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Consider the 2x2 matrices with entries in a field k

_ O

—

[ JPURY

If k 1is the field of real numbers IR, lim At = AO has the
t-0

standard definition. For an arbitrary field k , we may

consider the family {At} as a subset of the variety
tek
of 2x2 matrices over k and say that lim A, = Ay in the
t-0

sense that A, is in the (Zariski)} closure of the set {At}t o

In studying limits in the algebraic sense, two different
viewpoints have arisen: deformations and orbit closure.
In deformation theory, the above example would be

written
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and we would say that AL is a deformation of Ay - As an
orbit closure example, we would note that A, = StA*!SE.I
~ where
_ |t o
St'[o1]

and so AO is in the (Zariski) closure of the orbit of A1
under the conjugation action of GLz(k) on the variety of

2x2 matrices. For orbit closure, we say AO is a

degeneration of A1 . (Note the duality in viewpoint between

"deformation" and "degeneration".)

The family

(= 2e o

—_ O
—d

is a deformation of BO , but B0 is not a degeneration of

B, . It is easy to verify that

(20
Co‘[o1]

is a degeneration of

€17 {(1J ;}

but no one-parameter family giving a deformation of C0



contains C1 .

Deformation theory was originally developed in the
category of analytic structures (see, for instance {12]
and [15]). The basic ideas of the deformation theory of
analytic structures motivated the deformation theory of
algebraic manifolds (see, for instance, [2] and [19])},
and of algebras (see, for instance, [9] and [17]).

The orbit closure questions appear only in situations
which can be formulated in terms of group actions.
Nevertheless, there are many categories in which both
deformations and orbit closure may be considered: nxn
matrices [8], associative algebras [9],Lie algebras ({17},
(21], [6], [10]), representations of a group or of an
~algebra ([13], [16]), representations of a quiver [14],
linear systems of differential equations ([20], etc. (This
list is far from complete.)

Understanding thé'differences between deformations
and degenerations, we were surprised to find a common
forﬁulation for these viewpoints, which we present here.
In fact, we establish that if a finite dimensional Lie
algebra Hg is in the closure of the orbit of a Lie algebra
My v then there is such a deformation family of Mg v which
contains a Lie algebra isomorphic to Hy

In order to make the exposition readable, we will
concentrate on one category, that of n-dimensional Lie
algebras, although occasionally we will use exanples from

the category of nxn matrices. In the following, the reader



may substitute the category of his or her choice.
We would like to thank Fritz Grunewald for pointing
out that every degeneration of finite dimensional Lie

algebras can be realized by a deformation.




1. Deformations and Degenerations

Throughout this paper, we consider an n-dimensional
Lie algebra as an element of Hom(sz,V) , where V 1is an
n-dimensional vector space over an algebraically closed
field k . The set of Lie algebras is an algebraic subset
L of Hom(sz,V) , and the general linear group GLn(k)

acts on L Dby:
-1 -1,
(g-u)(x,y) = glulg x,9 y))

The orbits under this action are the isomorphism classes, and
we say that Hy degenerates to Hg 7 OF M4 is a

degeneration of if is in Oiu1$ , the Zariski

7! ]JO
closure of the orbit of uy o For example, every Lie algebra

degenerates to the abelian Lie algebra via:
=1 -1
(t I-w (XIY) =t U(txltY) = tu (X-IY) .

Then 1lim t—1I L T where uo(x,y) = 0 .

The intuitive definition of a deformation of Hy is a

one-parameter family

_ 2
u{t) = “0 + tw1 + t wz +



where 0, € Hom(sz,V) and u(t) € L for each t € k . The
example above is a deformation; we have

p(t) = + tu .

Ho

Note that this definition of deformation does not
require the vector space V to be finite dimepsional; in
fact, deformations of infinite dimensional Lie algebras
have been studied (see, for instance, [5] and [7]) and the
infinite dimensional case is of great interest to physicists
(see, for instance, [4]). Because the orbit closure
formulation requireé the Lie algebra structures to lie in
a variety (i.e. a finite number of structure constants),
deformation theory for infinite dimensional Lie algebras
has no reasonable orbit closure analog.

Of course, even in the case of finite dimensional Lie
algebras, not every deformation is a degeneration and vice
versa, 'as we demonstrated in the introduction for the case
of matrices. One point in the intersection of these two

theories is the following.

Proposition 1.1 If wu(t) is a deformation of Ho parametrized

by t , then € U Oo(u(t))

u
0 7 tex

But a more unexpected connection between deformation and

orbit closure arises when one considers formal deformations



more generally. From the viewpoint of formal deformations,
we consider a deformation up(t) not as a family of Lie
algebra structurés, but as a Lie algebra over the field
k{((t)) . Then a natural generalization is to allow more
parameters, i.e. use k[[t1,...,tr]] or consider k-algebras
other than power series rings. (By "k-algebras" we mean

associative, commutative k-algebras with identity.)

Definition Let the parameter ring A be a local finite

dimensional algebra over k and let Mo be a Lie algebra

over k (not necessarily finite dimensional). If Hp is a
Lie algebra in Hom(sz,V) , where V 1is a free A-module,

then for a morphism f : A —> B B 1is a Lie

algebra in Hom(Az(VQB), VBB) which is defined in the

nétural way. A formal deformation of parameterized

Ho
over A such that

by A is a Lie algebra Ha

where the tensor product is defined by the residue map
A —> A/mA =k .
More generally, if A 1is a complete local k-algebra

(i.e. A = lim A/mz } such that A/mg is finite dimensional
& —

for all n , then a deformation of the Lie algebra Hg

parametrized by A 1is a Lie algebra over A such

Ha

that Hp = lim Mo oo where Hp is a deformation of Mo
<—



mn+1
A Ha

Mg parametrized by A are equivalent if there is a Lie

parametrized by A/ . Two deformations and uA of

algebra isomorphism Hp uA which induces the identity

map on ® k = Mg -

Ha
In the case that the parametrization algebra A 1is
k{{t]l] , this definition coincides with Gerstenhaber's
concept of deformation [9]. |
The analogous viewpoint in the theory of orbit closure
is the following characterization of orbit closure, which
we present here for the categofy of n-dimensional Lie
algebras, although it holds for many algebraic group actions

on varieties.

Theorem 1.2 {10]- Let Mg and My be n-dimensional Lie

algebras over k . The Lie algebra B is a degeneration

of My (i.e. Mg € O(u1) ) if and only if there is a discrete
valuation k-algebra A with residue field k , whose
quotient field K 1is finitely generated over. k of
transcendence degree one, and there is an n-dimensional

Lie algebra over A such that

Ha

UA®KR’U1®K



The orbit closure example given at the beginning of
this section would be characterized as follows. Let

A = ktt]?t> r the polynomial ring localized at the prime

ideal <t> , and let Mp = ty .-Then 1y 1s K-~isomorphic
to Ha via the isomorphism t_1I (K = k(t)) , and
Ba ® k = uo .

From Theorem 1.2, and ignoring the conditions on A
specified in the definition of formal deformation, we could
say that wu, € ﬁTﬁ?T if and only if u, is K-isomorphic to
a forﬁal deformation of Mg parametrized by A , for sohe
A satisfying the condiﬁions of Theorem 1.2, A crucial
difference between the definition of formal deformation
and the statement of Theorem 1.2 is that, in the former, the
k-algebra A 1is Artinian, and in the latter it is Noetherian.

On the other hand, if we consider the completion g
of the discrete valuation k-algebra A - from Theorem 1.2,
then we see that every degeneration can be realized by a

deformation. If ¢ is the Lie algebra over A defining

a

the degeneration (i.e. u, ® k =y and u, ® K~ py, ® X ),
A ) 1

A
- n+1 ~ _ 9z
let By o= Mg ® A/mA and let My = liﬁ Mo Then
K ® k = Ko for all n . Thus ui is a formal deformation

of By And so we have:

Proposition 1.3 If uj is in the boundary of .the orbit of
Hq s then this degeneration defines a non-trivial deformation

of uo .
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(A deformation of Mg is trivial if it is equivalent

Ha

to ® A .)

"o
Since every degeneration can be realized by a deformatiocn,
then the existence of non-trivial degenerations to 'uo
implies the existence of non-trivial deformations of Hg

For a counterexample of the converse in a different category,
consider conjugacy classes of nxn matrices. We know from

[8] that a matrix with one Jordan block for each eigenvalue

is a degeneration of no other non-equivalent matrix, but

every matrix has non-trivial deformations.

So far in this comparison of deformation and degeneration,
we have considered only the one-parameter case. Even though
Theorem 1.2 specifies that the quotient field K of the
k-algebra A has transcendence degree one over k (one
parameter), the proof of éhe theorem does not require such
a restriction. (The theorem is stated in this way to
establish that the degeneration can be realized by such an
A , not that it must be.) And so, just as one may generalize
Gerstenhaber's concept to include k-algebras like k[[t1,...,tr]]

one may also realize orbit closure by k—-algebras with

transcendence degree greater than one.



- 11 -

2. Versal Deformations and Versal Degenerations

An important concept in deformation theory is that of a
versal deformation, that is, one deformation which induces
all others. Since this deformation is not unique, we call
it "versal" rather than "universal".

Definition A deformation of Mg parametrized by a

MR
complete local k-algebra 'R is called formally versal if

for any deformation Ha of g parametrized by a complete
local k-algebra A , there is a morphism £ : R > A such
that the induced map mR/mé — mA/mi is unique and

®., A 1is equivalent to

MR ®Rr Ha

The following theorem establishes the existence of a
versal deformation in the case that the 2-cohomology space
with coefficients in the adjoint representation is finite
dimensionél. Of course, this condition always holds for

finite dimensional Lie algebras.

Theorem 2.1 [7] Let Hg be a Lie algebra over k (not

necessarily finite dimensional). If Hz(uo,uo) is finite
dimensional , then there is a formal versal deformation

of Mg -
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This theorem was established by applying a theorem of
Schlessinger [19, 2.11] to the category of Lie algebras.
Schlessinger's construction of a versal deformation is
based on the fact that the parameter ring A is Artinian.

' His construction does not provide a method for computing
versal deformations, and, for a given'Lie algebra, it
remains a difficult problem to compute a versal deformation.

One might ask if such a versal object exists in the
case of orbit closure, or even if such an idea makes sense.
First we note that the statement analogous to "u1 is a
deformation of uo" is the dual statement "pg 1is a
degeneration of u1". The existence of a versal deformation
depended on the fact that the parameter rings were Artinian,
and the analogous rings in the orbit closure case are
Noetherian. Therefore we might expect such a versal object
to induce degenerations, the dual of deformations. With this

in mind, we state the following definition.

Definition Let u, be an n-dimensional Lie algebra. A versal

degeneration of My is an n-dimensional Lie algebra B over

a k-algebra R such that for any n-dimensional Lie algebra

Hay over a discrete valuation k-algebra A which defines a

degeneration Ho of My (i.e. Ha ® K ~ Hy ® K , where K 1is

the quotient field of A , and Ma ® k = ), there is a

Ho

morphism f : R —> A such that (uR ® A) ® K and ® K

Ha
are isomorphic over K
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To construct a k-algebra R and a versal degeneration
g + 'We use the algebraic geometry involved. The coordinate
ring-bf the algebraic set of n-dimensional Lie algebras is
k[xijk]/I , where the xijk are the coordinate functions of
the structure constants and I 1is generated by the anti-

commutativity and Jacobi conditions. Let R be the coordinate

ring of O(u1i ; then R = k[xijk]/J , for some ideal J
containing I . Let MR be the Lie algebra over R defined
by the structure constants (xijk) (xijk is the image of

xijk in the quotient ring R ); i.e. for e, = (0,...,1,...0)}

in RY , let

The elements of 0(u1i (the degenerations of u, ) are the

1

Lie algebras over k derived from . An element g of

HR
the algebraic set O(u15 defines the evaluation morphism

ey R ——> k given by Xijk E— aijk '

where . Hg has structure constants {aijk) relative to a

fixed basis of kn . From the definition of e

0’ we have:

Mg @eo k= Mg -

Thus the coordinate ring R of O(u1§ and the Lie algebra

Hg are natural candidates for a versal degeneration.
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Theorem 2.2 The Lie algebra Mg # where R 1s the coordinate

ring of Oiu15 , i1s a versal degeneration of My

Proof: Let Ha define a degeneration of ui , 1.e.

Ha ® K = M ® K , where K 1is the gquotient field of A ,
and u, ® k = py . Let £, : R —> k be given by

f1(xijk) = cijk , where (cijk) are the ;tructure constants

for My o Let f = ic¢ f1 where i 1is the inclusion of k

into A . It follows that

(uR ®f a) @ K = My ® K =~ UA ® K .

Remark: Although the versal degeneration Hp which we

constructed is not defined over a local ring (one of the.

conditions in Theorem 1.2}, for a given degeneration Mg

of My we can choose a localization RM of R such that
URM®k=uOI

where Hp ® Mg ® RM ._Simply let M be the maximal ideal

m
of R corresponding to ¥ {M = ker eo) . A natural

question is: does Up define a degeneration of My to
M
Mo ? That is, do we have

uRM ® K = Uy ® K ,

where K 1is the quotient field of R ?
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Remark: An analytic version of deformation and versal
deformation which exploits the orbit structure is
considered, for instance, in the case of nxn ma;rices
over € , by Arnold [1]. (In particular, the deformations
A()A) in k[[t1,...,tr]] and parameter changes '

Q@ :lmr —> ¢° are required to be holomorphic at 0.)

He shows that a deformation A()X) 1is a versal deformation
of Ay = A(0) 1if and only if A 1is transversal to the
orbit (conjugacy class) of A(0) at 0 (i.e. the tangent
space to the manifold of matrices at A{(0) is the sum of
the tangent space to the orbit at A(0) and the image
under A, of the parameter space €® ). It is natural to
consider the same idea from an algebraic viewpoint, and,

in fact, an algebraic formulation of this idea appears in

16].
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3. Rigidity and Cohomology

Fér both orbit closure and deformation theory, we may
consider rigidity. In the first case, a rigid Lie algebra
4 1is one whose orbit is open (and so no Lie algebra not
isomorphic to n degenerates to u ); In the second case,

a (formally) rigid Lie algebra is one which has no non-trivial
formal deformations. From Proposition 1.3, we see that if

Mo is rigid in the sense of deformation theory, then there
are no non-trivial degenerations to Ug . However, the |
absence of non-trivial degenerations does not necessarily
imply that the orbit is open (for conjugacy classes of
matrices, no orbit is open).

In both cases we have the same rigidity theorem: a Lie
algebra u 1is rigid if the 2-cohomology of u with
coefficients in the adjéint representation Hz(u,u) vanishes.
(For orbit closure see [17]; for deformation theory see
[(9]1.) For instance, if a finite dimensional Lie algebra u
is semisimple or if uy 1is a Borel subalgebra of a finite
dimensional semisimple Lie algebra, then Hz(u,u) = 0 and
s© Y 1is rigid with respect to orbit closuré and with
respect to deformation [3, 24.1].

In the category of commutative algebras, rigidity with
respect to deformation is equivalent to the vanishing of the
symmetric 2-cohomology space Hz(u,u)S [11].

In the case the orbit closure, the proof of the rigidity



theorem 1s based on the idea that there is an injection

tangent space of y to L 5
> H” (u,u)

tangent space of u to Of(u)

and from this it follows that y is rigid if HZ>(u,u) = 0 .

In the case of deformations, the elements of Hz(u,u)

correspond to infinitesimal deformations.

Definition A deformation of Uy parametrized by A 1is

Ha

=0 . A deformation of order 1 is called

mr+1
A
an infinitesimal deformation.

of order r 1if

From Section 1, recall the definition of a formal
deformation parametrized by a complete local ring. A

deformation of Wy parametrized by A is a projective

limit 1lim My o where Ky is a deformation of Mg
paramet;I;ed by A/rnIl;:1 . Then if Ma is a deformation
parametrized by a complete local ring, the Lie algebra Mo
is a deformation of order «r .

For instance, if A = k[[t1,...,tS]] , and Hp is a

deformation of Mo » then Wy can be written

It follows from the Jacobi identity that N is a 2-cocycle
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for all i . If @ is a 2-coboundary for.some i , then
there is an equivalent deformation where the ti-term is zero
and at least one of the non-zero terms of lowest degree
involving ti has a coefficient which is a 2-cocycle not
cohomologous to zero [9]. It follows that if Hz(uo,uo) =0 ,
then every infinitesimal defcrmation of My is trivial.

In the case of an arbitrary complete local ring, the
rigidity theorem is established by a similar argument.

If Hz(uo.uo) # 0 , then a maximal set of non-trivial
pairwise non-equivalent infinitesimal deformations forms a
basis of Hz(uo,uo) . (For o € H2(u0,u0) ' chbose one of

the generators ¢ of the parameter ring A ; then + CcY

Ho
'is an infinitesimal deformation of uj .)

The 3-cohomology space H3(u0,u0) can be interpreted as
obstructions to extending an infinitesimal deformation to a
higher order deformation. These obstructions are closely
connecfed with the Massey operations in the cohomology space.
(See [71.)

The 3-cohomology space also appears in the theory of
degenerations. In the case of degenerations of Lie algebras
over R or € , there is an analytic map from Hz(u,u) to
H3(u,u) whose zeroes parametrize a neighbourhood of u [18].
In particular, if this map is injective, then the orbit of

p is open.
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ON A POTENTIAL FUNCTION FOR THE
WEIL-PETERSSON METRIC ON TEICHMULLER
SPACE

A.J. Tromba

§0 Introduction

In 1956 Weil suggested a Riemannian metric on Teichmiiller space
and in (1] Ahlfors proved it was Kdhler, Somewhat later he showed that
it had negative Ricci and holomorphic sectional curvature. In [7]
the author showed that the sectional curvature is negative. In 1982
we proved the existence of a potential function for this metric.

In the ensueing years this result has been used by several authoré
[5]1,{8]. Recently [6] it was used in Jost's own computation of the
curvature of Teichmiiller space, and was rediscovered by Wolf [ 8 ]
in his 1986 thesis. The growing interest in this result makes it
worthwhile to have a proof in the literature.

§1 Preliminaries

Let M be an oriented compact, 9M=¢* and let M_1 be the

‘Tame Frechét manifold [2] of Riemannian metrics of constant negative

curvature on M. The tangent space of M at a metric, g,TgM_1

-1
consists of those (0,2) tensors h 'on M satisfying the equation

1 -
(1.1) -A(trgh)-+ 6g5 h + §(trgh) =

g

where trgh = gljhij is the trace of h w.r.t. the metric tensor

e B
1]
and A 1is the Laplace-Beltrami operator on functions. For example

Ggégh is the double covariant divergence of h w.r.t. g

see [2] for details.

Let DO be the Tame Frechét Lie group [2] of diffeomorphisms
of M which are homotopic to the identity. Then DO acts on

* the case with boundary follows analogously
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M_1 by pull back, i.e. f —> f*g. Teichmiiller space is then

defined as

(1.2) T(M) = M_, /04
In [2],[5] we show that T{M) 1is a ¢® finite dimensional mani-
fold diffecmorphic to Efl, q = 6 (genus M) - 6. The L2-metric on

M_1 is given by the inner product.

1
(1.3) <<h,k>>g =3 IM trace (HK)dp.g

1

where H = g- h, K = g-1k are the (1:1) tensors on M obtained

from h and k via the metric g, or "by raising an index", i.e.
H, = hy .
3 9 k3
and similarly for K. Finally “g is the volume element induced on
M by g and the given orientation.

The inner product (1.3) is DO invariant. Thus Do acts

smoothly on M_1 as a group of isometries with respect to this metric,
and consequently we have an induced metric on T(M} in such a way
that the projective map m : M_, —> M_1EDO becomes a Riemannian
submersion [ 2 ]. In { 3] it is shown that this induced metric is

precisely the metric originally introduced by Weil.

Let <,> be the induced metric on T{(M). We can characterize

<,> as follows. From [ 2 ] we can show that given g€ M_ every

1
hEITgM__1 can be ‘uniguely written as

TT
(1.4) h =nh + Lxg

where Lxg is the Lie derivative of g w.r.t. some (unique X) and

TT . , .
h is a trace free, divergence free, symmetric tensor. Moreover the

decomposition (1.4) is L2-orthoqonal. Recall that a conformal

coordinate system (where g = Aﬁij + A some smooth positive

ij
function) is also a complex holomorphic coordinate system. In this
system

hiTl = Re (£ (z)dz?)

2

where Re is "real part"” and £ (z)dz is a holomorphic quadratic
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differential. In fact trace free, divergence free symmetric two
tensors are precisely the real parts of holomorphic gquadratic
differentials.

Now L.g is always tangent to the orbit of DO through g.
We say that L.9 is the vertical part of h 1in decomposition 1.4.
Similarly we say that hTT represents the horizontal part of H.

Given h,k €T 4T (M) there are unique horizontal vectors H,EEITgM_1

such that dm(g)h = h and dm(g)k = k. Then

<h,k> = <<k,%>>
[g] g

Suppose now that gOEIM_1 is fixed and that s!(M,g) — (M,go)
is a smooth c’ map homotopic to the identity and is viewed as a
map from M with some arbitrary metric gEZM_1 to M with its

99 metric.
Define the Dirichlet energy of s by the formula.

_ 2
(1.5) . Eg(s) = IM lds | dpg

1
2
where !dst2 = trace ds*ds depends on both g and g,.

By the embedding theorem of Nash-Moser we may assume that

(M,go) is isometrically embedded in some Euclidean Eg(. Thus we
K

"can think of s : (M,g) — (M,go) as a map into R and
Dirichlet's functional takes the equivalent form

' 1§ i i
(1.6) Eg(s) = 3 121 [g(x) <V 87 (x),7 8" (x)>du,

There is another, equivalent, and useful way to express (1.5) and

(1.6) using local conformal cordinate systems gij = Usij and
(go)ij = péij on (M,g) and (M,go) respectively, namely
(1.7) Eq(s) = + [ [p(s(z)) s 12+0(s(2))Is=]1%]dzdz

: - Ug 4 ‘M z z

For fixed g, the critical points of E are there said to

be harmonic maps. The follwing result is due to Schoen-Yau [ 91].

Theorem. Given metrics g and’ 99 there exists a unique harmonic

map s{g) : (M,g) — (M,go) which is homotopic to the identity.
Moreover s(g) depends differentially on g in any Ht topology,
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r>2, and is a C_ diffeomorphism.
Consider now the function
g —> Eg(S(g))

This function on M—i is D-invariant and thus can be viewed

as a function on Teichmiiller space.

For fixed g, the critical points of E are then said to be

harmonic maps. The following result is due to Schoen-Yau [ 91].

Theorem. Given metrics g and 99 there exists a ungiue harmonic
map s(g) : {M,g) — (M,go) which is homotopic to the identity.
Moreover sS(g) depends differentially on- g in any HT topology,

r>2, and is a c” diffeomorphism.
Consider now the function
g —> Eg(s(g)) .

This function on M_1 is D~invariant and thus can be viewed

as a function on Teichmiiller space. To see this one must show that
* =
Ef*g(stf (g))) Eg(s(g))

Let <c(g) be the complex structure associated to g, and
induced by a conformal coordinate system for g. For £ € DO ’
f : M,f*c(g))}) —> (M,c(g)) 1is holomorphic and consequently since
the composition of harmonic maps and holomorphic maps is still

harmonic we may conclude, by uniqueness that
S(f*g) = s(g) o f

Since Dirichlet's functional is invariant under complex holomorphic

changes of coordinates it follows immediately that
Ef*(g) (s(g)ef) = Eg(S(g))

Consequently for [g] € M_ |DO define the ¢~ smooth function

1

E:M_l0g — R
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by

Elgl = Eg(s(g) .

§2 The Main Result

Theorem 2.1 _[gO] is the only critical point of E. The Hessian
of E at [gO] is given by

a’Elg,](h,k) = 2<h,k>

h,k € T[c ]T(M). That is, the second variation of Dirichlet's energy
functiondois (up to a positive constant) Weil-Petersson metric.
Proof. We begin by computing the first derivative dﬁ[go]. We

again view a map S : (M,g) —> (M,gy) as a map into Rk .
Consider the two form -

k . k i
E(z)dz? = ) (sh)%az? = 7 (257)%322,
\ z . 9z
i=1 i=1
We start by proving
Proposition 2.2. If § : (M,g) — (M,go) is harmonic the form

g(z)dz2 is a holomorphic quadratic differential on the complex
curve (M,c(go)), and thus Re E(z)dz2 represents a trace free,
divergence free symmetric two tensor on (M,go). Hence Re E(z)dz2

is a horizontal tangent vector to M at 9o° Finally

-1
(2.3) dE[golh = - Re<<€(2)d22,ﬁ>>
90

where h is the horizontal left of he¢T T(M).

(go)

Proof (of 2.2)
We have Dirichlet's functional

' k . .
Elg,s) = 3 L Sy st st rshiang

Suppose s is harmonic. Let { denote the second fundamental form
of (M,go) < IRk . Thus for each peM, Q(p) : TpM x T M —> TpM‘L
Let A denote the (non-linear) Laplacian of maps from (M,g) to

(M,go) and AB denote the Lavlace-Betrami operator on functions.
Then if s is harmonic we have
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Ag

H
=g
)]

1}

2
(2.4) 0 s + ) Q(s)(ds(e.) ,ds(e)))
= j ]

e1(p), ez(pf on orthonormal basis for TPM with respect to g.
£(z)dz? will be holomorphic of

27 ast st
bz i=1 92 OZ
But this is equal to
k . i
%' L bgsT - 32
i=1
where in conformal coordinates gij = Osij . By (2.4) we see that
this, in time, is equal to
k .2 . i
2 ' i 3s
- = ] Q7 (s)(ds(e,) ds(e.)) =
T 321 321 ] 3 ez
- -2 % J } Q(s) (ds(e,),ds(e.))- 3s | iQ(s) (ds(e.) ,ds(e.)) - 3s]
A P 3t j ax s i By}

Since Q(p) takes values in Tle it follows that both the real

and imaginary parts of the expression vanish. Thus &_‘,(z)dz2 is
holomorphic.

Recall that s is harmonic iff %%(g,s) = 0. We now compute %g .
If we have local coordinates represented by (x,y) € W, then in this
coordinate system

k
E(g,s) = % Vo[, . g(x)<G 1VSR,VS£> 2 V/det G dxdy
g=1 M R
b a3s* ast
where VS is the vector (EE_’§§_)’ G is the matrix {gij} of g
and <'>IR2 denotes the ordinary IR inner product and

vdet G dxdy is the local representation of dug. In the following
computation we adopt the convention, that summations over the index

2 will be understood.

Q>

, E o =T [N N —
(2.5) 5o (9gs8)H = ~f<Gg HG U™, vs">/ARE G dxdy

. % I<G61VSR,VSR> trace H dxdy

vdet G0
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where H = {Hij} is the matrix of the symmetries tensor h in

these coordinates. Here we use the fact that the derivative of

-1 -1

G —> G is H ——> G_1HG Suppose we look at this first

derivative in conformal coordinates (go)ij = Aaij' Then if h
is horizontal the second term in (2.5) vanishes (h 1is trace free)
and
3E 1 [ A} ' .
a—g(go,slﬁ = = [ 5 <Vs",Us">2 dxdy
'A 2 2 L
1 Joo (8s”,2 ~ . 3s s ~  3s",2
Since h11 = -h22 this is equal to
(2.6) o Uw, @k @2sh2 oy (——)( 858 1 ayq
. 11t Vex 5% 12 5% f Y
Now
AL L
5s . 3s 2 2
(ax i3y ) (dx +dy)” = £(z)dz
is a quadratic differential. But
) 2 k) L . ) )
2, _ s 2 _ ,3s87,2 2 dsy2_3s”. 2. 2 3s ", (95 i
Re(g(z)dz") = [(z3~) (§§_) Jdx +[(ay )T ggr T ldy T 4(§§_)(3y ) Axéy .

I1f s 1is harmonic Re(s(z)dzz) is a trace free divergence free
tensor. Let us compute

<<Re E(z)dzz,ﬁ>>
90

This inner product is given locally by the expression

(2.7) 29395 % K, du e

where kac is the coordinate representative of the two tensor

g(z)dzz. Therefore

Thus in conformal coordinates (2.7) is equal to
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1 -
f Ex{kacgac}dxay

= J axlkyqhygr 2kgghyg +kpph,,baxdy

Since 'k = =k , b this equals

11 T Tha2
1 I~
JoxlkyqByq kol laxdy

L 2 L
_ 1,08 2 9s™, 2 4 0s 3s .
= | 'X{[('gx—) - (gy—) ]H‘I‘I + 2(‘;;'}{-—) (W’)H.]z}axdy

Comparing this with expression (2.6) establishes the formula

e
LQItlj

(g.,s)H = -<<Rre E(z)dzz,H>> .
0 99

However E[g] = E(g,s(g)). Since s(g) is harmonic %%(go,s(go)) =0.
This immediately implies that

@l
alen

[go]lh = -<<Re E(z}dzz,ﬁ>>
0 gO

which establishes 2.2Z2. We should remark that this formula tells us

that the gradient of Dirichlet's. function on Teichmiiller space is

represented as a holomorphic guadratic differential.

To complete theorem 2.1 we need to compute a second derivative.
Again working locally and thinking of the map s as now being
fixed we see that for h,k horizontal

Fa
é—%(gO,S){H,E) = I<G51KGB1HGO1VS2,VSQ§P2/Eet G, dxdy
og v
+ [ <c el ke Tvst,vsts_, /@eT G dxdy
0 "0 U0 ’ R2 0

and in conformal coordinates this is equal to

f =5 <kH7s',vsts o axdy + [ -beHkvst vsts axay
A A
2 2
2 as¥ 2 st 2
I 2 (B R+ BypKy ) (50 7+ (55) Tl laxdy

Now at the point Jg+ the unigque harmonic map s 1is the

identity map of (M,go) to itself. Since (M,go) is isommetrically
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immersed in Hg(, S(go)*Gﬂﬁ< = gy where G is the Euclidean

K
R
metric on K . But if 99 is expressed in local conformal

coordinates this says exactly that

Thus at the point gy + wWe see that

2
aE ) o o — EN N
g;f (ggrid) (h,k) = IA(h11ET1-+H12E12)dxdy
Since §11 = -E22’ H11 = _EZZ’ applying formula (2.7) for the
Weil—-Petersson metric we see that
32E
(2.8) = (go,id)(H,E) = 2<<h,k>> .
3g

However we are interested in the map
Elg]l = E(g,s(g)).
Clearly
==lglh = %g(g,s(g))ﬁ + %g(g,s(q))-Ds(g)ﬁ
where Ds(g) represents the derivative of s with respect to vg.

However the second term is identically zero since s(g) 1is
harmonic implies %%(g}s(g)) = 0. Therefore

2 2
2 2gylth,k) = &2 (g,,id) (K,%)
3 3
g g
2
+ =2E (g.,1d) (§,Ds {g,) %)
dgos 9o ! 90
and by 2.8
= 2<<h,k>> + 3555 (go,ld)(H,Ds(gO)k).

Theorem 2.1 will now follow immediately from the following.

Proposition 2.9. Ds(go)H = 0, if H is trace free divergence free.
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Proof. In order to compute this derivative we write down the

general equation of a harmonic map from a Riemanian manifold

(M,g) to a Riemannian manifold (N,g). Namely £ : (M,g) — (N,9)
is harmonic if in local coordinates, £ = (f',...,fn), n = dim N
2.10) L2 giig 8 oy, e 2 0£° 13 _

where F$B are the Christofel symbol of the metric g .

If dim N = 2 = dim M and we express (2.10) in local conformal

coordinates gij = Aéij and gij = pﬁij we see that (2.10) 1is
equivalent to
(2.11) sz + (log p)ffzfg = 0

= p(f)

where (log p)f = oNE)

In the case under consideration ¢ is the fixed metric g, on M.
We now think of £° as depending on g, and let w® = Dfa(ﬁ) be the’
linearization of f£% in the direction Hh. We now differentiate
equation (2.10) w.r.t. g in the direction R. We first make three
importanﬁ observations._The Christofel symbol Fg are fixed and

do not depend on g. Second the derivative of Y9 1in a direction

K is given by i — trgh//§

If R is trace free thisderivative vanishes. Thirdly, the
derivative of g'?v/g in the direction K is K — -F*7

Taking the derivative of (2.10) w.r.t. g in the direction

R, evaluating it in conformal coordinates (go)i. = Adij at
f = id, and using formula 2.12 for the complex form of

w=w + iw2 we see that

B 0 o~
. s .h,.
- — = + 1 2 ypedy 2313
(2.12) woz ¥ (log )\)zwz =+ 3 ij {h™’} + Az

Lemma 2.13 If h 1is trace free and divergence free,the expression

2 (§e3 A e -
ax. {H } + 2 Fia H.."‘ O'-

(2.14) i

> =

Before proving 2.13 let us see how it implies proposition 2.9.
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Using 2.12 we see that the linearization w = Ds(gO)E satisfies
w,z * (log A)ZWE =0
or
3 =
E()\WE) = 0 .
Now this implies that
f 2 (Aw=)¥ dz A dZ = 0
0z z
Integrating by parts we further see that

[xlw=1%dz A dZ = 0

Therefore wg = 0 and consequently w 1s a holomorphic vector
field on (M,c(go)). Since (genus M) > 1 this clearly implies that

w=a 0 concluding 2.9.

To prove lemma 2.13 we note that

a 1 ,9A ' dA oA
. = s={z=— ¢8. + §. - =— &..1
ij 2A ij ia Bxi ja axa i3
Naj:lN i i , —a-.._~ =
and that h T haj' S}nce R is divergence free v haj 0
and so ’
1 3 ,~aj 1 ~ 93X
- x=— (h™”) = = —= . mo— .
A OX, 3 Taj o9x,
3 A 1%
Therefore expression 2.14 equals
193} . & 1A . 3 3A
- —_ L ——= {=— 8. + §. - =—6..} h..
A3 ij aj 2A3 axj ia axi ja axa ij i3
1 3A & 1 IA o~ 13X 1 3A
S 7S N JLE L S G A g -3 gy
AB axj aj 233 xj aj 213 axi ia 2)\3 Bxa ii

Clearly the sum of the first three terms is zero and since h is’
trace free the fourth also vanishes. This completes lemma 2.13

and this paper.
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