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§1. Introduction.

In 1965 Arnold conjectured that the number #(Fiz(¢)) of fixed points of an exact
symplectomorphism ¢ on a compact symplectic manifold M?" is at least as many as the
number of critical points of a smooth function on M?*. In homological terms this implies
that #(Fix(¢)) is greater than or equal to the cup-length c/(M?", F) of the cohomology
ring H*(M* F). Recall that c/(M?*,F) is the maximal integer [ 4 1 such that there exist
classes e, ..., a0 € H*(M* F) of positive dimension with a; ~— -+ — ¢y # 0. If all the
fixed points are non-degenerate we should have a better estimate in which the cup-length
is replaced by the sum of the Betti numbers. The Arnold conjecture for non-degenerate
fixed points has been verified in several cases [E|, [Sik], [C-Z],[F1] - [F3], [H-S], [O]. This
conjecture for degenerate fixed points was proved in the case of M? by Nikishin, Simon,
Eliashberg, Sikorav, Floer, of the torus 7%" by Conley and Zehnder, then in the case of
symplectic manifolds with vanishing second homotopy group by Hofer, Floer [H], [F4],
and of CP™ by Fortune, Floer [Fo], [F3].

Floer initiated his homology theory for indefinite functional, which is now called Floer
homology theory, and proved the Arnold conjecture for non-degenerate symplectic fixed
points in monotone symplectic manifolds. His method has been developed in [S-Z], [H-S]
and [O]. He also proved the conjecture for degenerate fixed points in some cases by using
the cap action of H*(M,Z;) on the Floer homology group, which is defined only in the
non-degenerate case. To get an estimate in the degenerate case, he approximated the
given symplectomorphism by non-degenerate ones.

In this note we define the cap action for weakly-monotone symplectic manifolds and
prove the associativity of the action under a certain condition. As a result we obtain the

following theorem.

Main Theorem. Let (M?",w) be a closed symplectic manifold of dimension 2n satisfying
the following property:

et (M)lmyary = A - ey (a1,

with some negative constant A and the minimal Chern number is greater than or equal to
n. Suppose that ¢ is an exact symplectomorphism on M. Then the number of fized points
of ¢ is at least the cup-length cl(M,Z,).

We would like to emphasize the following fact. The associativity of the action breaks
down because of the presence of non-trivial holomorphic spheres. But in the Floer proof

for CP™ the presence of holomorphic spheres is necessary. (In the finite dimensional
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situation Floer’s approach could also serve as a new proof for the cup-length estimate of

critical points of a smooth function on a compact manifolds.)

Acknowledgment. The essential part of this note was carried out in the Max-Planck-
Institut fiir Mathematik during the stay of both authors.They are grateful for its hospi-
tality and financial support. They also thank Eduard Zehnder for the invitation to ETH
where a part of this note was prepared and Claude Viterbo for the invitation to IHP where
this note is completed. The second author would also like to thank Alan Weinstein, who

drew his attention to Givental’s work [G].
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§2. Preliminaries.

First recall that for a given exact symplectomorphism ¢ in a compact symplectic man-
ifold M?** there exists a periodic Hamiltonian H € C*®(S? x M?"} such that the fixed
points of ¢ are in one-to-one correspondence with the 1-periodic solutions of the following

equation
&(t) = Xu(t, z(1)), (2.1)

where Xy is the Hamiltonian vector field of H (i.e. w(§, Xg) = dH(€) VE). A 1-periodic
solution of (2.1) is called non-degenerate if det(/ — dé(z(0))) # 0. Now we collect
some known facts on Floer homology of non-degenerate 1-periodic Hamiltonian systems.
Details are found in [F3],[H-S],[S-Z].

Let P(H) denote the set of all contractible loops satisfying (2.1). If (w,m(M)) =0,
the equation (2.1) is the Euler-Lagrange equation of the action functional Ay on the
space L(M**) of contractible loops in M:

Ap(z) = - f ww + f H(t, z(1))dt, (2.2)

D2
where u is the bounding disk of z, i.e. ul|gp2 = z. If (w,m2(M)) # 0, the first term of the
right-hand-side of (2.2) is single-valued after taking the covering space L(M) of L(M)
corresponding to the homomorphisms ¢,, ¢, : m(M) = R : ¢ (A) = [w, ¢,(A) =

J4 c1. More precisely,

L(M) = {(z,u)| z € LIM),u: D* 5 M such that = = u|sp}/ ~

T =Y,
(z,u) ~ (y,v) & [pu'w = [p v'w,
fp2u*cr = [p2v™ey.
The covering transformation group of £L(M) — L(M) is

__ m(M)
" ker¢e, Nkere,

(2.3)

Geometrically, mo(M) acts on £(M) by connected sum of 2-spheres with the bounding
disk.

Let P(H) denote the inverse image of P(H) by the projection L(M*™) — L(M*"),
then P(H) is the critical set of the functional Ay. Fix an almost complex structure J

calibrated by w, that is, gs(v,w) = w(v, Jw) defines a Riemannian metric on M** (in
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particular, we have: Xy = JV H). Then one can define the “minus gradient flow” of Ay

by the solution u : R x §' — M?" of the following equation

Ju u
6—S+J(u)é~t-+VH(t,u)= 0. (2.4)

The linearization D, of 8;(u) is a Fredholm operator, and we call its index () the rela-

Oy (u) =

tive index of u. One has the relation p(u) = p([z7,w7])— p([z*, u*]), where p([z~,u7])
is the Conley-Zehnder index of [z7,u~]. On the set P(H) the Conley-Zehnder index
p(z) is well-defined modulo 2N, where N is the minimal Chern number of M?*. We de-
note by M([z~,u7], [z, ur], H, J) the space of connecting orbits u which satisfy (2.4)
and the limit condition:

S_li_moo u(s,t) = m_(t),sﬁﬂo u(s,t) = z*(t), (2.4.1)
with
(zt, uju) ~ (zF,ut). (2.4.2)
Using weak-compactness argument one shows that lim,, 4., u(s,t) exist if and only if the
energy
oo 1
5= | | 192 deds

is finite. Applying the Sard-Smale theorem one shows that there exists a generic set of
pair (J, H) such that M([z~,v7],[zt,v], H,J) is a smooth manifold of dimension p(u)
(see also Proposition 3.2.i). Moreover, this manifold is invariant under the action of R by
translation in s-variable. Now one can define the Floer chain complex CF,(H, J) with Z;
coefficients on a weakly-monotone symplectic manifold as follows. Recall that a 2n-
dimensional symplectic manifold (M, w) is called weakly monotone if it satisfies w(A) < 0
for any A € my(M) with 3 —n < ¢(A) < 0. This condition yields non-existence of
J-holomorphic spheres of negative Chern number for a regular almost complex struc-
ture J, which is generic in the sense of Baire. This fact combining with a “transversality
property” of H makes sure that the moduli space M({{z™,u"], [z, u?], H,J)/R is com-
pact if its dimension equals zero, and compact up to splitting into two connecting orbits
if its dimension equals one.

Denote by C Fy the Zy-vector space consisting of 3= ,z=4 £(Z) - &, where & € P(H) and
the coefficients £(z) € Z, satisfy the following finiteness condition:

{Z | &(2) # 0, and Ap(Z) > ¢} is a finite set for all ¢ € R.
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The boundary operator is defined as follows:
di= Y m() 4,
u(@)=p(z)-1
where n9(2,7) is the modulo 2-reduction of the cardinality of M(%,4, H,J)/R. The
complex CF,(H,J) := (CF,,0) is called the Floer chain complex associated to (H, J).
Its homology group H F.(H, J) is called Floer homology group. This group is a finitely
generated module, in each degree, over the Novikov ring A% which is the completion of
the group ring
ker ¢,
['g = ' I
0 ker ¢, Nker ¢, ch

over the field Z, with respect to the weight homomorphism ¢, : (M) — R. Further-

more, Floer homology group does not depend on the choice of a generic pair (H, J). Hofer
and Salamon showed that if the minimal Chern number N of M?*" is at least n, then there

is an isomorphism

HFn ™2 P H;i(M,Z,)@A2.

j=k( mod 2N)
§3. Cap action of cohomology group H*(M,Z;) on Floer homology HF.(H,J).

Let o € H¥(M®,Z,) and of : UA™ % — M be a singular chain representing the
Poincare dual class of a. Then the action of & via ! on a Floer chain complex CF.(H, J)
can be described as follows:

dng= S w97, (3.1)
w(3)=n(z)—k
where #, € P(H) are generators of CF,(H,J), and m®(%,§) denotes the modulo 2-

reduction of the cardinality of the set
M (&5, H,J) := {u € M(3,7, H,J)|u(0,0) € Im (e*)}.

In the following Proposition 3.2 we will give a precise definition of a regular triple
(H,J,a"), which ensure the finiteness of the number m®!(%,9) in (3.1).

First, recall that given a regular complex structure J the set of J-regular Hamiltoni-
ans (i.e. whose 1-periodic solutions are non-degenerate and have no intersection with any
J-holomorphic sphere of Chern number less than or equal to 1) on M is generic (in the
sense of Baire) in the Banach affine space of all smooth functions H + h: S' x M - R

with the norm

[s.0]
llalle = Zsk”h“m(slxm < o0,
k=0
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where € = {e;} is a sufficiently rapidly decreasing sequence ([H-S]). In fact, combining

their proof with an argument from general topology gives us the following

Lemma 3.1 . Let H be a non-degenerate Hamiltonian and Ts(H) the set of all Hamilto-
nians H' with ||H' — H|. < . Then there exzists a generic (in the sense of Baire) set of
Hamiltonians H"” € Ys(H) such that the set of reqular almost complez structures J satis-
fying the following condition (*) is generic in the sense of Baire: (*) all J-holomorphic
spheres of Chern number at most 1 have no intersection with the (non-degenerate) 1-
periodic solutions x € P(H").

Proof. First we recall that for the proof of genericity (in the sense of Baire) of regular

pairs (H,J) Hofer and Salamon showed that the evaluation map
M(A;J) X S*x ST xP = M x M :([v,2],t,z, H) = (v(z),2(t))

is transversal to the diagonal in M x M. Here J is a fixed regular complex structure, P is
the Banach manifold of all pairs (z, H) of a non-degenerate 1-periodic solution z € P(H)
and H € YTs(H), and M,(A,J) is the set of simple J-holomorphic spheres, realizing
class A € Ho(M,Z). It follows that, if we replace M,(A;J) by the infinite dimensional
Banach space M, (A} of all pairs (v,J) of an almost complex structure J and a simple
J-holomorphic sphere v in the class A, then the corresponding map is also transversal.
Thus, by the Sard-Smale theorem, there is a generic set T'(A) of regular values of the

projection from the Banach manifold
N=(A) = {([Jyv, 2], t, 2, H) | v(z) = 2(¢), (=, H) € P}

onto the product space Ys(H) x J: ([J,v,2],t,z, H) = (H,J). Now with the help of
a fact from general topology (see Appendix 1, Claim A.1.11) we get that, there is a
generic (in the sense of Baire) set ‘H(A) of Hamiltonians H” in Ts(H) such that the set
{J € Jreg | (H",J) € T(A)} is generic (in the sense of Baire) in the space of calibrated
almost complex structures. Taking the countable intersection of all H(A), where the

Chern number of A is less than or equal to 1, we get the required set. 0O

Let Hg be one of H” in Lemma 3.1. We also call such a Hamiltonian H-S-regular.
We choose disjoint compact neighborhoods Uy,...,Un C S' X M of the graphs of the
finitely many contractible 1-periodic solutions of (2.1). We denote by Vs(Hp) the set of
all Hamiltonians with || — Ho|l. < § and H = Hyon U; for 3 =1,...,m. If § > 0 is
sufficiently small then there are no contractible 1-periodic solutions of (2.1) outside the
set {U;} for H € Vs(Ho).
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Further we call a pair (#,J) H-S-regular if the following conditions hold:
(1) H is a J-regular Hamiltonian.
(i) The space M(x,y, H,J) of connecting orbits is a finite dimensional manifold for all
z,y € P(H). More precisely, the cross section 9y is transversal to the zero section.
(iii) If u is a connecting orbit with x(u) < 2 then the image u(R x S1) has no intersection

with J-holomorphic spheres of Chern number zero.

Proposition 3.2. Given any triple (Hy, Jo, o) with a H-S-reqular Hamiltonian Hy and
a map of 1 UA™* 5 M there are a neighborhood Us(Jy) of Jo and a generic set
S(at) € Vs(Hy) x Us(Jo) such that the following holds for (H,J) € S(at).

(i) The pair (H,J) is H-S-regular.

(1) The map o' meets the evaluation map e : M(z,y, H,J) = M, e(u) = u(0,0), transver-
sally.

(it1) There is no connecting orbit v € M(z,y, H,J) of relative index less than or equal
to k+1, where k = dima, and besides, satisfying one of the following conditions (a) and
(b):

(a) The image u(R x S') intersects with one of holomorphic spheres of Chern number
zero, and moreover, u(0,0) € I'm of.

(b) There are m > 1 holomorphic spheres vy,... ,v,, and 2m points 2 ... 2zt € §?
such that u(0,0) = vy (z}),vi(2]) = v2(25), ... ,vm(z;) € Im oF, and besides, the sum of
the Chern numbers of the spheres v; is less than or equal to 1 - (k 4+ 1 — p(u)).

From Proposition 3.2, combining with Gromov compactness argument, we easily get

the following corollary.

Corollary 3.3. For a pair (H,J) € S(a%) as in Proposition 3.2 the intersection number
me'(£,7) is finite.

In fact, for the proof of Corollary 3.3 we need only the conditions u(u) < dima = &
and ¥;(c1(wi)) < 3 - (k — p(w)) in Proposition 3.2.(iii). Transversality with p(u) = k + 1
is used for the proof of “invariance properties” of the cap action (see Proposition 3.7,
Proposition 3.8). Tn general, the transversality with g(u) > k 4+ 1 breaks down by the

same reason that obstructs the associativity of the action.

Proof of Proposition 8.2. Let us prove the first part (i). Note that the proof of this
statement has been sketched in [H-S]. But their proof is based on a similar result in [S-

Z), the detailed proof of which is not written down. TFor the sake of completeness we
shall carry out a detailed prool here (and in Appendix 1). Write S(0) = {(H',J') €
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Vs(Ho) x Us(Jo)|H' is J'-regular.}. We fix a pair 2* € P(H,). Denote by P(z~,z*) the
Banach manifold of W)” maps u : R x S' — M which satisfy the limit condition (2.4.1)
in WP sense with p > 2. Let B = P(z™,z%) x Vs(Hp) x Us(Jo) and € be the bundle over
B whose fiber £, usy = LP(u"TM). Recall that the space of connecting orbits are the
zero set of the cross section F : B — £ defined by

Flu,H,J) = 9, 4u.
The differential of this section at zero (u, /{, J) is the linear operator given by

DF(u, H,J)(&,h,Y) = D& + Vh(t,u) + Y(%’ti + Xn). (3.2)

It was shown that D, is a Fredholm operator of index p(u) ([F3, S-Z)], see also Appendix
1, Fact A.1.10). Moreover we have the following (see the proof in Appendix 1, Prop.
A.L1).

Lemma 3.4. (cf. [S-Z, Theorem 8.4]). The section F is transversal to the zero section.

This Lemma implies that the set
Mz, 2% = {(u, H,J) € B| s pyu = 0}

is a separable infinite dimensional Banach manifold. Denote by S(1) the set of regular
values of the projection from M(z~,z%1) to the second and third factors Vs(Ho) x Us(Jo).
Then the inverse image M(z~,z%, H,J) of (H,J) € S(1) by this projection is a smooth
manifold of connecting orbits between 1-periodic solutions z~,z* € P(H).

Now we shall show that there is a dense set S(2) C S(1) such that for (H,J) € 5(2) the
pair (H,J) is H-S-regular. Denote by M,(A,z~,z*) the set of all quadruples [v,u, H, J]
such that v is a simple J-holomorphic sphere in the homology class A € Hy(M,Z) and u
is an element in M(z~,z%, H, J). Clearly, M,(A,z~,z") is the zero set of the section K
from the Banach space W1P(5%, M) x B to the bundle G over it whose fibre at [v,u, H, J]
is the direct sum of Ay(J) and &, p ). Here A,(J) consists of all L? sections of the vector

bundle over S? whose fibre at z € 5 is the space of J-anti-linear maps T,5? — Ty, )M

and

K([v,u, H,J]) = 8;(v) & F(w, H, J).
Using MDuff’s result which states that the differential Dd(v,J) is surjective [MD], and
Floer’s, Salamon-Zehnder’s result which states that the differential DF(u, H) is surjective
([F3, S-Z], see also Appendix 1, Proposition A.1.1) , we easily show that the differential

DK is surjective. Now we consider the evaluation map

El : JMI(A) = M,(A,ﬂ:-,$+) Xa 52 X Sl - M x M,
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given by

({?)7 TL? 1:‘{7 J]'J z’ t) |_> (’U(Z), tt(O’ t))'
We shall show that the subspace

NM(A) = {([v,u, H,J],z,t) | v(2) = u(0,t)}

is an infinite dimensional Banach submanifold in M;(A). To do this, it is sufficient to

prove that the evaluation map Fy is transversal to the diagonal Ay C M x M.
Claim 3.5 [H-S]. The evaluation map
ec: My(A,z7,2) = M, e([v,u, H,J]) = u(0,t)
is a submersion for everyt € S'.

In the proof of this claim (see Appendix 1, Proposition A.1.4) we use only perturbations

of Hamiltonians H variables. It follows that the evaluation map E, is transversal to the
diagonal Ay C M x M.

Now we choose S(A) as the set of regular values of the projection NM(A) = Vs(Hp) x
Us(Jo) onto the factors (H, J). The Fredholm index of this projection is 2¢;(A) + p{u) -3,
which is negative if ¢;(A) = 0 and p(u) < 2. Choose S(2,z7,z%) as the intersection of
S(1) and S(A) when A runs over all spheres of Chern number zero. Then we take S(2)
as the intersection of all the sets S(2,z7,z%) where z7,z%* € P(Hp). Clearly, the set
5(3) := 5(2) N 5(0) is the required set for the part (i).

In order to prove the remaining parts (ii) and (iii) of Proposition 3.2 we consider two

evaluation maps
Eo :My=M(Az7,27) xg P X R xS' xUA"* s M x M x M x M,

([, u, H,J), z,8,t,q) = (v(2), u(s,1),u(0,0), *(q)),

and By : M3 = M X ... (2m42 times) X M, where
Mg = M,(Ar, .. Ayt 2%) X6 (52 X S%) . (m times) X6 (S7 % %) x UAE]

([v1y. - s vmyw, H,J), 25, 00 22 q) = u(0,0),. .. v:(27), vi(2}), ..., ().
Here the space M,(A, Ay, ..., An, 27, zt) is defined similarly as M, (A, z7,z%), namely
v1,...,Vm are J-holomorphic spheres and u is a connecting orbit with respect to (H, J).
Now we show that the maps E, and Fj are transversal to the product of diagonals in the

target spaces respectively.
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Claim 3.6. (a) For each (s,t) the evaluation map
est: My(A,z 7,2ty = M x M, [v,u, H, J] — (4(0,0),u(s, 1))

is a submersion provided u(0,0) # u(s,t) ort # 0.
(b) For each (2%,...,2%) the evalualion map

Y m

€z : M’(AUA?)' s 1Am,$_$$+) - M x.. *(2m times) X M’

(Vs ey Oy, Hy ) = (0y(20)s 01 (2), - um(v5), vm(2F)),

is a submersion provided any two of {v;(z; ),v;(z})} do not coincide.

For the proof of Claim 3.6 (a) we just use perturbations of Hamiltonians H (similar to
that one of Claim 3.5). The argument is standard and therefore omitted here. It implies
that the map E;, is transversal to the product of two diagonals in the target space at points
where u(0,0) # u(s,t) or ¢t # 0. So the remaining case is that v(z) = u(0,0) = u(s,0) =
a#(q). In this case, we also use perturbations of almost complex structures (see the proof
of Proposition A.1.5). Namely we use perturbations of almost complex structures outside
of a neighborhood of the image of u to show the transversality to the first factor diagonal
and we use perturbation of Hamiltonians to show the transversality to the second factor
diagonal. Note that perturbation of almost complex structures outside of a neighborhood

of the image of u does not effect the connecting orbit u. Thus, it follows that the space
No = {([v,u, H,J}, z,8,t,¢)| v(z) = u(s,1),u(0,0) = o*(q)}

is an infinite dimensional Banach submanifold of Mj. The projection from A; to the
factors (H, J) is a Fredholm map of index 2¢;(A) — 2+ p(u) — k. This number is negative
by the condition in Proposition 3.2.(iil). Denote by S(4A) the set of regular values of the
projection Ny — Vs(Ho) x Us(Jo). Let S(4) be the countable intersection of all the set
S(4A) with S(3) when A runs over all spheres of Chern number zero. Then we get that
for any pair (J, H) € S(4) the conditions (i), (ii) and (iiia) in Proposition 3.2 hold.

To prove Claim 3.6 (b) we use only perturbations of almost complex structures J

(see Appendix 1, Proposition A.1.5). Thus, it follows that the map £} is transversal

+

to the diagonal in the target space at points where all v;(2;

v;(z¥F) coincide, we have ji,...,Jm-1 € {1,...,m} such that u(0,0) = v;, (23 ),v;,(2f) =
Vi, (25)s -+ o Vimey (25, ) = 0(q). Hence the problem reduces to the one for m — 1. (Note

that ¢,(v;) > 0.) Consequently, the space N3 =

{([vla e Umyuy H, J]az-it’ cee Z,:,‘:,,,(])l 7-"‘(070) = Ul(zl_)avl(zr) = v2(22_)) SO 1Um(z;1) = Qﬂ(q)}

) are distinct. If some of
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is a infinite dimensional Banach submanifold of Mj3. The projection of M3 — Vs(Hp) x
Us(Jo) on the factors (H, J) is a Fredholm map of index 23, ¢; + p(u) — k—2m, where ¢; is
the Chern number of A;. Our condition in Proposition 3.2.(iii b) implies that this number
is negative. We take the set 5(5) of generic values of each above projection corresponding
to each m-ple (Ay,..., A,). Now, S(ef) = S(5) N S(4) is the set we are looking for. O

A pair (H,J) satisfying the condition (i) - (iii) in Proposition 3.2 is called a-regular.
It is easy to see that the set of intersection of all c-regular pair (H, J), when o runs over
the homology group H*(M, Z,), is generic in Vs(Hp) x Us(Jo). From now on we consider
‘only such a pair (H,J) which we call a F-generic pair. For the sake of simplicity, in
the remaining part of this note we denote the space M(m,y‘, H,J) by M(z,y), since no

confusion may arise.

Next we prove that the action of @ on a Floer chain complex descends on its Floer
homology. Moreover, this action does not depend on a cycle of(UA?™*) representing the

Poincare dual class of . This statement follows from the following lemma.

Proposition 3.7. Let ¢ be an element in Floer chain complex (H,J). Then we have
(1) ANdc=ad*Ne).

(ii) Suppose o*(UAP*) is a boundary: of = AB%, where (H, J, %) is also a regular triple.

Then we have
ofNe=9(F Nc)+ B4 nde.

Proof . (i) Fix a pair &, of 1-periodic solutions of Conley-Zehnder index difference
k + 1. Proposition 3.2 and Floer’s gluing argument (see Fact A.1.6) imply that the space
M= (%,§) is a 1-dimensional manifold whose ends are the union of the set M(%, ) x
M (3, 7) satisfying pu(2) = (&) — 1 and M (&, 3) x M(3,7) satisfying u(%) = u(7) + 1.

Since the number of these ends are even we get
m® (0%, 7) = na(af N &, §)

which proves the part (i) of Proposition 3.7 immediately.

(i) Fix a pair %7 of l-periodic solutions of Conley-Zehnder index difference (k +
1). Proposition 3.2 and Floer’s gluing argument (see Fact A.1.6) imply that the space
MP'(z,7) is an 1-dimensional submanifold whose ends are the union M EHU{MP (3, 5) x
M(F,3)|u(3) = u(&) = 13U {MP(,2) x M(3,7)|i(2) = p(§) +1}. The rest of the proof

continues in the same way. O
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By Proposition 3.7 we can denote the cap action of a € H*(M,Z,) simply by an. We
now prove the naturality of this action in the category of Floer homology. Recall that
given two H-S-regular pairs (/,J) and (H',J’) there is a natural chain homomorphism
© between the corresponding Floer chain complexes CF.(H,J) and CF.(H',J’). This
chain homomorphism © can be defined by counting the number of solutions of the “chain

homomorphism equation”

Ju du
as'-l-J(S,U)a-}-VH(S,t,u) =0

which is an s-dependent analog of the connecting orbit equation (2.4). Therefore, transver-

sality, compactness and gluing arguments for connecting orbits can be applied for the chain
homomorphism @ ( [F3], [S-Z]).

Proposition 3.8. Suppose that (H,J,o*) and (H',J', ") are regular triples and © is a
natural chain homomorphism between the corresponding Floer chain complezes CF.(H, J)
and CF.(H',J').

(i) For c € CF,.(H,J) we have o* N (Oc) = O(c* N¢).

(ii) Consequently, for c € HF.(H,J) we have a N (BOc¢c) = O(aNc).

Proof. The proof of this lemma is similar to the previous one. Fix two critical points
§ € P(H) and § € P(H') of Conley-Zehnder index difference k, where k& = dima.

Consider the space
M (§,7) = {(u,a) € Me(§,§') x Rlu(a,0) € Im o*}.

This space is a 1-dimensional manifold, whose ends are the union of the set M= (©(), ')
and the sets M®'(§,2) x Mg(2, ') satisfying u(3) = u(§) (see also Fact A.1.7 on gluing

maps). The rest of the proof continues in the same way. O

84. Associativity of the cap action.

Associativity of the cap action means that (¢ —« ) N¢c = a N (B Nc) holds for any
a,B € H(M,Z;) and ¢ € HF.(H,J). In fact, associativity does not hold in general.
For instance, associativity fails for complex projective spaces (see [F3]). The purpose
of this section is to prove the associativity under certain assumptions. Write d;(M) =
min{¢;(5)|Sis a J-holomorphic sphere.}. The following proposition is predicted by Floer

under a slightly stronger condition, namely wj., =0 [F3].

Proposition 4.1. Let (M,w) be @ weakly monotone symplectic manifold and (H,J) a F-

generic pair of a time-dependent Hamillonian and a calibrated almost complex structure.
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Moreover, suppose that for o € H*(M;Z,),8 € H*(M;Z,) the triple (H,J,of N B is
also regular. If ky + ko < dj(M), then we have

(a~B)Nec=an(BNc)
forallce HE(H,J).
In particular, we get

Corollary 4.2. If there are no J-holomorphic spheres, then the associativity holds.

Proof of Proposition 4.1. Choose cycles of : UA?™ % s M and £ : UA?" %2 5 M which
represent the Poincaré dual of o and § respectively. Recall that for &,7,% € P(H), the
evaluation maps M(Z,7) = M and M(§,2) - M, given by © — u(0,0), are transversal
to B! and o respectively (Proposition 3.2.(i1)). In particular, the images of these maps are
disjoint from lower dimensional strata of of and BV if u(&) — u(§) = ko, u(J) — p(3) = k.
Since we are only interested in connecting orbits whose values at (0,0) belong to the
images of of or B!, we may regard of and B* as if they are smooth maps from smooth
manifolds.

For &,% € P(H) with u(&) — p(8) = ky + ko, we write

o al gl

(%,%) = {(u,a) € M(%,3) x Rl|u(a,0) € Ime, u(—q,0) € ImB* and a > 0}.

By an argument similar-to the proof of Proposition 3.2 we can assume that the map
®: M(Z,2) x R = M x M, given by ®(u,a) = (u(a,0),u(—a,0)), is transversal to

ot gt

ot x B4 Thus, ,A?/t (2, %) is a manifold of dimension 1. To prove the associativity, we
ol g

have to investigate the end of M (%, 2).

a’,ﬁ’
Let {(ui,a;)} be a sequence in ,/f/( (%, 2). The weak-compactness argument shows

that after taking a subsequence, the image of u; converges to the image of a connecting
orbit uniformly or splits into images of connecting orbits. Note that u(Z) — p(2) =
ky + ko < dj(M). Thus no J-holomorphic bubbles appear for a F-generic pair (H, J).

If {a;} is bounded from above, we can assume that the limit exists, and we denote
this limit by a.. In this case, {u;} converges (without bubbling) to a connecting orbit
Uoo SUCh that Ue(@ew,0) € Im ol and ue(—aw,0) € Im B*. The argument goes as
follows. Let uy be the limit of a u; in C72-topology. Since the convergence is uniform
on compact subsets, e (oo, 0) € Im o and tue(—teo,0) € Im B If the image of u;
splits into images of at least two connecting orbits, the relative index of u, is less than

ki + ko. Thus the dimension counting argument yields that we can avoid such a situation.
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1 gt
Hence we have u,, € M(Z,2). If a, > 0, we get ue e,;\ozta (%,%). If ao = 0, then

o alg!
Ueo(0,0) € Im o N Im A% and (ue,0) is an end of M (z,2).

If {a;} is not bounded, {u;} split into ! connecting orbits vy, ...,v; with { > 2. Using
F-genericity of (H,J) again (P'roposition 3.2.(i1)) we obtain that [ = 2. Therefore there
are two types of ends of jf/{a"ﬁ (g,2).

Case 1. {u;} converges to us € M(E, Z) such that 1.(0,0) € Imad N ImpH.
Case 2. {u;} splits intov; € MP'(%,7) and v, € M (§, 7) for some § with (&) —p(§) =
kp and pu(y) — p(z) =k o

In fact, the set of these limits is the boundary of J(./fa g (2,2). The gluing argument
gives the collar neighborhood of limit points in Case 2 (see Fact A.1.8). For the existence
of the collar neighborhoods of limit points in Case 1, it suffices to show that 0 is a regular
value of the projection of ®~!(Ima! x ImB*) C M(%,2) x R to the second factor R.
Suppose that 0 is not a regular value, we can choose a path (u,,a,) in ®~'(Imat x Img")
such that d/dr|,=0a, = 0 and d/d7|,=0u,(0,0) # 0. Then d/dr|,=0u,(0,0) is tangent to
both of the images of o and 3%, hence the image of the intersection cycle 4¥ of o and
B, Since M(%, ) and 4! are of complementary dimension, d/d7|,—ou-(0,0) cannot be
tangent to 4*. That contradicts to the transversality of the evaluation map to ¥

(Proposition 3.2.(ii)). Hence 0 is a regular value.

Since the end of A (%, 2) is either limits in Case 1 or Case 2, we get
n8(%, 3) mP(&,§) - m*(3, ).
Hence we get the associativity. O

Remark 4.3. The proof of Proposition 8.2 also implies that the action of a and 3 are
commutative in the sense of graded algebra, if ky + ko < dj(M).
§5. Proof of the main theorem.

We identify the symplectic fixed points with the 1-periodic solutions of a periodic
Hamiltonian H. Let P(H) be the subset of all contractible 1-periodic solutions. We want
to estimate the number of such solutions. Since regular Hamiltonians are dense, we take

a sequence of regular Hamiltonians {#;} converging to H:
hm || H; — H ||c2=0
1—00

It is easy to see that the limits of 1-periodic solutions of H; are also 1-periodic solutions
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of H (Lemma 5.1). To distinguish these limits we use the cap action of cohomology
ring H*(M?*",Z;) on the Floer homology group HF.(H;,J) (Lemma 5.2). Finally, the
computation of the Floer homology group associated to a C?%-small time-independent
function on M?" gives us the non-triviality of the cap action of the fundamental cocycle
[M] € H**(M* Z,) on the Floer homology group (Lemma 5.3).

First let us recall that given any (time-dependent) Hamiltonian H, whose periodic
solutions are isolated, there exists a positive constant Ry such that the energy of each
non-trivial connecting orbit u satisfying (2.4 -2.4.2) is greater than or equal to kg, and

besides, fg is an upper bound for energy of any J-holomorphic sphere in M [H-S].

Lemma 5.1. (i) For any € > 0, there ezists 1y such that if 1 > 19 and z: §' - M be a
1-periodic solution of z = Xy,(z), then z salisfies || z — zg ||c1 < € for some 29 € P(H).

(1t) Suppose that 1-periodic solutions of H are isolated and e9 > 0 is the minimal C°-
distance between distinct elements in P(H). For any ¢ € (0,¢0) there exists an integer 1,
satisfying the following:

If 1 211 and u is a connecting orbits between I-periodic solutions z and 2’ € P(H;) with
E(u) € ho/2 and ||z — zo||c1r < €/2 for some zo € P(H),
then the image u(R x S') is contained in 2e-neighborhood of 2.

Proof. (i) By the Ascoli-Arzela theorem, there exists § > 0 satisfying the following

condition.

If aloop z: S*' — M satisfies || £ — Xp(z) ||ce< 6, then || € — y ||c1 < € holds for some
y € P(H).

By the choice of {f;}, there exists a positive integer ¢g such that || Xy, — Xy {co < 8.

Hence we have
5= Xu(2) los <l £ = Xi(2) llow + | Xi(2) = X (2) oo 8.
Therefore there exists zg € P(H) such that || z — 20 ||;1 < €.

(ii) By the definition of &g, each limit of any subsequence of the sequence {z; €
P(H;)| ||2i — 2ol|lcr < €/2}, when H; converges to H, is zp. Suppose that the statement
is false. Then we have a sequence of connecting orbits {u;;} such that one of the end is
e-close to zq, the energy E(uy;) < ho/2 and the image is not contained in e-neighborhood
of zo. Then after translation in R-direction, we may assume that u;; converges o a con-

necting orbit 1., such that ue(0,t), for some ¢, is outside of the e-neighborhood of z.
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Hence uc, is non-trivial connecting orbit for (4, J). Thus E(us) > ko, which contradicts
to the fact that E(ue) < liminfl E(uy) < ho/2. 0O

Note that under the condition of Main Theorem, the Floer homology can be defined
on M?". Moreover the action of H*(M?*" Z,) on the Floer homology group is associative,
since there is no J-holomorphic sphere for a regular J and we can apply Corollary 4.2.

Therefore, we obtain our Main Theorem immediately from the following two lemmas.

Lemma 5.2. Let (M ,w) be a symplectic manifold as in the Main Theorem. Suppose
that o; € H5(M*™,Z3), i = 1,... 1, are elements of positive degree. If the composition
(e1N) o ...(auN) of the actions on the Floer homology group of M®™ is non-trivial, then
the number of distinct elements in P(H) is at least [ + 1.

Lemma 5.3. If M*®® satisfies the condition of Main Theorem, then the action of the
fundamental class [M] € H*™(M*,Z;) on the Floer homology group is non-trivial.

Proof of Lemma 5.2. We assume that all the periodic solutions are isolated (otherwise,
Lemma 5.2 is trivial). Choose H; as above. Lemma 5.1.(i) tells us that any 1-periodic
solution for H; is close to one of 1-periodic solutions for H in C'-topology. If two loops
y and z are sufficiently close in C°topology, we can make a bounding disk of z from a
bounding disk of y, unique up to homotopy. Namely, we choose a homotopy S! x [0,1] —
M between two loops y and 2z in an ¢ neighborhood of y and glue this cylinder with the
botinding disk of y. The resulting map is a bounding disk of z. If ¢ is small enough (for
instance, smaller than the injectivity radius of M), we can show the uniqueness up to
homotopy. Hence we can compare Conley-Zehnder indices of these 1-periodic solutions

with the bounding disks as above.

Claim 5.4. Suppose that z,7z’ € P(H,), where v is sufficiently large, are sufficiently close
in C'-topology. Then the Conley-Zehnder indez difference |pu([z,v])—u([z',v])| is bounded
by 2n if v and V' are bounding disks obtained by the procedure above.

Proof. Recall that the Conley-Zehnder index p([z,v]) equals, up to an additive constant,

the analytical index of the Fredholm operator P, on the bounding disk v
dv
P =V g€+ J(0)V g6 + p(Ved (v) 50 + VeV H(1,0),

where (r,t) are the polar coodinates of the disk v and p is a cut-off function supported

nearby the boundary dD? (see Fact A.1.10). Atiyah-Patodi-Singer index theorem implies
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H

that the difference index ind P, — ind P,y equals the spectral flow of the elliptic operator
dz
dit

from the periodic solution z to the periodic solution z’. When z and z’ are C'-close to

Ak = J(2)(V 1€ — VeXn,) + Vel ()=

zg € P(H) enough, the spectral flow comes only from the zero eigenvalue (with counting
multiplicity) of the linearization of the operator & — Xy, (z(¢)). That is the dimension
of the solutions of a linear ordinary differential operator acting on vector fields along zo,

therefore, it is at most 2n. Hence we get the Claim 5.4.

Under the assumption of Lemma 5.2 there is a sequence of elements {#/} € P(H;),j =
.1, such that () — p(*") = «j, and m® (3, 3™) = 1. Let 2 be a limit of a

subsequence of Ef which is also denoted by Zf for the sake of convenience. We want to

show that if j < k then z} # z5. Let us assume the contrary, that is, zg = z}. There are
two cases:

(a) liminyeo(Am ("j) An(2F)) < Fo/2,

(b) limisseo (Am(3) — A (3)) > Ro/2.

Consider the case (a). In this case we also have

lin (A 32) = A () < o2

From Lemma 5.1 {ii) we know that for 1 big enough the image of all connecting orbits
u! between 7 and 2™ lies in a small neighborhood U, of z. Since 2 is contractible
we can choose another cycle ag which has no intersection with U,. But this implies that

m (2, 71!

1,2]7") = 0, which is a contradiction.

Now we consider the case (b). Write # = [2,v]]. Then the bounding disk v =
limy o vf equals a connected sum v(’J‘ = lim;5eo v!‘ with a non-trivial element g;r of

mo( M?"). Note that we have
Aei(gin) = w(gin) = Amo(2) — Any(5)) > 0,
by the assumption. Therefore, ¢i(g;x) < 0. Next, using Claim 4.4, we get
u(3) = u(#F) < 20 + 2e(gin),

which is less than or equal to zero, since ¢;(g;x) < —n. But it contradicts to the other
assumption that ,u(z"-f) —p(E) =k;+ -+ Keey > 0. O

Proof of Lemma 5.3. Since the action is compatible with the natural isomorphism between
Floer homology groups for generic pairs, it is sufficient to deal with the time-independent

C?-small Hamiltonian case. Let A be a C%small Morse function such that
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(1) all 1-periodic solutions are constant loops at critical points of &,

(2) the gradient flow is of Morse-Smale type and the linearization of the connecting orbit
equation at these solutions are surjective,

(3) all connecting orbits of energy less than |(A)~!/2| should be gradient trajectories,
(4) lhlc2 < |A71/4).

Existence of a function h with properties (1), (2),(4) is obvious (see [F3], [S-Z], [H-S}).
To see that such a function h, after multiplication with a small positive number, satisfies
the condition (3), we use Salamon-Zehnder’s theorem. Namely, the integration of the
symplectic form on such a connecting orbit is zero and we can apply thetr theorem. Note
that properties (1), (2), (4) are preserved under multiplication by a small positive number.
So we can define Floer chain complex C F.(k,J) [F3], [H-S).

Now let us calculate the action of the fundamental class [M] on C F.(h, J). The Poincaré
dual of [M] is represented by one point. We choose a point p in generic position, there is
one and only one gradient trajectory passing through p and connecting a local maximum
g+ and a local minimum g¢- of the function h. Let ¢, ¢- be ¢4, ¢ with trivial bounding
disks. Note that the energy of this gradient trajectory (as a connecting orbit) is less than
|A=1/2]. Hence all the connecting orbits between gy and ¢ are gradient trajectories,
which implies that m®(g,,§_) = 1.

Note that the formal sum of all local maxima (with trivial bounding disk) gives the
fundamental class in Morse homology of M and any two of local minima are homolo-
gous. Thus, the equality m™(j,,§_) = 1 proves the non-triviality of the action of the
fundamental cocycle on the Floer homology group HF.(h,J). O

Appendix 1 : Auxiliary technical lemmas.

On the transversality argument.

Let H : S' x M — R be a Hamiltonian such that all the 1-periodic solutions are
non-degenerate. Recall that for 1-periodic solutions z,y € P(H) and p > 2 we denote by
P(z,y) the Banach manifold consisting of v € W,P(R x S*, M) such that

u(s,t) = expyy€(s,t) for s < —R
u(s,t) = expy(t)ﬁ"'(s,t) fors> R
for a sufficiently large real number R,

£ € W'P((—oo,—R] x S',(z 0 pry)*'TM)
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and
¢r e W'P([R,00) x S, (y o pra)"T M),
where pry : R x S — S is the second factor projection (see [F3,F5] for details.)

For each regular complex structure J and a J-regular Hamiltonian Hy we denote by B,
the subspace P(z,y) x Vs(Ho) x {J} C B (see section 3). We denote the restriction of
the bundle £ on B; by the same £ and the restriction of the section F also by the same
F. Thus, for a solution u of F(u, H') = 0, the linearization of F at (u, H') is given by

DF (& h) = Dy + Vh (compare with (3.2)), where D, is an elliptic partial differential
operator given by

D& =V 6+ J(u)Vi€ + VEJ(TL)% + V VH(t,u).
Clearly Lemma 3.4 is a direct consequence of the following

Proposition A.1.1([S-Z]). The linearization DF : W'P(u*T M)xVs(Ho) — LP(uw*TM)

is surjective.
For the proof of this proposition, we need the following

Lemma A.1.2. Lel v : R x S§' — M be a connecting orbit for (J, H') joining distinct
1-periodic solutions  and y.

1) For each to € S, the set {s € R| Ou/ds(s,to) = 0} is nowhere dense.

2) The set C, = {(s,t) € R x S| there ezists s € R such that u(s,t) = u(s',t)} is

nowhere dense.

Proof. 1) Note that the section ¢ = Ju/ds is a solution of D& =0, i.e.

Vo€ + J()ViE+ (VfJ)(_u)%% + V:VH(t,u) =0.

If ¢ vanishes on (a,b) x {t}, then the higher derivatives 8*u/ds*(so,t0) = 0 for s¢ € (a,b)
and positive integer &. Hence the equation D,¢ = 0 implies that V,£(so,t0) = 0, which
deduces that the 1-jet of £ vanishes at (sq, o). Differentiating the both sides of D& = 0, we
can show that the k-jet of £ vanishes at (sg, o) inductively. Then the unique continuation
theorem [J, Theorem 2.6.1] implies that £ = 0 everywhere, which contradicts to the fact
that u is a connecting orbit joining distinct periodic solutions.

2) If not, there is an open subset U contained in C,. Shrinking the open set U, if
necessary, we can assume that u(U) = Im u N W for some open set W C M. We
decompose u~!(W) into connecting components V;. We put V/ = {(¢',t) € ViJu(s',t) =
u(s,t) for some (s,t) € U} and U] = {(s,t) € Ulu(s,t) = u(¢',t) for some (s',t) € V/}.
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Applying the Baire category theorem to U = UU/, there exists ¢ such that U] contains
a non-empty open subset. Summing up, we can assume that there exist open subsets U
and V such that u(U) = (V). The first part of the lemma implies that @ : R x S! —
M x S a(s,t) = (u(s,t),t) is an immersion on a dense subset. By the implicit function
theorem, after shrinking U and V if necessary, there is a diffeomorphism ¢ : U’ — V such
that u]y = u|v o ¢. Moreover, we can assume that du/ds # 0 on U and V. Note that ¢
preserves the t-coordinate. Therefore we get

Ju Ju .
'a;(QS(S,t)) = f(s,t)—a:(s,t) for some function f on U,

and

%:—L(qﬂ(s,t)) = g(s,t)—g—g(s,'t) + %(s,t) for some function g on U.

Substituting these identities to
du

ao(’ﬁ{_ J(uo(ﬁ)%?O(ﬁ-l-VH’(t,uOgﬁ) = 0,

we get

Ou Ju  Ou , .
frgg tIwod)g 5o+ 50) + VH(t,u) = 0.

Comparing this equation with the equation for connecting orbits, we get

d
{f =1+ gJ(u)}a—:(s,t) = 0.
Since du/ds # 0 on U, we have f(s,t) =1 and g(s,t) = 0 on U, which implies that ¢ is a

translation in the s-variable, i.e. ¢(s,1) = (s+ «,t) for some non-zero real number . The
unique continuation theorem [J, Theorem 2.6.1] implies that © o ¢ = v on R x §', which
implies that u cannot converges to 1-periodic solutions uniformly as s tends to £oo. This

is a contradiction. Consequently, C, does not contain interior points. 0
From Lemma A.1.2 we easily get the following

Lemma A.1.3. The mapping i : R x §! = M x S! is somewhere injective, i.e. there
exists an open subset U C R x S! such that

1) d|y is an embedding,

2) U = a~Ya(U)).

Moreover, for any non-empty open subset V. C R x S, we can choose U, as abouve,

contained in V.

We sketch the proof of Proposition A.1.1 due to Salamon and Zehnder. If DF is not

surjective, there is a non-zero element 7 in the dual space L(u*T M) which annihilates
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the image of DF. By the unique continuation theorem {J, Theorem 2.6.1], the set of zeros
of 1 is nowhere dense.

Next one can show that 7 is proportional to du/ds, i.e. 7(s,t) = A(s,t) - du/ds. The
proof of this fact relies on Lemma A.1.3. Namely, if n and dw/ds are linearly independent,
one can find a perturbation h of the Hamiltonian such that the pairing of 1 and the
Hamiltonian vector field of A is not zero, which contradicts to the fact that » annihilates
the image of DF.

By a similar argument, one can show that the function A(s,?¢) is independent of s-
variable. Then one can show that f) (n, Ju/ds)dt has constant sign.

On the other hand, the s-derivative of fj (n, du/ds)dt is zero, because of the equations
D,Ou/0s = 0 and DZn = 0, where D7 is the formal adjoint of D,. However the pairing

of n and 9u/0s is finite, which is a contradiction. O

For z,y € P(H,) and a generic almost complex structure J, we write M (z,y) =
{(x, H) € P x Vs(Hy)| 95w = 0}. Clearly Claim 3.6 is an immediate consequence of the
following

Proposition A.1.4.[H-S] The evaluation map at (so,10)
€V(sg,10) - Mz, y) = M

is a submersion.

Proof. We shall prove that for any & € Ty(s,40) M, there exists a section £ € WHP(u*T' M)
and h € C° such that

1) &(s0,t0) = o,

2) DF¢ = Vh.

Write X = {n € W'?(u*TM)|n(s0,20) = 0} and restrict the linear operator DF to
X x Vs(Hp). First we shall show that DF : X x Vs(Ho) — LP(u*T' M) is surjective.

As in the proof of Proposition A.1.1, we can show that € L(u*T M) is a weak solution
of (D8sg)*n =0o0n R x S' — {(so,t0)}, if 7 annihilates the image of DF. Lemma A.1.3
and the unique continuation theorem implies that » vanishes except (so, ). However, 7 is
L1, especially represented by a measurable section, this implies that 7 = 0 as an element
in LY (u*TM).

Let £ be an element in WH?(u*T M) such that £(so,t0) = &. By the statement above,
DF¢ = DFn+ Vh holds for some n € X and h € C®. Then £ — 7 is the desired section.
a
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Proof of Claim 3.6.b is carried out in the same way as that of the following Proposition.

Proposition A.1.5. Let f: 5% - M and g : §* = M be distinct J-holomorphic
spheres, p a point in 5. For any tangent vector v € Ty, M, there exists a 1-parameter
family of pairs {(fi, J:)} such that ( fo, Jo) = (f,J), fi is J-holomorphic, g is Ji-holomorphic
for all £ and 0/0t|i=0 fi(p) = v.

Proof. We may assume that f is not multiply covered, hence somewhere injective. We
shall show that there is an open subset U of S% which is disjoint from the inverse image of
the set of intersection points and f is an immersion on U. If there are only finitely many
intersection points of f and g, then the claim follows immediately. If there are infinitely
many intersection points, then they accumulate to a common singular points of f and
g [MD]. Since such points are isolated and S? is compact, the number of such points is
finite. After removing small neighborhoods of such points, there are only finitely many
intersection points in the complement. Then the claim follows as in the previous case.
Then we can find an open subset W of M such that W f(§?) = f(U) and Wng(S?) = 0.
We only consider perturbations of calibrated almost complex structures which coincide
J outside of W and denote by Jw the space of such almost complex structures. Write
Y = {n € WLe(f*TM)|n(p) = 0}. As in the proof of Proposition A.l.4, the linearization
operator of O restricted to Y X Jiw is surjective to L"’(T"‘S2 ® f*TM). Hence by the
implicit function theorem, we get the Proposition. O

On the gluing argument.

In general, the moduli space M(z,y) = M(z,y)/R is not compact. Its ends can be
described by means of gluing maps [[3]

o~

U M(z,y) x M(y, 2) x [R, +00) = M(z, )

for some R > 0 . As applications, Floer proved 9 = 0 and the invariance of Floer
homology under exact deformations.
We shall recall some of Floer’s argument. Let ¢/ and V be compact neighborhoods of

uy € M(&,%) and us € M(Z2,7) respectively. Then there is a real number R such that
u(s,t) = expyé(s,t) fors > R—-1Lueld

and

v(s,t) = expyy((s,t) fors<—R+1L,veV.
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We define the “almost gluing map” as follows:
O(u,v,p)(s,t) = u(s+p,t)fors < -1

expy({B(—s)(s + p) + B(s)((s — p)} for s € [-1,1]
v(s —p,t) for s > 1,

where 3 is a cut off function which vanishes on (—o00,0] and equals 1 on [1,00]. Then the
gluing map ¥ is obtained by applying the Picard iteration procedure (see [F3]). In this
note we also use a similar gluing maps for describing ends of certain spaces. Namely in

the proof of Proposition 3.7 we need the following fact.

Fact A.1.6. (i) For any pair of connecting orbits u; € M (%,9) and uy € M(F, ?)
there is a 1-parameter family of elements u, € M"'(i:,é) such that lim,_e 1, = u; and
there are reparametrizations of u, such that their limit is u,.

(ii) We have the same gluing map for u; € M (§,%) and uy € M(&,7) .

Analogously, for the proof of Proposition 3.8 and Proposition 4.1 we need the following

facts, respectively.

Fact A.1.7. Suppose thal § € P(H) and §f € P(H').

(i) For any pair of a connecting orbit u; € M (G, %), where 5 € 75(H), and a solution
of the “chain homomorphism equation” u, € Me(2,7'), there is a I-parameter family of
solutions of “chain homomorphism equation” u, € M\ (§,7') such that lim, e u, = u,
and there are reparametrizations of u, such that their limit s us.

(ii) We have the same gluing maps for solutions of “chain homomorphism equation”
uy € M@(ﬂ,é’), where 3 € P(H'), and a connecting orbit uy € M** (3, §) .

Fact A.1.8. For any pair of a connecting orbits u; € M®'(&,7) and uy € MP' (3, %)

[e4 a'lﬁl
there is I-parameter family of elements u, € M (Z,2) such that limyyeo u, = uy.

Proof of Fact A.1.6. 1t is enough to prove the part (i). We need to show there exists a
number R, such that for p > R, the gluing map ®; at parameter p meets the evaluation
map at (0,0) transversally and in a unique connecting orbit ufj,us. Let I be a compact

neighborhood of u; in M(%,§) and a closed interval [—¢, €] such that the evaluation map
ev:U x [—e,¢] > M

given by ev(v,s) = v(s,0) meets the image of of transversally at one point. In particular,
there is a neighborhood N of Im of such that the image of the boundary of U x {—¢, €] by

the evaluation map and N are disjoint. Since the evaluation map for the gluing map and
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the evaluation map for the almost gluing map are C°close, we can choose a sufficiently
large R, such that for p > R; we have W(u,us,p)(s — p,0) is outside of N for (u,s) in
the boundary of U x [—¢,¢]. Then, for instance, the degree theory yields that for each
p > Ry, the algebraic intersection number of the evaluation map and of is 1. Hence we
have, for each p > Ry, at least one connecting orbit v(s,t) = ¥(u,uz, p)(s — p,t) from Z
to # such that v(0,0) € ! and v € Y. The uniqueness follows from C{2-convergence of

reparametrized glued connecting orbits to u;. d

Facts A.1.7 and A.1.8 can be proved in the same way.

On the Conley-Zehnder index.

The Conley-Zehnder index gt : P(H) — Z is characterized up to additive constant by

the following condition
ind DF(u) = p(2) — u(9),
where v : R x §' = M?" is a smooth map satis{lying the limit condition (2.4.1), (2.4.2).
A topological definition (which is also called Maslov index) of Conley-Zehnder index
was given in [S-Z]. Here we shall give an analytical definition.
Let v be a bounding disk of z € P(H). We consider an elliptic differential operator P,
on v defined as follows

R =V g€+ ()Y g6 + (Ve () 30 + VeV H(t, ),

where (r,1) be the polar coordinates of the disk v and p is a cut-off function supported
nearby the boundary 9D%?. .

This is a Fredholm operator with the Atyiah-Patodi-Singer boundary condition. We
define p'(z,v) := — ind P,.

Fact A.1.9. ind P_,) =2n —ind P,.

Proof. We consider the 2-sphere (—v)fv. We can glue P_, and P, along the boundary.
This new differential operator P(_,y, is homotopic (through elliptic differential operators)

to the Dolbeault operator tensored with a trivial complex vector bundle of rank n. Hence
ind P_yg = 2n.
On the other hand, Atiyah-Patodi-Singer index theorem implies
ind P_yy + ind P, = ind P_y)-

This proves Fact A.1.9. ad
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Fact A.1.10. Letu: RxS' = M be a smooth map salisfying the limit condition (2.4.1)
and (2.4.2). Then
ind DF(u) = p/(z7,u”) — p(=",u").
Proof. We get from the Atiyah-Patodi-Singer index theorem and Fact A.1.9
2n = ind Py-puy-ut) = ind Py- + ind DF(u) + 2n 4+ ind P4,

This proves Fact A.1.10. d

A fact from general topology.

Here we will give a proof of the statement which is needed for the proof of Lemma 3.1.

Claim A.1.11. Let X and Y be metric spaces which satisfies the second axiom of count-
ability. Suppose that S is a countable intersection of open dense subsets in the product

space X x Y. Consider the space
Xs ={z € X|SN{z} xY is a countable intersection of open dense subsets in {z} x Y}.
Then Xg is a countable intersection of open dense subsets in X.

Proof. First, we note that it suffices to prove this Claim for an open dense set S. Let U

be an open set in Y, then we write
Xuy(S) ={z € X|SN{z} x Y is disjoint from {z} x U}.

It is easy to see that Xy(S) is a closed subset, because S is open. Moreover we claim
that Xy (S) is nowhere dense. In fact, if not, there is an open subset V in X such that
V' is contained in Xy(5). This implies that the open set V' x U is disjoint from S. This
contradicts to the fact that S is dense.

[n our assumption, Y satisfies the second axiom of countability, so we have a countable

basis of Y consisting from open subsets {U;}. Now we will show the following equality
X = Xs =UXy,(95).
By definition, for any z € X — Xg the intersection SN ({z} X Y) is not dense in {z} x Y.
Thus, by the choice of {U;}, the set SN ({z} x Y) is disjoint from {z} x U; for some U;,
that is, z € Xy, (5).
Summing up: X — X is a countable union of closed nowhere dense subsets. Therefore,

their complements X is a countable intersection of open dense subsets. ad
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Appendix 2. Remarks on other related results.

In [F3] Floer gave a proof of the following theorem, which extends a result by Fortune

[Fo].

Theorem A.2.1. For any n let CP™ be provided with the standard symplectic form w
such that w(go] = n + 1 for the generator gy of Hy(CP",Z). Then the number of fizred

points of a symplectomorphism on a product
P =xk Ccpm
is greater than or equal to the greatest common divisor of {n; + 1}.

Note that under the normalization w[g] = n + 1 for CP" the product of CP™ is a
monotone symplectic manifold.

Since Floer gave quite a brief sketch of the proof, we try here to give a comprehensive
explanation of his proof.

First we consider the case of CP". We denote by « the generator of H%(CP™).

Claim A.2.2 [F3]. The cap action of « is an isomorphism H For(H,J) = HFar_o(H, J)
for all k € Z.

Let us remind that, by “invariant properties”, to prove Claim A.2.2 it suffices to verify it
for the Floer homology groups associated with a (small) time-independent Hamiltonian H.
Floer chose H being the quadratic function H(z) = Srt! |22

" |zi]® To compute the cap action
of @ on the Floer complex of this Hamiltonian H one has to count the connecting orbits
coming from the gradient trajectories of H, as well as the connecting orbit approximating
J-holomorphic spheres. That is why Floer emphasized that the presence of J-holomorphic
spheres is necessary for this Claim. Note that all the connecting orbits in this case can

be obtained explicitly (see [H-S] for the explicit solution in the case CP1).

To distinguish degenerate symplectic fixed points in CP™ we can use a lemma, similar to
Lemma 5.2. The key observation is that the cap action (aN)**! on the Floer chain complex
is the same as the multiplication hy the generator g, of the group mo(CP") = Z. So, in
0 s+l

T

an approximating set P(H;) we can choose a sequence of periodic solutions z3,..., ]

such that #7+! = go(39), and m®(3},35+!) = 1. Since we have the identity

A(E) — AGE) = wlgo) =n +1

the case (b) in the proof of Lemma 5.2 cannot happen. This proves Theorem A.2.1 for

the case k = 1.
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Note that the minimal Chern number of the product of complex projective spaces equals

the greatest common divisor of {n; + 1}. Thus we get the following
Lemma A.2.3. Let N be the greatest common divisor of {n; + 1}. Then we have

HE(xCPY¥)= @  H;j(xCP™,Z,).
j=k( mod 2N)

Now we define the cap action of the cohomology groups H*(xCP™,Z3) on the Floer
homology as in section 3. Denote by oy == 1@ - @ a--- @1 € H*(xCP™,Z;) the
image of the generator a € H*(CP™). To compute the ;ction of «; we use the function
H(:c) = 3 Hi(z;), where H; is the quadratic function on each factor CP™. The following

lemma is an analog of Lemma A.2.3 and can be proved in the same way.

Lemma A.2.4. For all k € Z the cap action of ¢ is an isomorphism H Fpp( X CP™) —
HFyp_o( xCP™). Moreover, the (n; + 1)-th iteration of the cap aclion of o; is same as
the action of the generator of mo(CP™H1),
We shall prove the following Proposition A.2.5, which is better estimate than Theorem
A.2.1 and was proved by Givental [G] for toric manifolds, after Floer theoretical approach.
Let P be a product of (CP™ kjw;) where k; are positive integers and w; is the standard

symplectic form with w;[CP'] = 1.

Proposition A.2.5. For any symplectomorphism ¢ on P, the number of fizred points of
¢ is at least maz {(n; + 1)/ki}.

Proof. Denote by Jy the product of the standard complex structures on each factor CP™.
Note that there is no Jo-holomorphic sphere of negative Chern number on this product,
otherwise, there would be a holomorphic sphere of negative Chern number on some factor
CP™. Thus we can define Floer homology group on P for a generic set of “regular” J
in a neighborhood of Jy. The computation of this Floer homology group goes as above,
and Lemma A.2.3 is still valid in this case. The cap action is well-defined on this Floer
homology group by the same reason.

Without loss of generality, we may assume that (ny + 1}/k = max {(n; + 1)/k:}. To
distinguish degenerate symplectic fixed points in the product we repeat our argument
for the case of CP". From Lemma A.2.4, the (n; + 1)-th iteration of the cap action of
a; is same as the action of the generator g; of m(CP™*!). Thus we can choose in an
approximating set P(H,) a sequence of critical points z9,...,&7*! such that zi*! =

g1(£%), and m2(3},#7') = 1. We also have the identity

A@) =A@ = wigr) = k.
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We divide n +1 critical points into k; classes, namely, {z%,...,&0}, {zh+, ... &k}, ...,

:E:"’_IH y- -+, &M} such that the difference of values of the action functional of any two of
each class is less than 1. Since the symplectic form has integral periods, any two of each
class cannot correspond to the same periodic solution. On the other hand, at least one of

ky classes has at lest (n; -+ 1)/k, elements, so we get the conclusion. O

Remark A.2.6. In [V] Viterbo defines the action of cohomology ring H*(M,R) on the
Morse homology of M by means of differential forms.

Remark A.2.7. After finishing this paper we found a new result on the Arnold conjecture
[M-O}, which follows the argument of Conley-Zehnder combining with an estimate of

Lusternik-Schnirelmann category via an invariant in rational category.
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