On the structure of Selmer groups
by
V.A. Kolyvagin

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Federal Republic of Germany

Steklov Mathematical Institute
Vavilova 42
117966 Moscow, GSP-1
USSR

On the structure of Selmer groups

by

V.A. Kolyvagin

The paper contains some applications of explicit cohomology classes (which the author has constructed earlier using Heegner points) to the theory of Selmer groups of a modular elliptic curve. Moreover some generalizations of Selmer groups are considered.

The case when the Heegner point over the imaginary-quadratic field has infinite order was studied in the work [1]. In fact, the theory of [1] is valid under a more general assumption which is, hypothetically, always true and discussed below.

For the convenience of the reader, we recall in part 1 the definitions of the Selmer groups and of our explicit cohomology classes, and formulate some of our results. The second part is essentially based on the work [1] and requires some familiarity with it. The second part contains proofs of results for $\ell \in B(E)$ (see below for notations), formulations of corresponding results for $\ell \notin \mathrm{B}(\mathrm{E})$, and some global consequences of these results.

1. Selmer groups and explicit cohomology classes.

Let E be an elliptic curve over the field of rational numbers \mathbb{Q}. For an arbitrary abelian group A and a natural number M we let A_{M} denote the maximal M-torsion subgroup of A. We use the abbreviation $A / M=A / M A$. Let $\quad E_{M}=E(\mathbb{Q})_{M}$. If R is some extension of Q, then the exact sequence $0 \rightarrow \mathrm{E}_{\mathrm{M}} \rightarrow \mathrm{E}(\mathrm{R}) \longrightarrow \mathrm{E}(\mathrm{R}) \longrightarrow 0$ induces
the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathrm{E}(\mathrm{R}) / \mathrm{M} \rightarrow \mathrm{H}^{1}\left(\mathrm{R}, \mathrm{E}_{\mathrm{M}}\right) \rightarrow \mathrm{H}^{1}(\mathrm{R}, \mathrm{E})_{M} \rightarrow 0 \tag{1}
\end{equation*}
$$

If L / R is a Galois extension, then $G(L / R)$ denotes its Galois group, $H^{1}(R, A):=$ $H^{1}(G(\bar{R} / R), A)$ for a $G(R / R)$-module $A, H^{1}(R, E):=H^{1}(R, E(\bar{R}))$.

Now let R be a finite extension of Q. For a place v of R, we let $R(v)$ denote the corresponding completion of R, for $x \in H^{1}\left(R, E_{M}\right), x(v)$ denotes its natural image in $H^{1}\left(R(v), E_{M}\right)$. The Selmer group $S\left(R, E_{M}\right) \subset H^{1}\left(R, E_{M}\right)$, by definition, consists of all elements x such that for all places v of $R, x(v) \in E(R(v)) / M$. We recall that the Shafarevich-Tate group $\amalg(R, E)$ is $\operatorname{ker}\left(H^{1}(R, E) \longrightarrow \prod_{\nu} H^{1}(R(\nu), E)\right)$, so (1) induces the exact sequence:

$$
0 \rightarrow E(R) / M \rightarrow S\left(R, E_{M}\right) \rightarrow \Perp(R, E)_{M} \rightarrow 0
$$

By the weak Mordell-Weil theorem, the Selmer group $S\left(K, E_{M}\right)$ is finite, by the Mordell-Weil theorem, $E(R) \simeq F \times \mathbb{Z}^{\text {rank } E(R)}$, where $F \simeq E(R)_{\text {tor }}$ is finite, $0 \leq \operatorname{rank} \mathrm{E}(\mathrm{R}) \in \mathbb{I}$.

It is conjectured that $\amalg(\mathrm{R}, \mathrm{E})$ is finite. Only recently Rubin and the author proved this conjecture in some cases. I shall give some examples below.

We suppose further that E is modular. Let N be the conductor of E , $\gamma: \mathrm{X}_{0}(\mathrm{~N}) \longrightarrow \mathrm{E}$ be a modular parametrization. Here $\mathrm{X}_{0}(\mathrm{~N})$ is the modular curve over Q which parametrizes isomorphism classes of isogenies of elliptic curves with cyclic kernel of order N . We note that, according to the Taniyama-Shimura-Weil conjecture, every elliptic curve over Q is modular.

We now define explicit cohomology classes, we start from the definition of Heegner points. Let $K=\mathbf{Q}(\sqrt{D})$ be a field of discriminant D such that $0>D \equiv \square(\bmod 4 N)$, $D \neq-3,-4$. We fix an ideal i_{1} of the ring of integers O_{1} of K such that $O_{1} / i_{1} \simeq \mathbb{Z} / N \mathbb{I}$ (such an ideal exists because of the conditions on D). If $\lambda \in \mathbb{A}$, let K_{λ} be the ring class field of K of conductor λ. It is a finite abelian extension of K. In particular, K_{1} is the maximal abelian unramified extension of K . If $(\lambda, N)=1$, we let $\mathrm{O}_{\lambda}=\mathbb{I I}+\lambda \mathrm{O}_{1}$, $i_{\lambda}=i_{1} \cap O_{\lambda}, z_{\lambda}$ will be the point of $X_{0}(N)$ rational over K_{λ} corresponding to the class of the isogeny $\mathbb{C} / \mathrm{O}_{\lambda} \longrightarrow \mathbb{C} / \mathrm{i}_{\lambda}^{-1}$ (here $\mathrm{i}_{\lambda}^{-1}$ ว O_{λ} is the inverse of i_{λ} in the group of proper O_{λ}-ideals). We set $y_{\lambda}=\gamma\left(z_{\lambda}\right) \in E\left(K_{\lambda}\right), P_{1} \in E(K)$ is the norm of y_{1} from K_{1} to K . The points $\mathrm{y}_{\lambda}, \mathrm{P}_{1}$ are called Heegner points.

Let O be $\operatorname{End}(E), Q=0 \otimes Q$. Let ℓ be a rational prime, $T=\lim _{\ell^{n}}$ be the Tate-module and $\hat{O}=O \otimes \mathbb{Z}_{\ell}$. We let $B(E)$ denote the set of odd rational primes which do not divide the discriminant of 0 and for which the natural representation $\rho: G(\bar{Q} / Q) \longrightarrow$ Aut ${ }_{\hat{O}} \mathrm{~T}$ is surjective. It is known (from the theory of complex multiplication and Serre's theory, resp.) that almost all (all but a finite number of) primes belong to $B(E)$. For example, if $O=\mathbb{I}$ and N is squarefree, then $\ell \geq 11$ belongs to $B(E)$ according to a theorem of Mazur.

In my paper "Euler systems" I proved that rank $E(K)=1$ and $山(\mathrm{~K}, \mathrm{E})$ is finite when P_{1} has infinite order. Then, in the paper "On the structure of Shafarevich-Tate groups" I determined the structure of $\prod_{\ell^{\infty}}$ for $\ell \in B(E)$, under the same condition. Moreover, our explicit cohomology classes give information on the structure of $S\left(\mathrm{~K}_{\ell} \mathrm{E}_{\mathrm{n}}\right.$) under some more general condition (which, hypothetically, always holds). It will be discussed later, now we continue with the definition of the cohomology classes.

We fix a prime $\ell \in B(E)$. Further in the paper we use the notation p or p_{k}, where $k \in \mathbb{N}$, only for rational primes which do not divide N, remain prime in K and satisfy $n(p):=\operatorname{ord}_{\ell}\left(p+1, a_{p}\right)>1$, where $a_{p}=p+1-[\tilde{E}(\mathbb{Z} / p)], \tilde{E}$ is the reduction of E
modulo p. For natural r we let $\Lambda^{\mathrm{r}}=\left\{\mathrm{p}_{1} \ldots \mathrm{p}_{\mathrm{r}}\right\}$ denote the set of all products of r distinct such primes. The set Λ^{0}, by definition, consists only of $p_{0}:=1$. We let $\Lambda=\underset{\mathrm{r} \geq 0}{\mathrm{U}} \Lambda^{\mathrm{r}}$. If $\mathrm{r}>0, \lambda \in \Lambda^{\mathrm{r}}$, we let $\mathrm{n}(\lambda)=\underset{\mathrm{p} \mid \lambda}{\min } \mathrm{n}(\mathrm{p}), \mathrm{n}\left(\mathrm{p}_{0}\right):=\infty$.

The set T of explicit cohomology classes consists of $\tau_{\lambda, \mathrm{n}} \in \mathrm{H}^{1}\left(\mathrm{~K}, \mathrm{E}_{\mathrm{M}}\right)$, where λ runs through $\Lambda, 1 \leq n \leq n(\lambda), M=\ell^{n}$. To define these note that the condition $\ell \in B(E)$ implies the triviality of $E\left(K_{\lambda_{p}}\right)^{\infty}$. So, by a spectral sequence, the restriction homomorphism res : $\mathrm{H}^{1}\left(\mathrm{~K}, \mathrm{E}_{\mathrm{M}}\right) \rightarrow \mathrm{H}^{1}\left(\mathrm{~K}_{\lambda}, \mathrm{E}_{\mathrm{M}}\right)^{\mathrm{G}\left(\mathrm{K}_{\lambda} / \mathrm{K}\right)}$ is an isomorphism and $\tau_{\lambda, \mathrm{n}}$ is uniquely defined by the value $\operatorname{res}\left(\tau_{\lambda, \mathrm{n}}\right)$ which we will now exhibit.

We need more notations. We use standard facts on ring class fields. If $1<\lambda \in \mathbb{N}$, then the natural homomorphism $G\left(K_{\lambda} / K_{1}\right) \rightarrow \prod_{p \mid \lambda} G\left(K_{p} / K_{1}\right)$ is an isomorphism and we also have $G\left(K_{\lambda} / K_{\lambda / p}\right) \rightarrow G\left(K_{p} / K_{1}\right) \xrightarrow{\sim} \mathbb{I} /(p+1)$.

For each p, fix a generator $t_{p} \in G\left(K_{p} / K_{1}\right)$ and let t_{p} also denote the corresponding generator of $G\left(K_{\lambda} / K_{\lambda / p}\right)$. Let $I_{p}=-\sum_{j=1}^{p} j t{ }_{p}^{j}, I_{\lambda}=\prod_{p \mid \lambda} I_{p} \in \mathbb{Z}\left[G\left(K_{\lambda} / K_{1}\right)\right]$. Let \mathbb{K} be the composite of $K_{\lambda^{\prime}}$ when λ^{\prime} runs through the set Λ. We let $J_{\lambda}=\Sigma \overline{\mathrm{g}}$, where g runs through a fixed set of representatives of $G(\mathbb{K} / K)$ modulo $G\left(\mathbb{K} / K_{1}\right), \overline{\mathbf{g}}$ is the restriction of g to K_{λ}, so $\{\bar{g}\}$ is a set of representatives of $G\left(K_{\lambda} / K\right)$ modulo $\mathrm{G}\left(\mathrm{K}_{\lambda} / \mathrm{K}_{1}\right)$. Let $\mathrm{P}_{\lambda}=\mathrm{J}_{\lambda} \mathrm{I}_{\lambda} \mathrm{y}_{\lambda} \in \mathrm{E}\left(\mathrm{K}_{\lambda}\right)$. Then

$$
\operatorname{res}\left(\tau_{\lambda, \mathrm{n}}\right)=\mathrm{P}_{\lambda}\left(\bmod \operatorname{ME}\left(\mathrm{K}_{\lambda}\right)\right)
$$

Now we formulate some of our results on the invariants of $\mathrm{S}\left(\mathrm{K}, \mathrm{E}_{\mathrm{M}}\right)$, see theorems 2, 3 of the second part for more general statements.

There is a bijective correspondence between the set of isomorphism classes of finite abelian ℓ-groups and the set of sequences of nonnegative integers $\left\{n_{i}\right\}$ such that $i \geq 1$,
$n_{i} \geq n_{i+1}, \quad n_{i}=0$ for all sufficiently large i. Concretely, $\quad\left\{n_{i}\right\} \longmapsto$ class of $\sum_{i} \pi / \ell^{n_{i}}$. For a group A we let $\operatorname{Inv}(A)$ denote the sequence of invariants of class A, we call it the sequence of invariants of A.

Let $L(E, s)$ be the canonical L-function of E over $Q, \quad g=\operatorname{ord}_{s=1} L(E, s)$, $\epsilon=(-1)^{g-1}$.

If G is a group of order 2 with generator σ and A is a $\mathbb{Z}_{\ell}[G]$-module, then for $\nu \in\{0,1\}$ we let A^{ν} denote the submodule $\left(1-(-1)^{\nu} \epsilon \sigma\right) A$. Then A is the direct sum of A^{0} and A^{1} and σ acts on A^{ν} via multiplication by $(-1)^{\nu-1} \epsilon$.

Let $S_{M}=S\left(K, E_{M}\right), G=G(K / \mathbb{Q})$. We are interested in the sequence $\operatorname{Inv}\left(S_{M}^{\nu}\right)$. For the formulation of the results we need some more notations.

Let $\mathrm{m}^{\prime}(\lambda)$ be the maximal positive integers such that $\mathrm{P}_{\lambda} \in \mathrm{p}^{\mathrm{m}^{\prime}(\lambda)} \mathrm{E}\left(\mathrm{K}_{\lambda}\right)$. We let $m(\lambda)=m^{\prime}(\lambda)$ if $m^{\prime}(\lambda)<n(\lambda), m(\lambda)=\infty$ otherwise. Let $m_{r}=\min m(\lambda)$ when λ runs through Λ^{r}. In particular, $\ell^{m_{0}}$ is the maximal power of ℓ which divides P_{1}, so $\mathrm{m}_{0}<\infty \Leftrightarrow \mathrm{P}_{1}$ has infinite order. Let $\mathrm{m}=\underset{\mathrm{r} \geq 0}{\min } \mathrm{~m}_{\mathrm{r}}$.

The condition $m<\infty$ is equivalent to the condition $T \neq\{0\}$. It is the generalization of the condition that P_{1} has infinite order.

Conjecture A. $\mathrm{T} \neq\{0\}$

Assume for the following that conjecture A is true for K. Let f be the minimal r such that $m_{r}<\infty$. In particular, $f=0 \Leftrightarrow P_{1}$ has infinite order.

We let $(r)=1$ if r is odd, $(r)=0$ if r is even. We have

Theorem B. The inequality $m_{r} \geq m_{r+1}$ holds for $r \geq 0$. Let $n>m_{f}, c=f+\nu$, where $\nu \in\{0,1\}$ as usual. Then

$$
\operatorname{Inv}\left(S_{M}^{(c)}\right)=
$$

$\underbrace{\cdots \cdots \cdots \cdots}_{\text {c values }} m_{c}^{-m_{c+1}}, m_{c}-m_{c+1}, \ldots, m_{c+2 k}-m_{c+2 k+1}, m_{c+2 k}-m_{c+2 k+1}, \ldots$
where $k=0,1, \ldots$ Moreover, $\underbrace{\ldots \ldots \ldots .}_{\text {c values }}=n, \ldots, n$ if $\nu=1$.
For further results on the ordinary Selmer groups see the section 2 after the proof of theorem 3.

2. An application of the theory [1].

We use the notations and definitions from [1] with those already defined here.

First we note that all wordings and proofs in the basic text of [1] (§ 1-4) remain valid in the following situation provided one changes notations as is to be explained. We can use instead of the condition $m(1)<\infty$ (or, equivalently, that the Heegner point P_{1} has infinite order) the weaker condition that there exists $\lambda_{0} \in \Lambda^{\mathbf{u}}$, where $u \geq 0$, such that $2 \mathrm{~m}\left(\lambda_{0}\right)<\mathrm{n}\left(\lambda_{0}\right)$. Then we let p_{0} be some such λ_{0}, to be fixed throughout, and redefine Λ^{r} to be set of products of the form $\mathrm{p}_{0} \mathrm{p}_{1} \ldots \mathrm{p}_{\mathrm{r}}$ with distinct primes $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{r}}$ that do not divide p_{0}. We let A^{ν} denote $\left(1-(-1)^{\nu+\mathrm{u}} \epsilon \sigma\right) \mathrm{A}$, where $\nu=0$ or 1 , as usual. Then consider $X=S_{p_{0}, p_{0}, n\left(p_{0}\right)-m\left(p_{0}\right)} /\left(\mathbb{Z}_{\ell} \tau_{p_{0}, n\left(p_{0}\right)}\right)$ (see §2 of [1] for the definition of $S_{\lambda, \delta, n}$). In the case $p_{0}=1, S_{1,1, \infty}=\underset{\longrightarrow}{\lim } S_{1,1, n}$ and $S_{1,1, n}=$
$S_{1, n}=S_{M}$ is the ordinary Selmer group of E over K of level $M=\ell^{n}$.
The notations $n, n^{\prime}, n^{\prime \prime}$ are used only for natural numbers $\leq n\left(p_{0}\right)$. Of course, the definitions in [1] must now be adapted to these new notations; for example, $m_{r}=m_{r}\left(p_{0}\right)$. Instead of the group $S_{1, n}$ the group $S_{p_{0}, p_{0}, n}$ must be used.

In the sequence (24) the group $(\mathrm{E}(\mathrm{K}) / \mathrm{M})^{\boldsymbol{\nu}}$ must be replaced by the group I/ $/ \mathrm{M}^{\prime}{ }^{\boldsymbol{r}} \mathrm{p}_{0}, \mathrm{n}^{\prime}$, where $\mathrm{n}^{\prime}=\mathrm{n}+\mathrm{m}_{0}$. To use (38) with the isomorphism β_{3}^{ν} it is necessary to require that $3 \mathrm{~m}\left(\mathrm{p}_{0}\right)<\mathrm{n}\left(\mathrm{p}_{0}\right)$. When $\mathrm{p}_{0}=1$ we return to the original setup.

Now generalize this further: We fix p_{0} for which we require only that the sequence $\left\{m_{r}\right\}$ becomes eventually finite, $m_{r}<\infty$ for some $r \geq 0$. Or, equivalently, we require that $\left\{\tau_{\lambda, \mathrm{n}}\right\} \neq\{0\}$ (λ runs through the set Λ). Then we let f denote the minimal r such that $\mathrm{m}_{\mathrm{r}}<\infty$ and if $\mathrm{p}_{0}>1$ we require moreover that $\theta \mathrm{m}_{\mathrm{f}}<\mathrm{m}\left(\mathrm{p}_{0}\right)$, where $\theta=2$ or 3 (as may be needed).

If A is a finite \mathbb{I}_{ℓ}-module, then, for $j \geq 1,\left\{\operatorname{inv}_{j}(A)\right\}$ denotes the sequence of invariants of A (see section 1 above). Finally (i) denotes the representative of $i(\bmod 2)$ in the set $\{0,1\}$.

The following is a generalization of theorem 1:

Theorem 2. Let $r>f, n>m_{f}, n^{\prime}=n+m_{f}$. Then the set n_{n}, is nonempty. Moreover, for all $\omega \in \Omega_{n^{\prime}}^{r-1}$, there exists p_{r} such that the sequence $\left(\omega, p_{r}\right) \in \Omega_{n^{\prime}}^{r}$. Let $\omega \in \Omega_{n^{\prime}}^{r}$. Then, for $1 \leq \mathrm{j} \leq \mathrm{r}, \# \varphi_{\mathrm{p}_{\mathrm{j}}, \mathrm{n}}\left(\tau_{\omega(\mathrm{j}-1), \mathrm{n}}\right)=\# \tau_{\omega(\mathrm{j}-1), \mathrm{n}}$ and if $\nu \in\{0,1\}$ is such that $\mathrm{r}>\mathrm{f}+\nu$, then, for $1+\nu+\mathrm{f} \leq \mathrm{j} \leq \mathrm{r}, \mathrm{c}=\mathrm{f}+\nu$, we have
$\# \varphi_{\mathrm{p}_{\mathrm{j}}, \mathrm{n}}^{(\mathrm{c})}\left(\bmod \Phi(\mathrm{c}),{ }_{\omega}(\mathrm{j}-1), \mathrm{n}\right)=\mathrm{m}_{(\mathrm{j},(\mathrm{c}))-1^{-m^{2}}}^{(\mathrm{j}(\mathrm{c}))}=\operatorname{inv}_{\mathrm{j}}\left(\mathrm{S}_{\mathrm{p}_{0}, \mathrm{p}_{0}, \mathrm{n}}^{(\mathrm{c})}\right)$.

The proof duplicates the proof of theorem 1 of [1] (the case $f=0$) if we note that $\forall \mathrm{k} \geq \mathrm{f} \exists \lambda \in \Lambda^{\mathrm{k}}$ such that $\mathrm{m}(\lambda)=\mathrm{m}_{\mathrm{k}}$ and $\# \mathrm{~T}_{\lambda, \mathrm{n}}^{\nu}=\operatorname{inv}_{\mathrm{k}+1}\left(\mathrm{~S}_{\mathrm{p}_{0}, \mathrm{p}_{0}, \mathrm{n}}^{\nu}\right)$ for $\nu=0$ and $\nu=1$. This is a consequence of the analog of [1] proposition 8 (proved analogously) where condition 3) is replaced by the condition $\# \varphi_{\mathrm{q}, \mathrm{n}^{\prime}}^{\alpha}\left(\bmod \Phi_{\delta, \mathrm{n}^{\prime}}^{\alpha}\right)=\# \mathrm{~T}_{\delta, \mathrm{n}}^{\alpha}$.

Furthermore we get

Theorem 3. $\exists \mathrm{p}_{0} \mathrm{p}_{1} \ldots \mathrm{p}_{2 \mathrm{f}+1} \in \Lambda_{\mathrm{n}^{\prime}}^{2 \mathrm{f}+1}$ such that for $1 \leq \mathrm{i} \leq \mathrm{f}+1 \operatorname{ord}_{\ell} \psi_{\mathrm{p}_{\mathrm{f}+1}, \mathrm{n}^{\prime}}\left(\eta_{\mathrm{i}}\right)=\mathrm{m}_{\mathrm{f}}$,
 morphic to the group $\sum_{i=1} \mathbb{Z} / \mathrm{M}$. In particular, for $1 \leq j \leq f+1$ we have that $\operatorname{inv}_{j}\left(S_{p_{0}, p_{0}, n}^{(f+1)}\right)=n$.

Proof. Let $\eta_{1}^{\prime}=\mathrm{p}_{0} \mathrm{p}_{1}^{\prime} \ldots \mathrm{p}_{\mathrm{f}}^{\prime} \in \Lambda_{\mathrm{m}_{\mathrm{f}}+1}^{\mathrm{f}}$ is such that $\mathrm{m}\left(\eta_{1}^{\prime}\right)=\mathrm{m}_{\mathrm{f}}$. By means of [1], proposition 8 we can, by induction, replace $p_{1}^{\prime}, \ldots, p_{f}^{\prime}$ by p_{1}, \ldots, p_{f} such that $\eta_{1}=p_{0} \ldots p_{f} \in \Lambda_{\mathrm{n}} \mathrm{f}^{\prime}$ and $m\left(\eta_{1}\right)=m_{f}$ (this step is trivial when $f=0$). Then we again use [1], proposition 8 (which is true for $\mathbf{r}=\mathbf{k}$ as well, see the proof) and by induction find a suitable η_{i}. Because of the proposition 1 and (for $\mathrm{f}>0$) the condition $\tau_{\lambda, \mathrm{n}^{\prime}}=0 \quad \forall \lambda \in \Lambda_{\mathrm{n}^{\prime}}^{\mathrm{f}}-1$ it then follows that $\eta_{\mathrm{i}} \in \mathrm{S}_{\mathrm{p}_{0}, \mathrm{p}_{0}, \mathrm{n}}^{(\mathrm{f}+1)}$ (we recall that complex conjugation acts on $\tau_{\lambda, \mathrm{n}^{\prime}}$ as multi-
 $\mathrm{R}_{\mathrm{ij}}=0$ for $\mathrm{j}<\mathrm{i}$ because (see § 1) $\phi_{\mathrm{p}}\left(\tau_{\lambda, \mathrm{n}^{\prime}}\right)=0$ when $\mathrm{p} \mid \lambda$. We have $\mathrm{R}_{\mathrm{ij}} \in \ell^{\mathrm{m}_{\mathrm{f}}(\mathbb{I} / \mathrm{M})^{*} \text {. If } \sum \alpha_{\mathrm{i}} \eta_{\mathrm{i}}=0 \text {, then by applying to this identity the characters } \varphi_{\mathrm{p}_{\mathrm{f}+\mathrm{j}}}}$ for $\mathrm{j}=1, \ldots, \mathrm{f}+1$ we obtain that $\alpha_{\mathrm{i}} \equiv 0(\bmod \mathrm{M})$.

Hence theorems 2 and 3 fully determine the sequence of invariants for $S_{p_{0}, p_{0}, n}^{(f+1)}$.

Further we suppose that $\mathrm{p}_{0}=1$ and $\left\{\tau_{\lambda, \mathrm{n}}\right\} \neq\{0\}$. The group $\mathrm{S}^{\boldsymbol{\nu}}=\underset{\longrightarrow}{\lim } \mathrm{S}_{\ell^{\mathrm{n}}}^{\nu}$ is isomorphic to a direct sum of $\left(Q_{\ell} / \Pi_{\ell}\right)^{\boldsymbol{\nu}}$ and a finite group $\mathscr{S}^{\boldsymbol{\nu}}$. The group $\mathrm{S}_{\ell^{\nu}}^{\boldsymbol{n}}$ coincides with the maximal ℓ^{n}-torsion subgroup of S^{ν} and with the Selmer group of level ℓ^{n} for $\mathrm{E}^{\boldsymbol{\nu}}$ over \mathbf{Q}. Here $\mathrm{E}^{\boldsymbol{\nu}}$ is E if $(-1)^{\boldsymbol{\nu}+1} \epsilon=1$, and $\mathrm{E}^{\boldsymbol{\nu}}$ is the form of E over K otherwise. Apriori, rank $\mathrm{E}^{\nu}(\mathbb{Q}) \leq \mathrm{r}^{\boldsymbol{\nu}}$, and equality is equivalent to the statement that $山\left(\mathbf{Q}, \mathrm{E}^{\boldsymbol{\nu}}\right)_{\ell^{\infty}}$ is a finite group, which will then be isomorphic to $\mathscr{S}^{\boldsymbol{\nu}}$. We have

Theorem 4. $\quad \mathrm{r}^{(\mathrm{f}+1)}=\mathrm{f}+1, \quad \mathrm{r}^{(\mathrm{f})} \leq \mathrm{f} \quad$ and $\quad \mathrm{f}-\mathrm{r}^{(\mathrm{f})}$ is even. For $\mathrm{j} \geq 1+\nu+\mathrm{f}$

Proof. Because of theorems 2, 3 it is enough to explain why $f-r^{(f)}$ is even. From theorem 2 we have that the (parity of nonzero invariants of $\mathscr{S}^{(f)}$ with index $\geq f+1-r^{(f)}$) is even, but the common parity of nonzero invariants of $\mathscr{S}^{(f)}$ is even because of the existence of a non-degenerate alternating Cassels form on $\mathscr{S}^{(\mathrm{f})}$. Hence $\mathrm{f}-\mathrm{r}{ }^{(\mathrm{f})}$ is even.

Let $g^{\nu}=\operatorname{ord}_{s=1} L\left(E^{\nu}, s\right)$. We recall that according to the conjecture of Birch and Swinnerton-Dyer, $g^{\nu}=\operatorname{rank} E^{\nu}(Q)$. Since $(-1)^{g^{\nu}}=-\epsilon$ or ϵ according as $\mathrm{E}^{\nu}=\mathrm{E}$ or $E^{\nu}=$ form of E over K, we have from theorem 4:

Theorem 5. r ${ }^{\nu}-\mathrm{g}^{\nu}$ is even for $\nu=0$ and $\nu=1$.

If f and m are known, then we have an algorithm (see the beginning of the paper, and $\S 4$ of [1]) for computing some n^{\prime} and $q=p_{f+1 \cdots} p_{2 f+1} \in \Lambda_{n}^{f+1}$ such that $\mathrm{n}^{\prime}>3 \mathrm{~m}(\mathrm{q}), \quad \min _{\mathrm{r}} \mathrm{m}_{\mathrm{r}}(\mathrm{q})=\mathrm{m}$, with a parametrization of $\quad y=\mathrm{S}_{\mathrm{q}, \mathrm{q}, \mathrm{n}}^{(\mathrm{f}+1)}$, where $\mathrm{n}=\mathrm{n}^{\prime}-\mathrm{m}(\mathrm{q})$, by finite linear combinations of elements of $\left\{\tau_{\lambda, \mathrm{n}^{\prime}}\right\}$. Moreover such a procedure can be combined with the selection of $p_{0} \cdots p_{f}\left(p_{0}=1\right)$ such that $\mathrm{p}_{0} \cdots \mathrm{p}_{2 \mathrm{f}+1} \in \Lambda_{\mathrm{n}}^{2 \mathrm{f}+1}$ and $\operatorname{ord}_{\ell} \mathrm{R}_{\mathrm{ii}}=\operatorname{ord}_{\ell}\left(\mathrm{m}\left(\eta_{\mathrm{i}}\right)\right)=\mathrm{n}^{\prime}-\mathrm{n}$ for $1 \leq \mathrm{i} \leq \mathrm{f}+1$. Then (see the proof of theorem 3) the group $\mathscr{E} \subset \mathrm{S}_{\mathrm{M}}^{(\mathrm{f}+1)}$ generated by η_{i} is isomorphic to the group $\mathrm{f}+1$ $\mathrm{f}+1$
$\sum_{\mathrm{i}=1} \pi / \mathrm{M}$ and its pairing with $\sum_{\mathrm{i}=1} \pi / \mathrm{M} \varphi_{\mathrm{P}_{\mathrm{i}+\mathrm{f}}, \mathrm{n}}^{(\mathrm{f}+1)}$ is non-degenerate. Hence $\mathrm{S}_{\mathrm{M}}^{(\mathrm{f}+1)}$ is the direct sum of \mathscr{E} and $\mathscr{W}=\mathrm{S}_{\mathrm{M}}^{(\mathrm{f}+1)} \cap \mathscr{y} \simeq \mathscr{S}^{(\mathrm{f}+1)}$. The parametrization for \mathscr{y} induces a parametrization for \mathscr{W} and, as a consequence, we obtain its complete structure. In particular, we have an algorithm for computing the sequence of invariants for $\mathscr{L}^{(\mathrm{f}+1)}$.

By using proposition 9 of [1] (with the condition $n>m_{0}$ replaced by $n>m_{r-1}$) we have that for $p_{1} \ldots p_{j} \in \Lambda_{\mathrm{n}}^{\mathrm{j}}$ with $\mathrm{m}\left(\mathrm{p}_{1} \ldots \mathrm{p}_{\mathrm{j}}\right)=\mathrm{m}<\mathrm{n}$, the characters $\varphi_{\mathrm{p}_{1}, \mathrm{n}}^{(\mathrm{j})}, \ldots, \varphi_{\mathrm{p}_{\mathrm{j}}}, \mathrm{n}$ generate $\operatorname{Hom}\left(\mathrm{S}_{\mathrm{M}}^{(\mathrm{j})}, \mathbb{I} / \mathrm{M}\right)$. So we can apply this to the effective solution of the problem when a principal homogeneous space over E has a rational point, in the same vein as at the end of [1] for the case $f=0$.

We recall that we considered $\ell \in B(E)$ (see section 1 for the definition of $B(E)$). For $\ell \notin \mathrm{B}(\mathrm{E})$ the theory in [1] and above holds with modifications in the manner of [2]. Let ℓ now be an arbitrary rational prime. In particular, $\tau_{\lambda, \mathrm{n}} \in \mathrm{H}^{1}\left(\mathrm{~K}, \mathrm{E}_{\mathrm{M}}\right)$ is defined for all $\lambda \in \Lambda_{n+k_{0}}{ }^{1)}$,
${ }^{1)}$ In [3] $\tau_{\lambda, \mathrm{n}}$ is defined for all $\lambda \in \Lambda_{\mathrm{n}}$ as in the case $\ell \in \mathrm{B}(\mathrm{E})$.
where $\ell^{k_{0} / 2} E(K){ }_{\ell}{ }^{\Phi}=0, \quad K$ the composite of K_{λ} for all $\lambda \in \Lambda \quad\left(k_{0}=0\right.$ for
$\ell \in B(E))$.
We let $U_{M} C E(K) / M, H, S C H$ denote respectively the groups $E(K)_{\text {tor }} / M$, $\lim _{\rightarrow} H^{1}\left(K, E_{M}\right), \lim _{\mathcal{F}} S\left(K, E_{M}\right)$. We have the exact sequence $0 \rightarrow U_{M} \rightarrow H^{1}\left(K, E_{M}\right) \rightarrow$ $H_{M} \rightarrow E(K)_{M} \rightarrow 0$ and we identify the group $H^{1}\left(K, E_{M}\right) / U_{M}$ with its image in H_{M}. We recall that, for $\ell \in B(E), E(K)_{\ell^{\infty}}=0$ and we identified $H^{1}\left(K, E_{M}\right), S\left(K, E_{M}\right)$ with H_{M}, S_{M} respectively. We let $\tau_{\lambda, \mathrm{n}}^{\prime}$ be the image of $\tau_{\lambda, \mathrm{n}}$ in H_{M}, and for $\mathrm{n} \geq 1, \mathrm{k} \geq \mathrm{k}_{0}, \mathrm{r} \geq 0, \mathrm{~V}_{\mathrm{n}, \mathrm{k}}^{\mathrm{r}}$ is the subgroup of H_{M} generated by $\tau_{\lambda, \mathrm{n}}^{\prime}$ when λ runs through $\Lambda_{n, k}^{r}$. We say that $\left\{\tau_{\lambda, n}\right\}$ is a strong nonzero system if $\exists r \geq 0$ such that

$$
\begin{equation*}
\forall k \geq k_{0} \exists n \mid V_{n, k}^{r} \neq 0 \tag{2}
\end{equation*}
$$

There exists $k(r) \geq k_{0}$ such that the condition (2) is equivalent to the condition that $\exists \mathrm{n} \mid \mathrm{V}_{\mathrm{n}, \mathrm{k}(\mathrm{r})}^{\mathrm{r}} \neq 0$. We know that, for $\ell \in \mathrm{B}(\mathrm{E}), \mathrm{k}(\mathrm{r})=0$ satisfies this property. We now formulate

Conjecture 1. For all $\ell,\left\{\tau_{\lambda, \mathrm{n}}\right\}$ is a strong nonzero system.

For $\ell \in B(E)$, this is equivalent to the statement that $\left\{\tau_{\lambda, n}\right\} \neq 0$.

Conjecture 2. $m \neq 0$ for only a finite set of primes in $B(E)$.

Apparently, theorem 4 is closely connected with the Birch and Swinnerton-Dyer conjecture (see [1] for the case $f=0$). For example, it would be natural to find that $f+1$ is equal to the order of zero at $s=1$ of an ℓ-adic L-function for $E^{(f+1)}$ (when such a function exists), and (more difficult ?) to find that $f+1=g^{(f+1)}$.

If A is a $\mathbb{Z}[1, \sigma]$-module and $\nu \in\{0,1\}$, then $A^{\nu}:=\{b \in A \mid \sigma b=$ $\left.(-1)^{\nu+1} \epsilon b\right\}$.

Let $\quad S D=\ell^{n} S$, so $\quad S D^{\nu} \simeq\left(Q_{\ell} / \mathbb{I}_{\ell}\right)^{\boldsymbol{r}}$. Let $\ell \in B(E)$. Because of the relation $\ell^{\mathrm{k}} \tau_{\lambda, \mathrm{n}+\mathrm{k}}^{\prime}=\tau_{\lambda, \mathrm{n}}^{\prime} \quad$ (which is true for an arbitrary ℓ) and the relation
 that $\forall k \geq m_{f} \quad V_{n, k}^{f}=\ell^{m_{f}}{ }_{S D}{ }^{(f+1)}$. For arbitrary $\ell \quad \exists \mathbf{k}_{1}, \mathbf{k}_{2}$ such that for $k \geq k_{1}$ $\ell^{k_{2}}{S D_{M}^{(f+1)}}_{\left(f V_{n, k}^{f}\right.}^{f} C S_{M}^{(f+1)}$.

Interpolating the situation of the case $\mathrm{f}=0$ we formulate

Conjecture $_{e}$ 3. There exist $\nu \in\{0,1\}$ and a subgroup VC(E(K)/E(K) $\left.{ }_{\text {tor }}\right)^{\nu}$ such that $1 \leq \operatorname{rank} \mathrm{V} \equiv \nu(\bmod 2) \quad$ and for all sufficiently large $\mathrm{k} \quad$ and all n , one has $\mathrm{V}_{\mathrm{n}, \mathrm{k}}^{\mathrm{a}}=\mathrm{V}\left(\bmod \mathrm{M}\left(\mathrm{E}(\mathrm{K}) / \mathrm{E}(\mathrm{K})_{\text {tor }}\right)\right.$, where $\mathrm{a}=\operatorname{rank} \mathrm{V}-1$.

Conjecture 3 , by definition, is the union $\forall \ell$ of conjectures ${ }_{\ell} 3$ with a universal V (independent of ℓ). We note that such V is uniquely determined (by the usual description of a lattice over $I I$ by its completions) if it exists.

It is clear that $2 \mathrm{VCE} \mathrm{E}^{\nu}(\mathrm{Q}) / \mathrm{E}^{\nu}(\mathrm{Q})_{\text {tor }}$.

For the following implications we use the arguments above with the theorems $2-5$ (with a natural modification for $\ell \notin B(E)$).

First, conjecture ${ }_{\ell} 3$ implies that $\left\{\tau_{\lambda, \mathrm{n}}\right\}$ is a strong nonzero system with $\mathrm{f}=\mathrm{a}$ (for the last statement we use the propositions $1,2,5$ of $[1]), \quad \operatorname{rank} E^{\nu}(Q)=r a n k V$,

$\ell^{\mathrm{m}_{\mathrm{f}}}\left(\mathrm{E}^{\nu}(\mathbb{Q}) \otimes \mathbb{I}_{\ell}\right),\left[山\left(\mathbb{Q}, \mathrm{E}^{\nu}\right)_{\ell^{\Phi}}\right] \mid \ell^{2 \mathrm{~m}_{\mathrm{f}}}, \ell^{\mathrm{m}_{\mathrm{f}}} \amalg\left(\mathbb{Q}, \mathrm{E}^{\nu}\right)_{\ell^{\infty}}=0, \operatorname{rank} \mathrm{E}^{\nu}(\mathbb{Q}) \equiv \mathrm{g}^{\nu} \equiv$ $\nu(\bmod 2), \mathrm{r}^{1-\nu} \equiv \mathrm{g}^{1-\nu} \equiv 1-\nu(\bmod 2)$.

Conjecture $_{\ell} 3$ is equivalent to the statement：$\left\{\tau_{\lambda, \mathrm{n}}\right\}$ is a strong nonzero system

We note that $\exists \mathbf{k}_{3}$ ，which is zero for $\ell \in B(E)$ ，such that if the condition from conjecture ℓ^{3} holds with some $k^{\prime} \geq k_{3}$ then it holds for all $k \geq k^{\prime}$ ．

From conjecture 3 we have，with the union of consequences from conjectures ${ }_{\ell} 3$ ，that conjecture 2 holds and $山\left(Q, \mathrm{E}^{\nu}\right)$ is finite．Conjecture 3 is equivalent to the statement： conjectures 1,2 hold， $\mathrm{f}+1$ is independent of $\ell, \amalg\left(\mathbf{Q}, \mathrm{E}^{(\mathrm{f}+1)}\right)$ is finite；for only a finite
 conjectures 1,2 hold and $\amalg(\mathrm{K}, \mathrm{E})$ is finite．

Of course，for the case that the Heegner point P_{1} has infinite order（ $f=0$ ）con－ jecture 3 holds with $\nu=1, V=\pi \mathrm{P}_{1}\left(\bmod \mathrm{E}(\mathrm{K})_{\text {tor }}\right)$ ．

Recall that $\mathrm{g}=\operatorname{ord}_{\mathrm{s}=1} \mathrm{~L}(\mathrm{E}, \mathrm{s})$ ．It is known that there exists an imaginary quadratic field K such that $g^{0}+g^{1}-g=0$ or 1 according as g is even or odd．For $g \leq 1$ it is known that $\operatorname{rank} E(\mathbb{Q})=g$ and $山(\mathbb{Q}, E)$ is finite．Let $g>1$ and for K as above $\mathrm{g}=\mathrm{g}^{\nu^{\prime}}$ ．Then ord $\mathrm{on}_{1} \mathrm{~L}(\mathrm{E}, \mathrm{K}, \mathrm{s})=\mathrm{g}^{\nu^{\prime}}+\mathrm{g}^{1-\nu^{\prime}}>1$ ，so P_{1} has finite order by the for－ mula of Gross and Zagier．Suppose that for K conjecture ${ }_{\ell} 3$ holds for some ℓ ．Then $\nu=\nu^{\prime}$ because otherwise $\mathrm{g}^{1-\nu^{\prime}}=\mathrm{f}+1>1$ but $\mathrm{g}^{1-\nu^{\prime}} \leq 1$ ．So we have for $\mathrm{E}=\mathrm{E}^{\nu}$ all consequences of the conjecture ℓ^{3}（see above），in particular，that $\operatorname{rank} E(\mathbb{Q})=\operatorname{rank} V$ and $\amalg(Q, E)_{\ell^{\infty}}$ is finite．If conjecture 3 holds for K ，we also have that $\amalg(Q, E)$ is finite and $\operatorname{rank} \mathrm{E}(\boldsymbol{Q}) \equiv \mathrm{g}(\bmod 2)$. Of course， $\operatorname{rank} \mathrm{E}(\boldsymbol{Q})=\mathrm{g}$ if the equality $g=\operatorname{rank} \mathrm{V}$ holds．

References.

[1] V.A. Kolyvagin, On the structure of Shafarevich-Tate groups. Proceedings of USAUSSR Symposium on Algebraic Geometry, Chicago, 1989. Springer Lecture Notes (to appear)
[2] V.A. Kolyvagin, Euler systems, Birkhäuser volume in honor of Grothendieck.
[3] V.A. Kolyvagin, On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves, Proceedings of ICM-90 in Kyoto (to appear).

