: Boei"—-y Bi for i 2.
5.8.1. Lemma. The function that assigns to each V € Obﬂg the triple
(g +( V)0 +( V),h +( V)) and to each arrow f: V — V' from Homsdg the arrow

0.1 (8, (V)8 _(V)h (V) ——— (g+(V’),9+(V"),h+(V'))
is a functor from AE:, to A[0,€].

Proof. In fact,

_ [ . . - 0
hy o8, = 0" if {21, and h o o°8,0= O

_ rai_ -1, . _
8oy = E0'= £O6(0°) if i=21, and 84,°h 0= £6.

Thus, g, oh, = 2';69+, and h+og+= §9+(V) if &V) = 0 which shows that
(g+(V),B+(V),h+(V)) € Obd{B,§] for every V e adé. n

We denote the functor ;4& —— 4{0E) by B and call it the Verma func-
tor.

If Pe Obaaa n Specd, then the object B(P) will be called the Verma ob-
ject with the highest weight P.

5.9. About the subcategory ;ﬂ&. Let JE denote the inclusion functor

5.9.1. Proposition. The embedding JE has right and left adjoint functors.

Proof. For each object M of the category 4, denote by Kerf(M) and by
CokE(M)  respectively the kernel and the cokernel of the morphism  &(M).  The
maps Kerf and CokE are extended uniquely to functors # —— &, and both
take values in the subcategory 4§. Denote the corestrictions of Kerg and
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CokE on .ﬂa by K& and CE respectively. It is easy to see that KE is the
right and C§ is the left adjoint functor to the embedding JE: ’4}; —— 4. =

5.9.2. Corollary. The full embedding  JE: ‘di —— 4 is an exact functor. In
particular, it sends Specsa}:,J into Specd.

The last assertion means that
Specd n aa& = Specsd& = V(Aé): {<P>| P e Obadg}.

5.9.3. Lemma. If V € Specd, then either V € sdE.’, or &V) is a monomorphism.

Proof. If  Kerf(M) is nonzero, then, since M is from the spectrum,
KerE(M) is equivalent to M. This implies immediately that M is also in the
subcategory sdg. =

5.10. The subcategories ﬂg i Fix a nonzero integer n, and denote by saEyn

the full subcategory of the c,ategory 4 such that Ob‘dE,,n consists of all V €
Ob4 for which &) = 0 and &0™(V) = 0. Denote by J&,n the natural embed-
ding A@n__) ‘dé'
5.10.1. Lemma. The functor Jﬁ,n has both right and left adjoint functors.
Proof. For every V € Obdy, set Kp (V):= 0" Kert8"(v).
Clearly Kﬁ.n( V) e Ob’dﬁ,n’ and the map Vi—s K@.n( V) defines a functor
KE-,.H: ﬁé _ AE_,,H
which is right adjoint to the embedding JE.»”'
Similarly, the map V+—— C!’; n(V) = B'HCokL'j,Gn(V) defines a functor,
C&.”: ﬂg —_ sﬁ&

k]

1

which is left adjoint to the embedding JE,n' L]

5.10.2. Corollary. a} The embedding J n'."d&,n _ Ag is an exact functor.

b) Specsaéjn = Specﬂé,n N sdg = Specﬂé'n n Specd.

5.103. The functors Wy, Let 6 := & 6, and let g be the functor
' b 0<i<n
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v

morphism 91 — 806l n which is defined by the arrows

8 = £6': 6 80" for m1 220,
8, 0= 0: ld — 6",
And let hn be the functor morphism Bnﬁn—> Bn defined by
hy = id: 000" —— 6 for nuziz,

_ 0. g™l

hn,n" 0: 86" —— Id
5.10.4. Lemma. The function which assigns to each V e Ob’al‘,,n the triple
(gn( V),Gn( V),hn( V)) and to each arrow f:V —> V' from Homad};n the arrow

0,/ (8,(V)O,(VLh (V) ——— (8,(V).8 (V)h (V)

is a functor, ‘Pn = ‘Pﬁ

, Jrom ’aﬁ,n to 4(0,E).

I

I ’Oqﬁ 'V‘VC have: i
° — < g -
h ,i gn’l &9 for 11 Sn 1,

hn,n-logn,Oz 0;
_ el i-1 :
gn,i°hn,i- E6'= £00 for 1 < i < n-,
gn.0°hn,n= 0.

This implies that, if &(V) = 0 and ge”( V) = 0, then
hn(V)ogn(V) = &BH(V), and gn(V)ohn(V) = QGGH(V);

ie. (gn( V),Bn( V),hn( V)) € Ob4{8E} for every V e Ob'aﬁ_.,n' n

5.10.4. «-finite objects in  «/6,] and the functors \PE,,n' We shall say that
an object (yM,m) of the category «(0,E] is of d-finite type if the object
M is of finite type.

Clearly if V is an object of finite type in 4, then the object ‘Pg.n(V)
is of «-finite type.

Thus, the objects \PE,.n( V) with V  being of finite type are straightfor-
ward analogs of finite dimensional representations.

S5.11. The degenerate part of a hyperbolic category. Consider now the category
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A&l and the functors
LP&,I: sgg,l—-——) A{G,é}.

By definition,  Obd y consists of all objects V. of the category A
such that §&(V) = 0 and £&6(V) = 0. The functor lP&,l assigns to every object
V  of Aﬁ,i the triple (0,V,0) which happens to be an object of the hyperbo-
lic category «/9,&}, and to every morphism f: V —— W the morphism

f (0V,0) —— (0, W,0).

6. THE SPECTRUM OF A HYPERBOLIC CATEGORY.

A hyperbolic category  #4/6,£), as any category modules over a monad, is

defined, uniquely up to equivalence, by the forgetting functor
5 40,8} —— &, (YMM)— M.

The object of this section is to get a description of the spectrum of the
functor 3.

For most of the assertions of this section, it is required from the abelian
category « to have a countable version of the property (AbS):

(Ab5w) The category « has countable coproducts and, for ar{y countable fa-
mily Q of subobjects of the object X, and for any monoarrow Y —— X, the

canonical arrow sup (M nY) —— sup(Q) n Y is an isomorphism.
M e

6.1. Theorem. Let P € Specd.

) If EP) = 0 EOYP) = 0. bur EQYP) = O for 1Si<n, then the ob-
ject ‘Pg'n(P) belongs to Specd{9,E).

In the following assertions, 4 has the property (Ab5Sw).

2 If §P) =0, but E0P) %0 for i21 then B(P) e Specd{8.).

3)If EO(P) = 0 and EOP)# 0 for i< 0 then BNP) € Specd{0E).

Proof. 1) Let, under the conditions of 1), v (yMn) —> T&.n(P) be an
arbitrary nonzero monomorphism. To prove the assertion, we need to show the exi-
stence of a diagram (I}yMm) ¢ < X » ‘Pﬁ n(P) in the category 4{6,E ).

Suppose that [Im(l) is a subobject of ‘Pi n(P)i:= @D GI(P), but is not a
’ 0<jsi

subobject of ‘Pé,n(P)i-l’ i £ n. This means that

P2 oo o0y 8 M) s M
is zero, and _ ‘
e oMM) —— M
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is a nonzero morphism. (Here Y 6AM) —— M denotes the adjoint to 7y mor-
phism.) Therefore the canonical monoarrow Im(h'}"i) —_ ‘Pg’n(P) is factori-
zed by P —— ‘Pg,n(P); t.e. U induces a monoarrow
Y MO.'= Im(lo‘}"‘l) — P
Since L is a nonzero subobject of P, and P € Specd, there exists a
diagram

(UM yo——< N » P (1)

for some finite [ Since P € Ob‘dl’;,n’ the object MO’ being a subobject of
P, also belongs to the subcategory ’dﬁ,n‘ This implies that (1) is the diagram
in A&,n' So, we can apply to (1) the exact functor ¥ n

Note now that, since ‘Pg,n(‘o)’ ‘PE_,,n(MO) —_— ‘I’g,n(P) is a monoarrow, it
follows from the commutative diagram

¥ (Mp) ———— (M)

gn(l\ /l

&,n(P)

that the canonical arrow ‘Pg,n(Mo) — M is a monomorphism.

Thus, we have come to the diagram

((vM1n) ——< (I)\Pﬁ,n(MO) —< \Pﬁ.n(N) _— ‘Pé,n(P)

which proves the assertion.

2) Let, under the conditions of 2), v (yMmn) — Bé(P) be an arbitrary
nonzero monomorphism.

There exist a nonzero MOnoarrow . L —— M and n21 such that Im(iov)
is a subobject of Bﬁ(P)n': @ GJ(P).

<j<n

In fact, let Mn denote the pullback of

M—' s 0(P) c— @ 6P 1)
i>0 0<i<n
and In the canonical monoarrow

M ———)@ O(P)
i20

By assumption on the category 4, Mn # 0 for some n 2 0. Clearly this
n can be chosen in such a way that L, is not a subobject of B{P)n-l' This
means that MO:= Im(g +"no8"n(to1))) is a nonzero subobject of P  (cf. the argu-
ment in 1)).

The rest of the proof of 2) is the repetition of the corresponding part
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the argument in 1).

3) The assertion 3) is equivalent to the assertion 2) for the adjoint «cate-
gory AfONEN] (cf. 7). m

All the listed in Theorem 6.1 objects are not equivalent one to another (at
least, under some mild conditions). Explicitly, there is the following ’unique-
ness’ theorem:

6.2. Theorem (a) Let V and W be objects from Specd such that

EV) =0, EOV) 20 for 1 <i<n, and EOHV) = O;
and

EW) =0, EOXW) 20 for 1 Si<mi, and EOTYV) = 0.
Then
(i) the relation \PE.,J?( V) » ¥ m( W) implies that
n2m and O(V) > W for some 0 < s < n-1;

(ii) \Pﬁ,n(v) = ‘P&m(W) if and only if V= W.

(b) Let V € Specd and W € Obd be such that E(V)=0, &Bn(V)=0, E(W)=0,
and z;ei( W)20 for all i 2 . Then it cannot be that T&,n( V) >~ 8(W).

(c) Let objects V, W € Specd have the property:

EV) =0, &W) = 0; and E8'(V)20, EO'(W)20 for all positive i.

And suppose that the relation V » o(v) implies that 'V is equivalent to
0"(V). Then B(V) = B(W) if and only if V = W.

(d) Let 'V € Obd and W € Specd be such that E(V) = 0, EO(W) = 0 and
&,Bi( W) # 0 forall i < 0. Then the relation B(V) » BN(W) does not hold.

Proof. (a) Let objects V and W satisfy the assumptions of (a).
(i) Suppose that \PE,n( V) > ‘Pa m( W), i.e. there exists the diagram

(¥ (V) ——< (¥Mn) —— ¥p (W),

Note that, since <W> € Supp(ﬁ'o‘{’&‘n(‘/)). where F is the forgetting func-
tor 4{0,§) —— &, and

Supp(3¥g (V) = Supp( ® 6"(V)) = U Supp(8"(V))
’ 0<v<n 0<sv<n

<W> € Supp(ﬁv( V)) for some v, 0 < v < n-1. This implies that
<0"V(W)> e Supp(8™(V)). 2)
Since &Gn( V) = 0, and the inclusion (2) means exactly that 6"( V) >
en-v( W), we obtain that ge”“’( W) = 0 which, together with the condition
F,e"( W) # 0 if 0 < i £ ma, provides the inequality: m < n-v. In particv’
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m < n.

(ii) Suppose now that ‘Pg,n(V) is equivalent to ‘Pé,m(w)' Then, obvious-
ly, m = n which implies, in the preceeding argument, that v = 0; ie. <W> €
Supp(V). By symmetry, <V> € Supp(W). Thus, we have: V > W » V; ie. V and
W are equivalent.

(b) Let objects V and W of 4 satisfy the conditions of the assertion
(b); ie. &(V) = 0, §9"(V) =0, &W) =0, and W = 0.

Note that the action of 8" on ¥y V), e”(golpeyn(v» — 3% (V)

is zero. Clearly this property is inherited by any object ™  such that ‘PE_,,n(V)
> M. Since, the action of 8"  on FoB(W) is not zero, this implies that it
cannot be that ‘Pf;,n( V) >~ B(W).

(c) Consider now the case, when the objects V, W € Specd have the proper-
ty: &V) = 0, &W) = 0; and both E0%V) and &6%W) are nonzero for any
positive i

The relations B(V) » B(W) > 8(V) imply that 6*(V) » W and 6™(W) » V
for some m=20 and n 2 0. Thus, V » O'V(V), where v = m + n. By conditi-
on, V is equivalent to O'V( V), or, which 1s the same, V = Ov( V).  Since
EV) = 0, the relation V = GV(V) imply that §BV(V) = (. But, by hypothesis,
ﬁei(V) # 0 for every i 2 1. Therefore v = 0 which means that m = n = 0
ie. V=W

(d) Let objects V and W satisfy the assumptions of the assertion (d).

The relation B(V) > BNW) implies that 9"( V) » W for some n =2 0, or,
equivalently, v o~ 87w It follows from the last relation and the e_quality
E(V) = 0 that EO(W) = O which contradicts to the assumption that EBY(W) =
0 foral i<0 =u
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6.3. Theorem. Let (yM1) € Specd{0,£); and suppose that there exists <P> €
Ass(M) such that E_,On(P) = 0 for some n € I and the relation P > GV(P) im-
plies that v = 0. Then (yMm) is equivalent to one of the objects of Theo-
rem 6.1,

Proof. Let v P —— M be a monoarrow the existence of which is assumed,
and let o (g(P),B'(P),h(P)) ——— (yM,n) be the adjoint to o morphism.
1) Consider the case when n = 0; ie. §&(P) = 0.

The equality &(P)=0 implies that 6 (P):= EBBi(P) is a submodule of the
i<-1

(8% ‘¢)-module  (8%(P),*E(P))  (cf. 5.3);  or, equivalently, the natural embed-
ding 1: 6 (P) —— 6°(P) is a subobject of (g(P),8%(P),h(P)).

(a) The composition, v©: (g,8(P)h) —— (YMM) of 1 and o is
equal to zero.

In fact, if v# 0, then Im(v) is equivalent to M which implies that

Supp(M) = Supp(Im(o)) <V Supp(®'(P)). ()

iS-1
Since <P> e Supp(M), (1) implies that o'(P) » P for some i < -1 which
contradicts to the assumption of the theorem we are proving.
Thus, the morphism ©o* induces a morphism

0, (8,(P)B,(Phh (P) ——— (\MM). )

(b) Suppose that §9m(P) = 0 for some m 2 1. Then
. i
v @ 8(P) —— 6, (P)
. izm
is a subobject of (g+(P),9+(P),h+(P)).
The composition o : gme‘(P) ——>6,(P) of v and o _ is zero.
If o * 0, then Im(pm) = M which implies (as in (a)) that <P> belongs

to U Supp(ei(P)); ie. 6(P) » P for some i > 1 which, again, contradicts
i2m
to the assumption.

Thus, o, = 0 which means that the morphism v induces a morphism

=+
o ‘Pé.m(P) — (vMm).

If m here is a minimal positive integer such that E6™ = 0, then
q‘Eym(P) € Specd{6,E].

Note now that 0 m is a monomorphism.

Indeed, if K:= Ker{ol,m) is nonzero, then, according to the proof of The-
orem 6.1, K n P is nonzero. So, in the commutative diagram
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KqP . > P

il Ny
k o

1,n
K— oo — \{’Qm(P )
voi’, being a composition of nonzero monomorphisms, is nonzero. On the other
hand, vei'= ° mohoi = 0oi = 0.

The monomorphness of O Wﬁ,m(P) —— (yMm) implies that ‘Pﬁ,m(P)
= (vMm).

(c) Suppose now that &0”(P) # 0 for all m > 1. Then, by Theorem 6.1,
the Verma object B(P) = (g+(P),6+(P),h+(P)) is in  Specd{6,E}. Moreover, the
canonical arrow (2) is a monomorphism, because, if the kermel, K, of v + is
nonzero, then K n P # 0 (cf. the proof of Theorem 6.1) which leads to a cont-

radiction (cf. the part (b) of this proof).

2) Suppose now that &8(P) = 0 for some n > 1, and éBi is nonzero for
0 < i £ ni1. Then ® 6™(P) is a subobject of (g(P).8°(P)h(P)), and the
m 2 n

same argument as above shows that this subobject is annihilated by the canonical
morphism o*: (g(P).B.(P),h(P}) —— (vM,n); ie. v induces a morphism
o 8(68"(P) —— (vMn).

If &Bi(P) # 0 for all i < n then o is a monoarrow; hence (yv.M.n)
is equivalent to B_((—)"(P)). , .

If ge’"(P) = 0 for some (necessarily negative) m such that éBI(P) #z 0
for m < i < n, then Ker(v_'n) coincides with the subobject

® 6°(P) — 6(6"(P))

s<m
which implies that (yM) is equivalent ¥y [(e'”(P)), where [ = n - m.
The proof of these assertions follows the same pattern as the corresponding
parts of the argument above. m

Consider now the case, when EO"(P) 2 0 for all n e z.

6.4. Theorem. Let the category 4  have the property (AbS®). And let an object
P € Specd be such that

(a) E0'(P)# 0 forall ne z:

(b)y O"P)> P onlyif n=0.
Then
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PEeTTISES

) 8°(P) = (3. ® 6YP)h) € Specaf8t).

2) For any olbj'ezct (YyMm) of the category 4(0,£] such that Ass(M) > P,
the canonical arrow 9.(P) —— (M) is a monomorphism.

In particular, if (yMm) € Specd(0,E], and P € Ass(M), then (yMn)
is equivalent to 9.(P).

If (vwMmn) € Ob4{6E], P e Ass(M), and the image of the canonical arrow
0°(P) —— (yMm) is equivalent to (vMn), then O°P) s equivalent to

(LMn).

Proof. 1) Fix a nonzero monoarrow U (yM,n) —— 9'(P).

(i) There is a subobj.ect p: Ms ——> M of M such that the image of tlop

is contained in ® 0%P) for some s 2 0, but is not contained neither in
. 0<i<s .

® 6P), norin & 6'(P)

1Si<s 0<Li<s

In fact, let an denote the pullback of

M—' sodPr)— & &P (1
i€ -m<i<n

and 1 the canonical monoarrow M _ — @ BI(P).
mn mn ic7

Since the category 4 has the property (AbSw), Mm,n # 0 for some m, n 2
0. And we take as m and ~n the minimal nonnegative numbers having this pro-
perty.

Note that, since &0"(P) # 0 for al n, and 6%P) is in Specd for
every n € Z, all arrows Eﬁ"(P) are monomorphisms. The monomorphness of
£0™(P), n e z, implies that the action

p: 6"(® 0'P) —— @ o'P)
ez ez
is a monomorphism for any m  (this follows from the description of the action
in Section 3). Hence the composition of e'"tm,n and the action H is a mono-

morphism the image of which is ’contained’ in 52} ei(P), but is not contained
, . 0<is<s
neither in ® 6%P), nor in ® 0'(P), where s =n + m
1<i<s O<i<s
On the other hand, this monomorphism is the composition of
" "M 5 oM,
mhn

where  is the canonical monoarrow, the action oM —— M, and the mono-
morphism 1. This shows that the composition of 8™’ and the action

M — > M
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is a required monoarrow, W, from M= Gm(Mm L o M

(ii} Take the minimal s satisfying the conditions of the assertion (i).
The claim is that s = 0.

Suppose that, on the contrary, s 2 1. Denote by M(v) the kemel of the
composition of the arrow

W M, ——— & 6'P)
O0<iss

and the projection

& oP) — 5 0YP), 0<v<s
0<i<s

Note that, thanks to the minimality of s, both M(s) and M(0) are zero
objects; i.e. M is a subobject of 8°P) and of P. Since P and 6%P)
belong to Specd, this means that MS is equivalent to P and to BS(P). But
this cannot happen, since, by hypothesis, P is not equivalent to 8(P).

Thus, the assumption s 2 1 leads to the contradiction; ie. s = 0, or,
in other words, _

el M, —— @ 8'(P)
ez
is the composition of
a monoarrow V. Ms——-> P and the natural morphism P — Szei(P).
(iii) So, we have‘the commutative diagram

mM,vy) L > 8°(P)

L

8'(Ms)

in which 1 is a monomorphism by assumption, 8°v is a monoarrow because v
is a monoarrow, and the functor 6° is left (and right) exact. Therefore the
canonical morphism 8 (M s) —— (YM,n) is also a monoarrow.

Since P € Specd, and v: MS——> P is a nonzero monoarrow, MS is equi-
valent to P  (with respect to »). The functor 6°, being exact, respects this
equivalence: 9.(M s) = 9'(P). Since 8'(M s) is a subobject of (yMm), and
(vyM,) is a subobject of 0°(P), we have:

8°(P) > (xMm) >~ 8" (M) > 8°(P)
which shows that 6%(P) € Specd{6.E}.
2) Let (vM,m) be an object of the category «£{6,£), and let ™

oo P — M
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be a monoarrow, where P € Specd.

Suppose that the kernel (g K.h) of the morphism

0°(P) ——— (TM.n)
induced by the monoarrow P —— M is nonzero. Then, according to (the proof
of) the heading i), there is a nonzero monomorphism o¢: W —— K such that the
composition of & with the canonical monomorphism k: K — & Bi{P) is a non-
zero subobject of o P —— 9'(P). This means that the c:)fnzi}osition of koG
and the canonical morphism _
p: ® 6'(P) —— (WM

is nonzero. But, this cannot happenfes?nce peh = 0.

So, we have come to the contradiction with the assumption that p has a

nonzero kernel. =

6.5. The degenerate part of a hyperbolic category. Consider the full subcatego-
ry, «{6,£]|0}, of the category 4/6,} generated by all objects (yMm) such
that mey = 0, or, equivalently, §&M) = 0. Clearly the subcategory 4{6,£|0),
being a preimage of a thick (even closed) subcategory adg (cf. Proposition
59.1 and Corollary 5.9.2) under an exact (- forgetting) functor, is thick. In
particular, Spec#{6,5|0] = Spec4(0,5) n Oba4{8,E)|0].

We have a cartesian square of exact fully faithful functors:

o ————— 4[0]

L

40N ———s 4{6,E]0}

where  4{6*] ¢ 4 > 4[6] are natural embeddings:
Vi— (V,0), f— f;
4[68] —— 4{6,5|0} is the embedding
(M, B(M) —2— M)\ s (OMu), fi—— f;

4[6"] —— 4{6,5|0] assigns to an object (M, 8%M) Y, M) the object
(V\M,0) of the category A{B,&|O} and, again, acts identically on morphisms.
To the cartesian square of functors (1), there corresponds a cartesian square of

the embeddings:
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Specd ——» Specd/0]

| !

Speca4{6"] ——— Speca(0,£|0)

6.5.1. Lemma. Ler (yMm) € Specd(6,E). The following properties are equiva-
lent:

(a) &M) = O;

(b) §8(M) = O;

(c) either ¥y =0, or m = 0, or both.

Proof. Clearly (c) implies (a) and (b).

(a) = (c). Take the adjoint to (vMmn) object - (MAM, ). We have:
Moy = MOy = 6E(M) = 0. Consider Ker(y®). It is clear from the commuta-
tive diagram

orM—Y s — 1 eam

CIS T T 1 T 6”1

07 (Kern )—2— Ke rn*——— 8\(Ke rn?)

where U is the canonical monomorphism, and the diagonal arrow is due to the
equality n*ey* = 0, that (0, Kem™o) is a subobject of (MAMY).

If Kem® # 0, then, since (MAM,y") is in the spectrum, (0,Kerm®,G) >
(MMM, y*). In particular, M* = 0; ie. 1N = 0.

If Kem” = 0, then the equality mn = A.On®, where A is the adjunction
isomorphism 0.6 —— Id 2 shows that 1 is also a monoarrow. The monomorph-
ness of T and the equality mey = &M) = 0 implies that y = 0.

The implication (b} = (c) coincides with (a) = (c) for the object
(MAM,y*) of the adjoint hyperbolic category. =

6.5.2. Corollary. The square (2) is not only universal, but also couniversal;

ie. Specd(0,£|0) = Specd[0] L Specd/6"].
Speca

6.6. The case of a local category 4  Suppose that the category £ is local:
and let P be the unique up to isomorphism quasi-final object of 4.  Clearly
o(P) = P.

6.6.1. Lemma. Let 4 be a local category with a quasi-final object P. Then an
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endomorphims & of Id 4 is an isomorphism if and only if &(P) # 0.

Proof. Suppose that, for some object M, the morphism &(M) has a nontri-
vial kernel. Clearly E(Ker(§(M))) = 0  which implies, since Ker(§(M}) » P,
that &(P) = 0 which is not the case.

Similarly, the assumption that E(M) is not epimorphic implies the same
contradiction: &(P) = 0. =

6.6.2. Corollary. The ring 44} of all endomorphisms of the identical functor

Id e the center of the category 4 - is local if the category 4 is local

Proof. Consider the ideal (4) formed by all & € 4(4) such that ¢&(P) =
0, where P is a quasi-final object (clearly pN(«#) does not depend on the
choice of the object P). According to Lemma 6.6.1, 3(d)-1{4) consists of
(all) invertible objects which means that W) is the unique maximal ideal in
34). =

6.7. O-invariant points. Suppose that P € Specd 1is 0O-stable; ie. P = O(P).

6.7.1. Lemma. Ler <P> € Specd be O-stable. And let <(YyMm)> be an element
of Specd(6,5] such thatr <P> e Ass(M).
Then Supp(M) = {<P>]".

Proof. Indeed, {<P>}" < Supp(M), because <P> € Ass(tM) ¢ Supp(M).

The inclusion <P> € Ass(M) means that there is a monoarrow . PP —— M
for some P’ = P. Being in the spectrum, the object M = (yM,m) is equivalent
to the image of the adjoint morphism

W F(P') = (g(P),8°(P')W(P})) —— M
which implies the inclusion Supp(M)} < Supp( 8.(P’ ).

Now, since P = O(P’),

Supp(0°(P)) = U Supp(6™(P')) = [<P>]"
nez

which implies the required inclusion Supp(M) ¢ [<P>/ . =
According to Lemma 5.9.3, there are only two possibilities:
either &(P) = 0, or E(P) is a monomorphism.

The following Proposition takes care about the first one.

6.7.2. Proposition. Let <P> be a O-stable point of Specd such that §&(P) =
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0. Then the set
Spec_p_4f0,8] = (<(vMn)> € Specd(6,5)| <P> € Ass(M)]
has the following decomposition:

Spec 4{68,£} =~ Spec 4(6] 1l Spec
<P> <P> <P>

<P>"4[ 0.

Proof. The equality EP) = 0 and O-stability of <P> imply that
Q(B.(P)) =0 If ((yMn) e Spec<P>A{6,§}, then there is a nonzero morphism
8%P) — > M for some P = P, and M is equivalent to the image of this
morphism  (cf. the proof of Lemma 6.7.1) which implies that §&§M) = 0, ie.
(vMmn) € Ob4{8,5|0).

Now the assertion follows from Corollary 6.5.2.

In order to study the nondegenerate case, §&(P) # 0, as well as to finish
the investigation of the degenerate one, we need to make some simplifications.

First, note that the equivalence P = B(P) implies that the closure,
{<P>}", of the point <P> in the topology 7T (i.e. the set of all specializa-
tions of <P>) is ©-stable. Therefore the thick subcategory «({<P>}") of A
is  O-stable which means that the preimage of  «({<P>}") under the forgetting
functor  4{6,§] —— 4  coincides with the hyperbolic category  «70.E},  whe-
re & = 4{<P>}7), © is the induced by © auto-equivalence of the category
4, & is the restriction of & on &

It follows from Lemma 6.7.1 that Spec<P>xd{6,§} = Spec<P>a4’{8',E,'}.

Therefore, being interested in the subset  Spec < P).d{e,é,’ of  Specd{6.,E},
we replace the category & by its thick subcategory & = «({<P>})") and the
category «£{6,E] by (6L}

Futher, since the thick subcategory <P> is  O-stable, the functor 0 in-
duces an auto-equivalence, 6°, of the quotient category «:= &/<P>. Let §
denote the induced by &  endomorphism of the identical functor from &4 to
4: and let P be a (unique up to equivalence) quasi-final object of the Io-
cal category 4.

The equality & = W4({<P>}7) implies that the spectrum of the category
= #4/<P> consists of only one point.

Clearly the localization at <P>  maps bijectively the set  Spec 4{8,8]
we are studying onto Spec’d’(0".8'}:= [<(yvMn)>| Ass(M) # D).

(a) Suppose now that &(P) # 0. This implies that E&(P) is nonzero. Ac-
cording to Lemma 6.6.1, & is an automorphism of the identical functor  Id ..

<P>

This, in turn, means that the category  «&'/6"&} is equivalent to the category
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40 ]/ (cf. Lemma 5.2). Therefore the results of subsections 4.6 and 4.3
provide a description of  Specd/®,E’J; at least in the case when &  has sim-
ple objects.

(b) Suppose that &(P) = 0. This implies that ¢&(P’) = 0. Hence, by Pro-

position 6.7.2, Spec«’(0',0} = Spec4'[0'] ILl' Specd’[0].
<P'>
So, if the category &  has nonzero objects of finite type, we can use the

obtained in Section 4 description of the spectrum of a skew polynomial category
over a local semisimple category.

6.8. eN-invariant points. Let now BN(P) = P for some positive integer N, but
6'(P) is not equivalent to P if 1<i < N

Denote by © the functor BN and by { the endomorphism of the identical
functor, Id 4 which is defined by the following recurrent relations:

E=8& & . = AeBE 8oL, Li= &, (1)
and consider the category #(©,(}.
Let RN denote the map which assigns to any object (v,M,m) of the cate-
gory 4{8,5) the triple (Y\,Mmy), where

T = o™ yo. oy, M= NoBNe...o6" 'n,

and acts identically on morphisms: fr—— f.

6.8.1. Lemma. The map R,, is a functor from 4{8,E} to «{0,(].

N
Proof. 1) Clearly

- N
TNy = oM™ 'z0....o20",

and one can show (by induction) that
oVe 6" 'E0.... 20" = V= Co.
2) On the other hand,

nNOYN = noeno,“oeN-]noeN-ivo__,o'Y =

neBne... 08" o8 200" 2o . 0y =

(D
neOno... OBN-2(1'] 0B 0Y)o... 0.

Now note that
eA(noego ) = nAolA-loeAeéoXAoY\ = T]AoéoY\ = EJBAOT]AO'}A
where Mm* and Y* are, as before, the adjoint to m and Yy morphisms; i.e.

M= 0MeA, Y= A 'o0M.
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This implies that
n°e§°Y = loeéeho)\,.lc‘no‘y = )\,oeée"ol-lo& (= §o7\.09§6"ok']). (2)

Therefore we can continue (1) as follows:

noeno...oB"'3r|oBN'z(noeﬁoy}oB"'3yo...oy =
NoBMo... 08" IN 08N 2 heBEBNA ™ o808 Fyo...0y =

NoBMNo... 08" 7 (1oB(AeBEBN A oEJay)e... o,

and, according to (2),

n°9(k°e§eh°l-l°§)°y = koe(koege’\o)\,-loé)e’\ok-lono‘y =
AoB(AoBEBN A E )BT GE,

Repeating this, we come to the required formula: m NN = &(M).
Clearly the map Ry is functorial. =

6.8.2. A general observation. Let F= (F,u) and & = (Gv) be monads in 4,
and h: 6 —— F a morphism of monads. The morphism A4 induces the functor

hy F-mod —— G-mod, (M,m)—— (M,moh(M)), fi—— f.

6.8.3. Lemma. The functor h, has a left adjoint functor.

Proof. Given a G-module V¥ = (V,u), denote by [F®Gw the F-module (M,m),

where M is the coequalizer of the pair
Fo, WoFh(V): FG(V) ————— F(V),
m: F(M) ——— M the unique arrow which makes the diagram

FFG(v) —EC |, F(m)

- | -
FG(V) —< . M

commute. =

6.8.4. Corollary. The functor Ry is exact and faithful and has a left adjoint
functor, LN: 4{0,() ——— 4{8,E).

Proof. Take as F the monad (6°.‘¢) and as € the monad @©°0) (cf.
3): and let h 6 —— F be the morphism which identifies ©™ with 6",
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It is easy to see that the functor RN can be defined by the commutativity

of the diagram

4(0,§) —————— F-mod

JUE

40} — 5 6-mod

where each of the horizontal arrows is an equivalences of categories from Propo-
sition 4. Thus, the left adjoint to  h,  functor, h*:= F®Go (cf. Proposition
6.8.3), induces a left adjoint to R, functor Ly =
6.8.5. Some details about the functor LN‘ Let F denote, as in 6.8.4, the mo-
nad (9.,‘5_,) and G the monad (@'.C’). Clearly

0°= o oo 1)

0<si<N

Let BN be a functor from &-mod to F-mod which assigns to a G-module

V = (Vo) the F-module ( @ 6’(V),§N(W)), where the F-module structure
0<i<N
&N(W) is defined by

GV 00V) — 0y) if i <i+j< N
(cf. 3), and o
o: 004V) —— V if i+ j=N
It follows from (1) that the canonical epimorphism
Fr= (8°,'8) —— F®
can be decomposed as
[F—)GN’};—-—QIF®G, (2)

Moreover, one can see that the arrow GN, £ —_— 'F®G in (2) is an tisomor-

phism.

6.9. From  Spec(G-mod) to  Spec(F-mod). The functor 0 defines an auto-
equivalence, BG, of the category G-mod as follows.

There is a canonical functor isomorphism ©: G6¢0 ——— 0¢G which is defi-
ned by

id: 0.0 = 0Neg — 0.6'V= 0.0 if >0,
and by the composition of the isomorphism
Aok & BhoB ——— Q.00

(here A : B%0 — Idﬂ and AN Idnd — 5 0.8~ are, as before, the ad-
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junction isomorphisms) when i is negative.
Now we define BG by BG(V,U) = (8(V),6vec(V)), and BGU) = @f for any
G-module (V,0) and any G-module morphism f.

6.9.1. Theorem. Let P e Specd be such that ©(P) = P, bur ©'P) is not
equivalent to P if 1 < i < N Let (Vo) be an object of Spec(G-mod) such
that <P> € Ass(V). -

(a) Suppose that ?';GI(P) # 0 for al 1 £ i < N Then every nonzero sub-
module of H-'®G( V,o) contains [F®®( W,w) for some G-submodule (W,w) of (V,o).

In particular, [F®G( V,v) belongs to Spec(F-mod), and . it is simple if
(V,o) is simple.

(b) Suppose that éei(P)
that 1<1<m<N, &8P
or m< i< N Then

(b1) @ BI(V) is an F-submodule of EF®G(V,U) « ( @ Bi(V),Ej,N), and the

0 for some i; and let I m be such integers
0, E0™(P) = 0; but, EOYP) 2 0 if 0SS i< |

I<i<N i 0<i<N
quotient module, \Vl ; ( @® 0(V)u), belongs to the spectrum.
N O<i<l
(b2) @ BI( V) is a submodule of [F®G( V,o) which also is in Specd{6,C}.

msi<N
(b3) If (Vo) is a simple G-submodule, then the F-module V¥

submodule of (b2) are simple.

1 and the

Proof. According to 6.8.5,

F® (Vo) ~ 8, g (Vo= ( & O(V)LELV),
6 NE osien N

where E-’N is an ’adjustment’ of ‘€ (cf. 6.8.5).

{(a) The proof of the assertion (@) is similar to the proof of Theorem 6.4
when §G'(P) # 0 for all i, and is the same, as the proof of the first asser-
tion of Theorem 6.1 when &(P) = 0.

(bp) The proof of the assertion (b) follows the argument which proves the
first assertion of Theorem 6.1. The details are left to the reader. m

6.9.2. Remark. Set Spec < P>G-m0d:= {<(V,0)> € SpecG-mod| <P> € Ass(V)]. The set
Spec < P>G-m0d depends only on whether £ has a zero on the orbit of <P> or not.

In fact, if EO%P) # 0 for all i, then {(P) # 0 which implies, accor-
ding to 6.7 that Spec <P>G'm0d is isomorphic to the "<P>-part" of the spectrum
of the Laurent category corresponding to the auto-equivalence ©:= BN:

Spec<P>ﬁ3-m0d &~ Spec<P>a4[®]/A.

Here
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‘ Spec<P>a4[®]/A:= [<(M,u)> € Specd[O]/d| <P> e Ass(M))}.
If E0'(P) = 0 for some i, then §(P) = 0. Therefore

Spec<P>u3-mod o Spec<P>sd[G)] U Specs

[<P>) <P>[®A]

(cf. 6.7). =

6.10. The whole picture. Thus, Specd# can be represented as the union:

Specd = Spec_4 U ( U Spec 4),
< n21 n
where

Spec_#4 consists of all P € Specd such that Gi{P) is not equivalent to
P if i # 0; or, equivalently, the orbit

[<68'P)>| i e Z)1)
is infinite;

Specnna, n 2z 1, cor}sists of all P € Spec# such that the orbit (1) has
exactly n  points; ie. 6'(P) is not equivalent to P if 1 £ i £ p1, and
e'(p) = P.

Let Specaa consists of all P € Specsd such that éei(P) = 0 for some
[ Set

Spec_, gaﬁ = Spec__ o4 Spec&sd, Specn &dl Specnad N Specgad,

and
Specm’*ﬁ = Specoo]ad - Specisd, Specn’*sd = Specnsd - Specgﬁ,
for all n 2 1.
Thus, we have the following decomposition:
Specd4 = Spec__ asd U Spec__ 4 U (U (Spec, 4 U Spec, z-;ad)). (2)
’ ’ n2t ' ’

Now, consider the part, Spec’d{8,E}], of  Spec4{6,E] which consists of
all objects (v Mm) € Specda{6,] such that the set Ass(M) is not empty. Cle-
arly any decomposition of Spec4 induces a decomposition of  Spec’d(6,£). In
particular, we have: ' |

Spec’s{8.8) = Spec’ F:A(B,F,} U Spec’ _ .4(6,&) U

(U (Spec’, wafB.8) U Spec’, p4{8.8)).

nz1
4{8,E] consists of all (yMn) € Spec’#{8,E] for which
Ass(M) n Speca’B.d # .
(a) According to Therem 6.4, the map
Y o # Pr—> F(P) = (3(P),8°(P),h(P)) ()

where Spec o.pB
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]

takes values in Spec_ ,#(6,£/; hence it induces a map
3 « Spec .4 ——— Spec_ ,4/6,].

The map 3_, is surjective, and the preimage of each point (Y\Mm) in
Spec__ ,4(6,5/ coincides with the orbit,

' {<9i(P)>| ne i
of any <P> € Ass(M).

(cf. Theorem 6.4).

(b) LeF now P ¢ Specm.&‘ﬁ. Define a map, S’M'g, as follows:

If E0'(P) = 0 for all i< 0, then set

Yoo £(P) = BNO'(P), )

where Vv is the least positive number such that E-,E)V(P) = 0.

If &0%P)# 0 for i=1, then set

Y,.e(P) = 56" (P)), (3)

A
where vA is the biggest (necessarily) non-positive number such that §9V (P)
is equal to zero.
If E0'(P) = 0 for some positive and non-positive values of i, then set

Y tP) = ¥ yry (0" (P, ©)

where Vv* and v are defined above.
By Theorem 6.3, the map 3’005 given by the formulas (4), (5), (6) induces
a surjective map Spec_ aaﬂ — Spec__ 5.4{9,5}.
] L]

 Note that the preimage of a point <(yMmn)> € Specm,aad{e,g} is the ray
{<G'(P)>| i £ v -1} in the first case (cf. (4)), the ray {<BI(P)>| i 2 v
in the second case (cf. (5)), and the interval {<6i(P)>| v £ i S v - 1) in
the third case, where <P> is an associate point of M.

(c) Fix a positive integer n, and consider the set In,* of all pairs
(<P>,<v>), where <P> € Spec, . and V = (wV,0) an object of Specd{ﬂ",&n}
such that <P> € Ass(V). Clearly the group z/nZ acts effectively on In’ -

me(<P>,<¥>) = (<9’"(P)>,<en’”(w)>),

where 0 the induced by & action on Spec:d{en,ﬁn}.

The formula 3n W <P> <¥>):= <[F®G v¥> defines a surjection
' n
—— Spec, 4(0.F)

3 c X

n* o Tp*

such that the preimage of any point <[|-‘®q3 V> € Specn «A4{6.E] is the correspon-
n ’
ding to <V¥>  Z/nZ-orbit in LI Here we use the fact that v  defines the

orbit uniquely. Still it is convenient to consider the set of pairs X x and



keep in mind the diagram

3

*
X, «————— Spec’ (8
r \ ’ *
n / n
N / F®
Spec, . Spec, a0, ]  °n
where T and T are projections. Note that, according to Remark 6.9.2,

Specn *&{en,in} is isomorphic to the corresponding part of the spectrum of the
Laurent category «f 8" /4.

(d) Now fix a positive integer n  and consider the set X of pairs
(<P>,<¥>), where <P> € Specn i and ¥ = (uVo) is an object of
Spec < P>A{9n,§n}; i.e. <P> € Ass(V). Recall that, according to Remark 6.9.2,

Spec G-mod = Spec 4[6 ] U Specd [0 7]
<P> <P>""n [<P>) <P>""n

There is a natural action of Z/nZ on X £ defined by
19(<P> <¥y>) = (<6(P)>,<9n(W)>).

Let 3, £ denote the map from In& to Specn'ed{e,é} th.at assigns to

any element '(<P>,<w>) of In £ the elémcnt <V > = <( & B'(V),u)> (cf.
' ’ 0<i<«l
Theorem 6.9.1).
According to Theorem 6.9.1, the map 3, £ is surjective, and the preimage

of the element <w| l> is the "interval"

{<6'(P),<0 'v>| 0 < i s L)

6.10.1. Remark. The definition of the subsets Spec  .4/6,&/ of the spectrum is

. o.p
very cautious:

Speca,Bsd{B,él.: [<(yMm)> € Specs{0,E)| Ass(M) n Speca'BA z D).
It follows, however, from the description above that

Spec_ 4(0,8):= {<(yMn)> € Specd{6,§}| Ass(M) Speca'B.d}.

o B
In particular,

specmﬁa{e,g} n Speca,,Bud/G,&} = @, if (o.B)2(a’.B);
ie. Spec’s{0,E} is the disjoint union of the subsets SpecmBA{G.);]. n
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COMPLEMENTARY FACTS AND EXAMPLES.
C1. HYPERBOLIC CATEGORIES OF HIGHER RANK.

C1.1. Iterated hyperbolic categories. Let £ be a category, and ¥, 0 two au-
to-equivalences of 4  which quasi-commute; i.e. there exists an isomorphism @
from 08 to V8. Let & and { be endomorphisms of the identical functor

Id, such that 8 = E0 and OC = CO.

Cl.1.1. Lemma. Under the above conditions, the functor 0 defines an auto-
equivalence, ©, of the hyperbolic category 4(8,E)] and ( defines an endo-
morphism of the identical functor of the category #{8,E].

Proof. Denote by © the map which assigns to any object (yvM,n) the ob-
ject (Q(M)oBv,6(M),6ne¢"'(M)) and to any morphism f (vM,n) —— (Y.M'T)
the morphism 6f The map © is a functor (9.} —— (DE].
In fact, by condition we have:
OMe¢ (M)p(M)-8y = 6n-6y = 6% = L8,
(G(M)oBY)o(8M0¢” (M) = @(M)oB1e0yeq (M) =
QO(M)o0EGq (M) = @(M)-EBV-0 (M) = EDS.

and

Clearly © is an auto-equivalence of the category «38.E).
Note that, for any object (y,Mm) of the category «{9,§), the morphism
{(M) is, thanks to the condition (& = 9, an endomorphism of (yMm):
Yo4(M) = CO(M)ey = OL(M)eoy, and {(M)emy = neld = yoOL
This implies immediately that the map ¢ which assigns to any object
(vyMm) of the category «f0,E] the arrow E(M) is an endomorphism of the
identical functor. =

So, one can define the iterated hyperbolic category B(©,L), where B:=
4(9,8/.

C1.2. A generalization: categories A{=]. Let ﬁi. i e be a quasi-
commuting family of auto-equivalences of the category &,  moreover, for every
pair ij € J, a pair of isomorphisms,
wlj, (plj: ﬁl‘Oﬂj _)' ﬁjOﬁi
is given such that
(pii = l,]!u = id, and Q..0oQQ.. = id = Y..oY..
And let éi’ i € J, be a family of endomorphisms of Id 4 such that
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ﬁléj = E-'jﬂi if i # j Denote this data, (3, Yy @ §i|i,j € JJ, by E
and consider the category «{Z/ the objects of which are
(Yy,Mn;|i € J),

where M € Ob#4, and

(a) (Yz’M’ni) is an object of the category A{ﬁi,éi} for every i e J;
ie. Y; and n; are arrows M — ﬁi(M) and ﬁI(M) —— M respectively
such that Ty, Z’;{M}, and ﬁi(nioyi) = &iﬂi(M).

(b) The diagrams

07 M
B, (M) —L= 9.:0,(M) —L 0,0.(M)

3 [
Y

M >13i(M)

are commutative for any i, j € J such that i # j.
(c) The diagrams

ﬁ(M)——l——n%f}(M) M ﬂﬁ(M)

/] o
¥

M > §,(M)
and
om; Vi
B:(M) b 89 (M) A LEIN 08,(M)
d | o
n;
M < ﬁi(M)

are commutative for every i, j € J.
Arrows in  #f{Z] are defined in an obvious way:
an arrow from (YiM’ni“ € J) to (‘yp ‘M, ‘ni|i € J) is a morphism

fM— M

such that ¥,of = ﬁi(}‘)o’yi, and fon, = nioﬁi(f) for all i e J.
It follows from Lemma CIl.1.1 that in case when J = [in], this data pro-
vides an n-th iterated hyperbolic category, An{(ﬁi),(ﬁi)}.

C1.3. Example: modules over iterated hyperbolic rings. Let R be a commutative
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ring, [9i| i € J} a family of pairwise commuting automorphisms of R, and
{§i| i € JJ elements in R. Denote by R{(Bi),(ﬁi)} the ring generated by R
and indeterminates Xp Yp 1€ J, which satisfy the relations:
xr = Gi(r)xt., ry; = yiB l{r)
=5
XPp = Ve XK= X% Y=Y
forevery re R and 1 <ij<n, i#]

The category R{(GI.),(E,i)}-mod of R{(Gi),(ii)}-modules is equivalent to
the n-th hyperbolic category 4 ((©,).(5/)), where 4 = R-mod, ©; the indu-
ced by Gi auto-equivalence of  R-mod, &i’ the corresponding to the element
éi endomorphism of the identical functor [dR-mo 4
Cl1.4. A special case. Let {19!.| i € J} be a family of commuting automorphisms
of a commutative ring, A; let u; be arbitrary and P; invertible elements in
A fe ]

Denote by A[{ﬁi},{ui},[pi}] the ring generated by A and by the indeter-
minates Xp Ypr i € J, subject to the relations:

xa = B (a)x,, ay; = yiﬁi(a)
Xy P = S
XY; = Y XS X VY= Yy
for every ae€e A and ije J, i=#]j

C1.5. Lemma. The ring A[(ﬁi),(ul.),(pi)] is isomorphic to the ring
R{(Gi),(ﬁi)}, where R = A[E,I.|i e J, and Bi is, for every i € J,  the
extension of ﬁi to an automorphism of the ring R given by

el(gl) = ﬁi(pt)él + ﬁ(ul)'
and

Proof. The isomorphism in question is given by

X, b—3 X

i PV Y i

i
for every i, ie J =

It follows from Lemma C1.2.1 that if J = /[in], then &fZ} is the n-th
iterated hyperbolic category. Therefore our results about the spectrum of the
hyperbolic categories 4{0,E} providle a step by step description of the spect-

~

rum of the forgetting functor 3F : £4(=] ——— ; i.e. the subset
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{<(Yi’M’“i)> € Specd(Z]| Ass(M) # D).
Basically, the problem is reduced on each step to the search of O-stable
points (cf. Cl1.1).

C2. RINGS AND CATEGORIES OF HEISENBERG AND WEYL TYPES.

C2.1. Rings of the Heisenberg type. Let R be an associative ring, Z:= {91,
§l.| i € J}, where {9i| i € J} is a family of pairwise commuting automorphisms
of an associative ring R, and /§;| i € J/ elements of the center of R.
Call the corresponding to the data =  hyperbolic ring R{®} (cf. 0.3 or
C1.2.3) of Heisenberg type if
(8, + 8,')E) = (p; + p; )&, (m
for some invertible Bi-stable elements P; in R and for all i/

C2.1.1. Lemma. If R{Z} is of Heisenberg type, then the element
. i -1 PR P
€= (&, piei (gz))(él P; ei (EJI))
is central for all i.

Proof. Since ¢; belongs to the center of R, it suffices to show that
¢; is Bj-stable for al j € J. Clearly chi = ¢ for all j e J-fiJ, since
both E’. and p, have this property. _

It remains to check Oi-stability of ¢ Set

- E . -1 £ aclg-l
U= E"i piei (E_,l-), ul.".— &i P; ei (él)
It follows from (1) that:
_ ) _ Aclg gl _ -
0, (u) = 648) - p&; = p; & - 6, (§) = p; u )

Since P; and pl.'l enter into (1) symmetrically, we have the relation
O,ul) = pui (3)
for free. The formulas (2) and (3) imply that Gl{ci) =c. =

Denote by z; the element yu; = yi(?;i - piﬁi"(ij,i)). Then we have:

Xz, - P zx. = ¢
&P T

for every i. In other words, the map which is identical on X i € J, and on
the ring R, and sends Z; into Vi for every i € J, defines a morphism
of the ring R<(8,)(c),(p,”)> given by the relations

xr o= Gi(r)xi, rz, = ziei(r)
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g

~2
X.Z. - . ., = ..C.
le pl lel 8” i

XZ. = X

i r A Y jxi’ Zizj = 2%

J
for every re€ R and ije J, i#j (cf. Cl.24) into R{E].

Note that if the elements ¢,  are invertible, then this morphism is an
isomorphism.

C2.2. Rings of the Weil type. Let R{Z} be the Heisenberg type ring correspon-
ding to the data (Ep) = {(Bi), (éi), (pl.)/. Define the Weyl type ring W(Ep)
as the quotient of the ring RfZ/ by the ideal generated by the (central) ele-
ments ¢, i € J Clearly the ring W/Z,p/ is also hyperbolic. And Hayashi’s
Weyl algebras belong to this class.

It follows from C2.1 that the Weyl type ring W{Ep/ is isomorphic to the
ring A J<{91,p1.'2,1}>. In particular, it contains a subring A J((ei),p'z)
which is generated over the subring of (Bi)-stable (= Oi-stablc for all §) ele-
ments of R by the indeterminates X Z; subject to the relations

-2
XZ:, - P. ZX. =1
lzl pl Zl i

for every i e J

C2.3. The categories of Heisenberg type. A hyperbolic category &4{0,E] will be
called of Heisenberg type if there exists a O-stable automorphism r of the
identical functor Id 4 such that
0%t + £0° = (r0® + r'0%).0E0. (1)
Here O-stable means that Or = rf.
We call r the weight of the category 46,6}, and will write 4{6,Er}
in case we need to indicate the weight.

C2.3.1. Remark. Note that the relation (1) is equivalent to any of the relations

BE + EM0 = O(r + r ' )oBEA ()
GAEA 4 EBN = BMr + v )oBNE (3)
E + 0o0MNea™! = (r + 171 )oEA, 2"
EM + g 'oBEBNeE = (r + 1 ')ok, (39

where EA:= 000MEQo0™'; and
o 60 — ld‘d and € Idd — B
are the adjunction isomorphisms.
It follows from the equivalence of (2) and (3) that the adjoint to
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4{0.E;r} hyperbolic category is also of Heisenberg type with the same weight

r..

Fix a Heisenberg type category «£(0,E;r). Let u and u* denote the en-
domorphisms of Id 4 defined by the relations:

u=&-refr and uh = & - r oA 4)

C2.4. Lemma. There are the following equalities:
O(u) = r'Boub, and 6(u") = rBound.

In particular, the endomorphism c¢:= uou of Id y is O-invariant.
Proof. 1t follows from (2) that:
B(u):= BE - OroBEA = O(r + r ')oBEN - EAB - BroBEA =
Br ' BEN - EAB = r7'00(BEA - rBeEAD) = r'Bo(E - roEMB:= r 'Boul.

Since automorphisms r  and v enter into the condition (1) symmetrical-
ly, we obtain the other equality, Bu® = rB.u”8, for free. m

C24.1. Remark. Moreover, one can see that the condition (1) is equivalent to
the equality O(n) = r'Qoub. u

C2.5. The spectrum of a category of Heisenberg type. Fix a category  «{6,&;r/
of Heisenberg type.

C2.5.1. Lemma. For every nonnegative integer n,

§6" - en(l_-n+|°§,‘ _( E rzi-n)ou)’ (5)
i

O<i<n

BN = eI E L (T ), 6
i<n

Proof. If n = 0, then the equality holds by obvious reason.
If (5) holds for some n = 0, then we have:

E_,G"H'l - en(r-n+1°§,\ (X t‘21'-11)“1)6 -
i<n

en(r-n+1°é,\9 (3 l_zi-n)oue) -

0<isn

0" (0r " BN - w) - B T rzi'n)orou) =
O<isn
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en+1(r-n°g,\ (X rZi'"")ou)
Osisn
which proves (5). The formula (6) is exactly the formula (5) for the category
4{ONENTT') m

C2.5.2. Decompositions. Let  be an endomorphism of Id o Denote by  «(f|0)
the full subcategory of the category &4  generated by all objects M  such that
f(M) = 0. One can check that #4(f|0) is a thick subcategory, and the quotient
category  &/4(f|0) is equivalent to the category (€)'4  obtained by inversing

all arrows {f(M)| M € Obd/. Besides,

C2.5.2,1. Lemma. If P € Specd, and f(P) # 0, then f(P) is a monomorphism.

Proof. Note that §(Ker(f(P}))) = 0. I Ker(f(P)) # 0, then Ker(f(P)} >
P; therefore the equality f(Ker(f(P))}) = O implies that (P} = 0. =

Now take f = u. Thanks to the property 6(u) = (r 'ou), the subcategory
A(u|0) is O-stable. Thus, we can associate with u  two hyperbolic categories -
the subcategory  &(u|0)/0°.E} and the quotient category  «(u|*){07E7},  where
diu|*):= &/d(u|0)

Note that  «(u|0){0.&}] is a thick subcategory of «£/6,£}, and the cor-
responding quotient category 4(6,E)/d(u|0){6".8) is naturally equivalent to
the category #(u|*)}{67,&).

Consider the related to the thick subcategory A(u|0){0.E} decomposition
of the spectrum into Zariski open and closed subsets: Specs(6,£] ~ V(u} U U(u),
where

V(u) = (<(vMmn) € Specd(6,5}| u(M) = 0} = Specd(u{0){6"E'}]
(the last equality follows from the fact that A(n|0){0"E) is a thick subca-
tegory of «4{6,E}), and Ufu) = Specs(8,E] - V(u).

Since the localization at the subcategory — «(u|0){9".&’/ induces an embed-
ding of the open subset U(u) into the spectrum of  «&(u|*){67,§7}, the study
of the spectrum of 4(6,E} splits into two cases: the case when u = 0 and the
case when u is invertible. Consider each of them.

(a) Let u = 0. This equality is equivalent to the equality
68 = (ro§)6. (1)
Therefore we can repeat the same argument, but this time for £, and ob-
tain, as a result, the decomposition Spect{6,E} = V() U UE), where
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V(&) = Spec4(€]0){¢',0}, and U(§) < Spec(E|*)[67.E7).
This time, we know the answers:
Specd(5|0)(0',0) = Spec(E|0)(6'] L Specd(&|0)[0]
Specd(§)|0)
(cf. 6.5), and
Specs(€|*)(67.E7] = Specd(§|*)[0'//4(E| *)

(cf. Lemma 5.2). Le. the problem is reduced to the investigation of the spect-
rum of skew polynomial and skew Laurent categories.

(b) Suppose now that u and u” are invertible.

Consider the decomposition of Spec«(6,E] with respect to the ©-stable
cenrtal endomorphism A = id - . Again, we have the splitting into two cases:
A =0, and "A is invertible".

(b0) Let X = 0. Then the formulas

&Gn _ B”(r'nﬂoﬁ" i (Oszsnrzi-n)cu)’ 2)
i
@"9"” _ 9"‘”(rm|o§ (s r'2i+n)ou"). (3)
0<i<n
from Lemma C2.5.1 can be rewritten as
£0" = 0"(+ " eEA - (na)rou) = 0(r o(roEA - (nt1)ou)) 4)
and Aol _ pall( -1 A
ErOAT = 0N(xNo(E - (nt1)erout)) (5)
respectively.

Let, for every object M of 4, 44|M) denote the image of the center
3(d):= End(Idﬂ) of the category £ in A(MM).

Applying Theorem 6.1 and Theorem 6.4 to the formulas (4) and (5), we obtain
the following assertion:

C2.5.2.2. Proposition. Ler 4(8,8) be a Heisenberg type category with the
weight v such that v = id and the morphisms u, u® are invertible.

(a) Let <P> € Specd, and &E(P) = 0.

(i) If Char(5(4|P)) = p > 0, then LP&.P(P) € Specd(8,E).

(i) If Char(+(4|M)) = 0, then B(P) and BNP) are objects of
Specd(9,E ).

Any object (YMm) € Speca{6E] such that <P> e Ass(M) is equivalent
either to ‘Pg'p(P) (if Char((4|M)) = p 2 2), or to B(P), or to BNP)
(when Char(3(4|M)) = 0).

(b) Let P e Spec# be such thar 8"(P) ~ P only if n = 0, and

(ro&? - nu)(P) # 0. (§ - nrou)P) = 0
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for all n20. Then 6°(P) e Specd(6,E).
(b*) Suppose now that A = id - r> is invertible. Then the formulas (2)
and (3) can be rewritten as

g6" = 0"(c"(ro8r - A(id - " )eu)) (6)
g0t = oV E - AN id - o )oroun)) (7)
Given an endomorphism, ¢, of the identical functor Id & define the

®-characteristic, chiM,0), of an object M  of the category A as zero, Iif
o*M) # id for all n % 0; otherwise, as a minimal positive n  such that
(p"(M) = id. One can easily check that ch(M,9) depends only on the equivalence
class of the object M: chiM, @) = ch(<M)p). In particular, we have a well de-
fined notion of the ¢-characteristic of a point of the spectrum of 4.

As a consequence of the formulas (6), (7), Theorem 6.1, and Theorem 6.4, we
obtain the following 'multiplicative’ version of Proposition C2.5.2.2:

C2.5.2.3. Proposition. Let 4{8,E) be a Heisenberg type category with the
weight v such that the morphisms uw, u® and id - > are invertible.

(a) Let <P> € Specd, and &(P) = 0.

(i) If ch(P,;r’) = p, then Wg (P) € Speca(8)

(ii) If ch(P,¥*) = O, then B(P) and BNP) are objects of Specd(®,E).

Any object (yMm) € Specd{0,E} such that <P> € Ass(M) is equivalent
either to Wg (P) (if ¢h(Pr’) = p 2 1), or to BP), or to BNP) (when
ch(P,r}) = 0).

(b) Let P € Specd be such that "(P) » P only if n =0, and

(rofn - N 7'o(id - rz(’”‘))ou)(P) £ 0,
€ - A'o(id - X ))oun)P) 2 0
for all n 2 0. Then 0%P) e Spec4{6,E}.

C2.6. The categories of Weyl type. Let a category of Heisenberg type  4/0,&:r/
be given. Denote by ¢ the central endomorphism w?eu (cf. Lemma C2.4); and
consider the full subcategory  #(c|1) of the category 4  generated by all ob-
jects M of «£ such that oM) = idM. One can check that d(c|1) is a thick
subcategory of the category 4. It follows from the O-stability of ¢  that the
subcategory d(cl) is B-stable. Therefore the restriction onto Ac|1) of the
data (6,€,r) defines a Heisenberg type category with the property: ¢ = id.

Define a Weyl type category as a Heisenberg type category, «#4{8,&;r/, such
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that ¢ = id.
Since in that case, both  u and uw* are invertible, we can apply to Weyl
type categories Propositions C2.5.2.2 and C2.5.2.3.

C2.7. Weyl type rings and quantized enveloping algebras. Consider a special case
of the Weyl rings. Namely, we assume that J = [i,n], p; = P for every i € J,
and that the element p - p~' s invertible.

Define new variables, {e., f., hi' 1 £i < n1) by the formulas:

€= *ir fz = Xl hi'-z Hi %ipy (1 <15 n),

where a1

Up= ii -p 91- (E"i); (D
hence . ,

ui = §,— - pel (él) (2)

We shall need the inverse formulas:

& = tpu; - pu), (3)

-1 _ -1

8,(&) = (u; - u; ), 4)

where T:= (p - p ).
We have:

_ -1 _
eifi i fiei = idiedi T e e T E’ieiﬂ E:'z+| r;1+1et (ai) -

“pu; - p-lui-l)t(uiﬂ i ui+|-l) S WP, - P u+1-l)t(ui i ui-l) =

-1 -1 -1 -1 -1 -1
(P“m TP oM M PuH P

I -1 -y _ -t
T PHMLy Py My T PR P ulul+l ) = Wh; - ;).

Clearly

€ X in P G
if j# i+ If j= i+, we have

-1
., €. ; £, =
eee!'*'l (p+p )elel+l i + ei+lel H

-l -
XY i Vi FirYivs - PHP XY X Vied™ Ve i i Vi in
-1 -1 _
Vet P O G - (PP + &) = 0.
Similarly,

-
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if j# i+, and

fififi+1 . (p+9-l)filri+rf'l- + f1+lfrfz = 0.

This means that the subring generated by the elements €, fi’ hi’ 1 £ i £

n-1, and the subring r® of ©-invariant elements of R is a quotient ring of
the quantized enveloping algebra Up(An_l;R@) over the ring R(a corresponding

to the Cartan matrix An-l‘

C2.7.1. Proposition. There exist ring morphisms defined by the following formu-
las:

@) 04 UyfA, ;RO) —— W(E.p)

e XY, o fi— x.

< .
[ i P (1 <15 na),

-1
ha——> u. u.
i I i+

(6) og Uy(CiR®) ——— W(Ep),

e.— X fi— x.

y. <i<n-
i Pivr Ji i+ (1 <1< na),

-1
hao—— u. u.
i P B |

e, — (p2 + p‘z)"xn"’, fn1—> -(p* + p'z)"ynz, hnn——-—-> p"un'

Proof. We have checked (a) already. The rest is equally straightforward. =

The Proposition C2.7.1 1is a straightforward generalization of the concer-
ning quantized Weyl algebra part of Theorem 3.2 in [Ha]. The remaining part of
Hayashi’s theorem deals with quantized Clifford algebras. It is worth a while to
include them into our picture.

C2.8. Clifford type rings and quantized enveloping algebras. Let A be a commu-
tative ring; and let ©:= {Brui,pi| i € J}, where {Gi} is a commuting family
of automorphisms of A, u, and p, are invertible elements of the ring A.
Denote by A(®), or A(©(x,y]), the ring generated by A and the variables
X Y i € J, subject to the relations:

xl.xj + xjxi =0 = yiyj + yfyi for any i, j € J, H
1{}} + Y = 0 if i#j, ' (2)
Xyt e v = )
Wt PPy =Y “)
for any i € J,
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xa = Bl{a)xi, ay; = yiel(a) for any a € A; (5)

We call the ring A(®) a ring of Clifford type if

6(u;) = pi'lui for every i € J.

C2.8.1. Change of coordinates. In the ring A(®), set xy, = .
Clearly &la = a&i forany ie J and a € A. Besides, for all i € J,
S = wp = e ®
and
o §:§J = X ix'j = xjijiyi = é_]gi
if i#]
Denote by R  the quotient of the polynomial ring A[{&i}] by the rela-
tions (6). Clearly R is a free A-module with the basis {E’z &l |
1 n

1Sil<i2<...<in, n € z+}. In particular, if J is finite, than the ring R is

a finite (2|Jl-) dimensional A-algebra.
We have:

yh= vy = pfu - By = ey
_ - -1 - -1
x5y = 00 By = xpfu - &) = xpu
xiéj = xxy; = gjxi, and ﬁjyl = yl.E_,j if %)

These formulas show that the automorphisms 9:‘ might be extended onto R

i 0. '(&,) = pfu'- &) = p\(u; - &),
I I U1 I 1 4 I

or
el'(él) = ei(ul) - pi&f
Oi(ﬁj) = f;j for all i # j,
we see that the ring A(®) is generated over its commutative subring R by
{xi, yi| i € J} subject to the relations

x%; + Xx; = 0 = P + P for any i, j € J, (1
Xy + Y = 0 if i#], (2)
xy; =& (3)
Y%= pfu- &) = p - &) = 8'(8 @)
for any i € J;
X = Gl.(r)xi, ry; = yiei(r) for any r € R &)
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Note that
(ei - ei-l)(E,.i) = el-(uf) - piai } Pi-l(“i - &l) = - (pi - Di'l)ﬁi
since, by condition, Bi(ui) = pi']ul. for each i e J
A ring R{(Bi),(ﬁi)} described by the relations (1)-(5) and
-1 _ -1
(95 - 9[. )(él) = - (P,- - P; )&, (6)

will be called a ring of Clifford type.
Given a ring R{(Bi),(ii)} of Clifford type, set

up= &+ pB.(E).

We have: .
ez{"i) = ei(&"f + pfei (ﬁl)) = ei(éi) + PE(};I) =
-1 -1
Bi (it) - {pi - pi )E"t + Pl-(ﬁi) =
p; (& + P8 (&) = p;u;
Consider now the case, when J = [i,n], p; = P for all i, and the ele-
ment p - p'l is invertible. Denote the corresponding Clifford type ring by
R({Z,p}).

Now we are able to formulate the - natural generalization of the remaining

part of Theorem 3.2 in [Ha]:

C2.8.2. Proposition. There exist ring morphisms defined by the following formu-

las:

(@ Wy UnfA, iR®) —— R(Ep))

e— XY, flr—> X.

-1
i+7 )y

; (1t £1i £ n);

hyj—s (u;,,

(b) vy Up(Bn;R@) — S RIEPY) e—— Xy, fi— X, Y
By — (uz._'_l)'lui (1 £i < n-),

e —— X, — ¥y, h r—— pu_;
n n fn yn n pn'

(@) W UpfDyiR®) —— R(Zp))

e—— Xy o S X

-l .
hi—— u. u. 1 £i % n-1),
i i+ [ i ( )

+1
— X, —_ h —> pu_ u.
en xn-i n fn ynyn-l’ n P n-in

Proof is a straightforward calculation which is left to the reader.
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