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§0 Introduction

In 1956 Weil suggested a Riemannian metric on Teichmiiller space
and in [1] Ahlfors proved it was K&hler, Somewhat later he showed that
it had negative Ricci and holomorphic sectional curvature. In [7]
the author showed that the sectional curvature is negative. In 1982
we proved the existence of a potential function for this metric.

In the ensueing years this result has been used by several authors
[51,[8]. Récently [6] it was used in Jost's own computation of the
curvaﬁure of Teichmilller space, and was rediscovered by Wolf [ 8]
in his 1986 thesis. The growing interest in this result makes it
worthwhile to have a proof in the literature.

§1 Preliminaries

Let M be an oriented compact, oM =¢* and let M_1 be the
Tame Frechét manifold [2] of Riemannian metrics of constant negative
curvature on M. The tangent space of M-T at a metric, g,TgM_1

consists of those (0,2) tensors h on M satisfying the equation
1
1.1 -Altr hy + § § h + 5(txr_h) =0
( ) Al g ) g°g 2( g )
where trgh = gljhij is the trace of h w.r.t. the metric tensor
gij’ Sgﬁgh is the double covariant divergence of h w.r.t. g

and A 1is the Laplace-Beltrami operator on functions. For example
see (2] for details.

Let DO be the Tame Frechét Lie group [2] of diffeomorphisms

of M which are homotopic to the identity. Then DO acts on

* the case with boundary follows analogously
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M_1 by pull back, i.e. f —> f*g. Teichmiiller space is then

defined as

(1.2) T(M) = M_ /Dy .

In [2],[5] we show that T{(M) is a c” finite dimensional mani-
fold diffecmorphic to Ifl, q = 6 (genus M) - 6. The Lz—metric on

M_1 is given by the inner product.

-1 :
(1.3) <<h,k>> = 5 fy trace (HK)dp

where H = g—1h, K = g-1k are the (1:1) tensors on M obtained

from h and k via the metric g, or "by raising an index", i.e.

and similarly for K. Finally ug is the volume element induced on
M by g and the given orientation.

The inner product (1.3) is DO invariant. Thus DO acts

smoothly on M_1 as a group of isometries with respect to this metric,
and consequently we have an induced metric on T(M) in such a way
that the projective map 1 : M_1 g M_1]DO becomes a Riemannian
submersion [2]. In [ 3] it is shown that this induced metric is

precisely the metric originally introduced by Weil.

ILet <,> be the induced metric on T(M). We can characterize

<,> as follows. From [ 2 ] we can show that given g€M_. every

1
r1ETgM_1 can be -uniquely written as

TT
(1.4) h =h + Lyg

where LXg is the Lie derivative of g w.r.t. some (unique X) and

™ | , ,
h is a trace free, divergence free, symmetric tensor. Moreover the

decomposition (1.4) is L2-orthogonal. Recall that a conformal

coordinate system (where gij = Aéij , A some smooth positive
function) is also a complex holomorphic coordinate system. In this
system

h™T = Re(£(z)dz?)

2

where Re 1is "real part"” and £ (z)dz is a holomorphic quadratic
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differential. In fact trace free, divergence free symmetric two
tensors are precisely the real parts of holomorphic quadratic

differentials.

Now L.g is always tangent to the orbit of DO through g.
We say that Lxg
Similarly we say that hTT represents the horizontal part of H..

is the vertical part of h in decomposition 1.4.

Given h,k €T T(M) there are unique horizontal vectors H,EE:TgM_1
such that dm(g)R = h and dm(g)X = k. Then

<h,k> = <<k,k>> .
(gl g

Suppose now that gOEZM_1 is fixed and that s!{M,g) —> (M,go)

is a smooth C! map homotopic to the identity and is viewed as a
map from M with some arbitrary metric geM_, to M with its

99 metric.
Define the Dirichlet energy of s by the formula
_ 1 2
(1.5) Eg(s) =3 IM lds| dug

where Idsl2 = trace ds*ds depends on both g and 99

By the embedding theorem of Nash-Moser we may assume that

(M,go) is iscmetrically embedded in some Euclidean IJ<. Thus we
can think of s : (M,g) —> (M,go) as a map into ERK and
Dirichlet's functional takes the equivalent form

1 & i i
(1.6) Egls) = 3 iz1 fg(x) <vgs (x),VgS (x)>dug

There is another, equivalent, and useful way to express (1.5) and

(1.6) using local conformal cordinate systems gij = osij and
(go)ij = pGij on (M,g) and (M,go) respectively, namely
(1.7) Eq(s) = = [ [p(s(z))Is 1%+ 0(s(2))]5=1%1dzdz

: g 4 °M 2 z

For fixed g, the critical points of E are there said to

be harmonic maps. The follwing result is due to Schoen-Yau [ 9].

Theorem. Given metrics g and 99 there exists a unique harmonic
map s(g) : M,g) — (M,go) which is homotopic to the identity.
Moreover s(g) depends differentially on g in any il topoloay,
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r>2, and is a c” diffeomorphism.
Consider now the function
g —> Eg(S(g))

This function on M is DP-invariant and thus can be viewed

-1
as a function on Teichmiiller space.

For fixed g, the critical points of E are then said to be
harmonic maps. The following result is due to Schoen-Yau [ 9].

Theorem. Given metrics g and 99 there exists a ungiue harmonic
map s(g) : (M,g) —> (M,go) which is homotopic to the identity.
Moreover s(g) depends differentially on g in any u* topology,
r>2, and is a c” diffeomorphism.

Consider now the function
g —> Eg(S(g))

This function on M_1 is D-invariant and thus can be viewed
as a function on Teichmiiller space. To see this one must show that

Ef*g(S(f*(g)))'= Eg(s(g))

Let c{g) be the complex structure associated to g, and
induced by a conformal coordinate system for g. For f € DO '
£f : (M,f*c(g)) —> (M,c(g)) is holomorphic and consequently since
the composition of harmonic maps and holomorphic maps is still

harmonic we may conclude, by uniqueness that
S(f*g) = s(g) o £ .

Since Dirichlet's functional is invariant under complex holomorphic

changes of coordinates it follows immediately that
Ef*(g)(s(g)of) = Eg(stg)) .

Consequently for [g] € M_ !DO define the ¢~ smooth function

1

E : M_q1Py — R
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by

Elgl = Eg(s(g)) .

§2 The Main Result

Theorem 2.1 _[gO] is the only critical point of E. The Hessian
of E at [gq] is given by

a®Elgy) (h,k) = 2<h,k>

h,k ¢ T

[q ]T(M). That is, the second variation of Dirichlet's energy
function 0is (up to a positive constant) Weil-Petersson metric.

Proof. We begin by computing the first derivative dﬁ[go]. We
again view a map S : (M,qg) —-gr(M,go) as a map into RK

Consider the two form
k k i
2 2 as 2., 2
£(z)dz* = g 2322 - z x5 ) dz”.

We start by proving

Proposition 2.2. If s : (M,g) —> (M,go) is harmonic the form

g(z)dz2 is a holomorphic quadratic differential on the complex
curve (M,c(go)), and thus Re E(z)dz2 represents a trace free,
divergence free symmetric two tensor on (M,go). Hence Re-E(z)dz2

is a horizontal tangent vector to M_1 at 'go. Finally

(2.3) dﬁ[go]h_= - Re<<E(Z)dzz,H>>g0
where E is the horizontal left of hEET(gO)T(M).
Proof (of 2.2)
We have Dirichlet's functional
| 1 % i i
E(g,s) = 3 i§1 IM g (x) (Vgs ,Vgs )dug

Suppose: s 1is harmonic¢., Let § denote the second fundamental form
of ‘(M,go) = IRk . Thus for each p€M, Q(p) : TpM x T_M —> TPM'L
Let A denote the (non-linear) Laplacian of maps from (M,g) to
(M,go) and AB denote the Laplace-Betrami operator on functions.
Then if s 1is harmonic we have
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2
(2.4) 0 = As = Ags + )

Q(s) {ds(e.) ,ds(e.))
j=1 J ]

eq(p), ez(p) on orthonormal basis for TpM with respect to g.
g(z)dz2 will be holomorphic of

i

2§ ast | asth g
0z i=1 °%2 9%
But this is equal to
2. E y L. ast
9 =1 3] 3z
where in conformal coordinates gij = Oéij . By (2.4) we see that
this, in time, is equal to
k -2 | i
2 z 2 i oS
- = 27 (s) (ds(e.) ,ds(e.)) s —
O iz1 521 J T ez
2 N
_ _g I as . os
= - j£1L I 0(s)(ds(ey),As(ey)) - 33 + i0(s) (ds(ey) ,ds(e;)) §§}
1 it follows that both the real

Since {(p) takes values in TpM
and imaginary parts of the expression vanish. Thus E,(z)dz2 is
holomorphic.

Recall that s 1is harmonic iff %g(g,s) = 0. We now compute %g .

If we have local coordinates represented by (x,y) €W, then in this
coordinate system

k
E(g,s) = % ) IM_g(x)<G 1VS£,VSR> 2 Ydet G dxdy
=1 R
2 as* a5t
where VS is the vector (3;—,55—), G is the matrix {gij} of g
and <’>IR2 denotes the ordinary IR2 inner product and

vdet G dxdy 1s the local representation of dpg. In the following
computation we adopt the convention, that summations over the index

£ will be understood.

Q,VSR>/aet G, dxdy

0

(2.5) %g(go,s)ﬁ = -f<cg'HG,Ts

+ % I<G61V32,V52> trace H dxdy

vdet G0
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where H = {Eij} is the matrix of the symmetries tensor h in

these coordinates. Here we use the fact that the derivative of

G—> G| is H— G 'HG . Suppose we look at this first

derivative in conformal coordinates (go)ij = Aéij. Then if Hh
is horizontal the second term in (2.5) vanishes (h 1s trace free)
and
JE 1 J AR '
§§(g0’s)ﬁ = - f T <Vs ,Vs >IR2 dxdy
A L L 2
1 e (3872 ~ ,3s”, 3s ~ 98”2
= oS ARG e R G )« Ry G }dxdy :
Since h11 = —h22 this is equal to
'A 2 L L -
_r s 9s™y2 _ ,3s872 3s”™, (387, | :
(2.6) | Mhﬂ[(ax ) (55 + 2312(ax )(ay )} dxdy
Now
. L L
9s” _ .98 2 2
(ax lay ) (dx +dy)” = E(z})dz

is a quadratic differential. But

£ j 2 2

2 ,8s7.2 2 9s

as
) —(ax

2 - — —
Re(§(z)dz") = [(z=) ( ) 5y

+[

-If s 1is harmonic Re(s(z)dzz) is a trace free divergence free
tensor. Let us compute

<<Re E(z)dzz,ﬁ>>
90

This inner product is given locally by the expression

1, ab_cd
(2.7) Ejgo 95 kachdd“g
where kac is the coordinate representative of the two tensor

E(z)dzz. Therefore

Thus in conformal coordinates (2.7) is equal to

2 4950 (357 axgv
o lay T 4(ax )(ay ) dxdy.
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1
f Ef{kachac}dxay
1 o~ ~
= [ gxikqqByge 2k R, v ko R, taxay
Since 'k11‘= -k22 ‘ 511 = ~hjy, this equals

1 ~~
JoqlkqqBy g+ kyphy tdxay
2 ")

2 2
2 s, 2 3s
- (§§—) ]H11'*2(§§—)(§§—)312}dxdy

= | HIE

Comparing this with expression (2.6) establishes the formula

2
%(gO,S)H = -<<Re £(z)dz ,H>>go
However E(g] = E(g,s(g)). Since s(g) is harmonic 2=(g,,s(g,)) = 0.

This immediately implies that

wla
&len

(g lh = -<<Re £(2z)dz?,%>>

0 99
which establishes 2.2. We should remark that this formula tells us
that the gradient of Dirichlet's function on Teichmiiller space is
represented as a holomorphic guadratic differential.

To complete theorem 2.1 we need to compute a second derivative.
Again working'locally and thinking of the map s as now being
fixed we see that for K,k horizontal

z

é—%(go,S)('H.E’) = I<G61KG51HG61VSR,VSQ§p2/Eet C, dxdy
ag N
1y tommTod ool —
+ f <Gy HC, KG, Vs™,Vs"> > /det G, dxdy

ang in conformal coordinates this is equal to

f ;_2 <xkHyst,vsts 2 dxdy + | -A-%<Hgvs9',vs2> dxdy
f R E R B K ) (2552, 255 2] axa
2 1t T h2te) ek 3y Y

Now at the point Jg7 the unigue harmonic map s is the
identity map of (M,gol to itself. Since (M,go) is isommetrically
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immersed in IRK ' s(go)*GIRK = gqi where G]RK is the Euclidean

metric on RE . But if 9 is expressed in local conformal

coordinates this says exactly that

as™,2 38”2y _ 4
{ (BT) + ('a—y-*) } o= )\'.
Thus at the point gy r We see that
E (o ia)(B,F) - [2(8, X, +5%, K. )dxd
AR O R L Y
since k = -k h = -h applying formula (2.7) for the

11 227 M1 227
Weil-Petersson metric we see that

2’

3g _
However we are interested in the map

(2.8) (go,id)(H,E) = 2<<h,k>>

(] o]

Elg]l = Elg,s(qg)).

Clearly

oE _ JE ~ . 3E

—g[g]h = ag(g,S(g))h + ==(g,s(g)) .Ds (g) R

- where Ds(g) represents the derivative of s with respect to g.
However the second term is identically zero since s(g) 1is

harmonic implies %%(g,s(g)) s 0. Therefore

2 2
2 Eig 1tk = £E (g, 10) (K,B)
‘3g 3g
2
+ 28 (g ,1a) (B,Ds (g, %)
3gos 20’ +2= 190
and by 2.8
= 2<<h,%>> + 3%E_ (g.,id) (K,Ds (g.) %)
’ a 3 gof t US go -

Theorem 2.1 will now follow immediately from the following.

Proposition 2.9. Dé(go)ﬁ =0, if h is trace free divergence free.
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Proof. 1In order to compute this derivative we write down the
general equation of a harmonic map from a Riemanian manifold
(M,g) to a Riemannian manifold (N,g). Namely £ : (M,g) —> (N,g)
is harmonic if in local coordinates, f = (f',...,fn), n = dim N

1

1y~ 3 Y a6B 5
(2.10) = B gtig B g%y A 3E° 13

| 2= =0
/g 3 Bxi YB 3xi ij

where F$B are the Christofel symbol of the metric g

If dim N = 2 = dim M. and we express (2.10) in local conformal

coordinates 95§ = Aﬁij and gij = pdij we see that (2.10) is
equivalent to

(2.11) sz + (log p)ffsz =0
- p(f)
where (log o)f = SVEY

In the case under consideration g 1is the fixed metric g, on M.

We now think of f% as depending on g, and let w® = Df*(K) be the

a

linearization of £ in the direction h. We now differentiate

equation (2.10) w.r.t. g in the direction H. We first make three
important observations. The Christofel symbol | Fg are fixed and
do not depend on g. Second the derivative of V¢ in a direction

R is given by H — trgh//E

If H is trace free thisderivative vanishes. Thirdly, the

~

derivative of g*?/g in the direction K is h — -R*J .

Taking the derivative of (2.10) w.r.t. g in the direction

= Ad.,. at
i

h, evaluating it in conformal coordinates (g4) 5

14
f = id, and using formula 2.12 for the complex f%rm of

W= w + iw we see that

2
o S
(2 12) w -+ (lo )\) W— = + l o {ﬁaj} +Fl‘hlj
' 22 g 427 X 3%, *"L—Az

Lemma 2.13 If H is trace free and divergence free,the expression

(2.14) o (593 + L r%l R, = o.

J

> —

Before proving 2.13 let us see how it implies proposition 2.9.



TROMBA 11
Using 2.12 we see that the linearization w = Ds(gOJH satisfies
w7 ¢t (log A)sz =0
or
3 -
E(AWE), =0 .
Now this implies that
] ii(xw—)ﬁ dzadz =0
9z z
Integrating by parts we further see that
2 —
fAIwE! dz A dz = 0
Therefore wo = 0 and consequently w 1is a holomorphic vector

field on (M,c(go)). Since (genus M) > 1 this clearly implies that

wa 0 concluding 2.9.

To prove lemma 2.13 we note that

N IV LSS SN 7
Fig = 2A{3xj Sia T Tx; %307 Ixy 5557
’ ~aj-l~ . ] * St a -
and that h =3 haj‘ S}nce R is divergence free T Haj 0
and so . ]
1 3 ~aj 1~ 9
__..(h ):——._h.—.
A oX, 3 Toj 8x,
J A I 9%y
Therefore expression 2.14 equals
1 3A & 1 AN . A 3A
- —_—_ + — {= + §. = ==~ ¢&..} R
A3 ij oy 2)\3 xj ia axi Jja X, 1] ij
_ 1 3 B+ 1 3N o~ 1 3A 1 A o
= - L2 g . 22§ o CLEN G E L
33 ij aj 233 X5 aj 2A3 x; ia 233 axa ii

Clearly the sum of the first three terms is zero and since h is:
trace free the fourth also vanishes. This completes lemma 2.13
and this paper.
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