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Abstract

We construct two infinite families of ball quotient compactifications
birational to bielliptic surfaces. For each family, the volume spectrum of
the associated noncompact finite volume ball quotient surfaces is the set of
all positive integral multiples of 8

3
π2, i.e., they attain all possible volumes

of complex hyperbolic 2-manifolds. The surfaces in one of the two families
have all 2-cusps, so that we can saturate the entire volume spectrum with
2-cusped manifolds. Finally, we show that the associated neat lattices
have infinite abelianization and finitely generated commutator subgroup.
These appear to be the first known nonuniform lattices in PU(2, 1), and
the first infinite tower, with this property.

1 Introduction

A complete complex hyperbolic surface, or a ball quotient surface, is a complete
Hermitian surface of constant holomorphic sectional curvature −1. More pre-
cisely, if B2 denotes the unit ball in C2 equipped with the normalized Bergman
metric, any ball quotient surface is of the form Y = B2/Γ where Γ ⊂ PU(2, 1)
a torsion-free lattice. When Y is noncompact and of finite volume, then Y is
a complex 2-manifold with a finite number of topological ends called the cusps
of Y . The Baily–Borel or minimal compactification Y ∗ of Y is a normal pro-
jective surface with finitely many singular points in one-to-one correspondence
with the cusps of Y . When Γ is neat (see §2.1), then Y ∗ admits a particularly

∗This material is based upon work supported by a Grant of the Max Planck Society:
“Complex Hyperbolic Geometry and Toroidal Compactifications”.
†This material is based upon work supported by the National Science Foundation un-

der Grant Number NSF DMS-1361000. The second author acknowledges support from U.S.
National Science Foundation grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric
structures And Representation varieties” (the GEAR Network).
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nice minimal resolution of singularities X that is a smooth projective surface
called the smooth toroidal compactification of Y [AMRT10, Mok12]. The ex-
ceptional divisors D in X over the singular points of Y ∗ are disjoint smooth
elliptic curves with negative normal bundle in X. Moreover, it is well known
that the pair (X,D) is of log-general type, again see §2.1.

Recall that the Kodaira–Enriques classification gives a satisfactory clas-
sification of smooth projective surfaces in terms of their Kodaira dimension
κ ∈ {−∞, 0, 1, 2}. Moreover, we have a quite complete description of surfaces
that are not of general type, i.e., the class of surfaces with κ ≤ 1. While most
smooth toroidal compactifications of neat ball quotients are of general type with
ample canonical class (Theorem A in [DiC12]), it is an interesting and open ques-
tion to decide which projective surfaces can arise as compactifications of ball
quotients. More precisely, it would be interesting to classify all smooth pro-
jective surfaces that can be realized as smooth toroidal compactifications that
are not of general type. The first explicit examples were constructed by Hirze-
bruch in [Hir84], and they are all birational to a particular Abelian surface, and
hence have Kodaira dimension zero. It is also now a well-known consequence of
Hirzebruch’s work that the volume spectrum of complex hyperbolic 2-manifolds
is unobstructed, i.e., all possible values for the volume of a finite volume ball
quotient manifold are achieved.

In [Mom08], it is claimed that an irregular smooth ball quotient compactifi-
cation of nonpositive Kodaira dimension is necessarily birational to an Abelian
surface. In particular, this result would imply the nonexistence of smooth ball
quotient compactifications birational to bielliptic surfaces, or for simplicity biel-
liptic ball quotient compactifications. Unfortunately, the proof of the main
result in [Mom08] contains an error, and in fact the result is not true. The
purpose of this paper is to produce two infinite families of explicit bielliptic ball
quotient compactifications.

Theorem 1.1. For any natural number n, there exists a smooth projective sur-
face Xn birational to a bielliptic surface and neat lattice Γn in PU(2, 1) of co-
volume 8

3π
2n such that Xn is the smooth toroidal compactification of B2/Γn. In

particular, the family {B2/Γn} saturates the entire admissible volume spectrum
of ball quotient surfaces with holomorphic sectional curvature −1.

Furthermore, the associated smooth compactifications Xn have the property
that their Albanese variety is always an elliptic curve. We will prove that this
in fact gives a holomorphic fibration of the ball quotient with no multiple fibers.
Moreover, we will show that the free rank of H1(B2/Γn;Z) is always two. Using
these facts along with a topological argument due to Nori [Nor83], we obtain
the following group theoretical result. For more on this circle of ideas, we refer
to the results previously obtained by the second author [Sto15].

Theorem 1.2. There exists an infinite sequence of nested neat lattices Γn in
PU(2, 1) with infinite abelianization such that the commutator subgroup [Γn,Γn]
is finitely generated.
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The lattices Γn appear to be the first known examples of nonuniform lat-
tices in PU(2, 1) with this property, and the first infinite tower. It is well-
known amongst experts that the so-called Cartwright–Steger lattice [CS] also
has finitely generated commutator subgroup, since it fibers over an elliptic curve
with no multiple fibers (e.g., see [CKY]). Unlike that argument, our proof does
not rely on computer calculations. Finite generation is proved by showing that
[Γn,Γn] is of finite index in the kernel of a homomorphism of Γn onto Z2, and
we prove that this kernel is finitely generated. Recall that in [Sto15], the second
author constructed the first examples of lattices in PU(2, 1) that maps onto Z
with finitely generated kernel. In contrast, cocompact lattices in PU(2, 1) that
map onto Z with infinitely generated kernel must arise from ball quotients that
are virtually fibered over a hyperbolic Riemann surface [NR01]. The examples
presented here are quite different, not only from a group theoretical point of
view, as the associated ball quotients fiber over an elliptic curve with as generic
fiber either an elliptic curve with three punctures or an elliptic curve with four
punctures.

An important tool in the proof is the following general result, first stated
in recent work of Kasparian and Sankaran [KS15, Cor. 4.5], which allows us to
conclude that the open ball quotient and its smooth toroidal compactification
have the same first betti number.

Theorem 1.3. Let M = B2/Γ be a noncompact ball quotient admitting a smooth
toroidal compactification X. Then b1(M) = b1(X). Equivalently, the first betti
number of M equals its first L2 betti number.

Recall that the first betti number b1(M) is the rank of H1(M ;Q). For the
equality between b1(X) and the first L2 betti number of M , see [MR92] (which
also proves Theorem 1.3 for n-dimensional ball quotients, n ≥ 3). Kasparian
and Sankaran proved Theorem 1.3 using the fundamental group, and we give
an alternate very elementary proof using the Mayer–Vietoris sequence.

The paper is organized as follows. Section 2 collects preliminary facts
about the ball and its Bergman metric, smooth toroidal compactifications, the
Bogomolov–Miyaoka–Yau inequality, and the basic theory of bielliptic surfaces.
In Sections §3 and §4 we give the arguments of the proofs of Theorems 1.1 and
1.2. Finally, in the last section, §5, we construct a different family of ball quo-
tients B2/Λn which can be alternatively used in the proofs of Theorems 1.1 and
1.2. These surfaces have smooth toroidal compactification again biholomorphic
to Xn, but they are quite different from the ball quotients B2/Γn. In particular,
all surfaces in the family B2/Λn have exactly two cusps, while for any n ≥ 1
the surface B2/Γn always has n + 1 cusps. It follows that we can saturate the
whole volume spectrum with 2-cusped ball quotient surfaces (it follows from
[Sto15] that one can do this with 4-cusped ball quotients). This is the last
result presented in this paper.

Theorem 1.4. For any natural number n, there exists a neat lattice Λn in
PU(2, 1) of covolume 8

3π
2n such that the associated finite volume ball quotient

B2/Λn has exactly two cusps.
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2 Preliminaries

2.1 Smooth toroidal compactifications, their volumes and
the Bogomolov–Miyaoka–Yau inequality

Let B2 be the unit ball in C2 with its Bergman metric. See the [Gol99] for more
on its geometry. The group of biholomorphic isometries of B2 is isomorphic to
PU(2, 1), and let Γ ⊂ PU(2, 1) be a nonuniform torsion-free lattice, so B2/Γ
is a noncompact finite volume complex hyperbolic manifold. Suppose further
that Γ is neat, i.e., that the subgroup of C generated by the eigenvalues of Γ is
torsion-free. In particular, any neat lattice is automatically torsion-free. This
implies that Y admits a particularly nice smooth toroidal compactification X
by adding a collection of disjoint elliptic curves D. Given the pair (X,D), the
line bundle KX + D is big and nef, hence (X,D) is of log-general type, i.e.,
the Kodaira dimension of KX + D is maximal and the intersection number
(KX + D)2 is strictly positive. See [AMRT10], [BJ06], and [Mok12] for the
explicit construction and more details.

Let Y be the quotient of B2 by a neat lattice and X its smooth toroidal
compactification. Then X r Y consists of a finite union of disjoint elliptic
curves Ti, each having negative normal bundle in X, i.e., T 2

i < 0 for all i. Let
D =

∑
Ti. Hirzebruch–Mumford proportionality [Mum77] implies that

c21(X,D) = 3c2(X,D), (1)

where c21 and c2 are the log-Chern numbers of the pair (X,D). Recall that
c2(X,D) is the topological Euler number of X r D and c21(X,D) is the self-
intersection of the log-canonical divisor KX +D.

Next, let X be a smooth projective surface and let D be a normal crossings
divisor on X such that KX +D is big and nef. Then, the logarithmic version of
Yau’s solution to the Calabi conjecture [TY87] implies that the log-Chern num-
bers of the pair (X,D) satisfy the so-called logarithmic Bogomolov–Miyaoka–
Yau inequality

c21(X,D) ≤ 3c2(X,D).

Furthermore, in the case of equality

Y = X rD = B2/Γ

for some torsion-free lattice Γ ⊂ PU(2, 1).
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Summarizing, a pair (X,D) with X smooth and D a simple normal crossings
divisor with KX+D big and nef saturates the logarithmic Bogomolov–Miyaoka–
Yau inequality if and only if it is a smooth toroidal compactification of a ball
quotient surface.

We conclude this section by recalling Harder’s generalization of the Gauss–
Bonnet formula for noncompact finite volume arithmetically defined locally sym-
metric varieties [Har71]. This formula is important for us because it gives the
basic structure of the volume spectrum of ball quotients. If the holomorphic sec-
tional curvature of a nonuniform neat ball quotient surface is normalized to be
−1, the generalized Gauss–Bonnet formula implies that the Euler characteristic
of B2/Γ is proportional to its Riemannian volume. More precisely,

χ(B2/Γ) =
3

8π2
Vol−1(B2/Γ),

where χ(B2/Γ) is the topological Euler characteristic of the ball quotient B2/Γ.
We therefore conclude that the normalized volume spectrum can at most be the
set of all positive integral multiples of 8

3π
2. The volume spectrum then coincides

with the set of all positive integral multiples of 8
3π

2 if and only if we can find
ball quotient surfaces with topological Euler number n for any n ≥ 1. If this is
the case it is natural to say that the volume spectrum is unobstructed, as there
are no constraints other than the obvious restriction coming from the fact that
the Euler number is a positive integer.

2.2 Bielliptic Surfaces and their basic properties

In this section, we give the definition of bielliptic surface, recall their place in the
Kodaira–Enriques classification, and give some of their topological properties.
By definition, a bielliptic surface is a minimal surface of Kodaira dimension zero
and irregularity one. As shown by Bagnera and de Franchis more than a century
ago, all such surfaces can be obtained as quotients of products of elliptic curves.
More precisely, we have the following result for which we refer to [Bea96, Ch.
VI].

Theorem 2.1 (Bagnera–de Franchis, 1907). Let Eλ and Eτ be elliptic curves
associated with the respective lattices Z[1, λ] and Z[1, τ ] in C and K be a group
of translations of Eτ acting on Eλ such that Eλ/K = P1. Then every bielliptic
surface is of the form (Eλ × Eτ )/K where K has one of the following types:

1. K = Z/2Z acting on Eλ by x→ −x;

2. K = Z/2Z× Z/2Z acting on Eλ by

x→ −x and x→ x+ α2,

where α2 is a 2-torsion point;

3. K = Z/4Z acting on Eλ by x→ λx, where λ = i;
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4. K = Z/4Z× Z/2Z acting on Eλ by

x→ λx and x→ x+
1 + λ

2
,

where λ = i;

5. K = Z/3Z acting on Eλ by x→ λx, where λ = e
2πi
3 ;

6. K = Z/3Z× Z/3Z acting on Eλ by

x→ λx and x→ x+
1− λ

3
,

where λ = e
2πi
3 ;

7. K = Z/6Z acting on Eλ by x→ ζx, where λ = e
2πi
3 and ζ = e

πi
3 .

Given Eλ, Eτ and K as in Theorem 2.1, let Bλ,τ = (Eλ × Eτ )/K denote
the associated bielliptic surface. The natural projections from Eλ×Eτ onto its
factors give maps

ψ1 : Bλ,τ → Eλ/K ∼= P1, ψ2 : Bλ,τ → Eτ/K.

Clearly, the map ψ1 must have multiple fibers, while Eτ/K is an elliptic curve
and the map ψ2 is precisely the Albanese map for the surface Bλ,τ . In particular,
the Z-rank of the homology group H1(Bλ,τ ;Z) is always two. Depending on the
group K, the associated bielliptic surface Bλ,τ may or may not have torsion in
H1(Bλ,τ ;Z). For the computation of these torsion groups we refer to [Ser90].
Finally, we note that, since the fundamental group is a birational invariant, we
have that the first Z-homology group of a blown-up bielliptic surface is the same
as the first Z-homology group of its minimal model.

3 Proof of Theorem 1.1

In this section we explicitly construct the surfaces Xn. Let ρ = e2πi/3 and n be
a any positive natural number. Then ∆n = Z[n, 1− ρ] is a lattice in C for each
n ≥ 1, with ∆ = ∆1 = Z[ρ]. We then have elliptic curves Gn = C/∆n, and let
G = G1. Define a = 1−ρ

3 , set An = G×Gn, let [w, z] be coordinates on A, and
consider the curves

E1 = [z, z], E2 = [ρz − a, z], E3 = [ρ2z − 2a, z].

Then, for any i 6= j we have

Ei ∩ Ej =
⋃

0≤l≤2

0≤m≤n−1

[2

3
+ la,

2

3
+ la+m

]
.
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Next, consider the degree three automorphism ϕ : An → An given by

ϕ([w, z]) = [ρw, z + a],

and let πn : An → Bn be the associated degree three étale cover. Then Bn is a
bielliptic surface with Albanese map Albn : Bn → C/Z[n, a]. Next, we observe
that

ϕ(E1) = E2, ϕ(E2) = E3, ϕ(E3) = E1,

so that the image in Bn of the curves E1, E2 and E3 is a singular irreducible
curve Cn with exactly n regular singular points of degree three. For 1 ≤ j ≤ n,
let Fj denote the fiber of Albn over the point [ 23 + j− 1] ∈ C/Z[n, a]. The fibers
Fj intersect the curve Cn in its n singular points.

We now claim that by blowing up these n points we obtain a smooth toroidal
compactification. To see this, let Xn be the blowup of Bn at the n singular
points of the curve Cn. Then K2

Xn
= −n and χ(Xn) = n. Let T0 be the proper

transform of Cn in Xn and for i = 1, ..., n let Ti be the proper transform of Fi in
Xn. We have T 2

0 = −3n and T 2
i = −1 for 1 ≤ i ≤ n. Consider Dn =

∑n
i=0 Ti.

Then, the pair (Xn, Dn) satisfies

c21(Xn, Dn) = (KXn +Dn)2

= K2
Xn − T

2
0 − · · · − T 2

n

= −n+ 3n+ n

= 3c2(Xn, Dn).

It follows immediately that XnrDn is biholomorphic to B2/Γn for some nonuni-
form torsion-free lattice Γn ∈ PU(2, 1).

Next, we must show that the lattices Γn are indeed neat. To see this, first
notice that the surfaces Xn form a tower of coverings

· · · → Xn → Xn−1 → · · · → X1,

which induces a tower of coverings of the associated ball quotients

· · · → B2/Γn → B2/Γn−1 → · · · → B2/Γ1.

In particular, the lattices Γn are nested in a sequence of subgroups of Γ1

· · · ⊂ Γn ⊂ Γn−1 ⊂ · · · ⊂ Γ1.

As shown in [DS15b], the lattice Γ1 is neat, and this suffices to imply neatness
of all the Γn. More precisely, the surface B2/Γ1 corresponds to Example 2 in
Section 6 of [DS15b].

It remains to compute the volumes of the surfaces B2/Γn. Since χ(B2/Γn) =
χ(Xn) = n, we conclude that the ball quotient surfaces B2/Γn saturate the whole
volume spectrum since, as recalled in §2, we have

Vol−1(B2/Γn) =
8

3
π2χ(B2/Γn) =

8

3
π2n.

The proof of Theorem 1.1 is therefore complete.
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4 Proof of Theorems 1.2 and 1.3

It has been noticed many times in the literature that if X is a smooth toroidal
compactification of the ball quotient manifold M = Bn/Γ, then b1(M) ≥ b1(X),
where b1 denotes the first betti number, i.e., the rank of H1 with Q coefficients.
For a general result, applicable not only to ball quotient compactifications, we
refer to [Kol95, Prop. 2.10]. Further, Murty and Ramakrishnan showed that
b1(X) equals the first L2 betti number of M , and that b1(M) = b1(X) when n ≥
3 [MR92]. Kasparian and Sankaran [KS15, Cor. 4.5] proved that b1(M) = b1(X)
when n = 2 using the fundamental group, and we now give a very elementary
proof of that result.

Proof of Theorem 1.3. Consider a smooth toroidal compactification (X,D) of
the ball quotient manifold M , where D consists of k disjoint elliptic curves.
Choose an open neighborhood U of D consisting of k mutually disjoint open
sets, one for each irreducible component of D. In what follows, we use Hi to
denote homology with Q coefficients, since we do not care about torsion.

Then U deformation retracts on k disjoint 2-tori. Thus, we have:

Hi(U) =


Qk i = 0, 2

Q2k i = 1

{0} i = 3, 4

Now define V = U r D, so V deformation retracts on the disjoint union of k
closed Nil 3-manifolds. We then have:

Hi(V ) =


Qk i = 0, 3

Q2k i = 1, 2

{0} i = 4

Recall that any closed Nil 3-manifold N arising as the cusp cross section in a
smooth toroidal compactification is a circle bundle over a 2-torus satisfying

H1(N3;Z) = Z2 ⊕ Torsion,

with the torsion part depending on the specific nilmanifolds, while H2(N ;Z) is
always torsion-free equal to Z2 by duality. For these facts we refer to [Thu97].

Next, we apply the Mayer–Vietoris sequence to X = M ∪ U . First, we
consider

· · · → H1(X)→ H0(V )→ H0(M)⊕H0(U)→ H0(X)→ {0}

which gives
· · · → H1(X)→ Qk → Q⊕Qk → Q→ {0}

and it follows that H1(X)→ H0(V ) is zero. This gives an exact sequence

· · · → H2(X)→ H1(V )→ H1(M)⊕H1(U)→ H1(X)→ {0}
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that becomes

· · · → H2(X)→ Q2k → H1(M)⊕Q2k → H1(X)→ {0}

It follows immediately that b1(M)+2k = 2k−`+b1(X), where ` is the dimension
of the image of the map H2(X)→ H1(V ). In other words, b1(M) = b1(X)− `.
However, as discussed above, it is well-known that b1(M) ≥ b1(X), so ` = 0 and
the theorem follows.

Remark 1. It is not necessarily the case that H1(M ;Z) ∼= H1(X;Z). Indeed,
we can construct examples, closely related to the examples in this paper, where
H1(M ;Z) has torsion but H1(X;Z) is torsion-free.

Remark 2. The remainder of the Mayer–Vietoris sequence reduces to an exact
sequence:

{0} → Qk−1 → H3(M)→ H3(X)→ Q2k → H2(M)⊕Qk → H2(X)→ {0}

The image in H3(M) of Qk−1 is generated by any k−1 of the cusp cross-sections
of M (the kth is clearly linearly dependent, since the union of all the cusp cross-
sections obviously bounds). For example, one can then conclude that the betti
numbers of M satisfy:

b3(M) ≥ k − 1

b2(M)− b3(M) = 1− b3(X) + b2(X)

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Recall the surfaces Xn from Theorem 1.1. For any n,
let Albn : Bn → En = C/Z[n, a] be the Albanese map and let πn : Xn → Bn
be the blowup map. Consider ψn : Mn → En, which is the composition ψn =
Albn ◦πn ◦ in, where in : Mn → Xn is the inclusion. We then obtain a surjective
morphism

(ψn)∗ : π1(Mn)→ π1(En) ∼= Z2.

The generic fiber Fn of the surjective fibration ψn : Mn → En is a reduced
torus with three punctures. The singular fibers of this fibrations are reduced
smooth rational curves with four punctures. Note that there are exactly n
singular fibers corresponding with each of the n exceptional divisors in Xn.

By Lemma 1.5 in [Nor83], the sequence

π1(Fn)→ π(Mn)→ π(En) ∼= Z2 → 1

is exact. We therefore conclude that Ker((ψn)∗) is finitely generated for any
n. Also, the free rank of H1(Mn;Z) is always two by Theorem 1.3. On the
other hand, we have that Γn/Ker((ψn)∗) ∼= Z2 for any n. It follows that the
commutator subgroup [Γn,Γn] is of finite index in Ker((ψn)∗). Since finite
index subgroups of finitely generated groups are finitely generated, the proof is
complete.

Remark 3. It follows from arguments in [Kap] that [Γn,Γn], while finitely
generated, cannot be finitely presented.
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5 Two-cusped examples

In this section, we explicitly construct a second distinct family of ball quotients
B2/Λn which can be alternatively used in the proofs of the main theorems
presented in this paper. These ball quotients have toroidal compactifications
biholomorphic to the nonminimal bielliptic surfaces Xn constructed above. In
other words, for any n, even if the ball quotients B2/Γn and B2/Λn are not
biholomorphic, they nevertheless have biholomorphic smooth toroidal compact-
ifications. For many more examples and a detailed study of the multiple re-
alizations problem of varieties as ball quotient compactifications, we refer to
[DS15a].

The most natural way to distinguish the surfaces B2/Λn from the surfaces
B2/Γn is to look at their cusps. In particular, we will show that all of surfaces
in B2/Λn have exactly two cusps, while we already know that for any n ≥ 1
the surface B2/Γn has n+ 1 cusps. This is clearly enough to show that the two
families are distinct for n ≥ 2. For n = 1 this is still the case but the argument
is different and we refer to end of this section for details.

As before, let ρ = e2πi/3 and let n be a any positive natural number. Let
the lattices ∆n in C be as above with Gn = C/∆n the associated elliptic curves.
Again set a = 1−ρ

3 , An = G×Gn, let [w, z] be coordinates on A, and consider
the curves:

E1 = [z, z], E2 = [ρz − a, z], E3 = [ρ2z − 2a, z].

Recall that if i 6= j, then

Ei ∩ Ej =
⋃

0≤m≤n−1

0≤l≤2

[2

3
+ la,

2

3
+ la+m

]
.

We again consider ϕ : An → An given by

ϕ([w, z]) = [ρw, z + a],

which satisfies

ϕ(E1) = E2, ϕ(E2) = E3, ϕ(E3) = E1,

and let πn : An → Bn the associated degree three étale cover. Then Bn is a
bielliptic surface with Albanese map Albn : Bn → C/Z[n, a]. The image in Bn
of the curves E1, E2 and E3 is a singular irreducible curve Cn with exactly n
regular singular points of degree three.

Now we diverge from the previous construction. Consider

H1 =
[2

3
, z
]
, H2 =

[2

3
+ a, z

]
, H3 =

[2

3
+ 2a, z

]
,
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and observe that

ϕ(H1) = H2, ϕ(H2) = H3, ϕ(H3) = H1.

To prove this, it suffices to compute that 2
3 +a = 2ρ

3 and 2
3 +2a = 2ρ2

3 modulo ∆.
In particular, the image in Bn of the curves H1, H2 and H3 is a single smooth
elliptic curve Fn that is a smooth fiber of the map φn : Bn → G/Z3

∼= P1.
The curves Cn and Fn meet transversally exactly in the n singular points of

Cn. Thus, let Xn be the blowup of Bn at the n singular points of Cn, T0 denote
the proper transform of Cn in Xn, and T1 be the proper transform of Fn in Xn.
Set Dn =

∑1
i=0 Ti. Again, one checks that c21(Xn, Dn) = 3c2(Xn, Dn), so the

pair (Xn, Dn) is a smooth toroidal compactification, soXnrDn is biholomorphic
to B2/Λn for some nonuniform torsion-free lattice in Λn ∈ PU(2, 1). It follows
immediately from the construction that B2/Λn has exactly two cusps.

The surface B2/Λ1 corresponds to Example 3 in Section 6 of [DS15b], and it
follows as with the previous examples that the lattices Λn are neat. The volume
calculations are also exactly the same. The family B2/Λn appears to be the first
family of 2-cusped ball quotients that saturate the entire volume spectrum (see
[Sto15] for 4-cusped examples). This completes the proof of Theorem 1.4.
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