ON A POTENTIAL FUNCTION FOR THE

WEIL-PETERSSON METRIC ON TEICHMÜLLER

SPACE

by

A.J. Tromba

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3

1

MPI 87-3

ON A POTENTIAL FUNCTION FOR THE WEIL-PETERSSON METRIC ON TEICHMÜLLER SPACE

A.J. Tromba

§0 Introduction

In 1956 Weil suggested a Riemannian metric on Teichmüller space and in [1] Ahlfors proved it was Kähler, Somewhat later he showed that it had negative Ricci and holomorphic sectional curvature. In [7] the author showed that the sectional curvature is negative. In 1982 we proved the existence of a potential function for this metric. In the ensueing years this result has been used by several authors [5],[8]. Récently [6] it was used in Jost's own computation of the curvature of Teichmüller space, and was rediscovered by Wolf [8] in his 1986 thesis. The growing interest in this result makes it worthwhile to have a proof in the literature.

§1 <u>Preliminaries</u>

Let M be an oriented compact, $\partial M = \phi^*$ and let M_{-1} be the Tame Frechét manifold [2] of Riemannian metrics of constant negative curvature on M. The tangent space of M_{-1} at a metric, $g_{,}T_{g}M_{-1}$ consists of those (0,2) tensors h on M satisfying the equation

(1.1)
$$-\Delta(tr_{g}h) + \delta_{g}\delta_{g}h + \frac{1}{2}(tr_{g}h) = 0$$

where $\operatorname{tr}_{g} h = g^{ij}h_{ij}$ is the trace of h w.r.t. the metric tensor g_{ij} , $\delta_{g}\delta_{g}h$ is the double covariant divergence of h w.r.t. g and Δ is the Laplace-Beltrami operator on functions. For example see [2] for details.

Let \mathcal{D}_0 be the Tame Frechét Lie group [2] of diffeomorphisms of M which are homotopic to the identity. Then \mathcal{D}_0 acts on

* the case with boundary follows analogously

 M_{-1} by pull back, i.e. f \rightarrow f*g. Teichmüller space is then defined as

(1.2) $T(M) = M_{-1}/D_0$

In [2],[5] we show that T(M) is a C^{∞} finite dimensional manifold diffeomorphic to \mathbb{R}^{q} , $q \neq 6$ (genus M) - 6. The L₂-metric on M_{-1} is given by the inner product.

(1.3) <>_{g} =
$$\frac{1}{2} \int_{M} trace (HK) d\mu_{g}$$

where $H = g^{-1}h$, $K = g^{-1}k$ are the (1:1) tensors on M obtained from h and k via the metric g, or "by raising an index", i.e.

$$H_j^i = g^{ik}h_{kj}$$

and similarly for K. Finally μ_g is the volume element induced on M by g and the given orientation.

The inner product (1.3) is \mathcal{D}_0 invariant. Thus \mathcal{D}_0 acts smoothly on M_{-1} as a group of isometries with respect to this metric, and consequently we have an induced metric on $\mathcal{T}(M)$ in such a way that the projective map $\pi : M_{-1} \longrightarrow M_{-1} | \mathcal{D}_0$ becomes a Riemannian submersion [2]. In [3] it is shown that this induced metric is precisely the metric originally introduced by Weil.

Let <,> be the induced metric on T(M). We can characterize <,> as follows. From [2] we can show that given $g \in M_{-1}$ every $h \in T_{\alpha}M_{-1}$ can be uniquely written as

$$(1.4)$$
 h = h^{TT} + L_Xg

where $L_X g$ is the Lie derivative of g w.r.t. some (unique X) and h^{TT} is a trace free, divergence free, symmetric tensor. Moreover the decomposition (1.4) is L_2 -orthogonal. Recall that a conformal coordinate system (where $g_{ij} = \lambda \delta_{ij}$, λ some smooth positive function) is also a complex holomorphic coordinate system. In this system

$$h^{TT} = Re(\xi(z)dz^2)$$

where Re is "real part" and $\xi(z)dz^2$ is a holomorphic quadratic

differential. In fact trace free, divergence free symmetric two tensors are precisely the real parts of holomorphic quadratic differentials.

Now $L_X g$ is always tangent to the orbit of \mathcal{D}_0 through g. We say that $L_X g$ is the <u>vertical</u> part of h in decomposition 1.4. Similarly we say that h^{TT} represents the <u>horizontal</u> part of H. Given $h, k \in T_{[g]}^{T}(M)$ there are unique horizontal vectors $\tilde{h}, \tilde{k} \in T_{g}^{M}_{-1}$ such that $d\pi(g)\tilde{h} = h$ and $d\pi(g)\tilde{k} = k$. Then

$$\langle h, k \rangle_{[g]} = \langle \langle \widetilde{h}, \widetilde{k} \rangle \rangle_{g}$$

Suppose now that $g_0 \in M_{-1}$ is fixed and that $s!(M,g) \longrightarrow (M,g_0)$ is a smooth C^1 map homotopic to the identity and is viewed as a map from M with some arbitrary metric $g \in M_{-1}$ to M with its g_0 metric.

Define the Dirichlet energy of s by the formula

(1.5)
$$E_{g}(s) = \frac{1}{2} \int_{M} |ds|^{2} d\mu_{g}$$

where $|ds|^2$ = trace ds*ds depends on both g and g_0 .

By the embedding theorem of Nash-Moser we may assume that (M,g_0) is isometrically embedded in some Euclidean \mathbb{R}^K . Thus we can think of s: $(M,g) \longrightarrow (M,g_0)$ as a map into \mathbb{R}^K and Dirichlet's functional takes the equivalent form

(1.6)
$$E_{g}(s) = \frac{1}{2} \sum_{i=1}^{K} \int g(x) < \nabla_{g} s^{i}(x), \nabla_{g} s^{i}(x) > d\mu_{g}$$

There is another, equivalent, and useful way to express (1.5) and (1.6) using local conformal cordinate systems $g_{ij} = \sigma \delta_{ij}$ and $(g_0)_{ij} = \rho \delta_{ij}$ on (M,g) and (M,g_0) respectively, namely (1.7) $E_g(s) = \frac{1}{4} \int_M [\rho(s(z)) |s_z|^2 + \rho(s(z)) |s_{\overline{z}}|^2] dz d\overline{z}$

For fixed g, the critical points of E are there said to be <u>harmonic maps</u>. The follwing result is due to Schoen-Yau [9].

<u>Theorem.</u> Given metrics g and g_0 there exists a unique harmonic map $s(g) : (M,g) \xrightarrow{} (M,g_0)$ which is homotopic to the identity. Moreover s(g) depends differentially on g in any H^r topology,

3

r > 2, and is a C^{∞} diffeomorphism.

Consider now the function

 $g \longrightarrow E_{g}(s(g))$.

This function on M_{-1} is D-invariant and thus can be viewed as a function on Teichmüller space.

For fixed g, the critical points of E are then said to be harmonic maps. The following result is due to Schoen-Yau [9].

<u>Theorem.</u> Given metrics g and g_0 there exists a unquue harmonic map $s(g) : (M,g) \longrightarrow (M,g_0)$ which is homotopic to the identity. Moreover s(g) depends differentially on g in any H^r topology, r > 2, and is a C^{∞} diffeomorphism.

Consider now the function

 $g \longrightarrow E_{g}(s(g))$.

This function on M_{-1} is \mathcal{D} -invariant and thus can be viewed as a function on Teichmüller space. To see this one must show that

$$E_{f*g}(s(f*(g))) = E_g(s(g))$$

Let c(g) be the complex structure associated to g, and induced by a conformal coordinate system for g. For $f \in \mathcal{D}_0$, $f : (M, f^*c(g)) \longrightarrow (M, c(g))$ is holomorphic and consequently since the composition of harmonic maps and holomorphic maps is still harmonic we may conclude, by uniqueness that

 $S(f*g) = S(g) \circ f$.

Since Dirichlet's functional is invariant under complex holomorphic changes of coordinates it follows immediately that

$$\begin{split} & \mathbb{E}_{f^{\star}(g)}(s(g) \circ f) = \mathbb{E}_{g}(s(g)) \\ & \text{Consequently for } [g] \in \mathbb{M}_{-1} | \mathcal{D}_{0} \text{ define the } \mathbb{C}^{\infty} \text{ smooth function} \\ & \widetilde{\mathbb{E}} : \mathbb{M}_{-1} | \mathcal{D}_{0} \longrightarrow \mathbb{R} \end{split}$$

4

$$\widetilde{E}[g] = E_{\alpha}(s(g))$$

§2 The Main Result

<u>Theorem</u> 2.1 $[g_0]$ is the only critical point of \tilde{E} . The Hessian of \tilde{E} at $[g_0]$ is given by

h,k $\in T_{[g_0]}^{T(M)}$. That is, the second variation of Dirichlet's energy function is (up to a positive constant) Weil-Petersson metric.

<u>Proof.</u> We begin by computing the first derivative $d\widetilde{E}[g_0]$. We again view a map S : (M,g) \longrightarrow (M,g₀) as a map into \mathbb{R}^k . Consider the two form

$$\xi(z)dz^{2} = \sum_{i=1}^{k} (s_{z}^{i})^{2}dz^{2} = \sum_{i=1}^{k} (\frac{\partial s^{i}}{\partial z})^{2}dz^{2}.$$

We start by proving

<u>Proposition</u> 2.2. If $s: (M,g) \longrightarrow (M,g_0)$ is <u>harmonic</u> the form $\xi(z)dz^2$ is a holomorphic quadratic differential on the complex curve $(M,c(g_0))$, and thus Re $\xi(z)dz^2$ represents a trace free, divergence free symmetric two tensor on (M,g_0) . Hence Re $\xi(z)dz^2$ is a horizontal tangent vector to M_{-1} at g_0 . Finally

(2.3)
$$d\widetilde{E}[g_0]h = - \operatorname{Re} \langle \xi(z)dz^2, \widetilde{h} \rangle_{g_0}$$

where \widetilde{h} is the horizontal left of $h \in T_{(g_0)}^{T(M)}$

Proof (of 2.2)

We have Dirichlet's functional

$$E(g,s) = \frac{1}{2} \sum_{i=1}^{K} \int_{M} g(x) (\nabla_{g} s^{i}, \nabla_{g} s^{i}) d\mu_{g}$$

Suppose s is harmonic. Let Ω denote the second fundamental form of $(M,g_0) \subset \mathbb{R}^k$. Thus for each $p \in M$, $\Omega(p) : T_p M \times T_p M \longrightarrow T_p M^{\perp}$. Let Δ denote the (non-linear) Laplacian of maps from (M,g) to (M,g_0) and Δ_{β} denote the Laplace-Betrami operator on functions. Then if s is harmonic we have

(2.4)
$$0 = \Delta s = \Delta_{\beta} s + \sum_{j=1}^{2} \Omega(s) (ds(e_j), ds(e_j))$$

 $e_1(p), e_2(p)$ on orthonormal basis for $T_p M$ with respect to g. $\xi(z) dz^2$ will be holomorphic of

$$\frac{\partial}{\partial z} \left(\sum_{i=1}^{k} \frac{\partial s^{i}}{\partial z} \cdot \frac{\partial s^{i}}{\partial z} \right) = 0$$

But this is equal to

$$\frac{2}{\sigma} \cdot \sum_{i=1}^{k} \Delta_{\beta} s^{i} \cdot \frac{\partial s^{i}}{\partial z}$$

where in conformal coordinates $g_{ij} = \sigma \hat{\sigma}_{ij}$. By (2.4) we see that this, in time, is equal to

$$-\frac{2}{\sigma}\sum_{i=1}^{k}\sum_{j=1}^{n^{2}}\Omega^{i}(s)(ds(e_{j}),ds(e_{j}))\cdot\frac{\partial s^{i}}{\partial z}$$

$$= -\frac{2}{\sigma} \sum_{j=1}^{2} \left\{ \sum_{i=1}^{\infty} \Omega(s) (ds(e_j), ds(e_j)) \cdot \frac{\partial s}{\partial x} + i\Omega(s) (ds(e_j), ds(e_j)) \cdot \frac{\partial s}{\partial y} \right\}$$

Since $\Omega(p)$ takes values in $T_p M^{\perp}$ it follows that both the real and imaginary parts of the expression vanish. Thus $\xi(z)dz^2$ is holomorphic.

Recall that s is harmonic iff $\frac{\partial E}{\partial s}(g,s) = 0$. We now compute $\frac{\partial E}{\partial g}$. If we have local coordinates represented by $(x,y) \in W$, then in this coordinate system

$$E(g,s) = \frac{1}{2} \sum_{\ell=1}^{K} \int_{M} g(x) < G^{-1} \nabla s^{\ell}, \nabla s^{\ell} > R^{2} \sqrt{\det G} dx dy$$

where ∇S^{ℓ} is the vector $(\frac{\partial s^{\ell}}{\partial x}, \frac{\partial s^{\ell}}{\partial y})$, G is the matrix $\{g_{ij}\}$ of g and $\langle , \rangle_{\mathbb{R}^2}$ denotes the ordinary \mathbb{R}^2 inner product and $\sqrt{\det G}$ dxdy is the local representation of $d\mu_g$. In the following computation we adopt the convention, that summations over the index ℓ will be understood.

$$(2.5) \qquad \frac{\partial E}{\partial g}(g_0, s) \tilde{h} = -\int \langle G_0^{-1} H G_0 \nabla s^{\ell}, \nabla s^{\ell} \rangle \sqrt{\det G_0} \, dx dy \\ + \frac{1}{2} \int \langle G_0^{-1} \nabla s^{\ell}, \nabla s^{\ell} \rangle \frac{\text{trace } H}{\sqrt{\det G_0}} \, dx dy$$

where $H = \{\tilde{h}_{ij}\}$ is the matrix of the symmetries tensor h in these coordinates. Here we use the fact that the derivative of $G \longrightarrow G^{-1}$ is $H \longrightarrow G^{-1}HG^{-1}$. Suppose we look at this first derivative in conformal coordinates $(g_0)_{ij} = \lambda \delta_{ij}$. Then if \tilde{h} is horizontal the second term in (2.5) vanishes (h is trace free) and

$$\frac{\partial E}{\partial g}(g_0, s) \tilde{h} = - \int \frac{1}{\lambda} \langle \nabla s^{\ell}, \nabla s^{\ell} \rangle_{\mathrm{IR}}^2 \, \mathrm{dxdy}$$
$$= -\int \frac{1}{\lambda} \left\{ \widetilde{h}_{11} \left(\frac{\partial s^{\ell}}{\partial x} \right)^2 + 2\widetilde{h}_{12} \left(\frac{\partial s^{\ell}}{\partial x} \right) \left(\frac{\partial s^{\ell}}{\partial y} \right) + \widetilde{h}_{22} \left(\frac{\partial s^{\ell}}{\partial y} \right)^2 \right\} \mathrm{dxdy} \quad .$$

Since $h_{11} = -h_{22}$ this is equal to

(2.6)
$$-\int \frac{1}{\lambda} \left\{ \widetilde{h}_{11} \left[\left(\frac{\partial s^{\ell}}{\partial x} \right)^{2} - \left(\frac{\partial s^{\ell}}{\partial x} \right)^{2} + 2\widetilde{h}_{12} \left(\frac{\partial s^{\ell}}{\partial x} \right) \left(\frac{\partial s^{\ell}}{\partial y} \right) \right\} dx dy .$$

Now

$$\left(\frac{\partial s^{\ell}}{\partial x} - i\frac{\partial s^{\ell}}{\partial y}\right) (dx + dy)^{2} = \xi(z) dz^{2}$$

is a quadratic differential. But

$$\operatorname{Re}\left(\xi\left(z\right)dz^{2}\right) = \left[\left(\frac{\partial s^{\ell}}{\partial x}\right)^{2} - \left(\frac{\partial s^{\ell}}{\partial y}\right)^{2}\right]dx^{2} + \left[\left(\frac{\partial s^{\ell}}{\partial y}\right)^{2} - \left(\frac{\partial s^{\ell}}{\partial x}\right)^{2}\right]dy^{2} + \left[\left(\frac{\partial s^{\ell}}{\partial x}\right)^{2$$

If s is harmonic $\operatorname{Re}(s(z)dz^2)$ is a trace free divergence free tensor. Let us compute

<<Re $\xi(z)dz^2, \tilde{h}>>_{g_0}$.

This inner product is given locally by the expression

(2.7)
$$\frac{1}{2} \int g_0^{ab} g_0^{cd} k_{ac} \tilde{h}_{bd}^{d\mu} g$$

where k_{ac} is the coordinate representative of the two tensor $\xi\left(z\right)dz^{2}.$ Therefore

$$k_{11} = \left\{ \left(\frac{\partial s^{\ell}}{\partial x} \right)^2 - \left(\frac{\partial s^{\ell}}{\partial y} \right)^2 \right\}$$
, $k_{12} = k_{21} = 2 \left(\frac{\partial s^{\ell}}{\partial x} \right) \left(\frac{\partial s^{\ell}}{\partial y} \right)$.

Thus in conformal coordinates (2.7) is equal to

$$\int \frac{1}{2\lambda} \{k_{ac} \tilde{h}_{ac}\} dx dy$$

=
$$\int \frac{1}{2\lambda} \{k_{11} \tilde{h}_{11} + 2k_{11} \tilde{h}_{12} + k_{22} \tilde{h}_{22}\} dx dy$$

Since $k_{11} = -k_{22}$, $\tilde{h}_{11} = -\tilde{h}_{22}$ this equals

$$\int \frac{1}{\lambda} \{k_{11}\tilde{h}_{11} + k_{12}\tilde{h}_{12}\} dxdy$$

=
$$\int \frac{1}{\lambda} \{[(\frac{\partial s^{\ell}}{\partial x})^{2} - (\frac{\partial s^{\ell}}{\partial y})^{2}]\tilde{h}_{11} + 2(\frac{\partial s^{\ell}}{\partial x})(\frac{\partial s^{\ell}}{\partial y})\tilde{h}_{12}\} dxdy$$

Comparing this with expression (2.6) establishes the formula

$$\frac{\partial E}{\partial g}(g_0,s)\tilde{h} = -\langle\langle Re \xi(z)dz^2,\tilde{h}\rangle\rangle_{g_0}$$

However $\widetilde{E}[g] = E(g, s(g))$. Since s(g) is harmonic $\frac{\partial E}{\partial s}(g_0, s(g_0)) = 0$. This immediately implies that

$$\frac{\partial \widetilde{E}}{\partial g}[g_0]h = -\langle\langle \operatorname{Re} \xi(z)dz^2, \widetilde{h}\rangle\rangle_{g_0}$$

which establishes 2.2. We should remark that this formula tells us that the gradient of Dirichlet's function on Teichmüller space is represented as a holomorphic quadratic differential.

To complete theorem 2.1 we need to compute a second derivative. Again working locally and thinking of the map s as now being fixed we see that for \tilde{h},\tilde{k} horizontal

$$\frac{\partial^{2} E}{\partial g^{2}}(g_{0},s)(\widetilde{h},\widetilde{k}) = \int \langle G_{0}^{-1} K G_{0}^{-1} H G_{0}^{-1} \nabla s^{\ell}, \nabla s^{\ell} \rangle_{\mathbb{R}^{2}} \sqrt{\det G_{0}} dxdy$$
$$+ \int \langle G_{0}^{-1} H G_{0}^{-1} K G_{0}^{-1} \nabla s^{\ell}, \nabla s^{\ell} \rangle_{\mathbb{R}^{2}} \sqrt{\det G_{0}} dxdy$$

and in conformal coordinates this is equal to

$$\int \frac{1}{\lambda^2} \langle \mathsf{K}\mathsf{H}\nabla\,\mathsf{s}^{\ell}, \nabla\,\mathsf{s}^{\ell} \rangle_{\mathrm{IR}}^2 \, \mathrm{d}\mathsf{x}\mathrm{d}\mathsf{y} + \int \frac{1}{\lambda^2} \langle \mathsf{H}\mathsf{K}\nabla\,\mathsf{s}^{\ell}, \nabla\,\mathsf{s}^{\ell} \rangle \, \mathrm{d}\mathsf{x}\mathrm{d}\mathsf{y}$$

$$\int \frac{2}{\lambda^2} \{ \tilde{\mathsf{h}}_{11} \tilde{\mathsf{k}}_{11} + \tilde{\mathsf{h}}_{12} \tilde{\mathsf{k}}_{12} \} \, \left(\frac{\partial\,\mathsf{s}^{\ell}}{\partial\,\mathsf{x}} \right)^2 + \left(\frac{\partial\,\mathsf{s}^{\ell}}{\partial\,\mathsf{y}} \right)^2 \} \mathrm{d}\mathsf{x}\mathrm{d}\mathsf{y}$$

Now at the point g_0 , the unique harmonic map s is the identity map of (M,g_0) to itself. Since (M,g_0) is isommetrically

immersed in \mathbb{R}^{K} , $s(g_{0}) * G_{\mathbb{IR}K} = g_{0}$; where $G_{\mathbb{IR}K}$ is the Euclidean metric on \mathbb{R}^{K} . But if g_{0} is expressed in local conformal coordinates this says exactly that

$$\{\left(\frac{\partial s^{\ell}}{\partial x}\right)^{2} + \left(\frac{\partial s^{\ell}}{\partial y}\right)^{2}\} = \lambda.$$

Thus at the point g_0 , we see that

$$\frac{\partial^2 E}{\partial g^2} (g_0, id) (\tilde{h}, \tilde{k}) = \int_{\lambda}^2 (\tilde{h}_{11} \tilde{k}_{11} + \tilde{h}_{12} \tilde{k}_{12}) dxdy$$

Since $\tilde{k}_{11} = -\tilde{k}_{22}$, $\tilde{h}_{11} = -\tilde{h}_{22}$, applying formula (2.7) for the Weil-Petersson metric we see that

(2.8)
$$\frac{\partial^2 E}{\partial q^2}$$
 (g₀, id) (\tilde{h}, \tilde{k}) = 2<< \tilde{h}, \tilde{k} >>

However we are interested in the map

 $\widetilde{E}[g] = E(g,s(g)).$

Clearly

$$\frac{\partial \widetilde{E}}{\partial g}[g]h = \frac{\partial E}{\partial g}(g, s(g))\widetilde{h} + \frac{\partial E}{\partial s}(g, s(g)) \cdot Ds(g)\widetilde{h}$$

where Ds(g) represents the derivative of s with respect to g. However the second term is identically zero since s(g) is harmonic implies $\frac{\partial E}{\partial s}(g, s(g)) = 0$. Therefore

$$\frac{\partial^{2} \widetilde{E}}{\partial g^{2}} [g_{0}](h,k) = \frac{\partial^{2} E}{\partial g^{2}} (g_{0}, id) (\widetilde{h}, \widetilde{k}) + \frac{\partial^{2} E}{\partial g \partial s} (g_{0}, id) (\widetilde{h}, Ds (g_{0}) \widetilde{k})$$

and by 2.8

=
$$2 < \langle \widetilde{h}, \widetilde{k} \rangle \rangle + \frac{\partial^2 E}{\partial g \partial s} (g_0, id) (\widetilde{h}, Ds(g_0) \widetilde{k}).$$

Theorem 2.1 will now follow immediately from the following.

<u>Proposition 2.9.</u> $Ds(g_0)\tilde{h} = 0$, if \tilde{h} is trace free divergence free.

THEOREM

<u>Proof.</u> In order to compute this derivative we write down the general equation of a harmonic map from a Riemanian manifold (M,g) to a Riemannian manifold (N,g). Namely $f : (M,g) \rightarrow (N,g)$ is harmonic if in local coordinates, $f = (f', \ldots, f^n)$, $n = \dim N$

(2.10)
$$\frac{1}{\sqrt{g}} \frac{\partial}{\partial x_{j}} g^{ij} \sqrt{g} \frac{\partial}{\partial x_{i}} f^{\alpha} + \Gamma^{\alpha}_{\gamma\beta} \frac{\partial f^{\gamma}}{\partial x_{i}} \frac{\partial f^{\beta}}{\partial x_{j}} g^{ij} = 0$$

where $\Gamma^{\alpha}_{\gamma\beta}$ are the Christofel symbol of the metric g.

If dim N = 2 = dim M and we express (2.10) in local conformal coordinates $g_{ij} = \lambda \delta_{ij}$ and $g_{ij} = \rho \delta_{ij}$ we see that (2.10) is equivalent to

$$(2.11) \qquad f_{z\overline{z}} + (\log \rho)_{f} f_{z} f_{\overline{z}} = 0$$

where $(\log \rho)_{f} = \frac{\rho(f)}{\rho'(f)}$.

In the case under consideration g is the fixed metric g_0 on M. We now think of f^{α} as depending on g, and let $w^{\alpha} = Df^{\alpha}(\tilde{h})$ be the linearization of f^{α} in the direction \tilde{h} . We now differentiate equation (2.10) w.r.t. g in the direction \tilde{h} . We first make three important observations. The Christofel symbol Γ^{α}_{β} are fixed and do not depend on g. Second the derivative of \sqrt{g} in a direction \tilde{h} is given by $\tilde{h} \longrightarrow \mathrm{tr}_{\alpha} h/\sqrt{g}$

If \tilde{h} is trace free this derivative vanishes. Thirdly, the derivative of $g^{ij}\sqrt{g}$ in the direction \tilde{h} is $\tilde{h} \longrightarrow -\tilde{h}^{ij}$.

Taking the derivative of (2.10) w.r.t. g in the direction \tilde{h} , evaluating it in conformal coordinates $(g_0)_{ij} = \lambda \delta_{ij}$ at f = id, and using formula 2.12 for the complex form of w = w + iw₂ we see that

(2.12)
$$w_{z\overline{z}} + (\log \lambda)_{z}w_{\overline{z}} = +\frac{1}{\lambda}\frac{\partial}{\partial x_{j}} \{\widetilde{h}^{\alpha j}\} + \frac{\Gamma_{ij}^{\alpha}\widetilde{h}_{i}}{\lambda^{2}}$$

Lemma 2.13 If \tilde{h} is trace free and divergence free,the expression

(2.14)
$$\frac{1}{\lambda} \frac{\partial}{\partial x_j} \{ \widetilde{h}^{\alpha j} \} + \frac{1}{\lambda^2} \Gamma^{\alpha}_{ij} \widetilde{h}_{ij} = 0.$$

Before proving 2.13 let us see how it implies proposition 2.9.

Using 2.12 we see that the linearization
$$w = Ds(g_0)h$$
 satisfies

$$w_{z\overline{z}} + (\log \lambda)_{z}w_{\overline{z}} = 0$$

or

$$\frac{\partial}{\partial z} (\lambda w_{\overline{z}}) = 0 .$$

Now this implies that

$$\int \frac{\partial}{\partial z} (\lambda w_{\overline{z}}) \overline{w} \, dz \wedge d\overline{z} = 0$$

Integrating by parts we further see that

$$\int \lambda |w_{\overline{z}}|^2 dz \wedge d\overline{z} = 0 .$$

Therefore $w_{\overline{z}} = 0$ and consequently w is a holomorphic vector field on $(M,c(g_0))$. Since (genus M) > 1 this clearly implies that w = 0 concluding 2.9.

To prove lemma 2.13 we note that

$$\Gamma^{\alpha}_{\mathbf{ij}} = \frac{1}{2\lambda} \{ \frac{\partial \lambda}{\partial \mathbf{x}_{\mathbf{j}}} \delta_{\mathbf{i\alpha}} + \frac{\partial \lambda}{\partial \mathbf{x}_{\mathbf{i}}} \delta_{\mathbf{j\alpha}} - \frac{\partial \lambda}{\partial \mathbf{x}_{\alpha}} \delta_{\mathbf{ij}} \}$$

and that $\tilde{h}^{\alpha j} = \frac{1}{\lambda} \tilde{h}_{\alpha j}$. Since \tilde{h} is divergence free $\frac{\partial}{\partial x_j} \tilde{h}_{\alpha j} = 0$ and so

$$\frac{1}{\lambda} \frac{\partial}{\partial \mathbf{x}_{j}} (\widetilde{\mathbf{h}}^{\alpha j}) = -\frac{1}{\lambda^{3}} \widetilde{\mathbf{h}}_{\alpha j} \frac{\partial \lambda}{\partial \mathbf{x}_{j}}$$

Therefore expression 2.14 equals

$$= \frac{1}{\lambda^{3}} \frac{\partial \lambda}{\partial \mathbf{x}_{j}} \widetilde{\mathbf{h}}_{\alpha j} + \frac{1}{2\lambda^{3}} \left\{ \frac{\partial \lambda}{\partial \mathbf{x}_{j}} \delta_{\mathbf{i}\alpha} + \frac{\partial \lambda}{\partial \mathbf{x}_{\mathbf{i}}} \delta_{\mathbf{j}\alpha} - \frac{\partial \lambda}{\partial \mathbf{x}_{\alpha}} \delta_{\mathbf{i}j} \right\} \widetilde{\mathbf{h}}_{\mathbf{i}j}$$

$$= -\frac{1}{\lambda^{3}} \frac{\partial \lambda}{\partial \mathbf{x}_{j}} \widetilde{\mathbf{h}}_{\alpha j} + \frac{1}{2\lambda^{3}} \frac{\partial \lambda}{\partial \mathbf{x}_{j}} \widetilde{\mathbf{h}}_{\alpha j} + \frac{1}{2\lambda^{3}} \frac{\partial \lambda}{\partial \mathbf{x}_{\mathbf{i}}} \widetilde{\mathbf{h}}_{\mathbf{i}\alpha} - \frac{1}{2\lambda^{3}} \frac{\partial \lambda}{\partial \mathbf{x}_{\alpha}} \widetilde{\mathbf{h}}_{\mathbf{i}i} .$$

Clearly the sum of the first three terms is zero and since \tilde{h} is β trace free the fourth also vanishes. This completes lemma 2.13 and this paper.

References

- [1] Ahlfors, L.; Some remarks on Teichmüller's space of Riemann surfaces, Ann. Math. 74 (1961); 171-191.
- [2] Fischer, A.E. and Tromba, A.J.; On a purely Riemannian proof of the structure and dimension of the unramified moduli space of a compact Riemann surface. Math. Ann. 267 (1984) 311-345.
- [3] Fischer, A.E. and Tromba, A.J.; On the Weil-Petersson metric on Teichmüller space, Trans. AMS 284 (1984), 319-335.
- [4] Fischer, A.E. and Tromba, A.J.; Almost complex principle bundles and the complex structure on Teichmüller space, Crelles J. Band 352,pp. 151-160 (1984).
- [5] Fischer, A.E. and Tromba, A.J.; A new proof that Teichmüller space is a cell, Trans. AMS (to appear).
- [6] Jost, J.; On computing the curvature of Teichmüller space, manuscript.
- [7] Tromba, A.J.; On a natural algebraic affine connection on the space of almost complex structures and the curvature of Teichmüller space with respect to its Weil-Petersson metric, Manuscripta Math. vol. 56, Fas 4, 475-497 (1986).
- [8] Wolf, M.; The Teichmüller Theory of Harmonic Maps, Thesis, Stanford University (1986).
- [9] Shoen R, and Yau S.T.; On univalent harmonic maps between surfaces, Inventiones mathematics 44, 265-278 (1978).