
Symmetries for Borcherds products

and Hirzeburch-Zagier divisors

Bernhard Heim and Atsushi Murase

Abstract. We show that the “multiplicative Hecke symmetry” holds for Borcherds products
on the Hilbert modular group over a real quadratic field. We also study the action of Hecke
operators on Borcherds products and Hirzebruch-Zagier divisors.

Mathematics Subject Classification (2000): 11F41

1 Introduction

1.1

Let K be a totally real number field with integer ring OK . Denote by Sk(ΓK) the space of
holomorphic cusp forms of weight k on ΓK = SL2(OK). When K/Q is a cyclic extension of
prime degree, H. Saito [Sa1] introduced a subspace Sk(ΓK) of Sk(ΓK) consisting of cusp forms
satisfying certain Hecke symmetries, and studied the traces of Hecke operators acting on Sk(ΓK).
As a direct consequence of his trace formula, he gave a relation between Sk(ΓK) and the base
changes of elliptic modular forms (see also [Sa2]).

Consider the case where K is a real quadratic field. Then the base changes are Doi-Naganuma
lifts or Naganuma lifts (see [DN] and [N]). In particular, Naganuma lifts can be constructed as
theta lifts of holomorphic elliptic cusp forms on Γ0(d) of Neben type, where d is the discriminant
of K (see [Z], [O1], [O2] and [RS]).

On the other hand, Harvey and Moore [HaMo] and Borcherds [Bo2] constructed the Borcherds
products on O(2,m), first introduced in [Bo1], as the exponential of regularized theta lifts of
weakly holomorphic elliptic modular forms. It is natural to ask whether Borcherds products
satisfy certain symmetries.

The object of this paper is to show that Hilbert modular forms over a real quadratic field
obtained as Borcherds products satisfy a multiplicative analogue of Saito’s Hecke symmetries.
In this paper, we give two different proofs of the main results.

The first proof is an analytic one. Borcherds products are obtained, essentially, as the
exponentials of regularized integrals of weakly holomorphic modular forms against the Siegel
theta series ([HaMo], [Bo2]; see also [BB]). We prove Saito’s Hecke symmetries for the Siegel
theta series, which seems to be of independent interest. This immediately implies the desired
results for the Borcherds products.
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The second proof is an arithmetic one. Recall that the divisor of a Borcherds product
is a linear combination of Hirzebruch-Zagier divisors with integral coefficients. We study the
action of Hecke operators on Hirzebruch-Zagier divisors, from which follows the multiplicative
symmetries for Borcherds products. This proof gives us more precise informations about the
action of multiplicative Hecke operators on Borcherds products.

Saito’s Hecke symmetries are closely related to the Hecke duality introduced and studied in
the first named author’s paper [H] in the Siegel modular case.

Note that the Hilbert modular forms can be seen as automorphic forms on O(2, 2) of Q-
rank one. In the forthcoming paper, we will study symmetries for Borcherds products on
O(2,m) (m ≥ 2) of Q-rank two.

The paper is organized as follows. The main results are stated in Section 2. We first recall
the definition of Hilbert modular forms and Saito’s Hecke symmetries, which we call the additive
Hecke duality in this paper. We next intorduce the notion of the multiplicative Hecke duality for
Hilbert modular forms. After recalling the definition of Borcherds products, we state the main
results of the paper. The first one (Theorem 2.2) is the multiplicative Hecke duality of Borcherds
products. The second one (Theorem 2.4) is concerned with the action of multiplicative Hecke
operators on Borcherds products. In Section 3, we recall the definition of Siegel theta series in
the Hilbert modular case. In Section 4, we prove the additive Hecke duality of the Siegel theta
series (Theorem 4.1), which directly implies Theorem 2.2. This result might be of independent
interest. In Section 5, we study the action of Hecke operators on Hirzebruch-Zagier divisors.
Parts of the results have been already known (see [Ge]). By using this results, we show that the
action of multiplicative Hecke operators is compatible with that of the usual Hecke operators
on the “input data” of Borcherds products. This seems to be closely related to one of the open
problems stated in [Bo2] (Problem 16.5). It should be noted that a similar compatibility has been
studied by Guerzhoy [Gue] in the case of Borcherds products on O(2, 1) and by Gritsenko and
Nikulin [GN] in some special Borcherds products on O(2, 3). In Section 6, we study numerically
several examples of Hilbert modular forms in the case of K = Q(

√
5). Since Theorem 2.2 gives a

necessary condition for a Hilbert modular form to be a Borcherds product, we are able to show
that several Hilbert modular forms of weight 10 are not Borcherds products.

1.2 Notation

For z ∈ C, put e[z] = exp(2πiz). The upper half plane is denote by H = {τ ∈ C | Im(τ) > 0}.
Let δij be the Kronecker’s delta. We put C1 = {z ∈ C | zz = 1}. For a condition C, we put

δ(C) =

1 if C holds,

0 otherwise.
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2 Main results

2.1 Hilbert modular forms

Let K be a real quadratic field of discriminant d. Throughout the paper, we fix an embedding
of K into R. Let z 7→ z′ be the nontrivial automorphism of K/Q. For z ∈ K, put Tr(z) = z + z′

and N(z) = zz′. Let OK be the integer ring of K and dK =
√

dOK the different of K. Recall
that d−1

K = {z ∈ K | Tr(zw) ∈ Z for any w ∈ OK}. For an element z of K, we write z ≻ 0 if z

is totally positive (that is, z > 0 and z′ > 0).
Define the action of GL+

2 (K) = {g ∈ GL2(K) | det g ≻ 0} on the product H2 of two copies
of H by

g · (z1, z2) =
(

az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

) (
g =

(
a b

c d

)
∈ GL+

2 (K), (z1, z2) ∈ H2

)
.

Let k be an integer. For a function F on H2 and g =

(
a b

c d

)
∈ GL+

2 (K), define

F |kg(z) = j(g, z)−kF (g · z) (z = (z1, z2) ∈ H2),

where j(g, z) = (cz1 + d)(c′z2 + d′). Let ΓK = SL2(OK) ⊂ GL+
2 (K) and χ a character of

ΓK of finite order. Denote by Ck(ΓK , χ) (respectively Ak(ΓK , χ)) the space of smooth (re-
spectively meromorphic) functions F on H2 satisfying F |kγ = χ(γ)F for any γ ∈ ΓK . We
also let Mk(ΓK , χ) = {F ∈ Ak(ΓK , χ) | F is holomorphic on H2} and Sk(ΓK , χ) = {F ∈
Mk(ΓK , χ) | F is cupidal}. If χ is trivial, we often write Ck(ΓK), Ak(ΓK),Mk(ΓK) and Sk(ΓK)
for Ck(ΓK , χ), Ak(ΓK , χ),Mk(ΓK , χ) and Sk(ΓK , χ) respectively.

2.2 Hecke duality

Suppose that the class number of K in the narrow sense is equal to one. Then the discriminat d

of K is a prime number with d ≡ 1 (mod 4). Let ϵ0 be the fundamental unit of K with ϵ0 > 1.
Note that N(ϵ0) = −1.

Let p be a prime ideal of K and fix a generator π of p with π ≻ 0. For F ∈ Ck(Γ), define
the Hecke operator by

(F |kT (p)) (z1, z2) = F
(
πz1, π

′z2

)
+ N(p)−k

∑
a∈OK/πOK

F

(
z1 + a

π
,
z2 + a′

π′

)
.

Then F |kT (p) ∈ Ck(ΓK). We also define the multiplicative Hecke operator on Ak(ΓK , χ) by

(F |T (p)) (z1, z2) = F
(
πz1, π

′z2

)
×

∏
a∈OK/πOK

F

(
z1 + a

π
,
z2 + a′

π′

)
.

It is easy to see that F |T (p) ∈ C(N(p)+1)k(ΓK , χ′) with some character χ′ of ΓK .
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We say that F ∈ Ck(ΓK) satisfies the additive Hecke duality if

F |kT (p) = F |kT (p′)

holds for any prime ideal p of K. We also say that F ∈ Ak(ΓK , χ) satisfies the multiplicative
Hecke duality if

F |T (p) = c(p, F ) · F |T (p′)

holds for any prime ideal p of K with a constant c(p, F ) ∈ C1 depending only on p and F .

2.3 Borcherds products

Denote by χd the quadratic Dirichlet character corresponding to K/Q. Let Wk(d, χd) be the
space of weakly holomorphic modular forms of weight k for Γ0(d) of character χd (cf. [BB] §3).
Let

f(τ) =
∑

n≫−∞
cf (n)e[nτ ]

be the Fourier expansion of f ∈ Wk(d, χd) at ∞. We put

c̃f (n) =

cf (n), if d - n,

2cf (n), if d|n.

Let W+
k (d, χd) be the subspace of those f ∈ Wk(d, χd) such that cf (n) = 0 whenever χd(n) = −1.

Let f ∈ W+
k (d, χd). We call a connected component of

H2 \
∪

m>0,cf (−m)̸=0

S(m)

a Weyl chamber associated with f , where

S(m) =
∪

λ∈d−1
K ,−λλ′=m/d

{
z = (z1, z2) ∈ H2 | λIm(z1) + λ′Im(z2) = 0

}
.

Let W be a Weyl chamber. For λ ∈ K, we write (λ,W ) > 0 if λIm(z1) + λ′Im(z2) > 0 for any
z = (z1, z2) ∈ W . Define the Weyl vector corresponding to f and W by

ρf,W =
∑
m>0

c̃f (−m)
∑

λ∈R(m,W )

λ

ϵ20 − 1
∈ K,

where R(m,W ) is the set of λ ∈ d−1
K such that −λλ′ = m/d, (λ,W ) > 0 and (−ϵ−2

0 λ,W ) > 0
(see [Br3], 3.2 and 3.3).

The theorem of Borcherds is stated as follows ([Bo2] Theorem 13.3; see also [BB] Theorem
9 and [Br3] Theorem 3.44).

Theorem 2.1 (Borcherds). Let f ∈ W+
0 (d, χd) and assume that c̃f (n) ∈ Z for all n < 0.

Then there exists a meromorphic Hilbert modular form Ψ(z) = Ψ(z, f) for Γ = SL2(OK) (with
some multiplier of finite order) satisfying the following conditions.
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(i) The weight of Ψ is equal to cf (0).

(ii) The divisor of Ψ is given by ∑
m>0

c̃f (−m)HZ(m),

where

HZ(m) =
∑

(a,b,λ)∈Z2×d−1
K , ab−λλ′=m/d

{
(z1, z2) ∈ H2 | az1z2 + λz1 + λ′z2 + b = 0

}
is the Hirzebruch-Zagier divisor of discriminant m (cf. [HZ]).

(iii) Let W be a Weyl chamber associated to f and put N = Min{n | cf (n) ̸= 0}. The function
Ψ has the Borcherds product expansion

Ψ(z, f) = e
[
ρf,W z1 + ρ′f,W z2

] ∏
ν∈d−1

K , (ν,W )>0

(
1 − e

[
νz1 + ν ′z2

])c̃f (dνν′)
,

which converges uniformly for all z = (z1, z2) ∈ W with Im(z1)Im(z2) > |N |/d outside the
poles.

2.4 Multiplicative Hecke duality for Borcherds products

One of the main results of the paper is stated as follows.

Theorem 2.2. Let f and Ψ be as in Theorem 2.1. Then Ψ satisfies the multiplicative Hecke
duality.

Remark 2.3. Note that, to prove Theorem 2.2, it is sufficient to show that

Ψ|T (p) = c(p, f)Ψ|T (p′)

holds for any prime ideal p dividing a prime p split in K/Q with c(p, f) ∈ C1.

2.5 Hecke actions on Hirzeburch-Zagier divisors

For (a, b, λ) ∈ Z2 × d−1
K , let

D(a, b, λ) =
{
(z1, z2) ∈ H2 | az1z2 + λz1 + λ′z2 + b = 0

}
be a divisor in H2. Recall that

HZ(m) =
∑

ξ∈Xm

D(ξ) (m ∈ Z>0),

where Xm =
{
(a, b, λ) ∈ Z2 × d−1

K | ab − λλ′ = m/d
}
. If m is not an integer, we put Xm = ∅

and HZ(m) = 0.
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For a prime divisor D of H2 given by the equation φ(z) = 0 and g ∈ GL+
2 (K), put D ∗ g =

{z ∈ H2 | φ(g · z) = 0}. By linearlity, we define the action of GL+
2 (K) on the divisors of H2. It

is easily seen that HZ(m) is ΓK-invariant.
Let p be a prime with p - d and p a prime ideal of K dividing p. We fix a totally positive

generator π of p. For a ΓK-invariant divisor D of H2, put

D ∗ T (p) = D ∗

(
π 0
0 1

)
+

∑
µ∈OK/p

D ∗

(
1 µ

0 π

)

Then the following result holds.

Theorem 2.4. For a positive integer m, we have

HZ(m) ∗ T (p)

=


HZ(pm) + p · HZ(p−1m) if p splits in K/Q,

HZ(p2m) + p2 · HZ(p−2m) if p is inert in K/Q and p|m,

HZ(p2m) + p · HZ(m) if p is inert in K/Q and p - m.

Remark 2.5. This fact in the case where p - m is already known (see [Ge]).

2.6 Hecke actions on Borcherds products

For a positive integer n, define the Hecke operator T (n) on W0(d, χd) by

T (n)f(z) =
∑

0<a′|n, aa′=n

a′−1∑
b=0

χd(a)f
(

az + b

a′

)

for f ∈ W0(d, χd) (see [Mi], page 142). It is easily seen that, for a prime p with p - d, T (p)
(respectively T (p2)) leaves W+

0 (d, χd) invariant when χd(p) = 1 (respectively χd(p) = −1).

Theorem 2.6. Let p be a prime with p - d and p a prime ideal of K dividing p. Let
f ∈ W+

0 (d, χd) and put

f ′ =

T (p)f if χd(p) = 1,

T (p2)f + pf if χd(p) = −1.

Denote by Ψ and Ψ′ the Borcherds products associated with f and f ′ respectively. Then we have
Ψ|T (p) = γ(p, f)Ψ′ with γ(p, f) ∈ C1.

Remark 2.7. Theorem 2.2 is a direct consequence of this theorem.

Remark 2.8. For a compatibility of Borcherds products with respect to Hecke operators,
see [Gue] in the O(2, 1)-case and [GN] for some special cases in the O(2, 3)-case.
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3 Siegel theta series

3.1 The Grassmannian

We define an involution τ of M2(K) by

τ

(
a b

c d

)
=

(
d −b

−c a

)
.

Define a Q-vector space V by

V =
{
X ∈ M2(K) | tX = X ′} =

{(
a ν

ν ′ b

)
| a, b ∈ Q, ν ∈ K

}

on which a quadratic form Q is given by

Q(X) = −2 det X = −2ab + 2 N(ν)

(
X =

(
a ν

ν ′ b

)
∈ V

)
.

Since Q(X) = − tr(Xτ(X)), we have

Q(X, Y ) :=
1
2
{Q(X + Y ) − Q(X) − Q(Y )} = − tr(Xτ(Y )) (X,Y ∈ V ).

Let

L = V ∩ M2(OK) =

{(
a ν

ν ′ b

)
| a, b ∈ Z, ν ∈ OK

}
be a lattice of V . The dual lattice of L with respect to Q is

L∗ =

{(
a ν

ν ′ b

)
| a, b ∈ Z, ν ∈ d−1

K

}
.

Define an action of G = SL2(K) on V by

g · X = gX tg′ (g ∈ G,X ∈ V ).

Then ΓK ·L = L. We identify VR = V ⊗QR and VC = V ⊗QC with M2(R) and M2(C), on which
GR = SL2(R) × SL2(R) acts by (g1, g2) · X = g1X

tg2. Let Gr(VR) be the Grassmannian of VR.
By definition, Gr(VR) is the set of two dimensional subspaces v of VR on which Q is positive
definite. Then GR acts on Gr(VR) in a natural manner and the action is transitive. For Λ ∈ VR

and v ∈ Gr(VR), let Λv and Λv⊥ be the projections of Λ on v and v⊥ respectively, where v⊥

denotes the orthogonal complement of v with respect to Q. We have Q(Λ) = Q(Λv) + Q(Λv⊥).
Set

V = {[Z] ∈ P(VC) | Q(Z) = 0, Q(Z, Z) > 0}

= {[Z] ∈ P(M2(C)) | det Z = 0,− tr(Zτ(Z)) > 0},
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where Z is the complex conjugate of Z ∈ VC. Define an action of GR = SL2(R) × SL2(R) on V
by

(g1, g2) · [Z] = [g1Z
tg2] (g1, g2 ∈ SL2(R), [Z] ∈ V).

It is well-known that V is a disjoint union of two connected components V+ and V−, and GR

acts on V± transitively. Henceforth we choose V+ so that

(
−1 i

i 1

)
∈ V+. Note that, for

Z = X + iY ∈ M2(C) (X,Y ∈ M2(R)), [Z] ∈ V if and only if Q(X) = Q(Y ) > 0 and
Q(X, Y ) = 0. We put η(Z) = Q(X) = Q(Y ).

Lemma 3.1. (i) The mapping Z = X + iY 7→ vZ = RX + RY gives rise to a bijection
between V+ and Gr(VR).

(ii) For Λ ∈ VR and Z ∈ V+, we have

ΛvZ = η(Z)−1 {Q(Λ, X)X + Q(Λ, Y )Y }

and

Q(ΛvZ ) =
|Q(Λ, Z)|2

η(Z)
.

For z = (z1, z2) ∈ C2, put

M(z) =

(
z1z2 z1

z2 1

)
.

It is easily seen that V+ = {[M(z)] | z = (z1, z2) ∈ H2} and that g · M(z) = j(g, z)M(g · z)
for g = (g1, g2) ∈ SL2(R) × SL2(R) and z = (z1, z2) ∈ H2, where j(g, z) = j(g1, z1)j(g2, z2) and
g · z = ((aizi + bi)/(cizi + di))i=1,2. We also have η(M(z)) = 2Im(z1)Im(z2).

3.2 Siegel theta series

For α ∈ L∗/L, τ ∈ H and v ∈ Gr(VR), we define

(3.1) Θα(τ, v) =
∑

Λ∈α+L

e
[
τ

2
Q(Λv) +

τ

2
Q(Λv⊥)

]
.

Since γ · Λ ≡ Λ (mod L) for Λ ∈ L∗ and γ ∈ ΓK , v 7→ Θα(τ, v) is ΓK-invariant. For z ∈ H2,
let vz be the element of Gr(VR) corresponding to [M(z)] ∈ V+ by Lemma 3.1. By abuse of
notation, we write Θα(τ, z) for Θα(τ, vz). Henceforth we often identify d−1

K /OK with L∗/L via

α 7→

(
0 α

α′ 0

)
. The following is a straightforward consequence of Lemma 3.1.

Lemma 3.2. We have

Θα(τ, (z1, z2)) =
∑

m,n∈Z,λ∈α+OK

e
[
i Im(τ)
2y1y2

∣∣mz1z2 + λz1 + λ′z2 + n
∣∣2 + τ(−mn + λλ′)

]
,

where yi = Im(zi).
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Lemma 3.3. (i) We have Θα(τ, γ · z) = Θα(τ, z) for γ ∈ ΓK .

(ii) We have Θα = Θ−α = Θα′.

(iii) We have Θα(τ, (z2, z1)) = Θα(τ, (z1, z2)).

Proof. We have already proved the first assertion. The second one follows from Lemma
3.1 and the fact that α − α′ ∈ OK for α ∈ d−1

K . By Lemma 3.2, we have Θα(τ, (z2, z1)) =
Θα′(τ, (z1, z2)) = Θα(τ, (z1, z2)).

For α ∈ d−1
K /OK , z = (z1, z2) ∈ H2,m, n ∈ Z, we put

ϑα(τ, z;m, n) =
∑

λ∈α+OK

e
[ iIm(τ)

2y1y2

{
m(x1y2 + x2y1) + λy1 + λ′y2

}2

+ (mτ + n)
(
mx1x2 + λx1 + λ′x2

)
+ τλλ′

]
,

where xi = Re(zi), yi = Im(zi) (i = 1, 2). In the next section, we need the following result due
to Borcherds (see [Bo2]).

Proposition 3.4. We have

Θα(τ, z) =
√

y1y2

Im(τ)

∑
m,n∈Z

e
[

iy1y2

2Im(τ)
|mτ + n|2

]
ϑα(τ, z; m,n).

For completeness, we give a sketch of the proof of the proposition.

Lemma 3.5. We have

Θα(τ, (z1, z2)) =
√

y1y2

Im(τ)

∑
m,n∈Z,λ∈α+OK

e
[
iIm(τ)
2y1y2

∣∣mz1z2 + λz1 + λ′z2

∣∣2 + τλλ′

+
iy1y2

2Im(τ)

{
mτ + n − iIm(τ)

y1y2

(
m(x1x2 − y1y2) + λx1 + λ′x2

)}2
]

Proof. We have

Θα(τ, z)

=
∑

m,n∈Z,λ∈α+OK

e
[
iIm(τ)
2y1y2

∣∣n + λz1 + λ′z2 + mz1z2

∣∣2 + τ(−mn + λλ′)
]

=
∑

m∈Z,λ∈α+OK

e
[
iIm(τ)
2y1y2

∣∣λz1 + λ′z2 + mz1z2

∣∣2 + τλλ′
] ∑

n∈Z
f(n),

where

f(u) = e[iAu2 + Bu],

A =
Im(τ)
2y1y2

, B = −mτ +
iIm(τ)
y1y2

(
λx1 + λ′x2 + m(x1x2 − y1y2)

)
.
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Observe that the Fourier transform of f is equal to
√

2A
−1

e
[

i

4A
(u + B)2

]
. Then Poisson

summation formula implies

Θα(τ, z) =
√

y1y2

Im(τ)

∑
m,n∈Z,λ∈α+OK

e
[
iIm(τ)
2y1y2

∣∣mz1z2 + λz1 + λ′z2

∣∣2 + τλλ′

+
y1y2

2Im(τ)

{
n − mτ +

iIm(τ)
y1y2

(
m(x1x2 − y1y2) + λx1 + λ′x2

)}2
]

.

Changing (m,λ) into (−m,−λ), we get the lemma (note that Θ−α = Θα).

Proposition 3.4 is derived from Lemma 3.5 by a tedious but straightforward calculation.

3.3 Regularized theta integrals and Borcherds products

For f ∈ W+
0 (d, χd), put

(3.2) Φ(z, f, s) = lim
t→∞

∫
Ft

⟨f(τ), Θ0(τ, z)⟩v−s dudv

v2
,

where Ft = {τ = u+ iv ∈ H | |τ | ≥ 1, |u| ≤ 1
2
, |v| ≤ t} is the truncated fundamental domain and

⟨, ⟩ is the pairing given in [Br3] Proposition 3.32. The limit (3.2) exists for Re(s) ≫ 0 and is
continued to a meromorphic function of s on C. The regularized theta integral Φ(z, f) is defined
to be the constant term in the Laurent expansion of Φ(z, f, s) at s = 0. Then the Borcherds
product Ψ(z, f) satisfies

(3.3) Φ(z, f) = −4 log
∣∣∣Ψ(z, f)(Im(z1)Im(z2))cf (0)/2

∣∣∣ − 2cf (0)
(
log(2π) + Γ′(1)

)
in the domain of convergence of the infinite product for Ψ(z, f) in Theorem 2.1 (iii).

4 Hecke duality for Siegel theta series

4.1

From now on, we assume that the class number of K in the narrow sense is equal to one, and
fix a Z-basis {1, ω} of OK . Put s = Tr(ω) and t = N(ω). Let p = pp′ be a prime split in K/Q.
Take and fix a totally positive element π of OK such that p = πOK . Then p = ππ′. In this
section, we prove the following result:

Theorem 4.1. For any α ∈ d−1
K /OK , we have

Θα(∗, z)|T (p) = Θα(∗, z)|T (p′).

Remark 4.2. In view of (3.3), this theorem implies Theorem 2.2.
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4.2

The following result follows from Proposition 3.4.

Lemma 4.3. We have

Θα(τ, z)|T (p) =
√

py1y2

Im(τ)

 ∑
m,n∈Z

e
[
p

iy1y2

2Im(τ)
|mτ + n|2

]
I↑+(α, τ, z; m,n)

+p−1
∑

m,n∈Z
e

[
p−1 iy1y2

2Im(τ)
|mτ + n|2

]
I↑−(α, τ, z; m,n)


and

Θα(τ, z)|T (p′) =
√

py1y2

Im(τ)

 ∑
m,n∈Z

e
[
p

iy1y2

2Im(τ)
|mτ + n|2

]
I↓+(α, τ, z; m,n)

+p−1
∑

m,n∈Z
e

[
p−1 iy1y2

2Im(τ)
|mτ + n|2

]
I↓−(α, τ, z; m,n)

 ,

where

I↑+(α, τ, z;m, n) = ϑα(τ, (πz1, π
′z2);m,n),

I↓+(α, τ, z;m, n) = ϑα(τ, (π′z1, πz2);m,n),

I↑−(α, τ, z;m, n) =
p−1∑
c=0

ϑα

(
τ,

(
z1 + c

π
,
z2 + c

π′

)
;m,n

)
,

I↓−(α, τ, z;m, n) =
p−1∑
c=0

ϑα

(
τ,

(
z1 + c

π′ ,
z2 + c

π

)
;m,n

)
.

The proof of Theorem 4.1 is now reduced to that of the following:

Theorem 4.4. (i) If p|m and p|n, we have

I↑−(α, τ, z; m,n) = p I↓+(α, τ, z; p−1m, p−1n),

I↓−(α, τ, z; m,n) = p I↑+(α, τ, z; p−1m, p−1n).

(ii) If p - m or p - n, we have

I↑−(α, τ, z; m,n) = I↓−(α, τ, z; m,n).

4.3

In what follows, we fix α ∈ d−1
K /OK , τ ∈ H and z = (z1, z2) ∈ H2, and put xi = Re(zi), yi =

Im(zi). We write I
↕
±(m,n) for I

↕
±(α, τ, z;m, n) to simplify the notation. Let π = a + bω. Then

a2 + sab + tb2 = p and p ̸ | b. To prove Theorem 4.4, we need the following results.
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Lemma 4.5. We have

I↑+(m,n) =
∑

λ∈α+OK

e
[
p−1 iIm(τ)

2y1y2

{
πλy1 + π′λ′y2 + mp(x1y2 + x2y1)

}2(4.1)

+ (mτ + n)
(
λπx1 + λ′π′x2 + mpx1x2

)
+ τλλ′

]
,

I↓+(m,n) =
∑

λ∈α+OK

e
[
p−1 iIm(τ)

2y1y2

{
π′λy1 + πλ′y2 + mp(x1y2 + x2y1)

}2(4.2)

+ (mτ + n)
(
λπ′x1 + λ′πx2 + mpx1x2

)
+ τλλ′

]
,

I↑−(m,n)(4.3)

=
∑

λ∈α+OK

p−1∑
c=0

e
[
p

iIm(τ)
2y1y2

{(
λ

π
+

mc

p

)
y1 +

(
λ′

π′ +
mc

p

)
y2 +

m

p
(x1y2 + x2y1)

}2

+ (mτ + n)
((

λ

π
+

mc

p

)
x1 +

(
λ′

π′ +
mc

p

)
x2 +

m

p
x1x2 +

λ

π
c +

λ′

π′ c +
m

p
c2

)
+ τλλ′

]
,

I↓−(m,n)

(4.4)

=
∑

λ∈α+OK

p−1∑
c=0

e
[
p

iIm(τ)
2y1y2

{(
λ

π′ +
mc

p

)
y1 +

(
λ′

π
+

mc

p

)
y2 +

m

p
(x1y2 + x2y1)

}2

+ (mτ + n)
((

λ

π′ +
mc

p

)
x1 +

(
λ′

π
+

mc

p

)
x2 +

m

p
x1x2 +

λ

π′ c +
λ′

π
c +

m

p
c2

)
+ τλλ′

]
.

Proof. The lemma is immediate from the definitions.

Lemma 4.6. Let λ ∈ d−1
K . Then p|Tr(π′λ) (respectively p|Tr(πλ)) if and only if λ ∈ πd−1

K

(respectively λ ∈ π′d−1
K ).

Proof. Let λ = x + yθ. Suppose that p|Tr(π′λ). Then

π′λ =
1√
d
{(a + sb)x + tby + (−bx + ay)ω}

and hence p|(−bx + ay). Since

b {(a + sb)x + tby} = (a + sb)(bx − ay) + py ≡ 0 (mod p)

and p ̸ | b, we have p|((a + sb)x + tby). This implies π′λ ∈ pd−1
K and hence λ ∈ πd−1

K . The other
assertion is similarly proved.

Lemma 4.7. There exists an element β of d−1
K such that α−πβ, α−π′β ∈ OK . Furthermore

we have (α + OK) ∩ πd−1
K = π(β + OK) and (α + OK) ∩ π′d−1

K = π′(β + OK).
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Proof. Since dK +πOK = OK , we have OK +πd−1
K = d−1

K . Thus there exists a β ∈ d−1
K such

that α−πβ ∈ OK . Since π−π′ ∈ dK , we have α−π′β = α−πβ+(π−π′)β ∈ OK . It is easily seen
that (α+OK)∩πd−1

K ⊃ π(β+OK). Let λ ∈ (α+OK)∩πd−1
K . Then λ−πβ = λ−α+(α−πβ ∈ OK)

and hence π−1(λ − πβ) ∈ π−1OK ∩ d−1
K = OK . This implies that λ ∈ π(β + OK) and hence we

have proved (α+OK)∩πd−1
K = π(β +OK). The proof of the remaining assertion is similar.

4.4 The case where p|m

In this subsection, we assume that p|m and prove Theorem 4.4 in this case. We put m′ = p−1m.

Lemma 4.8. We have

I↑−(m,n) =
∑

λ∈α+OK

e
[
p

iIm(τ)
2y1y2

{
λ

π
y1 +

λ′

π′ y2 +
m

p
(x1y2 + x2y1)

}2

+ (mτ + n)
(

λ

π
x1 +

λ′

π′x2 +
m

p
x1x2

)
+ τλλ′

] p−1∑
c=0

e
[
cn

p
Tr(π′λ)

]
,

I↓−(m,n) =
∑

λ∈α+OK

e
[
p

iIm(τ)
2y1y2

{
λ

π′ y1 +
λ′

π
y2 +

m

p
(x1y2 + x2y1)

}2

+ (mτ + n)
(

λ

π′x1 +
λ′

π
x2 +

m

p
x1x2

)
+ τλλ′

] p−1∑
c=0

e
[
cn

p
Tr(πλ)

]
.

Proof. The first assertion is proved by changing λ into λ − πm′c in (4.3). The remaining
one is similarly proved.

First suppose that p|n and put n′ = p−1n. By Lemma 4.8, we obtain

I↑−(m,n)

= p
∑

λ∈α+OK

e
[
p−1 iIm(τ)

2y1y2

{
λ(π′y1) + λ′(πy2) + m′ ((π′x1)(πy2) + (πx2)(π′y1)

)}2

+ (m′τ + n′)
(
λ(π′x1) + λ′(πx2) + m′(π′x1)(πx2)

)
+ τλλ′

]
= p I↓+(m,n),

which proves the first assertion of Theorem 4.4 (i). The second one is similarly proved.
Next suppose that p ̸ |n. Let β be an element of d−1

K satisfying α − πβ, α − π′β ∈ OK (cf.
Lemma 4.7). Lemma 4.6 and Lemma 4.7 imply that, for λ ∈ α + OK ,

p−1∑
c=0

e
[
cn

p
Tr(π′λ)

]
=

p if λ ∈ π(β + OK),

0 otherwise.
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Then, by Lemma 4.8, we obtain

I↑−(m,n) =
∑

µ∈β+OK

e
[
p

iIm(τ)
2y1y2

{
µy1 + µ′y2 +

m

p
(x1y2 + x2y1)

}2

(4.5)

+ (mτ + n)
(

µx1 + µ′x2 +
m

p
x1x2

)
+ pτµµ′

]
.

A similar argument shows that I↓−(m,n) is equal to the right-hand side of (4.5), which proves
Theorem 4.4 (ii) in the case where p|m and p - n.

4.5 The case where p - m

In this subsection, we assume that p - m and prove the remaining part of Theorem 4.4 (ii). Let
β be as in Lemma 4.7. The following is easily verified.

Lemma 4.9. For a function φ on K, we have

∑
λ∈α+OK

p−1∑
c=0

φ

(
λ

π
+

mc

p

)
=

∑
µ∈pβ+OK

φ

(
µ

p

)
.

Lemma 4.10. For µ ∈ d−1
K , there uniquely exist c(π, µ) ∈ Z with 0 ≤ c(π, µ) ≤ p − 1 and

z(π, µ) ∈ d−1
K such that

µ = π′z(π, µ) + mc(π, µ).

Proof. Since Tr(π)2 = (2a + sb)2 = 4p + db2, Tr(π) is not divisible by p. It follows that
there exists an integer c satisfying 0 ≤ c ≤ p − 1 and p|Tr(π(µ − mc)). Then, by Lemma 4.6,
we have µ − mc ∈ π′d−1

K , which proves the existence of c(π, µ) and z(π, µ). The uniqueness is
clear.

Lemma 4.11. For µ ∈ d−1
K , we have

c(π, µ)Tr(µ) − mc(π, µ)2 ≡ c(π′, µ)Tr(µ) − mc(π′, µ)2 (mod p).

Proof. Put c1 = c(π, µ) and c2 = c(π′, µ). We have mTr(π)c1 ≡ Tr(πµ) (mod p) and
m Tr(π)c2 ≡ Tr(π′µ) (mod p). Then

Tr(π)
{
(c1 Tr(µ) − mc2

1) − (c2 Tr(µ) − mc2
2)

}
= (c1 − c2) {Tr(π)Tr(µ) − m Tr(π)c1 − m Tr(π)c2}

≡ (c1 − c2)
{
Tr(π) Tr(µ) − Tr(πµ) − Tr(π′µ)

}
(mod p)

= 0,

which proves the lemma since p ̸ | Tr(π).
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We are now ready to prove Theorem 4.4 (ii). By Lemmas 4.5, 4.9, 4.10, we have

I↑−(m,n) =
∑

µ∈pβ+OK

fτ,z,m,n(µ) e
[
n

p

{
c(π, µ)Tr(µ) − mc(π, µ)2

}]
,

I↓−(m,n) =
∑

µ∈pβ+OK

fτ,z,m,n(µ) e
[
n

p

{
c(π′, µ)Tr(µ) − mc(π′, µ)2

}]
,

where

fτ,z,m,n(µ) = e
[
p−1 iIm(τ)

2y1y2

(
µy1µ

′y2 + m(x1y2 + x2y1)
)

+ p−1(mτ + n)
(
µx1 + µ′x2 + mx1x2

)
+ p−1τµµ′

]
.

Then Lemma 4.11 implies that I↑−(m,n) = I↓−(m,n), which completes the proof of Theorem 4.4.

5 Hecke action on Hirzebruch-Zagier divisors and Borcherds

products

5.1

We first show that Theorem 2.4 implies Theorem 2.6. Let f ∈ W+
0 (d, χd). Hereafter we make a

convention that c̃f (n) = 0 if n is not an integer.
Assume that p = pp′ is a prime split in K/Q. Recall that

f ′(z) = T (p)f(z) = f(pz) +
p−1∑
a=0

f

(
z + a

p

)
.

Since c̃f ′(n) = p c̃f (p n) + c̃f (p−1n), the divisor of Ψ′ is given by∑
m>0

c̃f ′(−m)HZ(m) =
∑
m>0

{
pc̃f (−pm) + c̃f (−p−1m)

}
HZ(m)

=
∑
m>0

c̃f (−m)
{
HZ(pm) + pHZ(p−1m)

}
.

On the other hand, by Theorem 2.4, the divisor of Ψ|T (p) is given by∑
m>0

c̃f (−m)HZ(m) ∗ T (p)

=
∑
m>0

c̃f (−m)
{
HZ(pm) + p · HZ(p−1m)

}
.

Thus the divisor of Ψ|T (p) coincides with that of Ψ′, which implies Ψ|T (p) = γ(p, f)Ψ′ with
γ(p, f) ∈ C×. In view of the infinite product expansions of Ψ|T (p) and Ψ′ (see Theorem 2.1
(iii)), we see that |γ(p, f)| = 1.

The proof of Theorem 2.6 in the inert case is similar and we omit it.
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5.2

We need several preparations to show Theorem 2.4. For l ∈ Z and ξ = (a, b, λ) ∈ Xm, put
l ⋆ ξ = (la, lb, lλ) ∈ Xl2m. Note that D(l ⋆ ξ) = D(ξ).

Set

q = ππ′ =

p if p splits in K/Q,

p2 if p is inert in K/Q.

We define mappings f, gµ : Xm → Xqm (µ ∈ OK) by

f(ξ) = (qa, b, πλ),

gµ(ξ) = (a, qb + Tr(π′λµ) + aµµ′, π′λ + aµ′)

for ξ = (a, b, λ). Note that f and gµ are injective and that gµ1(Xm) = gµ2(Xm) if µ1−µ2 ∈ pOK .

Lemma 5.1. We have

HZ(m) ∗ T (p) =
∑

ξ∈Xm

f(ξ) +
∑

µ∈OK/pOK

∑
ξ∈Xm

gµ(ξ).

Proof. This follows from

D(ξ) ∗

(
π 0
0 1

)
= D(f(ξ)), D(ξ) ∗

(
1 µ

0 π

)
= D(gµ(ξ)).

For Ξ ∈ Xqm, set

N(Ξ) = #{µ ∈ OK/p | Ξ ∈ gµ(Xm)} + δ(Ξ ∈ f(Xm)).

To show Theorem 2.4, it suffices to prove

Proposition 5.2. Let Ξ ∈ Xqm.

(i) If p splits in K/Q, we have

N(Ξ) =

p + 1 if Ξ ∈ p ⋆ Xp−1m,

1 if Ξ ∈ Xpm \ p ⋆ Xp−1m.

(ii) If p is inert in K/Q, we have

N(Ξ) =



p2 + 1 if Ξ ∈ p2 ⋆ Xp−2m,

p + 1 if p - m and Ξ ∈ p ⋆ Xm \ p2 ⋆ Xp−2m,

1 if p|m and Ξ ∈ p ⋆ Xm \ p2 ⋆ Xp−2m,

1 if Ξ ∈ Xp2m \ p ⋆ Xm.
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The following elementary lemma is useful in later discussions.

Lemma 5.3. Let Ξ = (A, B,Λ) ∈ Xqm.

(i) We have Ξ ∈ f(Xm) if and only if q|A and Λ ∈ πd−1
K .

(ii) Let µ ∈ OK . We have Ξ ∈ gµ(Xm) if and only if

Λ − Aµ′ ∈ π′d−1
K and B ≡ Tr(Λµ) − Aµµ′ (mod q).

5.3 The proof of Proposition 5.2 (i)

Throughout this subsection, we assume that p splits in K/Q. We need several results on the
arithmetic of K.

Lemma 5.4. For B ∈ Z and Λ ∈ (d−1
K \ πd−1

K ) ∩ π′d−1
K , we have

# {µ ∈ OK/πOK | Tr(Λµ) ≡ B (mod p)} = 1.

Proof. Put φ(µ) = Tr(Λµ) (mod p). Then φ gives rise to a homomorphism of OK/πOK

to Z/pZ. To prove the lemma, it is sufficient to show that φ is injective. Suppose that Tr(Λµ) ≡
0 (mod p). Put λ = Λ/π′. Then λ ∈ d−1

K \ πd−1
K and p|Tr(π′λµ). By Lemma 4.6, we have

λµ ∈ πd−1
K and hence µ ∈ πOK , which shows the injectivity of φ.

Lemma 5.5. For Λ ∈ d−1
K and A ∈ Z with p - A, we have

#
{
µ ∈ OK/πOK | Λ − Aµ′ ∈ π′d−1

K

}
= 1.

Proof. Since Aπ′ ∈ (d−1
K \ πd−1

K ) ∩ π′d−1
K , there exists a µ ∈ OK such that Tr(Aπ′µ) ≡

Tr(πΛ) (mod p) by Lemma 5.4. Since p|Tr(π(Λ − Aµ′)), we have Λ − Aµ′ ∈ π′d−1
K by Lemma

4.6. To prove the uniquness, suppose that Λ−Aµ′
1, Λ−Aµ′

2 ∈ π′d−1
K . Then µ1−µ2 ∈ πd−1

K ∩OK =
πOK , which completes the proof of the lemma.

We are now ready to show Proposition 5.2 (i). Let Ξ = (A,B, Λ) ∈ Xpm.
First suppose that Ξ ∈ p⋆Xp−1m. Then, by Lemma 5.3, we have Ξ ∈ f(Xm) and Ξ ∈ gµ(Xm)

for any µ ∈ OK , which implies N(Ξ) = p + 1.
We next consider the case where Ξ ∈ Xpm \ p ⋆ Xp−1m. Note that, if p|A, either Λ ∈ πd−1

K or
Λ ∈ π′d−1

K holds, since AB − ΛΛ′ = pm/d.
Suppose that p|A and Λ ∈ πd−1

K . By Lemma 5.3, we have Ξ ∈ f(Xm). If Ξ ∈ gµ(Xm) for
some µ ∈ OK , by Lemma 5.3, we have Λ ∈ π′d−1

K and hence Λ ∈ pd−1
K . This implies that p|B,

which contradicts to the assumption Ξ ̸∈ p ⋆ Xp−1m. Thus we have proved N(Ξ) = 1.
Next suppose that p|A and Λ ∈ (d−1

K \ πd−1
K ) ∩ π′d−1

K . Then Ξ ̸∈ f(Xm). Take a µ ∈ OK

with Λ − Aµ′ ∈ π′d−1
K (see Lemma 5.5). Since

dA(B − Tr(Λµ) + Aµµ′) = pm + d N(Λ − Aµ′) ≡ 0 (mod p),
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we have B ≡ Tr(Λµ) − Aµµ′ (mod p) and hence Ξ ∈ gµ(Xm) by Lemma 5.3. Using again
Lemma 5.5, we see that such a µ modulo πOK uniquely exists and hence N(Ξ) = 1.

Finally suppose that p - A. Then Ξ ̸∈ f(Xm). An argument similar to the above one shows
that Ξ ∈ gµ(Xm) if and only if Λ−Aµ′ ∈ π′d−1

K . Lemma 5.5 now implies that N(Ξ) = 1, which
completes the proof of Proposition 5.2 (i).

5.4 The proof of Proposition 5.2 (ii)

Throughout this subsection, we assume that p is inert in K/Q. Then q = p2. The following two
lemmas are easily verified.

Lemma 5.6. For Λ ∈ d−1
K and A ∈ Z with p - A, there uniquely exists an element µ ∈

OK/pOK such that Λ − Aµ′ ∈ pd−1
K . We also have d2 N(Λ) ≡ d2 N(µ) (mod p).

Lemma 5.7. For c ∈ Z, we have

#{µ ∈ OK/pOK | µµ′ ≡ c (mod p)} =

p + 1 if p - c,

1 if p|c.

For ξ = (a, b, λ) ∈ Xm, set

n(ξ) = #{µ ∈ OK/pOK | b ≡ Tr(λµ) − aµµ′ (mod p)}.

Lemma 5.8. Let ξ = (a, b, λ) ∈ Xm.

(i) If p - m, we have

n(ξ) =

p if p|a,

p + 1 if p - a.

(ii) If p|m, we have

n(ξ) =


p2 if ξ ∈ p ⋆ Xp−2m,

0 if ξ ∈ Xm \ p ⋆ Xp−2m and p|a,

1 if p - a.

Proof. First consider the case p|a. If p|m, then λ ∈ pd−1
K and hence

n(ξ) =

p2 if ξ ∈ p ⋆ Xp−2m,

0 if ξ ∈ p ⋆ Xm \ Xp−2m.

Suppose that p - m. Then λ ∈ d−1
K \ pd−1

K . Let λ = (α + βω)/
√

d (α, β ∈ Z, p - α or p - β). For
µ = x + yω ∈ OK , we have Tr(λµ) = βx + (α + βs)y. Then

n(ξ) = #{(x, y) ∈ (Z/pZ)2 | βx + (α + βs)y ≡ b (mod p)}

= p.
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Next consider the case where p - a. Take a1, d1 ∈ Z and λ1 ∈ OK such that

aa1 ≡ 1 (mod p), dd1 ≡ 1 (mod p), λ − λ1 ∈ pd−1
K .

Then, for µ ∈ OK , we have

a1

(
b − Tr(λµ) + aµµ′) ≡ N(µ − a1λ

′
1) + a1b − a2

1 N(λ1) (mod p)

≡ N(µ − a1λ
′
1) + a2

1(ab − N(λ1)) (mod p).

By Lemma 5.6, we have

d2(ab − N(λ1)) ≡ d2(ab − N(λ)) = dm (mod p).

It follows that

n(ξ) = #{µ ∈ OK/pOK | N(µ − a1λ
′
1) ≡ −a2

1d1m (mod p)}.

By Lemma 5.6, we obtain

n(ξ) =

p + 1 if p - m,

1 if p|m.

We now prove Proposition 5.2 (ii). Let Ξ = (A,B,Λ) ∈ Xp2m. Recall that Ξ ∈ f(Xm)
if and only if p2|A and Λ ∈ pd−1

K , and that Ξ ∈ gµ(Xm) if and only if Λ − Aµ′ ∈ pd−1
K and

B ≡ Tr(Λµ) − Aµµ′ (mod p2) (see Lemma 5.3).
First assume that Ξ ∈ p2 ⋆Xp−2m. Then Ξ ∈ f(Xm) and Ξ ∈ gµ(Xm) for any µ ∈ OK , which

shows that N(Ξ) = p2 + 1.
Next assume that Ξ ∈ p ⋆ Xm \ p2 ⋆ Xp−2m. It is easy to see that Ξ ∈ f(Xm) if and

only if p2|A. Let Ξ = p ⋆ ξ with ξ = (a, b, λ) ∈ Xm. Then Ξ ∈ gµ(Xm) if and only if
b ≡ Tr(λµ) − aµµ′ (mod p). We thus have N(Ξ) = n(ξ) + δ(p2|A). By Lemma 5.8, we obtain

N(Ξ) =

p + 1 if p - m,

1 if p|m.

Finally assume that Ξ ∈ Xp2m \ p ⋆ Xm. Suppose tha p2|A. Then we have Λ ∈ pd−1
K and

p - B, which implies Ξ ∈ f(Xm). For every µ ∈ OK , we have Tr(Λµ) − Aµµ′ ≡ 0 (mod p)
and hence Ξ ̸∈ gµ(Xm). It follows that N(Ξ) = 1. Suppose that A ∈ pZ \ p2Z. We then
have p|B and Λ ∈ pd−1

K , a contradiction. Suppose that p - A. Then Ξ ̸∈ f(Xm). Note that,
if Λ − Aµ′ ∈ pd−1

K , we have dA(B − Tr(Λµ) + Aµµ′) ≡ d N(Λ − Aµ′) ≡ 0 (mod p2) and hence
B ≡ Tr(Λµ) − Aµµ′ (mod p2). This and Lemma 5.6 imply that N(Ξ) = 1.
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6 Examples

In this section, we present several examples of Borcherds products and non Borcherds products
in the case K = Q(

√
5). We then have d = 5 and ϵ0 = (1 +

√
5)/2. The structure of the graded

ring
⊕

k≥0 Mk(ΓK) has been studied by K. -B. Gundlach [Gun] and R. Müller [M]. We now
recall Müller’s construction.

We first recall the definition of the theta constants. For Z ∈ H2 (the upper half space of
degree 2) and a, b ∈ {0, 1}2, set

ϑ(Z; a, b) =
∑
l∈Z2

e
[
1
2

t(l + a/2)Z(l + a/2) +
1
2

tlb

]
.

It is known that ϑ(Z; a, b) ̸≡ 0 if and only if tab is even. The even pairs are listed as follows:

ta0 = (0, 0), tb0 = (0, 0); ta1 = (1, 1), tb1 = (0, 0); ta2 = (0, 0), tb2 = (1, 1); ta3 = (1, 1), tb3 = (1, 1),
ta4 = (0, 1), tb4 = (0, 0); ta5 = (1, 0), tb5 = (0, 0); ta6 = (0, 0), tb6 = (0, 1); ta7 = (1, 0), tb7 = (0, 1),
ta8 = (0, 0), tb8 = (1, 0); ta9 = (0, 1), tb9 = (1, 0).

Let ι : H2 → H2 be a modular embedding given by

ι(z1, z2) =
1√
5

(
ϵ0z1 − ϵ′0z2 z1 − z2

z1 − z2 −ϵ′0z1 + ϵ0z2

)
.

For a ∈ Z≥0 and i1, . . . , ir ∈ {0, 1}, we put

θa
i1···ir = (θi1 · · · θir)

a ,

where
θi(z) = ϑ(ι(z); ai, bi) (0 ≤ i ≤ 9, z ∈ H2).

Let M sym
k (ΓK) = {F ∈ Mk(ΓK) | F (z1, z2) = F (z2, z1)}. The graded ring

⊕
k≥0 M sym

2k (ΓK)
is generated by

g2 = 2−2
(
θ4
0 + θ4

1 + θ4
2 − θ4

3 + θ4
4 + θ4

5 + θ4
6 − θ4

7 + θ4
8 − θ4

9

)
,

s6 = 2−8
(
θ2
012478 + θ2

012569 + θ2
034568 + θ2

236789

)
,

s10 = 2−12 θ2
0123456789.

This implies that M sym
10 (ΓK) is spanned by s10, t10 = g2

2s6 and u10 = g5
2. It is known that the

weight of any Borcherds product is divisible by 5, and that s10 is a Borcherds product (see [Br3],
page 161).

For F = s10, t10 and u10, we calculated the values F (πz1, π
′z2), F (π′z1, πz2) and the quotient

F |T (p)(z1, z2) · F |T (p′)(z1, z2)−1 by Mathematica, where z1 = 2
√
−1, z2 =

√
−1 and p = (π)

with π = 4 +
√

5. The result is as follows:
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F (πz1, π
′z2) F (π′z1, πz2) F |T (p)(z1, z2) · F |T (p′)(z1, z2)−1

F = s10 4.27068550613 · · · × 10−27 4.58279473089948 · · · × 10−24 1.00000000000 · · ·
F = t10 3.23264624182 · · · × 10−13 2.14286904632 · · · × 10−13 1.59928132099 · · ·
F = u10 1.00000000019 · · · 1.00000000128 · · · 1661.00964313 · · ·

In view of Theorem 2.2, this numerical computation shows that neither of t10 and u10 is a
Borcherds product.
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