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§O Introduction

In 1956 Weil suggested a Riernannian rnetric on Teichmüller space

and in [1] Ah~fors proved it was Kähler, Sornewhat laterhe showed that

it had negative Ricci and holornorphic sectional curvature. In [7]

the author showed that the sectional curvature is negative. In 1982

we proved the existence of a potential function for this rnetric.

In the ensueing years this result has been used by several authors

[5],[8]. Recently [6] it was used in Jost's own computation of the

curvature of Teichrnilller space, and was rediscovered by Wolf [8]

in his 1986 thesis. The growing interest in this result makes it

worthwhile to have a proof in the literature.

§1 Preliminaries

Let M be an eriented cempact, aM = lf> * and let M-1 be the

Tarne Frechet manifold [2] of Riemannian metries of constant negative

curvature on M. The tangent space of

consists of those (0,2) tensors h

M_ 1 at a metric, g,Tg M_1

on M satisfying the equation

(1.1) -b.(trgh) + ÖgÖgh + ~(trgh) = 0

where tr h = gijh.. is the trace of h w.r.t. the rnetric tensor
9 1.J

g .. , 0 Ö h is the double covariant divergence of h w.r.t. 9
1J 9 9 .

and b. is the Laplace-Beltrami operator on functions. For example

see [2] for details.

Let Vo be the Tarne Frechet Lie group [2] of diffeomorphisms

of M which are homotopie to the identity. Then Vo acts on

* the case with boundary follows analogously
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M_ 1 by pull back, i.e. f ~ f*g. Teichmüller space is then

defined as

( 1 • 2 )

co
In [2],[5] we show that T(M) is a C finite dimensional rnani-

fold diffeomorphic to mq , q = 6 (genus M) - 6. The L2-rnetric on

M_
1

is given by the inner product.

( 1 • 3 )

where

fram

-1
H = g h,

hand k

-1K == g kare

via the metric

the (1 :1) tensors on M obtained

g, or "by raising an index", i.e.

H~
J

ik
== g hkj

and similarly for K. Finally ~g is the volume element induced on

M by g and the given orientation.

The inner product (1.3) is Vo invariant. Thus Va acts

smoothly on M_
1

as a group of isometries with respect to this metric,

and consequently we have an induced metric on T(M) in such a way

that the' projective map' TI : M_1 ~ M_ 1 !VO becomes a Riemannian

subniersion [ 2 ]. In [ 3] it is shown that this indueed metric is

precisely the metric originally introduced by Weil.

Let <,> be the induced metric on T(M). We ean eharaeterize

< , > as foliows. From [2 ] we can show that given g E M_ 1 every

h E T M 1 ean be ·uniquely written asg -

( 1 • 4 )

where Lxg is the Lie derivative of g w.r.t. some (unique X) and

h
TT

is a trace free, divergenee free, symmetrie tensor. Moreover the

decamposition (1.4) is L2-orthagonal. Reeall that a eonforrnal

eoordinate system (where g .. = AÖ .. , A some smooth positive
~J ~J

function) is also a complex holamorphie coordinate system. In this

system

where Re i5 "real part" and ~(z)dz2 is a holomorphic quadratic
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differential·. In faet traee free, divergenee free symmetrie two

tensors are preeisely the real parts of holomorphie quadratie

differentials.

Now Lxg is always tangent to the orbit of Va through g.

We say that LXg is the vertical part of h in decornposition 1.4.

Similarly we.say that hTT represents the horizontal part of H..

Given h,k E T [ ] T (M) there are unique horizontal veetors 11,k (T M 1
9 ~ 9 -

such that dn(g)h = hand dn(g)k = k. Then

<h,k>[g] = «h,X»g

Suppose now that go E M_1 is fixed and that S! (M,g) ~ (l1,gO)

is a srnooth cl rnap homotopie to'the identity and is viewed as a

map from M with some arbitrary metrie g E M_ l to M with its

metric.

Define the Dirichlet energy of s by the formula

(1 • 5 )

vlhere 2ldsl = traee ds*ds depends on both 9 and

(1 • 6 )

By the ernbedding theorem of Nash-Moser we may assurne that

(M,gO) is isometrically embedded in some Euelidean mK
• Thus we

can think of S: (M,g) ~ (M,gO) as a rnap into m K and

Diriehlet's functional takes the equivalent form

1 k i i
Eg(S) = -- I fg(x) <'Vgs (x) ,'Vg

S (x»d~g
2 i=1

There is another, equivalent, and useful way to express (1.5) and

(1 .6) using Ioeal conformal cordinate systems g.. = 00., and
~J ~J

(gO) .. = po I I on (M,g) and (M,gO) respectively, namely
~J ~J

1 f [ 2 2--( 1 . 7) Eg (s) = 4' M P ('s (z) ) I S z I + P ( S ( z) ) I S-z I ] d zd z

For fixed g, the eritical points of E are there said to

be harmonie rnaps. The follwing re5ult i5 due to Schoen-Yau [ 9].

Theorem. Given me~rics' 9 and 90 there exi5ts a unique harmonie

map 5(g): (M,g) ~ (M,gO) whieh i5 homotopic to the identity.

Moreover s(g) depend5 differentiallyon 9 in any Hr topology,
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co
r > 2, and i5 a C diffeomorphi5m.

Con5ider now the function

g ----+ E (s(g»g

This function on M_ 1 is V-invariant and thus can be viewed

as a funetion on Teichmüller space.

For fixed g, the eritieal points of E are then said to be

harmonie maps. The following result is due to Sehoen-Yau [9].

Theorem. Given metries g and go there exists a unqiue harmonie

map s(g) (M,g) ~ (M,gO) which is hornotopie to the identity.

Moreover s(g) depends differentiallyon g in any Hr topology,
co

r > 2, and is a C diffeoroorphism.

Consider now the funetion

g ~ E (s(g»g

This funetion on M_ 1 is V-invariant and thus can be viewed

as a funetion on Teiehrnüller spaee. To see this one roust show that

Ef * (s(f*(g»)·= E· (s(g»g g

Let c(g) be the complex strueture assoeiated to g, and

induced by a eonformal eoordinate system for g. For f ( Vo '
f : (M,f*e(g» ----+ (M,c(g» is holomorphic and eonsequently sinee

the eornposition of harmonie maps and holomorphie maps is still

harmonie we rnay eonclude, by uniqueness that

S(f*g) = s(g) 0 f

Since Dirichlet's functional is invariant under complex holamorphie

changes of coordinates it follows imrnediately that

Ef*(g) (s.(g)of) = Eg(S(g»

Consequently for define the
00

C srnooth funetion
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by

E[g] = E (s(g)) .
g

§2 The Main Result

Theorem 2.1 _[gO] is the only critical point of E. The Hessian

of E at [gO] is given by

2......
d E[gO] (h,k) = 2<h,k>

h,k t T[g ]T(M). That is, the second variation of Dirichlet's energy

funetion ais (up to a positive eonstant) Weil-Petersson metrie.

Proof. We begin by eomputing the first derivative dE[gO]. We

again view a map S : (M,g) -->- (M,gO) as a mRp into mk

Consider the two form

We start by proving

Proposition 2.2. If s (M,g) ~ (M,gO) is harmonie the form

~(z)dz2 is a holornorphie quadratic differential on the eomplex

curve (M,C(gO))' and thus Re ~(z)dz2 represents a traee free,

divergenee free symmetrie two tensor on (M,gO). Hence Re-s(z)dz 2

is a horizontal tangent veetor to M_1 a~ 'gO. Finally

h

(2 • 3)

where

..... - 2 ......
dE[gO]h.= - Re«s(z)dz ,h»go

i5 the horizontal 1eft of h ( T (gO) T (M) •

Proof (of 2.2)

We have Diriehlet's funetional

1 k
E(g,s) = 2" I

i=1

i i(\] s ,9 5 )d~
g 9 g

Suppose· 5 is harmonie. Let n denote the second fundamental form
k ~of (M,gO) C lR . Thus for each pE M, Q (p) : T M x T M ---+ TM.

P P P
Let 6 denote the (non-linear) Laplaeian of maps from (M,g) to

(M,gO) and 6 6 denote the Laplace-Betrami operator on functions.

Then if 5 is harmonie we have



6 TROMBA

(2 .4)
2

o = ßS = ßßs + L
j =1

n (5) (ds (e .. ) ,ds (e .. ))
J J

e
1

(p), e
2

(p) on orthonormal basis for

~(z)dz2 will be holomorphic of

..2-(
k Cls i i
L az . ~) = 0

ClZ' i=1
Clz .

But this is equal to

T M with respect to g.
P

where in conformal coordinates

this, in time, is equal to

g.. = a 6.. • By (2 .4) we see that
~J 1.J

2- -
a

k _'.2 . Cls i
L L n~ (s) (ds (e . ) , d 5 (e . ) ). az

i=1 j=1 ] ]

= 2 2 J CIs CI "'
a j~1l L >l (s) (ds (e j ) ,ds (e j ». ox + i>l (s) (ds (e j ) ,ds (ei)' o~}

Sinee n(p) takes values in T ML it follows that both the realp
and irnaginary parts of the expression vanish. Thus ~(z)dz2 is

holomorphic.

ClE
Recall that s is harmonie lff as(g,s)

If we have loeal coordinates represented by

coordinate system

3E
= O. We now compute Clg .

(x, y) E W, then in this

E(g,s) = ~ I fMg(X)<G-19Si,9Si>:rn.2 Idet G dxdy
2,=1

ns i ClS.Q., dS.Q., G { }where v is the veetor (ax-'ay-)' is the matrix gij of g

and < , >:rn.2 denotes the ordinary lR2 inner product and

Idet G dxdy is the loeal representation of d~g. In the following

cornputation we adopt the convention, that summations over the index

.Q., will be understood.

(2 .5)
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where H = {h.. } is the matrix of the symmetries tensor h in
1.J

these coordinates. Here we use the fact that the derivative of
-1 -1 -1 .G~ G is H~ G HG • Suppose we look at this first

derivative in conformal coordinates (gO)" = AO ... Then if n
1.J 1.J

is horizontal the seeond term in (2.5) vanishes (h. is traee free)

and

:::! -

Sinee h 11 = -h22 this is equal to

(2 .6)

Now

. ~ ~

( ~ ~ i ~ ~ ) (dx + d y) 2 = s (z ) cl z 2

is a quadratic differential. But

2Re(F;(z)dz )
2.- 2.-

4 (~). (~)dxdy.
dX dY

·If 5 is harmonie Re(s(z)dz 2 ) i5 a traee free divergence free

tensor. Let us compute

This inner product is given locally by the expression

(2 .7)

where k c is the coordinate representative of the two tensor
2 a

F;(z)äz . Therefore

Thus in conformal coordinates (2.7) is equal to
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f -+{k h }dxoy2". ac ae

Sinee 'k 11 ,= -k22 ' h11 = -h 22 this equals

Cornparing this with expression (2.6) establishes the forrnula

aE ~ 2 ~ag(go,s)n :. -«Re E;(z)dz ,n» .
go

However E[g] ~ E(g,s(g)). Sinee

This irnrnediately irnplies that

5 (g) is harmonie

whieh establishes 2.2. We should remark that this formula teIls us

that the gradient of Diriehlet's function on Teiehrnüller spaee i5 ,

represented as a holornorphie quadratie differential.

To eomplete theorem 2.1 'we need to compute a second derivative.

Again working loeally and thinking of the map s as now being

fixed we see that for h,k horizontal

-1 -1 -1 9" Q., ,-,,---=-J<GO KGO HGO 'V 5 , V5 >:Ft2 Idet GO dxdy

-1 -1 -1 9" 9"
+ J <GO HGO KGO V5 , IJ s >lR2 Idet GO dxdy

and in eonformal coordinates this is equal to

Now at the point go' the unique harmonie map 5 is the

identity rnap of (M,gO) to itself. Sinee (M,gO) is isomrnetrically
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(2 .8)

inunersed in m.K , s (gO) *GJRK = go i where GmK is the Euclidean

metric on m.K . But if go is expressed in local conformal

coordinates .this says exactly that

Thus at the point go ' we see that

a~E 2
a9 2 (go ' i d) (h, k) = h:" (h 11k11 + h12k12) dxdy

Since k" = -k22 , h" = -h22 , applying formula (2.7) for the

Weil-Petersson metric we see that

a2E .---2 (go,ld) (n,k) = 2«n,k»
ag

However we are interested in the map

E[g] = E(g,s(g)).

Clearly

aE aE ~ aE ~
ag[g]h = ag(g,s(g))h' + äS(g,s(g)) ·Ds(g)n

-where Ds(g) represents the derivative of s with respeet te g.

However the secend term is iaentically zero sinee s(g) is

harmonie implies ~~(g,S(g)) so. Therefore

a2E a2
E---2 [gO] (h,k) = ---2 (gO,id) (n,k)

·ag ag

a2
E

+ agas (go ,id) (h,DS (go) k)

and by 2.8

Theorem 2.1 will now follow imrnediately from the following.

Proposition 2.9. DS(gO)h = 0, if h is trace free divergence free.
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Proof. In order to compute this derivative we write down the

general equation of a harmonie map from a Riemanian manifold

(M,g) to a Riemannian manifold (Nig). Namely f: (M,g) ~ (N,g)

is harmonie if in loeal coordinates, f = (fl , •.• ,in ), n = dirn N

(2.10)

where

1 a ij/ä a .
fll} + ro. afY af ß ij

0- ax. ax. ax. g =
Ig ~.g g yS

J ~ ~ J

are the Christofel symbol' of the rnetric 9 •

If dirn N = 2 = dirn M· and we express (2.10) in local conformal

coordinates g .. = 1.0 .. and g .. = po .. we see that (2.10) is
~J ~J ~J ~J

equivalent to

(2.11)

where (log P)f
= p (f)

P I( f)

In the case under consideration 9 is the fixed rnetric go on M.

We now think of fll as depending on g, and let wo. = Dfll(h) be the

linearization of fa in the direction h. We now differentiate

equation (2.10) w.r.t. g in the direction h. We first make three

important observations. The Christofel symbol r~ are fixed and

do not depend on g. Second the derivative of;G in a direction

n is given by h~ tr h/Ig
,g

If h is trace free this d.erivative vanishes. Thirdly, the
iJ' ~ ~ - -iJ'derivative of g ,vg in the direction n is h ~ -h .

Taking the derivative of ,(2.10) w.r.t. g in the direction

h, evaluating it in conforrnal coordinates (gO)ij = AO ij at

f = id, and using formula 2.12 for the cornplex form of

w = w + iW
2

we see that

(2.12) w - +zz

Lemma 2.13 If 11 is trace free and divergence free,the expression

(2.14)

Before proving 2.13 let us see how it implies proposition 2.9.
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Using 2.12 we see that the linearization w = DS(gO)h satisfies

w - + (log A) w- = 0zz z z

or

Now this .implies that

Integrating by parts we further see that

J
2 -AIWZI dz A dz = 0 .

Therefore wz = 0 and consequently w

field on (M,c(gO)). Since(genus M) > 1

w iI 0 concluding 2. 9.

is a holomorphic vector

this clearly implies that

To prove lemma 2 • 13 we note that

a 1 dA O. dA O. dA o.. }r .. ::: 2I{ ilx
j

+ dXi
- dXa~J 1.a Ja ~J

and that Flaj 1 .....
Since n is divergence free d h 0= I h Ctj • dX j

=aj
and 50

1..... Cl A
= - - h,3 aj ax

t\ j

Therefore expression 2.14 equals

1 dA . h ' 1 {~ O. dA o. dA
°ij} h ..0 dX. aj +

2A 3 + - axdX. ~a dX. Ja ~JJ J ~ a

1 dA h . +
1 dA Fi' . 1 dA n. 1 dA h .._.

dX. 2A 3 ~ +
2A 3 dX. -

2A 3 äXA3 aJ CtJ ~Ct ~~

J J ~ a

Clearly the surn of the first three terms i8 zero and since his>

trace free the fourth also vanishes. This completes lemma 2.13

and this paper.
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