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Abstract

In the paper, a new method constructing of asymptotic solutions to
differential equations on manifolds with singularities is presented. This
method allows not only to widen essentially the space of asymptotics but
also to obtain explicit formulas for asymptotic expansions, in particular,
in the case when in a neighbourhood of a singular point there exist strata
of different dimensions.

Introduction

In this paper, we present a new method of constructing asymptotic expansions for
solutions to differential equations on manifolds with singularities near singular
points of these manifolds.

The asymptotics of solutions to equations on non-smooth manifolds near their
singular points is a natural object of investigation in this area and at present a
certain procedure of obtaining such expansions is developed. To be brief, this
procedure is based on the residue theory in the dual space with respect to the



Mellin transform. Then it is natural that the considered function should be at
most meromorphic, that is, univalued analytic in the whole plane except for a
discrete set of poles.

The corresponding class of asymptotic expansion is now known in the liter-
ature as the class of (discrete!) conormal asymptotics (see, for example, [1] -
[6]) and the modern asymptotic theory on manifolds with singularities deals, in
fact, namely with the class of conormal asymptotics. Unfortunately, the class
of discrete conormal asymptotics possesses one essential disadvantage. It is not
sufficiently wide. A lot of important asymptotic expansions do not have a form
of conormal asymptotics (see below). Moreover, this class is not closed in the
sense that a conormal asymptotics in the right-hand part of an equation can
lead to an asymptotics of solution of more general nature (see the example in
Subsection 1.1). The reason of this phenomenon is, for example, in the fact that
a function of such kind (the solution) can have remification in the dual (with
respect to the Mellin transform) space. In general, such kind of problems ought
to be solved (and, in some cases, are solved) with the help of more general class
of asymptotics, namely, the asymptotics having the form of application of an
analytic functional (a hyperfunction with a compact support) to the function r*
(see [4], [5]). And, though such a problem can be solved in certain situations
with the help of analytic functionals, the framework of this theory are too narrow
for the investigation of the problem in general case, for example, in the situation
when the considered function has ramification in a neighbourhood of the infin-
ity. This gives rise to the more general notion of continuous asymptotics with
infinite (non-compact) carriers of asymptotics up to infinity, cf. [5] More explicit
analysis shows that in the discrete case the asymptotics of the solution can be
represented (at least formally) as a sum of series

ri Zail)ln'kr-f-r‘g’Zaf)ln'kr+..., (1)
k=0

k=0

where S; and ai are smooth complex-valued functions and, therefore, cannot be
represented via an analytic functional.

It is important to note that the above expression (1) is a sum of divergent
power series in Inr and the serious problem is even to give a sense to the above
expression. Actually, if, for example ReS; < ReS;, then each term in the second
sum is less in order then each term of the first one. How can one encounter all
terms of asymptotics (1)? The answer to this question one can easily obtain in
the case when the first series converges. Then, extracting this series from the

IWe do not consider here the case of the so-called continuous asymptotics, that is, the
situation when the singularities of the corresponding function in the dual space are not discrete.



function u we obtain a function for which the second term is a main one, and we
therefore can ‘see’ it. Unfortunately, all the above series are as a rule divergent
and, moreover, at some points the effect of ‘changing a leadership’ can take place.
It means that if the argument of the phase functions §; and S; changes, then
the recessive (in our case, second) term of the asymptotic expansion can become
the dominant one and the first term can become, on the opposite, a recessive
one. Thus, for investigating of asymptotics of the form (1) one must first to work
out an appropriate procedure of summation of a divergent series and, second, to
know how to deal with the effects of the type of ‘changing a leadership’.

Such kind of a theory, going back to the classical works by L. Euler, E. Borel,
Stieltjes, and G. H. Hardy, got in present its new birth? in the remarkable works
of J. Ecalle [7], J.-P. Ramis [8] [9], J. Martinet and J.-P. Ramis [10] B. Mal-
grange [11] — [13], and others. The resurgent functions theory had its further
development and application in a set of mathematical and physical papers (see,
for example [14] - [21] and others. We remark here that in the above cited
papers only the one-dimensional theory of resurgent functions was worked out.
Multidimensional theory of resurgent functions was recently introduced in [22],
'[23] {24]. This theory can be, in particular, applied also to the construction of a
new asymptotic (resurgent) theory on manifolds with singularities.

One of the basic points of our theory is that it is based not on the residue
theory but on the new integral representation [22], [23], [25], [24], together with
the corresponding mathematical apparatus - resurgent analysis — allows one to
obtain asymptotics of solutions to equations on manifolds with singularities in
the situation of the endlessly-continuable microfunctions (= resurgent functions),
that is, practically for any right-hand part of the equation (in the framework of
discrete asymptotics).

The first application of this theory to problems on manifolds with singular-
ities was done by the authors in papers [26], 27]. There resurgent asymptotics
were constructed for the simplest case when the singularity set of the considered
manifold is a smooth manifold. The cases of conical points and smooth edges
are included in such a situation. In the present paper we consider the case when
the set of singularities can be in turn a manifold with singularities.

Finally, it is worth mentioning that the ideas and methods of resurgent anal-
ysis worked out in this and preceding papers can be applied to a very wide class
of problems in the considered field, such as degenerate equations, equations with
singular coefficients, Sobolev problems and so on.

Shortly about the contents of the paper.

The main aim of the first section is to show how resurgent functions appear in

2And, as usual in such a case, the new name — ‘the theory of resurgent functions’.



the theory of differential equations on manifolds with singularities. Besides, here
we wanted also to show the effects concerning with solvability and uniqueness
theorems on manifolds with more than one singular point. To do this we consider
the simplest example of such a manifold - the example of a spindel. It occurs,
and it will be used in the formulation of the general theory that the condition
of unique solvability for such manifolds has essentially non-local character in the
sence that for unique solvability the weights of corresponding weighted spaces at
each singular point must be related to one another.

In the second section, we recall briefly the theory of resurgent functions of
several variables introduced in papers [22], [23], [25], [24] adapted to the functions
of the power growth (in one dimensional case such adaptation is presented in [26],
27)). |

In the third section, the general theory of constructing resurgent solutions to
differential equations is developed.

Finally, in fourth section, we consider the rather representative example of
three-faced angle. On this example we illustrate the general method of construct-
ing asymptotic expansions as well as show that for manifolds of such kind the
problem can be reduced to an algebraic one.

Short exposition of the results of this paper see [28].

1 Example

1.1 Uniqueness and solvability

Here, we consider an equation on the manifold X which is a result of rotation of
the circle arc around its chord (that is, on the surface of a spindle). We denote
by r the coordinate along the arc, r € [0,1] and by ¢ the angle coordinate
corresponding to the rotation. Consider the equation on X of the form

Hu déf{[r(r-l)%] +c’aa—;}u(5,v)=f(r,so) (2)

where ¢ > 0 is some real parameter. We shall investigate solutions of this problem
in the weighted Sobolev spaces H . (M) with the norm

ap,a

1 2n 2

§
a 2 3‘2 d‘r
2 _ -2 _ =2a _ - —_ P
”u”a,ao.a; — //r (1 T‘) (1 (f’ar) 892) u(r,tp) d(PT(l _ f‘)
0 0

and we shall try to choose the weights ag and ¢ in such a way that the operator

H: H . (M)> H=: (M) (3)

ag,on Go,0g
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is an isomorphisms of these spaces.
Using expansions

= »]

urg) = 3 e*oulr),
k=-o00

flrne) = Y e*hilr).
k=-00

of the solution and the right-hand part into the Fourier series, we reduce our
equation to the equations for the Fourier coefficients ux(r) of the solution u(r, ¢):

{ [r (r—1) g;} T k’c’} u(r) = fi(r) (4)

for all integer values of k¥ € Z. Evidently, the solvability of equation (2) is
equivalent to the solvability of equations (4) in the corresponding functional
spaces (the exact choice of these spaces will be done below).

The fundamental system of solutions to the corresponding homogeneous equa-

tion is . i,
L (1;") L = (1;’)
k r > Yk r .

Obviously, if we are solving the initial equation (2) in spaces (3), then we must
solve the equation (4) for

ug € cho,al (0’ 1) ’ fk € Hc:;:xl (01 1) ) (5)

where the spaces H] , (0,1) are defined in the obvious way:

2 1 2 AN % 2 dr
— | —2a0 (] _ )2 —r= 2
Nuelll? o0, = /r (1-r) (1 (rar) +k ) ur(r, ) =7
0

As it was already mentioned, we search for such values of ag, a; that the
operator (3) is an isomorphism. In particular, this means that all equations (4)
must have the unique solutions in spaces (5).

It is not hard to see that the solutions ug), uil) belong to the space H3_ . (0,1)

. xQ.a
iff

ag < k¢ and a; < —ke.



X,

Figure 1: KerH, (k#0)asa function of ag, ay. Thick line is a boundary of the
monomorphism region -

Thus, the dimension of the kernel of the operator corresponding to equation (4)

-~

He : H®

ap,o)

(0,1) — H7e, (0,1)
for different values of ap, a; are such as it is shown on Figure 1 (on this Figure
K = dim Kerﬁ;‘).

The dimension of the cokernel of operator (3) can be easily obtained by means
of duality. The result for operator (3) is shown on Figure 2. The final result of
investigation of the initial equation is shown on Figure 3 where the regions in
plane (oo, ;) where the considered operator is an isomorphism are shown.

1.2 Asymptotics of solution

Now we turn our attention to the investigation of the asymptotics of solutions to
equation (2) provided that the pair (o, ;) is chosen in such a way that operator
(3) is an isomorphism. We recall that the usual asymptotic expansions which can
be obtained for solutions to equations of the type (2) are conormal asymptotics

u(r,p) = erf Eajk In*r (6)
7 k=0
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Figure 2: Coker f (k # 0) as a function of ap, a;. Thick line is a boundary of
the epimorphism region
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where r is a local coordinate corresponding to the distance from the singular
point, the outer sum is taken over the finite set of indices j; m; are nonnegative
integers and the parameters S;, ajx, and m; can in general depend on the angle
variable ¢ (see [4], [5]). However, such class of asymptotics is too narrow for
obtaining asymptotics of solutions to equation (2) even if right-hand parts of
this equation belongs to this class. The suitable class of asymptotic expansion
is given by the notion of resurgent function and we shall try to explain the
appearence of this class and its main features on this example.
To do this, we consider equation (2) with the right-hand part

fre) = (5 ")SM a(¥) ™)

r

(where S(¢) and a(p) are 2w-periodic complex-valued analytic functions of the
variable ) which has obviously the asymptotic expansion of the type (6) at the
both conical points of the manifold M.

To construct a solution to equation (2) with the right-hand part (7) in more
or less explicit form, we represent the function (7) with the help of the Cauchy

formula as .
(o) = 5= f (1 ‘) ol ®)

where ¥ is a contour surrounding the point s = S(¢) clockwise. Now we search
for the solution to equation (2) in the form

sr) = 5 [ (B52) vtsioas. 9)

.vl

The cycle 4’ included into the latter formula can differ from that included in the
former one. Here U(s,¢) is an unknown ( in general, ramifying) function which
is analytic with respect to s. We shall perform the exact choice of the contour
later.
Substituting (8) and (9) into (2), we obtain the following equation for the
function U(s,¢): ‘
o a(y)
z_~ 2 [f = —r7
() V0= 2G5
This equation can be solved with the help of the Green function. As a result, we
obtain a particular solution of the form

"]

U(s,p):-z-‘s;? / cos%(tp—ﬂ—w);—%dﬂ. (10)

w=3r



So, one can see that the function U(s,) is a regular analytic function outside
the union of the set

{s=kc, ke Z}

and the set of values of the function S(8) for real values of 8. The latter set forms
a closed curve (possibly, with singularities) in a complex plane C,. However, this
function can be continued up to an analytic function in the whole plane C, except
for a discreet set depending on ¢. To do this, we shall treat the integral on the
right in (10) as the integral over the segment [ — 27, | in the complez plane
Cy. The integrand in (10) has singularities at points of the pre image S~!(s) of s
under the mapping & — S(8). Thus, the integral on the right in (10) is singular
in the following three cases:

1) if one of points of §~!(s) coincides with one of the endpoints § = ¢ — 27
or 8 = ¢ of the integration contour,

2) if two or more points of S~!(s) coincide with one another,

3) if at least one of points of S'(s) tends to infinity.

First case take place when s = S(p) and the second is realized if s = S(~)
for some stationary point ©* of the function S.

These considerations leat us to the following important observation. If we do
not suppose some special features (of the type of an analytic continuability) of
functions a(#) and S(8) involved into formula (10), then we can claim only that
the function U(s, ) is analytic outside the set of values of the function 5(8),
that is, outside some closed curve in the plane C,. Thus, the solution is given
by the formula (9) where the contour 4’ surrounds the mentioned curve. The
right-hand part of (9) is none more than the application of an analytic functional
(determined by U(s,¢)) to the function (1%')_'.

However, if we want to obtain the more precise information about the asymp-
totics of the solution, we must investigate the analytic continuation of the func-
tion U(s, ©) inside the set bounded by the curve {s = S(8)}. Such a continuation
can be obtained with the help of (10) if we suppose that the functions a(8) and
S(6) can be continued up to entire functions to the whole plane Cy (or, at least,
as analytic functions with singularities on a discrete set on their Riemannian
surfaces)®. Then, using the methods of the complex analysis, one can investigate
the continuation of U(s,#) to the whole plane C, and describe the singularities
of this continuation.

We remark also that, in the above considerations, we have used essentially the
fact that the fundamental solution of the considered equation can be analytically

3For general equations, we must require also that the coefficients of the equation can be
extended up to entire functions, for the equation in question this requirement is fulfilled
automatically.



Figure 4: Stokes phenomenon

continued to complex values of its arguments ¢, 6.

Let us now investigate the character of singularity of the function Uf(s, ¢)
given by (10) at the point s = S(p) (this is the only ‘moving’ point of singularity
of U(s, ), that is, such a point whose position on the plane C, depends on ¢).
To do this, we note that when the point s moves along a small loop surrounding
S(p), the corresponding points of the pre image moves along a loop surrounding
endpoints § = ¢ — 27 or § = p of the integration contour, and thus extracts from
this contour two additional contours surrounding these points of the pre image
(see Figure 4). Therefore, we see that, in general, the function U{s, ¢) has at the
point 8 = S(¢) the singularity of the logarythmic type (in particular, this point
1s a point of ramification).

More detailed analysis shows that the asymptotic expansion of the function
U(s, ) near the point s = S(¢) has the following form

Usie) = 3 B oo - 50600 (1)

where b;(¢) are some analytic functions in ¢ (this expansion is written down for
values of ¢ such that S'(¢) # 0). '

Now, when the function U(s,¢p) is found and investigated, let us use the
obtained result for constructing the solution (9) and investigating its asymptotics.

10



Figure 5: Decomposition of the contour

Since the function U has the singularity of the logarithmic type, one cannot
choose the contour v in this formula to be the same as in (8). However, one can
choose the contour v to surround all the image of the segment [ — 27, ¢] thus
obtaining the desired solution.

Now let us consider the asymptotics of the obtained solution near, say, the
point r = 0. To construct this asymptotics, we replace the contour 4’ included
into (9) by the sum of contours T'; of special type which is homological ‘to the
initial contour +:

sre) = St =S o [ (F55) vlswas (o)
2 _

i

Each of the I';’s will be a contour surrounding in positive direction exactly one
point of singularity of the function U(s, ) and going to infinity along the positive
direction of the real axis in the s-plane (see Figure 5). Due to the fact that we
consider the solution in a neighbourhood of the point » = 0, the function will
decrease exponentially along these contours and all the integrals over T';’s will
converge. From the theory of asymptotic expansions of integrals of the Laplace-
Borel type (see, for example [26], {27]) it follows that each of the integrals

1 1-7\""
“j(",?):% (r) U(s,@)ds

7

11



included into (12) has the asymptotic expansion of the form

uj(r,9) 2 ri Y by () In~Hr (13)

k=0

as r — 0 if the function U(s, ) has the asymptotic expansion of the type (11)
near the origin point 8 = 5;(¢) of the contour I';. Can one say, that the asymp-
totics of the whole function u(r, ) is simply the sum of asymptotics of the type
(13)? Unfortunately, this is not so, since the asymptotic representation, say, of
the type

u(r,0) 2 9N b () In TFr 4 79 Y " by () In (14)

k=0 k=0

as have been already mentioned in the Introduction, is absolutely unclear if (for
some fixed value of ) Re Sy(¢) > Re S;(¢) and the series in the first term on the
right in the latter formula diverges. In the Introduction we had presented also
some reasons concerning the verification of expansion (14) as an asymptotics.
Let us consider here these arguments in more detail. The matter is that before
writing down terms of asymptotic expansion with power type (%) one must to
take into account all the terms with power type r51(¥). In fact, before writing
down the second term on the right in (14), one must resummate the first term,
that is, to replace it with some function for which this term will be an asymptotic
expansion. Certainly, the coefficients of the second term (we call it a recessive
term of expansion (14)) will depend on the resummation method used in the first
term (which is called @ dominant term of the expansion). The adequate resum-
mation method is given, for example, by Borel resummation (see, for example,
[7], {8]). In our case, this resummation procedure is determined by integral (12).
Now, if the value of ¢ changes, then, in general, the effect of ‘change of the
leadership’ can occur. This means that in different regions in ¢ we obtain differ-
ent asymptotics (the corresponding asymptotics have simply different dominant
terms). The asymptotics in this case changes by jump. Such phenomenon in the
theory of divergent parametric power series is known as the Stokes phenomenon.
The nature of this phenomenon is as follows. We have already said that the
values of coefficients byx(¢2) of the recessive term depend on the choice of the
resummation method used for the dominant one. However, even if we use one
and the same resummation method based on integral representations of the type
(12), in the case when the considered asymptotic expansion involves an addi-
tional parameter (such as the parameter ¢ in expansion (14)), the coefficients
in the recessive term can have jumps for some values of the parameter. These
jumps take place exactly for those values of the parameter for which some point

12



s* of singularity of the integrand in (12) moves across one of the contours I'; of
integration included into this formula. As it is shown on Figure 4, this point
will extract from the contour I'; some additional contour I'; originated from the
point s8*. Certainly, such a situation can lead not only to jumps in coefficients of
recessive terms, but also to appearance of new ones or to cancelling out the old
ones. ‘

This is a program of investigation of asymptotic expansions in the class of
resurgent functions.

2 Resurgent functions of power type (multidi-
mensional theory)

In the papers [26], [27], we introduced the notion of the resurgent function of
power type of one variable r. Here we need the generalization of this notion
to the function of power type in several variables. Essentially, this notion is a
‘composition’ of the notion of resurgent functions of several variables introduced
in [22], [23] with the logarithmic change of variables; that is why we present here
only the main definitions and statements of the main theorems. The reader can
find the details in the above cited papers.

We remark that, as it can be seen from the example above, we need to
construct the theory of resurgent functions depending on a parameter. However,
the presence of the parameter is not essential, at least at the first stage of the
theory, and in the beginning of this Section we postpone the investigation of
dependence on a parameter in order to simplify the notation.

By R, we denote the direct product of k copies of the half-plane R, with
coordinates (ry,...,7¢). The tuple (ry,...,rs) we denote also by r. We introduce
the variables p = (p,..., px) which are related to the variables (ry,...,r¢) with
the help of logarithmic map

pi=lnr;, 7=1,...,k

We shall widen the range of the variables p up to the space C*.

Let now C, be a complex plane of one complex variable s and let s = S(p) be
a homogeneous analytic function in p of order 1 which is, in general, ramifying.
We denote by MP™ the space of endlessly-continuable microfunctions F'(s, p) at
the point s = S(p) which are homogeneous of order —1 in (s, p). We recall that
a microfunction F'(s) at the point s = S is an element of the quotient space

Ms=As/0Os

13



where Ags is a space of germs of (in general, ramifying) analytic functions in
the deleted neighbourhood of the point s = S(p) and Os is a space of germs of
functions holomorphic in a (full) neighbourhood of this point.

Definition 2.1 The microfunction F(s,p) is called to be endlessly continuable
(in the variable s) if for any positive constant L there exists a discreteset £, C C,
such that some representative F*(s, p) (which does not depend on L) of the class
F(s, p) can be continued along any path in C, originated from the neighbourhood
of §(p) with the length less than L.

Let £ be an analytic set in C, x C¥ such that the intersection I, between
¥ and {p = const} contains only a finite number of points in each left half-plane
{s: Res < A} for any value of A. Then a resurgent function with the support &
is an element of the direct product

cont
H MS:‘

S; €L

where S; = S,(p) are different values of the ramifying function S which describes

the set X:
£ ={(s,0): s=S(p)}.

The space of resurgent functions (with different supports) we denote by R (Ri)

Now let P (R%) be a space of germs at the origin of functions on R% of
power type. We recall ([26], [27]) that the function f(r) has the power type at
the origin if it satisfies the inequality

[f(r)l < Cr® (15)

for a positive constant C' and a real multiindex & = (a3, ..., ax) in a neighbour-
hood of the origin (here r* = r{'r3? ... ri*). We also denote by P, (R%) the
subspace of P (R%) consisting of functions which satisfy inequality (15) with the
given value of a. Finally, we pose

P (BY) = () Pu(RY).
aERk

The elements of P_, (R%) will be referred below as rapidly decreasing functions
(of power type).
On each space MYP™ we define the mapping

£: M™ = P(R]) [ P-wo (RY)

14



Support of
resurgent function Contour I

—_
—\ |/

Singular points

Figure 6: Shape of the contour

given by the formula

(P [ e F(s,p)ds. (16)
h
The contour representing the homology class h involved in the latter integral is
shown on Figure 6. Certainly, the representation (16) is valid locally, that is, in
some conical (= R;-invariant) neighbourhood of the fixed point py of the space
C’;. The globalization of this representation as well as the globalization of the
notion of resurgent function (see below) can be done with the help of the so-
called transition homomorphism which we discuss in the end of this subsection.

We do not present here the investigation of convergence of the integral (16).
We remark only that this integral can be defined as the element of the quotient
space

P(RY) /P_w (RY)

without any growth conditions on the function F(s,p) in the integrand on the
right in (16).Thus, this integral is defined modulo rapidly decreasing functions of
r. By linearity, one can extend the operator £ defined by (16) up to the operator

£ R(RE) = P(RY) /Po (RE).

15



Definition 2.2 The image ¢ ('f?', (Ri)) will be called a space of resurgent func-

tions of power type on RX.
We denote this space by R (R%).

Remark 2.1 We note that each resurgent function can be represented as a sum
of integrals of the type (16) with one and the same hyperfunction in the integrand.
This hyperfunction® will also be denoted by F(s, p).

Remark 2.2 In the case of one variable r (that is, for k = 1) the above definition
of a space of resurgent functions coincides with that given in [26], [27]. Actually,

in this case one has |
¢ = — -
A

where the function F(s, p) is a homogeneous function of the two complex param-
eters (s, p). Therefore one has

F(s,p)=p 'F (%,1) :

Substituting the latter formula into (17) and performing the variable change
s/p = —3 one reduces the definition (17) of the mapping £ to the form

=—/e‘°’F(3 1)ds

-which, after the variable change p = Inr coincides with the definition

E(F):E% r*F(s)ds
h

given in the above cited paper.

The following two theorems describe the main features of the introduced
notions.

Theorem 2.1 The space of resurgent functions of power type on Ri is an alge-
bra with respect to the usual multiplication. The operator £ determines an algebra
homomorphism

¢ : R(RY) —» R(R%)

where R (RX) is considered as an algebra with respect to convolution of micro-
functions in s.

4The definition of hyperfunctions the reader can find, for example, in [20], {29]

16



Theorem 2.2 The formulas

2 AN :
Tja_rJe(F(sap)):e((a) a_ij(s:p))!J_l,“'ak

and

r0(F(s,0) = € (TuoF(s,0))

are valid. Here ﬁ,, is a shift to ap = a;p; + ... + arpi in the s-plane:

Top (F(s,p)) = F(s — ap, p).

Let us mention here one more notion in the resurgent analysis. This is a
notion of a resurgent function with simple singularities.

We recall ([23]) that the resurgent function f(r) is called a resurgent function
with stimple singularities iff the corresponding function F(s, p) has the asymptotic
expansion of the form

. ® (g_ k
Fisn) = 8 s - s Y. S5 ante) 9
k=0 '

near each singular point s = S(p) (we restrict ourselves to the case when the
‘polar part’ of F(s, p) is of order 1 but one can also consider poles of an arbitrary
order). Here a;(p) are homogeneous functions in p of order —j. In this case
function (18) is a homogeneous microfunction of order —1.

If f is a resurgent function with simple singularities and its support consists
(for given value of p) of a single point, then it has the asymptotical expansion of
the form?

f(r) = 5Sto7) i ag(lnr)
k=0

wherelnr = (Inr,...,In7r.). We remark that the series on the right in the latter
formula is, in general, divergent (unless the series on the right in (18) converges
in the whole plane C,). So, as it is shown in the above example, one needs to use
a resummation procedure for series (18). Such resummation procedure is given
by the operator £.

Let us now turn our attention to the investigation of the case when the consid-
ered resurgent functions depend on some additional parameters z = (z*,...,z").

8Certainly, this kind of asymptotic expansion is valid outside the set of ramification of
the function S(p). The investigation of the asymptotic behavior of a resurgent function near
ramification points of S (the so-called focal points) is given in the paper [23].
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Then the set of singularities of the function F(s,p,z) computed for each given
value z of the parameter, will depend on this value. Thus, one can imagine that
the points of singularity of the function F' are moving over the plane C, while
the values of z (as well as the values of p) are changed. As above, we denote by
X, the intersection between the set ¥ of singularities of the function F and the
set {p = const, £ = const}. Then the following objects can be considered.

1) The set F of ramification of the analytic function S(p,z) describing the
singularity set of the function F. We shall call this set the set of focal points
corresponding to the considered resurgent function.

2) The Stokes surface corresponding to the considered resurgent function.
This surface is a set in the space C7t* consisting of points such that at least two
points of ¥, . have coinciding imaginary parts.

One can see that if the point (p, z) intersects the Stokes surface, then the sup-
port of the resurgent function can have a jump (the reason for such changing the
reader can see from Figure 4). This observation gives rise to the homomorphism

See) ¢ B ME = @ MZ™
which is called a transition homomorphism corresponding to the given point
(p,x) of the Stokes surface. This homomorphism allows one to compare the
formal monodromy of a resurgent function (that is, the monodromy of its pre
image F'(s, p, z) and its real monodromy, that is, the monodromy of the function

flpyz) = E(F(s,p,2))

while moving around the set of focal points.

We remark that the investigation of the behavior of a resurgent function
near its focal points is a distinct task which can be done with the help of the
Maslov’s canonical operator theory {30], [31]. We shall not stand on this point;
the interested reader can find these considerations in [23].

3 Construction of resurgent solutions (general
theory)

3.1 Statement of the problem

Now, we proceed with the construction of the general theory of constructing
resurgent solutions to partial differential equations on a manifold M with sin-
gularities near its vertex V. We suppose that the manifold M has near V the
following structure(see Figures 7 and 8)
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Region 1
Region 11

Figure 7: Manifold M, dimM =2

X \\ / (circle)

Figure 8: Manifold M, dimM = 3
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{{0,1] x X} /{{0} x X}. - (19

For simplicity, we shall consider below the case when the manifold X is a manifold
with smooth edges; the general case can be investigated in the similar manner.
Thus, we suppose that the manifold X includes edges Y}, ... Yy which are smooth
manifolds, and the structure of X near each edge Y; is described as follows:

{[0,1) x 0}/ {{0} x }} x ¥; | (20)

with some smooth compact manifold €.

Let us introduce now special coordinate systems on M which will be used
below. We denote by ¢ a point of the segment [0, 1] involved in (19). Later on,
the coordinate transversal to any edge Y; of X will be denoted by r. The local
coordinate systems on the manifolds ¥; and Q will be denoted by y = (y1,...,¥&)
and w = (wy,...,w) correspondingly. The local coordinates on X outside its
edges we denote by z = (z,,...,2,).

Consider a partial differential operator on the manifold A near the vertex V.
This operator has the form _

H=tm é’&j(t) (t-a-at—)j (21)

where @;(t), j = 0,...,m are partial differential operators on the manifold X
which is, in term, a manifold with singularities. This means, in particular, that
these operators have the form

-~ a *
aj(t) = Z an(I,t) (3_17)
lofSm=~j
near points of X which are far away from edges and
) m-j;-. a i
a;(t) = r~(m=9) biy(r,t){ r— ~ 22
J I or
{=0

where ?;jl (r,t) are partial differential operators with smooth coefficients of order
m — [ — j on the manifold .
We shall search for the resurgent solutions of the equation

Hu=f (23)
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provided that the right-hand part f of this equation is a resurgent function. This
means that

-
u(t)=LU (s,7)] = =— [ e*U(s,7)ds, (24)
2mr/

the function U(s,7) is an endlessly-continuable function in the variable s with
values in some weighted Sobolev space H2 (X) (« being a real-valued multiindex)
which is homogeneous of order —1 in (s, 7). To give an exact description of the
mentioned functional space we introduce the following notions.

First of all, one can suppose without loss of generality that the manifolds Q2
involved in the representation (20) of the manifold X near each its edge Y; are
connected.

Let us introduce the weight function y which has the representation

x = x(r,w)= TW?O’X:‘(T,U)

near each edge Y, of the manifold X with some smooth function x;(r,w) on
[0,1] x Q which does not vanish at r = 0:

x;(O,w) # 0 for any w € €.

Then the Sobolev space H2 (X), a = (ay,...,ax) is defined with the help of the
norm \

Iullo = [ x|t - a)¢uf av

X
where A is a Beltrami-Laplace operator on X with respect to some metrics, dV
is a volume measure with respect to the same metrics.
The space of resurgent functions with values in the Sobolev space H} (X) we

shall denote by

R. (M) =R([0,1], H; (X)).

Let us introduce the operator family

m

H(z) =Y 35(0)7

=0

parameterized by points of the complex plane C,.
We suppose the following condition to be fulfilled.

Condition 3.1 There exists a ‘weight’ « = (ay,. .., ax) such that the operator
family '

Hz) : H2(X) > H™(X)
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is invertible in the space scale H (X) for any values of z in the complex plane
except for some discrete set £y. The resolving operator ﬁ(z) is an (in general
ramifying) operator function of the parameter z outside Ey. We suppose also
that the resolving operator can be written down in the form

(ﬁ(z) f) (z) = ] K (z,7,2) f (z') dz’, (25)

where K (z,z',z) (the fundamental solution to equation ?I(z)u = 0) can be
analytically continued® in z, z’ up to (ramifying) analytic function in the com-
plexification of the manifold X.

Remark 3.1 As it can be seen from Section 1, Condition 3.1 is of global and
terminal character in the sense that it cannot be localized further at singular
points of the manifold M. Actually, as it is shown in the Example (see Section
1) for a family satisfying Condition 3.1 the weights ay, ..., ax, in general, cannot
be chosen in arbitrary way

From the other hand, irany concrete case the singularities of the resolvent
operator can be investigated (see, in particular, Section 4), and in the situation
of the manifold with conical singularities this Condition is valid for an elliptic
operator (see, for example, [2]).

In what follows we investigate the solvability of equation (23) in spaces of
resurgent functions.

3.2 The solvability theorem

Here, we present the reduction of the considered problem to a family of equations
with the complex parameter z.
First of all, we rewrite equation (23) in the form

>3 (tba—t) u=fiEnf
=0

J=

or, expanding the coefficients of the latter equation into the Taylor series,

.Z Zajkt.k (t%) u = fj. | (26)

SInvestigation of the analytic continuation of fundamental solution can be performed with
the help of analytic continuation of solutions to integral equations, see [32).
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Here the operators @, on the manifold X has the representation of the form-(22)
with coeflicients independent of ¢.

Now let us substitute resurgent representation {24) to equation (26). Using
Theorem 2.2 above, we obtain the following equation for functions U(s, 7):

iiaﬂ,ﬁ,((%)“%)j(;=b“ (27)

J=0 k=0

where the function F = F(s, ) is an endlessly-continuable function correspond-
ing to the function fi(¢) via the representation (24).

Similar to the papers [26], [27], one can see that the solution U to equation
(27) can be found in the form of the series

o0

Us,7) =Y UW(s,7) (28)

k=0

where U{¥)(s, 7) are solutions to the following recurrent system of equations:

m N a -1 a 3o (©)
Zajo ((-a-;) 5;) U —F,

1=0

= . 3 -1 3 d (k) = -~ - a -1 3 d (k”)

J_; ajo ((‘a"';) E) U = - J;O k’-'-kz":k ajkera,. (a) -a—T U ,
> 1. (29)

It is evidently sufficient to investigate the solvability of the first equation in
(29) since the operator on the left in all equations of this system is the same. To
prove the solvability of this equation, we pass to 8/Js-transform [33], [34]7. We

obtain the equation
m

8502700 (s,2) = F(s,2) (30)
F=0

where TO)(s, z) and ﬁ(s,z) are 0/8s-transforms of the functions U(® (s, 7) and

F(s,71).

The solvability of this equation follows now directly from Condition 3.1. We
shall present a more detailed analysis of the support of the resurgent function
u. Namely, the singularity set of solutions to equation (30) can be investi-
gated with the help of formula (25) (for example, see computations in the next

"This transform is an analogue of the real Fourier-Maslov 8/dr-transform [30] in the situ-
ation of ramifying analytic functions.
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subsection). Then the support supp u® of the corresponding resurgent function
u® = (F‘a/'f")_1 U° can be computed with the help of the Thom theorem. Now
the support of the solution to equation (23) consists of the set of lattices with
the step T whose origins are situated either at points of supp u° (see Condition
3.1) or at points of support of the right-hand part f of the equation.

One can investigate the resurgent solutions to equation (23) from the different
points of view.

First, if we are intended to obtain the asymptotics of the solution only for
real values of ¢, then the variable 7, which is related to the variable ¢ by

t=ce" (31)

in (24) is real with sufficiently large in'module negative values (we recall that we
construct the resurgent solutions near the vertex V of the manifold M, that is,
for ¢ sufficiently close to zero).

Second, one can investigate the analytic continuation of the solution to equa-
tion (23) to the complex domain (that is, to the complex values of ¢ sufficiently
close to zero in module). In this case, due to the relation (31) between ¢ and 7,
the variable 7 must belong to some left half-plane in the complex plane C,:

Rer < A

for some positive real A.

In both cases the value of Ret increases along each above mentioned lattice
involved into the support supp u of the solution u and, hence, series (28) converge
in the sense of the resurgent function theory (see [23]). Thus, for both cases the
following statement is valid.

Theorem 3.1 If Condition 3.1 is valid, then equation (23) is solvable in the
spaces R} (M).

3.3 Investigation of singularity set of the solution

Let us investigate in more detaile the singularity set of solutions to equation (27),
which gives us an information about the asymptotic behavior of solutions to the
initial equation.

To simplify our considerations, we shall suppose that the two following con-
ditions are fulfilled.

i). The support supp f of the right-hand part of equation (23) consists of a single
point 8o(7) = o7 for each fixed value of 7.
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ii). The resolving operator E(q) has only polar singularities at points of the set
Ly (see Condition 3.1). -

We remark that the first of these two conditions is not restrictive at all since
every resurgent function can be represented as a sum of resurgent functions each
supported in a single point. The second condition is, of course, more restrictive,
but, it is satisfied for elliptic differential operators.

Now let us proceed with the analysis of the resurgent solution to equation
(23). To begin with, we shall investigate the singularity set of the solution
U (s, 1) to the first of equations (29).. First of all, we note that the solution to
the equation (30) is given by the formula

(7(0)(3,2) = ﬁ(z)ﬁ(s,z).

Hence, the solution to the first equation in (29) has the form
" UOs,7) = FE2 {R(2)F(s,2) }

where F, f_’r.?-' is the inverse 8735—tra.nsform

- s \2 3 -
Ff_fﬂ'U(s,z)=( ) 34 ] U(s+ z7,2)dz

or
h(s,1)

and h(s,7) is some special relative homology class (see [33], [34]):
h(s, T) € H, (C, \ X, E}‘:) .

Since

T(s,2) = F212U(s,7) = / Us = zr,7) dr,
h(s,7)

we finally obtain the expression for the solution to the first equation in (29):

. 1/2 a
{0) = * v D o ’ '
U™ (s, 1) (271_) B j R(z}F(s+ 2z (7 ‘r),'r)d-r./\dz (32)
H(s,T)
with some relative homology class H(s,7) € Hz (C?_\ £y,Zr). Now the singu-

larity set of the function U(®)(s, 7) can be computed with the help of the Thom
theorem [35].
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I

Singularities due to R(z)
—

I

Singularities due to F{5,7)

Figure 9: Admissible contours

Namely, the integrand in‘(32) have singularities exactly on the union of the set
Yy and the set Lr of singular points of the function F(s,7). These singularities
are described by the formulas

z=2,7=1,2,... and s+ z (7 — 1) = g7’

Now the standard considerations using the Thom theorem show that the singu-
larities of the function U{©)(s,7) lye at the points

s=o0pr and s=z;7,7=0,1,....

To construct the first term u(%(t) of the expansion of the solution u(t) cor-
responding to expansion (28), we must use the resurgent representation of the
form (24) with the function U(®(s,7) in the integrand along the contour which
is homological to that of the representation for the function f(t) in the space
C\ y. However, there remains a degree of freedom in the choice of this contour
outside the singular set £; U Xy (see Figure 9). It is not so hard to see that
functions obtained by integration along different admissible contours differ from
one another by solutions to the corresponding homogeneous equation, which, due
to condition ii) above, has the form of the conormal asymptotics

Z t5 Z Ckj ln" t (33)
j

k=0
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where the inner sum is taken over such j that all values of z; involved in the
latter equation lye in some fixed right half-plane of the complex plane C, and ¢;
are functions on the manifold X (which certainly may have singularities at sin-
gular points of this manifold). The examination of solutions to the homogeneous
equations the reader can find in [4], [5].

3.4 Asymptotics of solutions near the vertex

Our next goal is to investigate the obtained solutions near edges emanated from
the vertex V of the manifold M. The matter is that our above considerations
give the appropriate asymptotics of solutions when the point approaches the
vertex in the direction which does not coincide with some edge emanated from
V, that is, when t — 0 and the corresponding point on X do not tend to some
singular point of this manifold (the region [ on Figure 7). Actually, in this case
the coefficients of resurgent representation (24) are smooth and the asymptotic
behavior of the solution is determined only by the variable {. Quite another
situation takes place when the point approaches the vertex along the region II
(Figure 7) since in this case the corresponding point on X tends to some singular
point of this manifold and, hence, the coefficients of the resurgent representation
are in turn singular. Certainly, one can use for this region the results of the
paper [26] which show that (under the assumption that the right-hand part of
equation (23) is a resurgent function not only in ¢ but also in r) the solution
to equations (27) is a resurgent function in r near each edge of the manifold X.
These considerations show that the obtained solution is a resurgent function in
t with values in the space of resurgent functions in r.

However, such a description of solutions to equation (23) is rather implicit
and there arises a problem of the more explicit description of the asymptotics of
the solution in region II. The following theorem is the first step in solving this
problem.

Theorem 3.2 Any resurgent function of the variable v with values in the space
of resurgent functions of the variable p = In r is a resurgent function with respect

to (7, p).

Proof. First of all, we remark that it is sufficient to prove this Theorem
for regular resurgent functions, that is, for resurgent functions u such that the
corresponding function U has only integrable singularities. Actually, to reduce
the problem to an integrable case one can apply to the considered functions the
operator (8/8s)™" with sufficiently large N.
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Thus, let us consider the resurgent function in 7:

u(r) = fe"U(s,T) ds (34)

.

where v is a ray directed along the positive part of the real axis and emanated
from the point s*(7) (the support of the resurgent function u(7)). Suppose that
the function U(s,) is an infinitely continuable in s function homogeneous of
order —1 in (s, 7) with values in space of resurgent functions in p:

Us,7) = U(s,7,p) = [ e~ Us(s, 7,51, p) dsy (35)

M

where U, (s, 7,1, p) is an endlessly-continuable in s function which is homoge-
neous in (s1,p) (as well as in (s,7), of course). Here the contour +, is a ray
emanated from a point sj(p) along the direction of the positive part of the real
axis. Substituting (35) into (34) we obtain a representation for the function u(r)
of the form

u(r) = u(r,p) = /6_’ fc_" Ui(s,7,81,p)dsy | ds.

b 24

The latter expression can be rewritten as follows:

u(r,p) = /ﬁ{/wﬂ—@Tﬂ+4KM+E+nH

x Ui(s*(r) + & 7,81(p) +1,p)dn.

Rewriting the latter integral as a multiple integral over the positive quarter R%
of the plane R}, and introducing the variable change

£=¢ <=¢+9

we obtain the formula
u(rip) = [expl=(57() + 5i(p) + N Ua c,m,0) ds
1]

where
<

Us(s,7,p) = / Us (s°(7) + £,7,5(p) + 5 — £, p) dE.

0
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The two last formulas can be rewritten in the form

u(r, p) = /e"U_(s,‘r,p) ds _ (36)

2

where the function U.(s, T, p) is given by

Uds,m,p) = /Ul(s','r,s - s, p)ds’ (37)
T

and the contour v; is the segment with the endpoint s*(7) and s—s}(p). It is easy
to check that the function U.(s, r, p) given by (37) is a homogeneous function of
order —1 with respect to (s, 7, p) which is infinitely continuable in the variable s
for any fixed values of (7, p). The proof is complete.

Since we know now that the solution to equation (24) is a resurgent func-
tion near edges (that is, in the region II on Figure 7, then the second step in
constructing asymptotics for this solution is to substitute representation (36)
directly into the initial equation® (after the change of variables t = e, r = e?).
To do this we rewrite equation (24) in the form

—ma—m g 0
r "t H (r,t,rb—;,rt-é-t-) u=f. (38)
After the mentioned variable change the equation becomes

a 0
p T P o
H (e ,€ ,———ap,e —31_> u(p,‘r) = f1(Pa"')

(we had also multiplied equation (38) by r=™¢=™). Similar to the above consid-
erations, substituting (36) into the latter equation and expanding its coefficients
into the Taylor series with respect to the first two arguments, we obtain

o A o\"'a [fa\"'a
) mH-k((—) —,(—) —) Uls,p,7) = F(s,p7). (39)
j§0 e ’ 0s dp’ \0s T

Here, as above, f"ij, is a shift operator in the plane C, to the value jp + k7.

The operators
- 8\™'a (a\"'a
Hfﬁ*’i*((a) 7 (%) 37)

8We present here rather brief description of the procedure of constructing resurgent solutions
to the considered equation. The reader can find the detailed presentation of this construction
(for somewhat different situation) in [26], [27].
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have the operator-valued coefficients (which are differential operators on the
manifold ) and can be found from the relation

15} ad =, . a\"'a a\"! a
p T F = jotkr pr. — — = —_
H (e ,€ ,ap,e 31‘) E e Hj ((33) 5’ (83) 81') . (40)

k=0

We remark that, due to the presence of the factor e” before the derivative d/dr,

this derivative will not be included into the principal part Hyo of expansion (40).
Hence, equation (39) can be rewritten in the form

o\~ o = A aN"'a faN'a
”““((a) 'é';)U-F‘J;Tm'“H*((a) (&) )

and the sum on the right in the latter expression does not contain the term with
j=k=0.

As above, the solution to the latter equation can be constructed with the
help of a recurrent procedure in the form

—

[= <]

U(s,p,m) = Y UN(s,p,7),

1k=0

where the functions UU¥)(s, p, 7) satisfy the following recurrent system:

A\ o
dl = (00) _
Hoo ((as) ap) U = F
AN AN
o ((5) 25) 0= “

~ aN'a9 /ra\""'a
—Z:Tj‘pH'rHj‘k' ((E) 3_p’ (3;) E) uut,

where the sum on the left in the latter relation is taken over all nonnegative
integers j', k', 7", k" such that ;' + 7” = 7 and k' + k" = k except for the term
with 7 = &' = 0. Thus, again it is sufficient to solve the first of the above
equations because this system is a triangle one with one and the same operator
on the diagonal. As usual, we shall apply the 3/3s-transform to this equation
thus reducing it to the following family of equations

Hoo(2)U (s,2,7) = F(s,2,7), (42)
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where U and F are the 8/8s-transforms of the functions U and F with respect
to the variable p,

U(s,z,1) = F2%U (s,p,7),

A~

F(s,z,7) = F/% F (s,p,7),

Pz

z is a dual variable (one can notice that the variable 7 is simply a parameter in

the latter equation). One should remember that the operator Hoo(z) included
into (42) is a differential operator of order m on the smooth manifold Q:

Aul) = 3 anler?) ()

la|<m

with smooth coefficients with polynomial dependence of z. This operator can be
expressed as N R

Hy(z) = H(0,0,z,0) (43)
where H is an (operator-valued) Hamiltonian included in the representation (38)

of the considered operator. _
It is natural that the following condition must be fulfilled.

Condition 3.2 The operator family {43) depending on the parameter z is an-
alytically invertible, that is, there exists an operator Roo (z) (which depends on
z analytically in the whole plane C, except for a discrete set & = {z, 23,...})
such that

Hoo(2)Roo (2) = Roo (2) Hoo(z) =1
where 1 is the identity operator. The operator ﬁoo(z) is an integral operator

with a kernel admitting an analytic continuation to Q¢ X Q1c, where Q¢ is a
complexification of the manifold Q2 (see formula (25) above).

Due to Condition 3.2 equation (42) is solvable and its solution is given by

P ~

T (s,2,7) = Roa () F s, 2,7).
Now the solution to equation (42) can be written down in the form
U(s,p,7) = FoL5 { Roo () F (5,2,7)} = { F2/% Roo (2) FL22} F (5, p,7)

Similar to formula (32) above, we can rewrite the latter relation in the integral
form

~ ; v ~
U=’R[F]=(§;) % / Roo(2)F(s+z(p—p'),p',7)dp’ Ndz.  (44)

H(s.7)
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Formula (44) is the main tool for investigation of solutions to system (41).
Namely, this solution is given by '

-~

U = R[F],

- oa\ta o\ d
> Tyrosur Hynw ((é}) 3’ (a) 517) v )] ,

j>00rk>0.

Uen = _R

Now the investigation of singularities of functions UU*) can be performed exactly
in the same manner as it was done for functions U*}(s,7) in the end of the
previous Section. The result of this investigation can be formulated as follows.

Theorem 3.3 The set of singularities of function (44) is a union of the set of
singularities of the function F(s,p,7) and the characteristic conoid of the latter
set with respect to the operator R(z).

The investigation of the asymptotical expansions of solutions in the region I
(see Figure 7) admits no further detalization since in this zone the coefficients in
the resurgent representationr(33) are smooth functions. We shall show that the
resurgent representation for solutions to equation (23):

u(r, p) = /e"U(s,T,p)ds (45)
r

can be reduced to the one-dimensional representation (24) whenr =¢* > 6§ > 0.
Actually, let us consider representation (45) for finite values of p (that is, |p| < C
for some positive constant C). Expanding the function U(s, 7, p) in powers of p
(this can be done for large values of 7 due to the homogeneity of the function
U(s, ,p)), we come to the relation

—~p [ _,8U
u(r,p) = Z = [ e'—(s,7,0)ds. : (46)
j=0 J! r apJ

The functions 3U/8p’ under the integral sign on the right of the latter formula
are homogeneous of order ~1 — j (not of the order —1 as it is required in the
definition (24) of the one-dimensional resurgent representation). To improve this,
we shall integrate by parts under the integral sign in (46) j times. As a result,
we obtain a representation

u(r, p) = F/e—g?’_' ((%)_1 (%)jU(s,T,O)ds.
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Substituting 7 = Int, p = Inr in this representation, we have the following
one-dimensional resurgent representation for the function u

u(t) = /e--i (lr;v!")’ ((%)—laﬂp)ju(s,lnw) ds
A

(the variable t on the left in the latter formula is omitted since we consider here
the function u as a function of ¢ with values in a function space of functions
depending on r). We remark that the obtained relation is considered in the
" domain where r > § > 0, and, hence, the function Inr is a regular one.

3.5 The case of resurgent functions with simple singu-
larities

In this subsection, we briefly describe the explicit forms of asymptotic expansions
of resurgent solutions provided that the right-hand part of equation (23) is a
resurgent function with simple singularities. We recall that the function u(t,r)
is called to be a resurgent function with simple singularities if and only if the
corresponding (due to representation (45)) function U(s, 7, p) has the form®

Gl(sarvp)
—— 4+ G{s, 1, p}In (s — S(T, 47
TR + Gafs, 7, p) In( (m,0)) (47)

with holomorphic functions G, (s, 7, p) and G,(s, 7, p) near each singular point of
U(s,7,p). Here S(r,p) is an (in general, ramifying) analytic function such that
the singularity set of the function U(s, 7, p) is given by

s—8(r,p)=0.

Us,7,p) =

We recall that the ramification points of the function S(r, p) are called focal points
of the corresponding resurgent function. Certainly, representation (47) do not
work in a neighbourhood of focal points and must be replaced there by some other
representation. This representation, using singular charts of the corresponding
Lagrangian manifold, was presented in the paper {23} by the authors and we shall
not discuss it here.

Remark 3.2 We claim that equation (28) is solvable in classes of resurgent
functions with simple singularities. In other words, if the right-hand part of this
equation is a resurgent function with simple singularities, then the equation has
a solution in the same class.

9We remind that all the functions involved in the formula below depend on local coordinates
(w,y) on Q x Y;. This dependence is omitted here for brevity.
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Let us turn our mind to the non singular case (47). We remark that in this
representation the function S(7, p) must be a homogeneous function of order 1
(in this case the function U(s, T, p) determined by (47) will be homogeneous in
the sense of hyperfunctions provided that the functions G,(s, 7, p) and Ga(s, T, p)
are homogeneous of the corresponding orders).

Now we are able to write down the form of asymptotic expansions of the
solution to equation (23) in different regions. First of all we shall investigate the
asymptotic solutions in the region II. As it is shown in the above cited papers,
the asymptotics corresponding to expansion (47) has the form!°

u(t,r) = Z g~ Sillntlnr) Z a;(lnt,Inr) (48)
* J :

i i=Jo

where the inner sum is taken over all points of the support of the resurgent func-
tion u, S;(r, p) are the corresponding branches of the (ramifying) function S(, p)
(which is homogeneous of order 1), and the coefficients a;(, p) are functions ho-
mogeneous of order —j in (7, p) which are determined via the Taylor coefficients
of functions G,(s, 7, p) and G3(s, T, p) at the point s = Si(7, p). We remark that,
as it follows from the considerations of this Subsection, the support of the con-
structed solution consists of a number of double lattices originated from points
of the support of the right-hand part of equation (23) (and possibly from some
of the points of singularity originated by the operator itself) with steps p =Inr
and 7 = Int. We remark also that the series over j included into the right-hand
side of relation (48) are, as a rule, divergent and the resurgent representation of
the form (45) gives, in particular, the unified resummation procedure for these
divergent series. The problem of computing supports of the constructed solution
is solved in the region II (that is, near edges) similar to the general case. Re-
lation (48) gives us a general form of the asymptotic expansion of the solution
near edges of the manifold M. The computation of the exact values of the func-
" tions a;(T,p) can be carried out by the asymptotic expansion (by smoothness)
of integrals of the type (45) with the function U(s, ) given by (44).

Let us detalize the obtained asymptotic expansion. First of all, we note that
asymptotics (48) contains two kind of terms. They are asymptotic expansions
corresponding to the points of the support coinciding with the support of the
right-hand part. The form of these terms cannot be detalized further; the actions
S; for these terms coincide with that for the right-hand part of the equation. The
second kind of terms are all other terms. To establish the form of these terms
in more detail, we remark that, due to system (41), the phase function of these

19We remark that functions S(r, p) and a;{r, p) depend also on the local coordinates w and
y on manifolds 2 and Y; (see the beginning of this Section).
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terms must satisfy the corresponding Hamilton-Jacobi equation

S
5=
where z; are points of singularity of the operator Floo(z) (see Condition 3.2 above).
Hence, we have

S(rypyw,y) = zjp + Si(ryw,y)
for some function S)(7,w,y) which is homogeneous of order 1 in 7. Then it is
evident that

S(rp,w,y) = zjp + 72(w,y)
with some smooth function Z{w,y). Thus, those terms included into the asymp-
totics of the solution whose supports do not coincide with the support of the
right-hand part of the considered equation have the form

—-00
e-2ilnr-Z(wy)lnt 3. a;i(Int,Inr,w,y)

£ "
= T_zit_z(w‘y) Z aj(]ﬂ t,]l’l r,w,y)- .

i=i

Let us proceed now with the investigation of the asymptotics in the region
I (that is, for t — 0 and » 2 é > 0). Similar to the previous case, resurgent
function of one variable with simple singularities is a function given by (24) such
that for the corresponding function U(s,r,r,w,y) the expansion

G“(S, T, T, W, y)
(S - Sf(T’Tswa y))

is valid near each its singular point

s = Si(r) = Si(r,ryw,y).

U(S,T, r,w,y) = & + GZ{(S:T1T:ws y)ln (S - Sf(T: r,w,y))

In this case, since S; are homogeneous functions of order | in one-dimensional
variable r, they have the form

5{(7,7‘:‘-"19’) =c;(r,w,y)1' . (50)

for some complex-valued function o;, the constructed asymptotic expansion in
the region I (that is, when a point approaches the vertex along the direction not
close to the edge) has the form

u(t) = z gmoilrwy) Z (lnt)j a;(r,w,y) (51)
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where ¢;(r,w,y) are some functions on the non singular part of X determined
by the Taylor expansion of the functions Gyi(s,7,r,w,y) and Ga(s,7,r,w,y)
at the point (50); we remark that the coefficients of these expansions, being
homogeneous functions of one-dimensional variable 7 are simply proportional to
the corresponding powers of this variable. The computation of the exact values
of the coefficients a; in (49) and (51) can be carried out by the asymptotic
expansion (by smoothness) of integrals of the type (24) with the corresponding
function U.

One can easily see that the forms (49) and (51) are in a good agreement
with each other on their mutual domain of definition (we emphasize that since
the constructed solution is a resurgent function in ¢ with values in the space
of resurgent functions in r, the function oi(r,w,y) must have the asymptotic
expansion oi(r,w,y) = zjInr 4+ ... with some constants z; as r — 0.

4 Two-dimensional problem

In this section, we shall show how the singularities of the above introduced
operator families can be computed for two-dimensional manifold M. Also we
illustrate the method of obtaining resurgent solution on the two-dimensional
model. Since in this case the manifold X is one-dimensional, its ‘edges’ Y; are
single points. Therefore, the operators @;(t) are in this case ordinary differential
operators of Fuchsian type

m—j !
aj(t) = p={m=i) Z bji(r,t) (T‘%)
=0

near each singular point Y; of X. Here r is a coordinate on X near the singular
point Y;.

4.1 Resurgent solutions

In this subsection, we shall briefly describe the procedure of constructing a resur-
gent solution to equation (23) for the considered particular case.
Similar to Subsection 3.2, equation (23) can be rewritten in the form

> (t%) u=f, ey (52)
i=0

We search for resurgent solutions to equation (52) provided that the right-hand
part f of this equation is a resurgent function. Let

u(t) = £(U)
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(see formula (16) above and let U(s,7) be an endlessly-continuable function of s
for any fixed value of 7. Substituting the latter relation to (52) and expanding
the coefficients @;(t) into the Taylor series in t:

o0
k-~
= E 1 a;e
k=0

(where @ are differential equations on X of the form

i
" _,.(m J)Zb.;kl ( )

1=0
near each singular point Y;), we come to the equation
m oo -1 3
ZZa ka,((a) i) Uls,7) = F(s,7), ' (53)
; Js or
j=0 k=0

where T, is a shift operator in the plane s to the value k7.
Equation (53) can be solved with the help of the recurrent procedure. Namely,
the function U(s, 7) can be represented in the form

e

k=0

where the functions U¥)(s, 7) satisfy the following recurrent system of equations

-1 3 J
9 0
((63) Br) v F
aN'tal
djo (—) —-) U® = (54)
= J ( Os or

m ~ N oY .
-2 2 Tk',a,-k((a) E) v k=12,

7=0 k'+k'"=k

NgER! Ma

Now it is clear that one must investigate solvability of the first equation in (54)
since all other equations of this system have the same operator in the left-hand
side. To do this, we apply the §/0s-transformation to this equation and obtain

(Z a,-ozi) U(s,2) = F(s,2), (55)

3=0
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where U%)(s, z) and F(s, z) are 8/ds-transforms of U (s, 7) and F(s,7) corre-
spondingly. For solving the latter equation we need the following condition

Condition 4.1 The family of operators
H(z)=) 8,02’
i=0

on the manifold X with conical points is invertible for any complex values of z
except for a discreet set {21, 22} in the complex plane C,. The inverse operator
R(z) is a ramifying analytic operator-valued function of z in C, \ {2z, 23,.}.

Thus, to construct the resurgent solution to equation (23) in the considered
particular case, one has to investigate the solvability of partial differential equa-
tions of the type (55) on one-dimensional manifolds with conical points. The
next subsection is aimed at such an investigation.

4.2 Solvability of analytic family of one-dimensional
problems

In the beginning of this subsection, we omit the parameter z since now the
dependence of z is at the moment unessential for us. So, let us consider the
ordinary differential equation

Hu=f (56)

on a one-dimensional manifold X with singular points Y}, ..., Yn. Certainly, we
suppose, as above, that the operator H involved into the latter equation has the

form _
~ n o\’
H= Zaj(r) (r-é-;) (57)
1=0
near each singular point Y; of X, where r is a local coordinate on X. We suppose
that the coefficients a;(r) are real-analytic functions of r near the origin. As we
already know (see Section 1), the solvability of equation (56) strongly depends on
the functional spaces in which this equation is considered. To introduce suitable
functional spaces, we note that the manifold X can be decomposed into the union
of segments {;, which are glued together at points Y¥;, 7 = 1,...,N. It is evident
that the equation can be considered on each segment [; separately.
Now, let us represent some segment [; as the segment [0, 1] by the choice of

the local coordinate r. We use, as above, the Sobolev space H; , (0,1) with
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the norm

Il e, = j (l - (aﬁ))() | =
+ /1(1 — )T (1 - ((1 —r)g)g)iu(r) 2 I(fr'
1/2

Let us now consider the operator (57) as operator in spaces

B H, (0,1) = HZT (0,1). (58)

op.oy ary,0

To begin with, we shall investigate the kernel of this operator. As it is known
from the theory of Fuchsian equations (see, for example, [20]; to be short, we
consider the generic position), the equation

Hu=0 (59)
has in the vicinity of the point 0 the fundamental system of solutions of the form
uf;o)(r) = r’\"vgo)(r), j=1,...,m (60)

where v;(r) are analytic functions near the origin. Similar, near the point 1 we
have another fundamental system of solutions

ui,l)(r) =(1—-r)" vil)(r), k=1,...,m. _ (61)

The numbers Ay, ..., A, can be determined as the roots of the algebraic equation

and the similar equation can be written down for the numbers py,..., gm.

Due to the existence theorems for ordinary differential equations, both the
systems (60) and (61) can be continued up to systems of solutions determined
on the whole segment [0,1]. Then it is evident that there exists a {constant)
invertible matrix {[Ax|| such that

A ]

ul?(r) = Z Ajul(r). (62)

. k=0
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The matrix ||A,i|| will be referred below as a transition matriz. Let us try to
construct the element of the kernel of operator (58). First of all, we note that
any solution to homogeneous equation (59) has the form

u(r) = 3_ Ciu(r) (63)

with arbitrary constants Cj, ;7 = 1,...,m. However, not all the constants C;
ma.y not vanish if we want to construct a solution which belongs to the space

H}, ., (0,1). To describe the requirements which must be fulfilled for solution
(63) to belong the space HJ , (0,1) at the left endpoint of the segment {0, 1],
we suppose that!!

Red; < Redy < ... < Redny < g < Redpiy < Redn (64)

for some value of ! (the cases { =0 and | = m + | are not excluded and must be
understood in the natural way), so that ! is a number of A;’s which have their
real parts more than . Then one can see that for the solution to belong to the
required functional space, it_is necessary that

Ci=0,j=1,. ,m—1
in (63), that is, that

ur)= > Cuf(r). (65)

J=m=i41

Now we consider the behavior of solution (65) near the right endpoint 1 of the
segment [0,1]. To do this, we use a transition matrix || A;|:

W= Y Gy Al =3 ( > CjA,-k) ().
jEm—l+1 k=0 k=0 \j=m—l41
Similar to (64), let us suppose that

Rep, < Reps < ... < Rep, < a) < Repnyy < Repy,.
Thus, for the element u(r) of the kernel of operator (58) we obtain

Y AxCi=0,k=1,...,n . (66)

j=m—i41

We had come to the following result

''For simplicity, we suppose that the numbers Re); are different for different values of j.
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Proposition 4.1 Let us denote by
Eoruo; . Cl - C" (67)
the finite-dimensional operator with matriz

j=m—=I41,....m
lAsllezy " -
Then, if the numbers ap, a; do not coincide with numbers Red; and Rey; cor-
respondingly (this case we shall name a non resonance one), then the dimension
of kernels of operators (57) and (67) coincide with each other.

From the dual considerations one can easily obtain that the cokernel of the
operator (57) coincides with the cokernel of the finite-dimensional operator (67).

Let us return now to the investigation of the case of equation (55) when
the operator analytically depends on a complex parameter z. In this case the
operator @,,,, and, hence, the entries A;; of the matrix ||Aj|| will analytically
depend on the parameter z:-

A_,'k = A_,'L-(Z).

Thus, we see that the following result is valid.
Proposition 4.2 Condition 4.1 is valid if and only if:
1) Matriz A} is quadratic, that is |l = n.

i1) The determinant _
det ||Azu(2)]| 127 fH (68)

k=1,...,n

is not identically zero in z.

Thus, the set {z), 23, ...} mentioned in Condition 4.1 is simply the set of zeros
of analytic function (68). Certainly, all the above conditions must be valid for
any segment [;, 7 = 1,...,J. In particular, the set of singularities of the inverse
operator R(z) (see Condition 4.1) is the union of zero sets of determinants (68)
taken over all segments involved in the manifold X. Therefore, in the two-
dimensional case we have reduced the problem of finding singular points of the
analytic family of operators to an algebraic equation.
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