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CANCELLATION FOR SURFACES REVISITED
H. FLENNER, S. KALIMAN, AND M. ZAIDENBERG

ABSTRACT. The celebrated Zariski Cancellation Problem asks as to when the exis-
tence of an isomorphism X x A” = X’ x A" for (affine) algebraic varieties X and X’
implies that X = X’. In this paper we provide a criterion for cancellation by the
affine line (that is, n = 1) in the case where X is a normal affine surface admitting
an Al-fibration X — B with no multiple fiber over a smooth affine curve B. For two
such surfaces X - B, X' - B we give a criterion as to when the cylinders X x Al,
X' x Al are isomorphic over B. The latter criterion is expressed in terms of linear
equivalence of certain divisors on the Danielewski-Fieseler quotient of X over B. It
occurs that the cancellation by the affine line holds if and only if X — B is a line
bundle, and, for a normal such X, if and only if X - B is a cyclic quotient of a line
bundle (an orbifold line bundle). If X does not admit any Al-fibration over an affine
base then the cancellation by the affine line is known to hold for X by a result of
Bandman and Makar-Limanov.

If the cancellation does not hold then X deforms in a non-isotrivial family of Al-
fibered surfaces X — B with cylinders X xA! isomorphic over B. We construct such
versal deformation families with affine bases, and the coarse moduli spaces provided B
does not admit nonconstant invertible functions. Each of these coarse moduli spaces
has infinite number of irreducible components of growing dimensions; each component
is an affine variety with quotient singularities. Finally, we analize from our viewpoint
the examples of non-cancellation constructed by Danielewski ([17]), tom Dieck ([68]),
Wilkens ([69]), Masuda and Miyanishi ([54]), e.a.
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Let X and Y be algebraic varieties over a field k. The celebrated Zariski Cancellation
Problem, in its most general form, asks under which circumstances the existence of a
biregular (resp., birational) isomorphism X x A® 2 Y x A” implies that X = Y, where
A" stands for the affine n-space over K. In this and the subsequent papers we are
interested in the biregular cancellation problem, hence the symbol ‘@" stands for a
biregular isomorphism. We say that X is a Zariski factor if, whenever Y is an algebraic
variety, X x A" 2 Y x A" implies X 2 Y for any n € N. We say that X is a strong Zarisk:

factor if any isomorphism ®: X x A” - Y x A fits in a commutative diagram

X x A" 2 Y x A

| .

X Y




where the vertical arrows are the canonical projections. This property is usually called
a strong cancellation. We say that X is a Zariski 1-factor if X x Al 2 Y x Al implies
that X 2 Y, and a strong Zariski 1-factor if the strong cancellation holds for X with
n = 1. The latter implies that the cylinder structure on X x Al is unique, see [50, Thm.
2.18].

By a theorem of Abhyankar, Heinzer and Eakin ([1, Thm. 6.5]) any affine curve C'
is a Zariski factor, and if C' ¢ Al then C' is a strong Zariski factor. More generally,
by the litaka-Fujita Theorem ([11]) any algebraic variety of non-negative log-Kodaira
dimension is a strong Zariski factor. Due to a theorem by Bandman and Makar-
Limanov ([9, Lem. 2]') the following holds.

Theorem 0.1 (Bandman and Makar-Limanov). The affine varieties which do not
admit any effective G,-action are strong Zariski 1-factors.

There are examples of smooth rational affine surfaces of negative log-Kodaira dimen-
sion which are Al-fibered over P! and do not admit any effective G,-action, and so, are
strong Zariski 1-factors, see [0, Ex. 3], [11, 3.7]. Some of these affine surfaces are not
Zariski 2-factors, see [23, 24].

In this paper we concentrate on the Zariski Cancellation Problem for normal affine
surfaces over an algebraically closed field K of characteristic zero. From Theorem 0.1
one can deduce the following criteria.

Corollary 0.2. A normal affine surface X is a strong Zariski 1-factor if and only if
it does not admit any effective G,-action, if and only if it is not fibered over a smooth
affine curve C with general fibers isomorphic to the affine line Al.

See, e.g., [00, Thm. 2.18] for the first part and [28, Lem. 1.6] for the second.

Recall (see e.g., [28]) that a parabolic G,,-surface is a normal affine surface X
equipped with an Al-fibration mX — C over a smooth affine curve C' and with an
effective G,,,-action along the fibers of w. Any fiber of 7 on such a surface X is isomor-
phic to Al. There is exactly one singular point of X in each multiple fiber of 7 and
no further singularities. Any singular point x € X is a cyclic quotient singularity. If a
parabolic G,,-surface X — C'is smooth then this is a line bundle over C'. Any parabolic
G,,-surface admits an effective G,-action along the fibers of 7 ([29, Thm. 3.12]).

By the celebrated Miyanishi-Sugie-Fujita Theorem ([57, 35]; see also [56, Ch. 3,
Thm. 2.3.1]) the affine plane A? is a Zariski factor. An analogous result holds for the
parabolic G,,-surfaces. Moreover, the following criterion holds.

Theorem 0.3. For a normal affine surface X equipped with an A-fibration X - C
over a smooth affine curve C' the following conditions are equivalent:
(i) X is a Zariski factor;
(ii) X is a Zariski 1-factor;
(i) X is a parabolic G,,-surface.

The implication (i)=-(ii) is immediate; see Theorem 7.24 for (ii)=(iii) and Theorem
6.7 for (iii)=(i).

From Theorems 0.1 and 0.3 one can deduce the following characterization.

Corollary 0.4. A normal affine surface X is a Zariski 1-factor if and only if either
X does not admit any effective G,-action, or X is a parabolic G,,-surface.

LCt. [18); see [13, Thm. 3.1] for the positive characteristic case.
3



The Danielewski surfaces
={z™t-u*-1=0} c A% meN,

are examples of non-Zariski 1-factors ([17, 26]). Being pairwise non-homeomorphic
([26]) these surfaces have isomorphic cylinders: X, x Al 2 X, ., x AL Vm,m' € N. For
non-Zariski 1-factors we consider the following problem.

0.5. Problem. Given an affine algebraic variety X, describe the moduli space C,,(X)
of isomorphism classes of the affine algebraic varieties Y such that X x Am =Y x Am,
Study the behavior of C,,,(X) upon deformation of X.

Note that X is a Zariski 1-factor if and only if C;(X) = {X}. There is no example of
an affine non-Zariski 1-factor X for which the moduli space C;(X) were known. For the
first Danielewski surface X; the moduli space C;(X7) has infinite number of irreducible
components. In [09] and [54, Thm. 2.8] this sequence is extended to a family of surfaces
in A% with similar properties. These examples show that C;(X;) possesses an infinite
number of components which are infinite dimensional ind-varieties.

We show that in a majority of cases a normal affine surface Al-fibered over an affine
curve deforms in a large family of such surfaces with isomorphic cylinders; see Theo-
rems 5.7 and 5.9. Moreover, the deformation space contains infinitely many connected
components of growing dimensions.

Let m: X — B be an Al-fibered surface over a smooth affine curve B. If w has only
reduced fibers then we call such a surface a generalized Danielewski-Fieseler surface, or
a GDF surface for short. To a GDF surface m: X — B one associates a non-separated
one-dimensional scheme DF(7) called the Danielewski-Fieseler quotient along with
a surjective morphism DF(7) - B and an anti-effective divisor tp.div(7) on DF ()
called the type divisor (see Definitions 7.3 and 7.4). In Section 9 we prove the following
theorem.

Theorem 0.6. Let m: X — B and n": X' - B be GDF surfaces. Then the cylin-
ders X x Al and X’ X A1 are isomorphic over B if and only if there exists an iso-
morphism 7:DF (1) —2 DF(n') defined over B such that the divisors tp.div(r) and
7(tp.div(n")) on DF(7) are linearly equivalent.

The next corollary follows immediately by using a suitable base change.

Corollary 0.7. An isomorphism p: X x Al —> X’ x Al which sends the fibers of X x
Al - B to fibers of X' x Al - B does exist if and only if there exists an isomorphism
7:DF (1) — DF(7") such that tp.div(w) ~ 7*(tp . div(7’)).

Remarks 0.8. 1. Notice that if B #¢ Al then any isomorphism of cylinders X x Al —
X' xAl sends the fibers to fibers inducing an automorphism of B, cf., e. -8, Lemma 6.10.
2. It is worth to mention also the following facts. Consider a pair (B - B D) where
D is an anti-effective divisor on a one-dimensional scheme B equipped with a surjective
morphism B - B. Then there exists a GDF surface m: X - B such that DF(7) =5 B
and tp.div(r) = D. Given a pair (B - B, D) the corresponding GDF surfaces X
can vary in non-isotrivial families. However, due to Theorem 0.6 the cylinders over
these surfaces are all isomorphic over B. Moreover, up to an isomorphism over B these
cylinders depend only on the class of D in the Picard group Pic(é). The variation of
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D within its class adds, in general, extra discrete parameters to the isomorphsim type
of the corresponding GDF surface X, see Lemma 7.15 and Corollary 7.16.

Using Theorem 0.6 we provide in Section 9.2 a new proof of a result of Bandman and
Makar-Limanov which gives a sufficient condition for almost flexibility of the cylinder
over an Al-fibered surface, see Theorem 9.6.

In the concluding Section 10 we construct a coarse moduli space of marked GDF
surfaces with a given base B and a given graph divisor provided B does not admit
nonconstant invertible functions, see Theorem 10.3. The cylinders over these surfaces
are all isomorphic over B. A simple Example 10.18 shows that without our restriction,
the coarse moduli space of such surfaces does not exist, in general. The irreducible
components of the moduli space of GDF surfaces with a given cylinder have unbounded
dimensions. This resolves the first part of Problem 0.5; notice that the “isomorphism
over B” can be replaced by “isomorphism” if B #Al.

The proofs of the main results exploit the affine modifications ([17]), in particular,
the Asanuma modification ([6]) and the flexibility techniques of [2], in particular, the
interpolation by automorphisms. As an illustration, in Section 8 we analyze from
our viewpoint the examples of non-cancellation due to Danielewski ([17]), Fieseler
([26]), Wilkens ([69]), tom Dieck ([68]), Miyanishi-Masuda ([5]), and the examples of
Danielewski-Fieseler surfaces due to Dubouloz and Poloni ([25], [61]).

Remark 0.9. The results of the paper were reported by the third author on the
conference ”Complex analyses and dynamical systems - VII” (Nahariya, Israel, May
10-15, 2015), on a seminar at the Bar Ilan University (Ramat Gan, Israel, May 24,
2015), and in the lecture course ” Affine algebraic surfaces and the Zariski cancellation
problem” at the University of Rome Tor Vergata (September—November, 2015; see the
program in [71]). When this paper was written the third author assisted at the lecture
course by Adrien Dubouloz on the cancellation problem for affine surfaces in the 39th
Autumn School in Algebraic Geometry (Lukecin, Poland, September 19-24, 2016). In
this course Adrien Dubouloz advertised a result on non-cancellation for smooth Al-
fibered affine surfaces similar to our one (see, in particular, Theorem 1.2 below and
Theorem 0.3 in the case of smooth surfaces), and indicated nice ideas of proofs done by
completely different methods. He also posed the question whether the non-degenerate
affine toric surfaces are Zariski 1-factors. This had been answered affirmatively by our
Theorem 0.3.

1. GENERALITIES

1.1. Cancellation and the Makar-Limanov invariant. The special automorphism
group SAut X of an affine variety X is the subgroup of the group Aut X generated by
all its G,-subgroups ([2]). The Makar-Limanov invariant ML(X) is the subring of
invariants of the action of SAut X on Ox(X). The SAut X-orbits are locally closed
in X ([2]). The complexity x of the action of SAut X on X is the codimension of its
general orbit, or, which is the same, the transcendence degree of the ring ML(X) ([2]).
We design this integer k as the Makar-Limanov complezity of X, and we say that X
belongs to the class (MLy).

By the Miyanishi-Sugie Theorem ([57], [56, Ch. 2, Thm. 2.1.1, Ch. 3, Lem. 1.3.1 and
Thm. 1.3.2]) a normal affine surface X with k(X) = —co contains a cylinder, that is,

a principal Zariski open subset U of the form U = C' x Al where C' is a smooth affine
5



curve. It possesses as well an Al-fibration p: X — B over a smooth curve B which
extends the first projection U — C' of the cylinder. If B is affine then X admits an
effective action of the additive group G, = G,(K) along the rulings of u.

Conversely, suppose that there is an effective G,-action on X. Then the algebra
of invariants Ox (X)®a is finitely generated and normal ([26, Lem. 1.1]). Hence B =
Spec Ox(X)Ca is a smooth affine curve and the morphism p: X - B induced by the
inclusion Ox(X)® - Ox(X) defines an Al-fibration (an affine ruling) on X. Such an
Al-fibration is trivial over a Zariski open subset of B. It extends the first projection of
a principal cylinder on X. If an Al-fibration on a surface X over an affine base is unique
(non-unique, respectively) then X is of class (ML;) (of class (ML), respectively). It is
of class (MLy) if X does not admit any Al-fibration over an affine curve. In the latter
case X still could admit an Al-fibration over a projective curve. It does admit such a
fibration if and only if k(X) = —co.

The cancellation problem is closely related to the problem on stability of the Makar-
Limanov invariant upon passing to a cylinder. The latter is discussed, e.g., in [7]-[9]
and [12]-[11]. Suppose, for instance, that ML(X) = Ox(X). Then by [13, Thm. 3.1]
(cf. also [18]), ML(X xA!) = Ox(X). This means that the cylinder structure on X x Al
is unique. Hence an affine variety X which does not admit any effective G,-action is
a Zariski 1-factor. In particular, any smooth, affine surface of class (MLy) is a Zariski
1-factor. Therefore, in the future we restrict to surfaces of classes (MLg) and (ML;y).

In the Danielewski example, X; € (MLg) whereas X, € (MLy) for m > 2. Thus,
the Makar-Limanov complexity is not an invariant of cancellation (see also [22] for an
example of the Koras-Russell cubic threefold). By contrast, the Euler characteristic,
the Picard number (for a rational variety), the log-plurigenera, and the log-irregularity
are cancellation invariants, see, e.g., litaka’s Lemma in [56, Ch. 2, Lem. 1.15.1] and

(35, (9.9)].

1.2. Non-cancellation and Gizatullin surfaces. Let X be a smooth affine surface.
Recall ([39]) that SAut X acts on X with an open orbit if and only if X € MLy. In
the latter case X is a Gizatullin surface, i.e., a normal affine surface completable by a
chain of smooth rational curves and different from A! x (Al x {0}). Furthermore, the
group SAut(X x Al) also acts with an open orbit on the cylinder X x Al. Thus, the
Makar-Limanov invariant ML(X x Al) is trivial: ML(X x Al) = ML(X) = k.

The following conjecture is inspired by [9, §4, Thm. 1] and the unpublished notes
[10] kindly offered to one of us by the authors.

Conjecture 1.1. Let X be a normal affine surface such that the group SAut(X x Al)
acts with an open orbit in X x Al. Then C;(X) contains (the class of) a Gizatullin
surface.

Due to [9, Thm. 1] (see also an alternative proof in Part II) this conjecture is true
for the Danielewski-Fieseler surfaces, that is, for the Al-fibered surfaces m: X — Al with
a unique degenerated fiber, provided this fiber is reduced.

1.3. The Danielewski—Fieseler construction. The Danielewski—Fieseler examples
of non-cancellation exploit the properties of the Danielewski—Fieseler quotient. Assume
that the G,-action on X is free. Then the geometric orbit space X /G, is a non-
separated pre-variety (an algebraic space) obtained by gluing together several copies

of B :=SpecOx(X)% along a common Zariski open subset. The morphism x can be
6



factorized into X - X /G, — B. An ingenious observation by Danielewski is as follows.
Consider two non-isomorphic smooth affine G,-surfaces X and Y with free G,-actions
and with the same Danielewski-Fieseler quotient F' = X /G, = Y/G,. Then the affine
threefold W = X xp Y carries two induced free G,-actions. Moreover, W carries two
different structures of principal G,-bundles (torsors) over X and over Y, respectively.
Since X and Y are affine varieties, by Serre’s Theorem ([65]) both these bundles are
trivial, and so, X x Al @ W =2 Y x Al. This is exactly what happens for two different
Danielewski surfaces X = X,, and Y = X,,,,, m # m’/, and in other classical examples,
see Section 8. The question arises as to how universal is the Danielewski-Fieseler
construction. More precisely,

Question. Let X and Y be non-isomorphic smooth affine surfaces with isomorphic
cylinders X x Al 2 Y x Al.  Assume that both X and Y possess free G,-actions. Do
there exist Al-fibrations on X and on Y over the same affine base and with the same
Danielewski—Fieseler quotient?

Recall ([19, Def. 0.1]) that a Danielewski-Fieseler surface is a smooth affine surface
X equipped with an Al-fibration pu: X — A! which represents a (trivial) line bundle over
AL~ {0} and such that the divisor ©*(0) is reduced. Such a surface admits a free G,-
action along the u-fibers if and only if it is isomorphic to a surface in A3 with equation
xy—p(z) = 0 where p € K[z] has simple roots ([19, Cor. 4.13]). Theorem 5.7 below deals,
more generally, with normal affine surfaces Al-fibered over affine curves and such that
any fiber of the Al-fibration is reduced. Abusing the language we abbreviate these as
GDF-surfaces, see Definition 2.1. The Danielewski trick does not work for them, in
general, because such a surface does not need to admit a free G,-action. However, we
show (see Theorems 5.7 and 7.17)

Theorem 1.2. A GDF-surface is a Zariski 1-factor if and only if it is the total space
of a line bundle.

The proof involves affine modifications, in particular, the Asanuma modification.

1.4. Affine modifications. Most of the known examples of non-cancellable affine
surfaces exploit the Danielewski—Fieseler quotient, see, e.g., [54, 69]. By contrast, in
this paper we use an alternative construction of non-cancellation due to T. Asanuma
([6]). Recall first the notion of an affine modification (see [17]).

Definition 1.3 (Affine modification). Let X = Spec2l be a normal affine variety where
A = Ox(X) is the structure ring of X. Let further I ¢ 2 be an ideal, and let f € I, f # 0.
Consider the Rees algebra A[tI] = @,0t"I" with I9 = 2 where ¢ is an independent
variable. Consider further the quotient 2’ = A[tI]/(1-tf) by the principal ideal of A[¢]]
generated by 1-tf. The affine variety X’ = Spec®l’ is called the affine modification of X
along the divisor D = f*(0) with the center I. The inclusion 2 = 21’ induces a birational
morphism g: X’ - X which contracts the exceptional divisor E = (f o 0)71(0) on X’ to
the center V(I) c X. In fact, any birational morphism of affine varieties X’ - X is an
affine modification ([17, Thm. 1.1]).

Remarks 1.4. 1. If I = (ay,...,0;) where a; € 2, i = 1,...,] then A" = A[[/f] =

22l[al/f""7al/f:|'
2. Assume that f € I} ¢ I where I; is an ideal of 2. Letting 2; = A[I;/f] one obtains
the equality 21 = 2045/ f] where I is the ideal generated by I in ;. The inclusion

7



2A - Ay - A leads to a factorization of the morphism X’ - X into a composition
of affine modifications, that is, birational morphisms of affine varieties X’ - X; - X
where X =spec®; (cf. also [17, Prop. 1.2] for a different kind of factorization).

3. Geometrically speaking, the variety X’ = Spec®’ is obtained via blowing up
X =SpecX at the ideal I c 2 and deleting a certain transform of the divisor D on X',
see [17] for details. However, in general V(I) might have components of codimension
1 which are then also components of the divisor f*(0). These components survive the
modification. Thus, it is worth to distinguish between a geometric affine modification
and an algebraic one.

Indeed, given a birational morphism of affine varieties o: X’ - X with exceptional
divisor F' ¢ X’ and center C' = 0,(E) of codimension at least 2, the divisor D of the
associated modification can be defined as the closure of X \ o(X’) in X. However,
this D is not necessarily a principal divisor. So, in order to represent o: X’ - X via an
affine modification one needs to find a principal divisor on X with support containing
D. Thus, although the data (D, (") is uniquely defined for o, there are many different
affine modifications which induce the same birational morphism o: X’ — X (cf. [21]
and also Remark 2.23 for the case of Al-fibered affine surfaces).

The following lemma will be used on several occasions. It generalizes [17, Cor. 2.2]
with a similar proof.

Lemma 1.5. Let X' - X and Y' - Y be affine modifications along principal divisors
Dy =div fx and Dy =div fy with centers Ix and Iy, respectively, where fx € Ix ~{0}
and fy € Iy ~ {0}. If an isomorphism ¢: X — Y sends fy to fx (hence, Dx to Dy)
and Iy onto Ix then ¢ admits a lift to an isomorphism ¢': X' =y

We need also the following version of this lemma.

Lemma 1.6. Let X and Y be affine varieties, and let 0: X - Y be an affine modifi-
cation along a principal divisor D = f*(0) in Y with center an ideal I ¢ Oy (Y') where
felI~{0}. Let o € AutY be such that a(f) = f and both o, o' induce the identity
on the sth infinitesimal neighborhood of D for some s > 1, that is,

a=zid mod f* and a'=zid mod f°.
Then o can be lifted to an automorphism & € Aut X such that

(1) a=id mod f' and @'=id mod f5'.

Proof. Let A = Oy (Y) and A’ = Ox(X) = A[ay/f,...,a/f] where ay,...,a; are gen-
erators of I. One has a*(a;) — a; € (f*%), that is, a*(a;) = a; + f*b; for some b; € 2,

1 =1,...,1. Extending a* to an automorphism of the fraction field Frac®l one has
a*(a;/f)=a;/f+ f>1b;, i=1,...,1. Thus, a* (") c 2’ and, similarly, (a~1)*(2") c 2.
So, @* := a*|y € Aut A’ yields an automorphism @ of X verifying (1). O]

It is easily seen that the affine modification of the linear space A" with center in
a linear subspace of codimension > 2 and with divisor a hyperplane is isomorphic to
A", Similarly, certain affine Asanuma modifications of a cylinder give again a cylinder.
This simple and elegant fact is due to Asanuma ([0]); we follow here [15, Lem. 7.9].

Lemma 1.7. Let X be an affine variety, D = div f a principal effective divisor on X
where f € Ox(X) {0}, and I c Ox(X) an ideal with support contained in D. Let

8



X" — X be the affine modification of X along D with center I. Consider the cylinder
X = X x Al = Spec Ox(X)[v], the divisor D = D x Al on X, the ideal I ¢ Ox(X)
generated by I, and the ideal J = (I,v) c A[v] supported on D x {0} c D. Then the
affine modifications of X along D with center I and with center J are both isomorphic
to the cylinder X' = X' x AL

Proof. The affine modification of X along D with center I yields the cylinder X’. Let
ay,...,a; € I be generators of I, see 1.3 and 1.4. Then

OX'(X,) :OX(X)[al/fv"'val/fvv] ;OX(X)[al/fv'"7al/f7vl/f] :OX”(X”)7

where v’ = v f is a new variable, and X" — X’ is the affine modification of X along D
with center J. This gives the desired isomorphism. 0

2. Al-FIBERED SURFACES VIA AFFINE MODIFICATIONS

2.1. Covering trick and GDF surfaces. Throughout the paper we deal with the
following class of Al-fibered surfaces.

Definition 2.1 (a GDF surface). Let X be a normal affine surface over k. A morphism
m: X — B onto a smooth affine curve B is called an Al-fibration if the fiber 7=1(b) over
a general point b € B is isomorphic to the affine line Al over K. An Al-fibered surface
m X — B is called a generalized Danielewski-Fieseler surface, or a GDF surface for
short, if all the fibers 7*(b), b € B, are reduced. In the case where B = Al and 7=1(0)

is the only reducible fiber of 7 such surfaces were studied in [19] under the name
Danielewski- Fieseler surfaces.
Any GDF surface is smooth, see, e.g., [19] or Lemma 2.18(b) below.

We say that a GDF surface m: X — B is marked if a marking z € Og(B) ~ {0} is
given such that z o7 € Ox(X) vanishes to order one along any degenerate fiber of 7.
Abusing notation we often view z as a function on X identifying z and z ow. The
components of the divisor z*(0) will be called special fiber components.

A GDF surface m: X - B equipped with actions of a finite group G on X and on B
making the morphism 7 G-equivariant is called a GDF G-surface. Assume that G = gy
is the group of dths roots of unity, and choose a p4-quasi-invariant marking z € Og(B)
of weight 1. Then we say that 7: X — B is a marked GDF pg-surface.

Lemma 2.3 below is well known; for the sake of completeness we indicate a proof.
This lemma says that, starting with a normal affine Al-fibered surface and applying a
suitable cyclic Galois base change, it is possible to obtain a marked GDF pg4-surface.
The proof uses the following branched covering construction.

Definition 2.2 (Branched covering construction). Consider a normal affine Al-fibered
surface 7": Y — C' over a smooth affine curve C. Fix a finite set of points py,...,p; € C
such that for any p € C'\ {p1,...,p;} the fiber 7/*(p) is reduced and irreducible. Let
d be the least common multiple of the multiplicities of the components of the divisor
Y, m*(p;) on Y. Choose a regular function h € O(C') with only simple zeros which
vanishes in the points py,...,p; and eventually somewhere else. Letting Al = speck][z]
consider the smooth curve B ¢ C'xAl given by equation z?—h(p) = 0 where (p, z) € C'xAl
along with the morphism pr,;: B - C. By abuse of notation we denote the function
z|p € Op(B) still by z. Let X be the normalization of the cross-product Y x¢ B, and
let m: X - B and ¢: X - Y be the induced morphisms.

9



Lemma 2.3. In the notation of 2.2 the following holds.

e The cyclic group pq of order d acts naturally on B so that C = B/ uq;

e the morphism pr;: B — C is ramified to order d over the zeros of h. The
function z € Op(B) is a pg-quasi-invariant of weight 1, and div z = prj(div h)
15 a reduced effective pg-invariant divisor on B;

e the morphism p: X - Y of Al-fibrations is a cyclic covering with the Galois
group fig, the reduced branching divisor h*(0) on'Y', and the ramification divisor
2*(0) on X;

o the pg-equivariant morphism m: X — B and the marking z € Og(B) define a
structure of a marked GDF' pg-surface on X.

Proof. The map vg:A! - Al, 2z — z¢ is the quotient morphism of the natural pg-action
on Al. The first three statements follow from the fact that the curve B along with the
morphism z: B — Al is obtained using the morphism h:C' — Al via the base change
vg:Al — Al that fits in the commutative diagram

Xﬂ.y

™ 7’

(2) B ", &
z h

Al — Al

Va

The remaining assertions can be reduced to a simple computation in local charts.
Indeed, let (¢,u) be coordinates in a local analytic chart U in Y centered at a smooth
point y € Y which is a general point of a fiber component F' over p; of multiplicity n in
the divisor (7")*(p;). We may choose t so that hon'|y =t" and F'nU =t*(0). Then
Y x¢ B is given locally in A3 with coordinates (z,¢,u) by equation z¢ — ¢ = 0 where
n|d by our choice of d. This is a union of n smooth surface germs {2%" —(t = 0} where
("™ = 1, meeting transversely along the line z = ¢t = 0 that projects in Y onto FF'nU.
Passing to a normalization one gets n smooth disjoint surface germs, say, Vi,...,V,
in X over U. The function z € Ox(X) gives in each chart V; a local coordinate such
that ¢*(F) = 2*(0) has multiplicity one in V;. We leave the further details to the
reader. 0J

2.4 (Cancellation Problem for surfaces: a reduction). The following reasoning is bor-
rowed in [54, 55, 68]. It occurs that in order to construct (families of) Al-fibered
surfaces with isomorphic cylinders it suffices to construct (families of) Al-fibered GDF
G-surfaces with G-equivariantly isomorphic cylinders.

Suppose that a Galois base change B — C with a Galois group G applied to two
distinct Al-fibered surfaces Y~ C, j=0,1, yields two Al-fibered GDF G-surfaces
;2 X; - B, 7 =0,1, with G-isomorphic over B cylinders X, x Al 2 p X; x Al where in
the both cases G acts identically on the second factor Al. Clearly, one has (X;xAl)/G =
Y; xAl, 7 =0,1. Passing to the quotients yields an isomorphism over C' of cylinders
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Yy x Al 2o Y] x Al that fits in the commutative diagram

X, x Al =G X, x AL
Yy x Al —= Y; x Al
B 4 . B
/G\« ’ /G\«
C : C

In the sequel we will concentrate on the following problem. Consider the cylinders
X x Al and X’ x Al over two Al-fibered GDF surfaces m: X - B and n": X’ - B with
the same smooth affine base B. Suppose that m and 7’ are equivariant with respect to
actions of a finite group G on X, X', and B. We extend these actions to G-actions on
the cylinders X x Al and X’ x Al identically on the second factor.

Problem 2.5. Find a criterion for two GDF G-surfaces nx: X - B and nx: X' - B
over the same base B as to when the cylinders X x Al and X' x Al are G-equivariantly
isomorphic.

In Theorems 5.7, 5.9 and Propositions 7.11 and 7.14 we provide some sufficient con-
ditions in the case where G = 4. Actually, these conditions guarantee the existence of

a G-equivariant isomorphism X x Al ¢ X7 x Al which respects the natural projections
X xAl > B and X’ x Al - B and induces the identity on B.

2.2. Pseudominimal completion and extended divisor.

Definition 2.6 (Pseudominimal resolved completion). Any Al-fibration m: X — B on
a normal affine surface X over a smooth affine curve B extends to a P!-fibration
7 : X > B on a complete surface X over a smooth completion B of B such that
D = X \ X is a simple normal crossing divisor carrying no singular point of X. Let
0: X - X be the minimal resolution of singularities (all of these singularities are
located in X). Abusing notation, we consider D as a divisor in X. We call (X, D) a
resolved completion of X.

Consider the induced P!-fibration 7 := 70 0: X — B. There is a unique (horizontal)
component S of D which is a section of 7, while all the other (vertical) components
of D are fiber components. Let B\ B = {cy,...,c,}. Contracting subsequently the
(-1)-components of D different from S we may assume in addition that D does not
contain any (-1)-component of a fiber. Such a resolved completion (X, D) is called
pseudominimal. Notice that the trivializing completions used regularly in the sequel
(see Definition 2.29) are not necessarily pseudominimal.

Definition 2.7 (Eztended divisor). Let (X, D) be a resolved completion of X along
with the associate P!-fibration 7: X — B, and let by, ..., b, be the points of B such that
the fibers 7*(b;) over b; in X are degenerate, i.e., are either non-reduced or reducible.

The reduced divisor
(3) Dew=DuUA where A=J7 (b))
j=1
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is called the extended divisor of ()_( , D), and the weighted dual graph Ty of Deyy the
extended graph of (X, D). We say that ey is pseudominimal if the completion (X, D)
is. The graph 'y is a rooted tree with the horizontal section S ¢ D as a root. The
dual graph I'(D) of the boundary divisor D is a rooted subtree of T'ey.

For a subgraph I of a graph I' we let I' © I'" denote the graph obtained from I’
by deleting the vertices of IV along with all their incident edges of I'. The connected
components of [, ©'(D) are called the feathers of Dey. Under the pseudominimality
assumption all the (-1)-components of A are among the feather components.

Definition 2.8 (Standard completion). Consider a pseudominimal resolved completion
7: X — B. The fibers 71(c;) where ¢; e BN B, i=1,...,s are reduced and irreducible
O-curves. Performing, if necessary, elementary transformations in one of them we may
assume that also the section S is a 0-curve. Such a completion will be called standard,
cf., e.g., [31, 5.11]. By [31, Lem. 5.12], if two Al-fibrations m: X — B and n": X' - B are
isomorphic over B then the corresponding standard extended divisors Deyy and D,
and the corresponding (unweighted) extended graphs I'ey; and I', , are.

Remark 2.9 (Fiber structure). Recall (see [50, Ch. 3, Lem. 1.4.1 and 1.4.4]) that any
degenerate fiber of m: X — B is a disjoint union of components isomorphic to Al, any
singular point of X is a cyclic quotient singularity, and two such singular points cannot
belong to the same component. The minimal resolution of a singular point has as
exceptional divisor in X a chain of rational curves without (-1)-component and with
a negative definite intersection form. This chain meets just one other fiber component
at a terminal component of the chain.

Deﬁnition~2.10 (Bridges). Any feather § of Dey (see 2.7) is a chain of smooth rational
curves on X with dual graph

Fy B Fy,
['(F): o o -

The subchain R =F o Iy = F} +...+ F;, (if non-empty) contracts to a cyclic quotient
singularity of X. The component F{ called the bridge of § is attached to a unique
component C of D. The bridge F} is the closure in X of a fiber component Fy\ C' = Al
of m. Vice versa, for each fiber component F of 7 the closure £ ¢ X of the proper
transform of F is a bridge of a unique feather. In the case of a smooth surface X one
has k=0, i.e., any feather § consists in a bridge: § = Fp.

2.3. Blowup construction.

Definition 2.11 (Blowup construction). Let m: X — B be an Al-fibration on a normal
affine surface X over a smooth affine curve B, and let (X, D) be a resolved completion
of X along with the associate P!-fibration 7: X — B and with a section ‘at infinity’ S.
In any degenerate fiber 7*(b;) on X, i=1,...,n, there is a unique component, say, C;
meeting S. The next fact is well known. For the reader’s convenience we provide a
brief argument.

Lemma 2.12. Let Cy be the component of a reducible fiber 7=1(b), b € B, such that
Co-S =1. Then the rest of the fiber 7=1(b) © Cy can be blown down to a smooth point.

Proof. Since S-7*(b) = S-Cy = 1, Cy has multiplicity 1 in the fiber. We proceed by

induction on the number N of components in the fiber 771(b). The statement is clearly
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true for N = 1. Suppose now that N > 1. Then there exists a (—1)-component F in
the fiber. If E # Cj then contracting E one can use the induction hypothesis. Assume
now that Cj is the only (-1)-component of 771(b). Since Cy has multiplicity 1 it can
be contracted to a smooth point of the resulting fiber sitting on a component, say, C}
of multiplicity 1. By the induction hypothesis after blowing down Cj the rest of the
resulting fiber but C; can be blown down. Thus there is a (-1)-component of the fiber
771(b) disjoint from Cy. However, the latter contradicts our assumption that Cj is a
unique (-1)-component of the fiber 771(b). O

Performing such a contraction for every ¢ = 1,....n one arrives at a geometrically
minimal ruling (that is, a locally trivial P!-fibration) 7p: Xy — B. The image Sy ¢ X,
of S is a section of T5. Thus X can be obtained starting with a geometrically ruled
surface X via a sequence of blowups of points

(4) X=X, 2 X0 — . — X 25 X,
with centers contained in 75 (b;) N Sy ¢ Xo, i = 1,...,n, and at infinitely near points.

For j=0,...,m we let 7;: X; - B be the induced P'-fibrations.

Definition 2.13 (Well ordered blowup construction). In the rooted tree I'eyy with a
root S, the (—1)-vertices on the maximal distance from S are disjoint from S and
mutually disjoint due to Lemma 2.12. Hence the corresponding fiber components can
be simultaneously contracted. Repeating this procedure one arrives finally at a smooth
geometrically ruled surface 7p: Xy — B along with a specific sequence (4) of blowups
where every 0;, ¢ = 1,...,n, is a blowup with center in a reduced zero dimensional
subscheme of X; 1 \ (774(B ~ B) uS;_1) where S; is the proper transform on X; of
Sy € Xo. We call such a sequence (4) a well ordered blowup construction.

The following lemma is a generalization of Theorem 2.1 in [20].

Lemma 2.14. Let m: X — B be an Al-fibered GDF G-surface where G is a finite
group. Then there is a G-equivariant resolved completion (X, D) of X obtained via a
G-equivariant well ordered blowup construction (4).

Proof. By Sumihiro Theorem ([67, Thm. 3]) there exists a G-equivariant projective
completion (X, D) of X. The minimal resolution of singularities of the pair (X, D)
is G-equivariant (being unique). In this way we arrive at a G-equivariant smooth
projective completion (X, D) of X by a G-invariant simple normal crossing divisor D.
The closures in X of the fibers of 7: X — B form a (nonlinear) G-invariant pencil. Its
base points also admit a G-equivariant resolution. Hence we may assume that X comes
equipped with a G-equivariant P!-fibration 7: X — B along with a G-invariant section
S of 7.

In particular, the root S of the extended graph I'ey of (X, D) is fixed by the induced
G-action on [eyy. This action stabilizes as well the set of (—1)-vertices on the maximal
distance from S. Therefore, the simultaneous contraction of the corresponding fiber
components is G-equivariant. By recursion one arrives at a G-equivariant well ordered
blowup construction. [

Remarks 2.15. 1. Under a well ordered blowup construction (4) no blowup is done
near the section at infinity Sy of 7y neither with center over the points ¢; € B \ B,
1=1,...,k. So, the fibers in X; over these points remain reduced and irreducible.
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2. Let a component F' of D different from S be created by one of the blowups
@,,:XV - X,,_l in (4). We claim that then the center P, of the blowup g, belongs to the
image of D in X,_;. Indeed, otherwise the last (=1)-curve, say, E over P, would neither
be a bridge of a feather, nor a component of D. Hence E should be a component of a
feather, say, §, different from the bridge component Fy. However, the latter contradicts
the minimality of § © Fj, that is, the minimality of the resolution of singularities of X.

Recall the following notions.

2.16. Let D be a simple normal crossing divisor on a smooth surface Y. A blowup of
Y at a point p € D is called outer if p is a smooth point of D and inner if p is a node.

We use the following notation.

Notation 2.17. Given a blowup construction (4) for any j =0,...,m we let
B k n
(5) Dj,ext = Sj U Aj U Aj c Xj where Aj = Uﬁj_l(cz) and Aj = Uﬁj_l(bz) .
i=1 i=1

The following lemma should be well known. For (b) see, e.g., [19, (2.2)] and the
proof of Proposition 6.3.23 in [32].

Lemma 2.18. Let m: X — B be a normal affine A'-fibered surface over a smooth affine
curve B. Consider a resolved completion (X = X,,, D) of X obtained via a well ordered
blowup construction (4) starting with a ruled surface 7g: Xo - B. Then the following
hold.

(a) m: X - B is a GDF surface if and only if all the blowups g, in (4), v=1,...,m,
are outer (with respect to the divisor Dy ext on Xo and its subsequent total trans-
forms D, ¢ on X,).

(b) If m: X — B is a GDF surface then X is smooth and every feather § of Dey =
D,y ext consists in a single (—1)-component Fy which is a bridge.

(c) Let m:X — B be a GDF surface with a pseudominimal resolved completion
(X,D), see Definition 2.6. For a fiber component F of 7 the following are
equivalent:

e F is a leave, that is, an extremal vertex of the rooted tree Tex;
o F is a feather;
e [ is a (=1)-vertex of Ley.

Proof. Suppose that for some v € {1,...,m} the blowup g, is inner. Assume also that
the center P, € X,_; of 9, lies on the fiber over b, € B and on the image D, ext of
Dexs. Then all the components of the fiber 7¢(b;) which are born over P, including the
last (—1)-component, say, F, have multiplicities > 1. Notice that ' = F} is a bridge
component of a feather, say, §. Hence F is the closure in X of a component F' of the
fiber 7*(b;) c¢ X. Thus, the fiber 7*(b;) is not reduced. This contradiction shows that

for a GDF surface m: X — B all the p,, v =1,...,m, are outer.

To show the converse suppose that all the g, in (4), v =1,...,m are outer. Then all
the resulting degenerate fibers are reduced. Hence m: X — B is a GDF surface. This
proves (a).

Assume further that a feather § of D, has more than one component. The compo-
nent of § which appears the last in the blowup construction (4) is the bridge component
Iy of §. Hence Fj results from a blowup g, with center P, which lies on the component

14



F, of § and on the image in X,_; of a component C' of D, see Remark 2.15. Thus,
P, is a nodal point of the divisor D,_; ¢ on X,_1. It follows that g, is inner. So, the
bridge [, of § has multiplicity > 1 in its fiber.

This proves that for a GDF surface m: X — B every feather § of D consists in
a single bridge component F,. Consequently, the surface X is smooth. Furthermore,
assuming that F2 < -1 an outer blowup was done in (4) with center on F, creating
a new component, say, F of D. The graph distance dist(F,S) in Iey is bigger than
dist(Fy, ). Hence Fy disconnects S and E in D. The latter contradicts the facts that
the affine surface X is connected at infinity, i.e., its boundary divisor D is connected.
Therefore, F?2 = —1. This shows (b).

The same argument shows that Fj is an extremal vertex (a tip) of ey different from
S. Conversely, if F is a tip of I'ey different from S then F2 = —1. Indeed, since all
the blowups in (4) are outer then no further blowup was done near F' after creating F.
Due to the pseudominimality assumption, F is a feather of Dey. Now (c) follows. O

Definition 2.19 (Fiber trees, levels, and types). Given an SNC completion 7: X — B
of a GDF surface m: X — B and a point b € B the dual graph I', = I'y(7) of the fiber
7~1(b) will be called a fiber tree. It depends on the completion chosen. This is a rooted
tree with a root vy € I', being the neighbor of S in I's,;. We say that a vertex v of T,
has level [ if the tree distance between v and vy equals [. Thus, the root vy is a unique
vertex of 'y on level 0. By a height ht(I',) we mean the highest level of the vertices in
I'y. Remind that the leaves of a rooted tree are its extremal vertices different from the
root. By the type tp(I'y) we mean the sequence of nonnegative integers (ny,ns,...,ny)
where h =ht(I',) and n; is the number of leaves of I'y, on level 7.

Remark 2.20. The fiber tree I'y is an unweighted tree. However, one can easily
reconstruct the weights. Namely, for a vertex v of weight w(v) and of degree deg(v)
in I', one has w(v) = —deg(v). In particular, the (-1)-vertices are the tips, and the
(=2)-vertices are the linear ones.

Definition 2.21 (Graph divisor). Let & be the set of all finite weighted rooted trees
contractible to the root which acquires then weight zero. By a graph divisor on a
smooth affine curve B we mean a formal sum

D:ZFibia where FZEQ5
i=1

If all the I'; are chains then we call D a chain divisor. The height of a graph divisor D
is the maximal height of the trees I';, i =1,...,n.

Let m: X — B be an Al-fibered surface with a marking z € Og(B) where z*(0) =
by +...+b, and with a resolved completion 7: X - B. To the corresponding extended
graph I'eyy we associate a graph divisor D(m) = ¥, I'y.b; where I'y, is the fiber tree of
the fiber 7=1(b;). If m: X - B is a ug-surface and the marking z is pg4-quasi-invariant
then there is an induced pg4-action on the graph divisor D().

2.4. GDF surfaces via affine modifications. Let X - B be a GDF surface. In
this subsection we describe a recursive procedure which allows to recover X starting
with the product B x Al via a sequence of fibered modifications, see Corollary 2.27.

Definition 2.22 (Fibered modification). > A fibered modification between two Al-
fibered GDF surfaces m: X — B and 7: X' - B is an affine modification ¢o: X’ - X

2Ct. [19, Def. 4.2].
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which consists in blowing up a reduced zero-dimensional subscheme of X and deleting
the proper transform of the union of those fiber components of 7 which carry centers
of blowups. Thus, p is a birational morphism of B-schemes.

Remark 2.23. Let F' be a reduced curve on a smooth affine surface X, let ¥ c F' be a
reduced zero dimensional subscheme, and let o: X’ - X be the composition of blowing
up X with the center ¥ and deleting the proper transform F' of F. We claim that X’
is again affine, and so, by [17, Thm. 1.1], the birational morphism X’ — X is an affine
modification.

Indeed, there exists a completion X of X and an ample divisor A on X with support
supp A = X \ X. Let X’ be the surface obtained from X by blowing up with center X.
Consider on X’ the proper transforms A’ and F’ of A and F, respectively, where F is
the closure of F in X. By Kleiman ampleness criterion the divisor nA’ + F’ on X’ is
ample provided that n is sufficiently large. Hence the surface X’ = X’ \supp (nA’+ F")
is affine, as claimed.

In general, F' is not a principal divisor on X. To represent o: X’ — X via an affine
modification along a principal divisor let us choose functions f,g € Ox(X) such that
f vanishes on F to order 1 and the restriction g|r vanishes with order 1 on . Let
I c Ox(X) be the ideal generated by f, g, and by the regular functions on X vanishing
on XU (V(f) N F). Then o: X’ - X is the affine modification along the divisor f*(0)
with the center I.

Let m: X — B be a GDF surface, F' be a fiber component of 7, and let f = 7%z where
z € Op(B) has a simple zero at the point 7(F') € B. Then 7’ =mo0: X’ — B is again a
GDF surface and o: X’ - X is a fibered modification. This justifies Definition 2.22.

For a GDF surface m: X — B one has the following decomposition.

Proposition 2.24. (a) Any GDF surface m: X — B can be obtained starting with
a line bundle my: Xg = B over B via a sequence of fibered modifications

(6) X=Xy Xy — ... — X =5 X,

This sequence can be extended to the corresponding completions yielding a well
ordered blowup sequence (4).

(b) Suppose, furthermore, that m: X — B is a GDF G-surface where G is a finite
group. Then (6) can be chosen so that the intermediate surfaces X, come
equipped with G-actions making the morphisms 0,,1: X1 = X, and 7,: X, > B
G-equivariant for allv=0,...,m— 1.

Proof. (a) To construct (6) we exploit a well ordered blowup construction (4) which
starts with a Pl-bundle 7y: X, — B and finishes with a pseudominimal completion
Tm: Xm = B of m X - B.

For any v =0,...,m we let D, (A,, S,, respectively) be the image on X,, of the
extended divisor Dex; = Dy, ext (the divisor A = A,,, the section S = S,,, respectively)
on X,, = X. Let I') ext be the weighted dual graph of D, ey and A, max be the union of
the fiber components of 7,: X,, - B which correspond to the extremal vertices of [y ext
on maximal distance from S,. Let also D, be the union of the remaining components
of Dy exi. Then Ayiimax is the exceptional divisor of the blowup 0,: X1 — X, with
center on Ay, max N D,.

Consider the open surface X, = X, \ D,,. We claim that X, is affine and 9,(X,,;) c

X,. Indeed, the latter follows since 0,(Ay+1max N Dy+1) € Ay max N Dy € X, due to the
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above observation. To prove the former we use the Kleiman ampleness criterion (cf.
Remark 2.23). Notice that a fiber component F' of Dy has level [ if dist(F,5) =1+ 1
in Tey. For any v > the proper transform of F in X, has the same level [. Choose a
sequence of positive integers

Sog>ag>a;> ... > Gy > 0.

Let A, be an effective divisor on X, with support D, such that g; is the multiplicity in
A, of any fiber component F' of D, of level [, =0,...,v-1, and sg is the multiplicity of
S, in A,. Performing elementary transformations in a fiber over a point ¢; € B\ B we
may assume that S2 > 0. Suppose to the contrary that there is an irreducible curve C'
in X, with C-A4, =0. If C is not a component of D, xt then 7(C') ¢ B, hence 7| =cst
which gives a contradiction. If C' =S, then clearly C'- A, > 0 which contradicts our
choice of C' and A,. The same contradiction occurs if C' is a fiber component of D, ¢yt.
Due to the Kleiman ampleness criterion the divisor A, with support D, is ample. Thus
the surface X, = X, \ D,, is affine.

Letting now 0,41 = 0v+1lx,,,:
sequence (6) of fibered modifications. This proves (a).

To show (b) it suffices to start with a G-equivariant version of sequence (4) con-
structed in the proof of Lemma 2.14(b). By our construction, g, is G-equivariant and
D, ext, Dy, and X, are G-invariant. Hence g,+1 = 0,+1]x,,, is G-equivariant too for any
v=0,....m-1. ]

X1 = X,, v=0,...,m—1 one obtains a desired

The following proposition is an affine analog of the Nagata-Maruyama Theorem on
the projective ruled surfaces ([00]; see also [19]). It allows to replace the line bundle
Xo — B in (6) by the trivial bundle B x Al - B. For the corresponding completions
this amounts to a stretching which extends feathers by chains of type [[-1,-2,...,-2]]
in D near S, so loosing the pseudominimality property.

Lemma 2.25. Let X be the total space of a line bundle m: X — B over a smooth affine
curve B. Then the following hold.

(a) X can be obtained starting with the product B x Al over B via a sequence of
fibered modifications over B,

(7) X=Zy2 Zyy— ... — 72125 Zy= BxA!

where m;: Z; - B is the projection of a line bundles and the center of o; belongs
to the exceptional divisor of 0;_1 for each 1=0,..., M.

(b) If in addition m: X — B is a marked GDF pg-surface then for i =0,..., M the
morphisms o;: Z; — Z;_y in (7) and m;: Z; > B can be chosen to be jiq-equivariant
with respect to suitable pg-actions on the surfaces Z; and the given pg-action
on B.

Proof. (a) Under our assumptions X is affine and admits an effective G,,-action along
the fibers of m. This action induces a grading Ox (X)) = @;50 A; where Ay = Op(B) and
2A; # {0}. If u e 2y then the restriction of u to a general fiber of 7 yields a coordinate
on this fiber. It follows that ¢ = (idg,u): X - B x Al is a birational morphism over
B, hence an affine modification (see [17, Thm. 1.1]). Since ¢ is G,,-equivariant its
exceptional divisor F, its center C, and its divisor D are G,,-invariant. Since u is a
G,,-quasi-invariant of weight 1 it vanishes along the zero section Z c¢ X with order 1.
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Thus, one has ©u1(0) = Zu Fyu...UF, where F; =771(b;), b€ B,i=1,...,n. Then
E=Fu...uF, C={b,....,by}x{0}, and D={by,...,b,} xAl c BxAl.

So, 1 consists in blowing up a subscheme with support C' and deleting the proper
transform of D. Therefore, ¢ factorizes through the G,,-equivariant fibered modifica-
tion p1: Z1 — BxA! which consists in blowing up the reduced subscheme C' and deleting
the proper transform of D. Similarly, the resulting birational morphism of line bundles
X — Z; over B can be factorized over B into X — Zy — Z; where the center of Z, — 7,
is a reduced subscheme of C. After a finite number of steps we get a G,,-equivariant
resolution of indeterminacies of the inverse birational map ¢~!: B x Al -> X, hence also
a desired decomposition of 1 into a sequence (7) of fibered modifications.

(b) Under the assumptions of (b) consider the induced pg-action on Z; = B x Al
identical on the second factor. In order that ¢ = (idg, u): X - BxA! were pg-equivariant
it suffices to choose u € A being a pg-invariant. Since pg acts via automorphisms of
the line bundle m: X — B it normalizes the G,,-action on X. Hence it induced a
representation of 14 via automorphisms of the graded k-algebra Ox(X) = @;s02;. Let

A = {aeA;|Ca=Cla Ve

Any element a € 2[; belongs to the pg4-invariant subspace E spanned by the orbit ug(a).
The finite dimensional representation of py in E splits into a sum of one-dimensional
representations. Consequently, a can be written as a sum of ug-quasi-invariants. It
follows that 2 = @& 2AY.

We claim that there exists a nonzero invariant u € 2(50) = A/*. Indeed, for some
i €{0,...,d -1} there exists a nonzero jug-quasi-invariant h € ngi) of weight i. The
marking z € Ay = 7*(Op(B)) is a pg-quasi-invariant of weight 1, see Definition 2.1.
Then u = 2%"h € A" as desired.

The resulting birational morphism v = (idg, u): X - B x Al over B is ug-equivariant.
So, this is an affine modification with pg4-invariant center C' and divisor D.

Hence 1 factorizes through the pg4-equivariant fibered modification o1: Z; - B x Al
which consists in blowing up B xA! with center the reduced zero dimensional subscheme
C c B x {0} and deleting the proper transform of D. By recursion one arrives at a
sequence (7) of pg-equivariant morphisms. O

Remark 2.26. In the notation as in the proof of Lemma 2.25(a) let divu = Z +
YiymiF;. Then the effective divisor b := myb; + ...+ m,b, € Div(B) in this proof
can be replaced by any representative b’ € |b|. Indeed, let b’ = b + div f for a rational
function f on B. Then ' =uf €2y c Ox(X) and divu/ = Z + 7*(b').

Letting in (6) G = g and extending this sequence on the right by those in (7) with
a suitable new enumeration we arrive at our final sequence of fibered modifications.

Corollary 2.27. (a) Any GDF surface m: X — B can be obtained starting with a
product Xy = B x Al via a sequence of fibered modifications

(8) X=Xy Xopg — ... — X; 25 X = Bx Al

such that the center of o; is contained in the exceptional divisor of 0;_1.

(b) Suppose furthermore that m: X — B is a marked GDF pg4-surface. Then any
intermediate surface X;, 1 =0,...,m -1, comes equipped with the induced jiq-
action so that the morphisms 0;11: X;11 = X; and m;: X; = B are pg-equivariant.
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Proof. Let us prove (a) leaving the proof of (b) to the reader. Both (6) and (7) are
chosen well ordered, that is, the center of p; is contained in the exceptional divisor of
0i-1- Let the centers of blowups in (6) and (7) are situated over the points by, ...,b, € B
and bf,...,b/, € B, respectively. Let b =0y +...+b, e Div(B) and b’ = b} +...+01/, €
Div(B). The linear system |b’| is base point free. Hence b’ € |b’| can be chosen so that
bi # b Vi, j, see Remark 2.26. Then the blowups in (6) and (7) are independent (they
commute, in a sense). So, we may perform the blowups in (6) and (7) at each step
simultaneously so that the resulting sequence (8) will be well ordered. O

Remarks 2.28. 1. The morphisms in (8) can be extended to suitable completions
yielding a sequence of birational morphisms

(9) X=Xmﬂ>f(m_1—>...—>X1£>XO=B><P1,

where ﬁzXl — Bis a ig-equivariant P!-fibration extending 7;: X; - B and @ZXZ - Ai_l
is a simultaneous contraction of a pg-invariant union of disjoint (—1)-components of
m;-fibers, ¢ = 0,...,m. Inspecting the proof of Lemma 2.25 one can see that certain
irreducible fibers of pr;: B x P! — B are replaced by chains of rational curves with
sequences of weights of type [[-1,-2,...,-2,-1]]. This yields a completion X,, > Bof
X, = B whose boundary XN X i a simple normal crossings divisor. The section at
infinity B x {co} of pr;: B x P! — B gives rise to a section at infinity S of X=X, ->B
with S2 = 0. If the line bundle X, — B in (6) is nontrivial then the completion (X, D)
is not pseudominimal.

2. It is easily seen that F' has level [ if and only if it appears for the first time on
the surface X; (I < m) in (8), see Definition 2.19. Thus, any fiber component F' of
m: X; —> B haslevel <[. If m: X — B is a marked GDF pg4-surface then the level function
is pg-invariant. Notice that the center of the blowup g;,1: X;,1 — X in (8) is situated
on the union of the top level [ fiber components in Xj.

Definition 2.29 (Trivializing completions). The completion (X, D) of a GDF surface
X fitting in (9) and the corresponding graph divisor D(7) will be called trivializing.

3. VECTOR FIELDS AND NATURAL COORDINATES
3.1. Locally nilpotent vertical vector fields.

Lemma 3.1. Let m: X - B be a marked GDF pg-surface with a marking z € Og(B)
{0}. Then for anyl=0,...,m the surface X; in (8) admits a locally nilpotent reqular jiq-
quasi-invariant vertical vector field 0, of weight | non-vanishing on the fiber components
of the top level I and vanishing on the fiber components of lower levels.

Proof. Consider the locally nilpotent vertical vector field dy = /0u on Xy = B x Al
where Al = speck[u]. Clearly, 0y is invariant under the pg4-action on B x Al identical
on the second factor. The pg4-equivariant fibered modification p: X7 — B x Al over B
transforms Jy into a ug-invariant rational vertical vector field on X; with pole of order
1 along the fiber components of level 1. By induction, 0y lifts to a ug4-invariant rational
vertical vector field on X; with pole of order s on any fiber component of level s where
1 < s <[ and no other pole.

Since the marking z € Og(B) ~ {0} is pg-quasi-invariant of weight 1 then 9, := 2!0/0u
generates a regular locally nilpotent p4-quasi-invariant vertical vector field on X; of
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weight [ non-vanishing on the fiber components of level | and vanishing on the fiber
components of smaller levels. 0

3.2. Standard affine charts.
Notation 3.2. Let m: X - B be a marked GDF pg4-surface with a marking z € Og(B)

where 2*(0) = by +...+b,. For any i = 1,...,n consider in B the affine chart B; =
B~Aby,...,bi-1,bis1,...,b,} about the point b;. So, div (z|g,) = b;.
Given a surface X; from (8) we let Fji,...,F;,, be the components of the fiber

s L(b;). Consider the G,-action H; on X; along the fibers of m; generated by the locally
nilpotent vector field 0; as in Lemma 3.1.

Proposition 3.3. In the notation as above the following hold.

o foranyie{l,...,n} and je{1,...,n;} there is a unique standard affine chart
U2 Fij in X; such that U; j g, B; x Al. These standard affine charts (U, ;);
form a covering of X;;

e one has Uz',j N Ui,j’ = Ui,j N Fi,j = Ui,j’ N Fi,j’ fOT’ any 1< j,j, <N,

o the pg-action on X; induces a pq-action by permutations on the collection (U; ;);

o U, ; is invariant under any action of a connected algebraic group on X; - B
identical on B;

e foranyt <l and any fiber component F; j on level t the Hy-action is well defined
and free on U, ;;

o for any l,t € Z with 0 <t <1 <m the composition g4 = 01110 ...0 02 X = X
sends a standard affine chart U; j ¢ X; on level t isomorphically over B; to a
standard affine chart in X;.

Proof. The assertions are evidently true for the product Xy = B x Al in (8) with n; =1
Vi and Ui(,(l]) =my (B;) = B;xAl. Suppose by recursion that they hold for a surface X,

in (8) and the collection (Ul.(é._l)) of standard affine charts on X;_;. The p4-equivariant
fibered modification g;: X; — X;_; in (8) consists in blowing up with center at a union of
l1g-orbits situated on special fiber components of the top level /-1 in X; ; and deleting
the proper transforms of these fiber components, see Remark 2.28.2. Let I’ = F; ; be
one of these components, and let Up = Ui(é._l) be the corresponding standard affine chart
in X;_1. Then the modification g; replaces F' with new components, say, Fi,..., Fy
of level [ on X;. The induced fibered modification of Ur =g, B; x Al results in a GDF
surface over B; with the only degenerate fiber m;*(b;) = Z?ﬁl F;. Blowing up just one
point, say, x; one replaces F' by F;. Choosing local coordinates (z,u) in Up 2p, B; x Al
so that u(z;) = 0, z(x;) = 0 the latter affine modification consists in passing from
Op,(B;)[u] to Op,(B;)[u/z] = Op,(B;)[vw'] where u’ = u/z. This results in a standard
affine chart U z(rlz ~p, Bi xAl in X;. In total one obtains M such affine charts on X; over
Ur with the intersections as needed. For a fiber component F' on X;_; which does not
contain any center of the modification g; we let U}(,l) = Q[I(U}(,l_l)). It is easily seen that
the desired conclusions hold for the resulting collection (U }l;) of standard affine charts
on X;. We leave the details to the reader. O

3.3. Natural coordinates. Let m: X — B be again a marked GDF pg4-surface with a
marking z € Og(B) where 2*(0) = by + ...+ b,.

Definition 3.4 (Natural local coordinates). Fix a component F of a fiber 7,1 (b;) on X,

and let Up be the standard affine chart in X; about F'. An isomorphism Ur 2p, B; x Al
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provides sections of m|y,:Ur — B;. Fixing such a section and using the vertical free
G,-action on Up one obtains a G,-equivariant isomorphism Up zp, B; x Al where G,
acts on the direct product via translations along the second factor. Fixing a coordinate
u in Al one gets a coordinate, say, u = up in Up.

The restriction z|y, vanishes to order 1 along F' and has no further zero. Hence
(z,ur) yields local coordinates in Ur near F. We call these natural coordinates. The
local coordinates (z,up,v) in the standard affine chart Up x Al in the cylinder &; about
the affine plane F = F' x Al = SpecK[up,v] are also called natural.

Lemma 3.5. Let m: X — B be a marked GDF pg-surface, and let X; be one of the
surfaces in (8). Let § be the collection of the components of z*(0) in X; on the top
level . Then there exists a collection (z,ur)pez, of natural local coordinates such that
(up)peg, s a quasi-invariant of pq of weight —I.

Proof. For F € § let u. c g (where e|d) be the isotropy subgroup of F'. The pu.-action
on Ur induces a p-action on B; xA! g Up (see Notation 3.2). The latter isomorphism
yields a bijection between the sections of m|y,: Ur — B; and the functions in Op, (B;).
Choosing an arbitrary such section and averaging over its p.-orbit one obtains a .-
invariant section, say, Zp. Then Zp can be taken for the zero locus of a coordinate
function up in Up. Let 0; be the vertical ug-quasi-invariant vector field on X; of weight
[ constructed in Lemma 3.1. The coordinate function up € Oy, (Ur) with up|z, =0
and O;(ur) = 1 is unique. For ( € p, the ratio (.up/ur does not vanish, hence it is
constant along any m-fiber. Thus, one has C.up = (7 f) - up for some f e OF (B;).
From the relations 0, o ¢ = ¢'0; and 0;(7; f) = 0 one deduces that f = (! is a constant,
and so, up is a p-quasi-invariant of weight —I.

For any component F’ in the pg-orbit of F' define natural coordinates (z,up) in
Up in such a way that the collection of functions (ug/) becomes ug4-quasi-invariant of
weight —[. Choosing a representative of any pg4-orbit on §; and repeating the same
procedure gives the desired collection of local coordinates. O

Remarks 3.6. 1. If F' is a component of z*(0) on X; on level I’ < [ then the p4-
equivariant morphism g;: X; - X;_; restricts to an isomorphism on Ur. Hence one can
define local coordinates (z,ur) in Ur where F' runs over all the components of z*(0)
in X; in such a way that for a given I’ <[ the collection (up)reg, is a p.-quasi-invariant
of weight -/’

In the local coordinates (z,ur) in Up c X; of level I’ <[ the vertical vector field 0,
on X; constructed in Lemma 3.1 coincides with 2/9/0up. In particular, in a top level
chart Up one has 0|y = 0/0ur.

2. In the case e = 1 our choice of a p-invariant section is arbitrary, and the coordinate
ur in the standard affine chart Up is defined up to a factor which is an invertible
function lifted from the base and a shift along the u-axis. Hence for F' of the top level
one may consider that ur does not vanish in any center of the blowup g;,1: X431 = X,
contained in F.

3.4. Special pg4-quasi-invariants. In the sequel we need pug4-invariant locally nilpo-
tent derivations on the cylinders over GDF pg4-surfaces. To this end we construct on
such surfaces quasi-invariant functions of prescribed weights, see Corollary 3.8 below.
Let us start with the following fact (cf. [16, Lem. 2.12]).
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Lemma 3.7. Suppose we are given a finite group G, a character A € GV, an affine G-
varitety Y, and a G-invariant closed subscheme Z of Y which is not necessarily reduced.
Let f e Oz(Z) belongs to A, that is, fog=MXyg)-f YgeG. Then f admits a reqular
G-quasi-invariant extension to Y which belongs to \.

Proof. Letting A= Oy (Y) and B = Oz(Z) the G-action yields graded decompositions
A=® v Ay and B = @, v By. The piece A, (By, respectively) consists of the G-
quasi-invariants in A (in B, respectively) which belong to the character y. The closed
embedding Z < Y induces a surjection ¢ : A - B ([13, Thm. IIL.3.7]). We claim
that ¢ restricts to a surjection ¢|a,: Ay - By for any A € GV. Indeed, any f € By
admits an extension to a regular function f € A such that o( f ) = f. There is a unique
decomposition f = PN fx Hence f = ¥\ cav o( fx) Since f € B) the summands ¢( fx)
with x # A\ vanish, and so, f = ¢(fx). Hence fy € Ay is a desired G-quasi-invariant
extension of f which belongs to A. O

Corollary 3.8. Let m: X — B be a marked GDF pg4-surface, let X; be one of the
surfaces in (8), and let S, € 81 be a pg-invariant set of top level fiber components in X;.
Consider a pq-quasi-invariant collection of natural local coordinates (z,up)rez, as in
Lemma 3.5. Then for any s > 1 one can find a pq-quasi-invariant function @ € Ox, (X))
of weight -1 such that

(i) @=wup modz® near F' if F' € F] and

(ii) @ =0mod 2z* near F' otherwise.
Proof. 1t suffices to apply Lemma 3.7 with Y = X;, G = ug, Z = (2°)*(0) being the
sth infinitesimal neighborhood of the union of the special fiber components in X;,
M) = (7! for € € g, and the function f € Oz(Z) defined in the affine charts Z n U
via flzav,, = urr|zau,, for F' € §) and f|zqu,, = 0 otherwise. O

3.5. Examples of GDF surfaces of Danielewski type. We start with the classical
Danielewski example.

Example 3.9 (Danielewski surfaces). The Danielewski surface X; results from the
affine modification g1: X7 - Xj of the affine plane Xy = A? = Speck[z,u] with the
divisor z = 0 and the center I = (z,u? —1). This consists in blowing up the points
x1=(0,1) and z_; = (0,-1) in A? and deleting the proper transform of the affine line
z=0. Letting Ag = Ox,(Xo) =K[z,u] and A; = O, (X;) one has

A= Ag[(v? - 1) /2] = K[z, u, t1]/(2t1 —u® + 1).
The projections my: Xo - B = Speck|[z] and 7: X7 — B are induced by the inclusions
k[z] = K[z,u] = K[z,u, (u? - 1)/z]. Thus, X is given in A% with coordinates (z,u,t;)
by equation

2t —u?+1=0.

The unique reducible fiber 77 (0) of the GDF surface m; = z|x,: X1 - B = A! consists of
two disjoint affine lines (components of level one)

Fi={z=0u=1} and F,={z=0,u=-1}.

The complement X; \ Fj for j #i gives a standard affine chart U; = A2 about F;. The

chart U; can be obtained via the affine modification of X; along the divisor z*(0) =
Fy + F_; with center the ideal V(F}) = (z,u—1). Thus,

Ouv,(Uy) = A1 [(u-1)/z] = K[z, uq] 22Whelre u=(u-1)/z=t1/(u+1).



Similarly, the standard affine chart on X; about F_; is
U.1=X;\Fy=SpecAi[(u+1)/z] =Speck[z,u_,] = A?

where z and u_y = (u+1)/z = t;/(u — 1) are natural coordinates in U_;. The locally
nilpotent vertical vector field

81 = z@/@u + 2u8/8t1

on X restricts to 9/du; in U;, i = 1,-1. The phase flow of 0; yields a free G,-action on
X;. Tt is sent under g; to the field do;(01) = 20y = 20/0u on Xj.

The second Danielewski surface X5 is obtained via the affine modification g9: X5 - X3
with the divisor z*(0) on X; and the center I = (z,t;) c A;. Thus, g consists in blowing
up X; at the points z1,; = (0,7,0) € F;, i = 1, -1 (the origins of the affine planes U; = A2
i = 1,-1) and deleting the proper transforms of the fiber components F; and F.;.
Letting t5 = t1/z one obtains

Ay = Ox,(Xo) = Ai[t1/2] = K[z, u, 2]/ (2%t —u* + 1).

Once again, X3 is a GDF surface with a unique reducible fiber z*(0) consisting of two
components of level 2. Iterating this procedure we arrive at a sequence of Danielewski
surfaces

X =Speck[z,u,t,,]/(z™tm —u?+1), m=1,2,...
along with a sequence of affine modifications fitting in (8)

om: Xm = X1,  (z,u,ty) = (z,u,t,1) where t, 1 = zt,,.

The only special fiber z*(0) in X, is reduced and consists of two components of level
m. The vector field z29/0u on X lifts to the locally nilpotent vertical vector field on
Xm,
O = 2™0[0u + 2ud [0ty .
Its phase flow defines a free G,-action on X,,. The latter action restricts in a standard
affine chart on X,, to the standard G,-action via shifts in the vertical direction.
The extended divisor Dex;m of a minimal completion 7: X,, - P! has dual graph

Fi
0 0 0 0 0 —QT
(1()) Pext,O : o—o0—0 resp., Fext,m Yoo @ F
Fo § K Fo S K
where m > 1 and a box stands for the chain [[-2,...,-2,-1]] of length m so that F;

ends with the (-1)-feather F; of level m, i =1,-1 (see Example 7.12).

Example 3.10. As an immediate generalization of the preceding example consider the
surface X, in A? with equation z™t,, —q(u) = 0 where ¢ € K[u] is a polynomial of degree
d > 2 with simple roots. This is a GDF surface with projection 7 = 2|y, : X, — Al
Letting X, = A% one has a sequence of affine modifications (8) where g;: X; — X 1,
(z,u,t;) = (z,u,t;i-y = zt;). The vector field z™0/0u on X, = A? lifts to the locally
nilpotent vertical vector field on X,,,

O = 2"0[0u + ¢'(u) 0]ty
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which generates a free vertical G,-action on X,,. The dual graph I'ex m of the pseudo-
minimal completion 7: X, - P! differs from the graph in diagram (10) in one aspect:
instead of two contractible chains F; and F_;, it has d such chains F;, j = .,d of
the same length m which are the branches of the fiber tree I'y(7) in the root Fo.

Example 3.11 (GDF surfaces given by equations). In A3 with coordinates (z,u,t;)
consider the surface X = {zt; —q;(u) = 0} where g = ¢; € K[u] is a polynomial of degree
d > 1 with simple roots ay,...,a4. The projection m = z|x,: X; — Al makes of X; a
GDF surface with a unique redumble fiber 771(0) consisting of d components Fi, ..., Fy
on level 1, see Example 3.10 with m = 1. The projection (z,u,t;) = (z,u) represents
X, as a result of the fibered modification p;: X; — Xy = A2 which contracts F; to the
point P; = (0,0;) € Xo,i=1,...,d.

Let further ¢ € K[u,t1] be such that, for each i = 1,...,d, either go(cv;,t1) € K[¢1] has

= deg g2(av;, t1) > 0 simple roots B 1, ..., Bim:, Or g2(,t1) =0; in the latter case we
let m; = 0. Consider the complete intersection V5 c A* given in coordinates (z,u,t1,%2)
by

zti—qui(u) =0, 2zt —qo(u,t1) =0.

There is a unique irreducible component X, of V5 which dominates the z-axis, while
the other components are disjoint affine planes contained in the hyperplane z = 0.
Let P,; = (0,a4,0;;) € Fi. The projection (z,u,t1,t2) = (z,u,t;) defines a fibered
modification oq9: X5 — X7 along the divisor z*(0) = ¢ | F; with a reduced center

UFUU Poi+...+Py,).

m;>0

The projection 7y = z|x,: Xo = Al makes of X5 a GDF surface with a unique reduced
fiber over z = 0. One has X5\ 751(0) 2o Al x AL, that is, mp: Xy - Al is a Danielewski-
Fieseler surface as defined in [19]. The fiber 7;1(0) c X, has d — ¢o components F; of
level 1 and ¢; = my + ... + myg components F; ; of level 2.

The graph F0(7T2) is a rooted tree with a root Fy of level 0, d vertices Fi,...,Fy
on level 1, and ¢y vertices Fzm 1= d, g = .m; > 0 on level 2 where F, j 1s
a neighbor of F;. Clearly, any rooted tree I’ of he1ght 3 can be realized as T'y(m).
Moreover, any Danielewski-Fieseler surface m: X — Al with I'y(7) 2 ' can be obtained
in this way.

The vector field z20/0u on X, = A? lifted to X5 extends in A* to a locally nilpotent
vector field

3(]2 0

0y = ch’)ﬁu + zq{(u)ai751 + (zaaq;( )+ —— o, (u tl)) e

The associated vertical G,-action on X5 is identical on the components F; of level 1

(which correspond to m; = 0) and is free on the components F; ; of level 2 and in the
complement X, \ 7;1(0).

By a recursive procedure one can realize in this way any Danielewski-Fieseler surface

(cf. [20]). For instance, in the case of the Danielewski surface X, from Example 3.10
one arrives at a system

zti—p(u) =0, zto-t1=0, ..., 2zty—tp1=0,

which reduces to a single equation z™t,, — p(z) = 0 defining the original proper embed-
ding X,, — A3.
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4. RELATIVE FLEXIBILITY
4.1. Definitions and the main theorem.

Notation 4.1. Let m: X — B be a GDF surface, and let X = X x Al be the cylinder
over X. We let

SAutp(X) = (exp(0) |0 e LND(Ox (X)), 9(z) =0)

be the subgroup of the group Aut(Xx’) generated by the exponentials of locally nilpotent
derivations in LND(X') which are automorphisms of X over B, cf. Section 1.1. For a
component F = F' x Al of 2*(0) in X any ¢ € SAutg(X') stabilizes the standard affine
chart Up x Al ¢ X about F with natural coordinates (z,up,v), see Proposition 3.3
and Definition 3.4. Furthermore, for any such F the restriction ¢|y,«a1 preserves the
volume form dz A dup A dv on Up x AL, that is, the Jacobian determinant of |y, «a
equals 1, see [2, Lem. 4.10].

Definition 4.2 (Relative flexibility). We say that the cylinder X = X x Al is relatively
flexible (RF, for short) if for any natural s > 1, any collection § of top level components
F = F x Al of 2#(0) in X, and any collection of pairs of ordered finite subsets ¥z =
{@1,...,xp} and X% = {2, ..., 2),} in F of the same cardinality M = M (F) > 0 where
F runs over §, there exists an automorphism ¢ € SAutg X which satisfies the conditions
() p(x,) = x!, with prescribed volume preserving s-jets at z,, v = 1,..., M(F)
provided these jets preserve locally the fibers of X — B;
(B) lupxat =id mod z* near F = F' x Al for any F ¢ §.

We say that the condition RF(l,s) holds for X if the relative flexibility holds for the
cylinder over the surface X; in (8) for a given s > 1.

Definition 4.3 (Equivariant relative flexibility). Let m: X - B be a marked GDF p4-
surface. We let X (k) denote the cylinder X = X xA! equipped with a product p4-action
where 14 acts on the second factor via (¢,v) = (*v for all v € Al and ( € pg. Assume
that the collection § of fiber components as in Definition 4.2 along with the finite sets
Y = Upeg Xr and ¥/ = Upeg X% are pg-invariant, and the correspondence Yz = ¥’ is
g-equivariant.

We say that X (k) is pg-relatively flexible if one can choose a pg-equivariant auto-
morphism ¢ € SAut,, g X as in Definition 4.2 provided that

() the collection of prescribed s-jets is jg-invariant;

(crp) if the stabilizer . c pg of F is nontrivial and z, € X is an isolated fixed point
of the p-action on F then z/, = z,, and the prescribed s-jet at x, is the one of
the identity.

If the cylinder &;(k) satisfies the above conditions for a given s > 1 then we say that
the pg-equivariant condition RF(l,k,s) holds for X.

The main result of this section is the following

Theorem 4.4. Consider a marked GDF' pg-surface m: X — B along with a trivializing
sequence (8). Then the pg-equivariant condition RF(l,-1,s) holds for X with arbitrary
s>1andle{0,...,m}.

The proof is done in Section 4.3.
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4.2. Transitive group actions on Veronese cones. Let us recall the notion of a
saturated set of locally nilpotent derivations (see [2, Def. 2.1]). For a vector field 0 on
a variety X and an automorphism g € Aut X we let Ad(g)(9) =dg(9)og!.

Definition 4.5 (Saturation). Consider an affine variety X = Spec A over k. A set N/
of locally nilpotent regular vector fields on X (that is, of locally nilpotent derivations

of the affine k-algebra A = Ox (X)) is called saturated if

(i) for any 0 € N and a € ker 9 the replica ad belongs to N, and
(i) Ad(g)(9) e N Vge G, VO e N where G = (expd|0 e N) c Aut A.

Lemma 4.6. Given a set N c Der A of locally nilpotent derivations satisfying (i)
consider the group G c Aut A as in (ii) generated by exp (N'). Then the set of locally
nilpotent derivations

Ni={Ad(9)(0)|geG, 0eN}

is saturated and generates the same group G.

Proof. Tt is not difficult to see that N satisfies (i). Let Gy = (expd|d € M) be the
group generated by N;. We claim that G; = G, and so, (ii) follows by the chain rule.
Indeed, an automorphism g € Aut X sends a vector field 0 on X into the vector field 0’
on X such that 0'(g(x)) = dg(d(x)) Yax € X. Hence 0" = Ad(g)(9). On the other hand,
if 0 is locally nilpotent with the phase flow exp(td) € Aut X, t € k, then for the phase
flow exp(td’) € Aut X, t € k, one has exp(td’) = g o exp(td) o g7. Since exp(t0) € G it
follows that exp(t0’) € G for any g € G and 9 € N. Thus exp(td’) € G for any 0’ € N,
and so, GG; = G, as claimed. O

4.7. Given ¢,d € N consider the affine plane A? = Speck[u, v] equipped with the pg-
action

(11) C(u,v) = (Cu, ) Ve pg.

This action is not effective, in general. However, it restricts to an effective action of the
subgroup . c pg where e = d/ ged(c,d). The quotient V, = A2/, = A%/ g is a Veronese
cone.

Consider also the locally nilpotent vector fields o; = Ua% and o9 = u% on A%2. The
associated one-parameter groups (u,v) ~ (u + tv,v) and (u,v) - (u,v + tu), t € k,
generate the standard SLg-action on A%. Notice that oy and oy are ug-invariant and
the pg-action on A? commutes with the SLo-action. Hence the SLjy-action descends to

the Veronese cone V.
Notation 4.8. Given s > 2 consider the ug4-invariant replicas
o1 =v¥f(voy of oy and o9y =u¥g(u?)oy of oy where f,gek[t].

Any vector field oy ; vanishes modulo v® on the axis v = 0. Hence ¢y = exp(oy,y)
fixes this axis pointwise along with its infinitesimal neighborhood of order s. Let
1y = exp(o2,). The subgroup

(12) G =(ps. ¥yl f.g€k[t]) c SAut(A?)
acts identically on the infinitesimal neighborhood of order s of the origin, is transitive
in A2\ {0}, and commutes with the pg-action (11) on A2.

Consider the normal subgroup H < G of all the automorphisms « € G of the from

(13) a=Qr- YooYy
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where ¢; = 5, and ¥; =1),,, @ =1,...,v verifying the condition
(14) ©1-@2-...py =1d.

Proposition 4.9. With the notation as before, let (Os,...,0n) and (Of,...,0%;)
be two collections of distinct pig-orbits in A? with card O; = card O} for i =1,..., M.
For every v = 1,..., M choose a representative x; € O;. In the case e = 1 suppose in
addition that the singletons O; and O] are different from the origin. Then there exists
an automorphism o € H such that
(i) «(0;)=0! fori=1,...,M and
(ii) « has prescribed values of volume-preserving s-jets at the points x;, i=1,..., M
provided that for e > 1 and O; = {0} for some i€ {1,..., M} this prescribed s-jet
at the origin is the s-jet of the identity. *

Proof. Consider the Veronese cone V, = A?/uq = SpecK[u,v]#, and let 0:A?2 — V, be
the quotient morphism. The cone V, is smooth outside the vertex 0 € V.. Since the
G-action on A? is transitive in A2\ {0} and commutes with the ug-action it descends to
a G-action on V, transitive in V, \ {0}. The pg-invariant locally nilpotent vector fields
015 and oy, also descends to V.. The set N of all these vector fields on V, satisfies
condition (i) of Definition 4.5. By Lemma 4.6 the group G c AutV, is generated as
well by a saturated set N; of locally nilpotent vector fields on the cone V.. Therefore
one can apply Theorems 2.2 and 4.14 from [2].

Suppose first that {0} is not among the O;’s. By [2, Thm. 2.2], G acts infinitely
transitively in V. \ {0}. Tt follows that there exists a € G which sends the points
yi = 0(0;) € V. into the points y, = (O}), i =1,..., M. Acting in A? this « transforms
the orbit O; into O} for every i = 1,..., M. Thus « verifies (i).

By [2, Thm. 4.14] one can find « € G verifying (i) with a prescribed volume-preserving
s-jet at each point y; = 0(0;) € Ve, i = 1,..., M. Since p is a local isomorphism near
a chosen point z; € O; over y; and near its image a(z;) € O one may prescribe a
volume-preserving s-jet of o at z; with the given zero term a(x;).

If e > 2 and, say, Oy = {0} then also O} = {0}. Indeed, any p.-orbit different from {0}
contains e > 1 points. Since oy ¢, 035, =0 mod (u,v)* for any f, g € K[¢], see Notation
4.8, one has a = id mod (u,v)* for any a € G. Thus automatically a(0) = 0 and,
moreover, the s-jet at the origin of any « € G is the one of the identity map.

In the case e = 1 one has V. = A? and every orbit O; and O} is a singleton different
from {0} by assumption. Then the argument in the proof works without change.

It remains to find such an automorphism in the subgroup H. Due to the infinite
transitivity of G in V, ~ {0} one can find 3 € G such that for every ¢ = 1,..., M the
image B(0(0})) is located in the line v = 0 in V.. By the preceding there exists a € G
such that oo 5(0(0;)) = B(0(0})) for all i = 1,..., M where « has prescribed volume
preserving s-jets at these points. Since § is volume-preserving (see [2, Lemma 4.10])
one can find oy = f7L oo 5:p(O;) = p(O}) with prescribed volume preserving r-jets
at the points y; = 0(0;),i=1,..., M.

Decomposing « as in (13) consider the automorphism ¢ = (¢1-...-p,)7! € G.
Since g - 1+ ... @, = id replacing ¢; by g o ¢1 one obtains an automorphism o' =
wo-a € H. The s-jet of o’ at each point 5(0(0O;)) is the same as the one of a. Indeed,

3Instead of prescribing the value of an s-jet in a single point of a pe-orbit one might prescribe a
te-invariant collection of s-jets at the points of the orbit.
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©0o(B(0(02))) = B(0(0})) since B(p(0})) c {v = 0}, and ¢, is identical on the sth
infinitesimal neighborhood of this line. Since the subgroup H < G is normal one has
o) = oao e H where of: p(0;) = p(O!) and o has prescribed volume preserving
s-jets at the points 0(0;), i=1,..., M. Thus, o € H satisfies both (i) and (ii). O

4.3. Relatively transitive group actions on cylinders.

Notation 4.10. Let m: X - B be a marked GDF pg4-surface, and let X; be one of the
surfaces in (8). We fix quasi-invariant natural coordinates in the standard affine charts
Ur in X so that the conventions of Lemma 3.5 and Remark 3.6.2 are fulfilled.

Fix also a pg-invariant collection § of top level fiber components in X;. For F' € § let
Fo be the pg-orbit of F'in X;. For s > 2 let @ = a(Fp) € Ox,(X;) be a jg-quasi-invariant
function of weight — which verifies conditions (i) and (ii) of Corollary 3.8. Let 0, be
the pg-quasi-invariant vertical vector field of weight [ on X; as in Lemma 3.1. Given
f, g € K[t] consider the pg4-invariant locally nilpotent derivations of the algebra Ox, (A)),

(15) Grp=v™ " f(uN)d and &y, = a% M g(at)0/0v.
Letting F' run over § the corresponding automorphisms

or =exp(d1,r) and zzg = exp(d2,)
in SAut,, g X;(-1) generate a subgroup

(16) G5 = (s, Uy f, g € K[t]) c SAut,, 5 Xi(-1)

contained in the centralizer of the cyclic group induced by the pg-action on Xj(-1).
Consider further the normal subgroup Hz < Gy,

(17) Hy={a=@ U1-...-@y-1h, €Gg|@1-...- @, =id} .
For 4 = u(Fp) one has % =0 mod z* in Up x Al near F' = F' x Al for any F" ¢ §, see

condition (ii) in Corollary 3.8. Hence 1;9 =id mod z®in Up x Al near F' for any F’ ¢ §
and any g € K[t]. Due to (17) for any & € Hz one has

(18) oy at = (@101 @u )|y =id mod 20 V' ¢F.

Definition 4.11 (s-reduced automorphism). Let F' c X; be a special fiber component
and Ur be the standard affine chart about F in X;. Consider the affine chart U x Al
about the affine plane F = F' x Al ~ A% in the cylinder Xj(-l). The subgroup Gz c
SAutp AXj(-1) preserves every fiber of the A%-fibration X;(-!) - B and, moreover, every
fiber component. Hence any a € Gz preserves the affine chart Up x Al (cf. Proposition
3.3). Choosing natural coordinates (z,u,v) in Up x Al the restriction a|y,.a1 can be
written as

a|ypxar: (z,u,v) (z, izifi(u,v), izigi(u,v)).
We say that a is s-reduced if fi=...= fsl;ogl =...= g:i 0, that is,
(19) a(z,u,v) = (2, fo(u,v), go(u,v)) mod z*
in any such affine chart Up x Al in &j(-1).

Lemma 4.12. (a) A composition of s-reduced automorphisms is again s-reduced.
(b) Any automorphism & € Hg is s-reduced.

Proof. The proof of (a) is straightforward. To prove (b), due to (a) it suffices to show

that ¢ = @5 and ¢ = 1, are s-reduced for any f, g € k[t]. However, the latter is true
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only in the top level affine charts. Indeed, in a standard affine chart Up on level I’ <
in X; one has 9|y, = 20/0u (see Remark 3.6.1). Hence

(20) Plupxar = €xp (vds”f(vd)a/(?u): (z,u,v) (z, u+ 2V f (v, v)

is s-reduced if I’ = [, that is, in any top level affine chart.
Since 1|y, =u mod 2* if I’ =1 and 4|y, =0 mod z* otherwise, near the affine plane
F c Up x A one has

(21) Y|upxar = €xp (@ f(ah)o/ow): (z,u,v) = (z,u,v +u™g(u?)) mod z*

if I’=1and 1;|UFxA1 =id mod z° otherwise. In particular, any 1 € Gy is s-reduced. It
follows that any automorphism

=@y Py, € Gy
is s-reduced in every top level affine chart Up xAl. If F has level I’ <[ then 1@'|UFxA1 =id
mod z° Vi=1,...,v. Hence for any & € Hz one has by (18)

Aupxat = (P17 Pu)|upxar =id - mod 2%,

that is, a is s-reduced. O

Proposition 4.13. Let § be a pg-invariant collection of top level components F =
Fx Al c X(-1) of z7(0), and let ¥, 3" c Ugez F be two pg-invariant finite sets which
meet every special fiber component F € § with the same positive cardinality. Assume
that for some s > 0 at each point x € X nF we are given a volume preserving two-
dimensional s-jet j, of an automorphism F — F such that

e the zero term of j, runs over X' when x runs over ¥;
e the collection (j;)ees commutes with the pg-action on X (=1);
o ife =e(F)=d[ged(d,l) > 1, see 4.7, and xq € F nX is a fized point of the
stabilizer p. of F in pg then j,, is the s-jet of the identity.
Then there ezists a (uq-equivariant) automorphism & € Hg such that

(i) a(X) =3,

(ii) & has the prescribed two-dimensional s-jets at the points of ¥;

(ili) &|ypxar =id mod 2 VF ¢ 3.

Proof. Let F € §, and let pug(F) be the pg-orbit of F in Xj(-1). It suffices to construct
such an automorphism & € Hz assuming that § consists of the components from the
orbit pg(F). Indeed, then & € Hg coincides with the identity modulo z® near any
special fiber component F’ ¢ §. Composing such automorphisms & for different top
level orbits one obtains a desired automorphism in the general case.

Furthermore, if (i) and (ii) hold for a special fiber component F then they automat-
ically hold for any special fiber component F’ € pq(F) due to the ug-invariance of the
conditions and the pg-equivariance of the automorphisms & € Hz. Hence it suffices to
take care of a particular F € § equipped with two collections of orbits {O; n F}.q .
and {O! n F};.y,.., of the stabilizer p. of F in pg4, see Proposition 4.9. Let Up x Al
be the standard affine chart about F equipped with p.-quasi-invariant natural local
coordinates (z,ur,v). Due to Remark 3.6.2 for e = 1 one may assume O; # {0} Vi as
needed in Proposition 4.9, see Notation 4.10.

29



Comparing (20) and (21) with (12) in Notation 4.8 one can see that the automor-
phisms ¢y, 1), € Hy restrict to

ilr=pr and lr =1y,
respectively, where ¢ and 1, run over the generators of the subgroup G c SAut,,,(F)
when f, g run over K[t]. Let H < G be as in 4.8. Applying Proposition 4.9 one can
find an automorphism a = @191 -... @, -1, € H satisfying in the affine plane F = A2
conditions (i) and (ii) of this proposition. Extending every ¢; to $; € Hy and ¢; to

1; € Hg one obtains an s-reduced automorphism & = @191 -...- ¢, -1, € Hg, see Lemma
4.12(b). Since & also satisfies (18) in Notation 4.10 then (iii) holds, and so, & is a
desired automorphism. O

Proof of Theorem 4.4. Let m: X — B be a marked GDF pg4-surface. We have to
show that the pg-equivariant condition RF (I, -[, s) holds for X whatever are s > 1 and
1 €{0,...,m}. It suffices to show that, given any pgs-invariant collection § of top level
special fiber components in X; and any two finite sets 2,3’ ¢ Upez F with the same
fg-orbit structure and with cardXp = card X7, > 0 VF € § where Xp = X n F, there
exists ¢ € SAutg Aj(—1) such that the pg-equivariant versions of conditions () and (/3)
in Definition 4.2 are fulfilled.

By Proposition 4.13 one can find ¢ € Hy c SAut,, g Xi(-1) verifying (i) and (ii) of
Proposition 4.9 and condition (18). That is, ¢ is pg-equivariant, s-reduced, verifies
(18), sends X to X', and has prescribed 2-dimensional r-jets (in the vertical planes)
in the (chosen) points on each pg-orbit in X. Since ¢ is s-reduced it has as well the
prescribed volume preserving three-dimensional s-jets in the given points. Hence ¢
satisfies conditions (o), (a1), and (ag) of Definitions 4.2 and 4.3. Due to (18), ¢
satisfies also condition (/) of Definition 4.2. O

4.4. A relative Abhyankar-Moh-Suzuki Theorem. We need in the sequel the
following version of the Abhyankar-Moh-Suzuki Epimorphism Theorem.

Proposition 4.14. Let m: X — B be a GDF surface, let {F},...,F;} be a collection
of top level special fiber components in X, and let F; = F; x AL =A% i=1,...,t, be the
corresponding components of the divisor z*(0) in the cylinder X. For everyi=1,...,t

we fix in F; a curve C; 2 Al. Then there exists an automorphism o € SAutg(X) such
that a(C;) = F; x {0}, 1=1,...t.
Proof. Choose i € {1,...,t}, and let F = F;, F = F;, and C = C; ¢ F. Our assertion
follows by induction on ¢ from the next claim.
Claim. There ezists an automorphism § = B; € SAutg(X') such that 5(C) = F x {0}
and B(F' x{0}) = F" x {0} for any special fiber component F' + F.
Indeed, to deduce the assertion it suffices to apply this claim successively forz=1,...,t.
Proof of the claim. By Corollary 3.8 one can find @ € O(X) such that

(i) @|p = up where up is an affine coordinate on F;

(ii) @|p =0 for any F' # F.
Consider the locally nilpotent derivations on Oy (X),

0

01:81 and 0'2:'&—

Ov
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where [ is the highest level of the special fiber components of X and 0, is a vertical
locally nilpotent vector field on X as in Lemma 3.1 so that 9,(z) =0 and 9| = 9/0ur.
Consider the replicas

o15=f(v)oy and oy,=g(0)oy where f,geKk[t].

Their exponentials

or=exp(o1y), Y,=exp(oa,)€SAutpd
generate a subgroup H c SAutg X. In the affine plane F = Speck[ur,v] one has

(pf|]:: (uF7U) = (uF + f(’U),U) and ¢g|f: (UF7U) = (uF7U + qu(uF)) :
In particular, H|z contains all the transvections, hence also the group SL(2,%). For
F'’ # F by virtue of (ii) the group H|s is generated by the shears p¢|z. It follows that

o H|r =SAut F 2 SAut A% and
e the coordinate line F’ x {0} c F’ stays H-invariant for any F’ # F.

Now the claim follows by the Abhyankar-Moh-Suzuki Theorem. 0

The next lemma allows to interchange the u- and v-axes in the top level special fiber
components of X - B.

Lemma 4.15. Let m: X — B be a marked GDF pg-surface, let X; be one of the surfaces
in (8), and let {(z,ur)} be a quasi-invariant system of natural local coordinates in the
standard local charts Ug about the special fiber components F in X;. Given s> 1 there
exists a jg-equivariant automorphism T € SAutg X (=1) such that

o Tlypxat: (2,up,v) = (2,v,-up) mod z° for any top level F';
o Tlyxat =1id mod z° for any F of lower level.
Proof. Likewise in (15) we let
(22) 5'1 = Ual and 5’2 = —7:68/8'11
where 0; is the vertical vector field on X; as in Lemma 3.1 and @ € Oy, (Xi(=1)) is a
pa-quasi-invariant of weight I verifying conditions (i) and (ii) of Corollary 3.8. Letting
p=exp(dy1) and 1 =exp(d2) by virtue of (i) and (ii) one obtains
Plupxar: (z,up,v) > (2,up +v,v) mod z°
and .
Ylypxar: (z,up,v) = (z,up,v —up) mod 2°
if Fis of top level and 9|y, = id mod z* otherwise, cf. (20) and (21). Letting
T = @ one gets
Tlupxat: (z,up,v) = (z,v,—up) mod 2°

if F'is of top level and 7|y, «ar =id mod z* otherwise. 0J

We need as well the following versions of Lemma 4.15.

Lemma 4.16. Under the assumptions of Lemma 4.15 consider a pq-invariant subset
Y c{b,...,b,} =271(0). Given a collection §x(l) of top level special fiber components
in 1 () c X, there exists a pq-equivariant automorphism T € SAutg X;(=l) such that

(23) Tlupxat: (z,up,v) » (2,v,—up) mod 2°
if Fe§y(l) and T|yxar =id mod 2% otherwise.
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Proof. Choose a pg-invariant h € Og(B) such that A —1 =0 mod z° near each point
bi € T and h =0 mod 2% near each point b; ¢ T. Denote by the same letter the lift of h
to &;. For the regular ug4-quasi-invariant vector field 9, of weight [ on Aj(-[) one has
0;(h) =0 and Oh/Ov =0. Let @ € O(X) be as in Corollary 3.8 and &;, ¢ = 1,2 be as in
(22). Then the locally nilpotent vector fields

(24) 5‘17]1 = h5'1 and 5‘27]1 = h&g

on Xj(-1) are pg-invariant. Using these derivations instead of &;, i = 1,2 and proceeding
as in the proof of Lemma 4.15 yields the result. O

5. RIGIDITY OF CYLINDERS UPON DEFORMATION OF SURFACES

5.1. Equivariant Asanuma modification. In the next lemma we introduce an equi-
variant version of the Asanuma modification. For the reader’s convenience we repeat
in (a) the statement of Lemma 1.7.

Lemma 5.1. Let m: X — B be a GDF surface, and let o: X' - X be a fibered modifi-
cation along a reduced principal divisor div f where f € m*Opg(B) ~ {0} with center a
reduced zero-dimensional subscheme V(I) where I ¢ Ox(X) is an ideal, see Definition
2.22. Consider the principal divisor D = V(f) x Al on the cylinder X = X x Al and
the ideal J = (I,v) c Ox(X) with support V(1) x {0} cV(f) x{0}. Then the following
holds.
(a) The cylinder X' = X' x Al is isomorphic to the affine modification Z of X along
the divisor D with the center J. This isomorphism fits in the commutative
diagram

X — 7 —X

2 NV

B
where the vertical arrows are A2-fibrations over B.

(b) Assume that the modification o: X' — X is equivariant with respect to actions of
a finite group G on X, X', and B and, moreover, the ideal I is G-invariant and
the function f is G-quasi-invariant and belongs to a character x € GV. Define
the G-action on the factor Al of the cylinder X = X x Al via the multiplication
by a character A € G¥. Then the morphisms in (25) are G-equivariant where G
acts on the factors Al of the cylinder X' = X' x Al via the multiplication by A/x.
In particular, if G = g, x:¢~ Ct, and X\:{ — C¥ then N\[x:(— ¢kt V(€ py.

Proof. For the proof of (a) see Lemma 1.7. Statement (b) follows since under its
assumptions the variable v’ in the proof of Lemma 1.7 belongs to A, hence v = v’/ f
belongs to A/x. O

Definition 5.2 (Asanuma modifications). The upper line in (25) yields an affine mod-
ification X’ - X called an Asanuma modification of the first kind. Its center is a
reduced zero-dimensional subscheme of X.

We call an Asanuma modification of the second kind an affine modification X" - X
of the cylinder X = X x Al over a marked GDF surface m: X - B along the divisor D =
(fom)*(0) on X where f e Op(B) {0} with a one-dimensional center V() c X x {0}
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where I = (f,v) c Ox(X). Due to the next lemma the latter modification results in a
cylinder isomorphic to X over B.

5.3. Let mX — B be a marked GDF pg-surface with a marking z € Op(B) \ {0}.
Recall (see Definition 4.3) that X' (k) stands for the cylinder X = X x Al equipped with
a product pg-action where jig acts on the second factor via (¢,v) ~ (*v for v € Al and
¢ € ug. By abuse of notation we still denote by 7 the p4-equivariant projection of the

induced A?-fibration X' (k) - B.

Lemma 5.4. In the notation of 5.2-5.3 consider an Asanuma modification of the
second kind X" — X. Then the following hold.
(a) There is an isomorphism X" zp X.
(b) If m: X — B is a marked GDF pg4-surface with a marking z € Og(B)~{0}, f = z,
and X = X(k) then X" =X"(k-1).
(c) Let things be as in (b). Consider a second marked GDF' pg4-surface n': X' - B
with the same marking z € Og(B) N\ {0}, and let X' = X' x Al where Al =

Speck[v']. Assume that for some natural r there is an equivariant isomorphism
o X (1) L) X'(r) such that p:(v") =v mod 2% where s >d. Then for any k €

Z there is an equivariant isomorphism py: X (k) L) X'(k) such that @i (v') = v
mod 2574,

Proof. (a) Indeed, the affine modification X" - X amounts to
(26) Ox(X) = Oxn(X") = Ox(X)[v]f] = Ox(X)[v"] where v" =v/f.

(b) Under the assumptions of (b) one has (.v" = (¥~1v” for any ( € pgq.

(c) Consider first the case k = r—1. Let I = (z,v) c Ox(X) and I’ = (z,v") c Ox(X").
Under our assumptions one has ¢ (I') = I. By virtue of Lemma 1.5 the isomorphism ¢,
lifts to an equivariant isomorphism, say, ,_; of the affine modifications of the cylinders
X and X7 along the divisors z*(0) with the ideals I and I’, respectively. By (b) this
leads to a commutative diagram

X(r-1) 2= X'(r-1)

|

X (r) —2e ()

$Pr
where the vertical arrows are the corresponding Asanuma modifications of the second
kind and ¢* ;(v'/z) = v/z mod z*~1. Since the sequences (X (k))rez and (X'(k))rez
are both periodic with period d the recursion on k£ ends the proof. O

Remark 5.5. Let o: X’ - X be a fibered modification as in Lemma 5.1. Consider
the product modification of cylinders ¢ = p x id: X" - X followed by the Asanuma
modification of the second kind X" — X’ with f = z. This yields an affine modification
X" — X factorized as in Remark 1.4.2. Identifying X’ and X" via an isomorphism
as in Lemma 5.4 gives an Asanuma modification of the first kind g: X’ - X’ such that
0 = 0|x/xgoy- Under this correspondence the conclusions of Lemmas 5.1(b) and 5.4(c)
agree in the pg-equivariant setting.

5.2. Rigidity of cylinders under deformations of GDF surfaces. Form Lemma
5.1 we deduce the following corollary.
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Corollary 5.6. (a) Consider a marked GDF pg-surface m: X — B along with a
trivializing pg-equivariant sequence (8) of fibered modifications, see Corollary
2.27(b). Given l e {1,...,m} and k € Z the fibered modification o;: X; — X4
as in (8) along the divisor z*(0) with a center, say, I; induces a pg-equivariant
Asanuma modification of the first kind o;: Xj(k) - Xj_1(k +1) over B along the
divisor z*(0) on X,_y with the center J, = (I;,v), cf. Lemma 5.1.

(b) Consequently, (8) yields a sequence of pq-equivariant affine modifications

27)  Xp(=m) 25 X (cm+ 1) — . — X (=1) 25 X(0) = (B x A2)(0).
Proof. The statement of (a) follows by Lemma 5.1 and (b) is immediate from (a). O
The next theorem is the main result of this subsection.

Theorem 5.7. Let m: X - B and ": X' - B be two marked GDF' pgq-surfaces with the
same pg-quasi-invariant marking z € Og(B) ~ {0} of weight 1. Assume that for some
trivializing pg-equivariant completions (X, b) and (X’, D) of X and X', respectively,
the graph divisors D(7t) and D(7") are pg-equivariantly isomorphic (see Definition
2.21). Then for any k € Z there is a pq-equivariant isomorphism X (k) 2,, 5 X'(k). In
particular, X(0) 2,, g X'(0).

Proof. The trivializing sequences (27) associated with the GDF surfaces X and X',
respectively, start both with the same product A,(0) = (B x A?)(0) = A{(0). Using
Proposition 5.8 below one shows by induction on [ that for any [ =0,...,m there is a
fg-equivariant isomorphism ¢;: Xy (=1) Lap X/(-1). In particular, for I = m one obtains

an isomorphism ,,: X' (-m) Ll X’(-m). Then by Lemma 5.4(c) for any k € Z one
gets a jig-equivariant isomorphism X' (k) 2, g X'(k). O

The following proposition provides the inductive step in the proof of Theorem 5.7.

Proposition 5.8. Under the assumptions of Theorem 5.7 suppose that for some [ €

{0,...,m — 1} there exists a pg-equivariant isomorphism 1 X;(=1) L) X/ (=1) such

that
(i;) the induced correspondence between the special fiber components of m and ] is
the restriction of the isomorphism D(#) — D(7');
(i) 97 (v]) = vymod 2* where s >0 and vy (v], respectively) is an affine coordinate in
the Al-factor of the cylinder X,(=1) (X/(-1), respectively).

Then there exists a jq-equivariant isomorphism ¥ 1: X1 (=1 -1) Loy X/ (-1-1) such
that
(ij41) the induced correspondence between the special fiber components of m,1 and T
is the restriction of the isomorphism D(#) —> D(7');
(ilr1) ¥4 (v]41) = v mod (2571).

Proof. The morphism g;,1: X;31 = X in (8) is a ug-equivariant affine modification along
the reduced principal divisor V(z) = z*(0) on X; with a reduced center I where V()
is the union of a finite set ¥ ¢ X; and the components of V(z) disjoint from ¥, cf.
Remark 2.23. Notice that X is contained in the union of the top level components
F of V(z). Let §x be the set of the top-level components F = F x Al which meet
¥ x {0}. By Lemma 5.1, g;,; induces a pg-equivariant Asanuma modification of the
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first kind gj1: Xpy1 (=1 — 1) — X;(=1) with the principal divisor V(z) x Al and center
V(I) x {0} c X;(-I) consisting of a ug-invariant finite set X x {0} and a pg-invariant
union C' of curves isomorphic to Al such that Cz = C'nF is given by equation v; =0 in
each component F = F' x Al ¢ §x. Thus, C c {z =v; =0} in X)(-1). For any F € §x we
let

(28) Z}‘ZFQ(EX{O})2{1'1,...,122']\/[(]:)}.
There is a similar collection of objects related with X’ instead of X. In particular, one
has a modification g}, : &/,,(={-1) - &/(~1) with the divisor V(z) x Al and the center
V(I') x {0} consisting of a ug-invariant finite set 3’ x {0} and a pg-invariant union C”
of curves C7, = Al.

By virtue of (i;) the jig-equivariant isomorphism D(7) — D(n’) of graph divisors
yields a one-to-one correspondence F ~ F' between the components in §y and in §.,
so that (see (28))

M(f):carde:carde:M(ZF') VFeSs.

By virtue of (ii;), 1, sends the pair (X;(-1),V(2) xAl) to the pair (X/(-[),V(2) xAl)
and C to C’, but not in general ¥ x {0} to ¥’ x {0}. To get a bijection between the
centers X and Y’ of modifications we will replace v; by a composition ¢; o ¢; with a
suitable jiq-equivariant automo