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Introduction

Nowadays much attention is paid to the exactly solvable models of statistical
mechanics. The integrable N-state chiral Potts model is the first solvable model
where the Boltzmann weights lie on a complex curve of genus greater than one.
It contains the natural generalization of Ising model and many of the remarkable
properties known for the Ising model (N=2) can be extended to the cases N23
(see refs. [1, 5, 8, 15] and references therein) . This model gives the solution
of Yang-Baxter equation ( or the star-triangle equation) which has a very simple
product form for the Boltzmann weights

Wh(n) - T pbg — apegw’
WPQ(O) i

- bpdy — cpagw?

Woe(n) vy wapdy — dyagw?
Wae(0) =1 Cpbg — bycqw?

b}

depending on the two “rapidities” p,q and a parameter k’, where
, §: integer mod. N.

The “rapidity” variables p,q are represented by the ratio of 4-vectors [a,b,c,d}
satisfying

kaV + Kc¥ =d",
kBN + K d¥ = c" |

with
P 4k?=1.

These equations describe a complex curve of genus N*—2N?4-1 as the intersection
of two “Fermat surfaces” in P?*, or as the fiber product of two Fermat curves over
the rational curve. It has a group of automorphisms of order4/N* and the quotient
of some N’ automorphisms gives a genus (N-1) hyperelliptic curve which is
represented by

1= )0 =kKx7
Wy : f."::( )iz ) , (t,A)eC.




( The integer N shall always be assumed to be = 3 unless otherwise specified.)
The transfer matrix T(u) of the classical statistical mechanical model now depends
on the variables lying on Riemann surface W), ., and it satisfies the commutating
relation for different u, u’. However this is not sufficient to solve the eigenvalue
problem of the quantum chiral Potts spin chain associated to T(u). One needs
a functional equation for the transfer matrix T(u) which was obtained by [1,
2, 11, 13]. For the superintegrable case, when the “vertical rapidity” p has a
special value, some simplifications occur and the eigenvalue problem for T(u) are
solved in [1, 2, 9). For the general case, one can explicitly solve the functional
equation for the largest eigenvalue in the large-lattice limit [10, 11], and compute
the spectrum of low-lying excitations to discuss the phenomena of level crossing
transition to a new ground state [15] from the physical consideration. Here no
uniformizing substitutions are used to obtain all those results. It is the belief that
these results should be Abelian integrals over the Riemann surface. One difficulty
is that it lacks the “different property” as in the eight-vertex model solved by
Baxter, where the uniformizing parametrization leads to the elliptic functions.
However in [6, 7], the significance of the Abelian functions was indicated in the
computation of single-spin expectation values of the general chiral Potts N-state
model. Hence the theory of prime form of hyperelliptic curves [17] is expected
to immerse into the computation of the interesting physical quantities.

This note deals with two mathematical problems arisen from the above rational
family W, . of hyperelliptic curves. In this paper, we shall call W, .+ a chiral
Potts N-state curve , or simply a CP N-curve. The first problem is to give a
geometrical characterization of this family of CP N-curves among the hyperelliptic
curves and compare them with the case of ellliptic curves. The other is to describe
the relationship between the symmetries of a CP N-curve and its Jacobian, in
particular how the general prime form of Riemann surfaces can be applied to the
expression of k’ in terms of the period of W, ,, which was obtained by Baxter
in [6].

First we note that Wy, for N=2 is the algebraic form of an elliptic curve
with a spin 1/2 structure. As an 1-dimension complex torus, the fixed part of
the canonical involution # of an elliptic curve E consists of 4 elements. It is
in one-one correspondence with the branched loci S under the natural projection
from E to P' (=E/<#>) . The order 2 translation of E corresponding to the spin
1/2 structure induces an automorphism of P!, and its orbits in S form a partition
of it with each member having 2 elements. Such partition of S naturally leads



to the algebraic expression of Wy, for N=2, also in the same process to the
general N23. The original Boltzmann weights a,b,c,d are closely connected to
the elements in S. The derivation and their relationship will be given in Sections
2 and 4. In section 1, we discuss the parametrization of these partitions of S
for a subset S of P! with 4 elements. The formulation is guided by the intent
of finding the geometrical meaning of the relations between different variables
appeared in the physical literatures [1, 6, 10]. In Section 3, we shall derive the
original “product Fermat” curve of the variable [a,b,c,d] from the curve Wy ./
and the other two related ones, WN. i« » Wy, In Section 5, we shall discuss the
uniformizing parametrization of a chiral Potts N-state curve. The special form
of the period obtained by Baxter [6] is discussed from the geometrical point of
view, that is how does it reflect the symmetries of the Riemann surface. We apply
the theory of prime form to obtain the explicit expression of the parameter k’ in
terms of the hyperelliptic theta functions.

I am much indebted to Prof. B. M. McCoy for the invaluable help for learning
the integrable chiral Potts model. Through my collaboration with him, we found
the mathematical structure involved in this subject revealed a surprising similarity
from the physical and mathematical consideration. This strongly indicates the
promising role of complex geometry on exactly solvable models. It is in this
belief that this note began with. I also wish to thank Prof. R. J. Baxter for
his beautiful preprint [6], in which the relation between Boltzmann weights and
hyperelliptic theta functions are found via the classical work of Sonya Kowalevski
[14]. One of the purpose of this paper is to understand the qualitative feature of the
identities of different quantities in [6] from the symmetries of “rapidity” curves.
I am most grateful to Prof. F. Hirzebruch for his kind invitation and hospitality
of Max-Planck-Institut fur Mathematik where this work was completed.

1. Parametrization of 4 points in P!

Let E be a 1-torus ( = 1-dimension complex torus ), T be the subgroup of
Aut(E) consisting of all translations of E, i.e. the automorphisms t,:E — E |, x
~+ x+a , xe E. T is isomorphic to E. Denote T(2)= the 2-torsion subgroup of T.

Let 8: E ~—> E be an involution with 4 fixed points.

LEMMA1 T(Q)={teT |t =8¢t}



Proof. Write E=C /L, and o: [z] — [-z + ¢ ] for some lattice L, and ceC .
Then the conclusion follows easily from the definition of T. q.e.d.

Denote H = (T(2) x <#>)/<f>. Identifying E/<f> with P', H can be
considered as a subgroup of Aut(P') through its action on E/<f>. The branched
locus S of the double cover

\I’(= ‘I’g) : E— E/@):P1 - (])

forms a H-orbit with 4 elements. As any two such involutions 8 of E are conjugate
by a translation, the subset S of P! is uniquely determined up to the action of
Aut(P'). It is well-known that every 1-torus can be obtained as a double cover of
P' with 4 branched points, hence we have the one-one correspondence between
the following sets:

{isomorphic class of 1 — torus} « {S|S C P, |S| = 4}/Aut(P') . (2)

DEFINITION For a subset S of P! consisting of 4 elements, a partition of
S with 2 elements in each of its member is called a (2,2)-partition of S.

We are going to characterize the data of S with a (2,2)-partition . First we
notice that the above group H is determined by the set S via (i) of the following
lemma.

LEMMA 2

(i) For each subset S of P! with |S|=4, there exists an unique subgroup H of
Aut(P') such that H ~(Z/2Z)? and S= a H-orbit.

(ii) Let H be a subgroup of Aut(P') with H ~(Z/2Z)? . Then (P')* , h ¢
H—{id.}, are mutually disjoint.

Proof: (i) Let H be a subgroup of Aut(P') satisfying the condition . The
<h>-orbits in S forms a (2,2)-partition of S for a given non-trivial element h of
H. Then h is uniquely determined by its values on S. Since S has exact three
(2,2)-partitions , H is unique. It remains to show that for any (2,2)-partition of
S, there always exists an automorphism h of P' such that the <h>-orbits in S
form the given (2,2)-partition. By conjugating some element in Aut(P'), we may
assume S={0,00,1,&} and the partition = {0,00} [[{1, a}. Then h is defined by
z — afz, z € C,

(ii) If H has a common fixed point x in P', the homomorphism which assigns
each element of H to its differential at x is an injective map. Since the linear



transformation group of the tangent at x is isomorphic to C*, H is cyclic. This
contradicts the assumption of the structure of H. q.e.d.

PROPOSITION 1 { isomorphic class of (E,t)| E: 1-torus, te T(2)-{id.} } is
in one-one correspondence with each of the following sets:

(i) {(S with a (2,2)-partition) | S C P, [S}]=4 }Aut(P') .

(i) { m:P'>P’, a degree 2 morphism with critical value not equal to 0, co
} ~ , here my~my iff for some f, £ € Aut(P'), f({0,00})= {0,00},

PP —L 5 P
l T O l‘frz
Pl t 3 Pl

(i) { (o, p) | p €P'—{o0}, p : a degree 2 endomorphism of P! with critical
value not equal to p, oo }/ =, here paps iff for some f,g ¢ Aut(P') with g( p
) =P, g(o0) = oo,

Pl f PI

lm O lpz

P1 4 , Pl

Proof. For 8 C P! with |S|=4, let E be the corresponding 1-torus of (2).
The group H in Lemma 2 (i) corresponding to the set S can be identified with
(T(2)x<o>)/<o>. For t in T(2)-{id.}, let h be the coset of t in H. Then the
<h>-orbits in S forms a (2,2)-partition of S. In this way we define a map from {
isomorphism class of (E, t)| te T(2)- {id.} } to (i), which is bijective by Lemma 2.

For the above automorphism h of P!, the degree 2 morphism 7 :P' —P'/<h>
=P has the critical points disjoint with S. By a suitable coordinate of P!, we may
assume that S = 7~ '({0,00}). In this way, we have the one-one correspondence
between (i) and (ii).

The projection

p: Pl/<h> -P' /H,
can be considered as a degree 2 endomorphism of P'. The H-orbit S corresponds
to a point of P'/H = P!, which equals to co by a suitable coordinate of P'/H.



The fixed point set of h corresponds to another H-orbit p. Then p is not equal to
oo and the critical values of p can not be p or oo . This gives the correspondence
between (ii) and (iii) . q.e.d.

Then by (2), the following correspondence can easily be obtained.

PROPOSITION 2 { isomorphic class of 1-torus } is in one-one correspon-
dence with each of the following sets:

@ {S|ScP,|s|=4} AuP).

(ii) {m:P! — P! degree 2 morphism with critical value not equal to 0, co }
/ =, here my= my iff for some £ in Aut(P'), £ sends 7" {0,00 } to 7' {0,00 } .

(iii) { (o, p ) | p eP'— {o0}, p: a degree 2 morphism of P! onto itself with
critical value not equal to p, oo}/ =, here (p1, p1) = (p2, p2 ) iff there exists
some g in Aut(P') such that g(co) = oo, and g( { p, critical values of p; }) =
{ p2, critical values of p2 }.

We are going to parametrize of the data in Proposition 1 and 2. The following
easy lemma is useful for our derivation, and its proof is omitted.

LEMMA 3 For 4 distinct elements x,y,z,w in P', there exists an automor-
phism g of P! with g(x)= 0, g(y)= oo, g(z)= o, g(w)= a~! for some & in C—{0,
+1}. And o is unique up to sign.

Define
1—ad)(1 —ar™
1r,,:P1—rP],,\v+7rn(,\)=( 0)( > ) ,
1 —a?
here o is a constant in C-{0,£1},
-1
po: P1= P Cw(:+2< .

A= C—{0,+1}/ =, here a=g iff o® = f**.

PROPOSITION 3 A is in one-one correspondence with the data in Proposi-
tion 1. In fact, for an element [@] of A determined by a complex number «, the
elements of (i), (ii), (iii) in Proposition 1 corresponding to [«] are as follows:

(i) the class of {0, oo, a,@™" } with the partition {0, co } [[ {a,e7'}.

(ii) the class of 7g.

(iii) the class of (po, H‘—:;) .

Proof :By Lemma 3, every element in (i) of Proposition 1 is represented by
{0,00,, ™'} with the partition {0,00} [[ {a,a~"} for @¢ C—{0, £1}. This




corresponds to an element of (ii) in Proposition 1, which is represented by some
n:P" — P' . Choose the coordinate A of C (CP") such that 7' (co)= {0, o},
771(0)= {a,a™'} . Then = is equivalent to 7,. Since the critical values of 7, are
152, 1£2, the element in Proposition 1 (iii) is represented by (p, p) with p~" (co)
= {0,00}, p7'(P)= { 3%, 12}. So p is equivalent to (po, 14a% ). It remains to
show that if (pq, }_—"1,:;) is equivalent to (pp, 11;_"%;), then [0] = [B], i.e. B%= o2,
Let 2f, g be the elements of Aut(P') with fpg= py g, and g(oo) = oo, g(‘]—‘l'—‘;;)=
5. Then £{0,00} = {0,00} and f({1,-1})= {1,-1}, hence f is defined by £ (¢
)= +¢*'. Therefore g is defined by g(¢)= ¢, which implies 8%= a*2. q.c.d.

LEMMA 4. For a subset S of P! with 4 elements, let H be the subgroup of
Aut(P'") associated to S in Lemma 2, and ®: P’ — P'/H be the natural projection.
Then the following data are in one-one correspondence:

{(2,2) — partition of S} & H — {id.} & {critical value of &}

A o~ h -~ c

with the relation A = the <h>-orbits decomposition of S, (P')'= &~'(c).

Proof. For a critical value ¢ of ®, ®~'(c) is the fixed point set of a non-trival
element of H, and vice versa. Then the conclusion follows immediately from
Lemma 2. q.e.d.

With the same convention as in [1, 6, 10], we shall always denote k the
solution of the equation

o+ K =1

for a given k’¢ C—{0, +1}, and A (or };) the coordinate of the domain of 7,.

PROPOSITION 4

(i) For [k’] € A, the elements of A having the same image as [k’] in Proposition
2 are : [K'], [K], [H

(ii) For S = {0,00,k’, k'~'}, the elements in (i) of Proposition 1 corresponding
to the above three elements of A4 are as follows:

[k’] «~ S with the partition {0, co} [ {K',k'~'},

[-f-] «~ S with the partition {0, '~ } ] {0, k'}.

[k]e~ S with the partition {0, k’} [] {c0,&''}.




(iii) Let ¢, 1, (2 be the coordinates of the domains of pg in (iii) of Proposition
3 such that :

[k’] (o, }J_‘—% ) with the coordinate ¢ ,

[Ef—'] « ( pn, 1-2k'2 ) with the coordinate ¢y,

[K] &~ ( po, 1255 ) with the coordinate (.
Then (, (1.2 are related by

G+G 42 =R+ (7142)

Gt G2 ~2= (2 + (7'-2) .

Proof. In this proof, we shall always denote k’ an element in C—{0, 1},
S = {0,00,k',k'~'} , H = the order 4 subgroup of Aut(P') associated to S in
(i) of Lemma 2, {, (1, {2 = the three coordinates for P! in the above (iii) of

this Proposition. Let h, hy, hy be the non-trivial elements of H such that the
correspondence in Lemma 4 are as follows:

he {0,00} [T {#, K"},

hyea {0,k {00, ¥},

hoe {0,K'} [ {00, k' }.
Identify the projection P' — Pl/<h>  with mp , Pl/<h> —P'/H with pq,
and ®: P' — P'/H with pymi.. Then {critical values of Cb}:{:l:l,u_'—g;}, and
h, h,, h, are defined by

A=A, ()= R0 = A

The correspondence between the critical values of ® and the elements of H—{id.}
in Lemma 4 is described as follows:

hME—f—Z,MM],h.gM -1

Let [o] be an element of 4 having the same image as [k’] in Proposition 2 , and
assume [a)Hk’]. Then (po, {—'_tf—,';) and (pp, ;;gf,) are equivalent under the relation
= in (iii) of Proposition 2, i.e. for some g in Aut(P'), g(o0) = (o0), g({}-‘f—f;';,
+1 D= {H’%; , 1 }. By (iii) of Proposition 1, we may assume g(]i_g)-—- +1.
Then the g is uniquely determined by the value of 1. When (g(}i_t—;), g(D)= (1,
Loty or (—1, 19, g(—1)= —1 or 1 respectively. It follows g( 7 )=+(k™n— k')



, which implies o= :,53 or _—Flgi , hence [a]=[if—']. In this cases, the (2,2)-

partition of S is given by the <h;>—orbits. When  «o?= :Eﬁg , we have
-— -1

K2y k2= O hence (¢ +2 =k2(C+ ¢ 42).

When (g(12£%), g(1))= (1, —1) or (-1, 1) , the (2,2)-partition of S is given by
the <hg>-orbits and g( 1 )= +(k*np—1)/k'2. This implies a®= k=2 or k2, hence

-1 -1

[o)= [K]. When o?= k2, we have  gr[—k2(Hf)+1] = ©¥a— hence (o+ ¢
-2= —f—,y((,‘ + (~'-2) . This completes the proof of this proposition. q.e.d.

REMARK

(i) By Proposition 1 (ii), there is an automorphism f* of P! which sends {0,
K="} 1] {co, ¥'} to {0,00} [] {—-.':,5 ,z'%}. In fact, £ is defined by

kA
)= .

And the £ sending {0, k’} [] {o0,k"~"} to {0,00} []{k,k™'} is defined by
FO) = 5%

(ii) By introducing the variables wu, ¢, ¢

—( =, g =¥, (=2,
the relations of (iii) in the above proposition are equivalent to
sing = +ksinu, k'sing= +ikcosu,
which are the relations of the parameters for “p-variables” in [1, 5, 6, 10]. The
variables €', e*?, ¢* ( as Im(u), Im(¢), Im(@) — oo) can be considered as the
local coordinates of the 2-torsion points of the elliptic curve corresponding to
(k] in Proposition 2.

2. Chiral Potts N —state curves

The algebraic curve where the “rapidity” variables of chiral Potts N-state
model ( Nz 3 ) lie is defined as follows:

DEFINITION. The chiral Potts N-state curve ( Nz 3 ) is a genus (N-1)
hyperelliptic curve W with an order N automorphism having exactly 4 fixed
points. And we shall call W a CP N-curve.



The order N automorphism of W in the above definition shall always be
denoted by @ (=6 ), and the hyperelliptic involution be denoted by & (=7,). By
the uniqueness of the hyperelliptic involution, # commutes with o. First we note
that the following properties hold for CP N-curves.

(1) <f> acts freely on W — W, and W/<f> ~P',

Let go be the genus of W/<#>. By the Hurwitz theorem for the projection
from W to W/<f>, 4 - 2N = N( 2~ 2gy ) — 4(N-1) — , here « = the sum of
ramification contribution of x ¢ W —W?, Hence 0 = 2Ngg +* , and gy = » =
0. Then the conclusion follows immediately.

() w? is disjoint with W°.

By the commutativity of # and o, W?is stable under o. Hence |W N |
= 2 or 4 when it is non-zero. As <> acts freely on W7—W?, the order of
W7—-W?, (= 2N-2 or 2N-4 ), is divisible by N. By N = 3, this is only possible
for N = 4, and |W90W”| = |[W?| = 4. By Hurwitz’s Theorem , the sum of
all the ramification contribution of elements in W for the projection W — W/<4,
o> (=P") equal to 20, which is greater than the contribution from the 4 elements
in W?. This gives a contradiction because the ramification contribution of each
element in W? is 7. Therefore Wo [ lwo= ¢.

Now we are going to describe the algebraic form of CP N-curves. Let
U, 4, T, 7 be the morphisms defined by the following commutative diagram:

W —Y P =W/ ws

n lrr (3)
v O
W/(rr) = P] ——L) P] = W/(B_n) .

Let S be the branched locus of ¥, and h be the automorphism of P! (= W/<6>)
induced by o . By the above (II), the orbits of the automorphism of W/<f>
induced by & form a (2,2)-partition of S. By Proposition 3, for some coordinate A
of P! and some k’e C—{0, £1}, S = {0, oo} ][ {¥',¥'-"}, and 7= 7 . Choose
the coordinate t of P' (= W/<o> ) such that ¢ is defined by t ~+ t¥. Then W
is isomorphic to

1-EA) (1=K
VVN‘,J : an = ( )(kﬂ ) M (4)

10



In terms of the coordinate (t, A), # and ¢ are defined by
f: (t,A) ~ (wt )

k]

. (5)
T (f.,/\) ary (t,).—1) , here w = e?n/N
Since the branched locus of 1T is equal to
{b] = g oo 3} . (6)

Wy« is also birationally equivalent to the curve in C* defined by the equation:

w= (Y — }—;i—;)(t" - }—'_tf;) , (H,w)eC® . (7)

The above coordinates A, w are related by

k! 1
= (r==
TR ( ,\) |
1 :
= o ik (w— ") + K2 41}
For the rest of this note, (t, A) and (t, w) shall always denote the above coordinates
for the curve W, .. . In terms of the coordinate (t,w), # and & are defined by

A

0 (t,w) ~ (wt,w),

o (t,w)~ (t,—w).
Let « (: LWN‘V) be the order 2 automorphism of W, .. defined by

F AN WN_;r"-P WN,&’-; (taw) ~ (Jt-’i!%)

?

which is the same as

L ()~ (1; %) (8)

by the equality

1_(,\-A-' k’+k,+1_ 2
9N N T N k')_k’—A

11



Then § + =+ 87", and < 6, + >~ the subgroup D, of Aut(P') with the Klein
group Ny as its double cover. Now we can described all the symmetries of a
CP N-curve.

PROPOSITION 5 For a CP N-curve W, Aut(W) = <o, 8, + > ~(Z/27) x
Dy, and <f> is the unique order N cyclic subgroup of Aut(W) generated by an
automorphism with non-empty fixed point set.

Proof. Since ¢ commutes with any automorphism of W, the group
Aut(W)/<o> acts on P! (= W/<o> ) and preserves the branched locus (6). It
is not hard to see < 8, + > ~ Aut(W) /<> =~ Dy, hence Aut(W) ~(Z/2Z) x Dy.
For an order N automorphism ¢ of W with non-empty fixed part W4, write ¢ =
a™ "6, for some integers O=m,n=1, O=j=(N-1). We need to show m=n=0. Since
+- 67 is of order 2, n has to be 0. If ¢= o - §7, j is greater than 0. The image of
the fixed point set of ¢ under the projection IT in (3) is contained in the fixed part
of the automorphism of W/<o> induced by #7. Hence W¢ is contained in W7,
then also in W”. But the fixed parts of # and o are disjoint. This contradicts
the assumption of the non-emptyness of the fixed point set of ¢. Therefore j =0,
and <¢>= <f>. g.e.d.

COROLLARY. The morphism W: W — P! is the unique (up to isomorphism
) order N cyclic covering of W over P' with exactly 4 distinct critical values.

Proof. Let ¢ be an order N automorphism of W such that the projection W
— W/<é> = P! has exactly 4 critical values. By Hurwitz’s Theorem, [W?|=
4 . Hence <¢>= <> by the above Proposition, and the conclusion follows
immediately. q.e.d.

COROLLARY The curves W, , and W, , are isomorphic as Riemann
surfaces if and only if [@] = [B] in A.

Proof. Let ¢ be the biregular isomorphism from Wy, to Wy ,. Then
¢! Owy 4= Ow,,, ( by the uniqueness of hyperelliptic involution),

¢~ 6w, ,-¢ = 8w, . ( by the above Corollary).
Hence the diagrams (3) for the curves Wy, and W, , are equivalent through
the morphisms induced by ¢. This is equivalent to [@] = [#] in A because the
(2,2)-partitions of the branched locus of ¥ for Wy, and W, 4 are equivalent in
the relation of Proposition 1 (i). q.e.d.

12



3. Three vrelated chiral Potts N — curves

We continue to study the CP N-curves. By the Corollary of Proposition 5, the
CP N-curves are parametrized by .4 . For a given k’eC—{0,%1}, the elements
[k’], [121] , [k] of A are related in the sense that they determine the same 1-torus
in Proposition 2 by the result of Proposition 4. For a given k’'eC—{0,41}, we
are going to study the relation between the three CP N-curves WN,u,WN, WAL
The curve Wy ./ is defined by the coordinate (t, A) of (4). By (ii) of Proposition
3, we have

Wn,iiiz W, :

N = T-‘_:ki‘xé, , (tA) eC (9)

and the automorphisms o, «» for W, are defined by

cw: (X)) ~ (4 EER)

(10)
et (n2) o (23)
Similarly, Wy~ W, : '
= Y20, (1)) eCt (11)
with the automorphisms
ow i (0N = (h, £5y)
(12)

b, (t,A) ~ (fl:’ i-)

In this section, we shall write W=W ... The morphisms ¥, ¥, ¥, from W,
W,,W, to P! in (3) are now defined by W(t,\)= X, U (t,,A)= A, Up(t,,M)= A

13



Denote the fiber product W x. W; of ¥ and ¥, by W;:

W,
N N
w O W, (13)
v N 7
p1

and W, is defined by

N (1=k'2) (1-£'27")
{ :
ty o= A , for (t,t,M)e C*

The automorphisms 6, , 8., of W, W, induce the automorphisms ©, ©, of W,
which are described by

O: (4t A) ~ (whit,A)

O,: (i, A) ~ (fwt,A)

Then the group < O, ©,> isomorphic to (Z/NZ)?, and acts freely on W, outside
the 4 critical points of the projection from W, to the A—plane, which has the
branched locus {0, 00, k', k''}. Consider the quotients:

Vi = W /<esr> R Vo, = W. /<ee';‘>

Then V1,V are N-sheet cover of the A—plane P! branched at {k’ , 0} and {f; , oo}
respectively with the following coordinates:

Vo s @) =R (e
V, o o(m)v = 0BT e
Consider the degree 2 cover of the (;)-plane ,

P' - P’ ,xw(i)=x2

T

The fiber product of x-plane with Vi over the (i)-planc is reducible with two
rational curves as its irreducible components. They are described by

e = 4 =K (g e

14



Let X be the component
o= =KAoz ) eCt . (14)

X is a N-fold cover of the A—plane P' branched at {k’ , 0}. With the same
discussion for V, , we have a N-fold cover Y of the A—plane P! branched at
{# , oo} which is defined by

y" = 2 (y,0) eCt . (15)
There are the morphisms from the fiber product of X and Y over the A—plane
into W, W, with the following commutative diagram:

X Xp1 Y
/ N
w O W, (16)
v\ 7 v,
P! ,
which are described by:
(7,y,2)
/ N
(ﬂ'.‘y,/\) =(t:’\) (i,-,A) = (gT‘\)
N 4
A

Similarly by replacing the above W, by W, we have the rational curves X’, Y’
with the degree N morphisms over the A—plane :

. _f
X' 5P, 2~ ) with :n"":A—ki, (:r:"—t),

7]

(17)

Y2 P ¢ w ), with ¢V = )‘—}——”'_k' . (Y =ty),
and also the diagram:

X' Xpt Y!
/
W, O w (18)
N\ v
v, v
P1

15



defined by

CRIPY
, / \
(5.0) = (o)) (1A ="y,

pV e
A

The coordinates of X , X’ and Y, Y’ are related by :

» N N
B (3) =
T Yy
It follows that under the base change
PL—oP, 4o~ A=pt (19)
we have

XxaP) = X'xaPl , YxaP, ~Y xuP] .

u o

In fact, these are the Fermat curves in P? :

X=X xpuP! ka4 KN =dV

[T
D= Y xu P, k¥ +Kd¥ =¢" |

[T

here [a,c,d], {b,c,d] are the homogenous coordinates of P?, which are related with
X, ¥, X,y by

(5.9 =@, G99 =@wn), o'=z4 ¢ =yu". (20)

Consider the fiber product of X and %) over the p—plane
W=ExnD (= (X xp V) Xp P.) .
Then 20 is is a curve of genus N* —2N? + 1, defined by

kaV 4 k'eN = dN

W { g L h1ah = N

for [a.,h,c,o’,]aF'3 , (21)

16



which is also equal to

aV 4+ bV = kdV

3
{ k'ﬂ.N + bN = ch fOT [G,b, C,fl]EP .

(22)

Then the curves W, W,, Wi, X, X’, Y, Y’ are the quotients of 20 by various
order N? subgroups of Aut(2Z0) which are described as follows :

a,b,c, ~ a,wh,c,d
X = m/ < En,b,c,g} ~ l[:a,b,wc,d% >

ab,e,d s n,wh,c,d
X' = m/ < {n,b,n,d} -~ [Em,b,t..)r:,r%] >

a,h,c,d ~ wa,b,c,d
Y= /< Ea,b,c,d% - Ea,h,c,wd]] >

ded] boed
Y= Qn/ < E:,b,;,d% -~ [E‘::b,c,wr]i] >

Define
3 W-oW ,la,b,e,d]~ [b, a,d,c],
3 W [abe,d ~ [w%c,d,a,w‘sb],
Je W W ,a,b,c,d] ~ [w%d,wc,b,w%a],
R W [abed—~ [wabwed,
& WoW fabed~ [wawhed,

T: mj_’m ’[aib’c’d] ~ [a?wb’w(:?d]’
Then it is easy to see

the order of R,86,T =N,
the order of J,3¢, 3= 2,

RI=JR, 63=36, TIJ=3%7,
R = IR, 63, =367, I =3%T",
RIr= IR, 63,=36"", T, =3T,
RIWT =JJe, 63:Je = 3edry, I =IJIre

17
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Hence <R, &, T, 3, 3r, J¢> is a group of automorphisms of 20, and is also equal
to <J,Jr,Je>. It can be shown that the quotients of 20 by various normal
subgroups of <J,J,, J¢> also give the curves X xm Y, X' xp0 Y/, W, W, W,

XxpnY = QB/<T>,

X'xmY = 2/ <R >,
W = /<R T>,

W, = /<6,%>, (25)
W, = /<R,6>.

By Hurwitz’s Theorem, 20 is the N?—fold unramified cover of W, W,, W,
This implies that with the morphisms in (16) (or (18)), X x. Y, (or X' x» V"
resp.) is the N—fold unramified cover of W, W, (or W, W, resp. ). (We
have demonstrated here that the curves W, W,, W, can be constructed from the
Fermat curves X and 9). In fact, that is how the CP N-curves had originally been
derived in the physical literatures [1, 12]. The variables a,b,c,d are the Boltzmann
weights of the statistical model.)

The automorphism group <J, Jr, J¢> of 20 induces the groups of automor-
phisms of W, W,, W,. In fact, these are the group of all automorphisms for W,
W, W by the following result.

PROPOSITION 6

(i) Under the canonical homomorphism <3, Jr, J¢> — Aut (W),

J“"'O'w, Jr“’"’-w, Jl"‘*ﬁwﬁwﬂ'w

(ii) Under the canonical homomorphism <3, J;, J¢> — Aut (W),

31’ v Oy, J v lw,, Jﬂ ~ f?W,"-v.'..a‘\.'.r,.

(iii) Under the canonical homomorphism <3, Jr, J¢> — Aut (W),

J( ~ ”w,a 3 ~ "W,) JT ~* 9\;1 "W,_UW,

18



Proof. By (16) (18) (19) (20) (21), t = %, ¢, = M ¢, = b\ = (4~

ac?

lf,%% = —(%)". Then the results follows from the the definition of J, J:, J¢ and
(5) (8) (10) (12). q.ed.

When N is even, Wy v/ < 8% > is the 1—torus , and it is the double cover
of P! branched at {0,00,k’,k"~}. By Proposition 4, the 1—tori determined by
WN,,‘:,WN.LE,WN.,, are isomorphic. Hence we have the following diagram:

HfN’,k VVN,H WN. Lii
N\ ! "

1 — torus

!
Pl

4. N —torsion bhne bundles of chiral Potts N — curves

As before, W = Wy ., T = the fiber product of Fermat curves with the
homogenous coordinate [a,b,c,d] defined in (21), R, S, %, 3, .= the automor-
phisms of 2 in (23). Let u,u’, v, v’ be the elements in W whose A—values are
0,00,k',k'~" respectively, and

p: W - W (= m/<m,{>)

be the unramified N?—fold cover in (25). By (14) (15) (16) (19) (20} , the
divisors for the sections a,b,c,d in 2 are

div(a) = p*(v), div(h) = p'(v'), div(c) = p* (u’), div(d) = p*(u).

For (mpn)e (Z/NZ)?, let Kumay: < T,M|>— C* be the character with
Kimm(T) = W™, Kmmy(R) =w". Then

(W x C)/(W X { ~ WE X Kgman)(g)()

is a line bundle over W, and its associated Ow —sheaf is denoted by Lmn)-
PROPOSITION 7
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(i) p+Oa= D Lim

(m.r)e(z/N2)?
(ii) Lo o= Owlv' —u], Loy = Owlv — 1], Ly, = Ow[u' —ul.
Proof. For an open set U of W, any function f of p~'(U) can be uniquely
written as f = > finny, Where f,.. is an eigenfunction of < T,R > with

(m,n

eigenvalue Lm q)- )Hence we obtain (i).

With the homogeneous coordinate [a,b,c,d] of 21, the divisors of the rational
functions a/d , b/d , ¢/d of 20 equal to p*(v — u), p*(v' — u), p*(u’ — u) respec-
tively. Since the rational function a/d ( b/d , ¢/d ) corresponds to a meromorphic
section of L,y ( Ligyy Loy TESP. ) Over W, (ii) follows immediately. q.e.d.

By the same argument, we have the similar conclusions for the curves W, W,.

PROPOSITION 8 Let

Pr: 2 - W (-_- Qn/<6,‘!>)

and
pe: W Wy (=20/<ne>)

be the unramified N*—fold covers in (25). Let uy, ujv,, v, , ((ug, ujp, vy, vi), be
the elements of W,, ( W, resp. ), such that as the divisors of 20,

div(a) = p}(v:), din(b) = p} (), din(c) = p}(v}), div(d) = pi(u,),

din(a) = py(uy), div(b) = pj(ve), div(e) = p;(vy), div(d) = pi(uy).
Denote

Lyme = the Oy, —sheaf associated the character < 6,3 >— C*,
Trw, G~ wr.

Lymny = the Oy,—sheaf associated to the character < R, >— C*,
R wm, G w.
Then

(l) pr*o‘m = @ Er(m.n), pf,#ow = @ E’.(m,n)'

{m.n)e(2/NZ)? {mn)e(Z/NT)?
(ii) Over the curves W,, Wy, we have
Er(hn) = Owr[vjr - ur]’ Er(rm) = Ow,[Vr - ul‘]s L:r(m) = Ow,[u:- - ur]-
['.!(1_0) = Ow, [V’p - Ut] ’ El(n,n = ow,["l = ul], 1:!(1,1) = Ow, [“’( - ul]~

5. Jacobian wariety of a chiral Potts N —curve

20



Let r be an element in C—{0, 1}, w = €*™/¥, g = N-1 . Assume that
[}%ﬂ < 1, and denote (}%:)"" =H%|"”e""’” , here 0 = 9= arg(}%:) < 2m.In this
section, we shall denote

w= WN,n

W, 4, TI, = = the morphisms of (3) for W,

{f# , o, } = the generators of Aut(W) in Proposition 5.

W is a genus g CP N-curve defined by the coordinate (t, A) of (4), or (t, w) of
(7). Denote

Jac(W) = the Jacobian variety of W.

The critical points of Tl are the elements b, b; , 1 sj s N, of W with

M(by)= w7 (3EL)'/¥ and Tl(b;): w™I(135)'N. We also denote o = by, o' = b},.
The critical points of ¥ are the elements p,p',q,q of W with the A—values
0,00, 7,7 respectively. Then p and q are on the “same sheet” of the covering
of TI. ( Here we consider W as the double cover over the t-plane with cuts on the
segments from w’(}ﬁ)"" to w'(}E0)'/¥, 1 5j s N. The value of the coordinate
w determine the “sheet” of W. ) We are going to describe Jac(W) using the data
of { bj,bj| 1 sj s N} , and then { p,p’,q,q'}-

It is well-known that the abelian differentials of first kind for W has the
following expression:

LEMMA 5 T(W,Q') = the C —space consisting of

di

1
(),

p(t) = a polynomial of degree < (N —2).
Denote ¢, = "% for 1s o s g. Then {¢., 1s o < g} forms a base of

r(W,Q") with

0 () =w™pn 5 (o) == , ) =—pna . (B)

By a path in W we shall always mean an oriented one. It is easy to see the
following lemma holds.

LEMMA 6 Forapathyin W, [ ¢, =w"™ ¢, .
o™ (v) Y
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We shall denote

S
[e=|"
Y fﬁ"g
Let A and B be the o—invariant 1—cycles on W such that by the morphism

T A lies over the segment from (:;:)'ﬁ to (}—”_"—’r')#, and B lies over a path

from w(}—l{)"ﬁ to (}—E)?‘\T with A intersecting B only at o having the intersection
number I(A, B ) = 1. Define

A; =679(A), B;=8079(B) for integer j.
C,= 3 B for 1<a<g.

1€5€m
Then A;,n = Aj, Bjyn =Bj,and Y. A,, . B, are homologous to zero.
159N 1<EN
(The cycles A,, B,, C, are shown in Fig. 15

The intersection numbers of the cycles A,, By, C., , 1 s a s g, are given by

I(A.,Ay))=IRB,B,) =0,
I(A,,Bs) =0, except I(A,,B.)=1,1(A,,B.;) =-1.

Hence
I(A,,A,) =I1(C,,Cs) =0, I(A,,Cp)=26,5 .
Let
h I
f=/¢=(§),l'=/ =(;). (27)
A o B f
By Lemma 6,

( f(pf“’ J(P ) = (50.8!") (w-"BJ'SmﬁSa

Ay

( fgor", ﬁﬁp) = (5@{1) (""’_"ﬂ)'ﬁﬂ.ﬂﬁv

By

22



Hence

( Ffso,---, (fso ) = (Bas b ) ( Kl Digosss
%) Yo

here ki = 3w = ie¥ (WP —1)/2sin 37
1SmSs
Let ¢,, .., ¢, the base of '(W, Q') defined by

é 14l
¢ = ( ' ) = (@)™ (Bupl )*]( ) (28)
¢g )

then
C qs,/qs): L, ()
a B,
Here
) (wn‘r _ ])(w—‘rﬁ — ])w—‘yn
27: Z COS8 IILN—)- qln 1%1 qln _glw—‘r/?
N . sin %1 ’
¢
i X
with Xy = 7

I

( The above w=7/2y, for W=W,, . is equal to the ;1 in [6] ).
L™ al
Hence the period of the Jacobian of W is equal to 7 =7 =(7,g)1<n <, and
Jac{W) = the torus C8/(Z8 + 778) .
For a fixed base point * of W, we have the canonical embedding of W into
Jac(W) :
W ——— Jac(W) (29)

w - [/ ]

*

The period of Jac(W) is related to the elements b, b; by the following proposition.
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PROPOSITION 8 For 1sfisg, let

75= the f—th column of (7.,),

e,= the 3—the element of the standard base of 78,
Denote 3=1 > e,

1<8<s

(i) For an element w of W, let [s], {z] be the images of w under the maps
(29) for *= o, o respectively. Then [s—3] = [z].

(i) Under the map (29) for x= o/,

ov [

*

1 1
ag(p-1)

b, ~ [%T,+%Een] , for 1<B<qg.

a<lp

Proof. Let 0o’ be the path from o to o’ along the curve A. Then

Hence

A= 1ol =1f¢] -(J o] =[s—4

So we obtain (i), hence the first correspondence of (if) . Let bl_b;, (bb]) ,
1sjsN, be the path from bi_ to b; ('b; to b] resp. ) along B, ( A; resp. ) . Let
o'bg, o'b;3 , 1sfsg, be the curves from o to by , b;? defined by

ob; = Y H.LB + 3 BB ,

1<5<8 1<5€(8-1)

O'bfﬁ = O'bﬁ-}-bﬁb:ﬁ
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3 [ 4=5[e=gm .

b _ by 2 B; Cs
15558 1<i<B

[6=tm-t 5.

o'bp JS(ﬁ-')

1 1
= -Tg— = e;
[¢- i
m J<B

Hence we obtain (ii). q.e.d.
We are going to express the period of Jac(W) in terms of the data {
p,P,q,q'}. Define

( : ) ] i
P=Y L 1 =% :
by Z o8

1<<o
Consider the following paths in W:
6_61_(0 q')= the path from o(o' resp.) to @’ with t-values in the segment from

( =) ( (1 "N resp. ) to O,

Pa=p6+o(od) ,  pP'd=0(pq)
( The above paths are shown in Fig. 2.) Then

6~ (p'd’) — 6’ (p'q’) is homologous to —Ay_;,
g-i+ (pp') — g1 (pP') = —Aj-1 + B;
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LEMMA7 [ ¢=—c, [d=p+e [d=p, [d=c
r'a’ oo’ pa’ Pa
Proof. For 0 < j < N-1, we have
(W) Gasla)™ o= [ b= [ 4+ S ¢,
pT)  H(pT) e S A
_ . . (N=)2Zm2(N-i)
W™ Gasla)™ [ o= | b=Joé-[ b+ [ &
o=ifor’)  o(pr) G 2 Anm

(7=1)2m20
(here C,= > B,, which is homologous to 0).
N2m21
By Lemma 6,
0= 3 [(W)"6pl)” | ©]1=N [ ¢+ / 9,
(N=-1)2520 8 (p'a’) pa’ Y, mAn
(N=)zm>1
0= ¥ [(w)76sl)” | ¢l
(N=1)2520 8-3(pp’)
=NJé- [ é- | 4,
rp Z C; E MmAm
(N=1)gi21 (N=1)2m21

which imply the first two equalities, then the rest follows immediately. g.e.d.
PROPOSITION 9 Under the map (29) for x = o,

-1 11 ., o]
P> 5 p—56 » P 5Pt el

-1 1], [ 1]
A | 3PFgf s A4 5P gF

Proof. We have

A

po—a(pa) P’

=5P"5 (by Lemma. 7).
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Hence we obtain the value of p of the map (29) for ¥ = o. The other values of
this map follows from Lemma 7 and the following identities:

,,,
J+-

b= [o+ [ 4.
pa’
q.e.d.
LEMMA 8 For a path v in W,
J b = (rep) Jo
6="(v) v
here

r.a=0 except 1 =1 (1<F<Lg), rg=-1 (1 <ax<g).

Proof. By Lemma 6, we have

J 8 =(w)76LL)" [ e

87 87w
= (W) (Bapla) ™ (Bapw™) [ ¢
b

=(w™") 7 (Bapla) ™ (ﬁ,,ﬂw"")(ﬁ,,pl,,)(w‘""){ ¢
=(w™"?)" (bapw™") (W) &,

b
which implies the result. g.e.d.

The period of Jac(W) is expressed by the vector p via the following propo-
sition.
PROPOSITION 10 Define p, = 0. Then for o, § =1 ,.., g,

pa = pN—n b
Tap = Pat Ps—Pla-p
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Proof. It is easy to see that —.(A) is homologous to A. Hence the /,’s in
(27) have the relation:

l,=1ly_., for1<a<g. (30)

By the definition of the paths,
—u(pq’) is homologous to pq’ .

Hence
p=[e=- [ 4=-[r@
pa’ (pa’) pi’
= @) Gt [0
P
= @) Eusl) ) [
rT
= @) o) i) (Buah) ) [ 8
W
= (W) 7 (Basla) " (asla) (Bawom) (W) p (by (30))
= (W)™ (Batvem) (©7) Bain-a [ = (Bain-n)P
which implies p, = py-a-
We have
624 (o) - 6-(53) = B, ,
pd - 6~*(pd) = C,, for 1 <B<eg.
Hence
j s = [Jo- [ e
Cs rd 8-8(pa’

=p - (r,,.,)ﬂp, (by T.emma 7),
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which implies

Tap = Pat Prnepg = Plo-sl = Pn FtPs — Py ge.d
REMARK In [6], the p,’s are solved from the expression of 7., and
described by

7 gin? (_sz ) T4
_ VNN /2 Y
”"“NX; sin 57 (“’ e.,)'

Then the identities in the above proposition can be verified through the explicit
expressions of p, and 7,,. The proof we give here indicates these identities
follows from the symmetries of the CP N-curve W,

By the uniformizing coordinate of Jac(W)

the hyperelliptic theta function of Jac(W) is

O(s) (=9(s,7)) = Z p2m! matri' mrm ,

melf

and by Proposition 10 it can also be written as

6(3) = Ze:ﬂp{Qﬂ'f (tms-l- 2 mﬂmgpg) — 7 E m..,p|,.,_mmg} .

me2¥ 180,059 10,859

Then O(s) satisfies the quasi-periodicity and evenness relations

O(s +m) =06O(s), forme 78,
O(s + 75) = e~ 2"t 0(3), for 1 < B < g,
O(—s)=0(s) .

The theta function 19{ﬁ] with rational characteristics 4, v of Q& are defined by

9 [i] (3, T) = 62".'5("4‘”)"'".‘6"579(3 +76+ v, T) )

29



with the quasi-periodicity relation

) -t F)
9 . — ’2‘l'l fm .
1 [v](9+m,7) e 19[y](q,r),
6 —2xi'ym—2xi" ma—ms' m 8
M| (s+Tm,7) = e T VITR mmrmgl (s, 1), for melZB.
v v

We are going to describe the prime form of the Riemann surface W. Consider
the divisor D= ) b,. Then the canonical bundle of W equals to Ow|[2D]. By

2<BL
Riemann-Roch Theorem and Lemma 5, |D|= a single divisor D. By the general

theory of prime forms of Riemann surfaces ( see €.g. Ref. [17]) implies the
existence of a non-singular, odd, theta characteristic 1 fg ] .6, ve (;—Z)g /18, such
that

3 w=w,
v (;/) 0 & {w'orw=b,,,forsom625ﬁ§g. (31)

(=D (05

156<g

is the unique holomorphic 1-form with (¢)= 2D. So /¢ is the section of Ow[D]
and the prime form is given by

(2] (M)
NGCONEEDR

For a fixed wy point of W, E(wq,w) defines a global section of Ow[wg] of the
Riemann surface W. Therefore

E(p',w) _ ] (nj )

¢
E(p,w) [ (I¢) ) )

30

E(wg,w) = for wo, we W . (32)

El |

EI an|



corresponds to a section of Ow[p'—p]. Consider the function of C8 :

19[ ](.q-——p % ) |

. E(p',w v
By Proposition 9, T?;_'w)lz f(s(w) ), here s(w) = | ¢. By the quasi-periodicity
property of [g], we have
fls+m)=f(s),

f(s+™m)= ez"itm("+‘)f(.¢), for seC8, meZ8.
Since
21 2xitmp 272
erp N Z 8at Y Tapmyp =e erp N Z Sa ¢y
1<¢agy 1<8<e 1€a<y

the function

N 4

for(s) = p{ =S sn}f(-‘?)

axl

3E]G—4p-307)

T (04 ot der)

satisfies the relation

fppls+m) = e mNp, (5)

forpls+mm) = 27 " for p(9)
for seC8,meZ® , here = 3 e,. The restriction of firp on W (via (29) for

150<s
* = o) can be regarded as a section in I'(W,Ow(p’ — p)) with the divisor

div(fp'p )= p' — p. Similarly, the functions of C& defined by
9 [f] ( + 2p F 'r)

K [v] (s+4p+3e7)

fap(s) =
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farp(s) = e'z:'i ST,

satisfy the relations

fan(s+m) = fap(s) fapls+7m) =™ fop(s)
fap(s+m)= e—2nﬂfq'.p(s) s Jepls +mm) = fop(s)

for seC8,meZ8.  The restrictions of fqp,fyp on W are the section
in I'W,0w(q—p)) , T(W,0w(d —p)) respectively, with div(fqp) =
q—-p, div(fqyp) =d —p. Note that the phase factors in the quasi-periodicity
relations of fy p, fap,fqp are the N-th roots of unity. These functions are
closely connected to the variables a,b,c,d of the N2—cover 20 of W in Section 4.
Since the N-th power of fyrpn, fqp,fa,p gives the rational function on W, the
situation is much simpler for the purpose of the expression of the parameter r of W.

Consider first the case when r equals to k’. As before, let 20 be the
curve defined in (21) with the homogcnous coordinates ab,c,d . The above
p,p,a,q are now the u, v’ v, v in ProBosmon 7. As the ratlonai functions

of W, flus forus fuvu €qual to av ?IW up to some constants ,

21’:21,, ‘ 1 N E : 1 N
N N, N, N _ . —_ . —_— —
a bV e i dV = Ae 19[ ]( +2p 56 T) .B19[§] (.9 2p—|—26,-r>

3 11 \V e 1 11\
.C19[g](s—§p——§ﬁ,r) e n 19[ :|(S+§p—|—§ﬁ,1') ,

here s is the uniformizing coordinate of elements of W, and A,B,C are constants.
The hyperelliptic involution & of W induces the automorphism J of 2U (defined
in (23) ), which corresponds the map of C8,s ~~ —s. The relations

. a.N bN . cN dN
()= ¥ ()=

imply B=AC, C? = 1. For s= the origin, it corresponds to the element o of W

with the coordinate (t, A) (defined in (4))= ( (}—-_t’g)“ —1). By (19) (20), the
constants A, B, C must satisfy

A=B, C=1.
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By (21), we have the relation

2riz.1,, 7 N rs N
kAe -~ 9 [g] (s + %p - %e,‘r) + k' [;] (s - %p — %E,T)

2‘!’!‘28“ ;s' ] N
=e =~ 9
e 1[v](+2p+2FT)

Substituting s= S'p + 1€, by (31) we obtain
=P+ 400 [g ] (e, 1)
(2|0

When r=z’%, the CP N-curve is the curve W, of (9) in section 3. Its
hyperelliptic involution is induced by the automorphism J, of 20 by Proposition
6 (ii). Let 7, be the period for W;. By Proposition 8,

aN,bN

[T e )
_|ls+=pr— —e,'r, B9 § — —pr — —€,T :
U 2

5 11 \Y e 1F 1\
C [F] (3 - §p,.+ 56,‘1’,) e 9 [y] (e + 2,9r - ,,Tr) ,

with B, = A,C; (R,)2 = —1. By the definition of the element o of W, together
with the description of the function f’ in the remark (i) of Proposmon 4, the

A—value of o equals to k’+ik. By the relations (17) (20}, 3—1_-—, hence
B, = (-1)%. By (22),

s F IR 5 11\
Ace 19[3] (.‘3--|—2pr 26,7’,—) + k(1) 19‘:?] ( 2pr 26,1’,)
273‘23,1 g ] -I N
=ke ~ 1 [7] (s + 5,0,- 4 56,1’.-)

K =

(33)

278 Y a [

Hence
e () Nermlattog[F] e )

* 3[E] e

(34)
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For the case 1=k, let 7, be the period of Wy ,(~ Wy in (11) ). Similarly, we have

5 11 \V me 1F 11 \"
—1)79 §— —pp— —€ :Bje - S+ —pp— =€
(=1)% [v] (“ 5Pt 2F,Te) Bye 19[5] (H— 7Pt 2&‘&)
7 N 21':'23,, N
: (=19 B [_] (s - lpg + ]—e,q) te 1 [f] (s + ]—pg + ]—F. Tg) ,
v 2 2 v

and

I 1 1 N ‘Zriz.ur, 5 1 1 N
(=1)%9 [D‘] (s — 5Pt -é-e,'r,_) +KkBee ~ 9 [F] (s + 7Pt = 56,‘]’()

211'23,. 3'- -I -I N
=ke ~ 9 [_] (s +-pe+ —ﬁ,n) ,
v 2 2

hence -
(-9 [3 ] (pes 7)™

k= I
e=Tilon+..+prg) 9 [g ] (6, TC)N

(35)

Using the identities obtained by Sonya Kowalevski [14], Baxter wrote down the
explicit expression of the above § , 7 , and they are given by

&= %(:), V= — (;) (36)

(The above 1 B ] (s,7) is the function ©{s}, of [6] ). Therefore we have obtained
the following conclusion.

THEOREM Let 1, ¢, 7¢ be the period for the CP N-curves W, .«,W ikl RU.

respectively. Then the relations between k’, z'-'il, k and 7, 7, 74 are given by (33)
(34) (35) and (36).

[ £
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