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1 Introduction

1.1

Let K be a totally real number field with integer ring Og. Denote by Si(I'x) the space of
holomorphic cusp forms of weight k¥ on I'x = SLa(Of). When K/Q is a cyclic extension of
prime degree, H. Saito [Sal] introduced a subspace Si(I'x) of Si(I'x) consisting of cusp forms
satisfying certain Hecke symmetries, and studied the traces of Hecke operators acting on Si(I'x).
As a direct consequence of his trace formula, he gave a relation between S;(I'x) and the base
changes of elliptic modular forms (see also [Sa2]).

Consider the case where K is a real quadratic field. Then the base changes are Doi-Naganuma
lifts or Naganuma lifts (see [DN] and [N]). In particular, Naganuma lifts can be constructed as
theta lifts of holomorphic elliptic cusp forms on I'g(d) of Neben type, where d is the discriminant
of K (see [Z], [01], [02] and [RS]).

On the other hand, Harvey and Moore [HaMo| and Borcherds [Bo2] constructed the Borcherds
products on O(2,m), first introduced in [Bol], as the exponential of regularized theta lifts of
weakly holomorphic elliptic modular forms. It is natural to ask whether Borcherds products
satisfy certain symmetries.

The object of this paper is to show that Hilbert modular forms over a real quadratic field
obtained as Borcherds products satisfy a multiplicative analogue of Saito’s Hecke symmetries.
In this paper, we give two different proofs of the main results.

The first proof is an analytic one. Borcherds products are obtained, essentially, as the
exponentials of regularized integrals of weakly holomorphic modular forms against the Siegel
theta series ([HaMo|, [Bo2]; see also [BB]). We prove Saito’s Hecke symmetries for the Siegel
theta series, which seems to be of independent interest. This immediately implies the desired

results for the Borcherds products.
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The second proof is an arithmetic one. Recall that the divisor of a Borcherds product
is a linear combination of Hirzebruch-Zagier divisors with integral coefficients. We study the
action of Hecke operators on Hirzebruch-Zagier divisors, from which follows the multiplicative
symmetries for Borcherds products. This proof gives us more precise informations about the
action of multiplicative Hecke operators on Borcherds products.

Saito’s Hecke symmetries are closely related to the Hecke duality introduced and studied in
the first named author’s paper [H] in the Siegel modular case.

Note that the Hilbert modular forms can be seen as automorphic forms on O(2,2) of Q-
rank one. In the forthcoming paper, we will study symmetries for Borcherds products on
0O(2,m) (m > 2) of Q-rank two.

The paper is organized as follows. The main results are stated in Section 2. We first recall
the definition of Hilbert modular forms and Saito’s Hecke symmetries, which we call the additive
Hecke duality in this paper. We next intorduce the notion of the multiplicative Hecke duality for
Hilbert modular forms. After recalling the definition of Borcherds products, we state the main
results of the paper. The first one (Theorem 2.2) is the multiplicative Hecke duality of Borcherds
products. The second one (Theorem 2.4) is concerned with the action of multiplicative Hecke
operators on Borcherds products. In Section 3, we recall the definition of Siegel theta series in
the Hilbert modular case. In Section 4, we prove the additive Hecke duality of the Siegel theta
series (Theorem 4.1), which directly implies Theorem 2.2. This result might be of independent
interest. In Section 5, we study the action of Hecke operators on Hirzebruch-Zagier divisors.
Parts of the results have been already known (see [Ge]). By using this results, we show that the
action of multiplicative Hecke operators is compatible with that of the usual Hecke operators
on the “input data” of Borcherds products. This seems to be closely related to one of the open
problems stated in [Bo2] (Problem 16.5). It should be noted that a similar compatibility has been
studied by Guerzhoy [Gue] in the case of Borcherds products on O(2,1) and by Gritsenko and
Nikulin [GN] in some special Borcherds products on O(2,3). In Section 6, we study numerically
several examples of Hilbert modular forms in the case of K = Q(+/5). Since Theorem 2.2 gives a
necessary condition for a Hilbert modular form to be a Borcherds product, we are able to show

that several Hilbert modular forms of weight 10 are not Borcherds products.

1.2 Notation

For z € C, put e[z] = exp(2miz). The upper half plane is denote by $ = {7 € C | Im(7) > 0}.
Let d;; be the Kronecker’s delta. We put C! = {z € C | 2z = 1}. For a condition C, we put

1 if C holds,
i(C) =

0 otherwise.



2 Main results

2.1 Hilbert modular forms

Let K be a real quadratic field of discriminant d. Throughout the paper, we fix an embedding
of K into R. Let z +— 2’ be the nontrivial automorphism of K/Q. For z € K, put Tr(z) = z+ 2’
and N(z) = z2/. Let Ok be the integer ring of K and d0x = VdOk the different of K. Recall
that 0! = {z € K | Tr(2w) € Z for any w € Of}. For an element z of K, we write z > 0 if z
is totally positive (that is, z > 0 and 2’ > 0).

Define the action of GL (K) = {g € GLy(K) | detg = 0} on the product $? of two copies
of $ by

g-(21,22) = (azl—l—b a22+b) (gz < CCL Z) GGL;(K)a(ZLZQ) 65’)2>-

cz1+d dz+d

Let k be an integer. For a function F on $? and g = ( “
c

Z ) € GLJ (K), define

Fleg(z) = jlg,2) "F(g-2) (2= (21,2) € H7),

where j(g,2) = (cz1 + d)(c'2g + d'). Let 'k = SLa(Ok) C GLy(K) and x a character of
'k of finite order. Denote by Ci(I'k,x) (respectively Ax(I'x,x)) the space of smooth (re-
spectively meromorphic) functions F on $? satisfying F|py = x(7)F for any v € T'x. We
also let M (T'x,x) = {F € Air(Tk,x) | F is holomorphic on $?} and Sp(T'x,x) = {F €
Mi(Tk,x) | F is cupidal}. If x is trivial, we often write Cy(I'x), Ax(I'x ), Mk (I'x) and Sk(I'k)
for Cr (T, x), Ak(Tk, x)s My (Tke, x) and Sk (I'k, x) respectively.

2.2 Hecke duality

Suppose that the class number of K in the narrow sense is equal to one. Then the discriminat d
of K is a prime number with d =1 (mod 4). Let ¢y be the fundamental unit of K with ¢y > 1.
Note that N(eg) = —1.

Let p be a prime ideal of K and fix a generator 7 of p with # = 0. For F' € C(I"), define
the Hecke operator by

(T ) = F (o) et 3 (22022,

s s
aEOK/WOK

Then F|;T(p) € Cx(I'r). We also define the multiplicative Hecke operator on Ax(I'k, x) by

(FIT(p) (21,22) = F (w21, 7'z2) x - [[  F <Z1+G,Z2+/a/).

s T
aEOK/WOK

It is easy to see that F'|7(p) € Cnp)+1)k(Tx, x') with some character x’ of T'k.



We say that F' € Cy(T'x) satisfies the additive Hecke duality if
F|T(p) = FlxT(p")

holds for any prime ideal p of K. We also say that F' € Ap(I'k, x) satisfies the multiplicative
Hecke duality if
FIT(p) = c(p,F) - FIT (p')

holds for any prime ideal p of K with a constant c(p, F) € C! depending only on p and F.

2.3 Borcherds products

Denote by x4 the quadratic Dirichlet character corresponding to K/Q. Let Wi(d, xq) be the
space of weakly holomorphic modular forms of weight k for I'g(d) of character x4 (cf. [BB] §3).
Let

f(r)= ) cr(n)elnt]

n>—oo

be the Fourier expansion of f € Wi (d, xq) at co. We put

cr(n), ifdin,

¢p(n) =
! 2c¢(n), if d|n.

Let W (d, xa) be the subspace of those f € Wy (d, x,4) such that c¢(n) = 0 whenever y4(n) = —1.
Let f € W,j (d, xa)- We call a connected component of

s\ U S(m)

m>0,cp(—m)#0

a Weyl chamber associated with f, where

S(m) = U {2 = (21,22) € 9?2 | AIm(21) + Mm(29) = 0} .
Ao, —AN=m/d

Let W be a Weyl chamber. For A € K, we write (A, W) > 0 if A\Im(z1) + N'Im(z2) > 0 for any
z = (z1,22) € W. Define the Weyl vector corresponding to f and W by

prw =Y E(-m) Y 6(2)A_16K,

m>0 AER(m, W)

where R(m, W) is the set of A € ' such that —AN = m/d,(\,W) > 0 and (—ey 2\, W) > 0
(see [Br3], 3.2 and 3.3).

The theorem of Borcherds is stated as follows ([Bo2] Theorem 13.3; see also [BB| Theorem
9 and [Br3] Theorem 3.44).

THEOREM 2.1 (Borcherds). Let f € Wy (d, xa) and assume that ¢¢(n) € Z for all n < 0.
Then there exists a meromorphic Hilbert modular form V(z) = U(z, f) for I' = SLy(Ok) (with

some multiplier of finite order) satisfying the following conditions.



(i) The weight of ¥ is equal to c¢(0).

(ii) The divisor of ¥ is given by
> ep(=m)HZ(m),

m>0

where

HZ(m) = Z {(21,22)657)2 |azlzg+)\zl+)\’z2+b:O}

(a,b\)EZ2 XD, ab—AN'=m/d

is the Hirzebruch-Zagier divisor of discriminant m (cf. [HZ]).

(iii) Let W be a Weyl chamber associated to f and put N = Min{n | cs(n) # 0}. The function

U has the Borcherds product expansion

\I’(Z, f) =€ [pf’WZl -+ p/f,WZQ] H (]_ —e [VZl + V/ZQ])Ef(dz/y’)

VGDI}I , (v, IW)>0

)

which converges uniformly for all z = (z1,z2) € W with Im(z1)Im(z2) > |N|/d outside the

poles.

2.4 Multiplicative Hecke duality for Borcherds products

One of the main results of the paper is stated as follows.

THEOREM 2.2. Let f and ¥ be as in Theorem 2.1. Then ¥ satisfies the multiplicative Hecke

duality.

REMARK 2.3. Note that, to prove Theorem 2.2, it is sufficient to show that
V[T (p) = c(p, /)¥|T(p")
holds for any prime ideal p dividing a prime p split in K/Q with c(p, f) € C!.
2.5 Hecke actions on Hirzeburch-Zagier divisors
For (a,b,\) € Z? x 0}, let
D(a,b,\) = {(21, 29) € 9?2 | azizo + A2 + N2g + b = O}
be a divisor in $2. Recall that

HZ(m)= Y D)  (m € L),

sexm

where X,,, = {(a,b,\) € Z? x 0! | ab— AN =m/d}. If m is not an integer, we put X,,, = 0

and HZ(m) = 0.



For a prime divisor D of $? given by the equation (z) = 0 and g € GL3 (K), put D * g =
{2 € 9% | p(g - 2z) = 0}. By linearlity, we define the action of GL; (K) on the divisors of $2. Tt
is easily seen that HZ(m) is I'g-invariant.

Let p be a prime with p f d and p a prime ideal of K dividing p. We fix a totally positive

generator 7 of p. For a I'k-invariant divisor D of $2, put

— D m 0 . 1 u
D«T(p)=D <0 1>+ > D (0 F)

u€OK /p

Then the following result holds.
THEOREM 2.4. For a positive integer m, we have
HZ(m) *T(p)
HZ(pm)+p-HZ(p 'm) if p splits in K/Q,

= HZ(p*m) +p?-HZ(p~2m) if p is inert in K/Q and p|m,
HZ(p*m) +p-HZ(m) if p is inert in K/Q and p {t m.

REMARK 2.5. This fact in the case where p t m is already known (see [Ge]).

2.6 Hecke actions on Borcherds products

For a positive integer n, define the Hecke operator T'(n) on Wy(d, x4) by

T = 3 %m(a)f(azjb)

0<a’|n, aa’=n b=0

for f € Wo(d, xq) (see [Mi], page 142). It is easily seen that, for a prime p with p 1 d, T'(p)
(respectively T'(p?)) leaves Wy (d, x4) invariant when y,(p) = 1 (respectively xq(p) = —1).

THEOREM 2.6. Let p be a prime with p  d and p a prime ideal of K dividing p. Let
f €Wy (d,xa) and put
, ) TO)f if xalp) =1,
T(*)f +pf if xalp) = 1.
Denote by ¥ and V' the Borcherds products associated with f and f' respectively. Then we have
U|T (p) = y(p, f) ' with y(p, f) € C'.

REMARK 2.7. Theorem 2.2 is a direct consequence of this theorem.

REMARK 2.8. For a compatibility of Borcherds products with respect to Hecke operators,
see [Gue] in the O(2,1)-case and [GN] for some special cases in the O(2, 3)-case.



3 Siegel theta series

3.1 The Grassmannian

We define an involution 7 of Ms(K) by

Define a Q-vector space V' by

V:{XEMQ(K)NX:X’}:{<5/ ”) ya,beQ,ueK}

on which a quadratic form Q is given by

Q(X) = —2det X = —2ab + 2N(v) <X: ( y ”) €V>.
Since Q(X) = —tr(X7(X)), we have
QUXY) = QX +Y) ~Q(X) —Q(V)} = ~(Xr(Y))  (X,Y V)
Let

b
be a lattice of V. The dual lattice of L with respect to Q is

L*:{( a/ V> ]a,beZ,uea;}.
vVob

Define an action of G = SLo(K) on V by

L:VﬂMg((’)K):{< :, V)\a,bEZ,VeOK}

g-X=gX'g (geG, X V).

Then ' - L = L. We identify Vg = V®gR and Ve = V ®qC with M3(R) and M>(C), on which
GRr = SLa(R) x SLa(R) acts by (g1,92) - X = g1 X%go. Let Gr(VR) be the Grassmannian of V.
By definition, Gr(VR) is the set of two dimensional subspaces v of Vg on which @ is positive

definite. Then Gr acts on Gr(VR) in a natural manner and the action is transitive. For A € Vg

and v € Gr(Vg), let A, and A,1 be the projections of A on v and v' respectively, where v
denotes the orthogonal complement of v with respect to @. We have Q(A) = Q(A,) + Q(A,1).

Set

V= {17] € P(V) | Q(Z) = 0.Q(2.7) > 0}

={[Z] e P(M3(C)) | det Z = 0,—tr(Z7(Z)) > 0},



where Z is the complex conjugate of Z € Vg. Define an action of Gg = SLa(R) x SL2(R) on V
by
(91.92) (2] = [91Z"02] (91,92 € SL2(R), [Z] € V).

It is well-known that V is a disjoint union of two connected components V* and V~, and Ggr

i
acts on V¥ transitively. Henceforth we choose V1 so that ) € V*. Note that, for
i

Z = X +iY € My(C) (X,Y € My(R)), [Z] € V if and only if Q(X) = Q(Y) > 0 and
Q(X,Y) = 0. We put n(Z) = Q(X) = Q(Y).

LEMMA 3.1. (i) The mapping Z = X + 1Y — vy = RX + RY gives rise to a bijection
between V't and Gr(Vg).

(ii) For A € Vg and Z € VT, we have
Avy = 0(2)7HQA X)X + QA Y)Y}

and

Q. 2P
W) =y

[ a2 -
M(z)-( v 1 )

It is easily seen that V¥ = {[M(2)] | 2 = (21,22) € 7} and that g - M(2) = j(g,2)M(g - 2)
for g = (g1,92) € SLa(R) x SLy(R) and z = (21, 22) € H?, where j(g,2) = j(g1,21)j (g2, 22) and
g-z=((aizi + b;)/(cizi + d;))i=1,2. We also have n(M(z)) = 2Im(z;)Im(z2).

For z = (21, 22) € C2, put

3.2 Siegel theta series

For o« € L*/L,7 € $ and v € Gr(VRr), we define

T T
(3.1) Oulr) = Y e|FQM0) + JQ(A)] .
A€a+L
Since v- A = A (mod L) for A € L* and v € Tk, v = O4(7,v) is ['g-invariant. For z € $2,
let v, be the element of Gr(Vg) corresponding to [M(z)] € V' by Lemma 3.1. By abuse of
notation, we write ©,(7, z) for O,(7,v,). Henceforth we often identify 0 /O with L*/L via

/

0
o — ( « . The following is a straightforward consequence of Lemma 3.1.
o

LEMMA 3.2. We have

Al
Ou(T, (21, 22)) = Z e [z2m(7) ‘mzlzg + 21+ Nag + n‘Q +7(—=mn+ A\ |,
mneZ A ca+0Ok y1y2

where y; = Im(z;).



LEMMA 3.3. (i) We have Oy (1,7 - z) = Ou(T, 2) for v € I'k.
(1i)) We have ©4 = ©_y = Oy
(i1i) We have ©4 (T, (22,21)) = Ou(T, (21, 22)).

ProOOF. We have already proved the first assertion. The second one follows from Lemma
3.1 and the fact that o — o € Ok for o € O;{l. By Lemma 3.2, we have O,(7, (22,21)) =
@O/(7-7 (ZlaZQ)) = G)CV(T? (ZlaZQ))' O

For o € 0[_(1/(’)[(,2 = (21, 22) € H2%,m,n € Z, we put

iIm(7)

2
5 {m(z1y2 + z2t1) + Ay + Nyo }
Y1y2

Vo(T,2;m,m) = Z e[

/\€a+OK

+ (mT +n) (mxla:g + Az + )\/:cg) + F)\)\/} ,

where x; = Re(z;),y; = Im(z;) (i = 1,2). In the next section, we need the following result due
to Borcherds (see [Bo2)).

PROPOSITION 3.4. We have

_ |y 1Y1Y2 2 )
Ou(T,2) = Tm(7) m;eze [2Im(7)‘m7—+ n| } Yo (T, 2;m,m).

For completeness, we give a sketch of the proof of the proposition.

LEMMA 3.5. We have

Im(7
Oalr, (21,22)) = Iiﬁéf) Z e [ 2y1§;2) ’mzlz2 + Az + )\/22‘2 + 7N
manZ,/\EoH-(’)K
iWy2 _ ilm(7) / 2
2T (7) mT +n— U2 (m($1$2 —Y1y2) + Ax1 + A :cg)

PRrROOF. We have

Al
= E e [z2m(7) |n+)\21 + Nz —|—m2122’2 —I—T(—mn—i-)\)\’)}
mneZ A ea+Ok Y192

iIm(7
Ly [

2
meZ M eat+Ox Y1y2

‘)\zl + Nzg + m2122’2 + T)\X] Z f(n),
neL

where
f(u) = e[iAu® + Bul,

I
A= m(T), B=-m7+
2y192 Y1Y2

ilm(7)

(/\arl + Ny + m(z129 — y1y2)) .



1

Observe that the Fourier transform of f is equal to v/ 24 e [4A

(u+ B)2]. Then Poisson

summation formula implies

iIm
Oul(T,2) = /Iiﬁ?j) Z e [ 2y1(yT2) }mzlzg + Az + >\’22|2 + 7N

mneZ A ca+0Ok

.I 2
L N2 {n T4 m(r) (m(z1z2 — y1y2) + Aoy + )‘/932)} ] :

2Im(7) Y192
Changing (m, \) into (—m, —\), we get the lemma (note that ©_, = 0,). O

Proposition 3.4 is derived from Lemma 3.5 by a tedious but straightforward calculation.

3.3 Regularized theta integrals and Borcherds products

For f € WJ(d,Xd), put

(3.2) D(z, f,8) = lim (f(1),00(1,2))v

where Fy = {r =u+ive 9 ||r| > 1, |ul < 1, |v| <t} is the truncated fundamental domain and
(,) is the pairing given in [Br3] Proposition 3.32. The limit (3.2) exists for Re(s) > 0 and is
continued to a meromorphic function of s on C. The regularized theta integral ®(z, f) is defined
to be the constant term in the Laurent expansion of ®(z, f,s) at s = 0. Then the Borcherds
product ¥(z, f) satisfies

(3.3) D(z, f) = ~4log|W(z, f)(Im(z1)lm(z)) /2| — 2¢;(0) (log(2r) + (1))

in the domain of convergence of the infinite product for ¥(z, f) in Theorem 2.1 (iii).

4 Hecke duality for Siegel theta series

4.1

From now on, we assume that the class number of K in the narrow sense is equal to one, and
fix a Z-basis {1,w} of Og. Put s = Tr(w) and t = N(w). Let p = pp’ be a prime split in K/Q.
Take and fix a totally positive element m of O such that p = 7Og. Then p = 7n’. In this

section, we prove the following result:

THEOREM 4.1. For any a € 03 /O, we have
Oa(*,2)[T(p) = Oal, 2)|T(p").

REMARK 4.2. In view of (3.3), this theorem implies Theorem 2.2.

10



4.2

The following result follows from Proposition 3.4.

LEMMA 4.3. We have

PY1Y2 iW1Yy2
Ou(rIT0) = [P2E L S e [y i 2] 10 im )
mne”

+p ! Z e [pl 1Yz ]m7—|—n|2] II(CV,T,Z;’)’R,’I’L)

ez 2Im(7)
and
PY1Y2 1Y1Y2 2| 41
@ T ! = I ) b ; b
(A6 = [T 3 oyl | ez
7 Y e[t 4| (o msmn) {
m,neL
where
LTr(oz,T, zym,n) = Vo(7, (721, ™ 29);m, M),
IJlr(aa T,z;Mm, n) = 1901(7_7 (7T/2’1, 71—22); m, n)a
p—1
I (o, 7,2;m,n) = Z'ﬁa <7’, <Zl + C, 2 —/Fc) ;m, n> ,
~ T T
1 = zZ1+c z9+c
I (o, 7, 2z;m,n) = Fa | 7, — im,n | .
—~ T T

The proof of Theorem 4.1 is now reduced to that of the following:

THEOREM 4.4. (i) If pl/m and p|n, we have

I£ (Oé, T,2;M, n) = le(Ct, T, z;p_lmap_ln)'

(ii) If ptm or p{n, we have
II(O(,T,Z;WL,TL) = If(a,T,z;m,n).

4.3

In what follows, we fix o € D;(l/OK,T € 9 and z = (21,22) € H2%, and put z; = Re(z),y; =
Im(z;). We write Ii(m, n) for Ii(a, T, z;m,n) to simplify the notation. Let 7 = a 4+ bw. Then
a® + sab + tb?> = p and p /b. To prove Theorem 4.4, we need the following results.

11



LEMMA 4.5. We have
7 _ _pilm(r / 2
(4.1) Ii(m,n) = Z elp Do {7r)\y1 + 7' Nya + mp(z1y2 + aﬁgyl)}
AEa+Ox y1y2
+ (mT +n) ()\71’1131 + N7y + mp:clxz) + ?)\)\'] ,

iIm(r
(4.2) Ii(m, n) = Z elp? . {7r Ay1 + Ny + mp(z1y2 + azgyl)}2
Aea+Ox Y1y2
+ (mT +n) (Ar'z1 + Nmag + mprizg) + ?)\)\’] ,

vl ilm(t) [ (A me N me m 2
—+— |+ {5+ — )+ —(z1y2 + 2201)
p T p p

Aea+Og c=0
- A mec N me m A N m o oy
+mT+n)((—+—)z1+ |5+ — |2+ —m22+ —Cc+ Sc+ —c +T)\)\},
™ p m p p @ @ p
(4.4)
It (m,n)
ilm(1 A me N me m 2
Z Z [ 5 —+— )+ =+ — )yt —(1y2 + 2201)
Aa+Ox =0 y1y2 @ p g p p
B A me N me m A N m L
+m7+n) (5 +— o+ | =+ —)r2+ —m22+ —c+ —c+ —c —i—T)\)\]
T p ™ p p ™ T p
O

PRrOOF. The lemma is immediate from the definitions

LEMMA 4.6. Let X € 0. Then p| Tr(7'\) (respectively p| Tr(w))) if and only if A\ € w0y
(respectively X € T} ).

PROOF. Let A = z + yf. Suppose that p| Tr(7’'\). Then

1
A = —= {(a+ sb)x + tby + (—bx + ay)w
7a ) y+( y)w}
and hence p|(—bx + ay). Since

b{(a+ sb)x +tby} = (a + sb)(bx — ay) + py = 0 (mod p)
=1, The other

and p /b, we have p|((a + sb)x + tby). This implies 7'\ € pd' and hence \ € Ty
O

assertion is similarly proved.
LEMMA 4.7. There exists an element 3 of D}l such that o — 73, a— 7' € O. Furthermore

we have (a + Okg) N7 = (B + Ok) and (a + Og) N7 = 7'(8+ Ok)

12



PROOF. Since 0 +710k = Ok, we have Ok —|—7TDI_<1 = 0[_(1. Thus there exists a 3 € D[_(l such
that a—73 € Ok. Since 1—7' € 0, we have a—7'3 = a—nf+(n—7')5 € Ok. It is easily seen
that (a+Ox)NTR' D 1(B+0k). Let A € (a+0k)Nmox". Then \—73 = A—a+(a—76 € Ok)
and hence 771 (A — 73) € 7 'Ox N0 = Of. This implies that A € 7(3 + Of) and hence we
have proved (a+ Ok )N WDI_{I = 7m(f+ Ok). The proof of the remaining assertion is similar. [

4.4 The case where p|m

In this subsection, we assume that p|m and prove Theorem 4.4 in this case. We put m’ = p~'m.

LEMMA 4.8. We have

dIm(7) (A N m 2
II(man): Z e[P (r) {Wy1+7r,y2+p(fv1y2+x2y1)}

Aea+Oxk 2y1 Y2

AN om L
+ (mT +n) (Wm + T2 + pxw?z) —i—?)\/\’] e {p TT(W/)\)} )
c=0

L iIm(7) [ A N m 2

I”(m,n) = Z G[P 5 v+ —y2 + — (2192 + 2201)
A€atO yiya2 \m T p

K

A N om L
+ (mT +n) <7T:E1+7r:x2+a:1x2)+7')\)\}2e[ ]

c=

PROOF. The first assertion is proved by changing A into A — wm’c in (4.3). The remaining

one is similarly proved. O

1

First suppose that p|n and put n’ = p~'n. By Lemma 4.8, we obtain

II(m,n)
_q tIm(7 , , 9
=» 3 e o) N )+ Xge) (') () + () (')

+ (m/'7 +n') (A7 z1) + N (722) + m/ (7'z1) (722)) + ?)\X}
= pIi(m,n),
which proves the first assertion of Theorem 4.4 (i). The second one is similarly proved.

Next suppose that p fn. Let 8 be an element of D;(l satisfying o — 73, — 7’8 € Ok (cf.
Lemma 4.7). Lemma 4.6 and Lemma 4.7 imply that, for A € a + Ok,

p—1 .
Ze{miﬁ(m)} _ p reni O

o= 0 otherwise.

13



Then, by Lemma 4.8, we obtain

. 2

iIm(7 m

(4.5) II(m,n) = Z e[p 5 (r) {Myl +p1'y2 + —(z1y2 + -’Ezyl)}
LEBTOK Y1y2 p

_ / m _
+ (m7T +n) uw1+u$2+;$19€2 +DPTR |-

A similar argument shows that I 1 (m,n) is equal to the right-hand side of (4.5), which proves

Theorem 4.4 (ii) in the case where p|m and p 1 n.

4.5 The case where p{m

In this subsection, we assume that p{ m and prove the remaining part of Theorem 4.4 (ii). Let

0 be as in Lemma 4.7. The following is easily verified.

LEMMA 4.9. For a function ¢ on K, we have

Ly A mec I
S Ye(EeE)- ¥ oo(b)
Aea+0Ok c=0 nepB+OK
LEMMA 4.10. For u € D;{l, there uniquely exist c(m,pu) € Z with 0 < ¢(m,pu) < p—1 and

z(m, 1) €05 such that
o = '2(m, p) + me(m, ).

PROOF. Since Tr(m)? = (2a + sb)? = 4p + db?, Tr(n) is not divisible by p. It follows that
there exists an integer ¢ satisfying 0 < ¢ < p — 1 and p| Tr(w(p — mc)). Then, by Lemma 4.6,
we have u — mc € 7’ Dl_(l, which proves the existence of ¢(m, u) and z(m, p). The uniqueness is

clear. 0

LEMMA 4.11. For p € Df}l, we have
e(m, 1) Tr(js) — me(m, 1) = e(’, ) Te() — me(a’, w)? (mod p).
PROOF. Put ¢; = ¢(m, 1) and co = ¢(n’, ). We have mTr(n)e; = Tr(mwp) (mod p) and
m Tr(m)cy = Tr(n'pn) (mod p). Then
Te(m) { (c1 Te(p) — mef) — (e2 Tr(p) —me3) }
= (c1 — c2) {Tr(m) Tr(u) — m Tr(mw)e; — m Tr(mw)ea}

= (c1 — ¢2) {Tr(m) Tr(p) — Tr(mp) — Tr(x'p)} (mod p)
0,

which proves the lemma since p | Tr(m). O

14



We are now ready to prove Theorem 4.4 (ii). By Lemmas 4.5, 4.9, 4.10, we have

Dmny= Y fT,z,m,n<u>e[Z{c<w,mTr<u>—mc<w>2}},

nepB+Ok
n

Bomm = 3 Jremaie | & (el To0) — me(e' 07}
nepB+Oxk p

where
_1tIm(7)
29192
+ p Y (mT +n) (;mcl + p o + m:clxg) +p

frzmm(p) =e {p (Ly1p'y2 + m(z1y2 + z231))

l?u;/} .

Then Lemma 4.11 implies that Il (m,n) = It (m,n), which completes the proof of Theorem 4.4.

5 Hecke action on Hirzebruch-Zagier divisors and Borcherds

products

5.1

We first show that Theorem 2.4 implies Theorem 2.6. Let f € War (d, xq)- Hereafter we make a
convention that ¢¢(n) = 0 if n is not an integer.

Assume that p = pp’ is a prime split in K/Q. Recall that

p—1
,Z = zZ) = ya z+a .
F(z) = T (2) f(p)+§f< - )

Since ¢(n) = pcy(pn) + ¢;(p~'n), the divisor of ¥’ is given by

> Ep(—=m)HZ(m) =Y {pcr(—pm) + s (—p~'m)} HZ(m)

m>0 m>0

=" & (—m) {HZ(pm) +pHZ(p"'m)} .

m>0

On the other hand, by Theorem 2.4, the divisor of ¥|7 (p) is given by

> e(=m)HZ(m) T (p)

m>0

= (—m){HZ(pm) +p- HZ(p~'m)} .

m>0

Thus the divisor of ¥|7 (p) coincides with that of ¥/, which implies ¥|7 (p) = ~(p, f)¥" with
v(p, f) € C*. In view of the infinite product expansions of ¥|7 (p) and ¥’ (see Theorem 2.1
(iii)), we see that |y(p, f)| = 1.

The proof of Theorem 2.6 in the inert case is similar and we omit it.
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5.2

We need several preparations to show Theorem 2.4. For [ € Z and & = (a,b,\) € X, put
I %& = (la,lb,I\) € Xj2,,. Note that D(I % &) = D().
Set
, p  if p splits in K/Q,
q =TT =
p? if p is inert in K/Q.

We define mappings f, gu: Xm — Xgm (1 € Ok) by

f(€) = (qa,b,mN),
9u(€) = (a,qb + Tr(x' M) + app, 7'\ + ap)
for £ = (a,b, \). Note that f and g, are injective and that g,, (Xim) = gu, (Xim) if p1 —p2 € pOx.

LEMMA 5.1. We have

HZm)«T(p) = Y fO+ Y. > g9

§EXm uEOK [pOK £€Xm

Proor. This follows from

D(E) - ( . ) = DA, DIE)» ( o ) ~ D(g(6)).

For =2 € Xy, set
N(E) = #{n € Ok /p | E € gu(Xm)} + 0(Z € f(Xm))-
To show Theorem 2.4, it suffices to prove
PROPOSITION 5.2. Let E € Xy,
(i) If p splits in K/Q, we have

p+1 if= Ep*prlm,
1 if 2 € Xpm \p* Xp-1p-

N(E) =

(ii) If p is inert in K/Q, we have

PP+l ifEEPx Xy o,

p+1 ifptm and E € px Xp \ p? * Xp-2,,
1 if plm and E € px Xy \ p? * Xp-2,,
1 ifEGngm\p*Xm.

\
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The following elementary lemma is useful in later discussions.
LEMMA 5.3. Let E = (A, B,A) € Xym.

(i) We have E € f(X,,) if and only if g|A and A € WOI_{l.

(i1) Let p € Og. We have E € g,(Xp,) if and only if

A— Ay e 7ot and B =Tr(Ap) — Ay’ (mod g).

5.3 The proof of Proposition 5.2 (i)

Throughout this subsection, we assume that p splits in K/Q. We need several results on the
arithmetic of K.

LEMMA 5.4. For B€Z and A € (05" \ M) N 70", we have
#{p € Ok /mOk | Tr(Ap) = B (mod p)} = 1.

PRrOOF. Put () = Tr(Ap) (mod p). Then ¢ gives rise to a homomorphism of O /7O
to Z/pZ. To prove the lemma, it is sufficient to show that ¢ is injective. Suppose that Tr(Ap) =
0 (mod p). Put A = A/n’. Then A € o'\ 70" and p| Tr(7'Ay). By Lemma 4.6, we have
AL € 7r0;<1 and hence pu € 1Ok, which shows the injectivity of . O

LEMMA 5.5. For A € 0[_(1 and A € Z with pt A, we have
#{peOk/nOk | A— Ay € ot} = 1.

PROOF. Since A7 € (03" \ m0x") N 705}, there exists a u € Ok such that Tr(An'u) =
Tr(7A) (mod p) by Lemma 5.4. Since p| Tr(7(A — Ap')), we have A — Ay’ € 72" by Lemma
4.6. To prove the uniquness, suppose that A—Apj, A—Aul, € 77/0[_(1. Then p—pso € TFD[_(lﬂOK =
7Ok, which completes the proof of the lemma. O

We are now ready to show Proposition 5.2 (i). Let = = (A, B,A) € Xpp,.

First suppose that Z € pxX,-1,,,. Then, by Lemma 5.3, we have Z € f(X;,) and E € g,(Xy,)
for any u € Ok, which implies N(Z) = p + 1.

We next consider the case where = € X, \p*Xpﬂm. Note that, if p|A, either A € WDI_(l or
A € 703! holds, since AB — AN = pm/d.

Suppose that p|A and A € 1%'. By Lemma 5.3, we have = € f(X,,). If E € g,(X,) for
some i € O, by Lemma 5.3, we have A € 77’0;(1 and hence A € pb}l. This implies that p|B,
which contradicts to the assumption Z ¢ p x X,-1,,,. Thus we have proved N(Z) = 1.

Next suppose that p|A and A € (0" \ 705') N 705", Then E ¢ f(X,,). Take a u € Ok
with A — Ay’ € 705" (see Lemma 5.5). Since

dA(B — Tr(Ap) + App') = pm + dN(A — Ap') = 0 (mod p),
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we have B = Tr(Ap) — Apy/ (mod p) and hence Z € g,(X;,) by Lemma 5.3. Using again
Lemma 5.5, we see that such a p modulo 71Ok uniquely exists and hence N(Z) = 1.

Finally suppose that p{ A. Then E ¢ f(X,,). An argument similar to the above one shows
that = € g,(X,,) if and only if A — Ay’ € 705", Lemma 5.5 now implies that N(Z) = 1, which
completes the proof of Proposition 5.2 (i).

5.4 The proof of Proposition 5.2 (ii)

Throughout this subsection, we assume that p is inert in K/Q. Then q = p?. The following two

lemmas are easily verified.

LEMMA 5.6. For A € Dl}l and A € Z with p t A, there uniquely exists an element u €
O /pOr such that A — Ay € pdt. We also have d>N(A) = d? N(i) (mod p).

LEMMA 5.7. For c € Z, we have

#{n € O /pOrc | ' = ¢ (mod p)} = prl Upfe
1 if ple.
For £ = (a,b,\) € X,,, set
n(€) = #{n € Ok /pOxk | b = Tr(A) — apup’ (mod p)}.
LEMMA 5.8. Let & = (a,b,\) € Xpp,.

(i) If ptm, we have
p if pla,
p+1 ifpta.

n =

(i) If p|m, we have
p*ifEEpk Xy,
nE) =40 iffe X, \ px X2, and pla,
1 ifpta.
PROOF. First consider the case pla. If pjm, then \ € pbf}l and hence
p? ifée pHx Xp-2p,

n(§) = '
0 if&epx X\ Xp2p.

Suppose that p{m. Then \ € 0[_{1 \pDI_{I. Let A = (o + Bw)/Vd (a,8 € Z,pfaor pt ). For
uw=2x+yw € Ok, we have Tr(Au) = Bz + (o + Bs)y. Then
n(€) = #{(z,y) € (Z/pZ)* | Bz + (a + Bs)y = b (mod p)}

18



Next consider the case where p { a. Take aj,d; € Z and \; € Ok such that
aa; =1 (mod p), dd; =1 (mod p), A — )\ € pbl_(l.
Then, for u € Ok, we have

a1 (b — Tr(A\w) + app’) = N(p— a1 X)) + a1 — af N(A1) (mod p)
N(u — arAy) + af(ab — N(A1)) (mod p).

By Lemma 5.6, we have
d?(ab—N(\1)) = d*(ab— N(\)) = dm (mod p).
It follows that

n(€) = #{p € Og /pOk | N(1 — a1 \}) = —aidym (mod p)}.

By Lemma 5.6, we obtain
p+1 ifptm,

n(e) = |
1 if p|m.

O]

I

We now prove Proposition 5.2 (ii). Let = = (A, B,A) € X,2,,. Recall that = € f(X,,)
if and only if p?|A and A € poj', and that = € g,(X,,) if and only if A — Ay’ € poy! and
B = Tr(Ap) — Ap’ (mod p?) (see Lemma 5.3).

First assume that = € p? x X,,-2,,. Then Z € f(X,,) and E € g,(X,y,) for any p € O, which
shows that N(Z) = p? + 1.

Next assume that E € px Xp, \ p? * X,-2,,. It is easy to see that Z € f(X,,) if and
only if p?|A. Let £ = p ¢ with £ = (a,b,\) € X,,,. Then E € g,(X,,) if and only if
b= Tr(Apu) — app’ (mod p). We thus have N(Z) = n(¢) + §(p?|A). By Lemma 5.8, we obtain

p+1 ifptm,
1 if p| m.

Finally assume that = € X2, \ p* X;,. Suppose tha p?|A. Then we have A € pbf_(l and
p 1 B, which implies = € f(X,,). For every u € Ok, we have Tr(Au) — Aup’ = 0 (mod p)
and hence = ¢ ¢,(X,,). It follows that N(Z) = 1. Suppose that A € pZ \ p*Z. We then
have p|B and A € pb;}l, a contradiction. Suppose that p t A. Then = ¢ f(X,,). Note that,
if A— Ay’ € pogt, we have dA(B — Tr(Ap) + App') = d N(A — Ap') = 0 (mod p?) and hence
B = Tr(Ap) — Ay (mod p?). This and Lemma 5.6 imply that N(Z) = 1.
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6 Examples

In this section, we present several examples of Borcherds products and non Borcherds products
in the case K = Q(+/5). We then have d = 5 and ey = (1 + v/5)/2. The structure of the graded
ring @~ Mi(I'k) has been studied by K. -B. Gundlach [Gun] and R. Miiller [M]. We now
recall Miiller’s construction.

We first recall the definition of the theta constants. For Z € §, (the upper half space of
degree 2) and a,b € {0, 1}2, set

¥ Z;a,b) = Z e [;t(l +a/2)Z(l+a/2) + %tlb :
lez?

It is known that 9¥(Z;a,b) # 0 if and only if tab is even. The even pairs are listed as follows:

Let ¢: $% — $5 be a modular embedding given by

1 €021 — €)22 z21 — 29
(z1,22) = —= .

NG 71 — 29 —€p21 + €022
For a € Z>o and iy, ...,4, € {0,1}, we put

07, = (0; "'Hir)a7

i1 iy

where
0i(z) = 9(e(2); ai, bi) (0<i<9,z€9).
Let M"™(Tk) = {F € My(Tk) | F(21,22) = F(22,21)}. The graded ring @, My, (T'x)
is generated by

g2 =272 (00 + 01 + 03 — 03+ 04 + 03 + 05 — 07 + 05 — 0) ,
—8 (g2 2 2 2
86 = 27 (0512475 + 0012560 1 O34568 + O3367s9)
12 52
$10 = 277 05123456789
This implies that M;§™ (k) is spanned by sio,t10 = g5s6 and ujp = g5. It is known that the
weight of any Borcherds product is divisible by 5, and that s19 is a Borcherds product (see [Br3],
page 161).
For F' = s19, t19 and u1g, we calculated the values F (721, 7' 22), F(7' 21, 722) and the quotient

F|T(p)(z1,22) - F\T(p’)(zl,zg)_l by Mathematica, where z; = 2y/—1,29 = v/—1 and p = ()
with 7 = 4 + /5. The result is as follows:
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F(T('Zl,ﬂ'/ZQ) F(ﬂ'/Zl,T{'ZQ) F\’T(p)(zl,zQ) -F|T(p/)(21,22)_1
F =519 | 4.27068550613 - - - x 10727 | 4.58279473089948 - - - x 1024 1.00000000000 - - -
F =ty | 3.23264624182--- x 10713 | 2.14286904632--- x 10713 1.59928132099 - - -
F =g 1.00000000019 - - - 1.00000000128 - - - 1661.00964313 - - -

In view of Theorem 2.2, this numerical computation shows that neither of 19 and uqg is a

Borcherds product.
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