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Abstract

In the paper l a new met had constructing af asym ptotic solutions to
differential equations on manifolds with singularities is presented. This
method allows not only to widen essentially the space of asymptotics hut
also to ohtain explicit formulas for asymptotic expansions, in particular,
in the case when in a neighbourhood of a singula.r point there exist strata.
of different dimensions.

Introduction

In this paper, we present a new method of constructing asymptotic expansions for
solutions to differential equations on manifolds with singularities near singular
points of these manifolds.

The asymptotics of solu.tions to equations on non-smooth manifolds near their
singular points is a natural object of investigation in this area and at present a
certain proced ure of obtaining such expansions is developed. Ta be brief, this
procedure is based on the residue theary in the dual space with respect to the
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Mellin transform. Then it is natural that the considered function should be at
most meromorphic, that is, univalued analytic in the whole plane except for a
discrete set of poles.

The corresponding dass of asymptotic expansion is now known in the liter­
ature as the class of (discretel ) conormal asymptotics (see, for example, [1] ­
[6]) and the modern asymptotic theory on manifolds with singularities deals, in
fact, namely with the dass of conormal asymptotics. Unfortunately, the dass
of discrete conormal asymptotics possesses one essential disadvantage. It is not
sufficiently wide. A lot of important asymptotic expansions do not have a form
of conormal asymptotics (see below). Moreover, this dass is not dosed in the
sense that a conormal asymptotics in the right-hand part of an equation cao
lead to an asymptotics of solution of more general nature (see the example in
Subsectioo 1.1). The reason of this phenomenon is, for example, in the fact that
a function of such kind (the solution) can have ramification in the dual (with
respect to the Mellin transform) space. In general, such kind of problems ought
to be solved (and, in some cases, are solved) with the help of more general dass
of asymptotics, namely, the asymptotics having the form of application of an
analytic funetional (a hyperIunction with a compact support) to the functioD r$
(see [4], [5]). And, though such a problem cao be solved in certain situations
with the help of analytic functionals, the framework of this theory are too narrow
for the investigation of the problem in general case, for example, in the situation
when the considered function has ramification in a neighbourhood of the infin·
ity. This gives rise to the more general nation of continuous asymptotics with
infinite (non-compact) carriers of asymptotics up to infinity, cf. [5] More explicit
analysis shows that in the discrete ca.se the asymptotics of the solution can be
represented (at least formally) as a sum of series

00 00

rSI L a~l) ln- k r + rS2 L a~2) ln-k
r + ... ,

k=O k=O

(1)

where Sj and at are smooth complex-valued functions and, therefore, cannot be
represented via an analytic functional.

It is important to note that the above expression (1) is a sum.of divergent
power series in In rand the serious problem is even to give a sense to the above
expression. Actually, if, for example ReSl < ReS2' then each term in the second
surn is less in order then each term of the first oue. How can one encounter all
terms of asymptotics (1)? The answ~r to this question one can easily obtain in
tbe case when the first series converges. Then, extracting this series from the

1We do not eonsider here the esse of the so-ealled eontinuous asymptoties, that is, the
situation when the singularities of the corresponding fundion in the dual space are not discrete.
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function u we obtain a function for which the second term is a main one, and we
therefore can 'see' it. Unfortunately, all the above series are as a rule divergent
and, moreover, at same points the effect of 'changing aleadership' can take place.
It means that if the argument of the phase functions Si and S2 changes, then
the recessive (in our case, second) term of the asymptotic expansion can become
the dominant one and the first term can become, on the opposite, a recessive
one. Thus, for investigating of asymptotics of the form (1) one must first to work
out an appropriate procedure 0/ summation of a divergent series and, second, to
know how to deal with the effects of the type of 'changing aleadership'.

Such kind of a theory, going back to the classical works by L. Euler, E. Borei,
Stieltjes, and G. H. Hardy, got in present its new birth2 in the remarkable works
of J. Ecalle [7], J.-P. Ramis [8] [9], J. Martinet and J .·P. Ramis {IO] B. Mal·
grange [11] - [13], and oth~rs. The resurgent functions theory had its further
development and application in a set of mathematical and physical papers (see,
for example [14] - [21] and others. \Ve remark here that in the above cited
papers only the one-dimensional theory of resurgent functions was worked out.
Multidimensional theory of resurgent functions was recently introduced in [22],
[23] [24]. This theory can be" in particular, applied also to the construction of a
new asymptotic (resurgent) theory on manifolds with singularities.

One of the basic points of our theory is that it is based not on the residue
theory but on the new integral representation [22], [23], {25], [24], together with
the corresponding mathematical apparatus - resurgent analysis - allows one to
obtain asymptotics of solutions to equations on manifolds with singularities in
the si t uation of the endlessly-continuable microfunctions (= resurgent functions),
that is, practically for any right-hand part of the equation (in the framework of
discrete asymptotics).

The first application of this theory to problems on manifolds with singular­
ities was done by the authors in papers [26], [27]. There resurgent asymptotics
were constructed for the simplest case when the singularity set of the considered
manifold is a smooth manifold. The cases of conical points and smooth edges
are included in such a situation. In the present paper we consider the case when
tbe set of singularities can be in turn a manifold with singularities.

Finally, it is worth mentioning that the ideas and methods of resurgent anal­
ysis worked out in this and preceding papers can be applied to a very wide dass
of problems in the considered field, such as degenerate equations, equations with
singular coefficients, Sobolev problems and so on.

Shortly abou t the contents of the paper.
The main aim of the first section is to show how resurgent functions appear in

2 And, as usual in such a case, the new name - lthe theory of resurgent func"tions'.
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the theory of differential equations on manifolds with singularities. Besides, here
we wanted also to show the effects concerning with solvability and uniqueness
theorems on manifolds with more than one singular point. To do this we consider
the simplest example of such a manifold - the example of a spindel. It occurs,
and it will be used in the formulation of the general theory that the condition
of unique solvability for such manifolds has essentially non-Iocal character in the
sence that for unique solvability the weights of corresponding weighted spaces at
ea.ch singular point must be related to oue another.

In the second section, we reeall briefly the theory of resurgent functions of
several variables introduced in papers [22], [23], [25], [24] adapted to the functions
of the power growth (in one dimensional case such adaptation is presented in [26],
[27]). .

In the third section, the general theory'of construeting resurgent solutions to
differential equations is developed.

Finally, in fourth seetion, we consider the rather representative example of
three-faced angle. On this example we illustrate the general method of construet­
ing asymptotie expansions as weIl as show that for manifolds of such kind the
problem ean be reduced to ~:n algebraic one.

Short exposition of the results of this paper see [28].

1 Example

1.1 Uniqueness and solvability

Here, we consider an equation on the manifold X which is a result of rotation of
the circle are around its ehord (that is, on the surfaee of a spindIe). We denote
by r the eoordinate along the arc, r E [0, 1] and by r.p the angle coordinate
corresponding to the rotation. Consider the equation on X of the form

..... der { [ 8 ] 2 1 8
1

} .Hu = r (r - 1) 8r +c 8r.p1 u(r,r.p) = f(r,cp) (2)

where c > 0 is same real parameter. We shall investigate solutions of this problem
in the weighted Sobolev spaces H~o,crl (M) with the norm

2

d dr
cp r( 1 - r) ,

and we shall try to choose the weights 00 and 0'1 in such a way that the operator
.....
H : H~o,crJ (AI) ~ H~;.~l (M) (3)
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is an isomorphisms of these spaces.
Using expansions

00

u(r, c.p) = L eik<Puk(r),
k=-oo

00

f(r,cp) = L eik<pfk(r).
k=-oo

of the solution and the right-hand part into the Fourier series, we reduce our
equation to the equations for the Fourier coefficients Uk( r) of the solu tion u(r, c.p):

(4)

for all integer values. of k E Z. Evidently, the solvability of equation (2) is
equivalent to the solvability of equations (4) in the corresponding functional
spaces (the exact choice of trhese spaces will be done below).

The fundamental system of solutions to the corresponding homogeneous equa­
tion is

U~I) = C;r) kc , U~1) = C;r) -kc

Obviously, if we are solving the initial equation (2) in spaces (3), then we must
solve the equation (4) for

U k E H~o ,01 (0, 1), f k E H~~.~ 1 (0, 1) ,

where the spaces H~O,Ol (0, 1) are defined in the obvious way:

(5)

As it was already mentioned, we search for such values of 0'0, 0'1 that the
operator (3) is an isomorphism. In particular, this means that all equations (4)
must have the unique solutions in spaces (5).

It is not hard to see that the solutions ui1
), uil) belong to the space H~O.Ol (0, 1)

iff
0'0 < kc and 0'1 < -kc.
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K=O 111 K=O

V kc VI

K=J -kc K=O
kc

K=O

-kc

11 K=2 VIII K=J IX K=O
I

V

I

IV

Figure 1: KerHk (k 1: 0) as a function of 0'0 l 0'1. Thick line is a boundary of t he
monomorphism region

Thus, the dimension of the kernel of the operator corresponding to equation (4)

Hk : H~o,al (0, 1) --t H~;'~J (0, 1)

for different values of O'O, 01 are such as it is shown on Figure 1 (on this Figure
!( = dirn Ker Hk).

The dimension of the cokernel of operator (3) cau be easily obtained by means
of duality. The result for operator (3) is shown on Figure 2. The final result of
investigation of the initial equation is shown on Figure 3 where the regions in
plane (aa, ad where the considered operator is an isomorphism are shown.

1.2 Asymptotics of solution

Now we turn our attention to the investigation of the asymptotics of solutions to
equation (2) provided that the pair (0'0, ad is chosen in such a way that operator
(3) is an isomorphism. We recall that the usual asymptotic expansions which can
be obtained for solutions to equations of the type (2) are conormal asymptotics

mj

u(r,l.p) = LrSj Lajklnkr
j k:=o

(6)
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11 1 111
L=O L=J L=2

IV V "kc VI

-kc kc
L=O L=O L=l

-kc
VII L=O VIII L=O IX L=O
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I

Figure 2: eoker jjk (k 1: 0) .as a function of 0'0, a l' Thick line is a boundary of
the epimorphism region

-3 -2e

-2e

2e 3e

.....
Figure 3: Isomorphism regions of H
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(7)

where r is a local coordinate corresponding to the distance from the singular
point, the outer sum is taken over the finite set of indices j; mj are nonnegative
integers and the pa.rameters Sj, aj/o and mj can in general depend on the angle
variable <p (see (4], (5]). However, such dass of asymptoties is tao narrow for
obtaining asymptotics of solutions to equation (2) even if right-hand parts of
this equation belangs to this dass. The suitable dass of asymptotic expansion
is given by the notion of resurgent funetion and we shall try. to explain the
appearence of this dass and its main features on this example.

To do this, we consider equation (2) with tbe right·hand part

(
1 r)S(lp)

f(r,i.p) = -r- a(<p)

(where S( 'P) and a( t.p) are 27l"-periodic eomplex-valued analytie functions of the
variable t.p) which has obviously the asymptotic expansion of the type (6) at the
both conical points of the manifold M.

To construet a solution to equation (2) with the right-hand part (7) in more
or less explicit form, we represent the function (7) with the help of the Cauchy
formula as

1 J(l-r)-6 a(i.p)
f(r, i.p) = 27ri -r- .s _ S(<p) ds

...,

(8)

where , is a contour surrounding the point .s = S(<p) dockwise. Now we seareh
for the solution to equation (2) in the form

1J(I )-.u(r,<p)=21l"i ~r U(s,<p)ds.

...,'

(9)

The cyde " included into the latter formula ean differ {rom that induded in the
former one. Here U(s, ep) is an unknown ( in general, ramifying) funetion which
is analytic with respect to s. We shall perform the exact choice of the contour
later.

Substituting (8) and (9) into (2), we obtain the following equation for the
function U(s, 'P):

( 28
2 2) ) a( 'P)

c 8!.p2 + s U(s,ep = s _ S(!.p)'

This equation ean be solved with the help of the Green function. As a result, we
obtain a partieular solution of the form

lp

C J S a(0)
U(s, 'P) = 2 . ~. cos - (ep - 0 - 7r) S(0) dB.

SSln - c s-c
lp-21r

8

(10)



So, one can see that the function U(8, <.p) is a regular analytic function outside
the union of the set

{s = kc, k E Z}

and the set of values of the function 8(8) for real values of 8. The latter set forms
a closed curve (possibly, with singularities) in a complex plane C,. However, this
function can be continued up to an analytic function in the whole plane C, except
for a discreet set depending on <.p. To do this, we shall treat the integral on the
right in (10) as the integral over the segment [Cf' - 2rr, Cf') in the camp/ex plane
Co. The integrand in (10) has singularities at points of the pre image 8-1(8) of 8
under the mapping 0 ~ S(0). Thus, the integral on the right in (10) is singular
in the following three cases:

1) if one of points of 8-1(8) coincides wi th one of the endpoints 0 = <.p - 2rr
or 8 = <.p of the integration contour,

2) if two or more points of S-I(8) coincide with one another,
3) if at least one of points of S-1 (s) tends to infinity.
First case take place when s = S(c.p) and the second is realized if s = S(Cf'*)

for some stationary point 'P* of the function S.
These considerations lead us to the following important observation. If we do

not suppose some special features (of the type of an analytic continuability) of
functions a(O) and 5(8) involved into formula (10), then we can claim only that
the function U(8, <.p) is analytic outside the set of values of the function S(0),
that is, outside some closed curve in the plane C,. Thus, the solution is given
by the formula (9) where the contour " surrounds the menti~ned curve. The
right-hand part of (9) is none more than the application of an analytic functional
(determined by U( s, 'P)) to the function (l~r)-'.

However, if we want to obtain the more precise information about the asymp­
totics of the solution, we must investigate the analytic continuation of the func­
tion U(s, Cf') inside the set bounded by the curve {8 = 8(8)}. Such a continuation
can be obtained with the help of (10) if we suppose that the functions a(9) and
8(9) can be continued up to entire functions to tbe whole plane Co (or, at least,
as analytic functions with singularities on a discrete set on their Riemannian
surfaces)3. Then, using the methods of the complex analysis, one can investigate
the continuation of U(8, 0) to the whole plane C, and describe the singularities
of this continuation.

\Ve remark also that, in the above considerations, we have usecl essentially the
fact that the fundamental solution of the considered equation can be analytically

3For general equations, we must require also that the coefficients of the equation can be
extended up to entire functions, for the equation in quest ion this requirement is fulfilled
automatically.
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(11 )

Figure 4: Stokes phenomenon

continued to complex values of its arguments 'P, 8.
Let us now investigate the character of singularity of the function U(s, ",)

given by (10) at the point s = S(I.p) (this is the only 'moving' point of singularity
of U(s, 'P), that is, such a point w hose position on the plane C. depends on I.p).
To do this, we note that when the point s moves along a smallloop surrounding
S('P), the corresponding points of the pre image moves along a loop surrounding
endpoints 8 = I.p - 27r or 8 = ep of the integration contour, and thus extracts from
this contour two additional contours surrounding these points of the pre image
(see Figure 4). Therefore, we see that, in general, the function U(8, c.p) has at the
point 8 = S(ep) the singularity of the logarythmic type (in particular, this point
is a point of ramification).

More detailed analysis shows that the asymptotic expansion of the function
U(s, 'P) near the point s = S(cp) has the followi ng form

~ (8 - S('P))i
U( s, 'P) = L..J 'f bj ( 'P) In (s - S(er'))

j::l J.

where bj(c.p) are some analytic functions in 'P (this expansion is written down for
values of cp such that S'('P) i= 0).

NOW, when t he function U(s, <p) is faund and invest igated, let us use the
obtained result for constructing the solution (9) and investigating its asymptotics.

10
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Figure 5: Decomposition of the contour

Since the function U has the singularity of the logarithmic type, one cannot
choase the contour "'( in this formula to be the same as in (8). However, one can
choose the contour I to surround all the image of the segment [<p - 21r, e.p] thus
obtaining the desired solution.

Now let us consider the asymptotics of the obtained solution near, say, the
point r = O. To eonstruet this asyrnptotics, we replace the contour " included
into (9) by the surn of contours r j of special type whieh is hornological-to the
initial contour ,:

1 J(l-r)-'u(r, e.p) = ~ uj(r, c.p) = ~ 21ri -r- U(s, e.p) ds.
J J rj .

(12)

Each of the r/s will be a contour surrounding in positive direetion exaetly one
point of singularity of the functian U(s, c.p) and going to infinity along the positive
direction of the real axis in the s-plane (see Figure 5). Due to the fact that we
consider the solution in a neighbourhood of the point r = 0, the function will
decrease exponentially along these contours and all the integrals over r j 's will
converge. Frorn the theory of asymptotic expansions of integrals of the Laplace­
Borel type (see, for example [26], [27]) it follows that each of the integrals

1J(1 )-"uj(r,ep)=21ri ~r U(s,ep)ds
r-J

11



inc1uded ioto (12) has the asymptotic expansion of the form

00

uj(r, cp) ~ rSj(l.p) L bjk(cp) In -kr

k=o

(13)

as r -+ 0 if the function U(3, cp) has the asymptotic expansion of the type (11)
near the origin point 3 = Sj (c.p) of the contour r j. Can one say, that the asymp­
totics of the whole function u(r, cp) is sirnply the surn of asyrnptotics of the type
(I3)? Unfortunately, this is not so, since the asyrnptotic representatioll, say, of
the type

00 00

u( r, cp) ::::: rSd/p) L b1k( cp) In -kr + r S:drp )L ~k(cp) In -kr, (14)
k=O k=o

as have been al ready mentioned in the Introduction, is absolutely unc1ear if (for
some fixed value of cp) Re SI ('P) > Re S2( 'P) and the series in t he first term on t he
right in the latter formula diverges. In tbe Introduction we bad p~esented also
sorne reasons concerning the verification of expansion (14) as an asymptotics.
Let us consider here these (Uguments in more detail. The matter is that before
writing down terms of asymptotic expansion with power type r8](loP) one must to
take into account all the terms with power type rSdl,P). In fact, be/ore writing
down the second term on the right in (14), one must resummate the first term,
that is, to replace it with some function for which this term will be an asymptotic
expansion. Certainly, the coefficients of the second term (we call it a recessive
term of expansion (14)) will depend on the resummation method used in the first
term (which is called a dominant term of the expansion). The adequate resum­
rnation method is given, for example, by Borel resummation (see, for example,
[7], [8]). In our case, this resummation procedure is determined by integral (12).
Now, if the value of 'P changes, then, in general, the effect of 'change of the
leadership' can oeeur. This means that in different regions in 'P we obtain differ­
ent asymptotics (the corresponding asymptotics have simply different dominant
terms). The asymptotics in this case changes by jump. Such phenomenon in the
theory of divergent parametric power· series is knowD as the Stokes phenomenon.
Tbe nature of this phenomenon is a.s follows. We have already said that the
values of coefficients ~k(cp) of the recessive term depend on the choice of the
resummation method used for the dominant one. However, even if we use one
and the same resummation method based on integral representations of the type
(12), in the case when the considered asymptotic expansion involves an addi­
tional parameter (such as t he parameter 'P in expansion (14)), the coefficients
in the recessive term can have jumps for some values of the parameter. These
jumps take place exactly for those values of the parameter for which some point
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s· of singulari ty of t he integrand in (12) moves aeross one of the eontau rs r j of
integration induded into this formula. As it is shown on Figure 4, this point
will extract from the contour r j some additional contour rj originated from the
point S·. Certainly, such a situation can lead not only to jumps in coefficients of
recessive terms, hut also to appearance of new ones or to cancelling out the old
ones.

This is a program of investigation of asymptotic expansions in the dass of
resurgent functions.

2 Resurgent functions of power typ~ (multidi­
mensional thßory)

In the papers [26], [27], we introduced the notion of the res urgent function of
power type of one variable r. Here we need the generalization of this notion
to the function of power type in several variables. Essentially, this notion is a
'composition' of the notion of resurgent functions of several variables introduced
in [22), [23] with the logarithxnic change of variables; that is why we present here
only the main definitions and statements of the main theorems. The reader can
find the details in the above .cited papers.

We remark that, as it can be seen from the example above, we need to
construct the theory of resurgent functions depending on a parameter. However,
the presence of the parameter is not essential, at least at the first' stage of the
theory, and in the beginning of this Section we postpone the investigation of
dependence on a parameter in order to simplify the notation.

By Rt, we denote the direet product of k copies of the half-plane R+ with
coordinates (rl"'" rk). The tuple (rb"" rk) we denote also by r. We introduce
the variables p = (Pt, ... , Pk) whieh are related to the variables (rl,' .. , r k) wi th
the help of logarithmic map

We shall widen the range of the variables P up to the space C k •

Let now C" be a complex plane of one complex variable sand let s = S(p) be
a homogeneous analytic function in p of order 1 which is, in general, ramifying.
We denote by Msont the space of endlessly-continuable microfunctions F(s, p) at
the points = S(p) whieh are homogeneous of order -1 in (s, p). We recall t hat
a mierofunction F( s) at the point s = S is an element of the quotient space

Ms = A s lOs

13



where A s is aspace of germs of (in general, ramifying) analytic functions in
the deleted neighbourhood of the point s = S(p) and Os is aspace of germs of
functions holomorphic in a (fulI) neighbourhood of this point.

Definition 2.1 The microfunction F(s, p) is called to be end/ess/y continuab/e
(in the variable s) if for any positive constant L there exists a discrete set EL C C.
such that some representative F-(s, p) (which does not depend on L) of the dass
F(s, p) can be continued along any path in C. originated from the neighbourhood
of S(p) with the length less than L.

Let E be an analytic set in C" X C; such that the intersection Ep between
E and {p = const} contains only a finite number of points in each feft half-plane
{s : Re s < A} for any value of A. Th'en aresurgent function with the support E
is an element of the direct product

where Sj = Sj(p) are differeiit values of the ramifying function S which describes
the set E:

E = {(s, p): s = S (p)} .

Tbe space oI resurgent functions (with different supports) we denote by i?. (Rt).
Now let P (R~) be aspace of germs at the origin of functions on R~ of

power type. We recall ([26], [27]) that the function f(r) has the power type at
the origin if it satisfies the inequality

I/(r)l ~ era (15)

for a positive constaut C and areal multiindex a = (ab' .. , ak) in a neighbour­
bood of the origin (here ra = rr l r~2 ... r~k). We also denote by Po: (Rt) the
subspace of P (Rt) consisting of functions which satisfy inequality (15) with the
given value of a. Finally, we pose

P- oo (R~) = n Pa (R~) .
aeRk

The elements of P-00 (Rt) will be referred below as rapidly decreasing functions
(or power type).

On each space Msont we define the mapping

14
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resurgent funcrion Cantaur r

--------Singular points

Figure 6: Shape of the contour

(16)

given by the formula
d~r 1 Jf(F) = 21ri e-·F(s, p) ds.

h

The contour representing the homology dass h involved in the latter integral is
shown on Figure 6. Certainly, the representation (16) is valid locaHy, that is, in
some conical (= R+-invariant) neighbourhood of the fixed point Po of the spaceC:. The globalization of this representation as weH as the globali~ation of the
notion of resurgent function (see below) can be done with the help of the so­
caHed transition homomorphism which we discuss in the end of this subsection.

We do not present here the investigation of convergence of the integral (16).
We remark only that this integral can be defined a.s the element of the quotient
space

P (R~) / P-00 (R~)

without any growth conditions on the function F(s, p) in the integrand on the
right in (16).Thus, this integral is defined modulo rapidly decreasing functions of
r. By linearity, one can extend the operator l defined by (16) up to the operator

-15



Definition 2.2 The image l (R (Rt)) will be called aspace of resurgent fune­

tions of power type on Rt.
We denote this space by 'R (Rt).

Remark 2.1 We note that each resurgent function can be represented as a sum
of integrals of the type (16) with one and the same hyperfunction in the integrand.
This hyperfunction4 will also be denoted by F(s, p).

Remark 2.2 In the case of one variable r (that is, for k = 1) t he above definit ion
of aspace of resurgent functions coincides with that given in [26], [27]. Actually,
in this case one has

l( F) = 2~i Je-' F(s, p) ds (17)
h

where the function F(s, p) is a homogeneous function of the two complex param­
eters (s, p). Therefore one has

.F(s, p) = P-I F G, 1) .
Substituting the latter formula into (17) and performing the variable change
sip = -8 one reduces the definition (17) of the mapping f to tbe form

f(F) = 2~i JeP
; F(s, 1) dS

h

.which, after the variable change p = In r coincides with the definition

l(F) = ~Jr$ F(s) ds
21T"1

h

given in tbe above cited paper.

The following two theorems describe the main features of the introduced
nations.

Theorem 2.1 The space 01 resurgent functions 01 power type on Rt is an alge­
bra with respect to the usual multiplieation. The operator l determines an algebra
homomorphism

where R(Rt) is eonsidered as an algebra with respeet to convolution 01 micro­
funetions in s.

4The definition of hyperfunctions the reader cao find, for example, in [20L [29]
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and

Theorem 2.2 The formulas

a (( ß )-1 a )r j ßrj l (F (3, p)) = e a3 aPj F (S, p) ,j = 1, ... , k

rOl(F(s,p)) = l (fopF(s,p))

are valid. Here Top is a shift to Clp = ClIPI + ... + QkPk in the s-plane:

Top (F(s,p)) = F(s - o:p,p).

Let us mention here one more nation in the resurgent analysis. This is a
nation of aresurgent function with simple singularities.

We recall ([23]) that the resurgent function f( r) is called aresurgent function
with simple singularilies iff the corresponding function F(s, p) ha.s the asymptotic
expansion of the form

ao(p}- ~ (3 - S(p))k
F(s,p)~ s-S(p) +ln(.s-S(p))L...J k! ak+l(p)

k=o
(18)

near each singular point s = S(p) (we restrict ourselves to the case when the
'polar part' of F( s, p) is of order 1 hut one can also consider poles of an arbitrary
order). Here aj(p) are homogeneous functions in p of order -J. In this case
function (18) is a homogeneous microfunction of order -1.

Ir f is aresurgent function with simple singularities and its support consists
(for given value of p) of a single point, then it has the asymptotical expansion of
the forms

00

f(r) = eS(lnr) L ak(ln r)
k=O

where In r = (ln rl, ... , In rk). We remark that the series on the right in the latter
formula is, in general, divergent (unless the series on the right in (18) converges
in the whole plane C,,). So, as it is shown in the above example, one,needs to use
aresummation procedure for series (18). Such resummation procedure is given
by the operator l.

Let us now turn our attention to the investigation of the case when the consid­
ered resurgent functions depend on same additional parameters x = (Xl, ... , xn ).

5Certainly, this kind of asymptotic expansion is valid outside the set of ramification of
the function S(p). The investigation of the asymptotic behaviof of aresurgent function near
ramification points of S (the so-called IDeal points) is given in the paper [23].
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Then the set of singulari ties of the function F( s, p, x) computed for each giyen
value x of the parameter, will depend on this value. Thus, one can imagine that
the points of singularity of the function F are moving over the plane es while
the values of x (as weIl as the values of p) are changed. As above, we denote by
Ep,~ the intersection between the set E of singularities of the function Fand the
set {p = const, x = const}. Then the following objects can be considered.

1) The set F of ramification of the analytic function S(p, x) describing the
singularity set of the function F. We shall call this set the set olloeal points
corresponding to the considered resurgent function.

2) The Stokes surface corresponding to the considered resurgent function.
This surface is a set in the space c;,tk consisting of points such that at least two
points of Ep,~ have coinciding imaginary parts.

One can see that if the point (p, x) intersects the Stokes surrace, then the sup·
port of the resurgent function can have a jump (the reason for such changing tbe
reader can see from Figure 4). This observation gives rise to the homomorphism

S . EI1 M cont -. ffi M cont
(p,x) • SjEl: Si SiE E Si

~,.

which is called a transition homomorphism corresponding to the given point
(p, x) of the Stokes surface. This homomorphism allows one to compare the
formal monodromy of aresurgent function (that is, the monodromy of its pre
image F(s, p, x) and its real monodromy, that is, the monodromy of the function

f(p,x) = l(F(s,p,x))

while moving around the set of focal points.
We remark that the investigation of the behavior of aresurgent function

near its focal points is a distinct task which can be done with the help of the
Maslov's canonical operator theory [30], (31). We shall not stand on this point;
the interested reader can find these considerations in [23].

3 Construction of resurgent solutions (general
theory)

3.1 Statement of the problem

Now, we proceed with the construction of the general theory of constructing
resurgent solutions to partial differential equations on a manifold M with sin­
gularities near its vertex V. We suppose that the manifold M has near V the
following structure(see Figures 7 and 8)
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Region 11

Figure 7: Manifold M, dimM = 2

n
(circle)

Figure 8: Manifold M, dimM = 3
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{[O, 1] x X} / {{O} x X}. (19)

For simplicity, we shall consider below the case when the manifold X is a manifold
with smooth edges; tbe general case can be investigated in the similar manner.
Thus, we suppose that the manifold X includes edges YI , ... YN which are smooth
manifolds, and the structure of X near each edge }j is described as folIows:

{{[O, 1] x O} / {{O} x O}} x }j (20)

with same smooth eompact manifold O.
Let us introduee now special eoordinate systems on M which will be used

below. We denote by t a point of the segment [0,1] involved in (19). Later on,
the eoordinate transversal to any edge }j of X will be denoted by r. The loeal
eoordinate systems on the manifolds }j and 0 will be denoted by Y = (Yb' .. ,Yk)
and W = (Wl, ..• , wt) correspondingly. The loeal coordinates on X outside its
edges we denote by x = (Xl," ., X n ).

Consider a partial differential operator on the manifold A1 near the vertex V.
This operator has the form_,

(21)

where aj(t), j = 0, ... ,m are partial differential operators on tbe manifold X
which is, in term, a manifold with singularities. This means, in particular, that
these operators have the form

near points of X wbich are far away from edges and

. rn-
j

..... ( 8) IaAt) = r-(m-;) L: bjl (r, t) r 8r
{=o

(22)

where bj1 (r, t) are partial differential operators with smooth coefficients of order
m - 1- j on the manifold O.

We shall search for the resurgent solutions of the equation

Hu = f

20
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(24)

H(z) : H~ (X) ~ H~-m (X)

provided that the right-hand part f of this equation is aresurgent function. This
means that

u(t) = l [U (s, T)] = ?
1

.Je-·U(s, T) ds,
....1rZ

r

the fut:Iction U(s, T) is an endlessly-continuable function in the variable s with
values in some weighted Sobolev space H~ (X) (0 being a real-valued multiindex)
which is homogeneous of order -1 in (s, T). To give an exact description of the
mentioned functional space we introduce the following notions.

First of all, one can suppose without loss of generality that the manifolds n
involved in the representation (20) of the manifold X near each its edge }j are
connected.

Let us introduce the weight function X which has the representation

( ) -20j ( )x=x r,w =r Xi r,w

near each edge Yj of the manifold X with some smooth function xj(r,w) on
[0, 1] x n which does not vanish at r = 0:

xj(o,w) =I 0 for any w E O.

Then the Sobolev space H~ (X), 0 = (Ob' .. , O'k) is defined with the help of the
norm

Ilull'.Q = JX 1(1 - t.)t ul
2

dV
x

where ß is a Beltrami-Laplace operator on X with respect to some metrics, dV
is a volume measure with respect to the same metrics.

The space of resurgent functions with values in the Sobolev space H~ (X) we
shall denote by

R~ (M) = n ([0,1] ,H; (X)) .

Let us introduce the operator family

m
..... der"" .H(z) = LJ CLj(O)Zl

j=O

parameterized by points of the complex plane C z •

We suppose the following condition to be fulfilled.

Condition 3.1 There exists a 'weight' 0 = (o}, ... ,Ok) such that the operator
family
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is invertible in the space scale H~ (X) for any values of z in the complex plane
except for some discrete set EH. The resolving operator R(z) is an (in general
ramifying) operator function of the parameter z outside EH. We suppose also
that the resolving operator can be written down in the form

(R(z)f) (x) = J[( (x,x',z)f(x') dx', (25)

where I< (x, x', z) (the fundamental solution to equation H(z)u = 0) can be
analytically continued6 in x, x' up to (ramifying) analytic function in the com­
plexification of the manifold X.

Remark 3.1 As it can be seen from Section 1, Condi tion 3.1 is of global and
terminal character in the sense that it cannot be localized further at singular
points of the manifold M. Actually, as it is shown in the Example (see Section
1) for a family satisfying Condition 3.1 the weights 01, ... ,Ok, in general, cannot
be chosen in arbitrary way

From the other hand, irrany concrete case the singularities of the resolvent
operator can be investigated (see, in particular, Section 4), and in the situation
of the manifold with conical singularities this Condition is valid for an elliptic
operator (see, for example, [2]).

In what follows we investigate the solvability of equation (23) in spaces of
resurgent functions.

3.2 The solvability theorem

Here, we present the reduction of the considered problem to a family of equations
with the complex parameter z.

First of all, we rewrite equatian (23) in the form

or, expanding the coefficients of the latter equation inta the Taylor series,

(26)

6InvestigatioD of the analytic continuation of fundamental solution can be performed with
the help of analytic continuation of solutioDS to integral equations, see [32].
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Here the operators Gjk on the manifold X has the representation of the form '(22)
with coefficients independent of t.

Now let us substitute resurgent representation (24) to equation (26). Using
Theorem 2.2 above, we obtain the following equation for funct'ions U(s, T):

(27)

where the function F = F(s, T) is an endlessly-continuable function correspond­
ing to the function /1 (t) via the representation (24).

Similar to the papers [26], [27], one can see that the solution U to equation
(27) can be found in the form of the series

00

U(8, T) =L U(,I;;) (8, T)
k;O

(28)

where U(,I;;) ( s, T) are solutions to the following recurrent system of equations:

k 2:: 1. (29)

(30)

It is evidently sufficient to investigate the solvability of the first equation in
(29) since the operator on the left in all equations of this system is the same. To
prove the solvability of this equation, we pass to 8/88-transform [33], [34]1. We
obtain the equation

m

LGjoZjÜ(O)(s,z) = F(8,Z)
j;O

where U(0)(5, z) and F(s, z) are 8/88-transforms of the functions U(O)(s, T) and
F(S,T).

The solvability of this equation follows now directly from Condition 3.1. We
shall present a more detailed analysis of the support of the resurgent function
u. Namely, the singularity set of solutions to equation (30) can be investi·
gated with the help of formula (25) (far example, see computations in the next

7This transform is an analogue of the real Fourier-Maslov ßjßT-transform [3D) in the situ·
ation of ramifying analytic functions.

23



subsection). Then the support supp uO of the corresponding resurgent function
-1 ....

UO = (F%-) UO can be computed with the help of the Thom theorem. Now
the support of the solution to equation (23) consists of the set of lattices with
the step 7 whose origins are situated either at points of supp UO (see Condition
3.1) or at points of support of the right~hand part f of the equation.

One can investigate the resurgent solutions to equation (23) from the different
points of view.

First, if we are intended to obtain the asymptotics of the solution only for
real values of t, then the variable T, which is related to the variable t by

t = e' (31)

in (24) is real with sufficiently large in'module negative values (we recall that we
eanstruet the resurgent solutions near the vertex V of the manifold M, that is,
for t sufficiently elose to zero).

Second, one can investigate the analytic continuation of the solution to equa­
tion (23) to the eomplex domain (that is, to the complex values of t sufficiently
elose to zero in module). In this case, due to the relation (31) between t and 7,

the variable T must belong [0 some left half-plane in the cornplex plane C'T:

Re7 < A

for some positive real A.
In bath cases the value of Re 7 increases along each above mentioned lattice

involved into the support supp U of the solution u and, hence, series (28) converge
in the sense of the resurgent function theory (see (23]). Thus, for both cases the
following statement is valid.

Theorem 3.1 1/ Condition 3.1 zs valid, then equation (23) is solvable zn the
spaces R.~(M).

3.3 Investigation of singularity set of the solution

Let us investigate in more detaile the singularity set of solutions to equation (27),
which gives us an information about the asymptotic behavior of solutions to the
initial equation.

Ta simplify our considerations, we shall suppose that the two following con­
ditions are fulfilled.

i). The support supp / of the right-hand part of equation (23) consists of a single
point 80(7) = (707 for each fixed value of 7.
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ii). The resolving operator R(q) has only polar singularities at points of the set
'EH (see Condition 3.1).

We remark that the first of these two conditions is not restrictive at all since
every resurgent function can be represented as a sum of resurgent functions each
supported in a single point. The seeond condition is, of course, more restrictive,
hut, it is satisfied for elliptic differential operators.

Now let us proceed with the analysis of the resurgent solution to equation
(23). To begin with, we shall investigate the singularity set of tbe solution
U(O)( s, T) to the first of equations (29) .. First of all, we note that the solution to
the equation (30) is given by the formula

Hence, the solution to the first equation in (29) has the form

where F:.!..~' is the inverse 878s-transform

(

. ) 1/2 8 J8/86- _ Z -
Fz_-r U(s, z) - 21r 8s U(s + ZT, z) dz

h(.,-r)

and h(s, T) is some special relative homology dass (see [33], [34]):

Since

U(s, z) = F;!!:U(s, T) = JU(s - ZT, T) dT,

h(",-r)

we finally obtain the expression for the solution to the first equation in (29):

(

. ) 1/2 8 J
U(O)(s, T) = 2

1
1r os R(z)F(s + Z(T - T'), T') dT' /I dz

H(",-r)

(32)

with some relative homology dass H( s, T) E H2 (C;,-r \ 'EH, 'EF). Now ·the singu­
larity set of the funetion U(O)(s, T) ean be eomputed with the help of the Thom
theorem [35].
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t A

Singularities due to R(z)
...........

Singularities due to F(s:r)

I

Figure -9: Admissible contours

'",

Namely, the integrand in (32) have singularities exa.ctly on the union of the set
EH and the set EF of singular points of the function F( s, T) . These singularities
are described by the formulas

Z = Zj, j = 1,2, ... and s + Z (T - T') = O'OT'.

Now the standard considerations using the Thom theorem show that the singu­
larities of the function U(O)( s, T) lye at the points

s = O'oT and s = ZjT, j = 0, 1, ....

To construet the first term u(O)(t) of the expansion of the solution u(t) cor­
responding to expansion (28), we must use the resurgent representation of the
form (24) with the function U(O)(s, T) in the integrand along the contour which
is homological to that of the representation for the function f( t) in the space
C \ EJ. However, there remains a degree of freedom in the ehoice of. this contour
outside the singular set EJ U EH (see Figure 9). It is not so hard to see that
functions obtained by integration along different admissible contours differ from
one another by solutions to the corresponding homogeneous equation, which, due
to condition ii) above, has the form of the canormal asymptotics

mj

L tZj L Ckj lnk t
j k=O

26

(33)



where the inner sum is taken over such j that all values of Zj involved in the
latter equation lye in some fixed right half-plane of the complex plane C q and Ckj

are functions on the manifold X (whieh eertainly may have singularities at sin­
gular points of this manifold). The examination of solutions to the homogeneous
equations the reader ean find in [4], [5].

3.4 Asymptotics of solutions near the vertex

Dur next goal is ta investigate the obtained solutions near edges emanated from
the vertex V of the manifold M. The matter is that our above considerations
give the appropriate asymptotics of solutions when the point approaches the
vertex in the direction which does not coincide with some edge emanated from
V, that is, when t -Jo 0 and the corresponding point on X do not tend to some
singular point of this manifold (the region I on Figure 7). Actually, in this case
the coefficients of resurgent representation (24) are smooth and the asymptotic
behavior of the solution is determined only by the variable t. Quite another
situation takes place when the point approaches the vertex along the region II
(Figure 7) since in this case the corresponding point on X tends to some singular
point of this manifold and, h€mce, the coefficients of the resurgent representation
are in turn singular. Certainly, one can use for this region the results of the
paper [26] which show that (under the assumption that the right-hand part of
equation (23) is aresurgent function not only in t but also in r) the solution
to equations (27) is aresurgent function in r near each edge of the manifold X.
These considerations show that the obtained solution is aresurgent function in
t with values in the space of resurgent functions in r.

However, such a des~ription of solutions ta equation (23) is rather implicit
and there arises a problem 'of the more explicit description of the asymptotics of
the solution in region II. The following theorem is the first step in solving this
problem.

Theorem 3.2 Any resurgent funetion of the variable i with values in the spaee
of resurgent functions 01 the variable p = In r is aresurgent function with respeet
to (i, p).

Proof First of all , we remark that it is sufficient to prove this Theorem
for regular re~urgent functions, that is, for resurgent functions u such that the
corresponding function U has only integrable singularities. Actually, to reduce
the problem to an integrable case one can apply to the considered functions the
operator (a/as ) - N wi th sufficiently large N.
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· Thus, let us eonsider the resurgent funetion in T:

U(T) =1e-'U(s, T) ds

"1

(34)

where , is a ray direeted along the positive part of the real axis and emanated
from the poi'nt S*(T) (the support of the resurgent function U(T)). Suppose that
the function V(s, T) is an infinitely continuable in S function homogeneous of
order -1 in (s, r) wi th values inspace of resurgent functions in p: .

U(S,T) = U(S,T,p) =1e-"U1 (S,T,Si>p)ds t

"11

(35)

where VI (S, i, ShP) is an endlessly-continuable in s funetion whieh is homoge­
neous in (SI, p) (as weH as in (s, i), of course). Hefe the eontour ,1 is a ray
emanated from a point si(p) along the direction of the positive part of the real
axis. Substituting (35) into (34) we obtain a representation for the function u(r)
of the form

U( T) =u(T, p) ~1e-' [1 e-" U1(s, T, Si> p) dS I ] ds.

"y ;)'1

The latter expression can be rewritten as folIows:

00 00

U(T,p) = 1d~1exp[-(S·(T) + s~(p) + ~ + TJ)]

o 0

x Vl(s·(r)+~,T,S~(p)+TJ,p)d1J.

Rewriting the latter integral as a multiple integral over the positive quarter Rt
of the plane R~" and introducing the variable change

we obtain the formula
00

u(T, p) = 1exp [- (s·( T) + s~(p) + ,)1 U2 (" T, p) d,
o

where ..
U2 (" T,p) =1UdS·(T) +~, T, s~(p) +, -~, p) d~.

o
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The two last formulas can be rewritten in the form

U(T,p) = Je-·U.(s,T,p)ds

"Y2

where the function U.(.s, T, p) is given by

U.(S,T,p) =JU1(S/,T,S - s',p)ds'

"1'3

(36)

(37)

and the contour 1'3 is the segment with the endpoint S·(T) and .s-sr(p). It is easy
to check that the function U.(.s, T, p) given by (37) is a homogeneous function of
order -1 with respect to (09, T, p) which is infinitely continuable in the variable 09
for any fixed values of (T, p). The proof is complete.

Since we know now that the solution to equation (24) is aresurgent func­
tion near edges (that is, in the region II on Figure 7, then the second step in
constructing asymptotics for this solution is to substitute representation (36)
directly into the initial equation8 (after the change of variables t = eT

, r = eP ).

To do this we rewrite equation (24) in the form

-m -mB ( ß 8) fr t r, t, r ßr' r t ßt U = . (38)

After the mentioned variable change the equation becomes

H (e
p

, eT, :p' eP :T) u(p, T) = /i(p, T)

(we had also multiplied equation (38) by r-mt-m). Similar to the above consid­
erations, substituting (36) into the latter equation and expanding its coefficients
ioto the Taylor series with respect to the first two arguments, we ohtain

co ..... ((8)-1 a (8)-1 a)L Tjp+k-rHjk 809 ßp' 809 8T U(09, p, T) = F(s, p, r).
j,k=O

(39)

Here, as above, Tjp+kT is a shift operator in the plane C. to the value j p + kr.
The operators

..... (( ß) -1 8(8) -1 8)
Hjk = H jk 8s 8p' 8s 8r

BWe present here rather brief description of the procedure of constructing resurgent solutions
to the considered equation. The reader can find tbe detailed presentation of this construction
(for somewhat different situation) in [26L [27].
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have the operator·valued eoeffieients (which are differential operators on the
manifold fl) and ean be fouod from the relation

We remark that, due to the presenee of the factor eP before the derivative 818T,
this derivative will not be included into the principal part Hoo of expansion (40).
Henee, equ8otion (39) ean be rewritten in the form

( (
8 ) -1 a) 00 ..... (( 8 ) -1 a(a) -1 a)

Hoo as ap U = F - j~O Tjp+kTHjk as ap' as ar U

and the sum on the right in the latter expression does not eontain the term with
j = k = O.

As above, the solution to the latter equation can be constructed with the
help of a recurrent procedure in the form

00

""' ( 'k)U(s, p, T) = LJ U J (s, p, T),
j,k=O

where the funetions UUk)(s, p, T) satisfy the following reeurrent system:

where the surn on the left in the latter relation is taken over 8011 nonnegative
integers j', k', j", k" such that j' + j" = j and k' + k" = k except for the term
with j' = k' = O. Thus, again it is sufficient to solve the first of the above
equations beeause this system is a triangle one with one and the same operator
on the diagonal. As usual, we shall apply the alas-transform to this equation
thus reducing it to the following family of equations

Hoo(Z)U(S,Z,T) = F(S,Z,T),
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where fj and F are the 8/8s-transforms of the functions U and F with respect
to the variable p,

...... _ 818.U(S,Z,T) - Fp-: U(S,p,i),

- 8/&F (05, Z, T) = Fp_/F (3, p, i) ,

z is a dual variable (one can notice that the variable T is simply a parameter in
the latter equation). One should remember that the operator Hoo(z) included
into (42) is a differential operator of order m on the smooth manifold 0:

Hoo(z) = L a,,(w, z) (:J"
lol:5m

(43)Hoo(z) = H(O, 0, z, 0)

with smooth eoefficients with polynomial dependenee of z. This operator ean be
expressed as

where jj is an (operator-valued) Hamiltonian inc1uded in the representation (38)
of the considered operator. ~

It is natural that the following eondition must be fulfilled.

Condition 3.2 The operator family (43) depending on the parameter z is an­
alytically invertible, that is, there exists an operator Roo (z) (whieh depends on
z analytieally in the whole plane C: except for a discrete set E = {ZI' Z2, ...})

such that
Hoo(z)Roo (z) = Roo (z) Hoo(z) = T

where T is the identity operator. The operator Roo(z) is an integral operator
with a kernel admitting an analytic eontinuation to Oe x Oe, where Oe is a
eomplexifieation of the manifold n (see formula (25) above).

Due to Condition 3.2 equation (42) is solvable and its solution is given by

Ü(S,Z,i) = Roo(z)F(s,Z,i).

Now the solution to equation (42) ean be written down in the form

81&~ {....... - } {&18S -. alas}U (s, p, i) = F:_p Roo (z) F (s, z, i) = F:_p Roo (z) F:_p F (s, p, i) .

Similar to formula (32) above, we can rewrite the latter relation in the integral
form

(

. ) 1/2 8 Ju = fi [F] = 2~ as Roo(z)F{s + z (p - p') ,p', T) dp' 1\ dz.

He·,·)

(44)
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(45)

(46)

Formula (44) is t he main tool for invest igat ion of solutions to system (41).
Narnely, this solution is given by

- R[FJ,

..... [L: ..... (( a)-1 a(a) -1 a) ("Ikll>]- -R T·, +/cITH'I/c1 - --, - -- U J
J P J OS Op OS OT

j ~ Dor k ~ O.

Now the investigation of singularities of funetions U(jlc) ean be performed exactly
in the same manner as it was done for funetions U(k)(s, T) in tbe end of the
previous Seetion. Tbe result of this investigation ean be formulated as folIows.

Theorem 3.3 The set 0/ singularities 0/ /unetion (44) is a union 0/ the set 0/
singularities 0/ the /unetion F( s, p, T) and the characteristic conoid 0/ the lalter

set with respect to the operator R( z).

The investigation of the asymptotieal expansions of solutions in the region I
(see Figure 7) admits no further detalization since in this zone the eoeffieients in
the resurgent representation-'(33) are smooth funetions. We shall show that the
resurgent representation for solutions to equa.tion (23):

U(T,p) = Je-'U(s,T,p)ds

r

ean be reduced to the one-dimensional representation (24) when ; = eP ~ ~ > O.
Actually, let us eonsider representation (45) for finite values of p (that is, Ipl ::; C
for some positive constant C). Expanding the function U(s, T, p) in powers of p
(this ean be done for large values of T due to the homogeneity of the function
U(s, T, p)), we come to the relation

00 pi J BiU
U(T,p) = L:""7j" e-·~(slT,O)ds.

j=O ). r pJ

The functions EJiUjapi under the integral sign on the right of the latter formula
are homogeneous of order -1 - j (not of the order -1 as it is required in the
definition (24) of the one-dimensional resurgent representation). Ta improve this,
we shall integrate by parts under the integral sign in (46) j times. As a result,
we obtain a representation

J -. co pi (( 0)-1 0) j
U(T,p) = e ?=""1 as a U(s,T,O)ds.

r J=O ) P
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Substituting T = In t, p = In; in this representation, we have the following
one-dimensional resurgent representation for the function u

J 00 (ln;)) (( a)-1 a) i
u(t) = e-· f= T as ap U(s, In t, 0) ds

r )_0

(the variable t on the left in the latter formula is orriitted since we consider here
the funetion u as a function of t with values in a funetion space of funetions
depending on r). We remark that the obtained relation is considered in the

. domain where T ~ 8 > 0, and, hence, the function In r is a regular one.

3.5 The case of resurgent functions with simple singu­
larities

In this subseetion, we briefly describe the explicit forms of asymptotic expansions
of resurgent solutions provided that the right-hand part of equation (23) is a
resurgent function with simple singularities. We reeall that the funetion u(t, r)
is called to be aresurgent funetion with simple singularities if and only if the
correspondi ng (due to representat ion (45)) fUllet ion U(S, T, p) has the form9

U(S,T,p) = Gds,l,p) k + G~(s,l,p)ln(s - S(T,p)) (47)
(s - S(I, p))

with holomorphic functions GI (s, I, p) and G2(s, T, p) near each singular point of
U( s, I, p). Here S( I, p) is an (in general, ramifying) analytic funeti~n such that
the singularity set of the function U(s, T, p) is given by

s - S(T,p) = O.

We recall that the ramification points of the function S( T, p) are ealled foeal points
of the eorresponding resurgent function. Certainly, representation (47) do not
work in a neighbourhood of focal points and must be replaced there by some other
representation. This representation, using singular charts of the corresponding
Lagrangian manifold, was presented in the paper [23] by the authors and we shall
not discuss it here.

Remark 3.2 We claim that equation (23) is solvable in classes 0/ resurgent
functions wilh simple singularities. In other words, if the fight-hand part of this
equation is aresurgent function with simple singularities, then the equation has
a solution in the same class.

9We remind that all the functions involved in the formula helow depend on loeal coordinates
(w, y) on n x 1j. This dependence is omitted here for brevity.
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Let us turn our mind to the non singular case (47). We remark that in this
representation the function 5(T, p) must be a homogeneous function of order 1
(in this case the function U(s, T, p) determined by (47) will be homogeneous in
the sense 0/ hyper/unctions provided that the functions Gds, T, p) and G2(s, T, p)
are homogeneous of the corresponding orders).

Now we are able to write down the form of asymptotic expansions of the
solution to equation (23) in different regions. First of all we shall investigate the
asymptotic solutions in the region 11. As it is shown in the above cited papers,
the asymptotics corresponding to expansion (47) has the form 10

-00

u(t, r) = L e-Si(lntJn,r) L aj(ln t, In r)
;=;0

(48)

where the inner surn is taken over all points of the support of the resurgent fune­
tion u, 5 i (T, p) are the eorresponding brauches of the (ramifying) function 5(T, p)
(which is hornogeneous of order 1), and the coefficients aj( T, p) are functions ho­
mogeneous of order - j in (T, p) which are determined via the Taylor coefficients
offunctions G1{S,T,p) and G'l{s,r,p) at the point s = Si{T,p). We remark that,
as it follows from the considerations of this Subsection, the support of the con·
structed solution consists of a number of double lattices originated from points
of the support of the right-hand part of equation (23) (and possibly from some
of tbe points of singularity originated by the operator itself) with steps p = In r
and T = In t. We remark also that the series over j included iuto the right-hand
side of relation (48) are, as a rule, divergent and the resurgent representation of
the form (45) gives, in particular, the unified resummation procedure for these
divergent series. The problem of computing supports of tbe constructed solution
is solved in tbe region II (that is, near edges) similar to the general case. Re­
lation (48) gives us a general form of the asymptotic expansion of the solution
near edges of the manifold M. The computation of the exact values of the func-

, tions aj{r, p) can be carried out by the asymptotic expansion (by smoothness)
of integrals of the type (45) with the function U{s, T) given by {44}.

Let us detalize the obtained asymptotic expansion. First of all, we note that
asymptotics (48) contains two kind of terms. They are asymptotic expansions
corresponding to the points of the support coinciding with the support of the
right-hand part. The form of these terms cannot be detalized further; the actions
Si for these terms coincide with that for the right-hand part of the equation. The
second kind of terms are all other terms. To establish the form of these terms
in more detail, we remark that, due to system (41), the phase function of these

lOWe remark that functions S( T, p) and aj( T, p) depend also on the local coordinates wand
y on manifolds n and Yj (see the beginning of this Seetion).
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terms must satisfy the corresponding Hamilton-Jacobi equation

as
8p = Zj,

where Zj are points of singularity of the operator Roo(z) (see Condition 3.2 above).
Hence, we have

S(T, p, w, y) = ZjP + SdT,W, y)

for some function SI (T, w, y) which is homogeneous of order 1 In T. Then it is
evident that

S(T,p,W,y) = ZjP +TZ(W,y)

with some smooth function Z(w, y). Thus, those terms ineluded ioto the asymp­
totics of the solution whose supports do not coincide with the support of the
right-hand part of the considered equation have the form

-00

e- Zj In r-Z(w,~)lnt "" a -(ln t In r w y)
- LJ} , "

j=jo
-00

= r-z.it-Z(w,~) _~ aj(ln t,ln r, w, y).
}=}O

(49)

Let us proceed now with the investigation of the asymptotics in the region
I (that is, for t --+ 0 and r 2: S > 0). Similar to the previous case, resurgent
function of one variable with simple singularities is a function given by (24) such
that for the corresponding function U(s, T, r, W, y) the expansion

( ) Gli(s,T,r,w,y) G ( ) ( ( ))U S,T,r,W,y = k + 2; s,T,r,w,Y In s - Si T,r,W,Y
(s - S;(i,r,w,y))

is valid near each its singular point

In this case, since Si are homogeneous functions of order 1 in one-dimensional
variable T, they have the form

(50)

for some complex-valued function (7i, the constructed asymptotic expansion in
the region I (that is, when a point approaches the vertex along the ~irection not
elose to the edge) has the form

-00

u(t) = L t-qi(r,w..,) L (In t)j aj(r,w, y)
j=m

35

(51)



(52)

where a j ( r, w, y) are some functions on the non singular part of X determined
by the Taylor expansion of the functions G1i(S, T, r, w, y) and G2i (S, T, r, w, y)
at the point (50); we remark that the coefficients of these expansions, being
homogeneous functions of one-dimensional variable T are simply proportional to
the corresponding powers of this variable. The computation of the.exact values
of the coefficients aj in (49) and (51) can be carried out by the asymptotic
expansion (by smoothness) of integrals of the type (24) with the corresponding
function U.

one ean easily see that the forms (49) and (51) are in a good agreement
with each other on their mutual domain of definition (we emphasize that since
the construeted solution is aresurgent function in t with values in the spaee
of resurgent fune tions in r, t he function 0' i ( r, w, y) mus t have t he asymptotic
expansion O"i( r, w, y) = Zj In r +... with some constants Zj as r --+ O.

4 Two-dimensional problem

In this section, we shall show how the singularities of the above introduced
operator families ean be cotnputed for two·dimensional manifold M. Also we
illustrate the method of obtaining resurgent solution on the twerdimensional
model. Since in this case the manifold X is one-dimensional, its 'edges' Yj are
single points. Therefore, the operators aj(t) are in this case ordinary differential
operators of Fuchsian type

. rn-j ( a) IaAt) = r-(m-J) L bj,(r, t) r 8r
1=0

near each singular point Yj of X. Here r is a coordinate on X near the singular
point Yj.

4.1 Resurgent solutions

In this subsection, we shall briefly describe the procedure of constructing a resur­
gent solution to equation (23) for the considered particular case.

Similar to Subsection 3.2, equation (23) can be rewritten in the form

t aj(t) (t :t)j u = /1 ~r tm f·
J=O

We seareh for resurgent solutions to equation (52) provided that the right-hand
part /1 of this equation is aresurgent function. Let

u(t)=l(U)
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(53)

(55)

(see formula (16) above and let U(s, r) be an endlessly-continuable function of s
for any fixed value of r. Substituting the latter relation to (52) and expanding
the coefficients aAt) into the Taylor series in t: .

00

aj(t) =L tkajk
k=O

(where ajk are differential equations on X of the form

near each singular point Yj), we come to the equation

~~ajdh((~) -I :rrU(s,r) = F(s,r),

where Tb- is a shift operator in the plane s to the value kr.
Equation (53) can be solved with the help of the recurrent procedure. Namely,

the function U(s, T) can be represented in t he form

00

U(s, r) = L U(k)(S, r)
k=o

where the functions U(k)(s, r) satisfy the following recurrent system of equations

Now it is clear that one nlust investigate solvability of the first equation in (54)
since all other equations of this system have the same operator in the left-hand
side. To do this, we apply the 8/8s-transformation to this equation and obtain

(~ajozi)Ü(s,z) = F(s,z),
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where U(O)(s, z) and F(s, z) are 8j8s-transforms of U(O)(s, T) and F(s, T) corre·
spondingly. For solving the latter equation we need the following eondition

Condition 4.1 The family of operators

m

H(z) = L ßjOZ
j

j=O

on the manifold X with eonical points is invertible for any eomplex values of z

exeept for a disereet set {zt, Z2 •.. .} in the eomplex plane C q • The inverse operator
R(z) is a ramifying analytie operator-valued funetion of z in C% \ {Ztl Z2 ... ,}.

Thus, to eonstruet the resurgent solution to equation (23) in the eonsidered
particular ease, one has to investigate the solvability of partial differential equa­
tions of the type (55) on one-dimensional manifolds with conical ·points. The
next subseetion is aimed at such an investigation.

4.2 Solvability of analytic family of one-dimensional
problems

(56)Hu = f

In the beginning of this subseetion, we omit the parameter z sinee now the
dependenee of z is at the moment unessential for uso So, let us eonsider the
ordinary differential equation

on a one-dimensional manifold X with singular points Yt , • •• , YN . Certainly, we
suppose, as above, that the operator jj involved into the latter equation has the
form

(57)m ( 8)jii = ?= aj{r) r 8r
)=0

near eaeh singular point lj of X, where r is a loeal eoordinate on X. We suppose
that the eoefficients aj{r) are real-analytic funetions of r near the origin. As we
already know (see Seetion 1), the solvability of equation (56) strongly depends on
the functional spaces in which this equation is considered. To introduce suitable
functional spaces, we note that the manifold X ean be deeomposed into the union
of segments Lj, which are gl ued together at points Yj, j = 1, ... , N. It is evident
that the equation can be considered on each segment Lj separately.

Now, let us represent some segment Lj as the segment [0,1] by the choice of
the loeal coordinate r. \Ve use, as above, the Sobolev spaee H~O.Ql (0, 1) with
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the norm

1/'2

(1- (r:rrr u(r)

2

llull~.oo.ol Jr-2oo dr
=

r
0

1

(1 - ((1 - r):rr) i u(r)

'2

J(1 - r)-20' dr
+ --

l-r
1/'2

Let us now consider the operator (57) as operator in spaces

ii : H~ 0 (0, 1) ~ H~o-: (0, 1) .
O. 1 • 1

(58)

To begin with, we shall investigate the kernel of this operator. As it is known
from the theory of Fuchsian equations (see, for example, [20]; to be short, we
consider the generic posi tion), the equation

......
Hu =0 (59)

has in the vicinity of the point 0 the fundamental system of solutions of the form

(60)

where vj(r) are analytic functions near the origin. Similar, near the point 1 we
have another fundamental system of solutions

(1)( ) _ (1 )1J1r (1)() k - 1u k r - - r vk r, -, ... ,m. (61 )

The numbers AI, ... , Am can be determined as the roots of the algebraic equation

m

L aj(O)Ai = 0,
j=O

and the similar equation can be written down for the numbers }J-h ... ,}J-m.

Due to the existence theorems for ordinary differential equations, both the
systems (60) and (61) can be continued up to systems of solutions determined
on t he whole segment [0, 1]. Then it is ev ident t hat t here ex ists a (coustan t )
invertible matrix lIAjk l1 such that

m

uJO}(r) = L AjkU~I}(r).
1.=0
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The matrix IIAjk ll will be referred below as a transition matrix. Let us try to
construet the element of the kernel of operator (58). First of all, we note that
any solution to homogeneous equation (59) has the form

m

u(r) = L Cju)O)(r)
j=O

(63)

(65)

with arbitrary constants Cj, j = 1, ... , m. However, not all the eonstants Cj

may not vanish if we want to eonstruet a solution which belongs to the space
H~o.ol (0, 1). To describe the requirements whieh roust be fulfilled for solution
(63) to belong the spaee H~o,ol (0, 1) at the left endpoint of the segment [0, 1],
we suppose that 11

ReAl< ReA2 < ... < ReAm_1 < 0'0 < ReAm-l+l < ReAm (64)

for some value of 1 (the eases 1=0 and 1= m + 1 are not excluded and must be
understood in the natural way), so that I is a number of Aj'S which have their
real parts more than 0'0. Then one ean see that for the solution to belang to the
required funetional space, itjs necessary that

Cj = 0, j = 1, ... , m - I

in (63), that is, that
m

u(r) = L Cju}O)(r).
j=m-l+l

Now we eonsider the behavior of solution (65) near the right endpoint 1 of the
segment [0, 1]. To do this, we use a transition matrix 11 Ajkll:

u(r) = i=~+1 Ci~ Aiku~I)(r) = ~ (=~+1 CiAik) uk1l(r).

Similar to (64), let us suppose that

Relll < Rejl2 < ... < Re/ln < 0'1 < Re/ln+l < Rejlm.

Thus, for the element u( r) of tbe kernel of operator (58) we obtain

m

L AjkCj = 0, k =1, ... , n.
j=m-f+l

We had come to the following result

(66)

11 For simplicity, we suppose that the numbers ReA j are different for different values of j.
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Proposition 4.1 Let us denote by

(67)

the finite-dimensional operator with matrix

Then, if the numbers 0'0, 0'1 do not coincide with numbers ReAj and ReJlj cor­
respondingly (this case we shall name a non resonance one), then the dimension
0/ kernels 0/ operators (57) and (67) coincide with each other.

From the dual considerations one can easily obtain that the cokernel of the
operator (57) coincides with the cokernel of the finite-dimensional operator (67).

Let us return now to the investigation of the case of equation (55) when
the operator analytically depends on a complex parameter z. In this case the
operator a0001 and, hence, the entries A jk of the matrix IIAjkl1 will analytically
depend on the parameter z>·

A jk = Ajk(Z).

Thus, we see that the following result is valid.

Proposition 4.2 Condition 4.1 is valid i/ and only i/:

clet IIA "k(z)11 j~m-l+1 •... ,m
) k-l, ... ,n

i) Matrix Ajk is quadratic, that is I = n.

ii) The determinant

is not identically zero in z.

(68)

Thus, the set {Zl' Z2, •.. } mentioned in Condition 4.1 is simply the set of zeros
of analytic function (68). Certainly, all the above conditions must be valid for
any segment lj, j = 1, ... ,J. In particular, the set of singularities of the inverse
operator R(z) (see Goncl ition 4.1) is the union of zero sets of determinants (68)
taken over all segments involved in the manifold X. Therefore, in the two­
dimensional case we have reduced tbe problem of finding singular points of tbe
analytic family of operators to an algebraic equation.
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