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On the structure of Selmer groups
by

V.A. Kolyvagin

The paper contains some applications of explicit cohomology classes (which the
author has constructed earlier using Heegner points) to the theory of Selmer groups of a
modular elliptic curve. Moreover some generalizations of Selmer groups are considered.

The case when the Heegner point over the imaginary—quadratic field has infinite
order was studied in the work [1]. In fact, the theory of [1] is valid under a more general
assumption which is, hypothetically, always true and discussed below.

For the convenience of the reader, we recall in part 1 the definitions of the Selmer
groups and of our explicit cohomology classes, and formﬁla.te some of our results. The
second part is essentially based on the work [1] and requires some familiarity with it. The
second part contains proofs of results for £ € B(E) (see below for notations), formulations

of corresponding results for £ £ B(E) , and some global consequences of these results.

1. Selmer lici h 1 cl .

Let E be an elliptic curve over the field of rational numbers Q. For an arbitrary
abelian group A and a natural number M we let AM denote the maximal M—torsion
subgroup of A . We use the abbreviation A/M =A/MA . Let Ey =E(Q)y . If R is
some extension of Q, then the exact sequence 0 — E, — E(R) — E(R) — 0 induces



the exact sequence
0 — E(R)/M — H(R,E\,) — E'(RE)); —0. (1)

If L/R is a Galois extension, then G(L/R) denotes its Galois group, Hl(R,A) =
H(G(R/R),A) for a G(R/R)—module A ,H!(R,E):= H{(R,E(R)).

Now let R be a finite extension of Q. For a place v of R, welet R(v) denote the
corresponding completion of R, for x € HI(R,EM) , x(v) denotes its natural image in
Hl(R(v),EM) . The Selmer group S(R,E,,) C HI(R,EM) , by definition, consists of all
elements x such that for all places v of R, x(v) € E(R(v))/M . We recall that the
Shafarevich—Tate group || [(R,E) is ker(H'(R,E) — 1VT H(R(v),E)) , s0 (1) induces

the exact sequence:

0 — E(R)/M — S(R,EM) — J—I—I-(R’E)M —0.

By the weak Mordell-Weil theorem, the Selmer group S(K,EM) is finite, by the
Mordell-Weil theorem,  E(R) = FxZ™X ER) ' grere  FoER),_ s finite,
0<{rank E(R) € Z.

It is conjectured that || |(R,E) is finite. Only recently Rubin and the author
proved this conjecture in some cases. I shall give some examples below.

We suppose further that E is modular. Le¢ N be the conductor of E,
7:Xy(N) — E be a modular parametrization. Here X,(N) is the modular curve over
Q which parametrizes isomorphism classes of isogenies of elliptic curves with cyclic kernel
of order N . We note that, according to the Taniyama—Shimura—Weil conjecture, every

elliptic curve over @ is modular.
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We now define explicit cohomology classes, we start from the definition of Heegner
points. Let K = (/D) be a field of discriminant D such that 0> D = o (mod 4N},
D #-3,~4 . We fix anideal i, of the ring of integers O; of K such that O, /i, ® /NI
(such an ideal exists because of the conditionson D). If A €N, let X ) be the ring class
field of K of conductor A . It is a finite abelian extension of K . In particular, K, is the
maximal abelian unramified extension of K. If (AN)=1, we let OA =T+ 20,
iy=i,n0,, 2z, wil be the point of XO(N) rational over K, corresponding to the
class of the isogeny €/O 1 — GZ/iI1 (here i:"l ) O, istheinverseof i, in the group of
proper O,—ideals). We set y, = ﬁzA) € E(K’\) » P; € E(K) is the norm of y; from
K1 to K. The points y Az P1 are called Heegner points.

Let ¢ be End(E), Q=0 ®Q.Let £ be arational prime, T = él—iEEEn be the

Tate-module and ¢ = 0® T, . We let B(E) denote the set of odd rational primes
which do not divide the discriminant of ¢ and for which the natural representation

p:G(Q/Q) — Aut .T is surjective. It is known (from the theory of complex multiplica-
7

tion and Serre’s theory, resp.) that almost all (all but a finite number of) primes belong to
B(E) . For example, if ¢ =7 and N is squarefree, then £ > 11 belongs to B(E) accor-
ding to a theorem of Mazur.

In my paper "Euler systems" I proved that rank E(K) =1 and |[|[(K,E) is finite
when P1 has infinite order. Then, in the paper "On the structure of Shafarevich—Tate
groups" I determined the structure of _|_|_j_(K,E)£ln for £ € B(E), under the same condi-

tion. Moreover, our explicit cohomology classes give information on the structure of

S(K,Ean) under some more general condition (which, hypothetically, always holds). It will

be discussed later, now we continue with the definition of the cohomology classes.

We fix a prime £ € B(E) . Further in the paper we use the notation p or Py
where k € N, only for rational primes which do not divide N, remain prime in K and
satisfy n(p) := ordﬂ(p+1,ap) > 1, where a, = p+1-[B(Z/p)] , B is the reduction of E



—4—

modulo p. For natural r welet AT = {p;--p,} denote the set of all products of =
distinct such primes. The set A?, by definition, consists only of py= 1. We let

A= U AT fr>0, A€A", welet n(A)=minn(p), n(po):=m.
20 plA

The set T of explicit cohomology classes consists of 7, € Hl(K,EM) , where A
runs through A, 1<n<n(A), M=4¢". To define these note that the condition
£ € B(E) implies the triviality of E(K A) o - 50, by a spectral sequence, the restriction

1 1 G(K,/K)
homomorphism res : H'(K,Eyr) — H'(K ,Ey,) is an isomorphism and 7,  is

uniquely defined by the value res(r 1 n) which we will now exhibit.
?
We need more notations. We use standard facts on ring class fields. If 1< A€EN,
then the natural homomorphism G(K A/Kl) —-v'lT[ G(Kp/KI) is an isomorphism and
p .

we also have G(K)./KA/p) — G(K/K) — T/(p+1) .

For each p, fix a generator tp € G(Kp/Kl) and let tp also denote the correspon-

P
. A WP -
ding generator of G(KA/KA/p)' Let Ip -zljtp’ I mlp € Z[G(K,/K,)] . Let
J-—-
K be the composite of Ky, when A’ runs through theset A. Welet J, = ¥g, where

g runs through a fixed set of representatives of G(K/K) modulo G(K/K,), g is the
restriction of g to K,,so {g} is a set of representatives of G(K A/K) modulo

res('r"’n) = PA(mod ME(KA)) :

Now we formulate some of our results on the invariants of S(K,E,) , see theorems 2,
3 of the second part for more general statements. |
There is a bijective correspondence between the set of isomorphism classes of finite

abelian £—groups and the set of sequences of nonnegative integers {n.} such that i21,
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n. 2 n.

n.
(20,9, ;=0 for all sufficiently large i. Concretely, {n,} «—— class of 2 Ije .

1
For a group A welet Inv(A) denote the sequence of invariants of class A , we call it the

sequence of invariants of A .

Let L(E,s) be the canonical L—function of E over Q, g= ords=1L(E,s),
e=(-1)871.

If G is a group of order 2 with generator o and A isa 7, [G]-module, then for
v € {0,1} welet AY denote the submodule (1—(—1)”€c)A . Ther A is the direct sum
of AY and A! and o actson AY via multiplication by (—l)V_le.

Let Sy, =S(K,Ey), G=G(K/Q). We are interested in the sequence Inv(Slt’{) :
For the formulation of the results we need some more notations.

Let m’(A) be the maximal positive integers such that P, € pm,(")E(K y) - We let
m(A) =m’(A) if m’(A) <n(d), m(A)=o otherwise. Let m_ = minm(A) when A

m
runs through A" . In particular, £ 0 is the maximal power of £ which divides P1 , 80

m, < o & P, hasinfinite order. Let m = minm_.
0 1 r> T

The condition m < w is equivalent to the condition T # {0} . It is the generaliza-

tion of the condition that P1 has infinite order.

Conjecture A. T # {0}

Assume for the following that conjecture A is true for K. Let f be the minimal r
such that m<o. In particular, f=0& P 1 has infinite order.

Welet (r)=1 if r is odd, (r) =0 if r is even. We have
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Theorem B. The inequality m_ > m ., holds for t20.Let n> me, ¢=f+v, where
v € {0,1} as usual. Then

Inv(S %)) =

h =0.1.... MOTEOVEL. ++++ss o =n..nif v=1.
where k = 0,1,... Moreover, n,..,n if v
¢ values ‘
For further results on the ordinary Selmer groups see the section 2 after the proof of

theorem 3.

2. An application of the theory [1].
We use the notations and definitions from [1] with those already defined here.

First we note that all wordings and proofs in the basic text of [1] (§ 1—4) remain
valid in the following situation provided one changes notations as is to be explained. We
can use instead of the condition m(1) < @ (or, equivalently, that the Heegner point P,
has infinite order) the weaker condition that there exists A €AY, where u> 0, such
that 2m(A,) < n(A,). Then we let p, be some such Ay » to be fixed throughout, and
redefine A" to be set of products of the form PPy P, with distinct primes Dyy--Py
that do not divide p,. We let AY denote (1—(—1)V+ucar)A , where ¥=10 or 1, as

usual. Then consider X =S§ (see § 2 of [1] for the

pyPo(pg)-m(pg) 2 Tpya(py)’

definition of SA,&,n ) . In the case py=1, S11p=limS);,a0d S, =



.

S, p = S)q 18 the ordinary Selmer group of E over K oflevel M = Lt

77

The notations n, n’, n are used only for natural numbers < n(pO) . Of course,

the definitions in [1] must now be adapted to these new notations; for example,

m_ = m (p,) - Instead of the group Sl,n the group SPO’pO’n must be used.
In the sequence (24) the group (E(K)/M)” must be replaced by the group
/M’ r_ _,,where n’ = n+m, . To use (38) with the isomorphism ﬁg it is necessary

Pyl
to require that 3m(p0) < n(po) . When p, =1 we return to the original setup.

Now generalize this further: We fix Py for which we require only that the sequence
{mr} becomes eventually finite, m < w for some r 2 0. Or, equivalently, we require
that {r/‘,n} # {0} (A runs through the set A ). Then we let f denote the minimal r
such that m <o and if Py > 1 we require moreover that 0mf < m(po) , where 8 =2
or 3 (a8 may be needed).

If A isafinite Tj—module, then, for j21, {inv j(A)} denotes the sequence of
invariants of A (see section 1 above). Finally (i) denotes the representative of i(mod 2)

in the set {0,1}.
The following is a generalization of theorem 1:

Theorem 2. Let r>f, n> m, n’ = n+me. Then the set ﬂ]rlr i8 nonempty. More-
over, for all w€ 0;71, there exists p_ such that the sequence (w,pr) € ﬂ;; . Let

I : _ . .
w€Q s . Then, for 1 <j<r, # ‘ij,n(fw(j—l),n) = # 1), and if » € {0,1} is
such that r > f+v, then, for 1+v+f<j<r, ¢ =f+v, we have

# Gponm0d $40)1).0) = B3 )11 = VS5 )
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The proof duplicates the proof of theorem 1 of [1] (the case f=0) if we note that

k . R
Vk>f3 1€A™ suchthat m(A) = m and # TK,n = mvk+1(sgo,p0,n) for v=10 and
v=1. This is a consequence of the analog of [1] proposition 8 (proved analogously)
where condition 3) is replaced by the condition

# gag,nf(mod Qg’n;) = # Tg,n : -
Furthermore we get

2{+1 .
Theorem 3. 3 PoP1-Pofy1 € An’+ such that for 1 <i <{+1 ordﬁﬁpf+1,n,(ni) =mg,

f+1) -
where n. =7 . Then the subgroup of S( generated by 5. is iso-
1 PgPiPitf1,n’ Pg» Pt !
f+1
morphic to the group 2 I/M. In particular, for 1<j<f+1 we have that

i=1
v (1) ) 2
va(SPO,PO,H n.

f .
Proof Let 77 = popi...p; € Amrl-l is such that m(n;) = m;. By means of [1], propo-

" . . f
sition 8 we can, by induction, replace pi,...,p% by p;,-.,py such that n; =p,..p; €A /
and m(ql) =m; (this step is trivial when f=0). Then we again use [1], proposition 8
(which i8 true for r =k as well, see the proof) and by induction find a suitable 7; - Be-
cause of the proposition 1 and (for f > 0 ) the condition = 1’ =0 Vie A:;Tl it then

follows that n, € SI();+11)()) a (we recall that complex conjugation acts on 7 yp/ 28 multi-

plication by (—1)e if A €AL, ). Weset R..=¢ /() for 1<i, j<f+1. Then
n i Vpgypn
Rij=0 for j<i because (see § 1) ’bp(T,\ n/)=0 when p|A. We have

m *
R;,€¢L f(ZI/M) I E a;n; = 0, then by applying to this identity the characters ¢
Pt ]

for j=1,..,f+1 we obtain that a, = 0(mod M) . -



(f+1)

Hence theorems 2 and 3 fully determine the sequence of invariants for Sp pon
0’¥o

Further we suppose that py =1 and {7, } # {0} . The group S” = lim S:n is

v
isomorphic to a direct sum of (Qt/ ﬂl')r and a finite group %" . The group SZ“ coin-
cides with the maximal €"—torsion subgroup of S and with the Selmer group of level
L™ for EY over Q. Here EY is E if (—I)V'He =1, and EY is the form of E over
K otherwise. Apriori, rank EV(Q) < ¥, and equality is equivalent to the statement that
J_]_]_(Q,E")am is a finite group, which will then be isomorphic to .3 . We have

Theorem 4. r(f+l)=f+1, r(f)ﬁf and f—-r(f) is even. For j2 l1+uv+f

inv (c) =m,, —m,. .
IO (T0) S 105)

Proof. Because of theorems 2, 3 it is enough to explain why f—r(f) is even. From theorem
2 we have that the (parity of nonzero invariants of % (0 with index 2 f+1—r(f) ) is even,
but the common parity of nonzero invariants of J(f) is even because of the existence of a

non—degenerate alternating Cassels form on j’(f) . Hence f—r(f) is even.

Let g¥= ords=1L(EV,s) . We recall that according to the conjecture of Birch and

v
Swinnerton—Dyer, g” = rank E”(Q) . Since (—1)8 = —¢ or ¢ accordingas EY=E or

EY = form of E over K , we have from theorem 4:

Theorem 5. r“—g” isevenfor v =0 and v=1. »
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If f and m are known, then we have an algorithm (see the beginning of the paper,

and § 4 of [1]) for computing some n’ and 4= Pgyq-Popry € Afﬁfl such that

_ q(f+1
- Sq,q,

n =n’-m(q), by finite linear combinations of elements of {73 47} - Moreover such a

n’ >3m(q), min m(q) =m, with a parametrization of ¥ 1)1 , Wwhere
T

procedure can be combined with the selection of Py---Pg (p0 =1) such that

Po---Posy1 € Ai;-l'l and ord R, = ordt(m(r]i)) =n’-n for 1<i<f+1. Then (see the

proof of theorem 3) the group % C Sl&ﬂ'l)

f+1 f+1

Y Z/M and its pairing with Y Z/M gpI()f"'l)n is non—degenerate. Hence S4TT1) is the
"

generated by 7, is isomorphic to the group

i=1 i=1
direct sum of % and ¥ = Sh(dﬂ'l) ngy« $(f+1) . The parametrization for § in-
duces a parametrization for % and, as a consequence, we obtain its complete structure.
In particular, we have an algorithm for computing the sequence of invariants for & (f+1) .
By using proposition 9 of [1] (with the condition n > m, replaced by n>m )

we have that for PP € A]{ with m(pl...pj) =m < n, the characters gpl()ii?n,...,(pl()j:?n
generate Hom(SIst),H/M) . So we can apply this to the effective solution of the problem
when a principal homogeneous space over E has a rational point, in the same vein as at
the end of [1] for the case {=10.

We recall that we considered £ € B(E) (see section 1 for the definition of B(E) ).
For £ ¢ B(E) the theory in [1] and above holds with modifications in the manner of
[2]. Let £ now be an arbitrary rational prime. In particular, TAn € HI(K,EM) is de-

1)
fined for all A €Ay

1) 1g [3] 7, , isdefined forall A €A asinthecase £ € B(E).

k,/2
where € 0 E(K)P.m=0’ K the composite of K, forall A€A (ky =0 for
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£ € B(E)).

Welet Uy, CE(K)/M, H, S CH denote respectively the groups E(K),,;/M,
lig H'(K,Eyy) , lim S(K,E,,) . We have the exact sequence 0 — Upr — H(K,Epp) —
Hyr — E(K)y; — 0 and we identify the group Hl(K,EM)/UM with its image in Hy, .
We recall that, for £ € B(E), E(K)lm =0 and we identified H'(K,Ey), S(K,E,)

with Hyp, Sy respectively. We let 'ri’n be the image of TAn in Hy, and for
n>1, k2 k0 , 120, V;,k is the subgroup of HM generated by T:\,n when A runs

through A; i - Wesay that {7, } is a strong nonzero system if 31> 0 such that
VkaOHnIVlrl,k#:O. (2)
There exists k(r) 2 ko such that the condition (2) is equivalent to the condition that

3 n|Vlr1 K(r) # 0. We know that, for £ € B(E), k(r) = 0 satisfies this property. We now

formulate

Conjecture 1. Forall £, {7 A,n} is a strong nonzero system.
For £ € B(E), this is equivalent to the statement that {7 A 23 FO.
Conjecture 2. m # 0 for only a finite set of primes in B(E) .
Apparently, theorem 4 is closely connected with the Birch and Swinnerton—Dyer
conjecture (see [1] for the case f=0). For example, it would be natural to find that f+1

is equal to the order of zero at 8 =1 of an £—adic L—function for (f+1) (when such a
function exists), and (more difficult ?) to find that f+1 = g(f+1) .



If Aisa I[1,0]—-moduleand v € {0,1},then AY:={b€A|ob=
(-1)"*leby .

14
Let SD=1£"S, s0 SD”=x(Qy/Z,)" . Let £ €B(E). Because of the relation
E,k'ri,n k= r”‘,n (which is true for an arbitrary £) and the relation

m
£ f+1‘2’(f+1) =0, it then follows that Vlfl m C SDI&H'I) . From theorem 3 we have
. 1

m
that Vk> m, Vl{ K= L tSD(f"'l) . For arbitrary £ 3 k;, k, such that for k2 k,

ky (f+1 f f+1
e Zsp () vl csp{fh).
Interpolating the situation of the case f =0 we formulate

Conjecture ,3. There exist » € {0,1} and a subgroup V C (E(K)/E(K), OI)V such that
1<rank V=2v(mod2) and for all sufficiently large k and all n , one has
v;’k = V(mod M(E(K)/E(K), ) , where a = rank V1.

Conjecture 3, by definition, is the union VY £ of conjectures, 3 with a universal V
(independent of £ ). We note that such V is uniquely determined (by the usual

description of a lattice over Z by its completions) if it exists.
It is clear that 2V C E(Q)/E¥(Q), , -

For the following implications we use the arguments above with the theorems 2—5
(with a natural modification for £ ¢ B(E) ).

First, conjecturey 3 implies that {r, } is a strong nonzero system with f=a (for
the last statement we use the propositions 1, 2, 5 of [1]), rank EV(Q) =rank V,
'™V < rank V U_L(Q,E”)Lm is finite. Moreover, if £ € B(E) , then V@1, =



—-13 —

m 2m m
e B @ ey, [J_LL(Q,E”)L‘,,] 1L e TRy yo= 0 o0k EY(Q) =g" =
mod 2), r'V =gV = 1-/{mod 2) .

Conjecturey3 is equivalent to the statement: {TA 5} i8 8 strong nonzero system

and J_]_L(Q,E(f+1))£m is finite.

We note that 3 k, , which is zero for £ € B(E), such that if the condition from
conjecture, 3 holds with some k’ > k, then it holds for all k 2 k’ .

From conjecture 3 we have, with the union of consequences from conjectures£3 , that
conjecture 2 holds and | | |(Q,E¥) is finite. Conjecture 3 is equivalent to the statement:
conjectures 1, 2 hold, f+1 is independent of £, J_|_]_(Q,E(f+1)) is finite; for only a finite

set of £ €B(E) inv .,2’1—"1:0 . In particular, conjecture 3 holds when

f41-r17Y
conjectures 1, 2 hold and | | | (K,E) is finite.

Of course, for the case that the Heegner point P, has infinite order (f=0) con-
jecture 3 holds with v =1, V = IIP,(mod E(K)tor) :

Recall that g = ords=1L(E,s) . It is known that there exists an imaginary quadratic
field K such that go+gl—g =0 or 1 according as g is even or odd. For g<1 it is
known that rank E(Q) =g and ||](Q,E) is finite. Let g>1 and for K as above
g=g" ’ . Then ords=1L(E,K,s) = g”l+gl_y, >1,s0 P, has finite order by the for-
mula of Gross and Zagier. Suppose that for K conjecture£3 holds for some £ . Then
v= v’ because otherwise gl—ul ={+1>1 but gl_ul <1. So we have for E =E"

all consequences of the conjecturey3 (see above), in particular, that rank E(Q) = rank V
and | | |(Q,E)£m is finite. If conjecture 3 holds for K , we also have that || |(Q,E) is

finite and rank E(Q) = g(mod 2) . Of course, rank E(Q) = g if the equality g=rank V
holds.
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