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Abstract. We present a class of wild matrix problems (repre-
sentations of boxes), which are “brick-tame,” i.e. only have one-
parameter families of bricks (representations with trivial endomor-
phism algebra). This class includes several boxes that arise in
study of simple vector bundles on degenerations of elliptic curves,
as well as those arising from the coadjoint action of some linear
groups.
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1. Introduction

Tame–wild dichotomy theorem asserts that any finitely dimensional
algebra or a Roiter box is either tame or wild, i.e. either indecompos-
able representations of any fixed vector dimension form at most finitely
many one-parameter families or their description contains that of rep-
resentations of any finitely generated algebra [D79, CB, D01]. In the
latter (“wild”) case there is no chance to get a more or less reasonable
classification of all representations. Nevertheless, there are some wild
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algebras and boxes, where one can get a good description of the so
called “bricks”, i.e. representations with only scalar endomorphisms.
Such algebras and boxes appear, for instance, in the theory of unitary
representations of Lie groups [D92, BDF] and in the study of vector
bundles on degenerations of elliptic curves [BD, Bod].

In this paper we consider a rather wide class of boxes (called BT-
boxes), which, though being wild, behave well under the so called
“small reduction” in the sense of [D92]. It implies that the set of
bricks of any fixed vector dimension is either empty or form one one-
parameter family. This class of boxes includes, in particular, the boxes
that have appeared in our study of vector bundles on Kodaira fibers in
[BD, Bod], so that in these cases the bricks correspond to simple vector
bundles. Thus BT-boxes play the key role in the classification of simple
vector bundles on Kodaira fibers in the same way as the “bunches of
chains” do in the description of all vector bundles on Kodaira cycles
[DG, BBDG], and this paper gives the representation-theoretic back-
ground for such applications.

The following conjecture (due to Claus Ringel) provides another mo-
tivation for studying such sorts of boxes:

Conjecture. Let A be a finite dimensional algebra o a Roiter box.
Then either the bricks over A form at most one-parameter families in
every fixed vector dimension, or there is a fully faithful exact functor
Λ-mod → A-mod for every finitely generated k-algebra Λ. (In this case
they say that A is fully wild.)

Recall the general method to study representations of boxes, es-
pecially effective for tame ones. The idea can be explained as fol-
lows. For a given class of representations C one constructs a reduc-

tion morphism f : A → Ã replacing the box A by a new one Ã

such that the induced functor f∗ : Ã-mod → A-mod is fully faith-
ful and its image contains all representations from C. Moreover, for

representations M ∈ C and M̃ ∈ Ã-mod such that M = f∗(M̃) one

has ‖M̃‖ < ‖M‖, where ‖M‖ is the norm of M defined in Sub-
section 2.3. Proceeding this way, we construct a morphism of boxes
f = fmfm−1 . . . f1 : A = A1 → A2 → · · · → Am, such that C is contained
in the image of f∗ and Am = (A, V ) is a minimal box, i.e. such that
the category A is a direct product of several copies of the field k and
rational algebras Ri, i.e. localizations Ri = k[t, f−1

i ] of the polynomial
algebra by nonzero polynomials fi. Indecomposable Ri-modules are
Jordan cells Jr(λ) = Ri/(t−λ)r, where λ ∈ k \ {roots of fi}. Thus, all
indecomposable modules M ∈ C are of the form M = f∗(Jk(λ)). For
instance, the proof of the tame–wild dichotomy is just constructing,
for any non-wild box A and any vector dimension d, a reduction f like
above, where C is the set of all representations of vector dimensions
d
′ ≤ d.
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The following example shows how this method can be applied for
bricks.

Example 1.1. Consider the box A given, as it is explained below, by
the differential biquiver

(1.1) 1a1 88
v

44 2 a2ff

b
tt ∂(a1) = bv, ∂(a2) = −vb.

(We do not write the zero differentials.) It is known to be wild (see
the proof of Theorem 4.2). One of the standard reduction steps, the
reduction of the minimal edge b (see Subsection 2.5 or [D01]) induces

a morphism of boxes f : A → Ã, where the box Ã is given by the
differential biquiver

1a1 88
η

44

v

##
0

a0

FF
ξ

44
b1

tt
2 a2ff

b2
tt

∂(a1) = b1η, ∂(a2) = −ξb2, ∂(a0) = −ηb1 + b2ξ.

(1.2)

In this case f∗ is an equivalence, hence, Ã is also wild. Nevertheless,

since v does not occur in any differential, if a representation M of Ã

is a brick, either M1 = 0 or M2 = 0. But if we cut from Ã one of the
vertices 1 or 2, we obtain the same box A. Thus, if we only consider
bricks, the box A is “self-reproducing.” It easily implies a description of
bricks [BD]. In particular, if there are bricks of some vector dimension
d, they form one family parameterized by the elements λ ∈ k.

Actually, this procedure is a partial case of “small reduction”.

The paper is organized as follows. In Section 2 we fix notations and
recall some results concerning representations of boxes and reduction
algorithm. In Section 3 we consider bricks and define brick-tame boxes.
In Section 4 we generalize Example 1.1 introducing BT-boxes and prove
their main property, Theorem 4.2, which claims that the boxes of this
class are always brick-tame despite being wild (except some trivial
cases). Section 5 is devoted to a special class of BT-boxes arising from
the adjoint action of linear groups over finite dimensional algebras on
the dual spaces of their Lie algebras.

2. Preliminaries

2.1. Boxes. Let k be an algebraically closed field. Recall that a k-
category is a category A such that all morphism sets A(X,Y ) are vector
spaces over k, while the multiplication of morphisms is k-bilinear. In
what follows we only consider k-categories and identify k-algebras with
k-categories with a unique object. A tuple A = (A, V, ε, µ) is called a
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box if A is a k-category and V is a coalgebra over A, that is an A-A-
bimodule with A-homomorphisms ε : V → A (counit) and µ : V →
V ⊗A V (comultiplication) such that

(idV ⊗ µ) ◦ µ = (µ⊗ idV ) ◦ µ and (idV ⊗ ε) ◦ µ = (ε⊗ idV ) ◦ µ = idV

(under the natural identification of A⊗A V and V ⊗A A with V ). Note
that any k-category A can be considered as a box if we set V = A as a
bimodule over itself, ε = idA and µ being the identification A⊗AA = A.
This box is called principal over the category A and is usually identified
with this category.

A box A = (A, V ) is called free if A is the path category of a quiver
(oriented graph) and the kernel of the box V = ker(ε) is a free A-
bimodule, i.e. a direct sum of bimodules of the type Aij = A1i ⊗ 1jA,
where 1i denotes the empty path at the vertex i (it is a primitive
idempotent of A). We always suppose that the set of vertices of the
quiver is I = {1, 2, . . . , n} and denote by Q0 its set of arrows, which
we call the solid arrows of the box A. Moreover, we also consider the
set of dotted arrows Q1, where the number of dotted arrows from j to
i (denoted as v : j +3 i) equals the number of summands isomorphic
to Aij in the kernel V . In other words, the arrows of Q1 are in one-
to-one correspondence with the free generators of the kernel V , i.e.
those coming from the natural generators 1i⊗1j of Aij, and we usually
identify them. Thus we obtain a biquiver Q = QA = (I, Q0, Q1) of the
box A. If p is a path in the biquiver Q, its degree | p | is defined as the
number of dotted arrows occurring in p. Thus the path category kQ
becomes a graded category. We call a free normal box solid-connected
if the solid part (I, Q0) of its biquiver is connected (as a graph).

The box A = (A, V ) is called normal (or group-like) if there are
elements ωi ∈ V (i, i) such that ε(ωi) = 1i and µ(ωi) = ωi⊗ωi for every
i ∈ Ob A. The set ω = { omi | i ∈ Ob A } is called a normal section
of the box A. Given a normal section, the differential ∂ of the box A
is defined for a solid arrow a : j → i as ωia − aωj (it belongs to V )
and for a dotted arrow v : j +3 i as µ(v)− v ⊗ ωj − ωi ⊗ v (it belongs
to V ⊗A V ). This differential extends to a derivation of the graded
category kQ, i.e. to a linear map ∂ : kQ → kQ of degree 1 such that
∂2 = 0 and the Leibniz rule holds:

∂(xy) = ∂(x)y + (−1)|x|x∂(y).

The pair (Q, ∂) is called the differential biquiver of the box A. It
completely determines the free normal box A.

A differential biquiver (Q, ∂) is called solid-triangular (respectively,
triangular) if there is a map h : Q0 → N (respectively h : Q0∪Q1 → N)
such that, for every arrow a ∈ Q0, (respectively, a ∈ Q0 ∪ Q1) its dif-
ferential ∂(a) only contains solid arrows (respectively, arrows) b with
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h(b) < h(a) (for instance, it never contains a itself). We call the func-
tion h the triangulation for the differential biquiver (Q, ∂). Certainly,
the existence of triangulation can depend on the choice of free genera-
tors. A free normal box A = (A, V ) is called solid-triangular (respec-
tively, triangular, or a Roiter box ) if there is a set of free generators for
A and V such that the resulting differential biquiver is solid-triangular
(respectively, triangular).

2.2. Representations of boxes. Let A = (A, V ) be a box. The
category A-Mod of A-modules, or representations of A, is defined as
follows.

• Its objects are just A-modules.
• A morphism S : M → N between two representations M and

N is a homomorphism of A-modules V ⊗A M → N .
• The product S ′ ◦ S of two morphisms S : M → N and S ′ :

N → L is defined as the composition

S ′(1⊗ S)(µ⊗ 1) : V ⊗A M → V ⊗A V ⊗A M → V ⊗A N → L.

One easily sees that if A is the principal box over an algebra A, the
category of A-modules can be identified with that of A-modules, and
we always do so.

If A is a normal free box, the category of A-modules can be described
in terms of its differential biquiver (Q, ∂). Namely:

• A representation M of A is given by two sets:

{Mi | i ∈ I } and {M(a) : Mi → Mj | a ∈ Q0, a : i → j } ,

where Mi are vector spaces and M(a) are linear maps.
• A morphism M → N is given by the set of linear maps

{Si : Mi → Ni | i ∈ I } ∪ {S(v) : Mi → Nj | v ∈ Q1, v : i +3 j } ,

where Si(x) = S(ωi ⊗ x) and Sv(x) = S(v ⊗ x), such that for
any solid arrow a : i → j the following relation holds:

SjM(a)−N(a)Si = S(∂(a)) =
∑

λN(p′)S(u)M(p),

if ∂(a) =
∑

λp′up, where λ ∈ k, u ∈ Q1 and p, p′ are some solid
paths in Q.

• The components of the product T = S ′ ◦ S are defined as
follows:

Ti = S ′
iSi,

T (v) = S ′
jS(v) + S ′(v)Sj +

∑
λL(p1)S

′(u′)N(p2)S(u)M(p3),

if v : i +3 j, ∂(v) =
∑

λp1u
′p2up3, where λ ∈ k, u, u′ ∈ Q1 and

p1, p2, p3 are some solid paths.

The following lemma expresses the main properties of Roiter boxes.

Lemma 2.1. [KR, Ro] Let A be a Roiter box and M, N ∈ A-Mod.
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(1) A morphism S : M → N is an isomorphism if and only if so
are all maps Si.

(2) If S : M → M is an idempotent, there is a representation N
such that S factors as S = S1S2, where S1 : N → M, S2 : M →
N and S2S1 = IN (the identity map of N).

In other words, all idempotents in the category A-Mod split, i.e.
it is fully additive (or Karoubian). Note that this lemma does not
hold for arbitrary solid-triangular boxes. We call a free normal solid-
triangular box A layered (by Crawley-Boevey [CB]) if the statement (1)
of Lemma 2.1 holds for its representations. (In fact, it is a specification
of [CB, Definition 3.6] for the case of free boxes.)

From now on we only consider normal free boxes A = (A, V ) such
that in the corresponding biquiver Q = (I, Q0, Q1) all sets I, Q0, Q1 are
finite. We call a module M ∈ A-Mod finite dimensional if all spaces
M(i) (i ∈ I) are finite dimensional, and denote by A-mod the full
subcategory of A-Mod consisting of finite dimensional modules. Then
all spaces HomA(M, N) are also finite dimensional, therefore, A-mod
is a Krull–Schmidt category, i.e. a fully additive category with unique
decomposition of objects into direct sums of indecomposable ones.

2.3. Base change Lemma. Recall that the vector dimension of a
representation M ∈ A-mod is a tuple d(M) = (d1, . . . , dn) ∈ N

n, where
di = dimk(Mi). The norm of M is defined as ‖M‖ =

∑
i,j qijdidj, where

qij is the number of solid arrows i → j. If we choose bases in all spaces
Mi, then ‖M‖ is just the numbers of coefficients in all matrices defining
the maps M(a), where a runs through Q0. Note that it coincides with
the negative part of the Tits form of the box A as defined, for instance,
in [D01].

Now we explain the usual procedures that are the base of the reduc-
tion algorithm mentioned in Introduction. The proofs of the statements
can be found, for example, in [D01] .

Let A = (A, V ) and B = (B, W ) be some boxes. A morphism
f = (f0, f1) : A → B consists of a functor f0 : A → B and a morphism
of A-bimodules f1 : V → W such that

ε(f1(v)) = f0(ε(v)) and µ(f1(v)) = f2(µ(v)),

where W is considered as an A-bimodule using the functor f0
1, and

f2 : V ⊗A V → W ⊗B W is the composition

V ⊗A V
f1⊗f1−−−→ W ⊗A W

ν−→ W ⊗B W,

ν being the natural surjection. Here (and later on) we denote by ε
and µ the counit and comultiplication in all boxes that we consider
(if it cannot lead to misunderstanding). Such a morphism f induces

1 It means that W (i, j) = W (f0(i), f0(j)) for i, j ∈ ObA and a′xa = f0(a′)xf(a)
for x ∈ W (i, j), a : i′ → i, a′ : j → j′,
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a functor f∗ : B-mod → A-mod, where f∗M is just the composition
M ◦ f0 (or, the same, we consider the B-module M as A-module using
f0) and, for S ∈ HomB(M, N), f∗S is the composition

V ⊗A M
f1⊗1−−−→ W ⊗A M

ν−→ W ⊗B M
S−→ N,

ν being again the natural surjection.
This functor is especially useful in the following situation. Let A =

(A, V ) be a box, f : A → B be a functor. Set Af = (B, W ), where
W = B ⊗A V ⊗A B. It becomes a box under naturally defined counit
and comultiplication, and the pair f = (f, f1), where f1 : V → W is
the natural map, is a morphism of boxes. The following “Base Change
Lemma” is the most important tool in constructing reduction algo-
rithms.

Lemma 2.2 (Base Change). If B = Af for a functor f : A → B, then
the functor f∗ : A-mod → B-mod defined above is fully faithful.

This lemma is mostly used in the following situation. Let A′ =
(A′, V ′) be a subbox of the box A = (A, V ). It means that A′ is a
subcategory of A and V ′ is an A′-subbimodule of V such that ε(a) ∈ V ′

for all a ∈ A′ and µ(v) ∈ ν(V ′ ⊗A′ V ′) for all v ∈ V ′, where again ν is
the natural surjection V ⊗A′ V → V ⊗A V . If A is a free normal box
with the differential biquiver (Q, ∂) and Q′ is a sub-biquiver of Q such
that, for every arrow (solid or dotted) a ∈ Q′, its differential ∂(a) only
contains arrows from Q′, the box A′ defined by the biquiver Q′ and
the differential ∂|Q′ is a subbox of A. In this case we say that A′ is a
Roiter subbox of A. Lemma 2.2, together with the universal property
of push-down (amalgamation), imply the following fact.

Corollary 2.3. Suppose that A′ = (A′, V ′) is a subbox of the box A =
(A, V ) and a functor f ′ : A′ → B′ is given. Let B be the amalgamation
of the categories A and B′ over A′, i.e. the push-down

A′ ι−−−→ A

f ′

y yf

B′ −−−→ B ,

where ι denotes the embedding A′ ↪→ A. Then the image of the functor
f∗ : Af -mod → A-mod consists of the modules M whose restrictions
M |A′ factor through f′. In particular, if every A′-module M ′ is isomor-
phic (in A′-mod) to a module that factors through f ′, the image of f∗

is dense, so f∗ is an equivalence of categories.

Note that, if the subbox A′ is representation-finite, there is a nat-
ural functor f ′ : A′ → add B′, the additive hull of a discrete cat-
egory B′ 2 whose objects are isomorphism classes of indecomposable

2 The category B′ is called discrete if for i, j ∈ Ob(B′) we have B′(i, i) = k and
B′(i, j) = 0 if i 6= j.
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A′-modules, and any representation of A′ is isomorphic to one that fac-
tors through f ′. This morphism is called the semisimple approximation
and was introduces in [Aus] for algebras of finite type. (Its extension
to representation-finite boxes is obvious.)

We shall use it in the following two situations: regularization and
minimal edge reduction, first introduced in [KR]. We recall some details
(see, for instance, [D01]). In both cases A is a free normal box with
the differential biquiver (I, Q0, Q1, ∂) and A′ is a Roiter subbox of A.

2.4. Regularization. The subbox A′ has the differential biquiver

2
b

//
v

**
1, ∂(b) = v.

(In this case they say that the solid arrow b is superfluous). Then B′ is
the discrete category with two objects, which we also denote by 1 and
2, f ′(1) = 1, f ′(2) = 2, f ′(b) = 0. The box Af is obtained from A just
by deleting the arrows b and v from the biquiver as well as omitting
all terms containing these arrows in all formulae for the differential.
Note that the case when the vertices 1 and 2 coincide is also possible.
We denote the box Af by Ab. Evidently, this box is solid-triangular
(respectively, layered or a Roiter box) if so is A.

2.5. Minimal edge reduction. The subbox A′ has the differential

biquiver 2
b−→ 1, ∂(b) = 0, where 1 and 2 are different vertices. (In this

case they say that b is a minimal edge.) Take for B′ the additive hull
of the trivial category with 3 objects 0, 1, 2, where 0 is a new symbol,

and set f ′(1) = 1 ⊕ 0, f ′(2) = 2 ⊕ 0, f ′(b) =

(
0 0
0 1

)
. Then every

A′-module factors through f ′, so Corollary 2.3 can be applied and f∗

is an equivalence of categories. One can check (cf. [KR] or [D01]) that
the box Af can be identified with the additive hull of the box B with
the differential biquiver (Q̃, ∂̃) defined as follows:

• The set of vertices of Q̃ is I ∪ {0}.
• The set of arrows of Q̃ consists of:

– The arrows x : i → j, where { i, j } ∩ { 1, 2 } = ∅.
– For each arrow x : i → j (or j → i), where i ∈ { 1, 2 } and

j /∈ { 1, 2 }, we have two arrows xi : i → j and x0 : 0 → j
(respectively, xi : j → i and x0 : j → 0). Then we set

f(x) =
(
xi x0

) (
respectively, f(x) =

(
xi

x0

))
.

– For each arrow x : j → i, where both i, j ∈ { 1, 2 } and x 6=
b, we have four arrows xkl : l → k, where k ∈ { i, 0 } , l ∈

{ j, 0 }. Then we set f(x) =

(
xij xi0

x0j x00

)
.

– Two new dotted arrows ξ : 0 +3 1 and η : 2 +3 0.
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Certainly, the arrows arising from x are solid or dotted respec-
tively to the sort of x. We also set f(b) = f ′(b), f(ωi) = ωi if

i /∈ { 1, 2 }, f(ω1) =

(
ω1 0
η ω0

)
, f(ω2) =

(
ω2 ξ
0 ω0

)
and extend

the map f naturally to all elements from A and V .
• The differential ∂̃ is obtained from the rules

f(ωj)f(a)− f(a)f(ωi) = ∂̃(f(x)) for a : i → j,

µ(f(v))− f(v)⊗ f(ωi)− f(ωj)⊗ f(v) = ∂̃(f(v)) for v : i +3 j,

where all products, as well as tensor products, are calculated
by usual matrix rules, while ∂̃ and µ are applied to matrices
component-wise.

Therefore, A-mod ' Af-mod ' B-mod. We denote the box B by Ab.
Again this new box is solid-triangular (respectively, layered or a Roiter
box) if so is A.

The following theorem summarizes the above considerations.

Theorem 2.4 (Kleiner–Roiter). Let A be a free normal box, b : 2 → 1
be either a superfluous arrow or a minimal edge of its differential
biquiver. Then there is a free normal box Ab and an equivalence of
module categories fb : Ab-mod → A-mod such that ‖fb(M)‖ < ‖M‖
whenever M ' fb(N) is such that both M(1) 6= 0 and M(2) 6= 0.
Moreover, the box Ab is solid-triangular (respectively, layered or a Roi-
ter box) if so is A.

We also often need to delete vertices from a free normal box A. If i is
a vertex of the biquiver of A, we denote by Ai the box that is obtained
from A by deleting the vertex i from its biquiver and omitting all terms
in differentials containing arrows starting or ending at i. Obviously,
Ai-mod is identified with the full subcategory of A-mod consisting of
all modules M with Mi = 0.

3. Bricks

Definition 3.1. A representation of a box (in particular, of an algebra)
is called a brick if it admits no non-scalar endomorphisms. The full
subcategory of bricks of A-mod is denoted by Br(A). We also denote
by Br(d, A) the set of isomorphism classes of bricks of vector dimension
d.

Lemma 3.2. Let A be a normal free box with the differential biquiver
(Q, ∂) containing a dotted arrow u : i +3 j that does not occur in the
differential of any solid arrow. If M ∈ Br(A), then either Mi = 0 or
Mj = 0. Thus Br(A) = Br(Ai) ∪ Br(Aj).

Proof. If both Mi 6= 0 and Mj 6= 0, we construct a non-scalar en-
domorphism S of M setting Sk = 0 for all vertices k, S(v) = 0 for
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all dotted arrows v 6= u and taking for S(u) any nonzero linear map
Mi → Mj. �

We have actually applied this lemma to the box (1.2) in Example 1.1
of the Introduction.

Since we are going to study bricks instead of indecomposable rep-
resentations, we have to adapt the classical definition of tameness for
our purposes. Recall [D01] that a rational family of representations
of a box A = (A, V ) is defined as a functor F : A → addR, where
R = k[t, f(t)−1] is a rational algebra. Note that addR can be identi-
fied with the category of finitely generated projective R-modules. The
R-bricks (or, the same, addR-bricks) are just one-dimensional repre-
sentations of R, which we identify with the elements λ ∈ k such that
f(λ) 6= 0. If for every such λ the A-module F∗(λ) is a brick and, more-
over, F∗(λ) 6' F∗(λ′) for all λ 6= λ′, we say that F is a rational family
of bricks. We also say that the bricks isomorphic to F∗(λ) belong to the
family F.

Definition 3.3. A box A is called brick-tame if for any vector dimen-
sion d there is a finite set Σ of rational families of bricks such that
all A-bricks of vector dimension d, except, possibly, finitely many of
them, belong to one of the families from Σ. (Note that we allow the
case when there are only finitely many bricks of vector dimension d.)

Obviously, every tame box is brick-tame, but not vice versa: the box
(1.1) from the Introduction is wild, but brick-tame.

4. BT-boxes

In this section we introduce a special class of brick-tame boxes that
generalizes the boxes from Example 1.1.

Definition 4.1. A solid-triangular box A with the differential biquiver
(Q, ∂) is said to be of BT-type, or a BT-box, if Q0 contains a set of
loops (called distinguished loops) a = { ai : i → i | i ∈ I } and there is
an injective map˜ : b = Q0 \ a → Q1, x 7→ x̃, such that x̃ : j +3 i if
x : i → j and

(4.1) ∂(ai) =
∑

x∈b̂(·,i)
(−1)|x|xx̃

for each distinguished loop ai ∈ a, where we set b̃ = {x̃ |x ∈ b},
b̂ = b ∪ b̃ and ˜̃x = x for each b ∈ b.

Both boxes (1.1) and (1.2) from Example 1.1 are BT-boxes. The
polynomial algebra k[t] is also a BT-box (having only one vertex and
one solid arrow, which is automatically a distinguished loop). The
following theorem asserts that the BT-boxes are brick-tame despite
being wild in general.
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Theorem 4.2. Let A be a BT-box.

(1) A is brick-tame. Moreover, if Br(d, A) 6= ∅, all bricks of dimen-
sion d belong to a unique rational family Fd : A → addk[t].

(2) If A is solid-connected, has no superfluous arrows and does not
coincide with k[t], it is wild.

The claims of the theorem are trivial if A = k[t]. Moreover, we may
suppose that A is solid-connected. The proof of the theorem is based on
several lemmas. In all of them A = (A, V ) denotes a solid-connected
BT-box that does not coincide with k[t], (Q, ∂) is its differential biquiver
and h : Q0 → N is a triangularity for this biquiver. Note that if a is a
distinguished loop from a, then ∂(a) contains some solid arrows b with
h(b) < h(a). Hence, if b is an arrow with the minimal value of h(b), it
belongs to b. We then call b an h-minimal arrow.

Lemma 4.3. Suppose that b is an h-minimal arrow in Q0 and ∂(b) 6= 0.
Then one can choose free generators of the category A and of the kernel
V in such a way that

(1) ∂(b) = c̃ for some solid arrow c and ∂(c) = −b̃ + θ, where θ

does not contain the arrow b̃.
(2) b̃ does not occur in ∂(x) for any arrow (solid or dotted) x /∈

{c, b̃}.
Moreover, with respect to the new generators A remains solid-triangular.
We call c the partner of b.

Proof. Let b : i → j (possibly i = j). Since ∂(b) cannot contain any
solid arrow, we may suppose that ∂(b) = u + σ, where u ∈ Q1 and σ is
a sum of dotted arrows other than u. Then

∂(ai) = −b̃b +
∑

x∈b̂(·,i)
x 6=b̃

(−1)|x|xx̃,

∂2(ai) = −∂(b̃)b + b̃u + b̃σ +
∑
x 6=b̃

(
(−1)|x|∂(x)x̃ + x∂(x̃)

)
= 0.

Since the underlined term must vanish, there must be x 6= b̃ such that
u = x̃ and ∂(x) = −b̃ + θ, where θ does not contain the monomial b̃.
Therefore, ∂(b) =

∑
k x̃k for some xk : j → i. Let h(x1) ≤ h(xk) for all

k. Set c = x1, x′k = xk − x1 for k 6= 1; c̃ = ∂(b), x̃′k = x̃k for k 6= 1,
h(x′k) = h(xk). One easily sees that after this change of generators
the BT-condition (4.1) as well as the triangularity condition hold, but

now ∂(b) = c̃ and ∂(c) = −b̃ + θ, as stated in (1). Note also that
∂(c̃) = ∂2(b) = 0.

To prove (2) we have to show that it is impossible that

(4.2) ∂(y) = qb̃p + φ

for some arrow y 6= c and some paths p, q, where φ does not contain
the monomial qb̃p. We prove this claim using induction on the length
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l(q) of the path q. If l(q) = 0, ∂(y) = b̃p + φ. We first suppose that

y 6= b̃. Then

∂(ai) = −b̃b + cc̃ + (−1)|y|yỹ +
∑

x∈b̂(·,i)
x/∈{b̃,c,y}

(−1)|x|xx̃,

∂2(ai) = −∂(b̃)b + θc + (−1)|y|(b̃pỹ + φỹ) + y∂(ỹ)

+
∑

x/∈{b̃,c,y}

(
(−1)|x|∂(x)x̃ + x∂(x̃)

)
= 0.

But the underlined term cannot vanish, since no other term both starts
with b̃ and ends with ỹ. If y = b̃, we must omit in these equalities all
terms with y and ỹ and replace ∂(b̃) by b̃p + φ. Then the term −b̃pb
cannot vanish.

Suppose now that (4.2) is impossible if l(q) = l− 1, but holds for an

arrow y 6= b̃ and a path q of length l. (The case y = b̃ is handled in the
same way as above.) Then

∂2(ai) = −∂(b̃)b + θc + (−1)|y|(qb̃pỹ + φỹ) + y∂(ỹ)

+
∑

x/∈{b̃,c,y}

(
(−1)|x|∂(x)x̃ + x∂(x̃)

)
= 0.

Therefore, the underlined term must vanish. It is only possible if there
is an arrow x such that q = xq′ and ∂(x̃) contains the term q′b̃pỹ. Since
l(q′) = l − 1, it is impossible, which accomplishes the proof.

Just in the same way on eproves that the term θ in ∂(c) cannot

contain monomials qb̃p other than b̃. �

Analogous observations can be applied to the case when ∂(b) = 0.

Lemma 4.4. If ∂(b) = 0 for some solid arrow b, the arrow b̃ does not
occur in the differential of any arrow x (solid or dotted).

Proof. It practically coincide with the proof of Lemma 4.3, so we omit
the details. �

These lemmas imply several nice properties.

Corollary 4.5. Let b : i → j be an h-minimal arrow with ∂(b) 6= 0,
c be its partner as defined in Lemma 4.3, B = A/〈b, c〉, f : A → B
be the natural surjection and B = Af . Then B is also of BT-type, the
functor f∗ : B-mod → A-mod is an equivalence and, if M1 6= 0, M2 6= 0
and M ' f∗(N), then ‖N‖ < ‖M‖.

Proof. Set v = −∂(c). Obviously, we can replace b̃ by v in the set
of free generators of V . Then both b and c become superfluous, so
we can use the regularization procedure of Subsection 2.4 for both of
them obtaining just the box B. The images of b, c, c̃ and v = φ − b̃
become zero in B. Since b̃ only occurs in differentials of distinguished
loops, always in terms bb̃ and b̃b, which disappear in B, the box B



BRICK-TAME MATRIX PROBLEMS 13

is also solid-triangular (with the same triangulation) and of BT-type.
The statement now follows from Theorem 2.4. �

Let now ∂(b) = 0. First we show that the case when b is a loop
actually cannot occur. Recall that we suppose that A is solid-connected
and does not coincide with k[t], hence, b cannot be distinguished.

Corollary 4.6. If b : 1 → 1 is a solid loop with ∂(b) = 0 and M ∈
Br(A), then M1 = 0.

Proof. Suppose that M1 6= 0. Then

∂(a1) = bb̃− b̃b +
∑

x/∈{b,b̃}
(−1)|x|xx̃.

Set Si = 0 for all i, S(v) = 0 for all v ∈ Q1 \{b̃} and S(b̃) = IM1 . Since

b̃ does not occur in any differential of a solid arrow other than a1, S is
a non-scalar endomorphism of M , so M is not am brick. �

The minimal edge reduction described in Subsection 2.4 usually does
not give a BT-box if the original one was so. Nevertheless, the following
result holds.

Lemma 4.7 (Self-Reproduction). Let A be a BT-box, b : 2 → 1 be a
minimal edge in A. Then there is a morphism of boxes Ab → B, which
is actually a composition of regularizations, such that B is also a BT
-box and Br(B) = Br(B1)∪Br(B2). Moreover, if M1 6= 0, M2 6= 0 and
M ' f∗(N), where f is the composition A → Ab → B, then ‖N‖ <
‖M‖.

Proof. We denote a = a1, c = a2, v = b̃. Then the rules for the minimal
edge reduction (see page 8) result in the biquiver

1a11 88

η
++

v01

33

v21

$$

a01

// 0

a00

��

c00

MM

v00

QQ

a10oo

ξ
**

v20

44c20
// 2 c22ff

c02oo

with the differential
∂(a11) = a10η + α11,

∂(a10) = α10,

∂(a01) = v01 + a00η − ηa11 + α01,

∂(a00) = v00 − ηa10 + α00,

∂(c22) = −ξc02 + β22,

∂(c20) = −v20 + c22ξ − ξc00 + β20,

∂(c02) = β02,

∂(c00) = c02ξ − v00 + β00,

(4.3)
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where αkl and βkl are collections of the other terms, which do not
contain the arrows akl, ckl, vkl. Moreover, the terms αkk and βkk are
just of the form

∑
x(−1)|x|xx̃, as in (4.1), with x and x̃ different from

akl and ckl. Set ∂(a01) = u01, ∂(c20) = u20, ∂(a00) = u00. One easily sees
that we can replace the generators vkl of the kernel of the box Ab by ukl

so that the resulting set of generators remains solid-triangular. Then
the arrows a01, a00, c20 become superfluous. After regularization they
disappear, as well as the dotted arrows u01, u00, u20, and the formulae
(4.3) change to:

∂(a11) = a10η + α11,

∂(a10) = α10,

∂(c22) = −ξc02 + β22,

∂(c02) = β02,

∂(c00) = c02ξ − ηa10 + α00 + β00.

(4.4)

Therefore, if we set a1 = a11, a2 = c22, a0 = c00, ã10 = η and c̃02 = ξ,
we see that the resulting box B is indeed a BT-box.

Moreover, the dotted arrow v21 does not occur in the differential of
any solid arrow (since, by Lemma 4.4, the arrow v was not involved in
the differentials of arrows from b). Therefore, by Lemma 3.2, Br(B) =
Br(B1) ∪ Br(B2). The other statements follow from Theorem 2.4. �

Remark 4.8. The boxes B1 and B2 are actually obtained from A by
the small reduction of the minimal edge b as defined in [D92].

Having these Lemmas, the proof of the theorem is quite obvious.

Proof of Theorem 4.2. (1) Let A be a BT-box with the differential bi-
quiver (Q, ∂) and d be a vector dimension such that the set Br(d, A) of
bricks of vector dimension d is non-empty. Without loss of generality,
we may suppose that A is solid-connected and di 6= 0 for all i. Then
Q contains no non-distinguished loops with zero differential by Corol-
lary 4.6. Thus, if Q only has one vertex, A = k[t] and the statement is
trivial. Let b : 2 → 1 be an h-minimal arrow. Without loss of generality
assume that d2 ≤ d1. Consider the box B and the morphism f : A → B
constructed in Corollary 4.5 or Lemma 4.7. The box B is also of
BT-type, f∗ : B-mod → A-mod is an equivalence of categories, and
‖N‖ < ‖M‖ for any M ∈ A-mod such that d(M) = d and f∗(N) ' M .
Especially, this inequality holds if M ∈ Br(d, A). Moreover, then N is
also a brick. If b was superfluous, d(N) = d(M). If b was a minimal
edge, then either N1 = 0 or N2 = 0, while dim M1 = dim N1 + dim N0

and dim M2 = dim N2 + dim N0. Since d2 ≤ d1, it implies that N2 = 0,
dim N0 = d2 and dim N1 = d1 − d2. Hence, the vector dimension of
N is uniquely determined. So we can proceed by induction on ‖M‖,
since, if ‖M‖ = 1 and A is solid-connected, it only contains one vertex.
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(2) Let b : i → j be an h-minimal arrow of A. Then ∂(b) = 0, so the
differential biquiver (Q, ∂) of A has a fragment (Q′, ∂′) that coincides
either with the biquiver (1.1) from the Introduction or with the biquiver

(4.5) iai
$$

b
zz

b̃

XX ∂(ai) = bb̃− b̃b, ∂(b) = 0.

Let A be the box with the biquiver (Q′, ∂′), M be an A-module and
M be the A-module that coincide with M on Q′ and is zero outside
it. One easily checks that for two such A-modules M and M ′ we have

M ' M ′ if and only if M ' M
′
. Hence, if A is wild, so is also A. The

box (4.5) is well-known to be wild [D79, CB]. So we only have to prove
that the box (1.1) (or, equivalently, (1.2)) is also wild. To do it, we use
the reduction procedure described above.

In what follows, when drawing the biquiver of a BT-box, we omit the
distinguished loops and their differentials and do not precise the names
of the dotted arrows b̃, since these data can be uniquely restored. We
also do not mention in the list of differentials the arrows b with ∂(b) = 0.
Moreover, we usually omit the dotted arrows that do not occur in the
differentials. Obviously, omitting such dotted arrows does not affect
the representation type. In particular the differential biquiver (1.1)
will be presented as

1 44 2
b

tt

and the differential biquiver (1.2) as

1 44 0
b1

tt 44 2
b2

tt

(we omit v). After the reduction of the minimal edge b1 and regular-
ization, we get the BT-box with the biquiver

1 44 3
b1

tt 44

��

0
b0

tt

��
2

b2

EE

b3

SS

∂(b2) = −b̃0b3, ∂(b0) = b3b̃2.
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Now we reduce the minimal edge b3. After regularization, we get the
BT-box with the biquiver

1 44

$$

3
b1

tt 44

��

0
b0

tt

��
4 44

SS

b3

SS

b5

dd

2

b2

SS

b4
tt

∂(b1) = b5b̃3, ∂(b3) = −b̃1b5.

If we factor out the arrow b5, the remaining non-distinguished arrows
become minimal and form the quiver

1 3oo 0oo

4

OO

2oo

OO

which is neither Dynkin nor Euclidean, hence, wild. Therefore, so is
also the box (1.1). It accomplishes the proof. �

5. BT-boxes and coadjoint action

A natural class of BT-boxes arises from linear groups over algebras.
Recall [D92, BDF] that a linear group over an algebra Λ is, by defini-
tion, the group GL(P, Λ) of automorphisms of a finitely generated pro-
jective Λ-module P . If Λ is finite dimensional over a field k, GL(P, Λ)
is a linear group over k (Lie group if k is the field of complex num-
bers). Its Lie algebra gl(P, Λ) is just the commutator algebra of the
endomorphism algebra of P . In the representation theory of linear and
Lie groups the coadjoint action of a group on the dual space of its Lie
algebra, especially its orbit space, plays an important role. Note that
the dual space of gl(P, Λ) is

gl∗(P, Λ) = Homk(HomΛ(P, P ),k) ' Homk(P
∨ ⊗Λ P,k)

' HomΛ(P, Homk(P
∨,k)) ' HomΛ(P, Homk(P

∨ ⊗Λ Λ,k))

' HomΛ(P, HomΛ(P∨, Λ∗)) ' HomΛ(P, Λ∗ ⊗Λ P ),

where P∨ = HomΛ(P, Λ) and Λ∗ = Homk(Λ,k).
From now on suppose that the algebra Λ is basic, i.e. if 1 =

∑n
i=1 ei,

where ei are pairwise orthogonal primitive idempotents, Λei 6' Λej as
Λ-modules for i 6= j. Since every finite dimensional algebra is Morita-
equivalent to a basic one, every linear group over a finite dimensional
algebra is isomorphic to a linear group over a basic algebra. If we fix
the algebra Λ and consider all linear groups GL(P, Λ), the description of
orbits in all dual spaces gl(P, Λ) coincides with the “bimodule problem,”
namely, the description of isomorphism classes in the bimodule category,
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or the category of elements of the bimodule El(Λ∗). Recall [D01, BDF]
that

• the objects of El(Λ∗) are just the elements of HomΛ(P, Λ∗⊗ΛP ),
where P runs through projective Λ-modules;

• if u ∈ HomΛ(P, Λ∗ ⊗Λ P ), v ∈ HomΛ(P ′, Λ∗ ⊗Λ P ′), morphisms
u → v are homomorphisms α : P → P ′ such that vα = (1⊗α)u.

Thus isomorphisms u → v, where u, v ∈ HomΛ(P, Λ∗ ⊗Λ P ), are the
elements g ∈ GL(P, Λ) such that v = (1⊗ g)ug−1, which coincides with
the adjoint action of GL(P, Λ) on gl∗(P, Λ).

Recall [D01] that the category El(Λ∗) can be identified with the cat-
egory of representations of a Roiter box LΛ = (A, V ). Namely, let R
be the radical of Λ, Λij = eiΛej, Rij = eiRej. Note that Λij = Rij

if i 6= j, while Λii = Rii ⊕ kei (since Λ is basic and k is algebraically
closed). Choose a basis B0(j, i) of Rij and set

B(j, i) =

{
B0(j, i) if i 6= j,

B0(i, i) ∪ {ei} if i = j.

(It is a basis of Λij.) Let D(j, i) be the basis of (Rij)
∗ dual to B0(j, i),

B =
⋃

i,j B(j, i), D =
⋃

i,j D(j, i), and γ(x, y, b) are the structure con-

stants of the algebra Λ, i.e. xy =
∑

b γ(x, y, b)b for x, y, b ∈ B. It
implies that

x∗y =
∑
b

γ(y, b, x)b∗ and xy∗ =
∑
b

γ(b, x, y)b∗,

γ(x, ej, b) = γ(ej, x, b) = δxb for x ∈ B(j, i).

Then the set of solid arrows j → i in LΛ is B(j, i), while the set of
dotted arrows j +3 i is D(j, i). The differential is defined by the rules

∂(b) =
∑
x,y

(γ(b, x, y)xy∗ − γ(y, b, x)x∗y),

∂(b∗) =
∑
x,y

γ(x, y, b)x∗ ⊗ y∗,

Especially,

∂(ei) =
∑

x∈B(·,i)
xx∗ −

∑
y∈B(i,·)

y∗y.

Hence, setting a = { ei } and b̃ = b∗ for b ∈ B0 = B \ a, we get the
following statement.

Proposition 5.1. The box LΛ is of BT-type.

By the way, it implies, due to Theorem 4.2 (2), that the problem
of description of orbits of the coadjoint action of GL(P, Λ) for all P is
wild, whenever the algebra Λ is not semisimple.

Obviously, an element ξ ∈ gl∗(P, Λ) is a brick if and only if it has
the trivial stabilizer: StabGL(P,Λ)(ξ) = k

× (the multiplicative group of
the field k).
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Corollary 5.2. If the set S(P, Λ) of bricks in gl∗(P, Λ) is non-empty,
all elements from this set belong to a single rational family. In partic-
ular, S(P, Λ)/ GL(P, Λ) ' k.

Remark 5.3. One easily sees that if S(P, Λ) 6= ∅, it is open and dense
in gl∗(P, Λ). Unfortunately, in most cases it is empty. Nevertheless,
there is at least one case, when it is big indeed (see [D92, BDF]). It
happens, when Λ is a Dynkinian algebra, that is an algebra derived
equivalent to the path algebra of a Dynkin quiver. Namely, if Λ is
Dynkinian, the space gl∗(P, Λ) always contains an open dense subset U
such that all elements ξ ∈ U are semisimple, i.e. direct sums of bricks
that are mutually orthogonal, that is every morphism between them is
either zero or isomorphism. Therefore, the stabilizer of a semisimple
element is a product of full linear groups over k.
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