ON A POTENTIAL FUNCTION FOR THE
 WEIL-PETERSSON METRIC ON TEICHMULLER
 SPACE

by

A.J. Tromba

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3

ON A POTENTIAL FUNCTION FOR THE WEIL-PETERSSON METRIC ON.TEICHMULLLER SPACE

A.J. Tromba

§0

Introduction
In 1956 Weil suggested a Riemannian metric on Teichmüller space and in [1] Ahlfors proved it was Kähler, Somewhat later he showed that it had negative Ricci and holomorphic sectional curvature. In [7] the author showed that the sectional curvature is negative. In 1982 we proved the existence of a potential function for this metric. In the ensueing years this result has been used by several authors [5],[8]. Récently [6] it was used in Jost's own computation of the curvature of Teichmuller space, and was rediscovered by Wolf [8] in his 1986 thesis. The growing interest in this result makes it worthwhile to have a proof in the literature.
§1 Preliminaries
Let M be an oriented compact, $\partial M=\phi^{*}$ and let M_{-1} be the Tame Frechét manifold [2] of Riemannian metrics of constant negative curvature on M. The tangent space of M_{-1} at a metric, $g, T g^{M}-1$ consists of those $(0,2)$, tensors h on M satisfying the equation (1.1) $-\Delta\left(\operatorname{tr}_{g} h\right)+\delta_{g} \delta_{g} h+\frac{1}{2}\left(\operatorname{tr}_{g} h\right)=0$
where $\operatorname{tr}_{\mathrm{g}} \mathrm{h}^{\prime}=\mathrm{g}^{i j_{h}}{ }_{i j}$ is the trace of h w.r.t. the metric tensor $g_{i j}, \delta_{g} \delta_{g} h$ is the double covariant divergence of h w.r.t. g and Δ is the Laplace-Beltrami operator on functions. For example see [2] for details.

Let D_{0} be the Tame Frechét Lie group [2] of diffeomorphisms of M which are homotopic to the identity. Then D_{0} acts on

[^0]M_{-1} by pull back, i.e. $f \longrightarrow \mathrm{E}^{*} g$. Teichmüller space is then defined as
\[

$$
\begin{equation*}
T(M)=M_{-1} / D_{0} \tag{1.2}
\end{equation*}
$$

\]

In [2],[5] we show that $T(M)$ is a C^{∞} finite dimensional manifold diffeomorphic to $\mathbb{R}^{q}, q=6$ (genus M) - q. The L_{2}-metric on M_{-1} is given by the inner product.

$$
\begin{equation*}
\langle\langle h, k\rangle\rangle_{g}=\frac{1}{2} \int_{M} \text { trace }(H K) d \mu_{g} \tag{1.3}
\end{equation*}
$$

where $H=g^{-1} h, \quad K=g^{-1} k$ are the $(1: 1)$ tensors on M obtained from h and k via the metric g, or "by raising an index", i.e.

$$
H_{j}^{i}=g^{i k^{\prime}} h_{k j}
$$

and similarly for K. Finally μ_{g} is the volume element induced on M by g and the given orientation.

The inner product (1.3) is D_{0} invariant. Thus D_{0} acts smoothly on M_{-1} as a group of isometries with respect to this metric, and consequently we have an induced metric on $T(M)$ in such a way that the projective map $\pi: M_{-1} \longrightarrow M_{-1} \mid D_{0}$ becomes a Riemannian submersion [2]. In [3] it is shown that this induced metric is precisely the metric originally introduced by weil.

Let $<,>$ be the induced metric on $T(M)$. We can characterize $<,>$ as follows. From [2] we can show that given $g \in M_{-1}$ every $h \in T_{g} M_{-1}$ can be uniquely written as
(1.4) $\quad h=h^{T T}+L_{X} g$
where $L_{X} g$ is the Lie derivative of g w.r.t. some (unique X) and $h^{T T}$ is a trace free, divergence free, symmetric tensor. Moreover the decomposition (1.4) is I_{2}-orthogonal. Recall that a conformal coordinate system (where $g_{i j}=\lambda \delta_{i j}, \lambda$ some smooth positive function) is also a complex holomorphic coordinate system. In this system

$$
h^{T T}=\operatorname{Re}\left(\xi(z) d z^{2}\right)
$$

where $R e$ is "real part" and $\xi(z) d z^{2}$ is a holomorphic quadratic
differential. In fact trace free, divergence free symmetric two tensors are precisely the real parts of holomorphic quadratic differentials.

Now $L_{X} g$ is always tangent to the orbit of D_{0} through g. We say that $L_{X} g$ is the vertical part of h in decomposition 1.4. Similarly we say that $h^{T T}$ represents the horizontal part of H. Given $h, k \in T_{[g]} T(M)$ there are unique horizontal vectors $\tilde{h}, \tilde{k} \in T_{g} M_{-1}$ such that $d \pi(g) \tilde{h}=h$ and $d \pi(g) \tilde{k}=k$. Then

$$
\langle h, k\rangle_{[g]}=\langle\langle\tilde{h}, \tilde{k}\rangle\rangle_{g} .
$$

Suppose now that $g_{0} \in M_{-1}$ is fixed and that $s!(M, g) \longrightarrow\left(M, g_{0}\right)$ is a smooth C^{1} map homotopic to the identity and is viewed as a map from M with some arbitrary metric $g \in M_{-1}$ to M with its g_{0} metric.

Define the Dirichlet energy of s by the formula

$$
\begin{equation*}
E_{g}(s)=\frac{1}{2} \int_{M}|d s|^{2} d \mu_{g} \tag{1.5}
\end{equation*}
$$

where $|d s|^{2}=$ trace $d s^{*} d s$ depends on both g and g_{0}.

By the embedding theorem of Nash-Moser we may assume that $\left(M, g_{0}\right)$ is isometrically embedded in some Euclidean \mathbb{R}^{K}. Thus we can think of $s:(M, g) \rightarrow\left(M, g_{0}\right)$ as a map into \mathbb{R}^{K} and Dirichlet's functional takes the equivalent form

$$
\begin{equation*}
E_{g}(s)=\frac{1}{2} \sum_{i=1}^{k} \int g(x)<\nabla_{g} s^{i}(x), \nabla_{g} s^{i}(x)>d \mu_{g} \tag{1.6}
\end{equation*}
$$

There is another, equivalent, and useful way to express (1.5) and (1.6) using local conformal cordinate systems $g_{i j}=\sigma \delta_{i j}$ and $\left(g_{0}\right)_{i j}=\rho \delta_{i j}$ on (M, g) and $\left(M, g_{0}\right)$ respectively, namely

$$
\begin{equation*}
E_{g}(s)=\frac{1}{4} \int_{M}\left[\rho(s(z))\left|s_{z}\right|^{2}+\rho(s(z))\left|s_{z}\right|^{2}\right] d z d \bar{z} \tag{1.7}
\end{equation*}
$$

For fixed g, the critical points of E are there said to be harmonic maps. The follwing result is due to Schoen-Yau [9].

Theorem. Given metrics g and g_{0} there exists a unique harmonic $\operatorname{map} s(g):(M, g)^{\prime} \longrightarrow\left(M, g_{0}\right)$ which is homotopic to the identity. Moreover $s(g)$ depends aifferentially on g in any H^{r} topology,
$r>2$, and is a c^{∞} diffeomorphism.

Consider now the function

$$
g \longrightarrow E_{g}(s(g))
$$

This function on M_{-1} is D-invariant and thus can be viewed as a function on Teichmuller space.

For fixed g, the critical points of E are then said to be harmonic maps. The following result is due to Schoen-Yau [9]. Theorem. Given metrics \underline{g} and g_{0} there exists a unqiue harmonic $\operatorname{map} \mathrm{s}(\mathrm{g}):(\mathrm{M}, \mathrm{g}) \longrightarrow\left(\mathrm{M}, \mathrm{g}_{0}\right)$ which is homotopic to the identity. Moreover $s(g)$ depends differentially on g in any H^{r} topology, $r>2$, and is a C^{∞} diffeomorphism.

Consider now the function

$$
g \longrightarrow E_{g}(s(g))
$$

This function on M_{-1} is D-invariant and thus can be viewed as a function on Teichmüller space. To see this one must show that

$$
E_{f * g}(s(f *(g)))=E_{g}(s(g))
$$

Let $\mathrm{c}(\mathrm{g})$ be the complex structure associated to g , and induced by a conformal coordinate system for g. For $f \in D_{0}$, $\mathrm{f}:(\mathrm{M}, \mathrm{f} * \mathrm{C}(\mathrm{g})) \longrightarrow(\mathrm{M}, \mathrm{C}(\mathrm{g}))$ is holomorphic and consequently since the composition of harmonic maps and holomorphic maps is still harmonic we may conclude, by uniqueness that

$$
s(f * g)=s(g) \circ f .
$$

Since Dirichlet's functional is invariant under complex holomorphic changes of coordinates it follows immediately that

$$
E_{f *(g)}(s(g) \circ f)=E_{g}(s(g))
$$

Consequently for $[g] \in M_{-1} \mid D_{0}$ define the C^{∞} smooth function

$$
\widetilde{E}: M_{-1} \mid D_{0} \longrightarrow R
$$

by

$$
\tilde{E}[g]=E_{g}(s(g))
$$

The Main Result

Theorem $2.1 \quad\left[g_{0}\right]$ is the only critical point of \widetilde{E}. The Hessian of \widetilde{E} at $\left[g_{0}\right]$ is given by

$$
d^{2} \widetilde{E}\left[g_{0}\right](h, k)=2\langle h, k\rangle
$$

$h, k \in T\left[g_{0}\right] T(M)$. That is, the second variation of Dirichlet's energy
function is (up to a positive constant) Weil-Petersson metric.

Proof. We begin by computing the first derivative $d \widetilde{E}\left[g_{0}\right]$. We again view a map $S:(M, G) \longrightarrow\left(M, g_{0}\right)$ as a map into \mathbb{R}^{k}. Consider the two form

$$
\xi(z) d z^{2}=\sum_{i=1}^{k}\left(s_{z}^{i}\right)^{2} d z^{2}=\sum_{i=1}^{k}\left(\frac{\partial s^{i}}{\partial z}\right)^{2} d z^{2} .
$$

We start by proving
Proposition 2.2. If $s:(M, g) \rightarrow\left(M, g_{0}\right)$ is harmonic the form $\xi(z) \mathrm{dz}^{2}$ is a holomorphic quadratic differential on the complex curve $\left(M, C\left(g_{0}\right)\right)$, and thus $\operatorname{Re} \xi(z) d z^{2}$ represents a trace free, divergence free symmetric two tensor on $\left(M, g_{0}\right)$. Hence $\operatorname{Re} \xi(z) d z^{2}$ is a horizontal tangent vector to M_{-1} at g_{0}. Finally
(2.3) $\quad \mathrm{d} \tilde{E}\left[g_{0}\right] \mathrm{h}=-\operatorname{Re} \ll \xi(z) \mathrm{d} z^{2}, \tilde{h} \gg g_{0}$
where \tilde{h} is the horizontal left of $h \in T_{\left(g_{0}\right)}^{T(M)}$.
Proof (of 2.2)
We have Dirichlet's functional

$$
E(g, s)=\frac{1}{2} \sum_{i=1}^{k} \int_{M} g(x) \quad\left(\nabla_{g} s^{i}, \nabla_{g} s^{i}\right) d \mu_{g} .
$$

Suppose s is harmonic. Let Ω denote the second fundamental form of $\left(M, g_{0}\right) \subset \mathbb{R}^{k}$. Thus for each $p \in M, \Omega(p): T_{p} M \times T_{p} M \longrightarrow T_{p} M^{\perp}$. Let Δ denote the (non-linear) Laplacian of maps from (M, g) to $\left(M, g_{0}\right)$ and Δ_{β} denote the Laplace-Betrami operator on functions. Then if s is harmonic we have

$$
\begin{equation*}
0=\Delta s=\Delta_{\beta} s+\sum_{j=1}^{2} \Omega(s)\left(d s\left(e_{j}\right), d s\left(e_{j}\right)\right) \tag{2.4}
\end{equation*}
$$

$e_{1}(p), e_{2}(p)$ on orthonormal basis for $T_{p} M$ with respect to g. $\xi(z) \mathrm{dz}^{2}$ will be holomorphic of

$$
\frac{\partial}{\partial \bar{z}}\left(\sum_{i=1}^{k} \frac{\partial s^{i}}{\partial z} \cdot \frac{\partial s^{i}}{\partial z}\right)=0
$$

But this is equal to

$$
\frac{2}{\sigma} \cdot \sum_{i=1}^{k} \Delta_{B^{\prime}} s^{i} \cdot \frac{\partial s^{i}}{\partial z}
$$

where in conformal coordinates $g_{i j}=\sigma_{i j}$. By (2.4) we see that this, in time, is equal to

$$
-\frac{2}{\sigma} \sum_{i=1}^{k} \sum_{j=1}^{2} \Omega^{i}(s)\left(d s\left(e_{j}\right), d s\left(e_{j}\right)\right) \cdot \frac{\partial s^{i}}{\partial z}
$$

$=-\frac{2}{\sigma} \sum_{j=1}^{2}\left\{\sum \Omega(s)\left(d s\left(e_{j}\right), d s\left(e_{j}\right)\right) \cdot \frac{\partial s}{\partial \dot{x}}+i \Omega(s)\left(d s\left(e_{j}\right), d s\left(e_{i}\right)\right) \cdot \frac{\partial s}{\partial y}\right\} \quad$.
Since $\Omega(p)$ takes values in $T_{p} M^{\perp}$ it follows that both the real and imaginary parts of the expression vanish. Thus $\xi(z) \mathrm{d}^{2}$ is holomorphic.

Recall that s is harmonic iff $\frac{\partial E}{\partial s}(g, s)=0$. We now compute $\frac{\partial E}{\partial g}$. If we have local coordinates represented by $(x, y) \in W$, then in this coordinate system

$$
E(g, s)=\frac{1}{2} \sum_{\ell=1}^{k} \int_{M} g(x)<G^{-1} \nabla s^{\ell}, \nabla s^{\ell}>\mathbb{R}^{2} \sqrt{\operatorname{det} G} d x d y
$$

where ∇S^{ℓ} is the vector $\left(\frac{\partial s^{\ell}}{\partial x}, \frac{\partial s^{\ell}}{\partial y}\right), G$ is the matrix $\left\{g_{i j}\right\}$ of g and $\langle,\rangle \mathbb{R}^{2}$ denotes the ordinary \mathbb{R}^{2} inner product and $\sqrt{\operatorname{det} G} d x d y$ is the local representation of $d \mu_{g}$. In the following computation we adopt the convention, that summations over the index ℓ will be understood.

$$
\begin{align*}
\frac{\partial E}{\partial g}\left(g_{0}, s\right) \tilde{h}= & -\int\left\langle G_{0}^{-1} H G_{0} \nabla s^{\ell}, \nabla s^{\ell}\right\rangle \sqrt{\operatorname{det} G_{0}} d x d y \tag{2.5}\\
& +\frac{1}{2} \int\left\langle G_{0}^{-1} \nabla s^{\ell}, \nabla s^{\ell}\right\rangle \frac{\operatorname{trace} H}{\sqrt{\operatorname{det} G_{0}}} d x d y
\end{align*}
$$

where $H=\left\{\tilde{h}_{i j}\right\}$ is the matrix of the symmetries tensor h in these coordinates. Here we use the fact that the derivative of $G \longrightarrow G^{-1}$ is $H \longrightarrow G^{-1} H_{G}^{-1}$. Suppose we look at this first derivative in conformal coordinates $\left(g_{0}\right)_{i j}=\lambda \delta_{i j}$. Then if \tilde{h} is horizontal the second term in (2.5) vanishes (h. is trace free) and

$$
\frac{\partial E}{\partial g}\left(g_{0}, s\right) \tilde{h}=-\int \frac{1}{\lambda}\left\langle\nabla s^{l}, \nabla s^{l}\right\rangle \mathbb{R}^{2} d x d y
$$

$=-\int \frac{1}{\lambda}\left\{\tilde{h}_{11}\left(\frac{\partial s^{\ell}}{\partial x}\right)^{2}+2 \tilde{h}_{12}\left(\frac{\partial s^{\ell}}{\partial x}\right)\left(\frac{\partial s^{\ell}}{\partial y}\right)+\tilde{h}_{22}\left(\frac{\partial s^{\ell}}{\partial y}\right)^{2}\right\} d x d y \quad$.
since $h_{11}=-h_{22}$ this is equal to

$$
\begin{equation*}
-\int \frac{1}{\lambda}\left\{\tilde{h}_{11}\left[\left(\frac{\partial s^{\ell}}{\partial x}\right)^{2}-\left(\frac{\partial s^{\ell}}{\partial x}\right)^{2}+2 \tilde{h}_{12}\left(\frac{\partial s^{\ell}}{\partial x}\right)\left(\frac{\partial s^{\ell}}{\partial y}\right)\right\} d x d y\right. \tag{2.6}
\end{equation*}
$$

Now

$$
\left(\frac{\partial s^{\ell}}{\partial x}-i \frac{\partial s^{\ell}}{\partial y}\right)(d x+d y)^{2}=\xi(z) d z^{2}
$$

is a quadratic differential. But
$\operatorname{Fe}\left(\xi(z) d z^{2}\right)=\left[\left(\frac{\partial s^{\ell}}{\partial x}\right)^{2}-\left(\frac{\partial s^{\ell}}{\partial y}\right)^{2}\right] d x^{2}+\left[\left(\frac{\partial s^{\ell}}{\partial y}\right)^{2}-\left(\frac{\partial s^{\ell}}{\partial x}\right)^{2}\right] d y^{2} \because 4\left(\frac{\partial s^{\ell}}{\partial x}\right) \cdot\left(\frac{\partial s^{\ell}}{\partial y}\right) d x d y$.
If s is harmonic $\operatorname{Re}\left(s(z) d z^{2}\right)$ is a trace free divergence free tensor. Let us compute

$$
\ll \operatorname{Re} \xi(z) \mathrm{d} z^{2}, \tilde{h} \gg{ }_{g_{0}}
$$

This inner product is given locally by the expression

$$
\begin{equation*}
\frac{1}{2} \int g_{0}^{a b} g_{0}^{c d_{k}}{ }_{a c} \tilde{h}_{b d}{ }^{d} \mu_{g} \tag{2.7}
\end{equation*}
$$

where $k_{a c}$ is the coordinate representative of the two tensor $\xi(z) d z^{2}$. Therefore

$$
k_{11}=\left\{\left(\frac{\partial s^{\ell}}{\partial x}\right)^{2}-\left(\frac{\partial s^{\ell}}{\partial y}\right)^{2}\right\}, k_{12}=k_{21}=2\left(\frac{\partial s^{\ell}}{\partial x}\right)\left(\frac{\partial s^{\ell}}{\partial y}\right)
$$

Thus in conformal coordinates (2.7) is equal to

$$
\begin{aligned}
& \int \frac{1}{2 \lambda}\left\{k_{a c} \tilde{h}_{a c}\right\} d x a y \\
= & \int \frac{1}{2 \lambda}\left\{k_{11} \tilde{h}_{11}+2 k_{1,1} \tilde{h}_{12}+k_{22} \tilde{\mathrm{~h}}_{22}\right\} d x d y
\end{aligned}
$$

Since $k_{11}=-k_{22}, \tilde{h}_{11}=-\tilde{h}_{22}$ this equals

$$
\begin{aligned}
& \int \frac{1}{\lambda}\left\{k_{11} \tilde{h}_{11}+k_{12} \tilde{h}_{12}\right\} d x d y \\
= & \int \frac{1}{\lambda}\left\{\left[\left(\frac{\partial s^{\ell}}{\partial x}\right)^{2}-\left(\frac{\partial s^{\ell}}{\partial y}\right)^{2}\right] \tilde{h}_{11}+2\left(\frac{\partial s^{\ell}}{\partial x}\right)\left(\frac{\partial s^{\ell}}{\partial y}\right) \tilde{h}_{12}\right\} d x d y .
\end{aligned}
$$

Comparing this with expression (2.6) establishes the formula

$$
\frac{\partial E}{\partial g}\left(g_{0}, s\right) \tilde{h}=-\ll \operatorname{Re} \xi(z) d z^{2}, \tilde{h} \gg g_{0} .
$$

However $\tilde{E}[g]=E(g, s(g))$. Since $s(g)$ is harmonic $\frac{\partial E}{\partial s}\left(g_{0}, s\left(g_{0}\right)\right)=0$. This immediately implies that

$$
\frac{\partial \tilde{E}}{\partial g}\left[g_{0}\right] h=-\ll \operatorname{Re} \xi(z) d z^{2}, \tilde{h} \gg g_{0}
$$

which establishes 2.2. We should remark that this formula tells us that the gradient of Dirichlet's function on Teichmüller space is represented as a holomorphic quadratic differential.

To complete theorem 2.1 we need to compute a second derivative. Again working locally and thinking of the map s as now being fixed we see that for \tilde{h}, \tilde{k} horizontal

$$
\begin{aligned}
\frac{\partial^{2} E}{\partial g^{2}}\left(g_{0}, s\right)(\tilde{h}, \tilde{k}) & =\int\left\langle G_{0}^{-1} K G_{0}^{-1} H G_{0}^{-1} \nabla s^{\ell}, \nabla s^{\ell}\right\rangle P_{i}^{2} \sqrt{\operatorname{det} G_{0}} d x d y \\
& +\int\left\langle G_{0}^{-1} H G_{0}^{-1} K G_{0}^{-1} \nabla s^{\ell}, \nabla s^{\ell}\right\rangle \mathbb{R}^{2} \sqrt{\operatorname{det} G_{0}} d x d y
\end{aligned}
$$

and in conformal coordinates this is equal to

$$
\begin{array}{r}
\left.\int \frac{1}{\lambda^{2}}<K H \nabla s^{\ell}, \nabla s^{\ell}\right\rangle \mathbb{K}^{2} d x d y+\int \frac{1}{\lambda^{2}}\left\langle H K \nabla s^{\ell}, \nabla s^{\ell}\right\rangle d x d y \\
\left.\left.\int \frac{2}{\lambda^{2}}\left\{\tilde{K}_{11} \tilde{K}_{11}+\tilde{K}_{12} \tilde{K}_{12}\right)\left(\frac{\partial s^{2}}{\partial x}\right)^{2}+\left(\frac{\partial s^{\ell}}{\partial y}\right)^{2}\right\}\right\} d x d y
\end{array}
$$

Now at the point g_{0}, the unique harmonic map s is the identity map of $\left(M, g_{0}\right)$ to itself. Since $\left(M, g_{0}\right)$ is isommetrically
immersed in $\mathbb{R}^{K}, s\left(g_{0}\right) * G_{\mathbb{R}^{K}}=g_{0}$; where $G_{\mathbb{R}^{K}}$ is the Euclidean metric on \mathbb{R}^{K}. But if g_{0} is expressed in local conformal coordinates this says exactly that

$$
\left\{\left(\frac{\partial s^{\ell}}{\partial x}\right)^{2}+\left(\frac{\partial s^{\ell}}{\partial y}\right)^{2}\right\}=\lambda .
$$

Thus at the point g_{0}, we see that

$$
\frac{\partial^{2} \mathrm{E}}{\partial g^{2}}\left(g_{0}, i d\right)(\tilde{\mathrm{h}}, \tilde{\mathrm{k}})=\int \frac{2}{\lambda}\left(\tilde{\mathrm{~h}}_{11} \tilde{\mathrm{k}}_{11}+\tilde{\mathrm{h}}_{12} \tilde{\mathrm{k}}_{12}\right) \mathrm{dxdy}
$$

Since $\tilde{\mathrm{k}}_{11}=-\tilde{\mathrm{k}}_{22}, \tilde{\mathrm{~h}}_{11}=-\tilde{\mathrm{h}}_{22}$, applying formula (2.7) for the Weil-Petersson metric we see that

$$
\begin{equation*}
\frac{\partial^{2} E}{\partial g^{2}}\left(g_{0}, \text { id }\right)(\tilde{h}, \tilde{K})=2\langle\langle\tilde{h}, \tilde{K}\rangle> \tag{2.8}
\end{equation*}
$$

However we are interested in the map

$$
\widetilde{E}[g]=E(g, s(g)) .
$$

Clearly

$$
\frac{\partial \widetilde{E}}{\partial g}[g] h=\frac{\partial E}{\partial g}(g, s(g)) \tilde{h}+\frac{\partial E}{\partial s}(g, s(g)) \cdot D s(g) \tilde{h}
$$

where $D s(g)$ represents the derivative of s with respect to g. However the second term is identically zero since $s(g)$ is harmonic implies $\frac{\partial E}{\partial S}(g, s(g)) E 0$. Therefore

$$
\begin{aligned}
\frac{\partial^{2} \widetilde{E}}{\partial g^{2}}\left[g_{0}\right](h, k) & =\frac{\partial^{2} E}{\partial g^{2}}\left(g_{0}, i d\right)(\tilde{h}, \widetilde{k}) \\
& +\frac{\partial^{2} E}{\partial g \partial s}\left(g_{0}, i d\right)\left(\widetilde{h}, D s\left(g_{0}\right) \tilde{k}\right)
\end{aligned}
$$

and by 2.8

$$
=2\left\langle\langle\tilde{h}, \tilde{k}\rangle>+\frac{\partial^{2} E}{\partial g \partial s}\left(g_{0}, i d\right)\left(\tilde{h}, D_{s}\left(g_{0}\right) \tilde{k}\right) .\right.
$$

Theorem 2.1 will now follow immediately from the following.

Proposition 2.9. $D \dot{S}\left(g_{0}\right) \tilde{h}=0$, if \tilde{h} is trace free divergence free.

Proof. In order to compute this derivative we write down the general equation of a harmonic map from a Riemanian manifold (M, g) to a Riemannian manifold $(N ; g)$. Namely $f:(M, g) \rightarrow(N, g)$ is harmonic if in local coordinates, $f=\left(f^{\prime}, \ldots, f^{n}\right), n=d i m N$

$$
\begin{equation*}
\left.\frac{1}{\sqrt{g}} \frac{\partial}{\partial x_{j}} g^{i j} \sqrt{g} \frac{\partial}{\partial x_{i}} f^{\alpha}\right\}+\Gamma_{\gamma \beta}^{\alpha} \frac{\partial f^{\gamma}}{\partial x_{i}} \frac{\partial f^{\beta}}{\partial x_{j}} g^{i j}=0 \tag{2.10}
\end{equation*}
$$

where $\Gamma_{\gamma \beta}^{\alpha}$ are the Christofel symbol of the metric g.
If $\operatorname{dim} N=2=\operatorname{dim} M$ and we express (2.10) in local conformal coordinates $g_{i j}=\lambda \delta_{i j}$ and $g_{i j}=\rho \delta_{i j}$ we see that (2.10) is equivalent to

$$
\begin{equation*}
f_{z \bar{z}}+(\log \rho)_{f} f_{z} f_{\bar{z}}=0 \tag{2.11}
\end{equation*}
$$

where $(\log \rho)_{f}=\frac{\rho(f)}{\rho^{\prime}(f)}$.
In the case under consideration g is the fixed metric g_{0} on M. We now think of f^{α} as depending on g, and let $w^{\alpha}=D f^{\alpha}(\tilde{h})$ be the linearization of f^{α} in the direction \tilde{h}. We now differentiate equation (2.10) w.r.t. g in the direction \tilde{H}. We first make three important observations. The Christofel symbol. Γ_{β}^{α} are fixed and do not depend on g. Second the derivative of \sqrt{g} in a direction \tilde{h} is given by $\tilde{h} \longrightarrow \operatorname{tr}_{g} h / \sqrt{g}$

If \tilde{h} is trace free thisderivative vanishes. Thirdly, the derivative of $g^{i j} \sqrt{g}$ in the direction \tilde{h} is $\tilde{h} \longrightarrow-\tilde{h}^{i j}$.

Taking the derivative of (2.10) w.r.t. g in the direction \tilde{h}, evaluating it in conformal coordinates $\left(g_{0}\right)_{i j}=\lambda \delta_{i j}$ at $\mathrm{f}=\mathrm{id}$, and using formula 2.12 for the complex form of ${ }^{1}$ $w=w+i w_{2}$ we see that

$$
\begin{equation*}
w_{z \bar{z}}+(\log \lambda)_{z} w_{\bar{z}}=+\frac{1}{\lambda} \frac{\partial}{\partial x_{j}}\left\{\tilde{h}^{\alpha j}\right\}+\frac{\Gamma_{i j}^{\alpha} \tilde{h}_{i j}}{\lambda^{2}} \tag{2.12}
\end{equation*}
$$

Lemma 2.13 If $\tilde{\mathrm{h}}$ is trace free and divergence free, the expression
(2.14) $\quad \frac{1}{\lambda} \frac{\partial}{\partial x_{j}}\left\{\tilde{h}^{\alpha j}\right\}+\frac{1}{\lambda^{2}} \Gamma_{i j}^{\alpha} \tilde{h}_{i j}=0$.

Before proving 2.13 let us see how it implies proposition 2.9.

Using 2.12 we see that the linearization $w=D s\left(g_{0}\right) \hat{h}$ satisfies

$$
w_{z \bar{z}}+(\log \lambda)_{z} w_{\bar{z}}=0
$$

or

$$
\frac{\partial}{\partial z}\left(\lambda w_{z}\right)=0
$$

Now this implies that

$$
\int \frac{\partial}{\partial z}\left(\lambda w_{z}\right) \bar{w} d z \wedge d \bar{z}=0
$$

Integrating by parts we further see that

$$
\int \lambda\left|w_{\bar{z}}\right|^{2} d z \wedge d \bar{z}=0
$$

Therefore $W_{z}=0$ and consequently w is a holomorphic vector field on $\left(M, c\left(g_{0}\right)\right)$. Since (genus M) 1 this clearly implies that w mo concluding 2.9.

To prove lemma 2.13 we note that

$$
\Gamma_{i j}^{\alpha}=\frac{1}{2 \lambda}\left\{\frac{\partial \lambda}{\partial x_{j}} \delta_{i \alpha}+\frac{\partial \lambda}{\partial x_{i}} \delta_{j \alpha}-\frac{\partial \lambda}{\partial x_{\alpha}} \delta_{i j}\right\}
$$

and that $\tilde{h}^{\alpha j}=\frac{1}{\lambda} \tilde{h}_{\alpha j}$. Since \tilde{h} is divergence free $\frac{\partial}{\partial x_{j}} \tilde{h}_{\alpha j}=0$
and so and so.

$$
\frac{1}{\lambda} \frac{\partial}{\partial x_{j}}\left(\tilde{h}^{\alpha j}\right)=-\frac{1}{\lambda^{3}} \tilde{h}_{\alpha j} \frac{\partial \lambda}{\partial x_{j}}
$$

Therefore expression 2.14 equals

$$
\begin{aligned}
& -\frac{1}{\lambda^{3}} \frac{\partial \lambda}{\partial x_{j}} \tilde{h}_{\alpha j}+\frac{1}{2 \lambda^{3}}\left\{\frac{\partial \lambda}{\partial x_{j}} \delta_{i \alpha}+\frac{\partial \lambda}{\partial x_{i}} \delta_{j \alpha}-\frac{\partial \lambda}{\partial x_{\alpha}} \delta_{i j}\right\} \tilde{h}_{i j} \\
= & -\frac{1}{\lambda^{3}} \frac{\partial \lambda}{\partial x_{j}} \tilde{h}_{\alpha j}+\frac{1}{2 \lambda^{3}} \frac{\partial \lambda}{\partial x_{j}} \tilde{h}_{\alpha j}+\frac{1}{2 \lambda^{3}} \frac{\partial \lambda}{\partial x_{i}} \tilde{h}_{i \alpha}-\frac{1}{2 \lambda^{3}} \frac{\partial \lambda}{\partial x_{\alpha}} \tilde{h}_{i i} .
\end{aligned}
$$

Clearly the sum of the first three terms is zero and since \tilde{h} is: trace free the fourth also vanishes. This completes lemma 2.13 and this paper.

References

[1] Ahlfors, L.; Some remarks on Teichmüler's space of Riemann surfaces, Ann. Math. 74 (1961); 171-191.
[2] Fischer, A.E. and Tromba, A.J.; On a purely Riemannian proof of the structure and dimension of the unramified moduli space of a compact Riemann surface. Math. Ann. 267 (1984) 311-345.
[3] Fischer, A.E. and Tromba, A.J.; On the Weil-Petersson metric on Teichmüller space, Trans. AMS 284 (1984), 319-335.
[4] Fischer, A.E. and Tromba, A.J.; Almost complex principle bundles and the complex structure on Teichmüller space, Crelles J. Band 352,pp. 151-160 (1984).
[5] Fischer, A.E. and Tromba, A.J.; A new proof that Teichmuller space is a cell, Trans. AMS (to appear).
[6] Jost, J.; On computing the curvature of Teichmüler space, manuscript.
[7] Tromba, A.J.; On a natural algebraic affine connection on the space of almost complex structures and the curvature of Teichmüller space with respect to its Weil-Petersson metric, Manuscripta Math. vol. 56, Fas 4, 475-497 (1986).
[8] Wolf, M.; The Teichmuller Theory of Harmonic Maps, Thesis, Stanford University (1986).
[9] Shoen R, and Yau S.T.: On univalent harmonic maps between surfaces, Inventiones mathematics 44, 265-278 (1978).

[^0]: * the case with boundary follows analogously

