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This article is the first one in the following series of 3 articles on the complete proofs
of the author’s theorems on perturbations of quasiperiodic solutions of infinite—dimensional
Hamiltonian systems. The articles are based on the author’s doctoral thesis "Perturbation
theory for families of quasiperiodic solutions of infinite—dimensional Hamiltonian systems

and its applications" (Moscow 1989, in Russian).

The aim of the first article is to present basic concepts of Hamiltonian mechanics in a

form applicable to nonlinear differential equations of mathematical physics.

The following notations are used: for Hilbert spaces X, Y, Z the norms are denoted
by |- |X' | |Y’ | - |Z and inner products by (-,-)x, (-,-)Y, (-,-)Z ; disty —
distance in the space X ; for domains OX CX, OY C Y the space of k—times Fréchet
differentiable mappings OX — Oy is denoted by Ck(Ox ;OY) and
C(Oy :0y) = C%(0y :0y), C¥(0y R) = C5(04) Vk 2 0; for 4 € C1(Oy ;04) the
tangent (cotangent) mapping is denoted by ¢*(¢*) (tangent spaces are identified with X
and Y , cotangent spaces T; OX, T; Oy areidentified with X and Y through Riesz’s
isomorphism). For a mapping G : Oy — Oy we denote by
Lip(G) = Lip(G : Oy — Oy) its Lipschitz constant,

16(x -G (xp)|
Lip(G) = sup o]
x1#x2 121X
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1. Symplectic Hilbert scales and Hamitonian equations

Let Z be a Hilbert space with inner product (-,+), and {Z_|s € R} a scale of
Hilbert spaces with following properties:

a) the Hilbert space Z, is densely inclosed in Z if 8 2 8o and the linear space
1 2

Z =N7Z_ isdensein Z_Vs;
® 8 8

b) ZO =Z;

c) the spaces Zs and Z _g are dual with respect to inner product ( . >Z .

The norm (inner product) in Z_ will be denoted by il § = ((-,*) g) - In particular
||-||0= |+ |, and (-,-)0= (-,-)Z.Thepairingbetween Z, and Z__ will be
denoted (-,-)0 or (-,-)Z .

Let J:Z —— Z_ be alinear operator such that J(Z )=7Z_ and

m 41} H1] o
d) J determines isomorphism of scale {Z} of order d;20,i.e forevery s€R J

may be continued to a continuous linear isomorphism J : Zs — Zs —d.s
J

e) the operator J with domain of definition Zm is antisymmetricin Z, i.e.
(le,22>z = ——(zl , JZ2>Z v 20,29 € Z .

Let us denote by J the isomorphism of order —dj of scale {Z } :
= (1)L,
J=-0)" 2 ——2Z 4 Vs€ER (1.1)

J

Lemma 1.1. The operator J: Z — Zy CZ is anti selfadjoint in Z.
J
Proof. Let x,y €Z_ and Jx=x;,Jy=y,.Then Jx; =—x, Jy; =y and

(leyl)Z = —(JI,}')Z = (erY>Z = —(JXI:Y1)Z .



Y

The operator J: Z — Z is continuous, and the space Z, is densein 7, so the lemma

is proved. -

Let us introduce in every space Zs with 82 0 a2-form a = (] dz,dz)Z . Here by

definition
The form a is closed and nondegenerate [A,Ch—B].

Definition. The triple {Z,{Z,|s € R}, @ = (T dz,dz)} is called symplectic Hilbert
scale (or SHS for brevity).

Example 1.1. Let z=mg xmg, 2,=2Vs and J:Z—Z, (p,q)— (—9,p).
In this case J° = —E g0 J'=-—J—1=J, dy=0 and

a=(Jdz,dz), = (Jdz,dz), =dpAdq .

Properties a)—e) are obvious and we obtain the classical symplectic structure for

even—dimensional spaces [A].
Example 1.2. Let Z = L2(Sl) x L2(Sl) , sl = R/2xZ , be a space of pairs of

square—summable periodic functions (p(x), q(x)) . Let Z, = Hs(Sl) x Hﬂ(Sl) . Here
HS(SI) is the Sobolev space of periodic functions, 8 € R [Ch—B,RS2]. Let us take

J:2,— Z, (p(x),a(x)) — (—a(x),p(x)) -
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Then J=1J is an isomorphism of scale {Z.} of order zero. Properties a)—e) are evident.

Ex le 1.3. Let
27
7, = BY(s") = {u(x) € B¥(S)| J u(x)dx = 0} .
0

Let us take J = 8/dx. Then J is an isomorphism of the scale of order one and
J=-( )_1 is an isomorphism of order —1 . Properties a)—e) are evident again and we
have got SHS corresponding to symplectic structure of KdV—equation (see below and [A,
Appendix 13; N]).

For f € Cl(Os) let Vi€z g e the gradient of f with respect to the inner product

(-, )Z :
(Vf(u),v)z = Df(u)(v) = ‘32 futev)| .o Vv € O .

The mapping O, — Z_, us+—— Vi(u) , is continuous.
For HE Cl(O s) the Hamiltonian vector—field Vg is the mapping

Va:V,—Z_ = i;J Z, defined by the following relation [A, Ch-B]:

a(¢,Vg(w)) = (¢VH(w), VEE€Z

or

(&, Vg(u)), = (¢VHW) , VE€Z .



So Vg(u) = JVH(u) and
u = JVH(u) (1.3)
is the Hamiltonian equation corresponding to the hamiltonian H . Let us denote
Dy(Vy) = {u € O,|Vy(u) = IVH(u) €Z.} .

Definition (cf. [B]). A curve u(t), 0 <t < T, is called a strong solution in the
space Z_ of the equation (1.3) iff u € C}([0,T];2,), u(t) € D (V) Vs € [0,T] and Vi
equation (1.3) is satisfied. A curve u € C([0,T];Z)) is called a weak solution of (1.3) iff it
is the limit in C([0,T] ;Zs)—norm of some sequence of strong solutions.

Definition. Let 0: C Os be a domain such that for every u, € O; there exist a
unique weak solution u(t) = St(uo) (0 <t £T) of equation (1.3) with initial condition
u(0) = u, . The set of mappings

t. Al t
§:0,— 0y, yy—5%(u;) (0<tLT)

is called "local semiflow of equation (1.3)" or "flow of equation (1.3)" for short.

Weak solutions of equations (1.3) are generalized ones in the sense of distributions

(see [L] for systematic use of this type of solutions):

Proposition 1.4. Let us suppose that for some s, €R, Lip(VH:0,—Z )< o.
1
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Then a weak solution u(t) € O (0 <t < T) of equation (1.3) is a generalised solution
and after substitution of u(t) into (1.3) the left and right hand sides of the equation

coincide as elements of the space D’ ((0,T);Z; ) of distributions on (0,T) with values in
2

252 , 8y = min{s,s,—d} .

Proof. By definition of weak solution there exist a sequence of strong solutions u_(t)

such that u_(-) — u(+) in C([0,T];X ) . For this sequence
u, — u in D'((0,T);Z) ,

JVH(un) — JVH(u) in C([0,T] 1Zg _q.) - After transition to limit in equation (1.3) one
1)

obtains the result. -

Example 1.1, again. Let H € Cl([Rg x IRg) . The Hamiltonian equation takes the

classical form:

p= —VqH(p,q) , 4=V H(p,q) .

If HE CZ(IRZH) then a weak solution is a strong one and it exists for some T > 0,

T = T(p(0),q(0)) -

Example 1.2, again. Let us consider the hamiltonian

2x
H=g | (0,07 + 0,00 + V() + 40P + x(p(x)” + a(x)?))ax
0
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with analytical function x and smooth function V. Then H € C'(Z,) for s> 1 and

2 2

VE(p0) = (-b + V(9 + 1 (02+aDp , ~a + Vx)a(x) + 1 (22 + a2)a)

The equation (1.3) takes now the following form:

: 2, 2
P =g, — V(x)a—x"(p*+q)q ,

: 2, 2
Q=-D + V(x)p + x"(p"+q")p .

Let us denote u(t,x) = p(t,x) + iq(t,x) . The last equations are equivalent to nonlinear

Schrodinger equation with real potential V(x) for complex functions u(t,x) :

i =i(-u + V)u+ e ¥/ (Jux) | 9u)

(1.4)

u(t,x) = u(t,x+27) .

The problem (1.4) has an unique strong solution u(t,x) , u(t,*) € Z ,

0<t<T="T(u(0,x)),if 821 and u(0,x) € Z (we interpret here Z as the Sobolev

8+2
space of periodic complex—valued functions), and (1.4) has an unique weak solution for

0<t<T if u(0x)€ Z, . For the simple proof see part 3 below.

Example 1.3, again. In the situation of example 1.3 let us consider the hamiltonian

Then H € CI(ZS) for 21 and VH(u(x)) = + 3u2 . So now equation (1.3) is the

—u
xx



KdV equation
u(t,x) = —u___+6uu_ (1.5)

for periodic on x functions with zero mean value:

2x
u(t,x) = u(t,x+27), J u(t,x)dx =0 (1.57)
0

It is well known [K] that for s 2 3 the problem (1.5), (1.5”) has an unique strong
solution u(t,x), u(t,") € Zth , for every initial condition u(0,x) = uy(x) € Z 43 and
has an unique weak solution for every uy(x) € Z, . The flow of problem (1.5), (1.5")

defines a homeomorphisms of phase space
St:ZBT-'ZthZO Vs>3 .
It is worth to mention that any Bamiltonian equation (including (1.4) and (1.5),

(1.5”)) may be written down in a form (1.3) in many different ways. For this statement see

below Corollary 2.3.



—10 —
2. Canonical transformations
Let {X,{Xs},ax} and {Y,{YB},aY} be two SHS with 2—forms

oX = (Fax,dx)y and ¥ = (Fdy,dy)y respectively; let ¥ (I¥) bean
isomorphism of scale {X;} ({Y_}) of order —de (_dJ‘Y) ; de, dJY 2 0. A mapping

$:05 07 isa Cldiffeomorphism of domains OX CX_ and OY CY
X Y 0 SIS ¢ 5y Sy
(sX 20, By 20),if ¢ is one~to—one onto OEY and
sec'or of ), gleckof ;0¥ ) (2.1)
xty Y fx

Definition. A Cl—diffeomorphism ¢ : o’:

iff it transforms 2—form aY into 2—form ax :

—_— 0:( is canonical transformation
X Y

ga =a . (2.2)

Proposition 2.1. A Cl—diffeomorphiSm ¢ Of — OE is canonical iff
Y

X
6 T4, =7X (2.3)

(the identity takes place in the space L(Xs ;X_;s ).
X X

Proof. From (2.2) one has for v € O)s( and £;,{, €X
X X

(Y 8(0)€p, 80 Ey)y = (T €160« - (2.4)
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Therefore

(6T pe)x = T €60«

for all ¢ 1o € sz . This identity implies the stated assertion.

As in the finite—dimensional case [A] a canonical transformation transforms

solutions of Hamiltonian equation into solutions of equation with transformed hamiltonian:

Theorem 2.2. Let ¢ : 0): — Of be a canonical transformation and let
X Y
y: [0,T] — Of be a strong solution of Hamiltonian equation
Y

7=V _yO) =1YVEY(y), HY € cl(O‘jY;tR) . (2.5)

Then x(t) = ¢_1(y(t)) is a strong solution in 0)8( of equation
X

x = Vx(x) = 3XvEX(x), BX=8Y 0 4 . (2.6)

Y

If the mapping ¢—1 0y — O)s( is Lipschitz and y is a weak solution of (2.5) then
Y

X
x is a weak solution of (2.6).

_ *
Proof. For Hx =HY 0 ¢ and x=¢ Loy VHX=¢ VHY . Then

x: [0,T] — 0% is C! andfor y=gox
X
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pox =3 =1V VEY(y) = 3Y(¢")! VEX(x) (2.7)
or
% = (g 0¥ () VEX (x) (2.8)

*
the right—hand side is well defined because J (¢ )+ VHX(x) € C ([0,T]; OY ) for
'y

(2.1)). By (2.3), 7%= (4)70Y(4)™, hence
x = IX VX (x)
as stated.

The second statement of the theorem follows from the first one and the definition of a

weak solution because the mapping ¢—1 is Lipshitz. =

Let {Y,{Ys},aY} be a SHS, let L be an isomorphism of scale {Y_} of order
A< %d v LY, —— Y Vs . Let us define second SHS {X,{X },ax} where
3 ~ 8— 8
*
X=Y, X, =Y, and o = (Faxd)y, X =LTL. Let o):x be a domain in

Y
8

Y

XY Yis

Y X
and O v =L(0O"y)CY, s
8 5 Y 5% sy

— §X—A . The mapping L : Oxx — 0
5 _

canonical due to Proposition 2.1. So we have trivial

Corollary 2.3 (change of symplectic structure). Let i € Cl(OYY) and let
8
y(t) € OYY (0 <t < T) be a solution of equation (2.5) (strong or weak). Then
8

x(t) = L_ly(t) is a solution of Hamiltonian equation
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x =X VEX(x), X =1 Y,

YorLecloX

with a hamiltonian HX = H %) -

Let {X,{X.}, a= (Jdxdx)y} beaSHS, OF and O, be domainsin X_,
0, CO, and

d istxs(Ol;Xs\OB) >8>0 (2.10)

Let H € C%(0,) and
(2.11)
1 :
VHEC (os;deJ) , [IVER)||, <K, Lip(QVE: 0, — X) <K ,

Let us consider the Hamiltonian equation

x = JVH(x) (2.12)
From (2.10), (2.11) one can easily obtain that the flow of equation (2.12) defines mappings
st ¢ Cl(O:;OS) Vi € [0,T], T = 6/K , and every st isa Cl—diffeomorphjsm onto its
image.

Theorem 2.4. For every 0 <t T the mapping S' is a canonical transformation.

Proof. One has to prove that
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(5*) a(x) [7y,m] = a[n,m,] Vx € O} Viy,my €X,

Since S0 = Id it is sufficient to prove that

(S™)"a(x) [y, my] = const(7) (213)

Let x(7) be the solution of equation (2.12) for x(0) = x , and qj(t) (j=1,2) bethe

solution of Cauchy problem for linearized on x(+) equation:

a .

#(r) = JVE)((P)7(7) , P(0) =1, .

; (2.14)
Then ($M)«(a); = (7), j=12 and
(7" a(x) [1,,75) = aln*(r),n%(7)] =
(2.15)

= (Tr (), 27y = ")

The function £(7) is continuously differentable. So (2.13) is equivalent to relation
d/dr £(7) =0 . One has

g = Tl g+ Trlad)y =
= (JJ(VH)*(x)nl,qz)x +(7 ﬂl,J(VH)*(x)qz)X =
= — ((VE)u(x)n}n%) ¢ + (L (VE)s(x)n2) ¢ = O

because operator J is anti selfadjoint (Lemma 1.1) and operator (VH)y is selfadjoint.
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The theorem is proved. -

1 :
Let HjE C(0,), VHj € C(os;xsj) (j=1,2).

Definition. Let 8, + 8, >d 3 The Poisson bracket of the functions H,, H, is the
function {H;,Hy} € C(O,) defined by

{H, By} = (3VH,,VH,)y .

Let 0 < € <1 and H € C%0,), let conditions (2.10), (2.11) be satisfied and
st e 01(0:;08) , 0t {T=§/K, be the flow of the equation

x = ¢ JVH(x) .

Theorem 2.5. For every G € cl(os) G(S*(x)) = G(x) + te{H,G}(x) + O((¢t)?)
Vx€0;, VOSt<T.

Proof. From the conditions on H it is easy to see that
St(x) = x + teJVH(x) + 0(te)2 in X_ .

So

G(S'(x))-G(x) = (VG(x),5"(x)~x) 5 + Of|S*x—||? =
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= 16(VG(x),JVE(x))y + O(et)?

and the theorem is proved.
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3. Local solvability of Hamiltonian equations
Let {Y,{Y.},a} beSHS,let O bea domainin Y, and let
2 1
H € C(0,), H(y) =5 (Ay.y)y + Hy(y) -
Here A is an isomorphism of scale {Y } of order dy 2 0;

A:YS_N—_’YS—dA VSE[R ’ (31)

and the operator

A:D(A)CY—Y, D(A) =Y,

is selfadjoint. So V(% (Ay,y)Y)(y) = Ay, and the Hamiltonian equation corresponding to
H has the form

7 = I(Ay + VH(y)) (32)

We shall prove a simple theorem on the local solvability of equation (3.2) which will

suit well to our aims. To formulate the theorem let us suppose that
Lip(JVH;: 0, — Y,) <K (3.3)

for some 8 2 0 and let 02,01 C Ys be domains with the following properties:
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o’colco,, djstYs(Ol,Ys\Os) >6>0 . (3.4)

Theorem 3.1. Let

Aly=JAy Vy€ Y, (3.5)

(A¥;¥9) e = (3pAY9) g » (Iyp¥9) s =—(3pudyg) Yy €Y,
(3.6)

Suppose that every strong solutions y(t) of equation (3.2) with initial condition

y(0) = y, € 02 staysinside O for 0<t < T. Thenfor y, € 02nY ,, ,
0 0 s+d1

dy=d, + dJ , there exists a unique strong solution y(t) for 0 <t < T, and for Yo € 02

there exists a unique weak solution y(t) for 0<t< T.

Proof. Let us continue the mapping JVH0 : O1 — Y8 to a Lipschitz one

V:Y — YB . One may take for example

x(y)IVH,(y), yEO
v ={oy¢ o, :

where x(y) = &' max (0,6—disty, (y;Ol)) (see (3.4)). The function y is Lipschitz, it is
8

equal to 1 in o! andto 0 out of O - So Lip(V)SK1 and V| 1=JVH0.
0

Let us consider the equation

y = JAy + V(y) (3.7
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Its solution y(t) is a solution of equation (3.2) until y(t) € OL.. Let us consider the linear

equation
3} = JAy , (3.8)

too. From (3.5), (3.6) it follows that

(Al =—~(rpATyy)g Vrpyp €Y

80 by repeating the proof of Lemma 1.1 one can obtain that operator (AJ )_1 tY, — Y,

is anti selfadjoint. So the operator

AJ : D(AJ) = Yopa CYs—Y,

is anti selfadjoint, too. Due to Stone’s theorem [RS1] for y(0) = vo € Y, 4, equation
1

(3.8) has a unique strong solution and the mapping

T .
5™ Ys+d1

_"'Ys_i_dl’ Y(O)"_"’Y(T)) T>0,
is isometric with respect to the Y —norm. Equation (3.7) is a Lipschitz perturbation of

(3.8). So it has the unique strong solution y(t), ¢ 2 0, for every y(0) € Y, +q, and the
1

unique weak solution for every y(0) € Y, (see [B]).If y(0) =y, € 0? then due to the
theorem’s hypotheses such a solution does not leave domain 0! for 0 <t <T and for

sucha "t " it is the unqiue solution of equation (3.7).
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The theorem above reduces the problem of solving equation (3.2) to the problem of

finding a priori estimate for its solutions.
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4, Toroidal phase space
Let us consider a toroidal phase space of the form ¥ = T® x R® x Y . Here
T" = R"/2x I" is the n—dimensional torus, Y = Yy, {Ys |s € R} is a scale of Hilbert
spaces which satisfies properties a)—c) (see above). Let us denote J = " x R™ x Y, .
Every space J  hasa natural metric d.ist8 and a natural structure of a Hilbert manifold
with local charts
0 n 0y _ n 0 Vi
K(q") xR"x Y., K(q") = {q €R"| [q;—q5]| < 7V}
(see [Ch—B]). So
~ RD n =
T, # YR xR xY =2 Vu€ g,
Let J¥ bean isomorphism of the scale {Y .} with properties d), e) and
JT R xR* — R xR®, (q,0) —— (-p,q) -
Let us denote by J 4 the operator
T .Y
1% =11x3Y 2 = ®"<R") x Y, — 2y 4, = (R™xR®) x Yo,

and introduce in ¥, 8 >0, a2-form

o = (]Z/ du,du)z, Irz’/:—(.]y)_l, T, ¥ 22,
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Definition. The triple { #,{ ]8},ay} is called toroidal symplectic Hilbert scale
(TSHS). )

Let O, beadomainin % and HE Cl(Os) . Then the Hamiltonian equations

corresponding to H have the form

. 6H N — — gH (i< o — Y
Qj—'ap—j)Pj E(l_J_n):y—J VyH (4.1)
The definitions of strong and weak solutions for equations (4.1) are analogous to those for
equation (1.3).

The Poisson bracket of two functions H,, H, with Hj € Cl(Os) ,
Vij € C(OB;YSj) (j=1,2), 8y + 8 2 d;, takes the form

n
6H, 6H 6H, 6H
_ 1 7Hy 1 9, Y
=1

The results of section 1-3 readily extend to canonical transformations and
Hamiltonian equations in TSHS. We’ll formulate analogs of Theorems 2.2, 2.4, 2.5 and 3.1
only.

Propogition 4.1. The statements of Theorem 2.2 remain true if anyone of the spaces
X, Y is replaced by a toroidal symplectic Hilbert space (with equations of motion replaced

accordingly).

1 N 1
Let Os'os be domains in j/s,Os COS and
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dist ?3(0:; #\0) >8>0 . (4.2)

Let H€C%0,) and V= (VpH,—VqH,JYVyH) be corresponding Hamitonian
vector—field. Let us suppose that Vg € C1(0_;Z.) and

|Vg(apy)| €K V(qpy), Lip(Vg: 0, — Z) <K (4.3)

Then the flow mappings st. 0: —s 0 g exist for 0 <t { T = §/K and every st is

Cl—dif.feomorphism on its image.

Proposition 4.2. For every 0 <t < §/K the mapping S* is a canonical

transformation.

Let conditions (4.2), (4.3) be fulfilled and §* € C!(0g;0g) be the flow of equation
gf (Qtp’Y) =€ VH(Q;PJ) .

Proposition 4.3. For every G € C1(0.) G(5'(h)) = G(b) + te{H,G}(b) + O(et)?
Vb= (apy)€0;, VOStST=6/K .

Letin (4.1) H= % (Ay,y)Y + Hy(p,q,y) and let the linear operator A be the same
asin part 3. Let O1, O, O_ bedomainsin g, 02C O} CO, and suppose
inequality (4.2) is fulfilled. Let us suppose that Lip(VH : Os —_ Zs) <K.

0

Proposition 4.4. Let us suppose that relations (3.5), (3.6) are fulfilled and that every
strong solution of (4.1) with initial point by = (qO,po,yO) € Og stays in domain 0: for



—924 —

0<t<T. Then for boeogn Yord. d1=dA+dJ,andfor 0<t<T there exists a
1

unique strong solution of (4.1); for by € 03 , 0<t < T, there exists a unique weak

solution of (4.1).

The proofs of Propositions 4.1—4.3 are the same as the proofs of the corresponding

theorems.
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5. A version of the former constructions

All construction of the sections 1—4 have natural analogs for the scales of Hilbert spaces
depending on the integer index, i.e. for the scales {Zs |s € Z} . SHS and TSHS with
discrete scales {Z .} are sometimes more convenient to study Hamiltonian equations of
form (3.2) with integer d,, dy . For example, KdV equation (1.5), (1.5") (dy=1,dy =
2) and nonlinear Schrodinger equation (1.4) (d; =0, d) =2).

All the statements of sections 1—4 have natural analogs for discrete scales. The proofs are

the same.
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