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JORDAN TOTIENT QUOTIENTS

PIETER MOREE, SUMAIA SAAD EDDIN, ALISA SEDUNOVA, AND YUTA SUZUKI

Abstract. The Jordan totient Jk(n) can be defined by Jk(n) = nk
∏
p|n(1 − p−k). In this

paper, we study the average behavior of fractions P/Q of two products P and Q of Jordan
totients, which we call Jordan totient quotients. To this end, we prepare some general and
ready-to-use methods to deal with a wider class of totient functions first by an elementary
method, and then by using an advanced method due to Balakrishnan and Pétermann. As
an application, we determine the average behavior of the Jordan totient quotient, the kth

normalized derivative of the nth cyclotomic polynomial Φn(z) at z = 1, the second normalized
derivative of the nth cyclotomic polynomial Φn(z) at z = −1, and the average order of the
Schwarzian derivative of Φn(z) at z = 1.

1. Introduction

Jordan totient quotients. Let k ≥ 1 be an integer. The kth Jordan totient function Jk(n)
is the number of k-tuples chosen from a complete residue system modulo n such that the
greatest common divisor of each set is coprime to n. It is not difficult to show that

(1) Jk(n) = nk
∏
p|n

(
1− 1

pk

)
,

where p here, and indeed in the whole paper, denotes a prime number. The Jordan function
first showed up in the work of Camille Jordan in 1870 in formulas for the order of finite matrix
groups (such as GL(m,Z/nZ)). For an introduction to Jordan totients see Section 2.

Definition. Let r ≥ 1 be an integer and e = (e1, . . . , er) be a vector with integer entries.
Put w =

∑
i iei. An arithmetic function Je of the form

(2) Je(n) =
r∏
i=1

Jeii (n) = nw
∏
p|n

r∏
i=1

(
1− 1

pi

)ei
,

is said to be a Jordan totient quotient of weight w. If w = 0, then we say that it is a balanced
Jordan totient quotient. If the weight is different from 0 we call it unbalanced.

Note that if Je is balanced, then Je(n) depends only on the square-free kernel of n. A
famous (unbalanced) Jordan totient quotient is the Dedekind Ψ-function defined by

Ψ(n) = n
∏
p|n

(
1 +

1

p

)
=
J2(n)

J1(n)
,

which showed up in the work of Dedekind on modular forms.
In this paper we study the average behavior of Jordan totient quotients. In the remainder

of the introduction we describe our main results, including an application to the study of the
average of the normalized derivative of cyclotomic polynomials.

2010 Mathematics Subject Classification. 11N37, 11Y60.
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2 P. MOREE, S. SAAD EDDIN, A. SEDUNOVA, AND Y. SUZUKI

Our first result gives an asymptotic formula for the summatory function of any balanced
Jordan totient quotient Je(n), which implies that Je(n) is constant on average.

Theorem 1. Let r ∈ N, e = (e1, . . . , er) ∈ Zr be a vector of integers, and Je be a Jordan
totient quotient of weight w =

∑
i iei = 0. Then asymptotically

∑
n≤x

Je(n) = Sex+

|e1|∑
r=1

Ce,r(log x)r +Oe((log x)2|e1|/3(log log x)4|e1|/3),

where the constant

(3) Se =
∏
p

(
1 +

Je(p)p
−w − 1

p

)
.

is positive and the Ce,r are some constants1.

Note that the convergence of Se is ensured since

1 +
Je(p)p

−w − 1

p
= 1 +O(p−2).

As Je(p)p
−w > 0 > 1 − p, we have Se > 0. This constant can be expanded as a product

of partial zeta values, see Moree and Niklasch [7, 8]. As partial zeta values can be easily
evaluated up to high precision (say, with thousand decimals), this then allows one to do the
same for Se.

In case e = (0) is the zero vector, then Je(n) = 1 for every n ≥ 1, Se = 1 and Theorem 1
merely states that

∑
n≤x 1 = x+O(1).

We consider not only the balanced Jordan totient quotients, but also a more general class
of totient functions (see Section 3 for the definitions). This class is similar to the one earlier
studied by Kaczorowski [5] in the context of inverse theorems for the Selberg class. An analog
of Theorem 1 for non-zero weight can be easily established on invoking Lemma 6 and partial
summation. As this is a long and rather inelegant result, we leave it to the interested reader
to write it down.

The proof of Theorem 1 uses the method of Balakrishnan and Pétermann [2], but before
applying it (in Section 4), we develop a simpler argument (see Section 3), which actually
applies to a wider class of totients. This method allows us to get the main term of Theorem 1,
however only with a weaker error term. Just as Theorem 1, Theorem 2 can be established by
elementary means for non-zero weight also (see Proposition 1).

Theorem 2. Let r ∈ N, e = (e1, . . . , er) ∈ Zr be a vector of integers, and Je be a Jordan
totient quotient of weight w =

∑
i iei = 0. Then asymptotically∑

n≤x
Je(n) = Sex+Oe((log x)|e1|),

where the constant Se is positive and given by (3).

It is an open problem to obtain a result at least as strong as Theorem 1 by more elementary
methods than used by Balakrishnan and Pétermann.

1Work in progress by the fourth author [13] suggests that the exponent 4|e1|/3 of log log x in the error term
can be decreased to |e1|/3.
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Applications. In Section 5 of the present paper, we consider normalized higher derivatives
of cyclotomic polynomials at 1. Our main result shows that they are constant on average.
We use the standard notation Φn and Bn for the nth cyclotomic polynomial and nth Bernoulli
number, respectively (cf. Section 5.1).

Theorem 3. Let k ≥ 1. There exist a computable constant Sk(Φ) and constants C0, . . . , Cr
such that asymptotically∑

1<n≤x

1

ϕ(n)k
Φ
(k)
n (1)

Φn(1)
= Sk(Φ)x+

k∑
r=1

Cr(log x)r +Ok((log x)2k/3(log log x)4k/3),

where the constant Sk(Φ) is defined by

(4) Sk(Φ) = (−1)kk!
∑
(∗)

k∏
i=1

1

λi!

(
Bi
i! · i

)λi
Se(λ)

with the summation
∑
(∗)

over all non-negative λ1, . . . , λk ≥ 0 with λ1 + 2λ2 + . . . + kλk = k,

and with the indices e(λ) = e(λ1, . . . , λk) defined by

(5) e(λ) = (ei(λ))∞i=1, ei(λ) =

 λ1 − k, i = 1,
λi, 2 ≤ i ≤ k,
0, i > k.

Note that the vectors e(λ) appearing as summands in (4) are all balanced. Neither can we
predict the sign of Sk(Φ), nor can we exclude that Sk(Φ) = 0.

Although some part of the sum
∑k

r=1Cr(log x)r can be swamped by the error term, it turns
out to be easier to work with this full series rather than an appropriately truncated one.

In case k = 1, we have by (17)

(6)
∑

1<n≤x

1

ϕ(n)

Φ′n(1)

Φn(1)
=

∑
1<n≤x

1

2
=
x

2
+O(1),

improving Theorem 3. However, as our method of proof naturally includes the case k = 1,
we have not excluded it from our formulation of Theorem 3.

Theorem 3 is a simple consequence of Lemma 8 and Theorem 1. We expect that an
analogous result can be obtained with 1 replaced by any primitive root of unity of order m,
and that this would involve averages of generalized Jordan totients (introduced in Bzdȩga et
al. [3]) of the form

Jk(χ;n) =
∑
d|n

µ(n/d)χ(d)dk,

with χ a Dirichlet character of modulus m. We will see such a result for −1 in case k = 2
in the proof of Theorem 4, which is due to Herrera-Poyatos and the first author [4]. Finally,
in Theorem 5, we determine the average of the Schwarzian derivative of Φn(z) evaluated at
z = 1.

2. The totient functions

Let k ≥ 1 be an integer and Jk(n) be the kth Jordan totient function. This is one of many
generalizations of Euler’s totient function (the case k = 1), see Sivaramakrishnan [11]. It is
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easy to see, cf. [12, p. 91], that

nk =
∑
d|n

Jk(d),

which, by Möbius inversion, yields

(7) Jk(n) =
∑
d|n

µ(d)
(n
d

)k
.

Thus Jk is a Dirichlet convolution of two multiplicative functions and hence is itself multi-
plicative. By the Euler product formula, it then follows from (7) that (1) holds true.

Given a Jordan totient quotient function of weight w =
∑

i iei as in (2), we normalize it by
dividing by nw, resulting in

(8)
Je(n)

nw
=
∏
p|n

r∏
i=1

(
1− 1

pi

)er
=
∏
p|n

(
1− e1

p
+O

(
1

p2

))
.

Although our focus is the study of this particular function, our methods easily allow a more
general class of totients to be dealt with.

Definition (General totient). Let θn be a complex valued multiplicative function supported
on square-free numbers. Define the θ-totient φθ(n) by

φθ(n) =
∏
p|n

(1 + θp) =
∑
d|n

θd.

It is easy to see that any arithmetic function f that only depends on the square-free kernel
of n for every n ≥ 1, is of the form φθ for some θ.

We next describe the conditions we impose on θ throughout the paper.

Condition Θ1. There exist non-negative constants σ, κ,A with 0 ≤ σ < 1 such that for any
x ≥ 2 we have ∑

p≤x

|θp|
pσ
≤ κ log log x+A.

Condition Θ2. There exist 0 < λ < 1/2 and α ∈ R with |α| ≥ 1 such that for all primes p
we have

θp = α/p+ rp, rp = O(p−1−λ).

Condition Θ3. With respect to p the function pθp is ultimately monotonic2.

Note that if Condition Θ2 is satisfied, then so is Condition Θ1 with σ = 0 and κ = |α|.
We point out that in order to prove Theorem 2 only Condition Θ1 is needed, whereas to
prove Theorem 1 we shall impose the stronger Condition Θ2. Notice that if θ is defined by
Je(n)/nw = φθ(n), then Condition Θ2 is satisfied with α = −e1 and λ = 1, cf. (8).

3. Mean values of general totients via an elementary method

In this section, we give a simple method to obtain asymptotic formulas for the mean value
of multiplicative functions of a certain type. The ideas and techniques are not new, but our
aim is to provide a quick way to translate the definition of multiplicative functions to the
asymptotic formula of its mean value. As we have seen, our θ-totient is modeled on the
normalized Jordan totient quotient (8). Thus we need to introduce a weight factor nβ.

2Condition Θ3 can be removed at the expense of more technicalities, see [13].
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Lemma 1. Let β be an arbitrary real number. For x ≥ 1 we have∑
n≤x

nβ = Mβ(x) + C0(β) +Oβ(xβ),

where C0(β) is a constant depending only on β, M−1(x) = log x and

Mβ(x) =
xβ+1

β + 1
, if β 6= −1.

Proof. Follows from parts (a), (b), and (d) of [1, Theorem 3.2]. �

Lemma 2. Let φθ be a θ-totient and β be an arbitrary real number. Assume that θ satisfies
Condition Θ1. We then have∑

n≤x
nβφθ(n) = SθMβ(x) + C(θ, β) +Oσ,κ,A,β(xσ+β(log x)κ),

where Sθ is given by the absolutely convergent product

(9) Sθ =
∏
p

(
1 +

θp
p

)
,

and C(θ, β) is a constant depending only on θ and β.

Proof. By the definition of θ-quotient, we have∑
n≤x

nβφθ(n) =
∑
n≤x

nβ
∑
d|n

θd =
∑
d≤x

dβθd
∑

m≤x/d

mβ.

Thus, by Lemma 1, we have∑
n≤x

nβφθ(n) =
xβ+1

β + 1

∑
d≤x

θd
d

+ C0(β)
∑
d≤x

dβθd +Oβ

(
xβ
∑
d≤x
|θd|
)

if β 6= −1, and ∑
n≤x

nβφθ(n) =
∑
d≤x

θd
d

log
x

d
+ C0(β)

∑
d≤x

θd
d

+O
(1

x

∑
d≤x
|θd|
)

if β = −1. Using Condition Θ1, we find that∑
d≤x

|θd|
dσ
≤
∏
p≤x

(
1 +
|θp|
pσ

)
≤ exp

(∑
p≤x

|θp|
pσ

)
�σ,κ,A (log x)κ.

This implies that for β ≥ −σ∑
d≤x

dβ|θd| ≤ xσ+β
∑
d≤x

|θd|
dσ
�σ,κ,A x

σ+β(log x)κ,

and that for β < −σ∑
d>x

dβ|θd| �σ,β

∑
d>x

|θd|
dσ

∫ ∞
d

uσ+β−1du�σ,β

∫ ∞
x

(∑
d≤u

|θd|
dσ

)
uσ+β−1du

�σ,κ,A,β x
σ+β(log x)κ.

Hence, in particular, ∑
d≤x
|θd| � xσ(log x)κ,
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and ∑
d≤x

θd
d

= Sθ + r(x), r(x)�σ,κ,A x
σ−1(log x)κ.

By combining the above, we obtain the assertion in case β 6= −1.
For the case β = −1, we have to evaluate the main term. We have∑

d≤x

θd
d

log
x

d
=
∑
d≤x

θd
d

∫ x

d

du

u
=

∫ x

1

(∑
d≤u

θd
d

)du
u

= Sθ log x+

∫ x

1

r(u)

u
du = Sθ log x+

∫ ∞
1

r(u)

u
du−

∫ ∞
x

r(u)

u
du.

The last integral can be estimated as∫ ∞
x

r(u)

u
du�

∫ ∞
x

uσ−2(log u)κdu� xσ−1(log x)κ

since σ < 1 by assumption. This completes the proof when β = −1. �

As a special case we obtain the following result involving the Jordan totient quotient.

Proposition 1. Let e = (e1, . . . , er) ∈ Zr be a vector of integers and Je(n) be the associated
Jordan totient quotient of weight w =

∑
i iei. For any real number β we have∑

n≤x
Je(n)nβ = SeMβ+w(x) + C(e, β) +Oe,β(xβ+w(log x)|e1|),

where Se is given by (3) and C(e, β) is a constant depending only on e and β.

Proof. We can regard Je(n)n−w as a general totient φθ(n) with components

θp = −e1/p+O(p−2).

This gives ∑
p≤x
|θp| =

∑
p≤x

|e1|
p

+O(1) = |e1| log log x+O(1),

i.e. θ satisfies Condition Θ1 with σ = 0, κ = |e1|. Note that

θp = Je(p)p
−w − 1,

and so the comparison of (9) and (3) yields Sθ = Se. Under the above setting, we can rewrite
the left-hand side of the assertion as∑

n≤x
Je(n)nβ =

∑
n≤x

nβ+w
(Je(n)

nw

)
=
∑
n≤x

nβ+wφθ(n),

and the proposition follows by Lemma 2. �

Corollary 1. For k ≥ 1 we have∑
n≤x

nk−1

ϕ(n)k
= S(−k) log x+ Ck +Ok

((log x)k

x

)
,

where S(−k) is given by (3) and Ck is a constant depending on k.

Proof. Apply Proposition 1 with Je(n) = ϕ(n)−k, w = −k and β = k − 1. �
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4. Mean values of general totients by Balakrishnan-Pétermann

In this section we use the method of Balakrishnan and Pétermann [2] in order to prove
Theorem 1. It consists of Propositions 2 and 3 below and yields an asymptotic formula for
the mean value of θ-totients, provided some condition stronger than Condition Θ1 is satisfied.

Proposition 2 (Balakrishan and Pétermann [2, Theorem 1]). Let

f(s) =

∞∑
n=1

bn
ns

be a Dirichlet series that converges absolutely for σ > 1 − λ, with λ a positive real number.
Define two arithmetic functions an and vn by

∞∑
n=1

an
ns

= ζ(s)ζ(s+ 1)αf(s+ 1),

∞∑
n=1

vn
ns

= ζ(s)αf(s),

where σ > 1, α is an arbitrary real number and the branch of ζ(s + 1)α is taken by the one
for which arg ζ(s+ 1) equals zero on the positive real line. Then we have

∑
n≤x

an = ζ(2)αf(2)x+

[α]∑
r=0

Ar(log x)α−r +R(x) + o(1)

as x→∞, where the coefficients Ar are computable from the Laurent expansion of ζ(s)αf(s)
at s = 1, the remainder term R(x) is given by

R(x) =
∑
n≤y

vn
n
ψ
(x
n

)
,

with y = x exp(−(log x)1/6), and ψ(x) = {x} − 1/2. The implicit constant in the error term
might depend on all the input data.

Remark. There are several results in [2] that depend on the specific zero-free region for the
Riemann zeta function being used. Throughout this paper, we will use the zero-free region

Re s ≥ 1− 1

(log t)4/5
and Im s ≥ t0,

where t0 is some large constant, see [14, Eq. (6.15.1)]. This zero-free region enables us to

take b = 1/6 in [2], leading to y = x exp(−(log x)1/6) in Proposition 2, see [2, Subsection 1.4,
Lemmas 3 and 5].

Lemma 3 (Balakrishnan and Pétermann [2, Lemma 3]). In the notation of Proposition 2 we
have ∑

n≤x

vn
n

=
∑

0≤r≤(log x)1/6
Vr(log x)α−r +O(exp(−(log x)1/6)),

with |Vr| ≤ (cr)r for every r ≥ 1 and c ≥ 1 a constant possibly depending on v.

Now we prove Theorem 1. As already mentioned, we need to assume that θ satisfies a
stronger condition than Condition Θ1. In this section, we use Conditions Θ2 and Θ3, and
hence all implicit constants in this section will depend on the constants α, λ and the implicit
constant appearing in Condition Θ2.



8 P. MOREE, S. SAAD EDDIN, A. SEDUNOVA, AND Y. SUZUKI

Lemma 4. Let φθ be a θ-totient with θ satisfying Condition Θ2. Consider the formal Dirichlet
series

f(s+ 1) =

∞∑
n=1

bn
ns+1

= ζ(s)−1ζ(s+ 1)−α
∞∑
n=1

φθ(n)

ns
,

where α is the same one as in Condition Θ2. Then f(s) converges absolutely for Re s > 1−λ.

Proof. By the definition of φθ we have

(10)
∞∑
n=1

θn
ns

= ζ(s+ 1)αf(s+ 1).

If we consider the Dirichlet series given by

ζ(s)−α =
∞∑
n=1

τ−α(n)

ns
,

then, using (10) for the coefficients of f(s), we obtain

(11) bn =
∑
dm=n

τ−α(d)θmm.

Using the Euler product expansion and the generalized binomial formula, we see that

(12) ζ(s)−α =
∏
p

(
1− 1

ps

)α
=
∏
p

(
1 +

∞∑
ν=1

(−1)ν
(
α

ν

)
1

pνs

)
:=
∏
p

(
1 +Hα(p−s)

)
,

where (
α

ν

)
=

1

ν!

ν−1∏
`=0

(α− `),

is a generalized binomial coefficient. Since

|Hα(p−s)| = |α|
pσ

+Oα

(
1

p2σ

)
,

the Euler product (12) is absolutely convergent for σ = Re s > 1 and

τ−α(pν) = (−1)ν
(
α

ν

)
.

Note that

|τ−α(pν)| ≤
∣∣∣∣(αν

)∣∣∣∣ ≤ 1

ν!

ν∏
`=1

(|α|+ `− 1) ≤
ν∏
`=1

(
1 +
|α|
`

)
≤ exp

(
ν∑
`=1

|α|
`

)
� ν|α| �ε p

νε

for every ε > 0. Substituting n = p and n = pν into (11) and using Condition Θ2, we find
that

bp = τ−α(p) + pθp = −α+ α+ prp = O(p−λ),

respectively, bpν � |τ−α(pν)| �ε p
νε for ν ≥ 2 and every ε > 0. As

∞∑
n=1

|bn|
nσ

=
∏
p

(
1 +
|bp|
pσ

+
∞∑
ν=2

|bpν |
pνσ

)
is bounded when both σ + λ > 1 and 2σ > 1, the result follows since λ < 1/2. �
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Lemma 5. Let φθ be a θ-totient with θ satisfying Condition Θ2. Then we have∑
n≤x

φθ(n) = Sθx+

[α]∑
r=0

Cr(θ)(log x)α−r +R(x) + o(1),

where Sθ is given by (9), R(x) by

R(x) =
∑
n≤y

θnψ
(x
n

)
,

and y = x exp(−(log x)1/6).

Proof. With the choice an = φθ(n), we are in the scope of Proposition 2 by Lemma 4, and on
applying it and noting that vn = nθn, the proof is completed. �

We next estimate the error term in Proposition 2. For this purpose, we need Theorem 1
of Pétermann [10], which we state below3. Note that the parameter α in [10] corresponds to
|α|− 1 in Proposition 2. In order to avoid possible confusion caused by this clash of notation,
we replace α in [10] by α1.

Proposition 3 (Pétermann [10, Theorem 1]). Let vn be a real-valued multiplicative function.
Assume that there exist real numbers α1, β ≥ 0, and a sequence of real numbers {Vr}∞r=0, such
that for every integer B > 0 and real number x ≥ 4, we have

(h1)
∑
n≤x
|vn| = x

B+[α1]∑
r=0

Vr(log x)α1−r +OB(x(log x)−B),

(h2)
∑
n≤x
|vn|2 � x(log x)β,

(h3)
vp is ultimately monotonic with respect to p,

vpν is bounded as pν runs over the prime powers.

Then, for x ≥ 4, we have∑
n≤y

vn
n
ψ
(x
n

)
� (log x)2(α1+1)/3(log log x)4(α1+1)/3,

where y = x exp(−(log x)
1
6 ) and the implicit constant depends on the constants in Conditions

(h1), (h2) and (h3).

We now apply Proposition 3 to our setting. For this purpose, we need Lemma 3 (which
can, in principle, also be proven via the Selberg–Delange method).

Lemma 6. Let φθ be a θ-totient. Assume that θ satisfies Conditions Θ2 and Θ3. Then∑
n≤x

φθ(n) = Sθx+

[α]∑
r=0

Cr(θ)(log x)α−r +O((log x)2|α|/3(log log x)4|α|/3),

where Sθ is given by (9). Furthermore, for β real,∑
n≤x

nβφθ(n) = SθMβ(x) + C(θ, β) +

[α]∑
r=0

Cr(θ, β)xβ(log x)α−r + E(x;β),

3Note that [2, Theorem 2] contains an error. See the errata of [2] and [10].
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where Mβ(x) is defined in Lemma 1, and

E(x;β)� xβ(log x)2|α|/3(log log x)4|α|/3.

Proof. By Lemma 5, it is sufficient to show that R(x) = O((log x)2|α|/3(log log x)4|α|/3), which
we do via Proposition 3. Hence, we need to check that Conditions (h1), (h2) and (h3) are
all satisfied. Since θn satisfies Condition Θ2, |θn| also satisfies Condition Θ2, but with |α|
instead of α. Thus, we can apply Lemma 4 with |θn| instead of θn. Then, as vn = nθn, we
can replace vn in Proposition 2 by |vn|.

We start with Condition (h1). We apply Lemma 3 and obtain∑
n≤x

|vn|
n

=
∑

0≤r≤(log x)1/6
Vr(log x)|α|−r +O(exp(−(log x)1/6)),

where the Vr are some constants satisfying |Vr| ≤ (cr)r with some c ≥ 1. Let B > 0 be
an integer that is kept fixed. Then it is easy to see that for x larger than some constant
depending on B and α the consecutive terms of the sequence

Vr(log x)|α|−r with B + |α| < r ≤ (log x)1/6

have the ratio ≤ 1/2 and so their sum is bounded by the first term as∑
B+|α|<r≤(log x)1/6

Vr(log x)|α|−r � VB+[|α|]+1(log x)|α|−(B+[|α|]+1) �B (log x)−B.

This enables us to truncate the sum over r to obtain

S(x) :=
∑
n≤x

|vn|
n

=
∑

0≤r≤B+|α|

Vr(log x)|α|−r +RS(x), RS(x)�B (log x)−B.

By partial summation,∑
n≤x
|vn| =

∫ x

2
u dS(u) +O(1)

=
∑

0≤r≤B+|α|

(|α| − r)Vr
∫ x

2
(log u)|α|−r−1du+

∫ x

2
u dRS(u) +O(1).

The main terms can be evaluated using integration by parts as∫ x

2
(log u)|α|−r−1 du =

∑
0≤m≤B+|α|−r−1

Cmx(log x)|α|−r−1−m +OB(x(log x)−B),

with some constants Cm depends on α and r. The error term can be estimated as∫ x

2
u dRS(u)�B x(log x)−B +

∫ x

2
(log u)−Bdu�B x(log x)−B.

By combining the above estimates, we arrive at

∑
n≤x
|vn| = x

B+[|α|−1]∑
r=0

Ṽr(log x)|α|−1−r +O(x(log x)−B),

where the Ṽr are constants. By Condition Θ2, we have |α| ≥ 1. Hence, Condition (h1) of
Proposition 3 is satisfied with α1 = |α| − 1 ≥ 0.
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As to Condition (h2), we start with the string of estimates

(13)
∑
n≤x
|vn|2 =

∑
n≤x

n2|θn|2 ≤ x
∑
n≤x

n|θn|2 ≤ x
∏
p≤x

(
1 + p|θp|2

)
≤ x exp

(∑
p≤x

p|θp|2
)
.

Now Condition Θ2 implies that

(14)
∑
p≤x

p|θp|2 �
∑
p≤x

1

p
� log log x.

By combining (13) and (14), we see that Condition (h2) is satisfied as well.
The remaining Condition (h3) follows immediately from our setting and Condition Θ3.
Thus Conditions (h1), (h2) and (h3) are satisfied and we get the claimed upper bound

for R(x), which on insertion in Lemma 5 yields the first assertion of the lemma. The second
claim now follows by partial summation. �

Proof of Theorem 1. Consider the θ-quotient φθ(n) defined by φθ(n) = Je(n)n−w. Note that
θ satisfies Condition Θ2 with α = −e1 and λ = 1 and, moreover, satisfies Condition Θ3.
Thus, in case e1 6= 0, Theorem 1 follows immediately from Lemma 6. The case e1 = 0 is just
a corollary of Theorem 2. �

5. Applications

Definition. Let f(X) ∈ Z[X] be a polynomial and let deg f denote its degree with respect
to X. For any complex number z such that f(z) 6= 0, we define

F (k)(z) =
1

(deg f)k
f (k)(z)

f(z)

as the normalized kth derivative of f at z.

In case f(X) ∈ Z≥0[X], z ≥ 1 is real, and f(z) 6= 0, it is easy to show that F (k)(z) ≤ 1.
This observation leads to the following problem.

Problem. Let z be given. Let F be an infinite family of polynomials f with f(z) 6= 0. Study

the average behavior and value distribution of F (k)(z) in the family F .

Here we consider the family F = {Φn : n ≥ 2}, where Φn denotes the nth cyclotomic
polynomial. It can be defined by

Φn(X) =
∏

1≤j≤n
(j,n)=1

(X − ζjn) =

ϕ(n)∑
k=0

an(k)Xk,

with ζn any primitive nth root of unity. Note that Φn(1) 6= 0 for n > 1 and that Φn(−1) 6= 0
for n > 2. Theorem 3 shows that

1

ϕ(n)k
Φ
(k)
n (1)

Φn(1)
,

the kth normalized derivative of Φn at 1, is constant on averaging over n.
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5.1. The kth derivative of Φn at 1. In this section we first recall some known results on

Φ
(k)
n . For a survey (and some new results) see Herrera-Poyatos and Moree [4].
The Bernoulli numbers Bn can be recursively defined by

Bn = −
n−1∑
k=0

(
n

k

)
Bk

n− k + 1
,

with B0 = 1. The coefficients c(k, j) of the polynomial

X(X − 1) · · · (X − k + 1) =
k∑
j=0

c(k, j)Xj

are called the signed Stirling numbers of the first kind.

Lemma 7 (Lehmer [6, Theorems 2 and 3]). For n > 1 and k ≥ 1, we have

(15)
Φ
(k)
n (1)

Φn(1)
= k!

∑
(∗)

k∏
i=1

(−si(n))λi

λi!iλi

where the summation
∑
(∗)

is as in Theorem 3 and

(16) si(n) := − 1

(i− 1)!

i∑
h=1

(−1)h
Bh
h
c(i, h)Jh(n).

Remark. Theorem 2 of [6] gives the formula

si(n) =
(−1)i

2
ϕ(n)− 1

(i− 1)!

[i/2]∑
h=1

B2h

2h
c(i, 2h)J2h(n).

The expression above is slightly different from (16), but we can simplify this as in Lemma 7
since Bh = 0 for odd h > 1, B1 = −1/2, and c(i, 1) = (−1)i−1(i− 1)!.

In particular, using Lemma 7 with k = 1, 2 for n > 1 we obtain

(17)
Φ′n(1)

Φn(1)
=
ϕ(n)

2
,

and
Φ′′n(1)

Φn(1)
=
ϕ(n)

4

(
ϕ(n) +

Ψ(n)

3
− 2

)
.

Lemma 8. For n > 1 and k ≥ 1, we have

1

ϕ(n)k
Φ
(k)
n (1)

Φn(1)
= k!

∑
(∗)

k∏
i=1

(−1)iλi

λi!

(
Bi
i! · i

)λi Ji(n)λi

ϕ(n)k
+Ok

(
nk−1

ϕ(n)k

)
,

where the summation
∑
(∗)

is as in Theorem 3.

Proof. Since Jh(n) ≤ nh and c(i, i) = 1, it follows from (16) that

−si(n) = (−1)i
Bi
i!
Ji(n) +Ok(n

i−1).
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Hence, by raising this to the λi-th power,

(−si(n))λi = (−1)iλi
(
Bi
i!
Ji(n)

)λi
+Ok(n

iλi−1).

By substituting this estimate into (15), the proof of the lemma is concluded by taking the

product over 1 ≤ i ≤ k and noting that the error term is Ok(n
∑k
i=1 iλi−1) = Ok(n

k−1) for each
choice of λ1, . . . , λk contributing to the sum

∑
(∗)

. �

Proof of Theorem 3. By (6), we may assume k ≥ 2. By Lemma 8 and Corollary 1,∑
1<n≤x

1

ϕ(n)k
Φ
(k)
n (1)

Φn(1)
= k!

∑
(∗)

k∏
i=1

(−1)iλi

λi!

(
Bi
i! · i

)λi∑
n≤x

Je(λ)(n) +Ok(log x),

where we used the summation
∑
(∗)

and the indices e(λ) defined in Theorem 3. Note that every

index e(λ) appearing on the right-hand side has weight

w =
∞∑
i=1

iei(λ) =
k∑
i=1

iλi − k = 0.

Trivially |e1(λ)| ≤ k and hence, by applying Theorem 1 and using k ≥ 2,∑
1<n≤x

1

ϕ(n)k
Φ
(k)
n (1)

Φn(1)
= Sk(Φ)x+

k∑
r=1

Cr(log x)r +Ok((log x)2k/3(log log x)4k/3),

where

Sk(Φ) := (−1)kk!
∑
(∗)

k∏
i=1

1

λi!

(
Bi
i! · i

)λi
Se(λ). �

5.2. The second derivative of Φn at −1. We prove an analogous result for the normalized
second derivative of Φn at −1.

Theorem 4. We have∑
2<n≤x

1

ϕ(n)2
Φ′′n(−1)

Φn(−1)
=

x

48
(5S(−2,1) + 12) + c2 log2 x+O((log x)4/3(log log x)8/3),

where c2 is a constant and S(−2,1) computed via (3) equals

S(−2,1) =
∏
p

(
1 +

2

p(p− 1)

)
.

Proof. By [4, Corollary 22] it follows that for n ≥ 3 we have

Φ′′n(−1)

Φn(−1)
=
ϕ(n)

4
(ϕ(n) + anΨ(n)− 2) ,

where

an =


1 if n is odd,

1/9 if 2 ‖ n,
1/3 otherwise.
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Using the above and Lemma 1, it now follows that

(18)
∑

2<n≤x

1

ϕ(n)2
Φ′′n(−1)

Φn(−1)
=
x

4
+

1

4

∑
n≤x

an
Ψ(n)

ϕ(n)
+O(log x).

Note that∑
n≤x

(
an −

1

3

)
Ψ(n)

ϕ(n)
=

2

3

∑
n≤x
2-n

Ψ(n)

ϕ(n)
− 2

9

∑
n≤x
2‖n

Ψ(n)

ϕ(n)
=

2

3

∑
n≤x
2-n

Ψ(n)

ϕ(n)
− 2

3

∑
n≤x/2
2-n

Ψ(n)

ϕ(n)
,

and so ∑
n≤x

an
Ψ(n)

ϕ(n)
=

1

3

∑
n≤x

Ψ(n)

ϕ(n)
+

2

3

∑
n≤x
2-n

Ψ(n)

ϕ(n)
− 2

3

∑
n≤x/2
2-n

Ψ(n)

ϕ(n)
.

By Theorem 2, for the first sum, we have∑
n≤x

Ψ(n)

ϕ(n)
= S(−2,1)x+ c′1 log2 x+O((log x)4/3(log log x)8/3).

On noting that

12-n
Ψ(n)

ϕ(n)
=
∏
p|n

(1 + θp), θp =
2

p− 1
(p 6= 2), θ2 = −1,

we get on applying Lemma 6,∑
n≤x
2-n

Ψ(n)

ϕ(n)
=

1

4
S(−2,1)x+ c′2 log2 x+O((log x)4/3(log log x)8/3).

Combining the results above we obtain∑
n≤x

an
Ψ(n)

ϕ(n)
=

5

12
S(−2,1)x+ 4c2 log2 x+O((log x)4/3(log log x)8/3),

which, together with (18), concludes the proof. �

5.3. Schwarzian derivative of Φn at 1. Given a holomorphic function f of one complex
variable z, we define its Schwarzian derivative, cf. [9], as

S(f(z)) =
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

.

Theorem 5. We have∑
n≤x

S(Φn(1))

ϕ(n)2
= − 1

24
(S(−4,2) + 3)x+ c4 log4 x+ c3 log3 x+O((log x)8/3(log log x)16/3),

where c3, c4 are constants and S(−4,2) computed via (3) equals

S(−4,2) =
∏
p

(
1 +

4

(p− 1)2

)
.
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Proof. By Lemma 7, we have for n ≥ 2

S(Φn(1)) = −ϕ(n)2

8
− Ψ(n)2

24
+

1

2
,

and thus ∑
n≤x

S(Φn(1))

ϕ(n)2
= −1

8

∑
n≤x

1− 1

24

∑
n≤x

Ψ(n)2

ϕ(n)2
+

1

2

∑
n≤x

1

ϕ(n)2
.

The last sum is bounded by a constant by Proposition 1 with Je(n) = 1/ϕ(n)2 and β = 0.
The result now follows on applying Theorem 1 with e = (−4, 2). �

Remark. On applying the elementary Theorem 2, we obtain Theorems 4 and 5 with error
terms O(log2 x) and O(log4 x), respectively.
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