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Abstract
We introduce an algebra of pseudo-differential operators on the wedge RlJ x X/\, with X/\ =
~ X X for some elosed compact manifold Xl and give a nation of ellipticity which is equivalent
to the existence of a parametrix.
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Introduction

The present investigation provides techniques to establish algebras of pseudo-differential op
erators on piecewise smooth manifolds that have non-compact boundaries or edges. In this
geometrie setting it is essential to control the operators along with their parameter-dependent
symbols near these non-compact ends (for luore classic situations concerning this task see, e.g.,
CORDES [3]' EGOROV, SCHULZE [5], and SCHROHE [13]). The need for pseudo-differential
calculi on non-cOlupact spaces arises naturally even in the theory of compact manifolds.
For example, the Lopatinskij-Sapiro condition arises in the study of differential boundary
value problellls on bounded subsets of a Euclidean space and makes it necessary to deal with
(pseuclo-)differential operators on the half-space Il4.
One fundamental idea behind the approach of SCHULZE [17], [19] is that adequate operator
algebras on manifolds with 'higher' singularities should be reached via iteration of a given
calculus on a 'simpler' luanifold. Bince an edge can locally be viewed as a product of a
cone and a Euclidean space this, in particular, lueans that the analysis of pseudo-differential
operators on a manifold with edges will have the structure of a calculus with symbols taking
values in the cone algebra.

Boundary value problems comprise an important special case; here the boundary plays the
role of an edge anel the inner normal the role of the model cone. The loeal theory of pseudo
differential boundary problems for symbols without the transmission property in terms of an
algebra is due to REMPEL, SCHULZE [12] and SCHULZE [19]. This yields a generalization of
BaUTET DE MONVEL's [1] algebra with the transmission property. At the same it completes
VISIK and ESKIN'S [20], [21] pseudo-differential boundary value problems to an algebra in
which the asymptotic data are controlled in detail.

A main point of the general edge calculus is a precise description of the asymptotics of solu
tions. This is reached by establishing a concept of elliptic regularity, which is obtained by a
parametrix construction, and requires that the elements of tbe algebra act between spaces with
asymptotics in a specific way. (Note that the transmission property can also be interpreted in
this context, since it preserves the Taylor asymptotics, i.e., smoothness up to the boundary).
The asymptotics of functions cau be characterized by their image under the Mellin transform,
yieldiug meroluorphic functions in the complex plane. This behaviour is reflected in the sym
bolic structure of the operators, i.e., the underlying symbols themselves are required to extend
to meromorphic functions. A lnotivation for arranging the calculus in this specific luanner
are general fUllctional analytical results conserning (the inversion of) meromorphic operator
functions, cr., e.g., GRAMSCH, KABALLO [8].

The strategy to handle non-compact configurations is in some sense analogous to that used to
deal with global pseudo-differential operators on ~: aue requires the symbols to have a spe
cific growth in the covariables as weH as in the variables. It turns out that the natural Sobolev
spaces for such global synlbols are weighted variants of the usual Sobolev spaces on IRq. In this
paper we modify this approach originated by CORDES, PARENTI, alld SHUBIN, to the case of
global (abstract) operator-valued symbols. The discussion of the corresponding weighted (ab
stract) edge Sobolev spaces including the continuity properties of pseudo-differential operators
between thelu requires extensive additional material, and thus will be given elsewhere.

The'present paper also develops an algebra of smoothing Mellin and Green operators M and G
that extend SCHULZE'S theory for manifolds with compact edges to the non-compact situation.
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As stated above, the analysis of these operators is the most typical part for understanding the
asymptotics of solutions to elliptic problems. Since the symbols of operators in our algebra are
families of (smoothing) cone operators, which themselves have symbols that are meromrphic
functions, we can associate to each operator a family of meromorphic functions parametrized
by the edge variable. A lnajor difference to the calculus for compact edges is that we impose
additional conditions on these families, allowing a Illore subUe control of the spatial dependence
of the Laurent coefficients.

For operators of the form 1 + M + G (with M + G having order zero) we establish a notion
of ellipticity that incorporates the corresponding concept for compact edges as weIl as new
features responsible for controlling the behaviour of the symbols near infinity. The ellipticity
of a given operator turns out to be equivalent to the existence of a parametrix, which again
looks like 1 + M + G.
Acknowledgenlent: I am very grateful to E. Schrohe and B.-W. Schulze for their intensive
support and assistance during (and before) the work on' this paper. FurtherI would'like to
thank eh. Dorschfeldt 1 J.B. Gil, and T. Hirschmann for valuable discussions.

1 Basic structures
\.

1.1 Cone Sobolev spaces with asymptotics

This section is devoted to the definition of all spaces needed in this paper and the description
of their basic properties. For cletailed proofs anel fu~ther information we refer to [17), [19], [5].

In general w(t), w(t) and Wj(t), Wj(t) (j E No) always will denote real valued functions in
Ctf(IR+), which are identically 1 in a lleighbourhood of t = O.

Let M : Ctf(lR.t-) ---7 A(C), where the latter space is tImt of all entire functions, denote the
Mellin transfornl given by

Mu(z) = 100

tZ-1u(t) dt.

The (left-) inverse of t.his mapping is 0 btainecl by

Here rß = {z E Cj Rez = ß} for all real ß. For s" E IR let 1is,,(~) be the completion of
CO'(ll4) with respect to the norm

(1.1)

Then the Mellin transfoflll extends by continuity to linear operators

There is a canonical inner product on tl""(Il4), anel tl."J"(ll4) is a subset of Htoc(Il4), the
space of distributions that locally belong to the usual Sobolev space of smoothness 8 on lR.t-.
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A natural dass of operators acting between those spaces are the so called Mellin pseudo
differential operators that are defined by

op1-(h)u(t) = {M~,~_H(h(z)M"t'--tZtL)}(t)

for appropriate functions h on r1/2-, (for details see Section 2.1).

For a Fnkhet space E , which is a left module over an algebra A, we set

(1.2)

[alE = {aej e E E}, aE A,

where the dosure is taken in the topology of E. Then define spaces

equipped with the topology of a non direct surn ofHilbert spaces,·which thus are Hilbert spaces
themselves. This construction is independent of the special choice of w. Especially it holds
JCo,O(~) = L2(~).

For , E IR and an interval e =]19 , 0], {) < 0, we call Q a discrete asymptotic type with respect
to (" 8), and write Q E As(" 8), if

Q = {(qj,mj) E C x No; 1/2 - ,+19 < Reqj < 1/2 -" j = 0, ... ,N},

with some N E No. Q = 0 is called empty asymptotic type and will from now on be denoted
by O. The projection of Q to the complex plane is written as

neQ = {qj; j = 0, ... , N}.

With such Q we associate finite dimensional vector spaces

N mj

tQ(lltr) = {t Ho L L ejkt- qj logk tj fojk E C},
j=Ok=O

for some function 4> on 1I4. Ir we give

the topology of a projective limit we obtain that

is a direct surn of Fnkhet spaces. Ir, as in the latter definition, aspace constructed with help
of [w]tQ (1I4) is independent of the choice of w, we will replace [w]tQ (1R.+-) simply by EQ(~)'
Again as a projective lilnit we define

and 'finally

SQ(1I4) = [w]KQ"(JR.r) + [1- w]S(IR;-),
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with arbitrary cheice ef wand S(ll4) being the space of all restrictions of rapidly decreasing
functions to ~. This vector space can be written as a projective limit of Hilbert spaccs,
SQ(ll4) = nkENE~(ll4), with

. E~(ll4) = [w]{}Ck,'Y- t9 - Ck(ll4) + &Q(ll4)} + [1 - w] (t)-k H k(ll4), k E N, (1.3)

where ck = cQ / k, and cQ is chosen in a way that Re qj > 1/2 - 'Y + {j + cQ for all j. These
spaces coincide for various choices of w.

For a discrete subset D of an open set U C C, the function X is called a D-excision function
(with respect to U), if

i) X is smooth, and 0 :::; X :::; 1,

ii) there exist open bounded sets Ul , U2 with D c Ul C U 2 cU, such that X=:O on Ul ,

and X=:1 on U \ U2 ·

By AQ\ we denominate the space of all functions f that are Ineromorphic in the strip {1/2 
'Y + {) < Re z < 1/2 - 'Y} with poles in qj E 7fcQ of order less or equal to mj + 1, and satisfy

i) li~-to+ (1/2 - 'Y - 0 + ig)S f(I/2 - 'Y - 0 + ig) exists in L2(!Re),

ii) sup{ IIXQfIL.,ß; 1/2 - 'Y + {) + E: :::; ß .< 1/2 - 'Y} < 00 VE: > O.

Here we have used the notation

(1.4)

and XQ is an arbitrary 7fcQ-excision function. The topology of A(C\7fcQ) and the semi-norms
from ii) induce a Frechet topology on A8'.
Similarly, AQ' is defined as the space of all functions in AQ' satisfying in addition

i') liIll§-to+ (1/2 - 'Y + {) + 0 + ig)S f(1/2 - 'Y + {) + 0 + ig) exists in L2 (IRIl ),

ii') sup{IIXQflls ,ßj 1/2 - 'Y + t9 < ß < 1/2 - 'Y} < 00.

Now, in an obvious Iuanner we get a Frechet topology, again. To simplify the notation from
now on we will omit writing "~" in various spaces, e.g., 1lS" instead of 1lS{Y(~).

1.2 Global pseudo-differential operators

Here we give a sumrnary of the calculus for global pseudo-differential operators with operator
valued symbols. A detailed and comprehensive approach to this subject can be found in [4].

1.1 Definition. Let E be a Banach space. A set {K:).j >. > O} c .c(E) of isomorphisms is
called a (strongly conti~uotLS) group action on E if
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ii) For each e E E the function ,,\ f-t K).e : II4 ---+ E is continuous.

1.2 Example. For each ,,\ > 0 define mappings /'l,). : V' (IR,-) ---+ V' (Rr) by

Note that ifu E Lfoc(Rr), then (I'\,).u)(t) = ,,\lj2u("\t). On the spaces lls", K,ß", E~, and tQ ,

defincd in Section 1.1, we now have group actiollS arising from the restriction of 1'\,). to the
corresponding spaces. From now on these group actions will be fixed when dealing with those
spaces.

For the following consideratiOllS, we fix pairs (Ej , {Kj,).}), j = 0,1,2, of Banach spaces with
corresponding group actions. Furthermore, we choose a smooth and strictly positive function

for a certain constant c> 0 and set for abbreviation

1::3 Definition. For v, m E IR let

denote the space of all functions a E Coo (1RtI x ~,.c(Eo, EI)) satisfying

for all multiindices 0', ß E Nö. The systeIll of semi-norms Paß (.) induces a Frechet topology on
sv,m (JRCl x JRCl; Eo,EI) and the definition is independent of the concrete choice of the function
[.]. As usual, set

equipped with the topology of a projective limit. Analogously we have spaces SII,-OO(IRq x
]RQ; Eo,EI) and 8-00

,-00 (IRq x JRl1; Eo,EI)' Furthermore, for a function a we write

a E SII,m(IRq X ~jEo,Ed for large I(Y,1J)I,

if there exists a 1.> E COO (IR2q) with 1.> == 0 in some neighborhood of 0 and 1.> == 1 near infinity
such that 4>a E SII,m (IRq X ~; Eo,EI) .

It is easily seen that

SII,m (IRq X }RQ; EI, ~) . Sv' ,m' (IRq x ~; Eo,EI) C 8 11+,.1 ,m+m' (JIrl x JR<7 j Eo, E2,),

and in case of EI <-t E2 and 1'\,2,>.. = 1'i:1,'\ on EI it holds

(1.5)
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As in the scalar case we can associatc to a given symbol a E sv,m (R.q x}RQ; Eo,EI) a continuous
operator

where S(JRfl ,E) is the Schwartz spacc of rapidly decreasing functions takillg values in a Frechet
space E, by

1.4 Theorem. JE a E sv,m (IRq x IRq j EI, ~) and b E Sv' ,m' (JR:1 x JRtl; EoJ EI) then op (a )op (b) =
op(a#b), where for eaGb NE N

with a remainder rN E Sv+v - N ,m+m' - N (IRq x 1RfJ j Eo, E2) that equals

Now we extend the definition of sv,m(JRll x JRl1; EOJ Et} to the case of EI being a Frechet space,
which can be written as a projective limit

with Banach spaces E{ f-> Er f-> ... such that the group action given on Er induces the
corresponding group action on each Er Then we set

(1.6)

equipped with the topology of a projective limit.

1.3 Parameter dependent cut-off operator

We consider the function 77 H- W(t[77]), where the right hand side has to be understood as an
operator of multiplication with the function t I-f W(t[77]) for each fixed 77 E JR'l. Further denote
by M f the multiplication with f (in same function space). Thc here derived Proposition 1.11
will be an important technical tool for later sectiollB.

1.5 Lemma. C1100se Wo such that wo(t)W(t[77]) = W(t[77]) V77 E JRfl, Vt E ~. Then we have

PROOF: At first it is clear that 77 H- W(t[77]) E COO(JRIl, CIf(R.+)). In [17], Proposition 7, p. 27
it has be shown the continuity of M : CIf(IR+) -r ((1-l s'/,1-l s,.-r) and the analogous property
with /Cs,"Y instead of 1{3,'Y. Now the result follows by construction of Wo. •
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1.6 Lemma. For a11 s, (}" E IR. the mapping

is linear and continuous. Also one could replace HS(r by K,s" and Hs,1] by K,s,l]. Furtber for
some asymptotic type Q tl1ere is continuity of

PROOF: Consider the decomposition Mi' = M t1'-l?<J!(t}Mt-1'+l? =: T 2 (cjJ)Tl. Now Tl E C(1l s
,'y,

1l s,{!) and cjJ 1--1 T2( cjJ) : C~(lR..t-) --1 C(1-lS,fl, 1{3,fl) is continuous (see [17]' Proposition 7, p. 27).
The second claim follows from elementary nornl calculations using (1.1). -

1.7 Definition. For Q E As(" 8), e =]19,0], and Ck = cQ/k as in (1.3) we define

Z~ = ll k ,,-1J-ck n Hk,!, k E N.

1.8 Lemma. For Q E As(" 8) it 1101ds

a) M w E .c(E~, Z~ + cQ),

b) W n - W --+ 0 in CIf(lR..t-) for n --+ 00 implies M wn --+ Mw in .c(E~, z~ + cQ) for n --+ 00,

c) 4> 1--1 M<J!: C~(ll4) --+ .c(E~,Z~) is linear and continuous,

a') M w E .c(Z~ + cQ, E~),

b') Wn - W --+ 0 in Cü(JR.,.) for n --+ 00 implies M wn --+ M w in [,(Z~ + cQ, E~) for n --+ 00,

c') cjJ 1-7 MI,b : COO(!l4) --+ .c(z~ + cQ, E~) i8 linear and continuou8.

PROOF: a),b) Für abbreviation set Zk = Z8. Choose a cut-off function wsuch that ww = W

and wnw = wn. Now let in --+ 0 in E~. Hence we find sequences (frD c [w]K:k
,'Y-

1J- c
lo,

I (f~) C cQ, (f~) C [1 - w] (t)-k H k(II4), tending to zero in the corresponding spaces and

I in = i~ + wi~ + f~. Then

1 2 n-too
IIMwfnlIZk+Eq = IlwfnllZk + IlwfnllEQ ----+ 0

(note that Zk + CQ is a direct surn). This shows a). For b) let f E E~ and / = fl + w/ 2 + /3
with a partition analogous to that of in above, and write Zk + cQ = Zk + [wo]&Q. Then

II(Mwn - Mw}fllzk+EQ = J1(wn - w)/l - (wn - w)/211 zk

:::; IIMwn-wIIKk.--r-19-Ck ,ZIc IlflIlKk.--r-~-clc + IIM(wn-w)WQ 11 eQ ,zlc 11/2 11&Q

Thus we can conclude that

where the convergence is consequence of Lemlua 1.6. The remaining parts of this Lemma can
be proved in a sinlilar way. _
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1.9 Corollary. For Q E AS(" B) we obtain

Another consequence of Lemma 1.5 and 1.8 is

1.10 Corollary. For Q, (] E AS(" e) and eacb k E N we llllVe

The mapping l : V'(Rr) ~ V'(ll4) defined by (lu,4» = (u, t-14>(t-1 )}, 4> E COO(Illt),
induces isomorphisms ll'" ~ ll ß

,-,. Then Lemma 1.5 iInplies that 1] H 1 - w(t[1]]) E
COO (JR'l, ('(ll s", ll s ,,+€)) VC 2: O. Ir we now keep in Inind that

(1.7)

for all ,\ 2: 1 and a11 sufficiently large I1JI, that is 1J H w(t(1J]) is homogeneous of degree 0 for
large 11J1, we finally get this

1.11 Proposition. For Q E As(" 8), tl1e fUllCtiOll 77 H W(t[77]) is an element of a11 the
following spaces:

SO (~j ll s", 1l',(!) Ve~ ,
(here we also can rep1ace Je'" by KS'I J and 1ls ,{} by KS,{}) and

S O(1U"l C E k ) nO(~'l '1Jk,,-fJ , Eo
k ),"''7] j "'Q 1 Q' ,,- ...'T7 Tl.

where 0 is tbe empty asymptotic type in AS(" 8). We also bave

1] H 1 - w(t[1]]) E SO(~j 1ls ,,,1l"'+€) Ve 2:: ,.

2 Green and smoothing Mellin symbols

2.1 Meromorphic Mellin symbols

2.1 Remark. For pE C and k E No set

'l/Jp,k(Z) := Mt-H(w(t)t-Plogk t)(z).

Then 1/Jp,k is a meromorphic function in C with exactly one pole in p of order k + 1, admitting
a decomposition

,pp,k(Z) = (_l)k k! (z _ ~)k+! + g(z)

with a certain entire function g. Ir X is a p-excision function then

(2.1)

uniformly for real ß in compact intervals.
As the notation implies, all the following constructions will be independent of the choice of w.
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2.2 Proposition. (cf. [9J, Proposition 7.5, Corollary 7.6) Tbe weigllted Mellin transform
. M, extends to isomorpbisms 1-ls" n 1is,-y-{) ---+ Aci', wbere CJ is tl1e elnpty asymptotic type

corresponding to (" 8), 8 =]19,0].

2.3 Corollary. For eaGb Q E As(" 8) tbe Mellin transform M, induces isomorpllisms

From this it is dear, tbat AQ' is in fact a Hilbert space.

PROOF: Set AQ := {MI; I E cQ}. This is a finite dimensional vector space of meromorphic
, functions. Fronl Remark 2.1 we derive that AQ"Y = A6' + AQ as a direct surn, and this

immediately implies the assertion. _

2.4 Definition. A set P is called discrete asymptotic type fOT Mellin symbols if

Thc projection of P to the complex plane is denoted by

'7rCP = {Pj; j E Z}.

To a given P we associate aspace of formal series, namely

mj

Fp = {LLCjk'IjJPi,k; Cjk E C}.
jEZ k=O

. There is a canonieal topology on:Fp since it is isomorphie to CN . For I E F p and real nUlllbers
CI < C2 define

mi

l[ct,C2](Z) = L L Cjk'IjJPilk(Z).
{j; ct:$Re Pi :$C2} k=ü

2.5 Definition. For J.L E IR let M~ denote the vector space of all functions h that are mera
morphie in the complex plane with poles in Pi E '7rcP of order at most mj + 1 ; furt her there

, exists an I E :Fp such that for all Cl < c2 holds

, uniformly for ß E [Cl, C2].

The element I associated to h in the latter definition is uniquely determined. In fact, if
mj

L ajk(z - pj)-(k+l) is the principal part of the Laurent expansion of h in Pj, then f is
k=O
obtained by setting

j E Z, 0 ~ k ~ mj.
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Thus one can define a linear operator

T : M~ -t Fp : h t-t Th := f. (2.2)

Now we get a Frechet topology on M~ by a systenl of semi-norrns consisting of that for the
topology of A(C \ 7fcP) and

(2.3)

where q(-) runs through a system of semi-norms of S~(IR), and (c1), (~) are sequences tending
to infinity with k. Note that convergence of a sequence (hn ) in M~ implies the convergence of
the corresponding sequence of Laurent coefficients (alk) in C (and therefore the operator T is
continuous) .

2.6 Lemma. For h E M~ the functioll

ß t-t h(ß + i·) : IR \ Re (7fcP) ---t S~ (IR)

is continuous.

',PROOF: By definition h(ß+i·) E SJl(R) uniformly in ß E K for compact sets K C R\Re (7feP).
Now the result follows by the fundament~l theorem of calculus. _

2.7 Lemma. For each I E IR. witll 7fcP n r 1/2-, = 0 tbe mapping

h t-t opl(h) : M~ ---t .c(1ls", 1ls-~,,)

is lÜlear and continuous for a11 8 E IR.

PROOF: Clearly the mapping h t-t h(1/2 - ,+ i·) : M~ -t S~(R) is continuous. Now from
(1.1) and (1.2) it is imluediately seen that

This gives the desired result.

2.8 Definition. For given types P = {(pj,mj)j j E Z}, P' = {(pj,mj)j j E Z} define

{

mj ; if Tj E 7fcP \ 7fcP'
p. p' = {(Tj, nj)j Tj E 7fCP U 7feP'}, nj = mj; if Tj E 7fcP' \ 7fcP

mj + mj + 1 ; if 1'j E mcF n 7fePf

Analogously we cau associate to Q E As (I, e) a type P . Q E As (r, e).

2.9 Lemma. The mapping

•

is bilinear and continuous. Here the product has to be understood as tbat of meromorpbic
functions in tbe complex plaJle.

11



PROOF: At first wc verify that hh' E M~-:-t'. Therefore we set

S(h, h')[CI,C2] = h(Th' )[CI,C2] + (Th)[CI,C2]h' + (Th)[CI,C2](Th')[Cl,C2]'

Then XS(h, h' )[Cl,C2](ß + i·) E S(IR) uniformly in ß E [Cl, C2} for each '7rCP· P'-excision function
X. Further holds

hh' - T(hh')[CI,C2] = (h - (Th)[CI,C~])(h' - (Th')[Cl,C2]) - (T(hh' )[Cl,C2] - S(h, h' )[Cl,C2])'

Now from T(hh')[CI'C~]-S(h, h')[Cl,C~] being an entire function and [T(hh' )[CI,C2] - S(h, h')[CIIC~JJ

(ß + i·) E S (IR) uniformly in ß E [Cl, C2} we 0btain that (hh' - T (hh' )[Cl ,C2]) (ß + i·) E SIJ+/-,I (IR)
unifoflllly in ß E [Cl, C2].
Since all the involved spaces are Frechet spaces, it is suflicient to show that the mapping is
separately continuoUB. To see this we use the closed graph theorem. Assume i) h~l ---t h' in

I + I

M~" and ii) hh~ ---t 9 in M~.t; . Now we have to show that hh' = g. But this is true since i)
implies that hh~ ---t hh' in A(C \ 'lrCP' P') and ii) implies that hh~ ---t 9 in A(C \ 'lrCP · PI). •

2.10 Lemma. Let Q E As(,,8) and P an asymptotic type with '7rCP n r l / 2 -"'( = 7T"CP n
r 1/2-;+t9 = 0. Then the operator of multiplication

is'linear and continuous.

PROOF: For jE Af; obviously hf E A({1/2-')'+t9 < Rez < 1/2-,}\7l"cP·Q). Furthermore
hj satisfies conditions i), i') from Section 1.1 (here formulated with respect to A~~Q") becaUBe
of Lemma 2.6. Ir XQ and XP are 1rcQ- and 'lrcP-excision functions, respectively, then for
X = XQXP holds

sup{llx(hj) Ils-IJ,ßi 1/2 - , + {j < ß < 1/2 - f}
:::; sup{l(xph)(ß + iQ) (g)-I-' I; 1/2 - f + t9 < ß < 1/2 - f' gE IR}

. sup{ IIXQf Ils,ßi 1/2 - f + 'l9 < ß < 1/2 - f}

Fronl Definition 2.5 it is dcar that the first suprenlum on the right-hand side is finite. This
shows hf E A~~Q'" Finally both the continuity of Mh and h f---1. M h follow easily by the cIosed
graph theorem. •

2.11 Definition. For J1., m E R. let M~,m denote the space of all functions h E COO(JRll, M~)
satisfying:

mj

i) If L ajk(Y)(z - pj)-(k+l) is the principal part of the Laurent expansion of h(y) in
k::::;O

Pj E 'lrCP, then

(2.4)

ii) For all Cl < C2 E IR

(y, Q) f---1. h(y, ß+ ie) - (Th)[Cl'C~](Y' ß+ iQ) E SIJ,m(I~ X Ru)

uniformly in ß E [Cl, C2]. Here T is the operator introduced in (2.2).
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M~,m is a Frechet space with the semi-norms of COO(jRQ, M~), that from (2.4) and that induced
from ii), cf. the construction in (2.3). As usual we define Mpoo,m = n~ERM~,m and analogously
M~'-oo, M;oo,-oo, equipped with the topology of projective limits.

2.12 Remark. Obviously (2.4) is equivalent to

sup I(y)lßI-m O:cjk(y)1 < 00 Vß E ~,
yEJRq

if Cjk(Y) are the coefficients of Th(y). Beside the coefficients of the principal part of h(y), also
each Laurent coefficient a (y) of h(y) in SOffie point P E C satisfies the estilnates (2.4). To
verify this let first P = Pj E '7rCP . If we choose Cl, Cz such that Re Pj E [Cl, Cz] then by (2.1)

with eertain entire functions gjkl, and at(Y) being the I-th coeffieient of the holomorphic part
of the Laurent expansion of h(y) in Pj. Now both the left-hand side and the second term on
.the right~hand side are elements of sm (IR3) and henee al (y) iso The case P E C \ '7rCP cau be
:'treated similarly.

2.13 Proposition. Let two asylnptotic types P, P' be given. Tllen

a) h E M~,m implies oeh E M~,m-IßI.

b) The ml1pping
" + I + I

M~,m X M~"m ~ M~.j:, ,m m : (h,h') ~ hh',

i8 bilinear and continuoU8.

c) Jf h E M~ and , E IR witb 7rCP n r 1/2-, = 0, tllen

Furtber it holds

aeop1(h)(y) = op1(aeh)(y) ,

Ilaeop1 (h)(y) II1iJ ,r ,1i.-~'"Y ~ Cß (y)m- 1ß1 Vy E }RQ.

d) IfQ E As(" 8) and h E M~,m witll 7rCP n r l / Z-, = rrcP n r l / 2-,+fJ = 0, tben

M COO(TTbO I"(AS" A'-/l,,))y t-t h(y) E JA.: , 4" Q' p.Q .

Further it holds

13
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PROOF: a) is elementary.

b) Ey Lemma 2.9 is hh' E COO(IRq, M~:t'). Further hh' satisfies i) from Definition 2.11 by
Remark 2.12. As in the proof of Lemma 2.9 it can be seen that hh' satisfies 2.11.ii) and that
the mapping is separately continuous.
c) follows frOln Lemlna 2.7 (inclucling the norm estimate in the proof).
cl) follows frOln Lemma 2.10 and the fact that

p(aeh(y)) ~ c (y)m- 1ß1 Vy E RCJ

for each semi-norm p(.) of M~. •

We finish this section by stating three remarks which will be usefullater on.

2.14 Remark. Let h E M~,m anel Tl NE IR with 7fcP n r 1j2-, = 0. Then

as operators 1ls ,-y-N --+ 1lS -jl,-Y. Here t N has to be understood as the operator of multiplication
~tN : 1i S{Y --+ 1ls ,'Y+N and (TU h)(y, z) = h(y, z + a). (For a proof see [16], Part I, Remark
4.2.6).

"

2.15 Remark. For h E M~,m set h(*)(y, z) = h(y,l - z) (the reason for the notation (*) will
become dear from Lemma 2.22). Then h(*) E M~(~ with p(*) = {(I - Pj, mj)j j E Z}.

2.16 Remark. If hE Mt and 7fcP n r 1j2-, = 0 it is easy to verify that

KÄ 10p1(h)K,\ = op1-(h).

2.2 Associated operator valued symbols

2.17 Definition. For v, m E IR U {-oo} and some given weight-data 9
R8m(IRq x IRq l g) denote the space of Green symbols, i.e., all ftmctiOllB

with the property

(,,0,8), let

9 E nsElRSII,m (JR'l x JRl1; KS
", S~l)'

g* E n nSII,m(IRq X JRQ. KS'-o S-')
"EA " Q2 '

for certain asymptotic types Ql E As(o, 8), Q2 E As(-,,8) (depending on g). Here * denotes
the formal adjoint with respect to (', ·h:o,o : K,",e x K-s,-e --+ C.

2.18 Lemma. Let weight-data 9 = (/,0,8), g' = (0, l?, 8), and N E IR be given. Then tlle
following inclusions hold: - -

a) ~aeR8m (JIrl x JRll, a) c R~-IQI ,m-IßI (IRq x IRQ, a) ,

b) R~ ,m' (IRQ x IRq ,~') . Rdm (IRq x }RQ,~) c R;;+II
I

,m+m
l

(IRQ x RQ, (" u, 8)),
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c) Jf l' ~ , and 5~ 8 then R8m (JRIl x R'l, tz) C R8m (JRil x JRll, (1,5,8)),

d) R8m(JRil x IRq,~) C Rdm(JRIl x JRIl, (,,8,]19 + T,O])) VO ~ T < -19,

e) tNw(t[7]])Rdm(IRq x JIrl,g) C R~-Nlm(JIrl X R'l, (,,0 + N,8)) and

Rdm(~ x Rq, tl.)tN w(t[TJ)) C R~-Nlm(JRCl X JRQ, (,- N, 0,8)).

PROOF: a), b) are elementary.
c), cl) follow fron1 KS /! '-7 K'tr ancl that for each Q E As(" 8) there is a QE As(5, 8) (Q E

As(o,]19 + T, 0])) such that E~ '-7 E~ Vk E N.
e) Using Proposition 1.11 and thc notations of Definition 1.7, the claim follows from

tN (Z~ + &Q) = (1-lkkf+N)-iJ-ck n 1-lk ,,+N) + [ij = Z~ + cij

with Q= {(qj - N, mj); qj E Q} E As(, +. N, 8), and the fact that K- 1 ('f})tNK(1}) = [71]-NtN .

•
2.19 Proposition. Let" 1I E IR and A(y, TJ) = t-V w(t[1}])op1(h)(y)w(t[1]]) witll h E Mpoo,m
~nd 7rcP n r 1/2-, = 0. Then we llave

Furtber for each Q1 E As(,,8) there is a Q2 E AS(r - v, 8) such that

A E nkENsvlm (JIrl x ~; E~ l' E~:;! ).

(Here we assume that CQl = Cp'Ql = cQ:;!, cf (1.3))

PROOF: The first claiIll is an iUlmediate consequencc of Remark 2.16 and Propositions 1.11,
2.13.c). By Proposition 1.11 is w(t[1}]) E SO(~; E~l' Z~l + [Ql)' Now by Corollary 2.3 M, :

Z~l + EQl -t A~7-t'J-Ck iSOInorphically. In view of OP11 (h)(y) = M~lMh(y)M" Proposition

2.13.d), and Remark 2.16, we obtain op1-(h)(y) E SOlm(IRq X R'l; Z~l + cQp Z~'Ql + Ep.Ql)'

Furthermore, w(t(TJ]) E SO(~; Z~'Ql + cP'Ql,E~'Ql) by Proposition 1.11. Finally, as in the
proof of 2.18.e), the factor t-V causes a translation of the type p. Q1, and the order v (with
respect to 11) in the sYInbol estimates of A(y, 71). •

2.20 Definition. Let data fl. = ({', r - J-L, 8), 8 =] - k, 0], with r, J-L E IR and k E N be given.
Further let v E IR with J-L - v E No. A function m on R'l x IRq is called a smoothing MeZlin
symbol (of order (v, m) with respect to [l) if it has a representation

k+v-ti- 1

m(y,1]) = w(t[TJ)) L t- v+j L oplja (hjo)(Y)71°w(t[11])
j=O lal0

L Aja(y, 11),
O$lo)~j~k+v-J..l-l

Ajo (y,1]) = w(t[1}])t- v +j op1a (hja)(Y)TJaw(t(TJ])
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O::;j$k+v-J.l-l.

with
hjo E M~c::,m, 1fCPjo n r 1/2-,ja = 0, , - (J.l - v) - j $ ,jo ::; ,. (2.6)

Note that m == 0 if J1. - v 2: k. The reason for taking k + v - fJ. - 1 as upper summation
bound is that terms corresponding to larger coefficients are Green sylnbols, as will be proved
in Proposition 2.30.

2.21 Definition. Let v, 9 = (", -~, 8), be as in Definition 2.20. The space of all functions
m + 9 with 9 E R!6m (JRll :;}RQ, g) and m as described in 2.20 is denoted by

~M~G (IRq X IR'l, fl)·

Note that in case of j.J. - v ~ k we have Rit~G (IRQ x IRQ ,H-) C R'(;m (JRfl X JRll , fl)'
The conormal symbol of order v - j of m + 9 is defined by

a~j (m + g)(y, z, 1J) = L hjo(Y, z)1]°,
10lSj

Prom the cone calculus it is seen that the notion of conormal symbols is weH defined (cf. [16],
Part 11, Proposition 3.1.27).

2.,22 Lemma. For v, H- as in Definitioll 2.20 and flC*} = (-, + J.l, -,,8) is
"

{Rv,m (IRq x ~ g)}* = Rv,m (IRq x ~ gC·))
M+G '_ M+G '_'

that means R'kt-~G(JR'l x JRll, .) is 'closed' under pointwise Formal adjoint.

PROOF: FrOln the definition of Green symbols it is obvious that

{Rdm(JR'l x JR'l, fln· = Rdm(~ x ~,H-C.)),

Thus we only have to consider the formal adjoint of an operator Ajo, cf. Definition 2.20. Now
it is known, see e.g., [16], Part I, Lemola 5.1.10, that

A jo (y,1])* = w(t[1]])op~::?ja (h)~)(Y)t-v+j1,aW(t[ryD

= w(t[ry])t-v+iop~,ja+V-j (Tv-j h)~)(Y)1]°w(t(ry]).

For the second equation we UBed Relnark 2.14. In view of ReInark 2.15 the desired result
folIows. •

2.3 The behaviour under weight shifts

Here we establish a number of lemmas concerning mainly (the interaction of) smoothing Mellin
symbols and their behaviour under weight shifts.

2.23 Lemma. Let h E Mpoo,m, , E IR with 1fcP n r 1/2-, = 0 and g~ E Rdm' (IRQ x

IRq, (,,0, 8)), g~ E Itdnl
' (JR'l x JR'1, (8",8)) be given and set

go(y,1]) = g~(y, 1J)w(t[ry])op1-(h)(y)w(t[1]]) , gl (y, ry) = w(t[ry])op1-(h)(y)w(t[ry])g~ (y,ry).
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PROOF: First, it is clear that 90 E sv,m+m' (IRQ x IRQ; JC 8
", E~), k E N, for an appropriate

type Q E As(o,8). Also 91 E sv,m'(IRQ x JR'l;JC8,a,E~I)' k E N, for a certain Ql E As("8) by
Proposition 2.19. Thus thc statement follows since 9j is of the same fonll as 91-j (j = 0,1) .

•
2.24 Proposition. Let h E M~,m and 0" E IR witll 1rcP n f 1/ 2-, = 1rcP n f 1/ 2- a = 0.
Furtller set T = Iuin(" 0), (! = max(" 0), 8 =] -I, - 01, 0], and

G(y) = op1(h)(y) - opit-(h)(y).

Then there exist asymptütic types R 1 E AS(T, e) and R2 E As(-(!, 8) such that

H 1rCP n r 1/2-ß = 0 für a11 real ß between , and 0 then G == O.

PROOF: (cf. [19J Theorem 1.1.55). Let 0 :2: , and u E COO(ll4). Let Pj, j = 1, ... ,rn, be those
mj

poles of h with 1/2 - 0 < Repj < 1/2 -" and L Ujk(Y)(Z - pj)-(k+l) be the principal part
" k=O

mj

.of the Laurent expansion of h in Pj, and E ~jk(Z - pj)k be apart of the expansion of Mu in
k=O

Pj' Now

G(y)u(t) = ~ ( t- Z h(y, z)(Mu)(z) dz
21r~ Je

with a contour C surrounding the poles of h in the strip {1/2 - 0 < Rez < 1/2 -,}. PrOfi
this we get

m mj (-1)1
G(y)u(t) = ~L -ll-djl(y)t-Pj logt t,

)=01=0

wbere
djl(Y) = L ajk(Y)~jm,

m-k=l

this is G(y)u E tRI with R1 = {(Pj, mj)j j = 1, ... 1 m}. Prom the continuity of the mapping
u t-+ ~jk : 11.&,0 n 11.8

" -7 C we obtain

m mj

IIG(Y)'lLlleRI r-v L L: ~ldjl(Y)! ~ c (y)m II'lLjj1{.t,l5n1{.t'i'
j=O 1=0

The derivatives can be treated in the same way, since

Hence tbe result follows by density of COO(~) in 11.8 ,0 n 11. 8
,",/. Für treating C* note that

C*(y) = op~?·(h(*»)(y) - opA!(h(*»)(y). •

Für notational convenience we now set 8N =] - N, 0] for each N > O.
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2.25 Corollary. Let h E M~,m and 0" E IR with 7fcP n r 1/2-"f = 7fcP n r 1/2-0 = 0. Tben
the function

g(y, TJ) = W(t[l1]) {oP1(h)(Y) - op~(h)(Y)} W(t[l1])

is for eacb N > 0 an element oE

IE 7fcP nr 1/2-ß = 0 for a11 real ß between , and°tben 9 == o.

PROOF: With notations from Proposition 2.24, one obtains at first that for each N > 0 there
is a Ql E AS(T,8N) such that w(t[1J]) E SO(~;tRllE~l) for all k E No. Further w(t[1]]) E

sO(~; KS'o, 1-[8,0 n 1i~"). Hence the result simply follows from g(y,1}) = w(t[1}])G(y)W(t[l1]).
The formal adjoint y* is treated analogously. •

2.26 Corollary. Let h E M~,m and 0" E IR with 'lrCP nr 1/2-"f = 'lrCP nr 1/2-"f+o = 0. Then
the Eunction

y(y, 1]) = W(t[17]) {tOoP1(h)(y) - op1(TOh)(y)tO} w(t[17])

is.for each N > 0 an element oE

Rcolm(IRq X }RQ 1 (max(, - 0, ,), min(, + 0, ,), aN )).

IE 'lreP n r 1/2-ß = 0 for all real ß between , and , - °then 9 == O.

PROOF: Follows from Remark 2.14, Corollary 2.25 and Lemlna 2.18.e). •
2.27 Lemma. Let h E Mpoo,m and , E IR witb 7feP n r 1/2-"f = 0 and q; E Co (:Il4). Then
the functions

go(y, TJ) = q;(t[1]])opl(h)(y)w(t[17]),

are for eadl N > 0 elemellts of

PROOF: Because of Propositions 1.11, 2.19 and Lemma 1.6, it is obvious that Yo E sO,m(JR'l x
Rq; KS", E~), k E N, where CJ is the empty assymptotic type. Choosing w such that wq; = q;,
we have a decomposition of Yl as

Here we can without loss of generality assurne that 7fcP n r 1/2-, -N = 0; otherwise we CDuld
replace N bei N + c with an appropriate c > 0 and use Lemma 2.18.d). Now, by Lemlna
1.6 and Corollary 2.25, the first terul on the right-hand side is an element of sO,m(JRll x
JRll;K~,,,E~), k E N, with a certain Q E As(,,8N). By Lemma 1.6 and Propositions

2.13.c), 1.11 the second term is an element of .)Ü,m(IRq x JRQ; KS,"f 1 E~), k E N. This shows
91 E sO,m (JRll x JJrl; K S" , E~) , k E N. Finally note that g; is an operator of the form
91-j (j = 0, 1). •
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2.28 Lemma. Let h E Mpoo,m, h' E Mp,oo,m' and, ::; 8 E IR with 7rcP n r 1/2-, = 'TreP' n
f 1/ 2- 6 = 0. Then for eadl choke of ,0, 80 E IR. witb, ::; ,0 ::; 80 ::; 8 and 7rcP n f 1/ 2- IO =
7rcP' n f 1/2-60 = 0 the function

g(Y,T}) = w(t[1])) {opl(h)(y)w1 (t[T}])opt(h')(y) - op~(h)(Y)Wl (t[7]))op~(h')(Y)} w(t[1}))

is for each N > 0 an element of

PROOF: Choose W2 such that W2W1 = W1. Then the statement follows from the decOInposition

g(y,1]) = w(t[1]])op1I(h)(Y)W2(t[1]]) [Wl(t[1]]){optt(h')(y) - op~(h')(y)}w(t[1]])] +

+ [w(t[1])) {op1- (h)(y) - opTI (h)(y)}Wl (t[1]])] W2 (t[1]])op~(h')(y)w.(t[1]])·

and application of Corollary 2.25, Lemma 2.23, and Lemma 2.18.c). •
2.29 Lemma. Let h E Mpoo,m, h' E Mp/XJ,m' and, E IR witll7rCPnf1/2_1 = 'TrCP/nf1/2-1 =
"0. Then the function

g(y,1]) = w(t[7]))op1(h)(y)(1 - wd t [7])))op1(h')(Y)W2(t[1]))

is for eadl N > 0 an element of

PROOF: Consider the decomposition

g(y,1]) = w(t[1])){op1(h)(y) - opriN(h)(y)} (1 - wl(t[1])))op1(h/)(y)W2(t[1]))

+w(t[1]))opriN (h)(y)(l - W1 (t[1])) )Op1/(h')(y)W2 (t[1])).

By using Propositions 1.11, 2.24 it can be verified, in analogy to the proofs of the latter propo
sitions of trus section, that the first term is an element of sO,m+m

l

(JRIl x IRQ; KS'I, E~), k E N,

for a certain Q E As(" 8 N ), and the second Olle of sO,m+m' (IRq x JRIl; K~'I, E~), k E N. Also
g* can be handled in this way since it is of the same type as g. •

2.30 Proposition. Let data 9 = (",-/-t, 8),8 =] - k,O] with k E N, and h E Mpoo,m be
given. Further let 0, N E IR wi"th 'TrCP n f 1/ 2- 6 = 0, k ::; p, + N E No, and ,- /-l. - N ::; 8 ::; ,.
Then

g(y,7]) := w(t[1]))t N opit(h)(y)w(t[7])) E ReN,m(JIrl x JIrl, [l).

PROOF: First we will show that 9 E s-N,m(IRq X IRq; KS,I, S~-I') for a certain type Q E As(r
~, 8). GOIlSider the case of 8 = ,. Then tNopit(h)(y)w(t[1]]) E s-N,m(JRIl X JRIl; KS'I,1-l r'I+N)
for all r E IR. Since N +~ ~ k, Proposition 1.11 shows that 9 E s-N,m(I~.q X IRQ; KS'I, Eh), I E

N. If 0 < " we find an ca > 0 such that 0" < , - cO and 7rcP nr 1/2-1+€ = 0 for all 0 < c ::; co.
By Corollary 2.25 and Lemma 2.18.c), e)

gdy,1]) = w(t[1]])tN{op1it (h)(y) - opit(h)(y)}w(t[1]))
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is an element of RäN,m(IRq X JRll, er - c" - j.L, 6)) (note that 8+N ~ ,- p.) and is independent
of c (as an operator familyon /C3,,). Eut this implies 91 E s-N,m(IRQ X IRq; /CS", S~-Il) for a
certain Q E As(, - J.', 8). Furthermore,

is in s-N,m(IRQ X IRQ; lCs,i,lCr,i+N- t ), r E IR, and is independent of c. This shows 92 E

s-N,m(JRCl X JRIlj KS,i, Sb-J1.). Hence the statement at the beginning of the proof is true since

9 = 91 + 92· The formal adjoint g(y,1])* = w(t[1]])t N opiJ-N (T- N h(*))(y)w(t[1]]) is treated
analogouBly, by distinguishing the cases of 8 = , - j.L - N and 8 > , - P. - N. •

2.4 Differentiation and composition

2.31 Theorem. Let weigbt-data [l = (", - j.L, e), e =] - k, 0], be given. Tben

In' ease 01 la] ~ k + 1/ - J-L we even bave

aaaßRv,m (JRll X IRq g) c Rv-lal,m-IßI(JRll x]RQ g)
17 Y M +G , _ G '_ •

PROOF: Since &eMpoo,m C M;oo,m- 1ß1 we can assume that ß = O. Ey Lemma 2.18.a), we
onJy have to take a look at smoothing Mellin symbols. With the notatiollB from Definition
2.20 we get

k+v-J1.-1
at]jm(Y, 1]) = w(t(1]])t- V L ßt]/mj(y,1])w(t[1]]) +

j~O

k+v-J1.-1

+(0171 [1}])(Otw)(t[1]])t-(V-l) L mj(Y,1})w(t[1}]) +
j=O

k+v-Il- 1

+(aT/j (1]])w( t[1]])t-V L mj (y,1])(atw )(t (1]]) t,
j~O

where mj(Y, 1]) = t j L:lal:::;j op1{a (hja) (y)1]0 . Now [1]] E Sl(~) and we obtain by Lemma 2.27
and Lemula 2.18.c), e), that the second and third term on the right-hand side are elements of
R~-llm(JRIl X IRq, [l). Now an induction shows that a~m(y,1]) equalB

k+(v-10:1)-1l- 1

w(t[1J]) L t-(v-Ial)+j L op~(1 (hjO")(y )1]0"w(t[1]])
j=o 10"10

d 1 . cl . Rv-lol,m(illlq l1lIO ) 'th -. - d h-· - (o+r)! h .mo u 0 a remalll er In G ll\. X ll\.' , [l, WI 'JO" - /j+lo:I.O"+a, an JeT - 0:. J+lo:!,eT+a'

Hence Oi;m E R;l~,m(IRQ X IRQ j [l), cf. Definition 2.20. •
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2.32 Theorem. Let m + 9 E R~~G(IR.q x JRll,~) with ~ = (", - ~,8), 8 =] - k,O], and

m'+g' E R~'';~(}RQ x~,l) witl1~' = (,-p.,,-p.-p.',8). Tl1en witb~ = (",-/L-p./,8)
tbe pointwise product satisfies

(
I ') ( ) RV+v' ,m+m' (1TbQ TTbI'1 )m+g m+g E M+G ll\.·Xll\.·,~.

IE one of the factors is a Green symbol, so is the product.

nJI+V' m+m'PROOF: In view of Lemma 2.23 and Lemma 2.18.c), e), we have g'm, m'9 E l"tG' (IRq
xJR'1 '~.l). The same is true for g'g because of Lemma 2.18.b). Thus we only have to consider
the term m'm. Using notations as in Definition 2.20, we have to take a look at products

A~ß(Y,1])Aja(Y,1J) = wo(t[ry])t-(v+V)+(j+I)op~+V-j (Tv-jh~ß)(Y)1]ßwo(t[1]]) .

.w(t[1J])op~O (hja )(y)ryaw(t[1]])

(here Remark 2.14 was used). Now from the conditions (2.6) we obtain

T - [(J..' + J..") - (v + v')] - (l + j) ~ ':13 + v - j ~ ,- (JL - v) - j ~ lja "5:. ,.

In view of Lemma 2.28 (and Lemma 2.18.c), e)) we can assurne that ,ja = ,Iß + v - j = a
~with some , - [(JL + p.') - (v + v')] - (l + j) :5 U :5 " since changing of weights causes
'only a remainder g1 E R~+v' -(j+l)+ 101 +113 I,m+m

l

(JR'l X JR'l,:2.0). Also only a remainder g2 E

R~+v -(j+I)+lal+IßI,m+m
l

(JR'1 X JR'1,:2.0) arises if we omit wo(t[1]])w(t[1]]), cf. Lemma 2.29. Hence

A~ß(Y' 1])Aja (Y,1J) equals

Wo (t[ry])t-(v+v)+(j+l)oPM((TV-j hlß)hja)(y)ryo+ßw(t[ry]) + 91 + 92

and this finishes the proof. •
2.33 Remark. With the notations and the proof of Theorem 2.32 we obtain a formula for
the behaviour of conormal symbols under multiplication:

av;jV-j((m' + g')(m + g))(y,Z,1]) = L [(TV-qu~-P(m' + g'))u~q(m + g)] (y,z,ry) (2.7)
p+q=j

L (L L (TV-qh~ß)hq,,)(y,z)rr,
1001:$j p+q=j 101 Sq,lßI:5p

n+ß=<1

for 0 :5 j :5 k + v + v' - J1. - /-L' - 1. Prom this it is seen that for given m E R~~G(lRtl X }RQ, fl),
m" E R';j:cm +

ml
(JRll X JR'l,:2.0), there exists (for fixed cut-off functions) at most one m ' E

v' m
l

( ')R M'+G JR'1 x IRI1'!l such that

m'm = m" modulo R~+v,m+m' (JRQ x jRQ, :2.0).

In fact the conormal symbols of 7n' can be discovered from solving the equations

v+v'-j ( , ) _ v+v-j( ")
UM mm -UM m

with help of the above multiplication rule (2.6).
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3 A subalgebra of global boundary value problems

3.1 Green and smoothing Mellin operators

3.1 Theorem. Let the notations be as in Theorem 2.32. Then there exists an mo + go E
R v+v' ,m+m' (TIM TIM ) cl bM +G JA,.' x ll'\.' 1 !l.o su ] t at

op(m' +g')op(m + g) = op(mo + gO).

Further m == 0 or 7n' == 0 implies mo == O.

PROOF: FrOln Proposition 2.19 we know that for each Ql E As(-r,8) there exists an Q2 E
As(,-J-J., 8) such that mE sv,m(JRIl xJRll; E~l' E~2)' k E N. An analogous statement holds for
m'. Hence from Theorenl 1.4 it is immediately seen that Op(g')Op(g) = op(hI), op(m/)op(g) =
Op(h2), op(g')op(m) = op(h3 ) with certain hj E R~+v' ,m+m' (IRq x JRIl, 9 ) (note that * cau be
pulled nnder the integral). For considering m/#m we use Theorem l.4(with N ;;::: k + v' - Jl)

I v' Nm'( ')and derive from Theorem 2.31 that a~m E Re-, JRIl x JRIl '9.. . Thus from Theorems 2.31,

2.32 it follows that m'#m E Rv;t~'am+m' (~ x JRfl '2.0). •

3~.2 Theorem. Let m + 9 E R~~G(IRq x Ilt?,~) witll 9.. = (", - J,L, 8), e =] - k, 0]. By (".)

denote the scalar product in L2 (Roq , K,Ü,O). Then there exists an mo +go E Rit".::.G (IRQ x JRtl, 9..(*)),
wllere 9..(*) = (-, + j.t, -,,8), sud] tllat

(op(m + g)u, v) = (u, op(mo + go)v)

for all u E S(JRi'l, KS,t), v E S(lRfJ, Kr,-1+1J.) and arbitrary r, 8 E IR.

PROOF: Writing m(y, ry) as in Definition 2.20, we set

m*(Y,1]) = L Aja(y,ry)*
o~ Iod $j$k+v-tl-I

with Ajo (y, ry)* as in the proof of Lemma 2.22. Now, using standard techniques for calculating
fonnal adjoints of global pseudo-differential operators (for further details see, e.g. [4]), we
obtain

(mo + 9o)(Y, ry) = L ~~D~ (m* + g*)(y, 7]) + r~) (y, 7])
a.

lol<N

for each N E N, with a remainder

r~) (y, 1)) = N L J (1-:(-1 JJe-ix'&';D~ (m* +g*)(x + y, 1) +!J() dxr!f,dB.
IO"I=N

Choosing N > k +v - j.l, the presence of the differentiatiollB a:;D~ in connection with Theorem

2.31 then iInplies that r~) E R~-N,m-N (IRq x lRfJ, ~(*)). Hence mo + 90 E R~~G(Roq x lRfJ, fl*))
by Lemnla 2.22 and Theorem 2.31. •
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3.2 Block matrices including trace and potential conditions

To deal with boundary value problems it is necessary to introduce matrices of operator func
tions with Green and smoothing Mellin symbols as entries in the left upper corner.

3.3 Definition. Let l/, m E IR U {-oo}, N+, N_ E No and 9 = (,,0,8). A function g(y,,,,) E

n$ERsv,m(JRfl x ]RQj JC$" E9 CN _, JCoo,o E9 CN+) satisfying -

g. E nsERsv,m(JRfl x JRfl i JC$,-O E9 CN+ ,SQ; E9 CN _)

for certain asymptotic types Ql E As(o, 8), Q2 E As( -,,8) depending on g is called a Green
symbol with trace and potential part. As a rule, for aspace E with group action. {f9J we
associate with E E9 CN the action {K.>.. EB 1}. Further • means the pointwise forulal adjoint in
the sense of

(gu, v)K:0'o~+ = (u, 9*V)K:0'o~-

for all u E Cgo(~) EB CN - and v E Cgo(~) EB CN+. The space of all such functions g is
,denoted by

We call 912 a potential and 921 a trace symbol. Clearly 911 E Rdm(JRl'l x IRq, [1) and 922 is an
(N+ x N_)-matrix with entries from sv,m(JIrl x JIrl).

3.5 Definition. Let 9.. = (", - j.L, 8), e =] - k,O], with " J-1. E IR and k E N. Further let
v E IR with Jl- v E No and N+, N_ E No. Now

denotes the space of all functions

with a smoothing Mellin symbol m corresponding to v and the data 9, cf. Definition 2.20, and
g E R8m (IRq x IRq , 9..i N_ , N+). The corresponding conormal symbo!s-are given by

V- j ( ) V- j ()UM m+g =UM m.

Now it is straightforward to generalize the Theorems 2.31, 2.32 and 3.1 to the block Inatrix
situation, especially we have the following
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3.6 Theorem. Let m + g E R~~G(lRtl X ~ ,H-i N_ l M) witlJ H- = (", - J.L, 6), e =] - k, 0],

and m' + g E R~~~(fItl X ~,[LI; M, N+) witb fll = (, - Jl", - J.L - /-L', 8). Tben witll flo =
(" 'I - J--t - J.LI, e), tl1er.e is an mo + go E RV;::am+m' (lRq x lRq

, 9..n i N - , N +) such that

op(m' + g/)op(m + g) = op(mo + go).

We have 111() + go = (mI + g')(m + g) + r witlJ a certain remainder r E R~:Gl,m+m'-l (IRQ x
JRIl, [la; N_, N+). Furtbermore, ifm == 0 or m l == 0 tben rno == 0.

3.3 Ellipticity and the nature of parametrices

In the following let fl = (0,0,8), e =] - k, 0], be fixed.

3.7 D~finition. Let 1 denote the identity operator E ~ E and 1 = (~ ~). viewed as an

operator E EB F ~ E EB G for various spaces E, F, G.

In view of Theorem 3.6 the operators

op(l + m + g), m + g E R~+G(Ilrl x IT(l, [Li N_, N+),

form a subalgebra of operators S(lRq , L2 (Il4) EBCN _) ~ S(JRCl, L2 (lI4) EBCN+). Thc aim ofthis
paragraph is to find a notion of ellipticity which is equivalent to the existence of a parametrix.

3.8 Definition. Let m + g E R~:,o+G (IRQ x Rq, 9..; N_ 1 N+). The symbol 1 + m + g is called
elliptic if

i) there exists an asymptotic type P with 7fcP n r 1/2 = 0 and

ii) for large I(Y,l1)1
L 2(Il4 )

(l+m+g)(Y,l1): EB
CN -

is invertible and the inverse is uniformly bounded in (y, '1]).

3.9 Remark. a) Condition i) of the ellipticity actually contains three assumptions on thc
conormal symbol of 1 + m + g. At first, the independence of the asymptotic type P
of y, which does not hold in general. It should be mentioned that SCHULZE developed
a calculuB allowing non-constant asymptotic types (see e.g. [17], keyword: continuous
asymptotics), to which we plan to extend the present results. Second, the y-independence
of the poles induces that (1 + a~(m + g))-1 E COO(lRq ,M~) for an appropriate type P,
but we will need additional conditions on the functions (y,e) H 1+a~(m+g)(Y,ß+ie)

in order to ensure (1 + a~ (m + g)) -1 E M~lO. Finally, the poles mrnt stay away from
the critical weight-line r 1/2 to allow the cOllBtruction of op~((1 + a~(m + g)) -1).
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b) Condition ii) of the ellipticity guarantf~es that

cf. the notations from Definition 1.3. This simply follows by the chain rule, and the
unitarity of the standard group action on L2(IR.r).

3.10 Theorem. For m + g E R~+G(I~q X JRll, fl..; N _, N +) are equivalent:

i) 1 + m + g is elliptic.

ii) There is a symbol m' + g' E R~o+G (R.q x R.q, 9-; N+, N_) such that

(1 + m' + g')#(1 + m + g) - 1 E RcOO,-OO(JIrl x JJrl, gj N_, N_).

Here 1 is tbe identity operator on L2(~) EB CN+ and L2(IR.r) EB CN _, respectively.

'The rest of this section is devoted to the proof of the above Theorenl.

3.11 Proposition. Let l+m+g be elliptic. Tben there exists a symbol ml +gl E R~o+G(}RQ x
TJrl,9..; N+ 1 N_) sud} tbat

(1 + m +g)-l (y, 1]) = (1 + ml + gd(Yl1]) for large l(y,1})I,

(1 + m + g)(1 + ml + gl) - 1 E RäOO,-OO(JIrl x fJ(l, fl; N+, N+),

(1 + ml + gd(1 + m + g) - 1 E RäOO,-OO(JIrl x JW!l, g; N_, N_).

PROOF: In view of Remark 2.33 and condition i) of the ellipticity, we find smoothing Mellin
synlbols m 1,m2 E R~o+G (JRll x RI, fl..; N+, N _) such that

(1 + md (1 + m + g) = 1 - g'

(1 + m + g)(l + m2) = 1 - g"

(1)

(2)

with certain g' E R~O(JRfl x ~'fl;N_,N_), gl/ E R~O(JRfl x Rq,9..;N+,N+). Note that it is
possible to write on the right-hand side 1 instead of 1, since 1 E SO,O (IRQ X JR<1; CN , CN ) and
thus 1-1 E R~O(IRq X IIr';CN JCN). Equations (1) and (2) yield

(l+m+g)-l 1 + ml + g'(l + m2) + g'(1 + m + g)-lg"

1 + m2 + (1 + mdg" + g'(1 + m + g)-lgl/.

(3)

(4)

Now choose SQIne 4J E C8"(R2q ) such that 1 + m + g is invertible in supp (1 - 4J) and set

gl = (1 - 4J)g'(1 + m2) + g'(1 - <p)(1 + m + g)-lg",

g2 = (1 - 4>)(1 + ml)g" + g'(1 - 4J)(1 + m + g)-lg",
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which are elements of R~o(JRIl x lRfJ, g; N+, N_) in view of Remark 3.9.b). Now writing 1 +
ml + gl = (1 - <PHI + fil + g'(1 + ml) + g'(1 + m + g)-lg"} + q'J(1 + fil), we get from (1)
and (3)

(1 + mt + gd(1 +m + g) = 1 - q'J + q'J(1 - g') = 1 - q'Jg'

and analogously from (2) and (4)

(1 + fi + g)(1 +m2 + g2) = 1 - 4Jg".

Multiplying thc latter two equations with (1 + ffi2 + g2) and (1 + fil +gd from the right and
the left, respectively, and then subtracting the resulting equations yields

with a certain remainder g" E R~O (JRll x JIrl , g; N +, N _ ). Hence we obtain

(1 + m + g)(1 + ml + gd = 1 - q'J(g" - (1 + m + g)g"'),

and this finishes the proof, since <p is compactly supported in (Y,1}).
,<.

•
3>~12 Lemma. Letgj E R~-j,m-j(JRIlxJRll,~;N_,N+), jE No, beasequenceofGreensymbols
wllere tl1e involved asymptotic types are independent oE j. Tllen tbere is a g E Rdm(IRq x
JRIl , ~; N _, N+) satisfying

N

g - L gj E R~-(N+ILm-(N+l) (JR'l x JRq, ~j N_, N+) VN E No .
j=O

The elelnent g is uniquely defined modulo RaOO,-OO(JRIl x lRfJ ,~; N_, N+) and we write

PROOF: The proof is completely analogous to that for scalar valued (global) pseudo-differential
operators, Le., we obtain g by

00

g(y,1}) = L X(Y/Cj,77/Cj)gj(Y, 1})
j=O

with a X E coo (IR2q) heing zero in a neighhorhood of 0 and identically 1 near infinity, and real
nUlnbers Cj tending to infinity with j sufficiently fast. •

PROOF OF THEOREM 3.10, i) :::::} ii): By Proposition 3.11 there exists an fil +gl E R~o+G(JRIl x
IRq,~; N+, N_) such that

(1 + m + g)#(l + ml + gr) = 1 - r
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with r E R"i./+c1 ("'iRq x JIrl, H,.; N+, N+). For j ;::: k we have r#i E ReJ,-J (JRCl x IRQ, H,.; N+, N+),
moreover, the eorresponding assymptotic types are independent of j. Thus by Lemma 3.12
there is a g2 E Rek,-k(JF:l x }RQ ,9.-; N+, N+) with

Now we define m' + g' by

k-l

1 + m' + g' = (1 + ml +gd#(Lr#i +g2)'
j=o

Then clearly (1 + m + g)#(1 + m' + g) - 1 E RäOO,-OO(Rq x }RQ,~; N+, N+). Analogously we
obtain m" + g' with (1 + m" + g")#(1 + m + g) - 1 E RäOO,-OO(JIrl x JIrl ,~; N _, N _). But then

(1 + m' + g') = (1 + m' + g')#(1 + m + g)#(1 + m lf + g") = (1 + m" + glf)

•

PROOF OF THEOREM 3.10, ii) ::::} i): By Theorem 3.6 there are eertain remainders rl, rl E

R;'/;cl (JIrl x JIrl, 9.-; N+, N+) such that

(1 + m + g)(1 + ro' + g') + rl = (1 + m + g)#(1 + m' + g') = 1 + h.

Now r := rl - rl E 5- 1,-1 (IRQ x Rq; L2(~) EB CN+ , L2(~) EB CN+) shows the invertibility of
(1- r)(y,1]) : L2(~) EB CN+ -+ L2(II4) EB CN+ for large l(y,1])I. Hellce from

(1 + m + g) (1 + m' + g') = 1 - r

we derive the surjectivity of 1 + m + g as an operator L2(1R..t) EB CN - -+ L2(IT4) EB CN+ for
large l(y,1])I. Interchanging the roles of (1 + m + g) and (1 + m' + g') yields the injectivity,
henee invertibility of 1 + m + g for large I(y,1]) land

(1 + m + g)-1 = (1 + m' + g')(1 - r)-I.

Clearly the righthand side is a uniformly bounded family of operators L 2(~) EB CN + -+
L 2(~ ) EB CN - (for large I(y, 1]) I)· Hence condition ii) of the cllipticity is fulfilled. Finally from
a~(r) = 0 and a~((m+ g)(m' + g')) = a~(m + g)a~(m' + g) we deduee

O"~(m + g)(1 + O"~(m + g))-1 = -a~(m' + g')

and obtain eondition i) of the ellipticity by the following Lemma 3.13. •
3.13 Lemma. fEh E Mpoo,o and h' E Mp,oo,o and h'(1 + h,)-l = h, tl1en (1 + h,)-1 E M~'o.

PROOF: This statement is a simple consequence of (1 + h,)-1 = 1 - h'(1 + h,')-1 = 1 - h E
1 + Mpoo,o C M~'o. •
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4 The algebra on the infinite wedge

Here we show how to modify thc operators considered before to obtain an algebra of global
wedge pseudo-differential operators on the infinite (open stretched) wedge JRfl x X/\. Here
X/\ = II4 x X is the open (stretched) cone with base X, and X is a closed compact smooth
manifold of dimension dirn X = n. We will state explicitely the generalized versions of all the
objects (i.e., underlying Hilbert spaces, symbols, and so on) involved in Sections 1 to 3. Then
all results obtained for the half-space situation carry over to the general case JRQ x X/\. Proofs
are dropped, since they are completely analogous to those given before.

As usual, LI-'(X) denotes the pseudo-differential operators of order J..L on X, and LI-'(Xj IR) the
parameter-dependent ones with parameter {} E IR. Dnder the identification fß -+ ~ : ß+ie l-t {}

we also consider LI-' (X j rß) .

4.1 Remark. For each J-L E IR and reals Cl < C2 there exists a function RJl(z) E A({z E

Cj Cl < Re z < C2}, LJl(X)) such that

i) RJl(ß + i{}) E LI-'(X; IRu) continuously in ß E lei, C2[,

ii) RJl(z) induces isomorphisms HS(X) -+ H 8-Jl(X) for all 8 E IR and each z.

Such an RJl is called (hololllOrphic) order-reduction of order IJ.

We now turn to the definition of the underlying distribution spaces on X/\. For 8" E IR let
1l8 ;r(x/\) be the cOlllpletion ofCgo(XA) = Cgo(~,COO(X)) with respect to the norm

To an f E LJl(X;f 1/ 2_,) we associate a Mellin pseudo-differential operator, defined on
C~(X/\) by

[op1(f)u] (t) = ~ [ t- Z f(z)(Mu)(z) dz.
27rz Jr1/'l_...,

This extends by continuity to operators

(4.1)

A distribution u E V'(X A
) is said to be an element of H~one(XI\) if for each diffeomorphism

K, : U C X -+ V C sn, where sn is the unit sphere in R1+n
, and each cP E CÖ(U) the

push-forward of rfru to IR1+n \ {O} under

Pi, : II4 x U -+ IR1+n
\ {O} : (t, x) H tK,(x)

belongs to H8 (IR1+n \ {O}), Le., the closure of cgo(IRi+n \ {O}) in H 8 (IR1+n ). A (Hilbert) norm
on H~one(XA) is obtained by a standard construction using a partition of unity. Now the cone
Sobolev spaces are defined as
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For , E IR, e =]19,0], we write Q E As(" 8) if

Q = {(qj,mj) E C x No; nil -,+~ < Reqj < nil -" j = 0, ... ,N}

for some N E No. To such a type associate spaces

N mj

= {(t, x) t-4 L L ejk(X)t-qj logk tj ejk E HS(X) },
j=O k=O

- "nsEREQ(X ),

which are canonically isomorphie to a finite product of HS(X) and COO(X), respectively. Writ
ing K~'(X") = nr>oKs,,-D-E:(X") we then set

which are Frechet spaces. Finally, we define the space of rapidly decreasing functions on X"
as S(X") = S(IR, GOO(X))IR+ and set

S6(XI\) = [w]KQ"(XI\) + [1 - w]S(XI\),
,~

which is a projective limit of the Hilbert spaces

where Ck = cQ/k and cQ is chosen in a way that Reqj > nil - r + {) + cQ for all j.

The standard group action, cf. Example 1.2, now is the restriction of the mapping V'(XI\) -r
V'(XI\) defined by

(~>.u,s) = (u,'\ n;l s(,\-lt,x)),

where s(t, x) is a smooth, compactly supported section in the densi ty bundle over X 1\ . In
particular, this induces on KO,o (X") a group of unitary operators.

Proposition 1.11 concerning the parameter-dependent cut-off operator now takes the following
form:

4.2 Proposition. Let Q E As(,,8) 8nd Z~(XI\) = 'H..,-D-q (XI\) n 1{s,'Y(XI\). Tllen tlw
Eunction 1] H w( t[1J]) is an elemellt oE

SO(~j 1{S I'(XI\) ,1{s'l!(X")) Ve::; I

(bere we also can replace 1{~"(X") by K""(X"), and 1{s'l!(X") by KSll!(X")) and

so(~;t~(XA),E~(XI\)), SO(~; 1{k ,,-D(XI\), E~(X")),

So(~; E~(XA),Zk(X") + [~(X")), gJ(~; Zk(X") + [~(X"), E~(X")).

Here 0 is tbe empty asymptotic type in AS(/' 8). We also have
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To prove that a Mellin pseudo-differential operator with meromorphic symbol, cf. t.hc def
initions below, preserves asymptotics, oue ueeds the spaces A8'(XI\), which are defined as
follows:

4.3 Definition. Set SI'S = {z E C; nil -, + f} < Rez < ntl- ,}. Further let RS(z) be a
holomorphic order-reduction of order s defined on a strip containing the closure of SI'S, Then
AQ'(X) is the space of all meromorphic functions f E A(S')',s \ 7fcQ,H8(X)) with poles in
qj E 7fcQ of order at most mj + 1, that additionally satisfy

i) both liIl\5--to+ R 8 (ni1-, - J + iQ)f(nt l -, - J + ig) and

lim&--t~+ R 8 (ni1-, + 19 + J + ig)f(ni l -, + 19 + J + ie) meist in L2(IRe, L2(X)),

ii) for arbitrary 7fcQ-excision function XQ is

A F'rtkhet topology (in fact a Hilbert topology) is established by taking the semi-norms of
A'(S')',a \ 7fcQ, H8 (X)) and that given in ii).

Now we pass to the symbols of the pseudo-differential operators on JRCl x XI\. Again, we start
with discrete asymptotic types for Mellin symbols, er. Definition 2.4. For a given type P define
aspace of formal series

mj

Fp(X) = {L L Cjk7Ppj,ki Cjk E L-OO(X)},
jEZ k=O

with 'l/Jpj,k as in Remark 2.1. This spaee is canonically isomorphie to a eountable produet of
L-OO(X). For f E Fp(X) and real numbers Cl < C2 set

mj

f[Cl,C2](Z) = L L Cjk'l/Jpj,k(Z).

{ji cc:;RePj:::;c~}k=O

4.4 Definition. For Jj E IR let M~(X) denote the space of all meromorphic functioll8 h E
A(C \ 7fcP, L~(X)), where the poles in Pj E 7fcP are at most of order mj + 1, and the Laurent
eoefficients of thc prineipal part of h in Pj being elements of L-OO(X). Further one asks that
there exists an f E Fp(X) such that for all Cl < C2

continuously in ß E [Cl, C2]. The element f is uniquely determined. As in (2.2) we cau define
an operator T : M~(X) -t Fp(X) : h 1-1 Th = /, and then equip M~(X) with a Frechet
topology given by the following semi-norm systems:

i) that from A(C \ 7fCP, L~(X)),
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ii) that induced by the mappings

for all j E Z, °:::; k :::; mj,

iii) those given by

sup q (h(ß + ie) - (Th)[-c~,~J(ß + ie)) ,
-c~::;ß:::;c~

where q(.) runs through a system of semi-norms of LJl(Xj Re) and cf, ~ -+ 00.

4.5 Definition. The space M~,m(X), J-.L, m E IR, consists of aB h E COO(~, M~(X)) satisfying:

mi
i) Ir L: Ujk(Y)(Z - pj)-(k+l) is thc principal part of the Laurent expansion of h(y) in

k=O
Pj E 'TrC P , then

sup (y)lctj-m q (~Ujk(Y)) < 00
yERq

for all Q E Nö and semi-norms q(.) of L-OO(X).

ii) Für all Cl < C2 E IR, each semi-norm q(.) of LI-' (X; IRo), and all Q' E NZ is

M~,m(X) is a Frechet space if equipped with the semi-norms of COO(~, M~(X)) and those
froln i), ii).

Using the same techniques as in Section 2.1 it is then not difficult to verify the analog of
Proposition 2.13 for the case X/\ instead of lR..t-. The only modification is that in 2.13.c) we

consider the oplin
/

2 instead of op1, and in 2.13.d) we replace condition 'TrCP n r l / 2-'Y =
7fcP n r l / 2 -'Y+'O = 0 by 'TrCP n r ~-'Y = 'TrC P n r ~-I'+'O = 0.
Finally we consider tbe associated Green and smoothing Mellin symbols. The definition of the
Green symbols is completely analogous to Definition 2.17 and Definition 3.3, respectively. Con
cerning the smoothing Mellin sYlnbolB, cf. Definition 2.20, there appears a slight Illodification,
caused by the fact that the dimension of the base X enters in the weights and weight-lines.
Thus, in Definition 2.20 we have to replace conditions (2.6) by

The important Proposition 2.24, dealing with the behaviour of smoothing Mellin operators
under weight shifts, generalizes in the following way:

4.6 Proposition. Let h E M~,m(X) and 0" E IR with 7fcP n r !!.±.!.-"t = 'TrCP n r !!.±.!.-o = 0.
2 I 2

Furtber set r = min(" 0), e= max(" 0), e =] -11 - 01,0], and

G(y) = opl1n
/
2(h)(y) - op~n/2(h)(y).
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Then there exist asymptotic types R 1 E As(T, e) and R 2 E As(- [1, 8) such tl1at

G E n~,rERso,m(IRq x IR.q;1l~'O(X") n1ls"(X"),[Rl(X")),

G* E ns,rElRso,m(~ x JRf/;1i s ,-O(X") n1is'-'(X"),tR2 (X")).

Jf 'lrCP n r !!±l_ß = 0 for a11 real ß between, and 15 tben G == O.
2

Now all the material from Sections 2 and 3 can be verified for the case X". For completness
we finally restate the ellipticity, cf. Definition 3.8.

4.7 Definition. Let m +g' E R~O+G(}RQ x JRq 1 fl; N_, N+). The-symbol 1 + m + g is called
elliptic if

i) there exists an asymptotic type P with 'lrCP n r!!±l = 0 and
~

ii) for large I(y, 77) I
KO,O (X")

(1 + m + g)(y, 77) : EB
CN -

is invertible und the inverse is uniformly boullded in (y,1]).
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