
On the structure of Selmer groups

by

V.A. Kolyvagin

Max-Planck-Institut
für Mathematik
Gottfried--elaren-5traße 26
D-5300 Bonn 3

Federal Republic of Germany

MPI/90-70

Steklov Mathematical
Institute
Vavilova 42
117966 MOBCOW, GSP-1

USSR



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



On the stmaure of Selmer groups

by

V.A. Kolyvagin

The paper contains sorne applications or explicit cohornology classes (which the

author has constructed earlier using Heegner points) to the theory of SeImer groups of a

modular elliptic curve. Moreover sorne generalizations oI Selmer groups are considered.

The case when the Heegner point over the imaginary-quadratic field has infinite

order was studied in the work [1]. In fact, the theory oI [1] is valid under a more general

assumption which is, hypothetically, always true and discussed below.

For the convenience oI the reader, we recall in part 1 the definitions of the Selmer

groups and of our explicit cohomology classes, and formulate sorne of our results. The

second part is essentially based on the work [1] and requires sorne familiarity with it. The

second part contains proofs of results for t E B(E) (see below for notations), formulations

01 corresponding results for t i B(E) , and same global consequences of these results.

1. SeImer groups Md explicit cohomology classes.

Let E be an elliptic curve aver the field of rational nurnbers ~. For an arbitrary

abelian group A and a natural number M we let AM denote the maximal M-torsion

subgroup oI A. We use the abbreviation AlM = AIMA . Let EM = E(fDM . If R is

same extension of q, then the exact sequence 0 --+ EM --+ E(Ji) --+ E(Ji) --+ 0 induces
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the exact sequence

(1)

If L/R is a Galois extension, then G(L/R) denotes its Galois group, H1(R,A):=

H1(G(R/R),A) for a G(R/R)-module A, H1(R,E} ;= H1(R,E(R) .

Now Iet R be a finite extension of ~ . For a pla.ce v of R, we let R(v) denote the

corresponding completion of R, for x E H1(R,EM) ,x(v) denotes its natural image in

H1(R(v),EM) . The Selmer group S(R,EM) C H1(R,EM) , by definition, consists of all

elements x such that for all places v of R, x(v) EE(R(v»/M . We recall that the

Shafarevich-Tate group ill(R,E) is ker(H1(R,E) -----t n H1(R(v),E)) , so (1) induces
v

the exact sequence:

o---t E{R)/M ---t S{R,EM) ---t JJl{R,E)M ---t 0 .

By the weak Mordell-Weil theorem, the SeImer group S(K,EM) is finite, by the

Mordell-Weil theorem, E(R) ~ Fxllrank E(R) , where F ~ E(R)tor is finite,

o~ rank E(R) E II .

It is conjectured that ill(R,E) is finite. Qnly recently Rubin and the author

proved this conjecture in some cases. I shall give some examples below.

We suppose further that E is modular. Let N be the conductor of E,

i: XO(N) --+ E be a modular parametrization. Here XO(N) is the modular curve over

~ which parametrizes isomorphism classes of i80genies of elliptic curves with cyclic kernel

of order N. We note that, according to the Taniyama-Shimura-Weil conjecture, every

elliptic curve over ~ is modular.
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We now define explicit cohomology classes, we start from the definition of Heegner

T = 1im E be the
t n

...
Tate-module and (/ = (/ 8 7lf. . We let B(E) denote the set of odd rational primes

which do not divide the discriminant of (/ and for which the natural representation

points. Let K = ~(..[TJ) be a field of discriminant D such that 0 > D == [J (mod 4N) ,

D f -3,-4 . We fix an ideal i1 of the ring of integers 01 of K such that 01/i1 ~ 7l/N71

(such an ideal exists because of the conditions on D). H .-\ EIN, let K.-\ be the ring class

field of K of conductor .-\. It is a finite abelian extension of K . In particular, K1 is the

maximal abelian unramified extension of K. If (.-\ ,N) = 1 , we let 0.-\ = Tl + .-\ 0 1 '

i.-\ = i1 n 0.-\, z.-\ will be the point of XO(N) rational over K.-\ corresponding to the

class of the i80geny (/0.-\ ---+ (/i.-\ 1 (here i'i1 J 0.-\ is the inverse of i.-\ in the group of

proper O.-\-ideals). We set y~ = ;(z.-\) E E(K.-\) , PI E E(K) is the norm of Y1 from

K1 to K . The points y.-\, PI are called Heegner points.

Let () be End(E), Q = () 8 ~ . Let f. be a rational prime,

p : G(QlQ) --+ Aut ... T is surjective. It is known (from the theory of complex multiplica-
(/

tion and Serre's theory, resp.) that alm08t all (&11 but a finite number of) primes belong to

B(E) . For example, if (/ = 7I. and N is squarefree, then t ~ 11 belongs to B(E) accor

ding to a theorem of Mazur.

In my paper "Euler systems" I proved that rank E(K) = 1 and ill(K,E) ia finite

when PI has infinite order. Then, in the paper "On the structure of Shafarevich-Tate

groups" I determined the structure of ill(K,E) for t EB(E) , under the same condi
t m

tion. Moreover, our explicit cohomology classes give information on the structure of

S(K,E n) under some more general condition (which, hypothetica.lly, always holds). It will
t

be diSCU8Sed later, now we continue with the definition of the cohomology classes.

We fix a prime t E B(E) . Fnrther in the paper we use the notation p or Pk'

where kEIN, only for rational primes which do not divide N, remain prime in K and

satisfy n(p):= ordt(p+l,ap) > 1 ,where &p = p+l-[~(71/p)] , ~ is the reduction of E
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moduln p. Für natural r we let Ar = {Pr" Pr} denote the set of all products of r

distinct such primes. The set A0 ) by definition, consists only of PO:= 1. We let

A= U Ar. H r > 0, ~ E Ar , we let n(~) = mi n n(p) , n(pO):= (D •

r~O p I~
The set T of explicit cohomology classes consists of T ~,n E H1(K,EM) ,where ~

runs through A, 1 ~ n ~ n(~), M = t n. To define these note that the condition

t E B(E) implies the triviality of E(KA)pm . So, by a spectral sequence, the restriction

1 1 G(K~/K)
hOIDomorphism res: H (K)EM) --t H (K~,EM) is an isomorphism and T~,n is

uniquely defined by the value res( T, ) which we will now exhibit.",n
We need more notations. We use standard facts on ring dass fields. H 1 < ~ EIN,

then the natural homomorphisID G(K )./K1) --t TI G(K /K1) is an isomorphism and
pl~ p .

we also have G(K),/K)./p) --+ G(Kp/K1)~ ll/(p+l) .

For each p, fix a generator tp E G(Kp/K1} and let tp also denote the correspon

p

ding generator of G(K ).IK )./p) . Let Ip = ~~ jt~, IA = rJpI Ip E II [G(K),/K1)] . Let

J=l
K be the composite of K), I when ~ I runs through the set A. We let J,\ = !; g, where

g runs through a fixed set of representatives of G(K/K) modulo G(K/K1), g is the

rcstriction of g to K ~ ,so {g} is a set of representatives of G(K),/K) moduln

9(K)./K1) . Let P). = J ),I),y), E E(K~} . Then

res( T). ,n) = P), (mod ME(K~)) .

Now we formulate some of our results on the invariants of S(K,EM) , see theorems 2,

3 of the second part for more general statements.

There is a bijective correspondence between the set of iSOIDOrphisID classes of finite

abelian t-groups and the set of sequences of nonnegative integers {ni} Buch that i ~ 1 ,
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n·
ni ~ ni+l , ni = 0 for all sufficiently large i. Concretely, {ni} +--+ dass of lll/t 1 .

i

For a group A we let Inv(A) denote the sequence of invariante of dass A, we call it the

sequence of invariants of A .

Let L(E,s) be the canonical L-function of E over ~, g = ords=lL(E,s) ,

€ = (_l)g-l .

If G is a group of order 2 with generator u and A is a 7It [G] -module, then for

11 E {O,l} we let All denote the submodule (1-(-1)11€u)A . Then A is the direct aUlD

of A0 and Aland u acta on All via multiplication by (_1)v-l € •

Let SM = S(K,EM), G = G(K/~) . We are interested in the sequence Inv(S~).

For the formulation of the results we need same more notations.

Let m I (~) be the maximal positive integers such that P~ Epm I (~)E(K~) . We let

m(~) = m I (~) if m I (~) < n(~), m(~) = CD otherwise. Let mr = min m(~) when A

m
runs through Ar. In particular, t 0 is the maximal power of t which divides P 1 ' so

roo < CD ~ P1 has infinite order. Let m = mi n m .
r ~O r

The condition m < CD is equivalent to the condition T f {O} . It is the generaliza-

tion of the condition that P1 has infinite order.

Conjecture A. T:/= {O}

Assu.me for the following that conjecture A is true for K. Let f be the minimal r

such that IDr < CD • In particular, f = 0 <==> P1 has infinite order.

We let (r) = 1 if r is odd, (r) = 0 if r is even. We have
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Theorem B. The inequality mr ~ mr+1 holds for r ~ 0 . Let n > mf' c = f+v, where

v E {O,l} as usua!. Then

Inv(5~cl) =

~ mc-mc+l,mc-mc+l,···,mc+2k-Dlc+2k+l,mc+2k-Dlc+2k+l'···
c values

where k = 0,1,... Moreover,~ = n, ... ,n if v = 1 .

c values

For further results on the ordinary Selmer groups see the section 2 after the proof of

theorem 3.

2. An application of thc theory [ll.

We use the notations and definitions !rom [1] with those already defined here.

First we note that all wordings and proofs in the basic text of [1] (§ 1-4) remain

valid in the following situation provided one changes notations as is to be explained. We

can use instead of the condition m(l) < 00 (or, equivalently, that the Heegner point PI

has infinite order) the weaker condition that there exists ~O E AU , where u ~ 0 , such

that 2m(.AO) < n(.AO) . Then we let PO be same such .AO' to be fixed throughout, and

redefine Ar to be set of products of the form POP1,,,Pr with distinct primes Pl'".,Pr

that da not divide PO' We let AV denote (1-{-I)v+u EO')A, where v = 0 or 1, as

UBUal. Then consider X = Sp p (p)_ ( )/(7I.t T ()) (see § 2 of [1] for the
0' O,n 0 m Po PO,n Po

definition of 5, ~ ). In the C&se Po = 1, S11 = !!m 511 and SII =A,U,n ,,00 ,~ "n , ,n
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SI n = SM is the ordinary SeImer group of E over K ofleveI M = t n .,
The notations n, n ' , n I I are used only for natural numbers ~ n(pO) . Of course,

the definitions in [1] must now be adapted to these new notations; for example,

IDr = mr(PO) . Instead of the group Si n the group Sp p n must be used.
, 0' 0'

In the sequence (24) the group (E(K)/M)1I must be replaced by the group

71/M' TpO,n' ,where n' = n+mO. To use (38) with the isomorphism ~ it is necessary

to require that 3m(PO) < n(pO) . When Po = 1 we return to the original setup.

Now generalize this further: We fix Po for which we require only that the sequence

{mr} becomes eventually finite, mr < III for some r ~ 0 . Or, equivalently, we require

that {T~ n} *{O} (~ runs through the set A). Then we let f denote the minimal r,
such that IDr < (J) and if Po > 1 we require moreover that 9mf < m(pO) ,where 8 =2

or 3 (as may be needed).

If A is a finite 7It -module, then, for j ~ 1, {invj(A)} denotes the sequence of

invariants of A (see section 1 above). Finally (i) denotes the representative of i(mod 2)

in the set {O,l}.

The following is a generalization of theorem 1:

Theorem 2. Let r > f, n > mf' n ' =n+mf. Then the set n~ I is nonempty. More

over, for all wE n~7l, there exists Pr such that the sequence (w,Pr) En~ I . Let

wE Or I • Then, for 1 ~ j ~ r, # tp ( T 1.1· l) ) = # T,.,' 1) and if 11 E {O,1} ia
n Pj,n W\.r ,n "".r ,n

such that r > f+1I , then, for l+lI+f ~ j ~ r, c = f+1I , we have
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The proof duplicates the proof of theorem 1 of [1] (the case f = 0 ) if we note that
k v v -Vk ~ f 3 ..\ EA such that m(..\) = mk and # T, = invk+l(S ) for v = 0 and

",n PO,PO,n

v = 1 . This is a consequence of the analog of [1] proposition 8 (proved analogously)

where condition 3) is replaced by the condition

# cp~,n/(mod t 6,n / ) = # T6,n' •

Furthermore we get

3 2f+l (.(
Theorem 3. POPr,·P2f+l E An I such that for 1 I f+l ordt. ;pf+l'n I (1]i) = mf ,

where 1], = Tp P . Then the 8ubgroup of S( f+ 1) generated by 1]. is iso-
I oPj''' i+f-l,n I Po ' pO,n I

f+l

morphic to the group l 111M, In particular, for 1 ~ j ~ f+l we have that

i=l
inv.(S(f+l) )=n.

J PO' pO,n

I I I EAf IProof. Let 1]1 = POP1",Pf mr+1 is such that m('11) = mf . By means of [1], propo-

sition 8 we can, by induction, replace pi "",Pf by Pl' .. ·,Pf such that '11 = PO.. ·Pf EA~ I

and m('11) = mf (this step is trivial when f = 0 ). Then we again use [1], proposition 8

(which is true for r = k as well, see the proof) and by induction find a suitable '1', Be-
l

cause of the proposition 1 and (for f > 0 ) the condition T, I = 0 V..\ EAf;l it then
",n n

follows that 1]. ES( f+1) (we recall that complex conjugation acta on T, I as multi-
I Po ' pO,n ",n

plication by (_l)r E if ..\ EAr I ). We set R.. = cp I (1].) for 1 Si, j ~ f+l . Then
n IJ pf+j,n 1

Rij = 0 for j < i because (see § 1) fJp(T..\,n I) = 0 when p 1..\. We have

Rjj E t
IDf

(71/M/ . Ir llVJi = 0 , then by applying to this identity the characters CPPf+j

for j =1,... ,f+l we obtain that Qj == O(mod M) . •
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Hence theorems 2 and 3 fully determine the sequence of invariante for S( f+ 1) .
PO' pO,n

Further we suppose that Po = 1 and {TA,n}:#: {O} . The group SV = ~ S;n ia

v
isomorphie to a dired sum of (~fJll,)r and a finite group $1/. The group SV eoin-

t n

eides with the maximal t n-torsion subgroup of SV and with the Selmer group of level

t n for EV over ~. Here EV ja E if (_1)v+1 E = 1 ,and EV ja the form of E over

K otherwise. Apriori, rank EV(~) ~ r V
, and equality is equivalent to the statement that

ill(~,Ev) ia a finite group, which will then be isomorphie to $v. We havetQ)

Theorem 4. r(f+1) = f+l , r(f) ~ f and f-r(f) ja even. For j ~ l+v+f

invj-r(c)($(c)) = m(j,(c)}-1-m(j,(c)) .

Proof. Because of theorems 2, 3 it is enough to explain why f-r(f) ia even. From theorem

2 we have that the (parity of nonzero invanants of $(f) with index ~ f+l-r(f) ) is even,

but the common parity of nonzero invanants of ~f) is even because of the existenee of a

non-degenerate altemating Cassels form on ~f). Henee f-r(f) js even.

Let gV = ords=lL(Ev,s) . We recall that aceording to the eonjeeture of Bireh and

v
Swinnerton-Dyer, gV = rank EV(q) . Since (-l)g = -E or E aeeording as EV = E or

EI/ = form of E over K, we have from theorem 4:

Theorem 5. r V-gv ia even for v = 0 ud v = 1 . •
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H f and m are known, then we have an algorithm (see the beginning of the paper,

I f+land § 4 of [1]) for computing some n and q = Pf+l...P2f+l EAn I such that

n l > 3m(q) , mrin mr(q) =m, with a parametrization of p = S(f+l), whereq,q,n

n = n l -m(q) , by finite linear combinations of elements of {Tl I}. Moreover such a
lI,n

procedure can be combined with the selection of PO."Pf (PO = 1) such that

PO...P2f+l EA;!+l and ordtRii =ordt(m(fJi») =n'-n for 1 ~ i ~ f+l. Then (see the

proof of theorem 3) the group ~ CS~f+l) generated by '7i is isomorphie to the group

f+l f+l
\ 11/M and its pairing with \ 1l/M cp(f+l) is non-degenerate. Hence SM(f+l) is the
l l p'+f,n. 1 . 1 11= 1=

direct sum of ~ and 11' = S~f+l) n JI ~ ~f+l) . The parametrization for JI in-

duces a parametrization for 11' and, as a consequence, we obtain its complete structure.

In particular, we have an algorithm for computing the sequence of invariants for $(f+l).

By using proposition 9 of [1] (with the condition n > mO replaced by n > mr- 1 )

we have that for Pl"'P' EAj with m(Pl"'p,) = m < n, the characters cp( j) ,,..,cp(j)
J n J Pl,n Pj,n

generate Hom(S~j),1l/M) . So we can apply this to the effective solution of the problem

when a principal homogeneous space over E has a rational point, in the same vein as at

the end of [1] for the case f = 0 .

We recall that we considered f., EB(E) (see section 1 for the definition of B(E).

For t t B(E) the theory in [1] and above holds with modifications in the manner of

[2] . Let f. now be an arbitrary rational prime. In panicular, T..\,n E H1(K,EM) is de

fined for all ~ EAn+ k 1),
o

1) In [3] T..\ n ia defined for all ~ EAn as in the case f. E B(E) .,

where
kO/2

t E(K)t (I) = 0, K the composite of K~ fot &11 ..\ EA (kO = 0 for
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t E B(E) ).

We let UM ( E(K)/M, H, S (H denote respectively the groups E(K)tor/M,

!!!!} H1(K,EM), ~ S(K,EM) . We have the exact sequence 0 --t UM --t H1(K,EM) --t

HM --t E(K)M --t 0 and we identify the group H1(K,EM)/UM with its image in HM .

We recall that, for t EB(E) , E(K)t m= 0 and we identified H1(K,EM), S(K,EM)

with HM , SM respectively. We let 'T~,n be the image of T~,n in HM , and for

n ~ 1, k ~ kO' r ~ 0, V~ k is the subgroup of HM generated by T~ n when ~ runs, ,
through A~ k . We say that {T~ n} is astrang nonzero system if 3 r ~ 0 such that, ,

Vk ~ ko3 n IV~ k f 0 ., (2)

There exists k(r) ~ kO such that the condition (2) is equivalent to the condition that

3 n IV~,k(r) *' 0 . We know that, for t EB(E), k(r) = 0 satisfies this property. We now

formu1ate

Canjecture 1. For all t, {T, } is astrang nonzero system.I\,n

For t E B(E) , this is equivalent to the statement that {T~ n} f 0 .,

Coniecture 2. m*,O for only a finite set of primes in B(E).

Apparently, theorem 4 ia closely connected with the Birch and Swinnerton-Dyer

conjecture (see [1] for the case f = 0 ). For example, it wou1d be natural to find that f+l

is equal to the order of zero at s = 1 of an t-adic L-function for E(f+l) (when such a

function exists), and (more difficult 1) to find that f+l = g(f+l) .
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HAis a 1l [1,u] -module and v E {O,!} , then AV := {b E AI ub =

(_I)v+l Eb} .

v
Let sn = t nS , so snv

~ (flt/~t)r . Let l. E B(E). Because of the relation

tkr~,n+k = rtn (which is true for an arbitrary t) and the relation

t mf+l~f+1) = 0 , it then follows that V~ m CSO~f+l) . From theorem 3 we have
, f+l

that Vk ~ mf V~ k = t mfsO(f+l) . For arbitrary t 3 kl' k2 such that for k ~ k1J

t~sn(f+l)(Vf csn(f+l)
M n,k M .

InterJX)lating the situation of the case f = 0 we formulate

Conjecture tao There exist v E {O,l} and a subgroup V ((E(K)/E(K)tor)V such that

I ~ rank V :: v(mod 2) and for all sufficiently large k and a1l n, one has

V:,k = V(mod M(E(K)/E(K)tor)) ,where a = rank V-I.

Conjecture 3, by definition, is the union V t of conjecturesf..3 with a universal V

(independent of f..). We note that such V ia uniquely determined (by the usual

description of a lattice over 11 by its completions) if it exists.

For the following implications we use the arguments above with the theorems 2-5 ..
(with a natural modification for f.. ~ B(E) ).

First, conjecturet 3 implies that {T.A,n} is a strong nonzero system with f = a (for

the last statement we use the propositions 1, 2, 5 cf [1]), rank EV(Q) = rank V ,

rl - v < rank V J ill(~,Ev) is finite. Moreover, ie t E B(E) J then ve 7/.{J =tU) ~
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mf 1/ V 2mf Mf 1/
t (E (~) e ll D )) [ill(q,E) ] It ,t ill(q,E) = 0, rank EV(Q) == gV ==

.{.. t m t m

.J ) I-v I-v uf )V\mod 2 ,r :: g == 1-,,\mod 2 .

Conjecturet.3 ia equivalent to the statement: {T~ n} ia a strong nonzero system,
and ill(Q,E(f+l)) is finite.

t.m

We note that 3 k3 ' which js zero for t. EB(E) , such that if the condition from

conjecturet 3 holda with sorne k' ~ k3 then it holdB for all k ~ k' .

From conjecture 3 we have, with the union of consequences from conjectureSt 3 , that

conjecture 2 holds and ill(~,E&I) is finite. Conjecture 3 ja equivalent to the statement:

conjectures 1, 2 hold, f+l js independent of t, ill(q,E(f+l)) is finitej for only a finite

set of t E B(E) inv 1 $1-1/ f O. In particular, conjecture 3 holds when
f+l-r -&I

conjectures 1, 2 hold and ill(K,E) ja finite.

Of course, for the case that the Heegner point PI has infinite order (f=O) con

jecture 3 holds with v = 1 , V = llP1(mod E(K)tor) .

Recall that g = ards=1L(E,s) . It ja known that there exiata an imaginary quadratic

field K such that gO+gl--g = 0 or 1 according as g ia even or odd. For g ~ 1 it is

known that rank E(~) = g and ill(Q,E) is finite. Let g > 1 and for K as above

v' v' 1 v'
g = g . Then ords=lL(E,K,s) = g +g - > 1 ,so PI has finite order by the for-

mula of Grass and Zagier. Suppose that for K conjecturet 3 holds for same t. Then

I-v' I-v' v
1/ = v' because otherwise g = f+l > 1 but g ~ 1 . So we have for E = E

all consequences of the conjecturet.3 (see above), in particular, that rank E(~) = rank V

and ill(~,E) js finite. If conjecture 3 holds for K, we also have thai ill(~,E) ja
t m

finite and rank E(Q) == g(mod 2) . Of course, rank E(Q) = g if the equality g = rank V

holds.
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