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Abstract

We describe the kernel of the canonical map from the Floyd boundary of a relatively hyper-
bolic group to its Bowditch boundary.

Using these methods we then prove that a finitely generated group H admitting a quasi-
isometric map ϕ into a relatively hyperbolic group G is relatively hyperbolic with respect to
a system of subgroups whose image under ϕ is situated within a uniformly bounded distance
from the parabolic subgroups of G.

1 Introduction.
We study the actions of discrete groups by homeomorphisms of compact Hausdorff spaces such
that

(a) the induced action on the space of triples of distinct points is properly discontinuous, and
(b) the induced action on the space of pairs of distinct points is cocompact.

Let T be a compact Hausdorff topological space (compactum). Denote by ΘnT the space of
subsets of cardinality n of T endowed with the natural product topology.

Recall that an action of a group G by homeomorphisms on T is called convergence if it has
the property (a) above: the induced action on Θ3T is properly discontinuous [Bo2], [Tu2]. We
also say in this case that the action of G on T is 3-discontinuous.

An action of G on T is called cocompact on pairs or 2-cocompact if Θ2T/G is compact.
It is shown in [Ge1] that an action with the properties (a), (b) is geometrically finite that is

every limit point is either conical or bounded parabolic. From the other hand it follows from
[Tu3, Theorem 1.C] that any minimal geometrically finite action on a metrizable compactum has
the property (b).
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An action of G on T is said to be parabolic if it has a unique fixed point. The existence of a
non-parabolic geometrically finite action of a finitely generated group G on some compactum T
is equivalent to the relative hyperbolicity of G with respect to proper subgroups [Bo1], [Ya].

So the conditions (a) and (b) above provide a topological characterization of relatively hyper-
bolic groups which we adopt as a definition of the relative hyperbolicity.

W. Floyd [F] introduced the notion of a boundary of a finitely generated group as follows.
The word metric of the Cayley graph of G is scaled by a "conformal factor" f (see the next
Section). The Cauchy completion of the space with the scaled metric is called Floyd completion
and is denoted by Gf . The Floyd boundary is the subspace ∂fG = Gf \ G. The action of G on
itself by left multiplication extends to a convergence action of G on Gf [Ka].

It is shown in [F] that for any geometrically finite discrete subgroup G < IsomH3 of the
isometry group of the hyperbolic space H3, and for a quadratic scaling function f, there exists a
continuous G-equivariant map F from ∂fG to the limit set T = Λ(G) (Floyd map). The preimage
F−1(p) of a limit point p is not a single point if and only if p is a parabolic point of rank 1 in
which case it is a pair of points [F]. P. Tukia generalized Floyd’s Theorem to geometrically finite
discrete subgroups of IsomHn [Tu1].

If an action of a finitely generated group G on a compactum T has the properties (a), (b) then,
for an exponential function f (and hence for every polynomial one), there exists a continuous
equivariant map F : ∂fG → T [Ge2].

For a subset H of G denote by ∂H its topological boundary in the space G∪∂fG. Let StabGp
denote the stabilizer of a point p ∈ T in G. Since the action of G on the Floyd completion Gf

has the convergence property, the boundary ∂StabGp coincides with the limit set Λ(StabGp) for
the action of StabGp on Gf .

Our first result describes the kernel of the map F :

Theorem A. Let G be a finitely generated group acting on a compactum T 3-discontinuously
and 2-cocompactly. Let F : ∂fG → T be a G-equivariant continuous map. Then

F−1(p) = ∂(StabGp) (1)

for any parabolic point p ∈ T . Furthermore, F (a) = F (b) = p if and only if either a = b or p is
parabolic.

¤

Note that the subgroup inclusion does not necessarily induce an embedding of Floyd bound-
aries so we have:

Question 1.1. Let a finitely generated group G act 3-discontinuously and 2-cocompactly on a
compactum T . Let F : ∂fG → T be a continuous G-equivariant map. For a parabolic point p ∈ T
is it true that

∂(StabGp) = ∂f1StabGp

for some scaling function f1?

¤
Our next result describes the quasi-isometric (large-scale Lipschitz in the sense of Gromov)

maps into relatively hyperbolic groups:
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Theorem B. Let a finitely generated group G act 3-discontinuously and 2-cocompactly on a
compactum T . Let ϕ : H → G be a quasi-isometric map of a finitely generated group H.

Then there exist a compactum S, a 3-discontinuous 2-cocompact action of H on S, and a
continuous map ϕ∗ : S → T such that for every H-parabolic point p∈S the point ϕ∗p is G-
parabolic, and ϕ(StabHp) is contained in a uniformly bounded neighborhood of StabG(ϕ∗p).

Using known facts about the relative hyperbolicity Theorem B can be reformulated as follows:

Corollary 1.2. Let G be a finitely generated relatively hyperbolic group with respect to a collection
of subgroups Pj (j = 1, ..., n). Let H be a finitely generated group and let ϕ : H → G be a quasi-
isometric map. Then H is relatively hyperbolic with respect to a collection Qi such that ϕ maps
each Qi into a uniform neighborhood of a conjugate of some Pj (the case Qi = H is allowed).

The following particular cases of Corollary 1.2 are already known:

1) when the map ϕ : H → G admits a quasi-isometric inverse map ψ : G → H such that
d(idH, ψ ◦ ϕ) ≤ const [Dr, Theorem 1.2].

2) when the group H is not relatively hyperbolic with respect to proper subgroups (in this case
ϕ(H) is contained in a bounded neighborhood of a conjugate of some Pi) [BDM, Theorem
4.1].

The proof of Theorem B does not use [Dr] and [BDM] and considers directly the general case.

We now outline the content of the paper. In Section 2, we provide some preliminaries on the
convergence actions and the Floyd completions. We prove here several technical lemmas.

In Section 3 we study the compactified space T̃ = G t T . We introduce here the notion
(borrowed from Hn) of a convex hull of a subset of T̃ . Then we prove (see the Main Lemma) that
the boundary of any set is equal to that of its convex hull. This fact implies several properties of
horospheres, horocycles and the stabilizers of parabolic points. The section 3 ends with the proof
of Theorem A.

In Section 4 we prove Theorem B. Using the Floyd map F and the quasi-isometric map ϕ we
construct the space S as a quotient of the Floyd boundary of H determined by the kernel of the
map F ◦ ϕ. The group H acts 3-discontinuously on S, and we show (Proposition 4.1) that the
action is 2-cocompact. The construction of S yields a continuous map ϕ∗ : S → T . Using the
results of Section 3 we prove the last part of the statement.

As an application of our methods we give in Section 5 a short proof of the fact that the
existence of a 3-discontinuous and 3-cocompact action on a compactum without isolated points
implies that the group is word-hyperbolic [Bo3].

Acknowledgements. During this work both authors were partially supported by the ANR
grant BLAN 07−2183619. We are grateful to the Max-Planck Institute für Mathematik in Bonn,
where a part of the work was done. We also thank the Brasilian-French cooperation grant having
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2 Preliminaries.

2.1 Convergence actions.

By compactum we mean a compact Hausdorff space. Let SnT denote the quotient of the product
T n = T× . . .×T︸ ︷︷ ︸

n times
by the action of the permutation group on n symbols. The elements of SnT are

the generalized non-ordered n-tuples. We endow SnT with the quotient topology inherited from
T n. Let ΘnT be the open subset of SnT consisting of the non-ordered n-tuples whose components
are distinct. Put ∆nT = SnT \ΘnT . So ∆2T is the image of the diagonal of T 2.

Convention. If the opposite is not stated all group actions on compacta are assumed to have
the convergence property. We will also assume that |T | > 2.

Recall a few common definitions (see e.g. [Bo2], [GM], [Fr], [Tu2]). The discontinuity domain
Ω(G) is the set of the points of T where G acts properly discontinuously. The set Λ(G) = T \Ω(G)
is the limit set and the points of Λ(G) are called limit points. A convergence action of G on T is
called minimal if Λ(G) = T.

It is known that |Λ(G)| ∈ {0, 1, 2, c} [Tu2]. An action (or group) is called elementary if its
limit set is finite.

A point p ∈ T is called parabolic if |Λ(StabGp)| = 1.
A limit point x ∈ Λ(G) is called conical if there exists an infinite sequence of distinct elements

gn ∈ G and distinct points a, b ∈ T such that

∀y ∈ T \ {x} : gn(y) → a ∈ T ∧ gn(x) → b.

Denote by NcT the set of non-conical points of T .
A parabolic point p ∈ Λ(G) is called bounded parabolic if the quotient space (Λ(G)\{p})/StabGp

is compact.
An action of G on T is called geometrically finite if every non-conical limit point is bounded

parabolic.
A subset N of the set M acted upon by G is called G-finite if its image in M/G is finite.

Lemma 2.1. [Ge1, Main Theorem] If the action of G on T is 3-discontinuous and 2-cocompact
then

a. The set NcT is G-finite.

b. For every p ∈ NcT the quotient (T \ p)/StabpG is compact. ¤

It follows from Lemma 2.1 that for a 2-cocompact action of G on T a non-conical point
p ∈ NcT is isolated in T if and only if its stabilizer StabpG is finite. Hence, a non-conical point
with infinite stabilizer is bounded parabolic.
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2.2 Quasigeodesics and Floyd completion of graphs.

Recall that a (c-)quasi-isometric map ϕ : X → Y between two metric spaces X and Y is a map
such that :

1

c
dX(x, y)− c < dY (ϕ(x), ϕ(y)) ≤ cdX(x, y) + c, (2)

dX , dY denote the metrics of X and Y respectively.

Remark. A quasi-isometric map can in general be multivalued. This more general case can be
easily reduced to the case of a one-valued map. The notion of a quasi-isometric map coincides
with the definitions of large-scale Lipschitz map [Gr1] or quasi-isometric embedding [BH].

A path is a distance-nonincreasing map γ : I → Γ from a nonempty convex subset I of Z.
The length of γ is the diameter of I in Z. A subpath is a path which is a restriction of γ.

A path γ : I → Γ is called c-quasigeodesic if it is a c-quasi-isometric map. In the case when
γ is an isometry, a quasigeodesic is a geodesic.

A (c-quasi-)geodesic path γ : I → Γ defined on a half-infinite subset I of Z is called
(c-quasi-)geodesic ray; a (quasi-)geodesic path defined on the whole Z is called (c-quasi-)geodesic
line.

Let d(, ) be the canonical shortest path distance function on Γ. We denote by NDM the
D-neighborhood of a set M⊂Γ.

We now briefly recall the construction of the Floyd completion of a graph Γ due to W. Floyd
[F]. Let Γ be a locally finite connected graph endowed with a basepoint v ∈ Γ0. Let f : Z>0 →
R>0 be a function satisfying the following conditions:

∃ K > 0 ∀n ∈ N : 1 ≤ f(n)
f(n+1)

≤ K (3)

∑

n∈N
f(n) < ∞. (4)

For convenience we extend the function f to Z≥0 by putting f(0) := f(1).
Define the Floyd length of an edge joining vertices x and y as f(n) where n = d(v, {x, y}).

Then the length Lf,v of a path is the sum of the lengths of its edges. The Floyd distance
δv = δf,v(a, b) is the shortest path distance:

δv(a, b) = inf
α

Lf,v(α), (5)

where the infimum is taken over all paths between a and b.
It follows from (3) that every two metrics δv1 and δv2 are bilipschitz equivalent with a Lipschitz

constant depending on d(v1, v2). The Cauchy completion Γf of the metric space (Γ0, δv) is called
Floyd completion. It is compact and does not depend on the choice of the basepoint v. Denote
by ∂fΓ the set Γf \ Γ and call it Floyd boundary. The distance δv extends naturally to Γf .

The following Lemma shows that the Floyd length of a far quasigeodesic is small.

Lemma 2.2. (Karlsson Lemma) For every ε > 0 and every c > 0, there exists a finite set D ⊂ Γ
such that δv-length of every c-quasigeodesic γ ⊂ Γ that does not meet D is less than ε. ¤
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Remark. A. Karlsson [Ka] proved it for geodesics in the Cayley graphs of finitely generated
groups. The proof of [Ka] does not use the group action and is also valid for quasigeodesics.

Consider a set S of paths of the form α : [0, n[→ Γ with unbounded length starting at the
same point a = α(0). Every path α ∈ S can be considered as an element of the product

∏
i∈I

Ni(a).

The space
∏
i∈I

Ni(a) is compact in the Tikhonov topology. It is a common fact that S possesses

an infinite “limit path” δ : [0, +∞) → Γ whose initial segments are initial segments of paths in
S. Note that the infinite limit path exists in a more general case when γ(0) is not a point but a
fixed finite set.

Definition 2.3. For a c-quasigeodesic ray r : [0,∞[→ Γ we say that r converges to a point in
∂fΓ if the sequence (r(n))n is a Cauchy sequence for the δf -metric. We also say in this case that
r joins the points r(0) and x = lim

n→∞
r(n) ∈ ∂fΓ.

Proposition 2.4. Let Γ be a locally finite connected graph. Then

a. For each c > 0 every c-quasigeodesic ray in Γ converges to a point in ∂fΓ.

b. For every p∈∂fΓ and every a ∈ Γ there exists a geodesic ray joining a and p.

c. Every two distinct points in ∂fΓ can be joined by a geodesic line.

Proof. a: Let r : [0,∞[→ Γ be a c-quasigeodesic ray. Put xn = r(n) and rn = r([n,∞[). For any
vertex v ∈ Γ0 we have d(v, r(n)) →∞. It follows from Karlsson Lemma that Lf,v(rn) → 0.

b: Let Bf (p,R) denote the ball in the Floyd metric at p ∈ ∂fΓ of radius R. For n>1, choose
an ∈ Bf (p,

1
n
) and join a with an by a geodesic segment γn. Let γ be the limit path for the family

S = {γn : n>0}. By (a) γ converges to a point q∈∂fΓ. If p 6= q set 3δ = δ1(p, q) > 0. Let n be
an integer for which Lf,1(γ|[n,∞[) ≤ δ. For m > n we can choose k such that γk|[0,m] = γ|[0,m] and
δ1(ak, p)6δ. So Lf,1(γk|[m,k]) ≥ δ. Since the distance d(1, an) is unbounded, by Karlsson Lemma
the quantity Lf,1(γk|[m,k]) should tend to zero. This contradiction shows that p = q.

c: Let p, q∈∂fΓ and p6=q. By (b) there exist geodesic rays α, β : [0,∞[→ Γ such that
α(0) = β(0) = a and α(∞) = p, β(∞) = q. Let 3δ = δ1(p, q). By Karlsson Lemma every
geodesic segment joining a point in Bf (p, δ) with a point in Bf (q, δ) intersects a finite set B ⊂ Γ.
There exists an infinite sequence of geodesic segments γn passing through a point b ∈ B whose
endpoints converge to the pair {p, q}. A limit path for such sequence is a geodesic line in question.
¤

Let Γi (i = 1, 2) be locally finite connected graphs with basepoints 1 ∈ Γ1, 1 ∈ Γ2. Denote by
Γi their completions with respect to the scaling functions f1 and f2 satisfying (3) with constants E
and K respectively. The following Lemma gives a sufficient condition to extend a quasi-isometric
map between the completions of the graphs.
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Lemma 2.5. Let ϕ : Γ1 → Γ2 be a c-quasi-isometric map for some c ∈ N. Suppose that there
exists a constant D > 0 such that

f2(n)

f1(cn)
< D (n ∈ N) (6),

Then the map ϕ extends to a uniformly continuous map Γ1 → Γ2.

Proof. Denote by d and δ the canonical distances and the Floyd distances with respect to the
chosen basepoints in both graphs Γi (i = 1, 2). We first prove that ϕ is a Lipschitz map with
respect to the Floyd metric, i.e.

∀ x, y ∈ Γ1 : δ(x, y) ≥ εδ(ϕx, ϕy) (7)

for some ε > 0.
It suffices to prove the statement for the case when d(x, y) = 1.
By (2) we have d(ϕx, ϕy) < cd(x, y) + c = 2c. Let γ : [0, n] → Γ2 be a geodesic realizing the

distance d(ϕx, ϕy), and let ai = γ(i) (i = 0, ..., n) be its vertices where a0 = ϕx, an = ϕy. We
have δ(x, y) = f1(d(1, {x, y})). Assume that d(1, {x, y}) = d(1, x). Then

d(1, ai) ≥ d(ϕ(1), ϕx)− d(ϕx, ai)− d(1, ϕ(1)) ≥ d(ϕ(1), ϕx)− 2c− d(1, ϕ(1)) = d(ϕ(1), ϕx)−n0,

where n0 = 2c + d(1, ϕ(1)).
Assume that x ∈ Γ1 \B(1, r0) where B(1, r0) is the ball centered at 1 of a radius r0 such that

d(1, ϕ(x)) > n0 and d(1, x) > c2. Then using the monotonicity of f2 and condition (3) we obtain

δ(ϕx, ϕy) =
n−1∑
i=0

f2(d(1, {ai, ai+1})) ≤
n−1∑
i=0

f2(d(ϕ(1), ϕx)− n0) ≤ Kn0f2(d(ϕ(1), ϕ(x))).

The last term can be estimated using (2) and (6):

f2(d(ϕ(1), ϕ(x)) ≤ Df1(c(d(ϕ(1), ϕ(x))) ≤ Df1(c · d(1, x)/c− c2) ≤ D · Ec2 · f1(d(1, x)).

Summing all up we conclude

δ(ϕx, ϕy) ≤ DKn0Ec2 · f1(d(1, x)).

So (7) is true for the constant ε = (DKn0Ec2)−1 outside of the ball B(1, r0). By decreasing
the constant ε we obtain the inequality (7) everywhere on Γ1.

The map ϕ : (Γ1, δ) → (Γ2, δ) being Lipschitz extends to an equicontinuous map Γ1 → Γ2. ¤

Remark. If, for a function f the value f(n)
f(2n)

is bounded from above then one can take the same
scaling function f1 = f2 = f for both graphs Γ1 and Γ2 independently of c.

If the scaling function for the graph Γ2 is f2(n) = αn (α ∈]0, 1[) then to satisfy (6) we can
take f1(n) = βn as the scaling function for the group H where β = α1/c.

Let G be a finitely generated group and let S be a finite generating set for G. Denote by d the
word metric. Let Gf denote the Floyd completion Gt∂fG of the Cayley graph of G with respect
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to S corresponding to a function f satisfying (3-4). Condition (3) implies equicontinuity of the
G-action by left multiplication on G, so it extends to a G-action on Gf by homeomorphisms.
The Floyd metric δg is the g-shift of δ1 (where 1 is the identity element of G):

δg(x, y) = δ1(g
−1x, g−1y), x, y ∈ Gf , g ∈ G.

On the space Gf we also consider the following shortcut pseudometrics. Let ω be a closed
G-invariant equivalence relation on Gf . Then there is an induced G-action on the quotient space
Gf/ω. A shortcut pseudometric δg is the maximal element in the set of symmetric functions
% : Gf×Gf → R>0 that vanish on ω and satisfy the triangle inequality, and the inequality %6δg.

For p, q∈Gf the value δg(p, q) is the infimum of the finite sums
n∑

i=1

δg(pi, qi) such that p=p1,

q=qn and 〈qi, pi+1〉∈ω (i=1, . . . , n−1) [BBI, pp 77]. Obviously, the shortcut pseudometric δg is
the g-shift of δ1. The metrics δg1 , δg2 are bilipschitz equivalent with the same constant as for δg1 ,
δg2 . Furthermore, the pseudometric δg induces a pseudometric on the quotient space Gf/ω. We
denote this induced pseudometric by the same symbol δg.

Lemma 2.6. [Ge2] Let G be a finitely generated group acting 3-discontinuously and 2-cocompactly
on a compactum T (|T | > 2). There exists a continuous G-equivariant map F : ∂fG → T , where
f(n) = αn for some α ∈]0, 1[ sufficiently close to 1. Furthermore Λ(G) = F (∂fG). ¤

The map F given by Lemma 2.6 is called Floyd map.

3 The orbit compactification space T̃ and its convex subsets.
In this Section we fix a 3-discontinuous and 2-cocompact action by homeomorphisms of a finitely
generated group G on a compactum T containing at least 3 points.

3.1 The space T̃ .

Let F : ∂fG → T be the Floyd map. We extend F over Gf = G t ∂fG to the disjoint union
˜̃
T = T t G by the identity map id : G → G. We keep the notation F for this extension. The
maps T

id→ ˜̃
T

F← Gf determine on ˜̃
T the pushout topology: a set S⊂˜̃

T is open if and only if S∩T

is open in T and F−1S is open in Gf . The space ˜̃
T being the union of two compact spaces T

and F (Gf ) is a compactum.

By Lemma 2.1 the set T \ Λ(G) is G-finite. Denote by T̃ the subspace Λ(G) tG of ˜̃
T .

Remark. We need to introduce ˜̃
T before T̃ in order to include the exceptional case of 2-ended

groups. In this case Λ(G) consists of 2 points and we need at least one more point to apply
Lemma 2.6.

Lemma 3.1. The induced action G on T̃ is 3-discontinuous and 2-cocompact.
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We start with the following Proposition:

Proposition 3.2. Let G act on compacta X and Y and let ψ : X → Y be a G-equivariant
continuous surjective map. If the action of G on X is 3-discontinuous, then the action of G on
Y is 3-discontinuous.

Proof of the Proposition. The map ψ induces a proper G-equivariant continuous surjective map
S3X → S3Y . Let K and L be compact subsets of Θ3Y. Since Y is Hausdorff the preimage of
every compact in Θ3Y ⊂ S3Y is compact in Θ3X. Thus K1 = ψ−1(K) and L1 = ψ−1(L) are
compact subsets of Θ3X. The action on X is discontinuous so the set {g ∈ G | gK1 ∩L1 6= ∅} is
finite. By the equivariance of ψ the set {g ∈ G | gK ∩ L 6= ∅} is finite too. ¤
Proof of the Lemma. By [Ka] the group G acts 3-discontinuously on Gf = G t ∂fG. The Floyd
map F : Gf → T̃ is G-equivariant and continuous. So Proposition 3.2 implies that the action on
T̃ is 3-discontinuous.

If K is a compact fundamental set for the action of G on Θ2(T ) then K1 = K∪{1}×(T̃ \{1})
is a compact fundamental set for the action of G on Θ2T̃ . ¤

Let ω be the kernel of the Floyd map F : Gf → T̃ , i.e. (x, y) ∈ ω if and only if F (x) = F (y).
It determines the shortcut metrics δg (g ∈ G) (see Subsection 2.2). It is shown in [Ge2] that
every δg is a metric on T̃ , i.e.

∀p, q ∈ T̃ : δg(p, q) = 0 =⇒ p = q. (8)

Moreover, F transfers the shortcut pseudometric on ∂fG into the shortcut metric on T isomet-
rically:

∀x, y ∈ ∂fG : δg(x, y) = δg(F (x), F (y)). (8′)

Any metric δg determines the topology of T̃ .

Lemma 3.3. Let H be the stabilizer of a parabolic point p. Every H-invariant set M⊂G closed
in T̃\{p} is H-finite.

Proof. By Lemma 3.1 the action of G on T̃ is 3-discontinuous and 2-cocompact, so by Lemma
2.1 the space (T̃\{p})/H is compact. Since G ⊂ T̃ is an orbit of isolated points, the closed
subset M/H of (T̃\{p})/H consists of isolated points. Since (T \ p)/H is compact the set M/H
is finite. ¤

3.2 Horocycles and horospheres

By Proposition 2.4.1 every c-quasigeodesic ray γ : N → G converges to a point p ∈ X. We
call the point p target of γ and denote it by γ(∞). The path F ◦ γ converges to F (p) ∈ T̃
which we also call target. In other words a c-quasigeodesic ray extends to a continuous map from
N = N∪{+∞} to T̃ . The target is necessarily a limit point for the action G y T̃ .

A bi-infinite c-quasigeodesic γ : Z → G extends to a continuous map of Z = Z∪{−∞, +∞}
with γ(±∞)⊂T . So γ(±∞) is either a pair of limit points or a single limit point.
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Definition 3.4. A bi-infinite c-quasigeodesic γ : Z → G is called c-horocycle at p ∈ T if
γ(+∞) = γ(−∞) = p.

Definition 3.5. The c-hull HcM of a set M⊂T̃ is the union of all c-quasigeodesics (finite or
infinite) having the endpoints in M :

HcM = ∪{γ(I) | γ : I → G is a c− quasigeodesic, I ⊂ Z, and γ(∂I) ⊂ M}.

The c-hull Hcp of a single-point set {p} ∈ T is called c-horosphere at p.

By M we denote the closure of M in T̃ .

Main Lemma. T ∩M = T ∩ HcM for every M ⊂ T̃ and c > 0.

Proof. Suppose by contradiction that there exists a counterexample 〈M, c〉 and let
a ∈ T ∩ HαM \ M . By Karlsson Lemma there exists r such that the δ1-length of every

c-quasigeodesic outside of the ball Nr(1) ⊂ G is less than ε = δ1(M, a)/2 > 0.

x

x

M

(0)

1r
r

γ

γ

γ

γ
1 −

+(j

(j

)

)

εB(a,  )

a

By the assumption there exists a c-quasigeodesic γ : I = [i−, i+] → G such that 0 ∈ I, γ(∂I) ⊂
M, and γ(0) is arbitrarily close to a. So we can assume that δ1(a, γ(0)) < ε and γ(0) 6∈ Nr1(1)
where r1 = r + cr + c

2
. Let γ+ = γ|I∩N, γ− = γ|I∩(−N). We have

L1(γ±) ≥ δ1(γ(i±), γ(0)) ≥ δ1(γ(i±), a)− δ1(a, γ(0)) ≥ δ1(M, a)−δ1(a, γ(0)) ≥ 2ε− ε = ε.

So there exists a subseqment J = [j−, j+] of I such that 0∈J and d(1, γ(j±))6r.
We obtain d(γ(j−), γ(j+)) = diam(γ(∂J))62r and length(γ|J)6c(2r + 1). Thus d(1, γ(0)) ≤

d(1, γ(∂J)) + d(γ(0), γ(∂J)) ≤ r1 = r + c
2
(2r + 1). So γ(0) ∈ Nr1(1). A contradiction. ¤

We finish the subsection by obtaining several corollaries of the Main Lemma.
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Lemma 3.6. There is no c-horocycle at conical points.

Proof. Let p ∈ T be a conical point. There exist distinct points a, q ∈ T and a sequence (gn) ⊂ G
such that gn(p) → q and gn(x) → a for all x ∈ T \ {p}. Suppose by contradiction that γ is an
c-horocycle at p.

Let Q be a closed neighborhood of q such that a /∈ Q. We can assume that qn = gnp ∈ Q
for all n. So gnγ(0) ∈ HcQ. By Lemma 3.1 the action G y T̃ has the convergence property. So
gnγ(0) → a. It follows that a ∈ (HcQ ∩ T ) \ (Q ∩ T ) contradicting to the Main Lemma. ¤

Until the end of this Subsection we fix a parabolic fixed point p, and denote by H the stabilizer
of p in G.

Lemma 3.7. For every c the set (G ∩ Hcp)/H is finite.

Proof. The set Hcp is H-invariant. By the Main Lemma it is closed in T̃ and p is its unique
limit point. Thus the set G ∩Hcp is a closed H-invariant subset of T̃\p. The result follows from
Lemma 3.3. ¤

Lemma 3.8. The closure in T̃ of any H-finite subset M of G is M∪{p}.
Proof. It suffices to consider the case when M is an H-orbit. As d(M, Hcp) is bounded, the Floyd
distance δ1(m, Hcp) tends to zero while m ∈ M tends to T . ¤

Corollary 3.9. There exists a constant C0 such that the stabilizer of every parabolic point is
C0-quasiconvex.

Proof. Let Hcp be a c-horosphere at p. By Lemmas 3.7 and 3.8 the set M = Hcp ∩G is H-finite
and M = M ∪{p}. By the Main Lemma HcM = HcM ∪{p}. So HcM is closed in T̃ \ {p} and by
Lemma 3.3 it is also H-finite.

Let γ : I → G be a geodesic segment with endpoints in M. Then γ and M are both subsets of
the H-finite set HcM. Hence for any a ∈ γ(I) there exist hi ∈ H (i = 1, 2) and b ∈ M such that
d(h1(a), h2(b)) ≤ const. Since M is H-invariant we have h−1

1 h2(b) ∈ M and so d(a,M) ≤ const.
Thus H is quasiconvex.

By Lemma 2.1 the set of parabolic points is G-finite so there exists a uniform constant C0

such that every stabilizer of a parabolic point is C0-quasiconvex. ¤

3.3 The kernel of the Floyd map.

Theorem A. Let G be a finitely generated group acting on a compactum T 3-discontinuously
and 2-cocompactly. Let F : ∂fG → T be a G-equivariant continuous map. Then

F−1(p) = ∂(StabGp) (1)

for any parabolic point p ∈ T . Furthermore, F (a) = F (b) = p if and only if either a = b or p is
parabolic. ¤
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Proof. Denote H = StabGp. Let x ∈ F−1(p). We will show that x ∈ ∂H. Let y ∈ ∂H. If y = x
then there is nothing to prove. If not, then by Proposition 2.4.c there exists a bi-infinite geodesic
γ joining x and y. It is a horocycle in T̃ , so γ(Z) ⊂ Hcp. By Lemma 3.7, γ(Z) is contained in
Hg1∪ . . .∪Hgl. By Lemma 3.8 the boundary of each H-coset is {p}. So x = lim

n→∞
gihn where

i ∈ {1, ..., l} and hn ∈ H. It follows that δ1(x, hn) → 0 and x ∈ ∂H ⊂ ∂fG.
Assume that a 6= b. Then as above join a and b by a bi-infinite geodesic γ. Then γ is an

horocycle in T̃ , and by Lemma 3.6 the point p = F (a) = F (b) is parabolic. ¤

Corollary 3.10. In the notation of Theorem A the set ∂(StabGp) is the quotient of the Floyd
boundary ∂f1(StabGp) with respect to some scaling function f1.

Proof. Since H = StabGp is undistorted in G [Ge1], the inclusion map H ↪→ G is c-quasi-
isometric for some integer c. For a given scaling function f there exists a scaling function f1

satisfying conditions (3-4) such that f(n)/f1(cn) is bounded from above. By Lemma 2.5 the
inclusion extends to a continuous map Hf1 → Gf . It maps ∂f1(StabGp) onto ∂(StabGp). ¤

Remarks. It follows from Karlsson Lemma that the Floyd boundary of a virtually abelian group
is either a point or pair of points. In particular it is true for any discrete elementary subgroup
of IsomHn.

We do not understand the proof in [F] that the preimage of a parabolic point p ∈ Λ(G) for
a Kleinian group G < IsomH3 belongs to the boundary of its stabilizer in Gf [F, page 216].
Corollary 3.10 completes the argument for geometrically finite groups in IsomHn.

4 Compactification of a quasi-isometric map. Proof of The-
orem B.

Let G and H be finitely generated groups with fixed finite generating sets. We denote the
corresponding word metrics by the same symbol d. Let Hf1 and Gf2 denote the Floyd completions
corresponding to the functions f1 and f2 respectively.

We choose the functions fi (i = 1, 2) to satisfy the hypotheses of Lemma 2.5.

To simplify notation we put

X = ∂f2G, Y = ∂f1H, X̃ = X tG, Ỹ = Y tH.

Let ϕ : H → G be a c-quasi-isometric map. By Lemma 2.5 it extends to a uniformly continuous
map Ỹ → X̃ which we keep denoting by ϕ. By continuity reason the inequality (7) of Lemma
2.5 remains valid for this extension.
The kernel θ0 of the composition Ỹ

ϕ→ X̃
F→ T̃ is a closed equivalence relation on Ỹ . We have

(x, y) ∈ θ0 ⇐⇒ Fϕ(x) = Fϕ(y). (9)

The following equivalence on Ỹ is closed and H-invariant:

θ = ∩{hθ0 : h∈H}. (10)
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So (x, y) ∈ θ if and only if (h(x), h(y)) ∈ θ0 for each h ∈ H.

Let S̃ = Ỹ /θ. Denote the quotient map Ỹ → S̃ by π. It is H-equivariant. Since θ is closed the
space S̃ is a compactum [Bourb, Prop I.10.8]. The open subspace A = π(H) of S̃ is an H-orbit
of isolated points. The group H acts 3-discontinuously on Ỹ . By Proposition 3.2 the action of
H on S̃ is 3-discontinuous too.

Since ϕ sends θ into the kernel of F , it induces a continuous map ϕ∗ : S̃ → T̃ such that the
following diagram is commutative:

X̃
F−−−→ T̃

ϕ

x ϕ∗
x

Ỹ
π−−−→ S̃

The equivalence θ determines the shortcut pseudometrics δg on S̃ such that

∀ p, q ∈ Ỹ , ∀g ∈ G : δg(p, q) = δg([p], [q]). (11)

Proposition 4.1. The action of H on S̃ is 2-cocompact.

Proof. By Lemma 3.1 it suffices to verify 2-cocompactness on S. Let [p], [q] be distinct θ-classes
in S. For some h∈H and p, q ∈ Y we have 〈hp, hq〉/∈θ0, so Fϕ(hp)6=Fϕ(hq). Denote by K a
compact fundamental set for the action of G on Θ2T̃ , i.e.

Θ2T̃ = ∪{gK : g∈G}.

Let δ be the infimum of the continuous function δ1|K . It is strictly positive by (8). There
exists g∈G such that {g−1Fϕ(hp), g−1Fϕ(hq)}∈K. So δg(Fϕ(hp), Fϕ(hq)) ≥ δ. Let γ be a
bi-infinite geodesic in H with ∂γ = {hp, hq}. Since ϕ is c-quasi-isometric, ϕ(γ) is contained
in a c-quasigeodesic in G. By Karlsson Lemma there exists r = r(c, δ) such that d(g, ϕ(γ))6r.
Assume that d(g, g0)6r for g0 = ϕ(h0), h0 = γ(0).

By the bilipschitz equivalence of the shortcut metrics, δg0(Fϕ(hp), Fϕ(hq) ≥ δ
D(r)

for a func-
tion D(r) depending only on r. By (8′), δg0(ϕ(hp), ϕ(hq)) = δg0(Fϕ(hp), Fϕ(hq)). By Lemma 2.5
we obtain

δ1(h
−1
0 hp, h−1

0 hq) = δh0(hp, hq) ≥ εδg0(ϕ(hp), ϕ(hq)) ≥ εδ

D(r)
= δ1.

Using (11) we conclude that the set {{s1, s2}∈Θ2S : δ1(s1, s2) ≥ δ1} is a compact fundamental
set for the action of H on Θ2S. ¤

Theorem B. Let a finitely generated group G act 3-discontinuously and 2-cocompactly on a
compactum T . Let ϕ : H → G be a quasi-isometric map of a finitely generated group H.

Then there exist a compactum S, a 3-discontinuous 2-cocompact action of H on S, and a
continuous map ϕ∗ : S → T such that for every H-parabolic point p∈S the point ϕ∗p is G-
parabolic, and ϕ(StabHp) is contained in a uniformly bounded neighborhood of StabG(ϕ∗p).
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Proof. The space S and the map ϕ∗ are already constructed. We are going to prove that ϕ∗
maps H-parabolic points to G-parabolic points. Let p be a parabolic point for the action of H
on S̃ and let Q be its stabilizer. Since Q is infinite there exists a bi-infinite geodesic γ : Z→ Q.
By [Ge1, Main Theorem, d] Q is finitely generated and undistorted in H. So the embedding
Q ↪→ H is quasi-isometric. Thus γ is a c-quasigeodesic in H for some c. Moreover since the set
of non-conical points NcS is H-finite the constant c can be chosen uniformly for all p.

By Proposition 4.1 the action of H on S̃ is 2-cocompact. By the Main Lemma the boundary of
Q in S̃ is {p}. In particular, γ is a c-horocycle. Since ϕ is quasi-isometric, the path ϕ◦γ : Z→ T̃
is a l-quasigeodesic for some uniform constant l > 0. The continuity of ϕ∗ and the commutativity
of the above diagram imply that lim

n→±∞
ϕ∗(γ(n)) = ϕ∗(p). Thus ϕ∗ ◦γ is a l-horocycle at the point

ϕ∗p. It follows from Lemma 3.6 that ϕ∗p is parabolic for the action of G on T.
Every h∈Q belongs to a bi-infinite geodesic in Q. By the above argument we have ϕ(Q) ⊂

Hl(ϕ∗p). By Lemma 3.7 the set G ∩ Hl(ϕ∗p) is StabG(ϕ∗p)-finite. Since NcT is G-finite ϕ(Q) is
contained in a uniformly bounded neighborhood of StabG(ϕ∗p). ¤

Proof of the Corollary 1.2: Suppose that G is a finitely generated relatively hyperbolic group
with respect to parabolic subgroups Pi (i = 1, ...n) in the strong sens of Farb [Fa]. Then by [Bo1]
(see also [Hr]) the group G possesses a geometrically finite 3-discontinuous action on a compact
metrizable space X. It follows from [Tu3, Theorem 1.C] that the space Θ2X/G is compact.
Let S be a compactum as in Theorem B on which the group H acts 3-discontinuously and 2-
cocompactly. By [Ge1] this action is geometrically finite, the set of parabolic points is H-finite,
and their stabilizers are all finitely generated. Thus it follows from [Ya] that H is relatively
hyperbolic with respect to the stabilizers of H-non-equivalent parabolic points. By Theorem B
the image of every parabolic subgroup of H by ϕ is contained in a uniform neighborhood of a
parabolic subgroup of G. ¤

5 Appendix: a short proof that 3-cocompactness of an ac-
tion implies word-hyperbolicity of the group.

As an application of our method we give a short proof of the following theorem of B. Bowditch:

Theorem [Bo3]. Let G be a group acting 3-discontinuously and 3-cocompactly on a compactum
T without isolated points. Then G is word-hyperbolic.

The following lemma requires some additional information from [Ge1].

Lemma 5.1. Let a group G act 3-discontinuously on a compactum T . Let p, q be distinct non-
conical points in T and let K be a compact subset of T 2\∆2T . Then the set
S={g ∈ G : (gp, gq) ∈ K} is finite.

Proof. Assume that S is infinite. The compact K can be covered by finitely many closed sub-
products of the form A×B with A∩B=∅. So we can assume that K=A×B where A,B are
closed disjoint sets. The set ΛrepS of the repellers of the limit crosses for S (see [Ge1, subsection
18]) is nonempty. It is contained in {p, q} since otherwise, for some g ∈ S, the pair {gp, gq}
becomes arbitrarily small.
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So S contains an infinite subset S1 with ΛrepS1 being a single point. Without loss of generality
we can assume that S=S1 and ΛrepS={p}. The set ΛattrS of the attractors of the limit crosses
is contained in B. Let B1 be a closed neighborhood of B disjoint from A. Thus, for a ∈ T\{p},
the set {g ∈ S : ga /∈ B1} is finite since it possesses no limit crosses. Hence {{gp, ga} : g ∈ S} is
contained in a compact subset of Θ2T . So p is conical by of [Ge1, Definition 3]. ¤

Remark. With an additional assumption that T metrisable the Lemma can be also proved using
Gehring-Martin’s definition of the convergence property.

Corollary. If G acts 3-discontinuously and 3-cocompactly on a compactum T without isolated
points then every point of T is conical.

Proof. Clearly, the 3-discontinuity implies the 2-discontinuity hence every nonconical point is
either isolated or parabolic [Ge1]. By the assumption the discontinuity domain is empty. Assume
that parabolic points do exist. Hence there exist at least two parabolic points since otherwise we
must have a discontinuity domain.

Let p, q be distinct parabolic points and let L be a compact fundamental set for the action of

G on Θ3T . We can assume that L has the form
n⋃

i=1

Ai×Bi×Ci where Ai, Bi, Ci are closed disjoint

subsets of T. For every a ∈ T\{p, q} there exist ga ∈ G such that ga(p, q, a) ∈ L. By Lemma 5.1
the set {ga : a ∈ T\{p, q}} is finite. If ga(p, q, a) ∈ Ai(a)×Bi(a)×Ci(a) then T\{p, q} is a union of
finitely many closed sets g−1

a Ci(a). Thus {p, q} is open and p and q are isolated contradicting the
assumption. ¤

Proof of the Theorem. Assume that G is not hyperbolic. There exists a sequence of geodesic
triangles with the sides {ln,mn, kn} so that d(xn,mn ∪ kn) →∞ for xn ∈ ln. Using the G-action
we can make xn equal to 1 for all n. By Karlsson Lemma the Floyd length of mn ∪ kn tends to
zero and so δ1(yn, zn) → 0 where ∂ln = {yn, zn}. Since all ln pass through the same point 1 we
can choose a subsequence converging to a geodesic horocycle l. By Lemma 3.6 the target of l is
not conical contradicting the above Corollary. ¤
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