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TOPOLOGY OF ANGLE VALUED MAPS, BAR CODES AND
JORDAN BLOCKS.

DAN BURGHELEA AND STEFAN HALLER

Abstract. In this paper one presents a collection of results relating the “bar

codes” and “Jordan blocks”, a new class of invariants for a tame angle valued
map, with the topology of underlying space (and map). As a consequence one

proposes refinements of Betti numbers and Novikov–Betti numbers provided

by a continuous real or angle valued map defined on a compact ANR. These
refinements can be interpreted as monic polynomials of degree the Betti num-

bers or Novikov–Betti numbers. One shows that these polynomials depend

continuously on the real or the angle valued map and satisfy a Poincaré dual-
ity property in case the underlying space is a closed manifold. Our work offers

an alternative perspective on Morse–Novikov theory which can be applied to

a considerably larger class of spaces and maps and provides features inexistent
in classical Morse–Novikov theory.
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1. The results

In this paper a nice space is a friendlier name for a locally compact ANR. In par-
ticular a metrizable, locally compact, finite dimensional locally contractible space
is nice. Finite dimensional simplicial complexes and finite dimensional topological
manifolds are nice spaces but the class is considerably larger. A tame map is a
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2 DAN BURGHELEA AND STEFAN HALLER

proper continuous map f : X → R or f : X → S1, defined on a nice space X which
satisfies:

(i) each fiber of f is a neighborhood deformation retract,
(ii) away from a discrete set Σ ⊂ R or Σ ⊂ S1 the restriction of f to X\f−1(Σ)

is an Hurewicz fibration, cf. [1].

All proper simplicial maps, and proper smooth generic maps defined on a smooth
manifold 1, in particular proper real or angle valued Morse maps, are tame.

The subspace of tame maps is residual in the space of continuous maps when
equipped with the compact open topology and weakly homotopy equivalent to the
space of all continuous maps (equipped with compact open topology)2.

Since our invariants are based on homology we fix once for all a field κ and write
Hr(X) for the singular homology of X with coefficients in κ. A vector space without
additional specifications will be over the field κ.

We consider a tame map, f : X → S1, and as in [1] associate to it:

(i) the critical angles 0 < θ1 < θ2 < · · · < θm ≤ 2π,
and for any r = 0, 1, . . . ,dimX,

(ii) four type of intervals of real numbers, subsequently called r-bar codes,
r = 0, 1, · · · whose ends mod 2π are the critical angles
(1) closed [a, b],
(2) open (a, b),
(3) closed–open [a, b),
(4) open–closed (a, b],
and

(iii) a collection of Jordan blocks, i.e. isomorphism classes of indecomposable
pairs J = (V, T ), V a finite dimensional κ-vector space, T a linear isomor-
phism.

We will denote by Bcr(f), Bor(f), Bcor (f), Bocr (f) the collections (multisets) of closed,
open, closed-open and open-closed r-bar codes and by Jr(f) the collection of r-
Jordan blocks. Each bar code or Jordan block appears in its collection with a
multiplicity possibly larger than one. For u ∈ κ \ 0 we denote by Jr,u(f) the sub
collection {(V, T ) ∈ Jr(f) | u ∈ spect(T )}.

In the Appendix the reader can see an example. As shown in[1] these invariants
are effectively computable.

In this paper the bar codes will be recorded as the finite configurations of points
in C \ 0, denoted by Cr(f) and Cmr (f)3respectively, see below.

A pair (V, T ) as in (iii) above is indecomposable if not isomorphic to the sum of
two nontrivial pairs. Note that if T has λ ∈ κ as an eigenvalue all other eigenvalues

1here ”generic” means that for any x ∈ M the quotient algebra of germs of smooth functions

at x by the ideal of partial derivatives is a finite dimensional vector space
2we are unable to locate a reference in literature for this statement, however in case that the

space X is homeomorphic to a finite simplicial complex, it is a straightforward consequence of the

approximability of continuous maps by pl-maps
3actually Cm

r (f) is a configuration of points in C \ {S1 t 0}



TOPOLOGY OF ANGLE VALUED MAPS, BAR CODES AND JORDAN BLOCKS. 3

are equal to λ and (V, T ) is isomorphic to (κk, T (λ, k)) where

T (λ, k) =



λ 1 0 · · · 0

0 λ 1
. . .

...

0 0
. . . . . . 0

...
. . . . . . λ 1

0 · · · 0 0 λ


.

(1)

In [1] the indecomposable pairs (κk, T (λ, k)) were called Jordan cells. When κ
is algebraically closed all Jordan blocks are Jordan cells.

Each tame map with X compact has finitely many bar codes and Jordan blocks.
These type of invariants, are based on changes in the homology of the fibers and

have been introduced in [4] and [1] using graph representations (in [4] only for real
valued maps).

Let ξf ∈ H1(X; Z) be the integral cohomology class represented by f . The first
result we prove in this paper is:

Theorem 1.1 (Homotopy invariance). If f : X → S1 is a tame map then:

(1) ]Bcr(f) + ]Bor−1(f) is a homotopy invariant of the pair (X, ξf ), more precisely
equal to the Novikov–Betti number βNr (X, ξf ) (see the definition in Section 4).

(2) The collection Jr(f) is a homotopy invariant of the pair (X, ξf ). More pre-
cisely,

⊕
J∈Jr (V (J), T (J)) is the monodromy of (X; ξf ) (see the definition in

Section 4).
(3) ]Bcr(f) + ]Bor−1(f) + ]Jr,1(f) + ]Jr−1,1(f) is a homotopy invariant of X, more

precisely the Betti number βr(X).

Here ] denotes cardinality of multi set. Item (3) has been already established
in [1] and is included in Theorem 1.1 only for the completeness of the topological
information derived from bar codes and Jordan blocks.

In view of Theorem 1.1 it is natural to put together Bcr(f) and Bor−1(f). For
this purpose consider T = C/Z and ∆T = ∆/Z where the Z-action on C is given
by (n, z) = z + (2πn + i2πn) and ∆ = {z = a + ib | a = b}. We will record
the collections Bcr(f) t Bor−1(f) as a finite configuration of points in T, denoted
by Cr(f), and the collection Bcor (f) t Bocr (f) as a finite configuration of points in
T \∆T, denoted by Cmr (f). Precisely in the first case a closed r-bar code [a, b] will
be written as the complex number z = a + ib mod the action of Z and an open
(r − 1)-bar code (α, β) as the complex number z = β + iα mod the action of Z.
Similarly, in the second case, a closed-open r-bar code [a, b) will be written as the
complex number z = a + ib mod the action of Z and an open-closed r-bar code
(α, β] as the complex number z = β + iα mod the action of Z.

In Section 4 we will provide a direct definition of the configuration Cr(f) of
which we derive the r−closed and (r − 1)−open bar codes of f and in Section 7
we will do the same for the configuration Cmr (f). The direct definition of Cmr (f) is
essentially a reformulation of the definition of persistence diagrams used in [5] but
the one for Cr(f) is not closed to anything considered so far. It should be noticed
that the configuration Cr(f) makes sense for any continuous map and implicitly
the close and open bar codes can be defined for any such map.
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In view of Theorem 1.1 if f is in the homotopy class defined by ξ ∈ H1(X; Z) then
the configuration Cr(f) has the support of cardinality4 exactly βNr (X; ξ), see below,
and can be regarded as a point in the n-fold symmetric product Sn(T), n = βN (X, ξ)
of T. Note also that T can be identified to C\0 via the map z → eiz−

(z+z)
2 . Therefore

each Cr(f), and in fact any element of Sn(T), can be regarded as a monic polynomial
P fr (z) of degree n with non-vanishing free coefficient, hence Sn(T) identifies to
Cn−1 × (C \ 0). We equip Sn(T) with the topology of the symmetric product or
equivalently with the topology of Cn−1 × (C \ 0).

Let C(X,S1) denote the space of all continuous maps equipped with the compact
open topology and let Cξ(X,S1) be the connected component corresponding to ξ.
Let Cξ,t(X,S1) be the subspace of tame maps in Cξ(X,S1). Our next result and in
some sense the least expected is the following theorem.

Theorem 1.2 (Stability). The assignment Cξ,t(X,S1) 3 f  Cr(f) ∈ Sn(T),
n = βNr (X, ξ), is continuous. Moreover, if X is homeomorphic to a simplicial
complex, it extends to a continuous assignment Cξ(X,S1) 3 f  Cr(f) ∈ Sn(T).

The configuration Cr(f), equivalently the polynomial P fr (z), can be viewed as a
refinement of the r-Novikov–Betti number. The Poincaré duality for closed mani-
folds extends from Novikov–Betti numbers to these refinements and we have:

Theorem 1.3 (Poincaré duality). If Mn is a closed κ-orientable5 topological mani-
fold with f : M → S1 a tame map then Cr(f)(z) = Cn−r(f)(z−1) where S1 is viewed
as the set of complex numbers of absolute value equal to 1, f : X → S1 ⊂ C denotes
the composition of f with the complex conjugation and Cr(f) and Cn−r are viewed
as configurations of points in C \ 0.

The proofs of Theorems 1.2 and 1.3 we provide use an alternative definition
of the configuration Cr(f). More precisely, one defines the function δfr on T with
values in Z≥0, one checks that it is equal to the configuration Cr(f) and one verifies
Theorems 1.2 and 1.3 for δfr instead of Cr(f).

Similarly, the Jordan blocks introduced in [1] via graph representations, can
be recovered in a different manner, more precisely, as the regular part of a linear
relation, as stated in Theorem 1.4 below.

Recall that a linear relation R : V  V , concept generalizing linear map, dis-
cussed in more details in Section 8, has a canonical linear isomorphism Rreg : Vreg →
Vreg associated with it, cf. Section 8. We continue to write Rreg for the pair
(Vreg, Rreg).

Given a tame map f : X → S1 the infinite cyclic covering f̃ : X̃ → R is defined
by the pullback diagram

X̃

��

f̃ // R

��
X

f // S1.

4the cardinality of the support of a configuration is the sum of the multiplicities of its points
5If κ has characteristic 2 any manifold is κ-orientable if not the manifold should be orientable.
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For any θ ∈ S1 regular angle, one obtains a linear relationRθr by passing to homology
in the diagram

f−1(θ) = f̃−1(θ̃) ↪→ f̃−1
(
[θ̃, θ̃ + 2π]

)
←↩ f̃−1(θ̃ + 2π) = f−1(θ).

Here the real number θ̃ ∈ R corresponds to the angle θ. We have the following
theorem.

Theorem 1.4. If f is a tame map then for any angle θ, and any r, nonegative
integer, the pair (Rθr)reg is isomorphic to

⊕
J=(V,T )∈Jr(f)(V, T ).

Finally we note that the collection Bcor (f) can be identified to the collection of
persistence intervals considered in [12] or [5] for the map f̃ : X̃ → R, made equiv-
alent modulo 2π−translation. Similarly the collection Bocr (f), after changing (a, b]
into [−b,−a) can be identified to the collection of persistence intervals of −f̃ . The
stability result of [5] can be reformulated as a stability result for the configuration
Cmr (f). The configurations Cmr (f)s do not have the supports of constant cardinality
when f varies in a fixed homotopy class. To give meaning to ”stability” the set
of finite configurations of points in T \ ∆T has to be equipped with the topology
induced from the bottle neck metric introduced by the authors of [5]. This metric
can make arbitrary ”close” configurations with supports of different cardinality,
provided the difference is caused by points close to ∆T. A statement of the result
in [5] (in a slightly weaker form), in terms of the configuration Cmr (f) is provided
in Section 7, see Theorem 7.1. In this case one can not extend the assignment
f  Cmr (f) continuously to the entire space Cξ(X; S1).

Poincaré duality holds for the configuration Cmr (f) but in analogy with the
Poincaré duality for the torsion of the integral homology for closed orientable man-
ifolds. Precisely we have the following result.

Theorem 1.5. (Poincaré Duality) If Mn is a closed κ-orientable topological man-
ifold and f : M → S1 a tame map then Cmr (f)([a, b]) = Cmn−1−r(−f)([−a,−b]) with
[a, b] denotes the image of (a, b) in T.

When f is real valued Cr(f) and Cmr (f) can be considered as a finite configura-
tion of points in R2 without passing to T. The cardinality of the support of Cr(f)
is the standard Betti number βr(X), the Poincaré dualities become Cr(f)(a, b) =
Cn−r(−f)(−a,−b) and Cmr (f)(a, b) = Cn−1−r(−f)(−a,−b) and there are no Jor-
dan blocks. These configurations can be recovered from the information derived
via zigzag persistence proposed in [4].

We like to regard the elements (i), (ii), (iii) associated to a tame angle valued map
f : X → S1 in analogy to the rest points, the isolated trajectories between rest points
and the closed trajectories (actually Poincaré return maps for closed trajectories)
of gradg f when (M, g) is a closed Riemannian manifold and f : M → S1 a Morse
map. These are the elements which enter the classical Morse–Novikov theory.

The generality of the class of spaces and maps which our theory can handle,
the finiteness of the number of the elements (i), (ii) and (iii), the computability (by
implementable algorithms) at least for X simplicial complex and f simplicial map),
cf. [1], end especially the robustness of Cr(f) to small perturbations of f, make this
theory “computer friendly” and hopefully of some relevance outside mathematics.

The paper contains in addition to the present section, which summarizes the
results, seven more sections and one appendix. In Section 2 we review and prove
simple results about graph representations of the two relevant graphs for this paper,
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G2m and Z. In Sections 3 and 4 we provide the background and intermediate
results for the proof of Theorem 1.1 and the verification that δfr and Cr(f) are
equal. We also prove Theorem 1.1. In Section 5 we define the function δfr and
prove Theorem 1.2. In Sections 6 and 7 we discuss the Poincaré duality for the
configurations Cr(f) and Cmr (f) and establish Theorems 1.3 and 1.5. In Section 8
we discuss some linear algebra of linear relations and prove Theorem 1.4. The
appendix provides an example of tame map and describes its bar codes and Jordan
cells. The example is taken from [1].

The algebraic topology-minded reader can easily realize that the collection of bar
codes described in this paper can be derived from the Leray spectral sequence of
the map f : X → S1 whose E2− term is the homology of S1 with coefficients in the
constructible sheaf defined by the homology of f−1(U), U ⊂ S1. The interpretation
of the stability results (Theorems 1.2 and 7.1) in terms of such spectral sequence is
an interesting problem.

Prior work: The approach of relating the topology of a space to the homological
behavior of the levels of a real or angle valued map expands the ideas of “persistence
theory” introduced in [12]. It also owes to the apparently forgotten efforts and ideas
of R. Deheuvels to extend Morse theory to all continuous functions (fonctionelles)
cf. [8], ideas which preceded persistence theory. The stability phenomena for bar
codes in classical persistence theory was first established in [5]. The first use of
graph representations in connection with persistence appears first in [4] under the
name of zigzag persistence. The definition of bar codes and of Jordan cells for
S1-valued tame maps was first provided in [1] based on graph representations.

2. Graph representations

Let κ be a fixed field and Γ an oriented graph, possibly with infinitely many
vertices. A Γ-representation ρ is an assignment which to each vertex x of Γ assigns
a finite dimensional vector space Vx and to each oriented arrow from the vertex x
to the vertex y a linear map Vx → Vy. The concepts of morphism, isomorphism=
equivalence, sum, direct summand, zero and nontrivial representations are obvious.

If ρα, α ∈ A, is a family of Γ− representations with the property that for any x
all but finitely vector spaces V αx are zero dimensional, then one considers

∑
α∈A ρα

the Γ−representation whose vector space for the vertex x is the direct sum ⊕αV αx
and for each oriented arrow the linear map is the direct sum ⊕αV αx → ⊕V αy =⊕

α(V αx → V αy ).
The Γ−representation ρ is called:

regular, if all the linear maps are isomorphisms,
with finite support, if Vx = 0 for all but finitely many vertices and
indecomposable, if not the sum of two nontrivial representations.

In this paper the oriented graph Γ of primary concern will be G2m and for
technical reasons we will need the infinite oriented graph Z. The graph Γ = G2m

has vertices x1, x2, . . . , x2m and arrows ai : x2i−1 → x2i, 1 ≤ i ≤ m, and bi : x2i+1 →
x2i, 1 ≤ i ≤ m − 1 and bm : x1 → x2m. The graph Γ = Z has vertices xi, i ∈ Z,
and arrows ai : x2i−1 → x2i and bi : x2i+1 → x2i.
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Both G2m and Z−representations ρ will be recorded as

ρ := {Vr, αi : V2i−1 → V2i, βi : V2i+1 → V2i}

in the first case with 1 ≤ r ≤ 2m, 1 ≤ i ≤ m, with the convention that Vm+1 = V1,
in the second case with r, i ∈ Z.

Any regular G2m-representation ρ = {Vr, αi, βi}, not necessary indecomposable,
is equivalent = isomorphic to the representation

ρ(V, T ) = {V ′r = V, α′1 = T, α′i = Id i 6= 1, β′i = Id}

with T = β−1
m · α−1

m · · ·β−1
1 · α1

The Z−representations we consider are either with finite support or periodic.
The representation is periodic if for some integer N, Vr = Vr+2N , αi = αi+N , βi =
βi+N . Both type of Z−representations, periodic and with finite support, as well as a
finite direct sum of of such representations will be referred to as good Z−representations.

2.1. The indecomposable G2m and good Z−representations.
The indecomposable G2m− representations are of two types, (cf. [1]).

Type I (bar codes): They are indexed by the four types of intervals I with integer
valued ends r and s, r ≤ s, 1 ≤ r ≤ m, namely [r, s] with r ≤ s, and (r, s), [r, s), (r, s]
with r < s,

They are denoted by ρI({r, s}) with ”{” notation for either ”[” or ”(” and ”}”
for either ”]” or”)” and described as follows.

Suppose the vertices x1, x2, · · ·x2m−1, x2m are located counter-clockwise on the
unit circle say at the the angles 0 < t1 < θ1 < t2 < θ2 < · · · < tm < θm ≤ 2π with
the ti angle corresponding to an odd vertices and the θi to an even vertices.

To describe the representation ρI({i, j + mk}), 1 ≤ i, j ≤ m, draw the coun-
terclockwise spiral curve from a = θi to b = θj + 2πk with the ends a black or an
empty circle if the end is closed or open. Black circle indicates that the end is on
our spiral empty circle that the end is not.

Let Vi be the vector space generated by the intersection points of the spiral with
the radius corresponding to the vertex xi and let αi and βi be defined on bases
as follows: a generator e of V2i±1 is sent to the generator e′ of V2i if connected by
a piece of spiral and to 0 otherwise. The spiral in Figure 1 below corresponds to
k = 2.

Type II (Jordan blocks/cells): They are indexed by Jordan blocks J = (V, T )
and denoted by ρII(J). Recall that a Jordan block is an isomorphism class of
indecomposable pairs (V, T ), V a vector space T : V → V an isomorphism. The
representation ρII(J) has all vector spaces equal to V, α1 = T and β1 = αi = βi =
Id for 2 ≤ i ≤ m.

One refers to both the interval {r, s} and the representation ρI({r, s}) as bar code
and to the indecomposable pair J and the representation ρII(J) as Jordan block.
One denotes by B(ρ) the collection of all bar codes (with proper multiplicity when
appear multiple times as independent summands) and by Bc(ρ),Bo(ρ),Bc,o(ρ) and
Bo,c(ρ) the sub collections of barcodes with both ends closed, open, the left closed
right open and left open right closed. One denotes by J (ρ) the collection of all
Jordan blocks (with proper multiplicity when appear multiple times as independent
summands).
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Figure 1. The spiral for [i, j + 2m).

For λ ∈ κ \ 0 one denotes by Jλ(ρ) the collection of Jordan blocks J = (V, T )
with T having λ as an eigenvalue, hence of the form (κk, T (λ, k)).

By Remak-Schmidt theorem any G2m−representation ρ can be decomposed as

ρ =
⊕
I∈B(ρ)

ρI(I)⊕
⊕

J∈J (ρ)

ρII(J). (2)

The indecomposable factors and their multiplicity are unique. The above descrip-
tion is implicit in [13] and [10].

The indecomposable Z−representations with finite support are all bar codes in-
dexed by four type of intervals I with ends i and j, [i, j] with i ≤ j, or [i, j), (i, j], (i, j)
with i < j and denoted by ρ(I). The only periodic indecomposable representation
is denoted by ρ∞. The representation denoted by ρ(I) has all vector spaces either
= κ or 0 and the linear maps αi, βj equal to the identity if both the source and the
target are nontrivial and zero otherwise. Precisely,

(i) ρ([i, j]), i ≤ j has Vr = κ for r = {2i, 2i+ 1, · · · 2j} and Vr = 0 otherwise,
(ii) ρ([i, j)), i < j has Vr = κ for r = {2i, 2i + 2, · · · 2j − 1} and Vr = 0

otherwise,
(iii) ρ((i, j]), i < j has Vr = κ for r = {2i + 1, 2i + 2, · · · 2j} and Vr = 0

otherwise,
(iv) ρ((i, j)), i < j has Vr = κ for r = {2i + 1, 2i + 2, · · · 2j − 1} and Vr = 0

otherwise.

Both the labeling interval I and the representation ρ(I) will be referred to as bar
codes.

The indecomposable representation ρ∞, has all vector spaces Vr = κ and all
linear maps αi = βi = Id.

One denotes by B(ρ) the collection of all bar codes (with multiplicity) with Bc(ρ),
Bo(ρ), Bco(ρ) and Boc(ρ) the sub collections of closed, open, closed-open and open-
closed bar codes and by J (ρ) the collection of all copies of ρ∞ which can appear
as independent direct summands in ρ.
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The Remak-Schmidt decomposition for representations with finite support ex-
tends to all good Z−representations. Precisely, any such representation ρ is a sum
(in the sense described above) of possibly infinitely many indecomposables either
with finite support or isomorphic to ρ∞,

ρ =
⊕
I∈B(ρ)

ρ(I)⊕
⊕
n

ρ∞, (3)

with indecomposable factors and their multiplicity unique up to isomorphism. Here⊕
n ρ∞ denotes the sum of n copies of ρ∞. Each indecomposable ρ(I) or ρ∞ appears

with finite multiplicity.

The statements about G2m−representations or good Z−representations formu-
lated in this paper will be verified first for the indecomposable representations
described above and if hold true, in view of the Remak–Schmidt decomposition
theorem, concluded for arbitrary representations.

2.2. Two basic constructions.
The infinite cyclic covering of a G2m−representation ρ = {Vr, ai, bi, 1 ≤ r ≤
2m, 1 ≤ i ≤ m} is the periodic Z−representation ρ̃ := {Ṽr, ãi, b̃i, r, i ∈ Z} de-
fined by Ṽr+2mk = Vr, ãi+km = ai, b̃i+km = bi. When applied to indecomposable
ρI(I) or ρII(J) one obtains :

ρ̃I(I) =
⊕
k∈Z

ρ(I +mk)

ρ̃II(J) =
⊕
n

ρ∞, n =
∑

J∈J (ρ)

dimV, J = (V, T ).
(4)

where I + a, a ∈ Z denotes translate of the interval I, with a units.

The truncation Tk,l of a Z−representation is defined for any pair of integers k, l, k ≤
l and of a G2m−representation for a any pair of integers k, l, 1 ≤ k ≤ l ≤ m.

If ρ = {Vr, αi, βi} and Tk,l(ρ) = {V ′r , α′i, β′i} then

V ′r =

{
Vr 2k ≤ r ≤ 2l
0 otherwise

α′r =

{
αr k + 1 ≤ r ≤ l
0 otherwise

β′r =

{
βr k ≤ r ≤ l − 1
0 otherwise.

(5)

More precisely for the indecomposable Z−representations one obtains

Tk,l(ρ∞) =ρ([k, l])

Tk,l(ρ(I)) =ρ(I ∩ [k, l])
(6)

and for the indecomposable G2m−representations one obtains

Tk,l(ρI({i, l}) =ρI({i, l} ∩ [k, l])

Tk,l(ρII(J)) =
⊕
n

ρI([k, l]), n = dimV.
(7)
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Given a G2m−representation ρ we write:
J̃ (ρ) for the collection which contains with any Jordan block J ∈ J (ρ), a number

of n(J) = dim(V ) copies of J = (V, T ) and
B̃···(ρ) := {I + 2πk | I ∈ B···(ρ), k ∈ Z} with B̃··· any of B̃, B̃c, B̃o, B̃co, B̃oc.
With the above notation one has :

Observation 2.1.
1.If ρ is a G2m−representation then

B···(ρ̃) =B̃···(ρ),

J (ρ̃) =J̃ (ρ).

2. If ρ is a good Z or a G2m−representation then

Bc(Tl,k(ρ)) ={I ∈ B(ρ), I ∩ [k, l] 6= ∅ and closed} t J̃ (ρ),

Bo(Tl,k(ρ)) ={I ∈ Bo(ρ), I ⊂ [k, l]}.

2.3. The matrix M(ρ) and the representation ρu.
For a G2m−representation ρ = {Vr, αi, βi} 1 ≤ r ≤ 2m, 1 ≤ i ≤ m, the linear

map M(ρ) :
⊕

1≤i≤m V2i−1 →
⊕

1≤i≤m V2i is defined by the block matrix
α1 −β1 0 . . . . . . 0
0 α2 −β2 . . . . . . 0
...

...
...

...
...

0 . . . . . . . . . . . . αm−1 −βm−1

−βm . . . . . . . . . . . . αm


.

and the G2m−representation ρu = {V ′r , α′i, β′i} by
V ′r = Vr, α

′
1 = uα1, α

′
i = αi for i 6= 1 and β′i = βi.

For a Z−representation ρ = {Vr, αi, βi} the linear map M(ρ) :
⊕

i∈Z V2i−1 →⊕
i∈Z V2i, is defined by the infinite block matrix with entries

M(ρ)2r−1,2s =


αr, if s = r
βr−1, if s = r− 1
0 otherwise .

Denote by:
(i) dim(ρ) : Γ→ Z≥0 with dim(ρ)(xr) = dimVr,

(ii) d ker(ρ) := dim kerM(ρ) and
(iii) d coker(ρ) := dim cokerM(ρ).

As noticed in [1]

Observation 2.2.
(i) dim(ρu) = dim(ρ),

(ii) (ρ1 ⊕ ρ2)u = (ρ1)u ⊕ (ρ2)u,
(iii) ρII(λ, k)u = ρII(uλ, k),
(iv) ρI({i, j}; k))u ≡ ρI({i, j}; k),
(v) dim(ρ1 ⊕ ρ2) = dim(ρ1) + dim(ρ2),

(vi) d ker(ρ1 ⊕ ρ2) = d ker(ρ1) + d ker(ρ2),
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(vii) d coker(ρ1 ⊕ ρ2) = d coker(ρ1) + d coker(ρ2).

and one has
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Proposition 2.3.
1. For indecomposable G2m−representations of type I

(i) d ker ρI([i, j]) = 0, d coker ρI([i, j]) = 1,
(ii) d ker ρI([i, j)) = 0, d coker ρI([i, j)) = 0,

(iii) d ker ρI((i, j]) = 0, d coker ρI((i, j]) = 0,
(iv) d ker ρI((i, j)) = 1, d coker ρI((i, j)) = 0

and for indecomposable Z−representations with finite support
(i) d ker ρ([i, j]) = 0, d coker ρ([i, j]) = 1,

(ii) d ker ρ([i, j)) = 0, d coker ρ([i, j)) = 0,
(iii) d ker ρ((i, j]) = 0, d coker ρ((i, j]) = 0,
(iv) d ker ρ((i, j)) = 1, d coker ρ((i, j)) = 0.

2. For indecomposable G2m−representations of type II
(i) d ker ρII(J) = 0 if J 6= (κk, T (1, k)); d ker ρII(κk, T (1, k)) = 1

(ii) d coker ρII(J) = 0 if J 6= (κk, T (1, k)); d coker ρII(κk, T (1, k)) = 1
and for the representation ρ∞

(i) d ker(ρ∞) = 0 d coker(ρ∞) = 1.

To check Proposition 2.3 one notices that the calculation of the kernel of M(ρ)
boils down to the description of the space of solutions of the linear system

α1(v1) =β1(v3)

α2(v3) =β2(v5)
· · ·

αm(v2m−1) =βm(v1)

which in the case of indecomposable are easy to do.

Proposition 2.3 can be refined. For each indecomposable consider the concrete
description presented above and specify a nonzero vector in kerM(ρ) or coker(M(ρ)
when the case. For example for Jordan blocks such choice is needed only for the
Jordan cells of form (1, k) since the kernels and cokernels are otherwise zero di-
mensional. This additional specification will be regarded as part of the concrete
realization of the indecomposable representation and referred to as the model for
the indecomposable.

Recall that for a set S one denotes by κ[S] the vector space generated by S,
equivalently the vector space of κ−valued maps on S with finite support.

Proposition 2.4. 1. Let ρ be a G2m−representation equipped with a decomposition
ρ =

⊕
I∈B(ρ) ρ

I(I) ⊕⊕J∈J (ρ) ρ
II(J). The decomposition induces the canonical

isomorphisms
Ψc : κ[Bc(ρ) t J (ρ)(1)]→ cokerM(ρ)

Ψo : κ[Bo(ρ) t J (ρ)(1)]→ kerM(ρ).
compatible with truncations.

2. Let ρ be a good Z−representation equipped with a decomposition
ρ =

⊕
I∈B(ρ) ρ(I) ⊕⊕n ρ∞, n = ]J(ρ). The decomposition induces the canonical

isomorphisms
Ψc : κ[Bc(ρ) t J (ρ)]→ cokerM(ρ)

Ψo : κ[Bo(ρ)]→ kerM(ρ).
compatible with truncations.
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The construction of Ψc and Ψo is tautological for the model of indecomposables
as presented above. For an arbitrary representation the decomposition permits to
assemble the tautological Ψc’s and Ψo’s into isomorphisms as stated. Note that a
specified decomposition of ρ provides, in view of Observation 2.1, a decomposition
of ρ̃ and of the truncations Tk,l(ρ̃) and Tk,l(ρ).

Let us explain in more details what ”compatible with the truncations” means.
The inclusions of sets {i | k ≤ i ≤ l} ⊆ {i | k′ ≤ i ≤ l′} ⊂ Z for i′ ≤ i, l′ ≥ l,

induce the commutative diagram

⊕k≤i≤lV2i−1
//

M(Tk,l(ρ))

��

⊕k′≤i≤l′V2i−1
//

M(Tk′,l′ (ρ))

��

⊕iV2i−1

M((ρ)

��
⊕k≤i≤lV2i

// ⊕k′≤i≤l′V2i
// ⊕iV2i

(8)

and then the linear maps

kerM(Tk,l(ρ)) i // kerM(Tk′,l′(ρ)) i′ // kerM(ρ) (9)

and

cokerM(Tk,l(ρ))
j // cokerM(Tk′,l′(ρ))

j′ // cokerM(ρ). (10)

The linear maps i and i′ are injective since by Observation 2.1 (2.) we have the
inclusions B(Tk,l(ρ))o ⊆ B(Tk′,l′(ρ))o ⊆ B(ρ)o ⊆ B(ρ)o t J (1), which make the
linear maps

κ[Bo(Tk,l(ρ))] // κ[Bo(Tk′,l′(ρ))] // κ[Bo(ρ) t J (1)] (11)

injective.
We also have the linear maps

κ[Bc(Tk,l(ρ)) t J (1)] // κ[Bc(Tk′,l′(ρ)) t J (1)] // κ[Bc(ρ) t J (1)] (12)

which are not necessary injective, defined as follows. As the elements of Bc(Tk,l(ρ))
are elements of B(ρ), the linear maps in the sequence (12) send a bar code I ∈
Bc(Tk,l(ρ)) to itself if it belongs to the next set and to zero otherwise and any ele-
ment of J (1) to itself. The compatibility with truncation means the commutativity
of the diagrams.

kerM(Tk,l(ρ)) i // kerM(Tk′,l′(ρ)) i′ // kerM(ρ)

κ[Bo(Tk,l(ρ))]

OO

// κ[Bo(Tk′,l′(ρ))]

OO

// κ[Bo(ρ) t J (1)

OO
(13)

with the vertical arrows Ψos and
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cokerM(Tk,l(ρ))
j // cokerM(Tk′,l′(ρ))

j′ // cokerM(ρ)

κ[Bc(Tk,l(ρ)) t J (1)]

OO

// κ[Bc(Tk′,l′(ρ)) t J (1)]

OO

// κ[Bc(ρ) t J (1).

OO

(14)
with vertical arrows Ψcs.

We finish this section with an observation about the Z−representations ρ̃ when
ρ is a G2k−representation. The shift of indices r → r + 2k for vector spaces and
i → i + k for linear maps induces the linear endomorphism τk on the kernel and
cokernel of the associated matrices M(ρ̃). We will need the compositions

(Ψo)−1 · τk ·Ψo : κ[Bo(ρ̃)]→ κ[Bo(ρ̃)]

and
(Ψc)−1 · τk ·Ψc : κ[Bc(ρ̃) t J (ρ̃)]→ κ[Bc(ρ̃) t J (ρ̃)]

to provide a κ[T−1, T ]−module structure (multiplication by T ) on kerM(ρ̃) and
cokerM(ρ̃).

It suffices to describe these compositions separately, for G2k−representations ρ
with J (ρ) = ∅ and with B(ρ) = ∅. In the second case ρ is regular, hence isomorphic
with the representation {Vr = V, α1 = T, β1 = βi = βi = Id, i ≥ 2} with T : V → V
isomorphism.

Observation 2.5. 1. If ρ is a G2k−representation with J (ρ) = ∅ then the com-
positions above are induced by the map on bar codes which sends the interval {r, s}
into the interval {r + k, l + k}.

2. If ρ is a G2k−representation with B(ρ) = ∅ then Bo(ρ̃) = Bc(ρ̃) = ∅ and the
pair (V, T ) is isomorphic to (κ[J (ρ̃)], (Ψc)−1 · τk ·Ψc ).

Recall that ]J (ρ̃) =
∑

(V,T )∈J (ρ) dimV.

3. Bar codes and Jordan blocks via graph representations

Let f : X → S1 be a tame map and 0 < θ1 < θ2 < · · · θm ≤ 2π be the critical
angles (the angles of the set Σ in the definition of tameness). Choose the regular
values t1 < t2, · · · < tm with θi−1 < ti < θi and 0 < t1 < θ1. In order to differentiate
between regular and singular fibers we write Ri := f−1(ti) and Xi := f−1(θi).

The tameness of f induces the maps ai : Ri → Xi for 1 ≤ i ≤ m, bi : Ri+1 → X1

for i ≤ m − 1 and bm : R1 → Xm which are unique up to homotopy; this means
that different choices of the regular values, say t′i instead of ti, lead to homotopy
equivalences ωi : Ri → R′i s.t. a′i · ωi is homotopic to ai and b′i · ωi is homotopic to
bi. Indeed the fiber Ri identifies up to homotopy to regular fiber f−1(t) and f−1(t′)
with t a regular value closed enough to θi and t′ a regular value closed enough to
θ′i−1 to insure that f−1(t) resp. f−1(t′) is contained in an open set which retracts
to Xi resp. Xi−1. The maps ai or bi−1 are the composition of such identifications
with these retractions to Xi resp. Xi−1. We leave the reader to do the tedious
verification that the homotopy classes of ai and bi−1 are independent of the choices
made. Passing to r−homology one obtains the G2m−representation ρr = ρr(f)
whose vector spaces are V2s = Hr(Xs) and V2s−1 = Hr(Rs) and linear maps αi
and βi are induced by the continuous maps ai and bi.
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The representation ρr(f) has bar codes whose ends are i, j + km, 1 ≤ i, j ≤ m.
Denote by Br(f), the collections of intervals defined by the bar codes of ρr(f) with
ends i and j + km replaced by θi and θj + 2πk. Denote by Jr(f) the collection of
Jordan blocks of the representation ρr(f).

One can think to these bar codes in a way more consistent with points in the
space T. If f̃ : X̃ → R is the infinite cyclic covering of f then the real numbers
θi+2πk are the critical values and ti+2πk are regular values (between consecutive
critical values) and the tameness of f̃ gives the maps ai+km : X̃ti+1+2πk → X̃θi+2πk

and bi+km : X̃ti+2πk → X̃θi+2πk. By passing to homology in dimension r one
obtains a good Z−representation ρr(f̃) which is exactly the infinite cyclic covering

ρ̃r(f). The collections Br(f̃),Bcr(f̃), Bor(f̃), Bcor (f̃), Bocr (f̃) are invariants w.r to the
2π translation and the collections Br(f),Bcr(f) Bor(f) Bcor (f) Bocr (f) can be viewed
as equivalence (= modulo the 2π translation) classes of elements of Bcr(f̃), Bor(f̃),
Bcor (f̃), Bocr (f̃).

Given ξ ∈ H1(X; Z) and u ∈ κ \ 0, the pair (ξ, u) denotes the rank one represen-
tation H1(X; Z) → Z → κ \ 0, where the first arrow is given by ξ and the second
by the homomorphism < u >: Z → κ \ 0 defined by < u > (n) = un. One denotes
by Hr(X; (ξ, u)) the homology of X with coefficients in the local system defined by
the representation (ξ, u), which for u = 1 satisfies Hr(X; (ξ, 1)) = Hr(X). When
restricted to Ri and Xi the local system is the constant one with fiber κ so by
passing to homology the G2m−representation obtained will have the same vector
spaces for all u′s but not necessary the same α′is and β′is. The G2m−representation
obtained will be isomorphic to (ρr(f))u. More general for X[θ1,θ2] = f−1([θ1, θ2])
with θ2−θ1 < 2π, the restriction of the local system considered above is isomorphic
to the constant local system with fiber κ and the inclusion X[θ1,θ2] ⊂ X induces the
homomorphism

Hr(X[θ1,θ2])→ Hr(X; (ξ, u)).

3.1. The relevant exact sequences. (cf. [1]). The tool which permits the
calculation of the homology of X, X̃ and various pieces of these spaces is provided
by Proposition 3.1 below.

Observe that for θi ≤ θj critical angles of f and f[θi,θj ] denoting the restriction
of f to X[θi,θj ] = f−1[θi, θj ] one has

ρr(f[θi,θj ]) = Ti,j(ρr(f)).

Similarly, for ci ≤ cj critical values of f̃ and f̃[ci,cj ] denoting the restriction f̃ to
X̃[ci,cj ] = f̃−1[ci, cj ] one has

ρr(f̃[ci,cj ]) = Ti,j(ρ̃r(f)).

Proposition 3.1. Let f : X → S1 a tame map, f̃ : X̃ → R its infinite cyclic
covering. Let ρr = ρr(f) and ρ̃r = ρr(f̃) = ρ̃r(f) be the representations associated
with f and f̃ . One has the following short exact sequences:

0→ cokerM((ρr)u)→ Hr(X; (ξf , u))→ kerM((ρr−1)u)→ 0, (15)

which for u = 1 becomes

0→ cokerM(ρr)→ Hr(X)→ kerM(ρr−1)→ 0, (16)

and
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0→ cokerM(ρ̃r)→ Hr(X̃)→ kerM(ρ̃r−1)→ 0. (17)

The sequences are compatible with the truncations with respect to the pairs of critical
angles (θi, θj) and (θi′ , θj′), 0 < θi ≤ θi′ ≤ θj′ ≤ θj ≤ 2π resp. the pairs of critical
values (ci, cj) and (ci′ , cj′) with ci ≤ ci′ ≤ cj′ ≤ cj .

In the case of G2m− representation ρr(f) ”compatibility with truncation” means
the commutativity of the diagram (18)

0 // cokerM(Ti′,j′(ρr))

vl

��

// Hr(X[θi′ ,θj′ ]
) π′ //

v

��

kerM(Ti′,j′(ρr−1)) //

vr

��

0

0 // cokerM(Ti,j(ρr))

v′l
��

// Hr(X[θi,θj ])
π” //

v′

��

kerM(Ti,j(ρr−1)) //

v′r
��

0

0 // cokerM((ρr)u) // Hr(X; (ξf , u)) π // kerM((ρr−1)u) // 0
(18)

and in the case of the Z−representation ρ̃r the commutativity of the diagram
(19)

0 // cokerM(Ti′,j′(ρ̃r))

vl

��

// Hr(X̃[ci′ ,cj′ ]
) π′ //

v

��

kerM(Ti′,j′(ρ̃r−1)) //

vr

��

0

0 // cokerM(Ti,j(ρ̃r))

v′l

��

// Hr(X̃[ci,cj ])
π” //

v′

��

kerM(Ti,j(ρ̃r−1)) //

v′r

��

0

0 // cokerM(ρ̃r) // Hr(X̃)
π // kerM(ρ̃r−1) // 0.

(19)
To establish these diagrams denote by R := t1≤i≤mRi, R̃ := ti∈ZRi, X :=

t1≤i≤mXi and X̃ := ti∈ZXi.

The short exact sequences (15) and (16) follow from the long exact sequence

· · · → Hr(R)
M((ρr)u)−−−−−−→ Hr(X )→ Hr(X; (ξ, u))→ Hr−1(R)

M(ρr−1)−−−−−−→ Hr−1(X )→ · · · .
(20)

with Hr(R) =
⊕

1≤i≤mHr(Ri) and Hr(X ) =
⊕

1≤i≤mHr(Xi) (16 for u = 1)
and the short exact sequence (17) from the long exact sequence

· · · → Hr(R̃)
M(ρr)−−−−→ Hr(X̃ )→ Hr(X̃)→ Hr−1(R̃)

M(ρr−1)−−−−−−→ Hr−1(X̃ )→ · · · .
(21)

Since both long exact sequences (20) and (21) are derived in the same way we will
work only on (20) and for simplicity only for u = 1.
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First choose an ε > 0 small enough so that 2ε < t1 and θi−1 + 2ε < ti <
θi − 2ε. To simplify the writing, since i ≤ m, introduce θm+1 = θ1 + 2π and define
f−1([θm ± ε, θm+1 ± ε) := f̃−1([θm ± ε, θ1 + 2π ± ε]).

Define
(i) P ′ = t1≤i≤mf

−1([θi, θi+1 − ε))
(ii) P ′′ = t1≤i≤mf

−1((θi + ε, θi+1])
and observe that in view of the choice of ε and the tameness of f the inclusions
X ⊂ P ′, X ⊂ P” and X tR ⊂ P ′ ∩ P ′′ are homotopy equivalences.

The Mayer Vietoris long exact sequence for X = P ′ ∪ P ′′ gives the diagram

Hr(R)
M(ρr(f)) // Hr(X )

''OOOOOOOOOOO

// Hr+1(T )

77nnnnnnnnnnnn ∂r+1 // Hr(R)⊕Hr(X )

pr1

OO

N // Hr(X )⊕Hr(X )

(Id,−Id)

OO

(ir,−ir)// Hr(T ) //

Hr(X )

in2

OO

Id // Hr(X )

∆

OO

(22)
where ∆ denotes the diagonal, in2 the inclusion on the second component, pr1 the
projection on the first component, ir the linear map induced in homology by the
inclusion X ⊂ T .

The matrix M(ρr(f)) is defined by

αr1 −βr1 0 · · · 0

0 αr2 −βr2
. . .

...
...

. . . . . . . . . 0
0 · · · 0 αrm−1 −βrm−1

−βrm 0 · · · 0 αrm


with αri : Hr(Ri) → Hr(Xi) and βri : Hr(Ri+1) → Hr(Xi) induced by the maps ai
and bi and the block matrix N defined by(

αr Id
−βr Id

)
where αr and βr are the matrices

αr1 0 · · · 0

0 αr2
. . .

...
...

. . . . . . 0
0 · · · 0 αrm−1

 and



0 βr1 0 . . . 0

0 0 βr2
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 βrm−1

βrm 0 . . . 0 0


.

The long exact sequence (20) is the top sequence in the diagram (22).
By carefully following the above construction one verifies the commutativity of

the diagrams. q.e.d.
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4. Proof of Theorem 1.1.

Consider the pair (X, ξ ∈ H1(X; Z)) with X a compact ANR and denote by
X̃ → X the infinite cyclic covering associated to ξ. Recall from Section 1 that for
ξ = ξf the covering X̃ → X is the pull back by f of the universal covering R→ S1

X̃

��

f̃ // R

��
X

f // S1.

The vector space Hr(X̃) is actually a κ[T−1, T ]-module 6 where the multiplication
by T is the linear isomorphism induced by the deck transformation τ : X̃ → X̃.

Let κ[T−1, T ]] be the field of Laurent power series and define

HN
r (X; ξ) := Hr(X̃)⊗κ[T−1,T ] κ[T−1, T ]].

The κ[T−1, T ]]-vector spaces HN
r (X; ξ) is called the r−th Novikov homology7 and

its dimension over the field κ[T−1, T ]], the Novikov–Betti number βNr (X; ξ).

Consider Hr(X̃) → HN
r (X; ξ) the κ[T−1, T ]-linear map induced by taking the

tensor product with κ[T−1, T ]] over κ[T−1, T ]. The κ[T−1, T ]− module V (ξ),

V (ξ) := ker(Hr(X̃)→ HN
r (X; ξ)),

when regarded as a κ−vector space equipped with the linear isomorphism T (ξ)
provided by the multiplication by T is referred to as the r−monodromy of (X, ξ). As
a κ[T−1, T ]−module Vr(ξ) is exactly the torsion of the κ[T−1, T ]−module Hr(X̃).

Since X is a compact ANR all numbers dimHr(X), βNr ,dimV (ξ) are finite.

A nonempty subset K of S1 or R, will be called a closed multi-interval if it is a
finite union of disjoint closed intervals [θ1, θ2] with 0 ≤ θ1 ≤ θ2 < 2π in the case
of S1, and [a, b] with a ≤ b or (−∞, a] or [b,∞) in the case of R. One denotes by
XK := f−1(K) if K ⊂ S1 and by X̃K = f−1(K) if K ⊂ R.

In case K ⊂ S1 one considers
(i) Bcr,K(f) = {I ∈ Bcr(f) | I ∩K 6= ∅}

(ii) Bor−1,K(f) = {I ∈ Bor−1(f) | I ⊂ K}
and for u ∈ κ \ 0 the sets:

(iii) Sr,K,u(f) = Bcr,K(f) t Bor−1,K(f) t Jr,u(f)
(iv) Sr,u(f) = Bcr(f) t Bor−1(f) t Jr,u(f) t Jr−1,u(f).

In case K ⊂ R one considers
(i) B̃cr,K(f) = {I ∈ B̃cr(f) | I ∩K 6= ∅}

(ii) B̃or−1,K(f) = {I ∈ B̃or−1(f) | I ⊂ K} and the sets:
(iii) S̃r,K(f) = B̃cr,K(f) t B̃or−1,K(f) t J̃r(f)
(iv) S̃r(f) = B̃cr(f) t B̃or−1(f) t J̃r(f).

6κ[T−1, T ] denotes the ring of Laurent polynomials with coefficients in κ
7instead of κ[T−1, T ]] one can consider the field κ[[T−1, T ] of Laurent power series in T−1,

which is isomorphic to κ[T−1, T ]] by an isomorphism induced by T → T−1. The (Novikov)
homology defined using this field has the same Novikov–Betti numbers as the the one defined
using κ[T−1, T ]].
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These sets have the following properties:

(i) If K1,K2,K are closed multi-intervals in S1 or R with K1 ∩K2 = ∅ and
K = K1 ∪K2 then Sr,K,u = Sr,K1,u ∪ Sr,K2,u and S̃r,K = S̃r,K1 ∪ S̃r,K2

(ii) If K1,K2,K are closed multi-intervals in S1 or R with K1 ∩K2 = K then
Sr,K,u = Sr,K1,u ∩ Sr,K2,u and S̃r,K = S̃r,K1 ∩ S̃r,K2 ,

(iii) If K1,K2 closed multi-intervals with K1 ⊂ K2 then Sr,K1,u ⊆ Sr,K2,u and
S̃r,K1 ⊆ S̃r,K2 .

For K a multi-interval in S1 or R denote by:
Ir(f ;K,u) := img(Hr(XK)→ Hr(X; (ξ, u))), and
Ir(f̃ ;K) := img(Hr(X̃K)→ Hr(X̃)).
With the notations and definitions above we have the following result which

calculates the homologies of X and X̃.

Proposition 4.1. Let f : X → S1 be a tame map and suppose that for each r a
decomposition of the representation ρr(f) as a sum of bar code representations and
Jordan block representations is given. Let u ∈ κ \ 0.

1. One can provide the isomorphism

ωr,u : κ[Sr,u(f)]→ Hr(X; (ξf , u))

and for any closed multi interval K ⊂ S1 the isomorphism

ωr,K,u : κ[Sr,K,u(f)]→ Ir(f ;K,u)

such that for K ′,K closed multi-intervals in S1 with K ′ ⊂ K, the diagram

Ir(f ;K ′, u)
⊆ // Ir(f ;K,u)

⊆ // Hr(X; (ξf , u))

κ[Sr,K′,u(f)]

ωr,K′,u

OO

// κ[Sr,K,u(f)]

ωr,K,u

OO

// κ[Sr,u(f)]

ωr,u

OO
(23)

is commutative. The horizontal arrows of the bottom line in the diagram are induced
by the inclusions of the sets in brackets.

2. One can provide the isomorphism

ω̃r : κ[S̃r(f)]→ Hr(X̃)

and for any closed multi interval K ⊂ R the isomorphism

ω̃r,K : κ[S̃r,K(f)]→ Ir(f̃ ;K)

such that for K ′,K closed multi-intervals in R with K ′ ⊂ K, the diagram

Ir(f̃ ;K ′)
⊆ // Ir(f̃ ;K)

⊆ // Hr(X̃)

κ[S̃r,K′(f)]

ω̃r,K′

OO

// κ[S̃r,K(f)]

ω̃r;K

OO

// κ[S̃r(f)]

ω̃r

OO
(24)

is commutative. The horizontal arrows in the bottom line are induced by the inclu-
sions of the sets in brackets.

3. One can provide an isomorphism ωNr : κ[T−1, T ]][Sr]→ HN
r (X; ξf ).
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It is also possible to calculate Hr(XK) for K ⊂ S1 and Hr(X̃K) for K ⊂ R. In
this case, in addition to closed and open bar codes and to Jordan blocks, mixed bar
codes will appear. In this case it suffices to state the result for K consisting of only
one interval say [θ1, θ2], 0 ≤ θ1 ≤ θ2 < 2π in case of S1 and [a, b],−∞ < a ≤ b <∞
in case of R.

To formulate the result one extends the sets Sr,K(f), S̃r,K(f) to S′r,K(f), S̃′r,K(f),
K a closed interval in S1 or R as follows.

For K ⊂ S1 define

S′r,K(f) = B′r,K(f) t Bor−1,K(f) t Jr(f)

where B′r,K(f) = {I ∈ Br | I ∩K 6= ∅, and closed} and for K ⊂ R define

S̃′r,K(f) = B̃′r,K(f) t B̃or−1,K(f) t Jr(f)

where B̃′r,K(f) = {I ∈ B̃r | I ∩K closed and 6= ∅, }.

Proposition 4.2. Under the same hypothesis as in Proposition 4.1 one has:
1. For any pair of angles θ′, θ′′, 0 < θ′ ≤ θ′′ < 2π one can provide the isomor-

phisms ω′r,[θ′,θ′′] : κ[S′r,[θ′,θ′′](f)]→ Hr(Xθ′,θ′′) so that for 0 < θ1 ≤ θ2 ≤ θ3 ≤ θ4 <

2π the following diagram

Hr(X[θ2,θ3])
vr // Hr(X[θ1,θ4])

v′r // Hr(X; (ξf , u))

κ[S′r,[θ2,θ3](f)]

ω′r,[θ2,θ3]

OO

// κ[S′r,[θ1,θ4](f)]

ω′r,[θ1,θ4]

OO

// κ[Sr,u(f)].

ωr,u

OO
(25)

is commutative.
2. For any pair of numbers a′, b′, a′ ≤ b′ or a′ = −∞ or b′ =∞ one can provide

the isomorphisms ω̃′r,[a,b] : κ[S̃′r,[a,b](f)] → Hr(X̃[a,b]) so that for a ≤ b ≤ c ≤ d the
following diagram

Hr(X̃[b,c])
vr // Hr(X̃[a,d]

v′r // Hr(X̃)

κ[S̃′r,[b,c](f)]

ω̃c,d

OO

// κ[S̃′r,[a,d](f)]

ω̃a,d

OO

// κ[S̃r(f)]

ω̃r

OO
(26)

is commutative.

In both cases the horizontal arrows in the top line are inclusion induced linear
maps in homology, while in the bottom line are defined as follows: a bar code in
the set S′r,··· or in S̃′r,··· is sent to itself if continues to belong to the next set or if
not to the zero vector in the next vector space.

The isomorphisms claimed in these propositions are uniquely determined by the
decomposition of ρ′rs and by the choice of a splitting in the short exact sequences
(16), (17), (15).

Let α ≤ a ≤ b ≤ β, i(a, b;α, β) : X̃[a,b] ⊆ X̃[α,β] be the inclusion and ir(a, b :
α, β) : Hr(X[a,b])→ Hr(X[α,β]) be the inclusion induced linear maps. The following
corollary of Proposition 4.2 will be of use later.
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Proposition 4.3. Under the same hypothesis as in Proposition 4.1 one has:

dimHr(X̃[a,b]) =]{I ∈ B̃r(f) | I ∩ [a, b] 6= ∅ and closed}
+ ]{I ∈ B̃or−1(f) | I ⊂ [a, b]}+ ]J̃r(f)

dim img ir(a, b;α, β) =]{I ∈ B̃r(f) | I ∩ [α, β] 6= ∅ and closed, I ∩ [a,b] 6= ∅}+
+ ]{I ∈ B̃or−1(f) | I ⊂ [a, b]}+ ]J̃r(f)

dim coker ir(a, b;α, β) =]{I ∈ B̃r | I ∩ [α, β] 6= ∅ and closed, I ∩ [a,b] = ∅}
+ ]{I ∈ B̃or−1 | I ⊂ [α, β], I * [a, b]}

dim ker ir(a, b;α, β) =]{I ∈ B̃r | I ∩ [a, b] 6= ∅ and closed, I ∩ [α, β] not closed}
dimHr(X̃[α,β], X̃[a,b]) = dim coker ir(a, b;α, β) + dim ker ir−1(a, b;α, β)

Proof of Propositions 4.1 and 4.2.

Proof. In view the properties of the sets SK,··· and S̃K,··· it suffices to prove the
statements for K consisting of one single interval and in view the tameness of f
one can suppose that θ1, θ2 are critical angles and a, b critical values.

For each r choose a decomposition of ρr in bar codes and Jordan blocks, which im-
plies decompositions of Tk,l(ρr)s and choose a linear splitting s : ker(M((ρr−1)u)→
Hr(X; (ξf , u)) of π in diagram (18).

We treat first the item (1.) in both propositions.
In view of the injectivity of vr and v′r, in diagrams (18) and (19) in Proposition

3.1, the splitting s provides by restriction the compatible splittings

s[θ1,θ4] : ker(M((Tθ1,θ4(ρr−1))→ Hr(X;[θ1,θ4] )

and
s[θ2,θ3] : ker(M((Tθ2,θ3(ρr−1))→ Hr(X;[θ2,θ3] ).

This leads to the commutative diagram (27) with horizontal arrows isomorphisms

cokerM(Tθ2,θ3(ρr))⊕ kerM(Tθ2,θ3(ρr−1))

vl⊕vr
��

// Hr(X[θ2,θ3])

v

��
cokerM(Tθ1,θ4(ρr))⊕ kerM(Tθ1,θ4(ρr−1))

v′l⊕v
′
r

��

// Hr(X[θ1,θ4])

v′

��
cokerM((ρr)u)⊕ kerM((ρr−1)u) // Hr(X; (ξf , u)).

(27)

Proposition 2.4 combined with Observation 2.1 gives the commutative diagram

κ[S′r,θ1,θ4 ]

��

// cokerM(Tθ2,θ3(ρr))⊕ kerM(Tθ2,θ3(ρr−1))

vl⊕vr
��

κ[S′r,θ2,θ3 ]

��

// cokerM(Tθ1,θ4(ρr))⊕ kerM(Tθ1,θ4(ρr−1))

v′l⊕v
′
r

��
κ[Sr,u] // cokerM((ρr)u)⊕ kerM((ρr−1)u).

(28)
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The isomorphism ωu (in Proposition 4.1) is the composition of horizontal arrows
in the last line of diagrams (27) (28) while the isomorphism ω′r,[θ2,θ3] and ω′r,[θ1,θ4]

(in Proposition 4.2) are the compositions of the horizontal arrows in the first and
second lines of the same diagrams. The isomorphisms ωr,[θ2,θ3],uand ωr,[θ1,θ4],u are
restrictions of ωr,u. The commutativity of the diagrams claimed in Proposition 4.1
and 4.2 is the consequence of the commutativity of the diagrams (27), (28). This
establishes item (1.) in both Propositions 4.1 and 4.2.

Item (2.) is verified essentially in the same way. More precisely:
The decompositions of ρ′rs imply decompositions of ρ̃′rs and Tk,l(ρ̃r)′s. Observe

that the commutative diagrams (27), (28) remain valid when we replace X by X̃,
the representation ρr by ρ̃r, and θ1, θ2, θ3, θ4 by a, b, c, d. In this case ω̃ is defined
as ωu was, namely as the composition of the horizontal arrows of the last lines in
the replaced diagrams (27), (28).

To check item (3.) in Proposition 4.1 one observes that ωN = ω ⊗ κ[T−1, T ]].
�

Proof of Theorem 1.1.

Proof. Item (1.) and item (3.) follow from Proposition 4.1 (3.) and (1.) To check
item (2.) we first observe that the sequence (17)

0 // cokerM((ρ̃r)) // Hr(X̃)
π // kerM((ρ̃r−1)) // 0

is actually a sequence of κ[T−1, T ]−modules where the multiplication by T on the
first and third term in given by the m−shift described in the end of Section 2.

Next we consider the diagram (29), whose horizontal arrows on the second line
are induced by inclusion and projection (cf. the definitions of the sets S̃r(f) and
J̃r(f)). Observe that the diagram is actually a commutative diagram of κ[T−1, T ]−
modules, with the module structure on the vector spaces located on the last two
horizontal lines of the diagram (29) as described in Observation 2.5.

Hr(X̃)⊗κ[T−1,T ] κ[T−1, T ]]

0 // cokerM((ρ̃r)) // Hr(X̃) //

OO

kerM(ρ̃r−1)) // 0

0 // κ[Bc(ρ̃r) t J̃ (ρr)]
//

Ψc

OO

κ[S̃r(f)] //

ω̃r

OO

κ[Bo(ρ̃r−1)] //

Ψo

OO

0

0 // κ[J̃ (ρr)]
= //

OO

κ[J̃r(f)]

OO

(29)

In view of Observation 2.5 the κ[T−1, T ]−module κ[J̃ (ρr)] = κ[J̃r(f)] is the
κ−vector space

⊕
J∈Jr V (J) with the multiplication by T given by the linear

isomorphism
⊕

J∈Jr T (J). This is exactly the torsion of the κ[T−1, T ]−module



TOPOLOGY OF ANGLE VALUED MAPS, BAR CODES AND JORDAN BLOCKS. 23

κ[S̃r(f)] isomorphic to Hr(X̃) hence V (ξf ). This verifies item (2.) and then fin-
ishes the proof. �

5. Stability for configurations Cr(f). Proof of Theorem 1.2

The proof of Theorems 1.2 and 1.3 will require an alternative definition of the
configurations Cr(f). This will be provided by the integer valued functions δfr which
will be defined for an arbitrary real valued tame map and then, via the infinite cyclic
covering for an angle valued tame map.

5.1. Real valued maps. For f : X → R a map and a, b ∈ R denote by:
(i) X(a) = f−1(a), Xf

a = f−1(−∞, a]), Xb
f = f−1([b,∞)), Xb

a = Xa ∩ Xb

and ia : Xa → X, ib : Xb → X the obvious inclusions,
(ii) Ifa(r) := img(ia(r) : Hr(Xa) → Hr(X)), Ibf (r) := img(ib(r) : Hr(Xb) →

Hr(X)), and then
(iii) F fr (a, b) := dim(Ifa(r) ∩ Ibf (r)) and Gfr (a, b) := dimHr(X)/(Ifa(r) + Ibf (r)).

and observe that:

Observation 5.1.
1. For a ≤ a′ b′ ≤ b F fr (a, b) ≤ F fr (a′, b′) and Gfr (a, b) ≥ Gf (a′, b′)
2. If |f − g| < ε and a ≤ b then F fr (a − ε, b + ε) ≤ F g(a, b) and Gfr (a, b) ≤

Gg(a− ε, b+ ε)
3. F fr (a, b) = F−fr (−b,−a) and Gfr (a, b) = G−fr (−b,−a)

To check (1.) notice that Xf
a ⊆ Xf

a′ and Xb′

f ⊇ Xb
f which imply Ifa ⊆ Ifa′ and

Ib′f ⊆ Ibf hence Ifa ∩ Ibf ⊆ Ifa′ ∩ Ib′f and then the statement.
To check (2.) notice that |f − g| < ε implies f − ε < g < f + ε which implies to

Xf
a−ε ⊆ Xg

a and Xf
b+ε ⊆ X

g
b . These inclusions imply Ifa−ε ⊆ Iga and Ib+εf ⊆ Ibg hence

F f (a− ε, b+ ε) ≤ F g(a, b). The arguments for G are similar.
To check (3.) one uses the fact that f−1((−∞, a]) = (−f)−1([−a,∞)) q.e.d

If X is a compact ANR it is immediate that both F fr (a, b) and Gfr (a, b) are finite
since dimHr(X) is finite. The same remains true for f : X → R a tame map
with X not compact but this statement requires arguments since dimHr(X) is not
necessary finite. We have the following:

Proposition 5.2. For f : X → R a tame map then:
1. F fr (a, b) <∞,
2. Gfr (a, b) <∞,
3. If a ≥ b then F fr (a, b) = img(Hr(Xb

a)→ Hr(X))

Proof. (1.) : In view of Observation 5.1 it suffices to check the statements for a > b.
Consider

ia(r)− ib(r) : Hr(Xa)⊕Hr(Xb)→ Hr(X)

and
ia(r) + ib(r) : Hr(Xa)⊕Hr(Xb)→ Hr(X)

and observe that Ifa(r) ∩ Ibf (r)) = (ia(r) + ib(r))(ker((ia(r)− ib(r))). Then

dim(Ifa(r) ∩ Ibf (r)) ≤ dim(ker((ia(r)− ib(r))).
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Since a ≥ b we have X = Xa∪Xb. In view of the Mayer-Vietoris long exact sequence
associated with X = Xa ∪Xb

ker(ia(r)− ib(r)) = img(: Hr(Xb
a)→ Hr(Xa)⊕Hr(Xb))

has finite dimension since dimHr(Xb
a) is finite.

( 2.): If a < b one uses the exact sequence of the pair (X,Xa t Xb) to con-
clude that Hr(X)/(Ifa(r) + Ibf (r)) is isomorphic to a subspace of Hr(X,Xa tXb) =
Hr(Xb

a, X(a)tX(b)) which is of finite dimension. Indeed f tame implies X(a), X(b)
and Xb

a, compact ANRs, hence with finite dimensional homology.
If a ≥ b one use the Mayer-Vietoris exact sequence associated with Xa, X

b to
conclude that Hr(X)/(Ifa(r) + Ibf (r)) is isomorphic to a subspace of Hr(Xb

a) which
is of finite dimension. This long exact sequence implies item (3.) as well.

�

Let a < b, c < d. We refer to the set
B(a, b : c, d) = (a, b]× [c, d) ⊂ R2, a < b, c < d

as a ”box ” and define

µF,fr (B) =F fr (a, d) + F fr (b, c)− F fr (a, c)− F fr (b, d)

µG,fr (B) =−Gfr (a, d)−Gfr (b, c) +Gfr (a, c) +Gfr (b, d).
(30)

One has

Proposition 5.3. If X is compact or f is a tame map then:
1. µF,fr (B) = µG,fr (B).
Let µfr (B) := µF,fr (B) = µG,fr (B).
2. µfr (B) is a nonnegative integer number.
3. If B = B1 ∪ B2, B1 ∩ B2 = ∅ with B1, B2, B3 boxes then µf (B) = µf (B1) +

µf (B2), in particular if the B′ and B′′ are two boxes with B′ ⊂ B′′ one has µf (B′) ≤
µf (B′′).

Proof. To ease the writing, we drop f and r from the notations involving I and f
and introduce:

(i) I1 := dim(Ia ∩ Id)
(ii) I2 := dim(Ia ∩ Ic/Ia ∩ Id)
(iii) I3 := dim(Ib ∩ Id/Ia ∩ Id)
(iv) I4 := dim(Ib ∩ Ic/Ia ∩ Ic + Ib ∩ Id)
(v) I5 := dim Ib/Ia + Ib ∩ Ic
(vi) I6 := dim Ic/Ia ∪ Id + Id

(vii) I7 := dimH/Ib + Ic with H = Hr(X).
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H

Ib
Ia

Ic
Id

Using the picture above is not hard to notice that:
F (a, d) = I1
F (b, c) = (I1 + I2 + I3 + I4)
F (a, c) = (I1 + I2)
F (b, d) = (I1 + I3)
and
G(a, d) = (I7 + I6 + I5 + I4)
G(b, c) = I7
G(a, c) = (I7 + I5)
G(b, d) = (I7 + I6)

Then we have:
F (a, d)+F (b, c)−F (a, c)−F (b, d) = I1+(I1+I2+I3+I4)−(I1+I2)−(I1+I3) = I4

and
G(a, d)+G(b, c)−G(a, c)−G(b, d) = (I7+I6+I5+I4)+I7−(I7+I5)−(I7+I6) = I4.

These equalities establish items (1.) and (2.). Item (3.) follows from definition by
inspecting the relative positions of B1 and B2.

�

Define the jump function

δfr (a, b) := lim
ε→0

µf ((a− ε, a+ ε]× [b− ε, b+ ε)), (31)

The limit exists since by Proposition 5.3 the right side decreases when ε decreases.

This function has values in Z≥0, since the critical values of a tame map are discrete,
has discrete support and satisfies the following proposition.

Proposition 5.4. If X compact or f is a tame map then:
1. For a < b, c < d one has µfr ((a, b]× [c, d)) =

∑
a<x≤b,c≤y<d δ

f
r (x, y),

2. F fr (b, c) =
∑
−∞,x≤b;c≤y,∞ δfr (x, y),

3. Gfr (a, d) =
∑
a≤x<∞;−∞<y≤c δ

f
r (x, y).

Proof. Item (1.) follows from Proposition 5.3 ( 3.)
Item (2.) follows from item (1.) by making a goes to −∞ and d to ∞ and item

(3.) follows from item (1.) by making b goes to ∞ and c to −∞. �
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For a tame map f the set of critical values is discrete so they can be written as
· · · ci < ci+1 < · · · . Define

ε(f) = inf
i∈Z

(ci+1 − ci).

Clearly if f : X → R is tame with X compact then ε(f) > 0 and if f : X → S1 is
tame then the infinite cyclic covering f̃ : X̃ → R is tame and ε(f̃) > 0.

Proposition 5.5. Let f : X → R be a tame map with ε(f) > 0.
1. For any ε, ε′ < ε(f) one has:
F fr (ci, cj) = F fr (ci + ε, cj − ε′) = F fr (ci+1 − ε, cj−1 + ε′),
2. δfr (ci, cj) = F fr (ci−1, cj+1) + F fr (ci, cj)− F fr (ci−, cj)− F fr (ci, cj+1).

Proof. The tameness of f and of the hypothesis the inclusions Xf
ci ⊆ X

f
ci+ε, X

f
ci ⊆

Xf
ci+1−ε′ and X

cj−ε
f ⊇ X

cj
f , X

cj−1+ε′

f ⊇ X
cj
f induce isomorphisms in homology.

These facts imply that Ifci = Ifci+ε = Ifci+1−ε′ and Icj−1+ε
f = Icj−ε

′

f = Icjf which imply
item (1.). To check item (2.) recall that in view of the definition, for ε very small,
one has δf (ci, cj) = F (ci−ε, cj+ε)+F (ci+ε, cj−ε)−F (ci−ε, cj−ε)−F (ci+ε, cj+ε).
Item (2.) follows then from item (1.) by taking ε < ε(f).

�

For a pair (a, b) ∈ R2 and ε > 0 consider the box B(a, b; 2ε) = (a− 2ε, a+ 2ε]×
[b− 2ε, b+ 2ε).

Proposition 5.6. Let f : X → R be a tame map. For any ε < ε(f)/6, g an tame
map with |f − g| < ε and (a, b) ∈ supp δf

r one has:
1. supp δf

r ∩ B(a,b; 2ε) ≡ (a,b)
2. ](supp δg ∩ (t(a,b)∈supp δf B(a,b; 2ε))) = ](supp δf

r).
In particular if the cardinality of the supports8 of δfr and δgr are equal and |g−f ] < ε,
then the support of δgr lies in an ε−neighborhood 9 of the support of δfr .

Proof. To simplify the writing the index r will be omitted from the notation.
Item (1.) follows from definition of δf .
To prove item (2.) observe that if (a, b) ∈ supp δf both numbers have to be

critical values, hence the a = ci, b = cj . In view of Proposition 5.5, for any ε′, ε′′ <
ε(f)/2 one has

F f (ci−1, cj+1) =F f (a− ε′, b+ ε′′)

F f (ci, cj) =F f (a+ ε′, b− ε′′)
F f (ci, cj+1) =F f (a+ ε′, b+ ε′′)

F f (ci−1, cj) =F f (a− ε′, b− ε′′).

(32)

Since |f − g| < ε, in view of Observation 5.1 one has

8recall that the cardinality of the support is the sum of multiplicity of the elements in the

support
9here ε−neighborhood of (a, b) means the domain (a− ε, a+ ε)× (b− ε, b+ ε)
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F f (a− 3ε, b+ 3ε) ≤ F g(a− 2ε, b+ 2ε) ≤ F f (a− ε, b+ ε),

F f (a+ ε, b− ε) ≤F g(a+ 2ε, b− 2ε) ≤ F f (a+ 3ε, b− 3ε),

F f (a+ ε, b+ 3ε) ≤F g(a+ 2ε, b+ 2ε) ≤ F f (a+ 3ε, b+ ε),

F f (a− 3ε, b− ε) ≤F g(a− 2ε, b− 2ε) ≤ F f (a− ε, b− 3ε).

(33)

Since ε < ε(f)/6, (32) and (33) imply that

F g(a− 2ε, b+ 2ε) = F f (ci−1, cj+1)

F g(a+ 2ε, b− 2ε) = F f (ci, cj)

F g(a+ 2ε, b+ 2ε) = F f (ci, cj+1)

F g(a− 2ε, b− 2ε) = F f (ci−1, cj).

(34)

In view of Proposition 5.4

](supp δg ∩ B(a,b : 2ε)) = µg(B(a,b : 2ε)) =

F g(a− 2ε, b+ 2ε) + F g(a+ 2ε, b− 2ε)

−F g(a− 2ε, b− 2ε)− F g(a+ 2ε, b+ 2ε)

which in view of (33) and (34) and Proposition 5.5 (2.) leads to

](supp δg ∩ B(a,b : 2ε)) = ](supp δf ∩ B(a,b : 2ε)) = δf(a,b).

�

5.2. Angle valued maps. Let f : X → S1 be a tame map and f̃ : X̃ → R its
infinite cyclic covering. Recall that ε(f̃) > 0 and observe that

δf̃r (a, b) = δf̃r (a+ 2π, b+ 2π). (35)

Consider the projection Let p : R2 → T = R2/Z, with T the quotient space of
R2 by the action µ : Z× R2 → R2 given by µ(n, (a, b)) = (a+ 2πn, b+ 2πn).

Define
ε(f) := ε(f̃)

and
δfr (p(a, b)) := δf̃r (a, b). (36)

In view of (35) δfr is a well defined integer valued function with finite support.
and Proposition 5.6 holds for f : X → S1 with exactly the same conclusion.

Proposition 5.6 equally implies that the cardinality of the support of δgr with
g closed enough to f in C0 topology is larger or equal to the cardinality of the
support of δfr and therefore the cardinality of the supports of tame maps in the
same connected components is constant, a fact we already knew by Theorem 1.1.

For the proof of Theorem 1.2 we also need to show that δfr and Cr(f) when
viewed as functions on T are equal.

Proposition 5.7. If f is a tame real or angle valued map defined on X, a compact
ANR, then δfr and Cr(f) are equal as functions.
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Proof. We check the case of an angle valued map f : X → S1 only. The real valued
case can be regarded as a particular case of this one.First note that ε(f) > 0. In
view of the definition of δf̃r it suffices to check that:

(i) If at least one, a or b, is not a critical value then we have δf̃r (a, b) = 0.
(ii) If a = ci b = cj are critical value with ci ≥ cj

δf̃r (ci, cj) = ]{I ∈ B̃cr(f) | I = [cj , ci]}.
(iii) If a = ci b = cj are critical value with ci < cj

δf̃r (ci, cj) = ]{I ∈ B̃or−1(f) | I = (cj , cj)}.
Recall that δr(a, b) := limε→0(−Fr(a− ε, b− ε)− Fr(a+ ε, b+ ε) + Fr(a− ε, b+

ε) + Fr(a+ ε, b− ε).
In view of Proposition 5.5 if a is not critical value, for ε sufficiently small F f̃r (a−

ε, · · · ) = F f̃r (a + ε, · · · ) which implies δf̃r (a, · · · ) = 0, and if b is not critical value
for ε sufficiently small F f̃r (· · · , b− ε) = F f̃r · · · , b+ ε) which implies δf̃r (· · · , b) = 0.
This establishes statement (i)

Suppose that a = ci and b = cj critical values. In view of Proposition 5.5 and of
the definition of δf̃ one obtains

δf̃r (ci, cj) = −F f̃r (ci−1, cj)− F f̃r (ci, cj+1) + F f̃r (ci−1, cj+1) + F f̃r (ci, cj) (37)

By Propositions 5.2 and 4.3, when ci ≥ cj , one has

F f̃r (ci, cj) = ]


{I ∈B̃cr(f) | I ∩ [cj , ci] 6= ∅} t
{I ∈B̃or−1(f) | I ⊂ (cj , ci)t
J̃r(f)

(38)

and when ci > cj , in view of Proposition 4.1 one has

F f̃r (ci, cj) = ]

{
{I ∈B̃cr(f) | I ⊃ [ci, cj ] t
J̃r(f)

(39)

Comparing the collections of bar codes whose cardinality are given by F f̃r (ci−1, cj),
F f̃r (ci, cj+1), F f̃r (ci−1, cj+1) and F f̃r (ci, cj) and using (37) and (38) one derives the
statement ii), and using (37) and 39) one derives the statement iii).

�

5.3. Proof of Theorem 1.2. We begin with a few observations.

(i) Consider the space of continuous maps C(X,S1), X a compact ANR, with
the compact open topology. This topology is induced from the metric
D(f, g) := supx∈X d(f(x), g(x)), with ′′d′′ the geodesic distance on S1 given
by d(θ1, θ2) = inf(|θ1−θ2|, 2π−|θ1−θ2|), 0 ≤ θ1, θ2 < 2π. With this metric
(C(X,S1), D) is complete.

(ii) Consider SNT = (T × T · · ·T)/ΣN , with ΣN is the N−symmetric group
acting on the N−fold cartesian product of T by permutations equipped
equipped with the induced metric D induced from the complete metric on
T/Z. With this metric (SN (T), D) is complete.
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(iii) Observe that if f, g are in a connected component Cξ(X,S1) of C(X,S1)
and D(f, g) < π then for any t ∈ [0, 1] the map ht := ht(f, g) ∈ C(X; S1)
defined by the formulae

ht(x) =

{
tf(x) + (1− t)g(x) if 0 ≤ g(x), f(x) < 2π, f(x) ≤ g(x)
(1− t)f(x) + tg(x) if 0 ≤ g(x), f(x) < 2π, f(x) ≥ g(x)

is continuous and lies in the connected component of Cξ(X,S1) and for
any 0 = t0 < t1 · · · tN−1 < tN = 1 one has

D(f, g) =
∑

0≤i<N

D(hti+1 , hti). (40)

(iv) If X is a simplicial complex and U ⊂ Cξ(X,S1) denotes the subset of
p.l-maps then:

1. U is a dense subset
2. f, g ∈ U implies ht ∈ U hence ε(ht) > 0 hence for any t ∈ [0, 1] there

exists δ(t) > 0 so that |t′ − t| < δ(t) implies D(ht′ , ht) < ε(ht)/6.
Recall that f is p.l on X if with respect to some subdivision is simplicial

(i.e. the liftings to R of the restriction of f to simplexes are linear) and for
any two p.l maps f, g there exists a common subdivision of X which makes
f and g simultaneously simplicial, hence any ht is a simplicial map. Item
(1.) follows from approximability of continuous maps by p.l maps and item
(2.) from the continuity in t of the family ht and of the compacity of X.

(v) Proposition 5.6 states that f, g ∈ C(X,S1)t,ξ and D(f, g) < ε(f)/6 implies

D(δfr , δ
g
r ) < 2D(f, g). (41)

The above observations combined imply Theorem 1.2. Indeed, Item (v.) makes
δ : C(X; S1)t,ξ → SN (T) a continuous map and establishes the continuity of the
assignment C(X,S1)t,ξ 3 f → δfr ∈ SN (T) N = βNr (X, ξ). To conclude the exis-
tence of a continuous extension of δr to the entire C(X,S1), in view of item (i) and
(ii) and (iv), it suffices to show that for a Cauchy sequence {fn}, fn ∈ U , δfnr is
a Cauchy sequence in SN (T). This will follow once we can show that for any two
f, g ∈ U with d(f, g) < π we have D(δfr , δ

g) ≤ 2D(f, g). To establish this last fact
we proceed as follows.

Start with f, g ∈ U with D(f, g) < π and consider ht, t ∈ [o, 1] defined above.
Choose a sequence 0 = t0 < t2 < t4, · · · t2N−2 < t2N = 1 so that the open

intervals I2i = (t2i − δ(t2i), t2i + δ(t2i)) cover [0, 1]. The compacity of [0, 1] makes
this possible.

By possibly removing some of the points t2is and decreasing δ(t2i) one can make
I2i ∩ I2i+2 6= ∅ and t2t−2, t2i+2 /∈ I2i. Choose t1 < t3 < · · · t2N−1 with t2i < t2i+1 <
t2i and t2i+1 ∈ I2i ∩ I2i+2. We have then |t2i+1 − t2i| < δ(t2i) and |t2i+2 − t2i+1| <
δ(t2i+2).

In view of item (iv) |t2i+1 − t2i| < δ(t2i) implies D(ht2i , ht2i+1) < ε(ht2i)/6 and
|t2i+2− t2i+1| < δ(t2i+2) implies D(ht2i+2 , ht2i+1) < ε(ht2i+2)/6. In view of item (v)

the last inequalities implyD(δ
ht2i+1
r , δ

ht2i
r ) < 2D(ht2i , ht2i+1) andD(δ

ht2i+2
r , δ

ht2i+1
r ) <

2D(ht2i+2 , ht2i+1). Therefore, for any 0 ≤ k ≤ 2N − 1 one has D(δ
htk+1
r , δ

htk
r ) <
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2D(htk+1 , htk). Then

D(δf , δg) ≤
∑

0≤i<2N−1

D(δh(ti+1, δ
h(ti)) ≤ 2

∑
0≤i<2N−1

D(hti+1 , hti).

which by item (iii) is exactly D(d, g).
This finishes the proof of Theorem 1.2.

6. Poincaré duality for configurations Cr(f). Proof of Theorem 1.3

For an n−dimensional manifold Y, not necessary compact, Poincaré Duality can
be better formulated using Borel–Moore homology, cf. [3], especially tailored for
locally compact spaces Y and pairs (Y,K), K closed subset of Y. Borel Moore
homology coincides with the standard homology when Y is compact. In general,
for a locally compact space Y can be described as the inverse limit of the homology
Hr(Y, Y \U) for all U open sets with compact closure. One denotes the Borel–Moore
homology in dimension r by HBM

r . For Y a n−dimensional topological κ−orientable
manifold, g : Y → R a tame map and a a regular value of g,10 Poincaré Duality
provides the commutative diagrams

HBM
r (Ya)

��

// HBM
r (Y )

��

// HBM
r (Y, Ya)

��
Hn−r(Y, Y a)

��

// Hn−r(Y )

��

// Hn−r(Y a)

��
(Hn−r(Y, Y a))∗ // (Hn−r(Y ))∗ // (Hn−r(Y a))∗ .

(42)

HBM
r (Y a)

��

// HBM
r (Y )

��

// HBM
r (Y, Y a)

��
Hn−r(Y, Ya)

��

// Hn−r(Y )

��

// Hn−r(Ya)

��
(Hn−r(Y, Ya))∗ // (Hn−r(Y ))∗ // (Hn−r(Ya))∗ .

(43)

The first vertical arrow in each column of both diagrams is the Poincaré Duality
isomorphism, the second is the the isomorphism between cohomology and the dual
of homology with coefficients in a field. The horizontal arrows are induced by the
inclusions of Ya or Y a in Y and the inclusion of pairs (Y, ∅) in (Y, Ya) or (Y, Y a).

We apply diagrams (42) and (43) to Y = M̃n and g = f̃ , with f̃ : M̃ → R
the infinite cyclic covering of f : Mn → S1, a tame map defined on a closed κ−

10i.e. f : f−1(a− ε, a+ ε)→ (a− ε, a+ ε) is a fibration
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orientable topological manifold and obtain

HBM
r (M̃a)

��

ia(r) // HBM
r (M̃)

��

ja(r) // HBM
r (M̃, M̃a)

��
Hn−r(M̃, M̃a)

��

sa(n−r) // Hn−r(M̃)

��

ra(n−r)) // Hn−r(M̃a)

��
(Hn−r(M̃, M̃a))∗

(ja(n−r))∗ // (Hn−r(M̃))∗
(ia(n−r))∗// (Hn−r(M̃a))∗

(44)

HBM
r (M̃ b)

��

ib(r) // HBM
r (M̃)

��

jb(r) // HBM
r (M̃, M̃ b)

��
Hn−r(M̃, M̃b)

��

(sb(n−r))∗ // Hn−r(M̃))

��

rb(n−r) // Hn−r(M̃b)

��
(Hn−r(M̃, M̃b))∗

(jb(n−r))∗// (Hn−r(M̃))∗
(ib(n−r))∗// (Hn−r(M̃b))∗ .

(45)
For M̃, M̃a, M̃

a the Borel–Moore homology can be described as the following
inverse limits :

HBM
r (M̃) = lim←−

0<l→∞
Hr(M̃, M̃−l t M̃ l),

HBM
r (M̃a) = lim←−

0<l→∞
Hr(M̃a, M̃a−l),

HBM
r (M̃a) = lim←−

0<l→∞
Hr(M̃, M̃a+l),

HBM
r (M̃, M̃a) = lim←−

0<l→∞
Hr(M̃, M̃a t M̃a+l),

HBM
r (M̃, M̃a) = lim←−

0<l→∞
Hr(M̃, M̃a t M̃a−l).

(46)

The inclusion of pairs (M̃, M̃−l′ t M̃ l′) ⊆ (M̃, M̃−l t M̃ l) for l′ > l induces in
homology an invers system whose limit is HBM

r (M̃). Similar inclusions of pairs
associated with l′ > l induce inverse systems whose limits are the remaining Borel–
Moore homology vector spaces considered above.

The horizontal arrows in both diagrams are inclusion (possibly of pairs) induced
linear maps in homology when denoted by i(· · · )s and j(· · · )s or cohomology when
denoted by r(· · · )s and s(· · · )s .

In view of the above involvement of Borel–Moore homology, in addition to If̃a(r)
and Ia

f̃
(r), consider

IBM,f̃
a (r) = img(HBM

r (X̃a)→ HBM
r (X̃)),

IBM,a

f̃
(r) = img(HBM

r (X̃a)→ HBM
r (X̃)),

and FBM,f
r (a, b) = dim(IBM,f̃

a (r) ∩ IBM,b

f̃
(r)).
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Note that the exact sequences in Borel–Moore homology of the pairs (M̃, M̃a)
or (M̃, M̃ b), the top lines of the two diagrams, give

FBM,f̃ (a, b) = IBM,f̃
a (r) ∩ IBM,b

f̃
(r) = ker(jBMa (r), jBM,b(r)). (47)

Looking to the right side corners of the diagrams (44) and (45) one concludes
that

ker(jBMa (r), jBM,b(r)) ≡ ker(ra(n− r), rb(n− r)). (48)

In view of the canonical isomorphism between cohomology the dual of homology
one obtains

ker((ra(n− r), rb(n− r)) ≡ (coker(ia(n− r) + ib(n− r)))∗. (49)

In view of the definition and of the finite dimensionality of Gf̃ (a, b) one obtains

Gf̃n−r(b, a) := dim(coker(ib(n− r) + ia(n− r)) = dim(coker(ib(n− r) + ia(n− r)))∗.
(50)

Note also that

Gf̃ (a, b) = G−f̃ (−b,−a). (51)

Consequently FBM,f̃
r (a, b) = G−f̃n−r(−a,−b).

In order to conclude that

δf̃r (a, b) = δ−f̃n−r(−a,−b). (52)

it suffices to show that the function δBM,f̃
r calculated from FBM,f̃

r using (31) is the
same as the function δf̃r . If so we obtain

δfr (z) = δfn−r(z
−1) (53)

for z = eia+(b−a),which establishes Theorem 1.3.
For this purpose we need the following proposition.

Proposition 6.1. FBM,f̃
r (a, b) + ]J̃r(f) = F f̃r (a, b) with ] meaning ” cardinality”.

Proposition 6.1 is proved by comparing FBM,f̃
r (a, b) and F f̃r (a, b) calculated in

terms of number of bar codes with the help of Propositions 4.1 and 4.2.
The final outcome of the calculation can be summarized as follows: FBM,f̃

r (a, b) =
]S′ and F f̃r (a, b) = ]{S′ t S′′} where

when a ≤ b S′ = {I ∈ B̃cr | I ⊇ [a, b]} and
when a > b S′ = {I ∈ B̃cr | I ∩ [b, a] 6= ∅} t {I ∈ Bor−1 | I ⊂ (b, a]}
and for any a, b ∈ R, S′′ = J̃r.
F f̃r (a, b) can be read off from Proposition 4.1 directly. To calculate FBM,f̃

r (a, b)
one has to describe HBM

r (X̃a)→ HBM
r (X̃) and HBM

r (X̃b)→ HBM
r (X̃).

Recall that for an interval I we denote by X̃I := f̃−1(I).
Notice that the long exact sequence of the pair (X̃, X̃ \ X̃(−a,a)) and the inclu-

sion of pairs (X̃, X̃ \ X̃(−a′,a′)) ⊂ (X̃, X̃ \ X̃(−a,a)) for a′ > a, gives rise to the
commutative diagram whose lines are short exact sequences



TOPOLOGY OF ANGLE VALUED MAPS, BAR CODES AND JORDAN BLOCKS. 33

0 // cokerr(−a, a)

��

// Hr(X̃, X̃ \ X̃(−a,a))

��

// kerr−1(−a, a)

��

// 0

0 // cokerr(−a′, a′) // Hr(X̃, X̃ \ X̃(−a′,a′)) // kerr−1(−a′, a′) // 0
where

cokerr(−a, a) = coker(Hr(X̃ \ X̃(−a,a))→ Hr(X̃))

kerr−1(−a, a) = ker((Hr−1(X̃ \ X̃(−a,a))→ Hr−1(X̃))
In view of Proposition 4.1 one has

lim←−
a→∞

ker(Hr−1(X̃ \ X̃(−a,a))→ Hr−1(X̃)) = 0

and then

HBM
r (X̃) = lim←−

a→∞
coker(Hr(X̃ \ X̃(−a,a))→ Hr(X̃)). (54)

By similar arguments one derives

HBM
r (X̃a) = lim←−

a′→−∞
coker(Hr(X̃a \ X̃(a′,a])→ Hr(X̃a)),

HBM
r (X̃b) = lim←−

b′→∞
coker(Hr(X̃b \ X̃[b,b′)→ Hr(X̃)).

(55)

From Proposition (4.1) for a < b one derives that

coker(Hr(X̃ \ X̃(a,b))→ Hr(X̃)) = Hr(X̃)/Ifa(r) + Ibf (r)) = κ[Sr,[a,b]]

where

Sr,[a,b] = {I ∈ B̃cr(f) | I ⊂ (a, b)} t {I ∈ B̃or−1(f) | I ∩ (a, b) 6= ∅}.
which implies

HBM
r (X̃) = Maps(B̃cr(f) t B̃or−1(f), κ) (56)

and identifies the canonical homomorphism Hr(X̃)→ HBM
r (X̃) to

κ[B̃cr(f) t B̃or−1(f) t J̃r(f)]→Maps(B̃cr(f) t B̃or−1(f), κ) (57)

induced by sending the elements of J̃r(f) to zero and the other to their characteristic
map.

Similarly one obtains

HBM
r (X̃a) =Maps(Sr,(−∞,a], κ)

HBM
r (X̃b) =Maps(Sr,[b,∞), κ)

(58)

where

Sr,(−∞,a] ={I ∈ B̃r(f) | I ∩ (−∞, a] closed end 6= ∅} t {I ∈ B̃o
r−1(f) | I ⊂ (−∞, a)}

Sr,[b,∞) ={I ∈ B̃r(f) | I ∩ [b,∞) closed end 6= ∅} t {I ∈ B̃o
r−1(f) | I ⊂ (b,∞)}.

with HBM
r (X̃a)→ HBM

r (X̃)) and HBM
r (X̃b)→ HBM

r (X̃)) identified to

Maps(Sr,(−∞,a], κ)→Maps(B̃cr(f) t B̃or−1(f), κ)

Maps(Sr,[b,∞), κ)→Maps(B̃cr(f) t B̃or−1(f), κ)
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defined as follows: If l ∈ Maps(Sr,···, κ) its image l̂ ∈ Maps((B̃cr(f) t B̃or−1(f), κ))
takes the same value as l on any barcode in Sr,··· which belongs to B̃cr(f)t B̃or−1(f)
and zero on all others. Using the definition of FBM,f̃

r (a, b) one obtains FBMr (a, b) =
]S′. q.e.d

7. The mixed bar codes. Proof of Theorem 1.5

As pointed out in Section 1 for a tame map f : X → S1 the set B̃cor (f) and
the collection B̃ocr (f) coincides with the collection of finite persistence bar codes
associated to the filtration by the sub-levels and sup-levels of f̃ respectively, as
defined in [12]. Precisely the multiplicity of the r−persistence barcode (a, b) of
the map f̃ is the multiplicity of the closed-open bar code [a, b) in the collection
B̃cor (f) and the multiplicity of the r−persistence bar code (−b,−a) for −f̃ is the
multiplicity of the open-closed bar code (a, b] in the collection B̃ocr (f). This can
be easily derived from Proposition4.3 and the relationship between persistence bar
codes and persistent homology.

As indicated in Section 1 one can record the closed open r−bar code [a, b) as
the point (a, b) ∈ R2 \∆ (above the diagonal) and to open closed r−bar code(c, d]
as the point (d, c) ∈ R2 \ ∆ (below diagonal), equivalently we put together the
r−persistence diagrams of f̃ and of −f̃ . We obtain in this way a configuration
Cmr (f̃) of points in R2 \ ∆, which defines the configuration Cmr (f) of points in
T \∆T. There is no interaction between points above diagonal and below diagonal
when the map f varies, so associating closed-open r−bar codes with open-closed
r−barcodes is only an issue of economy rather than meaning.

One can derive the configuration Cmr (f) as the ”jump function” of the two vari-
able function T f̃r : R2 \ ∆ → Z≥0 in the manner described in section 5 for the
configuration Cr(f). The function T f̃r is defined by:

T f̃ (a, b) =

{
dim ker(Hr(X̃a)→ Hr(X̃b)) if a < b

dim ker(Hr(X̃b)→ Hr(X̃a)) if a > b

If f is tame then so is f̃ and the limit

δm,f̃r (a, b) = lim
ε→0

(−T f̃r (a−ε, b+ε)−T f̃r (a+ε, b−ε)+T f̃r (a−ε, b−ε)+T f̃r (a+ε, b+ε)

exists and defines a function which satisfies δm,f̃r (a+2π, b+2π) = δm,f̃r (a+2π, b+2π)
and then, as in section 5, the function δm,fr : T \∆T → Z≥0. Using Proposition 4.3
on can show that δm,fr and Cmr (f) are equal. The definition above is essentially
the description of the persistence diagrams of f̃ and −f̃ , cf [11], and will not be
pursued further in this paper.

The stability phenomena discovered in [5] can be formulated in terms of config-
uration Cmr (f) when one equips the set of finite configurations of points in T \∆T
with the topology induced by the bottle neck distance defined [5].Note that in this
case the configurations do not have the same cardinality and, in this topology, the
definition of ” proximity” largely ignores the points points near the diagonal ∆T.

Here is the definition for such topology on the space Confg(X \ K) of finite
configurations of points in X \K, X locally compact space and K a closed subset
of X. Recall that a configuration is a map with finite support, δ : X \K → Z≥0.
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Define a base for the topology by specifying a collection of open sets indexed by
systems S = {(U1, k1), · · · (Ur, kr), V } with:

(1) Ui, i = 1 · · · r open subsets of X \K, V open neighborhood of K,
(2) k1, k2, · · · kr positive integers.

The ”open set” of configurations corresponding to S is U(S) := {δ ∈ Confg(X\K) |
support (δ) ⊂ U1 ∪U2 · · · ∪Ur ∪V,

∑
x∈Ui

δ(x) = ki} .
The MAIN THEOREM in [5] implies

Theorem 7.1. The assignment f  Cmr (f) is a continuous map from the space
Ct(X,S1) of tame maps to Confg(T \∆) when the first space is equipped with the
compact open topology and the second with the topology described above in case
(X,K) = (T,∆).

Poincaré duality also holds for the configuration Cmr (f). Theorem 1.5 formulates
this duality. We understand that for f a real valued function it is implicit in the
work of Edelsbrunner and others. We treat however the angle valued maps rather
than real valued maps and derive its proof as a corollary to Proposition 4.2. We
provide below the arguments.

7.1. Proof of Theorem 1.5. In consistency with the notation in previous sections
for f̃ : X̃ → R the infinite cyclic covering of the tame map f : X → S1 we denote
by

(i) ia(r) : Hr(X̃a)→ Hr(X̃) and iBMa (r) : HBM
r (X̃a)→ Hr(X̃),

(ii) ia(r) : Hr(X̃a)→ Hr(X̃) and iBM,a(r) : HBM
r (X̃a)→ Hr(X̃),

and for a ≤ b
(iii) ia,b(r) : Hr(X̃a)→ Hr(X̃b) and iBMa,b (r) : HBM

r (X̃a)→ Hr(X̃b),

(iv) ib,a(r) : Hr(X̃b)→ Hr(X̃a) and iBM,b,a(r) : HBM
r (X̃b)→ Hr(X̃a)

the inclusion induced linear maps in homology and Borel-Moore homology.
We introduce

(i) Ka(r) := ker ia(r) and KBM
a (r) := ker iBMa (r),

(ii) Ka(r) := ker ia(r) and KBM,a(r) := ker iBM,a(r)

and denote by
′ia,b(r) : Ka(r)→ Kb(r) and ′iBMa,b (r) : KBM

a (r)→ KBM
b (r),

′ib,a(r) : Kb(r)→ Ka(r) and ′iBM,b,a(r) : KBM,b(r)→ KBM,a(r)
the restrictions of of ia,b(r), iBMa,b (r) and of ib,a(r), iBM,b,a(r) to the respective
kernels K······(r).
Note that in view of the calculations of Borel–Moore homology of X̃a, X̃a, X̃ and

of the canonical homomorphism Hr(M̃ · · · )→ HBM
r (M̃ · · · ) one concludes that

K(r) = KBM (r) and ′i(r) =′ iBM(r).

Proposition 4.2 permits to describe the vector spaces Ka(r),Ka(r), ker ′ia,b(r),
coker ′ia,b(r), ker ′ib,a(r), coker ′ib,a(r) in terms of mixed bar codes as summarized
in the next proposition.
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Proposition 7.2. Suppose f : X → S1 is a tame map with f̃ : X̃ → R its infinite
cyclic covering, and a, b real numbers with a ≤ b. Then

1. Kf̃
a(r) = κ[{I ∈ B̃cor (f) | I 3 a}]

2. Ka
f̃
(r) = κ[{I ∈ B̃ocr (f) | I 3 a}]

3. ker ′ia,b(r) = κ[{I ∈ B̃cor (f) | I 3 a, b /∈ I}]
coker ′ia,b(r) = κ[{I ∈ B̃cor (f) | I 3 b, a /∈ I}]

4. ker ′ib,a(r) = κ[{I ∈ B̃ocr (f) | I 3 b, a /∈ I}]
coker ′ib,a(r) = κ[{I ∈ B̃ocr (f) | I 3 a, b /∈ I}]

The long exact sequence for the pair (X̃, X̃a)

// Hn−r(X̃)
ja(n−r)// Hn−r(X̃, X̃a)

δa(n−r)// Hn−r−1(X̃a)
ia(n−r−1)// Hn−1−r(X̃) //

(59)
gives rise to the canonical isomorphism

δa(n− r) : coker ja(n− r)→ ker ia(n− r) = Ka(n− r − 1) (60)

which being ”natural” w.r. to the inclusion of pairs (X̃, X̃b) ⊆ (X̃, X̃a) for a ≤ b
implies the commutativity of the diagram

coker jb(n− r)

��

δbn−r // Kb(n− r − 1)

ib,a(n−r−1)

��
coker ja(n− r) δa(n−r)// Ka(n− r − 1)

(61)

Suppose that X = Mn is a closed κ−orientable manifold and a is a regular value of
f̃ . Poincaré Duality for the manifold M̃n and for the pairs (M̃, M̃a) and (M̃, M̃a)
provides the commutative diagram

Ka(r)

=

��

// Hr(M̃a)

��

ia(r) // Hr(M̃)

��
KBM
a (r)

PD

��

// HBM
r (M̃a)

PD

��

iBMa (r) // HBM
r (M̃)

PD

��
ker(ja(n− r))∗) // (Hn−r(M̃, M̃a))∗ // (Hn−r(M̃))∗

(62)

with the bottom vertical arrows the Poincaré Duality isomorphisms considered in
Section 6. The diagram is natural w.r. to the inclusion of pairs (X,Xa) ⊆ (X,Xb),
provided a and b are regular values, and leads to the commutative diagram (63)
whose vertical arrows are all isomorphisms.
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Ka(r)

��

′ia,b(r) // Kb(r)

��
ker(ja(n− r))∗

��

// ker(jb(n− r))∗

��
coker ja(n− r))∗ // coker jb(n− r)∗

Ka(n− r − 1)∗

OO

(′ib,a(n−r−1))∗// Kb(n− r − 1))∗.

δb(n−r)∗
OO

(63)

Let us review the information we have:

(i) The tameness of f implies that for a < b, a, b critical values and ε < ε(f)
the inclusions X̃a ⊆ X̃a+ε and X̃a−ε ⊂ X̃a are homotopy equivalences,

(ii) Poincaré Duality above and item (i) imply that for 0 ≤ ε, ε′ < ε(f) and
a < b critical values one has

ker ′ia+ε,b+ε′(r) ≡ ker ′ia,b(r) = coker′ ib,a(n− 1− r) ≡ coker ′ib−ε,a−ε
′
(n− 1− r)

(64)
(iii) Proposition 7.2 implies that for a < b critical values and 0 < ε < ε(f)

Cmk (f)(a, b) =



dim ker ′ia,b(k)− dim ker ′ia−ε,b(k)− dim ker ′ia,b−ε(k)+
+ dim ker ′ia−ε,b−ε(k)
=

dim coker ′ia,b(k)− dim coker ′ia−ε,b(k)− dim coker ′ia,b−ε(k)+
dim coker ′ia−ε,b−ε(k)

(65)
and

Cmk (f)(b, a) =



+ dim ker ′ib,a(k)− dim ker ′ib,a−ε(k)− dim ker ′ib−ε,a(k)+
+ dim ker ′ia−ε,b−ε(k)
=

dim coker ′ib,a(k)− dim coker ′ib,a−ε(k)− dim coker ′ib−ε,a(k)+
+ dim coker ′ia−ε,b−ε(k)

(66)

Item (iii) comes down to expressing the number of closed open or open closed
bar codes with end a and b critical values in terms of the number of bar codes which
contain a but not b and using Proposition 7.2

Putting together items (ii) to (iii) one derives that Cmr (f̃)(a, b) = Cmn−1−r(f̃)(b, a)
and then Cmr (f)(a, b) = Cmn−1−r(−f̃)(−a,−b) which is what Theorem 1.5 states.

q.e.d
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8. Linear relations and monodromy. Proof of Theorem 1.4

This section can be read independently on the rest of the paper. For additional
future use we describe this piece of linear algebra in a larger generality, of modules
over a commutative ring rather than vector spaces over a field.

8.1. Linear relations. Suppose V and W are two modules over a fixed commu-
tative ring in particular field.. Recall that a linear relation from V to W can be
considered as a submodule R ⊆ V ×W . Notationally, we indicate this situation
by R : V  W . For v ∈ V and w ∈ W we write vRw iff v is in relation with w,
i.e. (v, w) ∈ R. Every module homomorphism V → W can be regarded as a linear
relation V  W in a natural way. If U is another module, and S : W  U is a
linear relation, then the composition SR : V  U is the linear relation defined by
v(SR)u iff there exists w ∈W such that vRw and wSu. Clearly, this is an associa-
tive composition generalizing the ordinary composition of module homomorphisms.
For the identical relations we have R idV = R and idW R = R. Modules over a fixed
commutative ring and linear relations thus constitute a category. If R : V  W is
a linear relation we define a linear relation R† : W  V by wR†v iff vRw. Clearly,
R†† = R and (SR)† = R†S†.

A linear relation R : V  W gives rise to the following submodules:

dom(R) := {v ∈ V | ∃w ∈W : vRw}
img(R) := {w ∈W | ∃v ∈ V : vRw}
ker(R) := {v ∈ V | vR0}

mul(R) := {w ∈W | 0Rw}
Clearly, ker(R) ⊆ dom(R) ⊆ V , and W ⊇ img(R) ⊇ mul(R). Note that R is a
homomorphism (map) iff dom(R) = V and mul(R) = 0. One readily verifies:

Lemma 8.1. For a linear relation R : V  W the following are equivalent:
(a) R is an isomorphism in the category of modules and linear relations.
(b) dom(R) = V , img(R) = W , ker(R) = 0, and mul(R) = 0.
(c) R is an isomorphism of modules.
In this case R−1 = R†.

For a linear relation R : V  V , we introduce the following submodules:

K+ := {v ∈ V | ∃k ∃vi ∈ V : vRv1Rv2R · · ·RvkR0}
K− := {v ∈ V | ∃k ∃vi ∈ V : 0Rv−kR · · ·Rv−2Rv−1Rv}
D+ := {v ∈ V | ∃vi ∈ V : vRv1Rv2Rv3R · · · }
D− := {v ∈ V | ∃vi ∈ V : · · ·Rv−3Rv−2Rv−1Rv}

D := D− ∩D+ = {v ∈ V | ∃vi ∈ V : · · ·Rv−2Rv−1RvRv1Rv2R · · · },
Clearly, K− ⊆ D− ⊆ V ⊇ D+ ⊇ K+. Also note that passing from R to R†, the
roles of + and − get interchanged. Moreover, we introduce a linear relation on the
quotient module

Vreg :=
D

(K− +K+) ∩D
defined as the composition

Vreg =
D

(K− +K+) ∩D
π†

 D
ι
 V

R
 V

ι†

 D
π
 

D

(K− +K+) ∩D = Vreg,
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where ι and π denote the canonical inclusion and projection, respectively. In other
words, two elements in Vreg are related by Rreg iff they admit representatives in D
which are in related by R. We refer to Rreg as the regular part of R.

Proposition 8.2. The relation Rreg : Vreg  Vreg is an isomorphism of modules.
Moreover, the natural inclusion induces a canonical isomorphism

Vreg =
D

(K− +K+) ∩D
∼=−→ (K− +D+) ∩ (D− +K+)

K− +K+
(67)

which intertwines Rreg with the relation induced on the right hand side quotient.

Proof. Clearly, (67) is well defined and injective. To see that it is onto let

x = k− + d+ = d− + k+ ∈ (K− +D+) ∩ (D− +K+),

where k± ∈ K± and d± ∈ D±. Thus

x− k− − k+ = d+ − k+ = d− − k− ∈ D− ∩D+ = D.

We conclude x ∈ D +K− +K+, whence (67) is onto. We will next show that this
isomorphism intertwines Rreg with the relation induced on the right hand side. To
do so, suppose xRx̃ where

x = k− + d+ = d− + k+ ∈ (K− +D+) ∩ (D− +K+),

x̃ = k̃− + d̃+ = d̃− + k̃+ ∈ (K− +D+) ∩ (D− +K+),

and k±, k̃± ∈ K± and d±, d̃± ∈ D±. Note that there exist k′+ ∈ K+ and k̃′− ∈ K−
such that k+Rk

′
+ and k̃′−Rk̃−. By linearity of R we obtain

(x− k+ − k̃′−)︸ ︷︷ ︸
∈D−

R (x̃− k′+ − k̃−)︸ ︷︷ ︸
∈D+

.

We conclude d := x−k+−k̃′− ∈ D, d̃ := x̃−k′+−k̃− ∈ D, and dRd̃. This shows that
the relations induced on the two quotients in (67) coincide. We complete the proof
by showing that Rreg is an isomorphism. Clearly, dom(Rreg) = Vreg = img(Rreg).
We will next show ker(Rreg) = 0. To this end suppose dRd̃, where

d ∈ D and d̃ = k̃− + k̃+ ∈ (K− +K+) ∩D
with k̃± ∈ K±. Note that k̃− = d̃−k̃+ ∈ K−∩D+. Thus there exists k− ∈ K−∩D+

such that k−Rk̃−. By linearity of R, we get (d−k−)Rk̃+, whence d−k− ∈ K+ and
thus d ∈ K−+K+. This shows ker(Rreg) = 0. Analogously, we have mul(Rreg) = 0.
In view of Lemma 8.1 we conclude that Rreg is an isomorphism of modules. �

We will now specialize to linear relations on finite dimensional vector spaces and
provide another description of Vreg in this case. Consider the category whose objects
are finite dimensional vector spaces V equipped with a linear relation R : V  V
and whose morphisms are linear maps ψ : V → W such that for all x, y ∈ V with
xRy we also have ψ(x)Qψ(y), where W is another finite dimensional vector space
with linear relation Q : W  W . It is readily checked that this is an abelian cate-
gory. By the Remak–Schmidt theorem, every linear relation on a finite dimensional
vector space can therefore be decomposed into a direct sum of indecomposable
ones, R ∼= R1 ⊕ · · · ⊕ RN , where the factors are unique up to permutation and
isomorphism. The decomposition itself, however, is not canonical.
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Proposition 8.3. Let R : V  V be a linear relation on a finite dimensional
vector space over an algebraic closed field , and let R ∼= R1 ⊕ · · · ⊕ RN denote a
decomposition into indecomposable linear relations. Then Rreg is isomorphic to the
direct sum of factors Ri whose relations are linear isomorphisms.

Proof. Since the definition of Rreg is a natural one, we clearly have

Rreg
∼= (R1)reg ⊕ · · · ⊕ (RN )reg.

Consequently, it suffices to show the following two assertions:
(a) If R : V  V is an isomorphism of vector spaces, then Vreg = V and Rreg = R.
(b) If R : V  V is an indecomposable linear relation on a finite dimensional vector

space which is not a linear isomorphism, then Vreg = 0.
The first statement is obvious, in this case we have K− = K+ = 0 and D = D− =
D+ = V . To see the second assertion, note that an indecomposable linear relation
R ⊆ V × V gives rise to an indecomposable representation R→→V of the quiver G2.
Since R is not an isomorphism, the quiver representation has to be of the bar code
type. Using the explicit descriptions of the bar code representations, it is straight
forward to conclude Vreg = 0. �

In the subsequent discussion we will also make use of the following result:

Proposition 8.4. Suppose R : V  V is a linear relation on a finite dimensional
vector space. Then:

D+ = D +K+, D− = K− +D, and (68)

K− ∩D+ = K− ∩K+ = D− ∩K+. (69)

For the proof we first establish two lemmas.

Lemma 8.5. Suppose R : V  W is a linear relation between vector spaces such
that dimV = dimW <∞. Then the following are equivalent:
(a) R is an isomorphism.
(b) dom(R) = V and ker(R) = 0.
(c) img(R) = W and mul(R) = 0.

Proof. This follows immediately from the dimension formula

dim dom(R) + dim mul(R) = dim(R) = dim img(R) + dim ker(R)

and Lemma 8.1. �

Lemma 8.6. If V is finite dimensional, then the composition of relations

D+/K+
π†

 D+
ι
 V

Rk

 V
ι†

 D+
π
 D+/K+,

is a linear isomorphism, for every k ≥ 0, where ι and π denote the canonical
inclusion and projection, respectively. Analogously, the relation induced by Rk on
D−/K− is an isomorphism, for all k ≥ 0. Moreover, for sufficiently large k,

D− = img(Rk) and D+ = dom(Rk).

Proof. One readily verifies dom(πι†Rkιπ†) = D+/K+ and ker(πι†Rkιπ†) = 0. The
first assertion thus follows from Lemma 8.5 above. Considering R† we obtain the
second statement. Clearly, dom(Rk) ⊇ dom(Rk+1), for all k ≥ 0. Since V is finite
dimensional, we must have dom(Rk) = dom(Rk+1), for sufficiently large k. Given
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v ∈ dom(Rk), we thus find v1 ∈ dom(Rk) such that vRv1. Proceeding inductively,
we construct vi ∈ img(Rk) such that vRv1Rv2R · · · , whence v ∈ D+. This shows
dom(Rk) ⊆ D+, for sufficiently large k. As the converse inclusion is obvious we get
D+ = dom(Rk). Considering R†, we obtain the last statement. �

Proof of Proposition 8.4. From Lemma 8.6 we get img(πι†Rk) = D+/K+, whence
D+ ⊆ img(Rk)+K+, for every k ≥ 0, and thus D+ ⊆ D−+K+. This implies D+ =
D + K+. Considering R† we obtain the other equality in (68). From Lemma 8.6
we also get mul(πι†Rk) = 0, whence mul(Rk) ∩D+ ⊆ K+, for every k ≥ 0. This
gives K− ∩D+ = K− ∩K+. Considering R† we get the other equality in (69). �

G2m−representations and the associated relations. For a G2m− rep-
resentation ρ = {Vr, αi, βj} we have m relations Ri : V2i−1  V2i+1 (consider-
ing V2m+k = Vk) given by the pair of linear maps alphai : V2i−1 → V2i and
βi : V2i+1 → V2i. One can consider the compositions Ri : V2i−1  V2i−1 Ri :=
V2i−1  V2i+1  · · ·V2m−1  V1  V3  · · ·V2i−3  V2i−1.

Proposition 8.7. Rireg = Rjreg for any i, j and is conjugate to ⊕J∈J T (J).

Proof. The statement is immediate for indecomposable representations for a general
representation implied by Proposition 8.3.

8.2. Monodromy, Proof of Theorem 1.4. The purpose of this subsection is to
establish Theorem 1.4

Suppose f : X → S1 is a continuous map and let

X̃

��

f̃ // R

��
X

f // S1

denote the associated infinite cyclic covering. For r ∈ R we put X̃r = f̃−1(r) and
let H∗(X̃r) denote its singular homology with coefficients in any fixed module. If
r1 ≤ r2 we define a linear relation

Br2r1 : H∗(X̃r1) H∗(X̃r2)

by declaring a1 ∈ H∗(X̃r1) to be in relation with a2 ∈ H∗(X̃r2) iff their images in
H∗(X̃[r1,r2]) coincide, where X̃[r1,r2] = f−1([r1, r2]). If r1 ≤ r2 ≤ r3 we clearly have
Br3r2B

r2
r1 ⊆ Br3r1 . If r2 is a tame value this becomes an equality of relations:

Lemma 8.8. Suppose r1 ≤ r2 ≤ r3 and assume r2 is a tame value. Then, as linear
relations, Br3r2B

r2
r1 = Br3r1 .

Proof. Since r2 is a tame value, we have an exact Mayer–Vietoris sequence,

H∗(X̃r2)→ H∗(X̃[r1,r2])⊕H∗(X̃[r2,r3])→ H∗(X̃[r1,r3]),

which immediately implies the statement. �

Fix a tame value θ ∈ S1 of f and a lift θ̃ ∈ R, eiθ̃ = θ. Using the projection
X̃ → X, we may canonically identify X̃θ̃ = Xθ = f−1(θ). Moreover, let τ : X̃ → X̃

denote the fundamental deck transformation, i.e. f̃ ◦τ = f̃+2π. Note that τ induces
homeomorphisms between levels, τ : X̃r → X̃r+2π, and define a linear relation

R : H∗(Xθ) H∗(Xθ)
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as the composition

H∗(Xθ) = H∗(X̃θ̃)
Bθ̃+2π
θ̃ H∗(X̃θ̃+2π)

τ†∗ H∗(X̃θ̃) = H∗(Xθ). (70)

In other words, for a, b ∈ H∗(Xθ) we have aRb iff aBθ̃+2π

θ̃
(τ∗b), i.e. iff a and τ∗b

coincide in H∗(X̃[θ̃,θ̃+2π]). Particularly:

Lemma 8.9. If a, b ∈ H∗(Xθ) and aRb, then a = τ∗b in H∗(X̃).

We will continue to use the notationK±, D±, andRreg introduced in the previous
section for this relation R on H∗(Xθ). Particularly, its regular part,

Rreg : H∗(Xθ)reg → H∗(Xθ)reg,

is a module automorphism.

Lemma 8.10. We have:

K+ = ker
(
H∗(Xθ)→ H∗(X̃[θ̃,∞))

)
K− = ker

(
H∗(Xθ)→ H∗(X̃(−∞,θ̃])

)
Both maps are induced by the canonical inclusion Xθ = X̃θ̃ → X̃.

Proof. We will only show the first equality, the other one can be proved along
the same lines. To see the inclusion K+ ⊆ ker(H∗(Xθ) → H∗(X̃[θ̃,∞))), let a ∈
K+. Hence, there exist ak ∈ H∗(Xθ), almost all of which vanish, such that
aRa1Ra2R · · · . In H∗(X̃[θ̃,θ̃+2π]), we thus have:

a = τ∗a1, a1 = τ∗a2, a2 = τ∗a3, . . .

In H∗(X̃[θ̃,∞)), we obtain:

a = τ∗a1 = τ2
∗a2 = τ3

∗a3 = · · ·
Since some ak have to be zero, we conclude that a vanishes in H∗(X̃[θ̃,∞)).

To see the converse inclusion, K+ ⊇ ker(H∗(X̃θ)→ H∗(X̃[θ̃,∞))), set

U :=
⊔

0 ≤ k even

X̃[θ̃+2πk,θ̃+2π(k+1)], V :=
⊔

1 ≤ k odd

X̃[θ̃+2πk,θ̃+2π(k+1)]

and note that U ∪ V = X̃[θ̃,∞), as well as U ∩ V =
⊔
k∈N X̃θ̃+2πk. Since θ is a tame

value, we have an exact Mayer–Vietoris sequence⊕
k∈N

H∗(X̃θ̃+2πk) = H∗

(⊔
k∈N

X̃θ̃+2πk

)
→ H∗(U)⊕H∗(V )→ H∗(X̃[θ̃,∞)).

For b ∈ ker(H∗(Xθ) → H∗(X̃[θ̃,∞))) we thus find bk ∈ H∗(X̃θ̃+2πk), almost all of
which vanish, such that:

b = b1 ∈ H∗(X̃[θ̃,θ̃+2π]), b1+b2 = 0 ∈ H∗(X̃[θ̃+2π,θ̃+4π]), b2+b3 = 0 ∈ H∗(X̃[θ̃+4π,θ̃+6π]), . . .

Putting ck := (−1)k−1τ−k∗ bk ∈ H∗(X̃θ̃), we obtain the following equalities in
H∗(X̃[θ̃,θ̃+2π]):

b = τ∗c1, c1 = τ∗c2, c2 = τ∗c3, . . .

In other words, we have the relations bRc1Rc2Rc3R · · · . Since some ck has to be
zero, we conclude b ∈ K+, whence the lemma. �
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Introduce the upwards Novikov complex as a projective limit of relative singular
chain complexes,

CNov,+
∗ (X̃) := lim←−

r

C∗(X̃, X̃[r,∞)),

and let HNov,+
∗ (X̃) denote its homology. Analogously, we define a downwards

Novikov complex CNov,−
∗ (X̃) = lim←−r C∗(X̃, X̃(−∞,r]) and the corresponding homol-

ogy, HNov,−
∗ (X̃). We will also use similar notation for subsets of X̃.

Lemma 8.11. We have:

D+ = ker
(
H∗(Xθ)→ HNov,+

∗ (X̃[θ̃,∞))
)

D− = ker
(
H∗(Xθ)→ HNov,−

∗ (X̃(−∞,θ̃])
)

Both maps are induced by the canonical inclusion Xθ = X̃θ̃ → X̃.

Proof. Using the exact Mayer–Vietoris sequence∏
k∈N

H∗(X̃θ̃+2πk) = HNov,+
∗

(⊔
k∈N

X̃θ̃+2πk

)
→ HNov,+

∗ (U)⊕HNov,+
∗ (V )→ HNov,+

∗ (X̃[θ̃,∞)),

this can be proved along the same lines as Lemma 8.10. �

Let us introduce a complex

C l.f.
∗ (X̃) := lim←−

r

C∗(X̃, X̃(−∞,−r] ∪ X̃[r,∞))

and denote its homology by H l.f.
∗ (X̃). If f is proper, this is the complex of locally

finite singular chains.

Lemma 8.12. We have:

K− +K+ = ker
(
H∗(Xθ)→ H∗(X̃)

)
K− +D+ = ker

(
H∗(Xθ)→ HNov,+

∗ (X̃)
)

D− +K+ = ker
(
H∗(Xθ)→ HNov,−

∗ (X̃)
)

D− +D+ = ker
(
H∗(Xθ)→ H l.f.

∗ (X̃)
)

All maps are induced by the canonical inclusion Xθ = X̃θ̃ → X̃.

Proof. The first statement follows from the exact Mayer–Vietoris sequence

H∗(X̃θ̃)→ H∗(X̃(−∞,θ̃])⊕H∗(X̃[θ̃,∞))→ H∗(X̃)

and Lemma 8.10. The second assertion follows from the exact Mayer–Vietoris
sequence

H∗(X̃θ̃)→ H∗(X̃(−∞,θ̃])⊕HNov,+
∗ (X̃[θ̃,∞))→ HNov,+

∗ (X̃)

and Lemma 8.10 and 8.11. Similarly, one can check the third equality. To see the
last statement we use the exact Mayer–Vietoris sequence

H∗(X̃θ̃)→ HNov,−
∗ (X̃(−∞,θ̃])⊕HNov,+

∗ (X̃[θ̃,∞))→ H l.f.
∗ (X̃)

and Lemma 8.11. �
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Lemma 8.13. We have

ker
(
H∗(X̃)→ HNov,−

∗ (X̃)⊕HNov,+
∗ (X̃)

)
⊆ img

(
H∗(X̃θ̃)→ H∗(X̃)

)
,

where all maps are induced by the tautological inclusions.

Proof. This follows from the following commutative diagram of exact Mayer–Vie-
toris sequences:

H l.f.
∗+1(X̃) ∂ // H∗(X̃) // HNov,−

∗ (X̃)⊕HNov,+
∗ (X̃)

H l.f.
∗+1(X̃) ∂ // H∗(X̃θ̃)

OO

// HNov,−
∗ (X̃(−∞,θ̃])⊕H

Nov,+
∗ (X̃[θ̃,∞))

OO

A similar argument was used in [17, Lemma 2.5]. �

Theorem 8.14. The inclusion ι : Xθ = X̃θ̃ → X̃ induces a canonical isomorphism

H∗(Xθ)reg =
D

(K− +K+) ∩D
∼=−→ ker

(
H∗(X̃)→ HNov,−

∗ (X̃)⊕HNov,+
∗ (X̃)

)
,

intertwining Rreg with the monodromy isomorphism induced by the deck transfor-
mation τ : X̃ → X̃ on the right hand side. Moreover, working with coefficients in
a field, and assuming that H∗(Xθ) is finite dimensional, the common kernel on the
right hand side above coincides with

ker
(
H∗(X̃)→ HNov,−

∗ (X̃)
)

= ker
(
H∗(X̃)→ HNov,+

∗ (X̃)
)
.

Particularly, in this case the latter two kernels are finite dimensional too.

Proof. It follows immediately from Lemma 8.12 and 8.13 that ι∗ : H∗(Xθ)→ H∗(X̃)
induces an isomorphism

(K− +D+) ∩ (D− +K+)
K− +K+

∼=−→ ker
(
H∗(X̃)→ HNov,−

∗ (X̃)⊕HNov,+
∗ (X̃)

)
.

In view of Lemma 8.9, this isomorphism intertwines the isomorphism induced by
R on the left hand side, with the monodromy isomorphism on the right hand side.
Combining this with Proposition 8.2 we obtain the first assertion. For the second
statement it suffices to show

ker
(
H∗(X̃)→ HNov,+

∗ (X̃)
)
⊆ ker

(
H∗(X̃)→ HNov,−

∗ (X̃)⊕HNov,+
∗ (X̃)

)
, (71)

as the converse inclusion is obvious, and the corresponding statement for the
downward Novikov homology can be derived analogously. To this end, suppose
a ∈ ker

(
H∗(X̃) → HNov,+

∗ (X̃)
)
. Then there exists k such that τk∗ a is contained in

the image of H∗(X̃(−∞,θ̃])→ H∗(X̃). Using the exact Mayer–Vietoris sequence

H∗(X̃θ̃)→ H∗(X̃(−∞,θ̃])⊕HNov,+
∗ (X̃[θ̃,∞))→ HNov,+

∗ (X̃)

we conclude, that τk∗ a is contained in the image of H∗(X̃θ̃) → H∗(X̃). Thus τk∗ a
is contained in ι∗(D+), see Lemma 8.12. Since H∗(Xθ) is assumed to be a finite
dimensional vector space, we have ι∗(D−) = ι∗(D) = ι∗(D+), see (68). Using
Lemma 8.12 we thus conclude τk∗ a is contained in the kernel on the right hand side
of (71). Since this common kernel is invariant under the isomorphism τ∗ : H∗(X̃)→
H∗(X̃), we conclude that a has to be contained in the common kernel too, whence
the theorem. �
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Clearly, Theorem 8.14 and Proposition 8.3 imply Theorem 1.4.

9. Appendix (an example)

Consider the spaceX is obtained from Y indicated in picture below by identifying
its right end Y1 (a union of three circles) to the left end Y0 (a union of three circles)
following the map φ : Y1 → Y0 given by the matrix 1 1 2

−3 4 2
−2 1 2

 .

φ

2πθ4θ2θ10

circle 1

circle 3

circle 2

1

2

3

Y0 Y1Y

θ6θ5θ3

map φ r-invariants

circle 1: 3 times around circle 1
circle 2: 1 time around 2 and 3 times around 3
circle 3: the identity

dimension bar codes Jordan cells
0 (1, 1)

(θ6, θ1 + 2π] (3, 1)
1 [θ2, θ3] (1, 2)

(θ4, θ5)

Figure 2: Example of r-invariants for a circle valued map

4 Representation theory and r-invariants
The invariants for the circle valued map are derived from the representation theory of quivers. The quivers
are directed graphs. The representation theory of simple quivers such as paths with directed edges was
described by Gabriel [8] and is at the heart of the derivation of the invariants for zigzag and then level
persistence in [4]. For circle valued maps, one needs representation theory for circle graphs with directed
edges. This theory appears in the work of Nazarova [14], and Donovan and Ruth-Freislich [10]. The reader
can find a refined treatment in Kac [15].
Let G2m be a directed graph with 2m vertices, x1, x1, · · · x2m. Its underlying undirected graph is a

simple cycle. The directed edges in G2m are of two types: forward ai : x2i−1 → x2i, 1 ≤ i ≤ m, and
backward bi : x2i+1 → x2i, 1 ≤ i ≤ m− 1, bm : x1 → x2m.

x2

b1
a2

b2

x3

x2m−1

x2m−2

x4

a1

bm

am

x2m

x1

We think of this graph as being residing on the unit circle cen-
tered at the origin o in the plane.
A representation ρ on G2m is an assignment of a vector space

Vx to each vertex x and a linear map Ve : Vx → Vy for each oriented
edge e = {x, y}. Two representations ρ and ρ′ are isomorphic if for
each vertex x there exists an isomorphism from the vector space Vx

of ρ to the vector space V ′
x of ρ′, and these isomorphisms intertwine

the linear maps Vx → Vy and V ′
x → V ′

y . A non-trivial representa-
tion assigns at least one vector space which is not zero-dimensional.
A representation is indecomposable if it is not isomorphic to the
sum of two nontrivial representations. It is not hard to observe that
each representation has a decomposition as a sum of indecompos-

able representations unique up to isomorphisms.

6

Figure 2. Example of r-invariants for a circle valued map

The meaning of this matrix is that the first circle is divided in 6 equal parts ; the
first part go around the first circle clockwise the next 3 over the second counterclock-
wise to cover this circle three times and the last two also counterclockwise to cover
the third circle twice. Similarly with he other two circles. The map f : X → S1 is
induced by the projection of Y on the interval [0, 2π].

The bar codes and the Jordan blocks are collected in the following table. Their
calculation was done in [1] as an illustration of the algorithm proposed in that
paper.

map φ r-invariants
circle 1: 1 time around circle 1
-3 times around 2, - 2 times around 3
circle 2: 1 time around circle 1
, 4 times around 2, 1 time around 3
circle 3: 2 time around 1,
2 times around 2, 2 times around 3

dimension bar codes Jordan cells
0 (1, 1)

(θ6, θ1 + 2π] (3, 2)
1 [θ2, θ3]

(θ4, θ5)

Simply by looking at the picture the reader can notice the contribution the closed
1−closed bar code [θ2, θ3] with one unit to the Betti number β1(X) the

contribution of the 1−open bar code (θ4, θ5) with one unit to the Betti number
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β2(X) and the lack of contribution to homology of the open closed bar code
(θ6, θ1 + 2π].
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