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. Abstract
We introduce an algebra of pseudo—differential operators on the wedge R? x X", with X" =
R4 X X for some closed compact manifold X, and give a notion of ellipticity which is equivalent
to the existence of a parametrix.
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Introduction

The present investigation provides techniques to establish algebras of pseudo-differential op-
erators on piecewise smooth manifolds that have non-compact boundaries or edges. In this
geometric setting it is essential to control the operators along with their parameter-dependent
symbols near these non-compact ends (for more classic situations concerning this task see, e.g.,
CorpESs (3], EGorov, SCHULZE [5], and SCHROHE [13]). The need for pseudo-differential
calculi on non-compact spaces arises naturally even in the theory of compact manifolds.
For example, the Lopatinskij-Sapiro condition arises in the study of differential boundary
value problems on bounded subsets of a Euclidean space and makes it necessary to deal with
(pseudo-)differential operators on the half-space R...

One fundamental idea behind the approach of SCHULZE [17], [19] is that adequate operator
algebras on manifolds with ‘higher’ singularities should be reached via iteration of a given
calculus on a ‘simpler’ manifold. Since an edge can locally be viewed as a product of a
cone and a Euclidean space this, in particular, means that the analysis of pseudo-differential
operators on a manifold with edges will have the structure of a calculus with symbols taking
values in the cone algebra.

Boundary value problems comprise an important special case; here the boundary plays the
role of an edge and the inner normal the role of the model cone. The local theory of pseudo—
differential boundary problems for symbols without the transmission property in terms of an
algebra is due to REMPEL, SCHULZE [12] and ScHULZE [19]. This yields a generalization of
BOUTET DE MONVEL’s [1] algebra with the transmission property. At the same it completes
VISiIK and ESKIN'S [20], [21] pseudo-differential boundary value problems to an algebra in
which the asymptotic data are controlled in detail.

A main point of the general edge calculus is a precise description of the asymptotics of solu-
tions. This is reached by establishing a concept of elliptic regularity, which is cbtained by a
parametrix construction, and requires that the elements of the algebra act between spaces with
asymptotics in a specific way. (Note that the transmission property can also be interpreted in
this context, since it preserves the Taylor asymptotics, i.e., smoothness up to the boundary).
The asymptotics of functions can be characterized by their image under the Mellin transform,
yielding meromorphic functions in the complex plane. This behaviour is reflected in the sym-
bolic structure of the operators, i.e., the underlying symbols themselves are required to extend
to meromorphic functions. A motivation for arranging the calculus in this specific manner
are general functional analytical results conserning (the inversion of) meromorphic operator
functions, cf., e.g., GRAMSCH, KABALLO [8].

The strategy to handle non-compact configurations is in some sense analogous to that used to
deal with global psendo-differential operators on R?: one requires the symbols to have a spe-
cific growth in the covariables as well as in the variables. It turns out that the natural Sobolev
spaces for such global symbols are weighted variants of the usual Sobolev spaces on R9. In this
paper we modify this approach originated by CORDES, PARENTI, and SHUBIN, to the case of
global (abstract) operator-valued symbols. The discussion of the corresponding weighted (ab-
stract) edge Sobolev spaces including the continuity properties of pseudo-differential operators
between them requires extensive additional material, and thus will be given elsewhere.

The present paper also develops an algebra of smoothing Mellin and Green operators M and G
that extend SCHULZE’s theory for manifolds with compact edges to the non-compact situation.
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As stated above, the analysis of these operators is the most typical part for understanding the
asymptotics of solutions to elliptic problems. Since the symbols of operators in our algebra are
families of (smoothing) cone operators, which themselves have symbols that are meromrphic
functions, we can associate to each operator a family of meromorphic functions parametrized
by the edge variable. A major difference to the calculus for compact edges is that we impose
additional conditions on these families, allowing a more subtle control of the spatial dependence
of the Laurent coefficients.

For operators of the form 1+ M + G (with M + G having order zero) we establish a notion
of ellipticity that incorporates the corresponding concept for compact edges as well as new
features responsible for controlling the behaviour of the symbols near infinity. The ellipticity
of a given operator turns out to be equivalent to the existence of a parametrix, which again
looks like 1 + M + G.

Acknowledgement: I am very grateful to E. Schrohe and B.-W. Schulze for their intensive
support and assistance during (and before) the work on' this paper. Further I would-like to
thank Ch. Dorschfeldt, J.B. Gil, and T. Hirschmann for valuable discussions.

\1 Basic structures

1.1 Cone Sobolev spaces with asymptotics

This section is devoted to the definition of all spaces needed in this paper and the description
of their basic properties. For detailed proofs and further information we refer to [17}, [19], [5].

In general w(t), @(t) and w;(t), w;(t) (j € Ng) always will denote real valued functions in
C§°(R..), which are identically 1 in a neighbourhood of ¢ = 0.

Let M : C°(Ry) — A(C), where the latter space is that of all entire functions, denote the
Mellin transform given by

Mu(z) = /000 =~ u(t) dt.

The (left-)inverse of this mapping is obtained by

- 1 —z
M™g(t) =2—m/1: t7%g(z) dz.
B

Here 'y = {#z € C; Rez = f} for all real 8. For s,7 € R let H*7(R,) be the completion of
C§°(Ry) with respect to the norm

= [ (1P IMuCa) Pl (1.1
Ti2-4
Then the Mellin transform extends by continuity to linear operators

Myt HIT(RY) = (2)7° LA(Dyjaey).

There is a canonical inner product on H*?(Ry ), and H*>7(Ry ) is a subset of H} (Ry), the
space of distributions that locally belong to the usual Sobolev space of smoothness s on R, .



A natural class of operators acting between those spaces are the so called Mellin pseudo-
differential operators that are defined by

opjy(Ryu(t) = (M3} 4 (h(Z) My v u) }(2) (1.2)

for appropriate functions A on I'y/,_,, (for details see Section 2.1).
For a Fréchet space E, which is a left module over an algebra A, we set

[a]E = {ae; e € E}, a€ A,
where the closure is taken in the topology of E. Then define spaces

KM(Ry) = WHAT(R,) + [1 - W] (R, )

equipped with the topology of a non direct sum of Hilbert spaces, which thus are Hilbert spaces
themselves. This construction is independent of the special choice of w. Especially it holds
KO (Ry.) = LA(Ry).

For v € R and an interval © =}, 0], 9 < 0, we call Q a discrete asymptotic type with respect
to (v, ©), and write Q € As(y, ©), if

Q={(gj,m;) eCxNy; 1/2—v+9 <Req; <1/2-7,5=0,...,N},

with some N € Ny.Q = 0 is called empty asymptotic type and will from now on be denoted
by O. The projection of @ to the complex plane is written as

me@ = {g;;7=0,...,N}.

With such @ we associate finite dimensional vector spaces

N my

Eq(Ry) = {t > Z ijkt_‘“ loght; & € ‘C}, [¢1€q = {of; f € &g},

j:O k=0
for some function ¢ on Ry.. If we give
K& (Ry) = NesoK* ™77 (Ry.)

the topology of a projective limit we obtain that

Kg'(Ry) = Kg7(R) + [w)éq(Ry) = KgT(Ry) + Eq(Ry)

is a direct sum of Fréchet spaces. If, as in the latter definition, a space constructed with help
of [w]€q(R,) is independent of the choice of w, we will replace [w]Eg(Ry ) simply by Eq(Ry).
Again as a projective limit we define

KS7(R:) = NoerKST (Ry),

and finally
S(Ry) = [WIKG T (Ry) + [1 — w]S(Ry),
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with arbitrary choice of w and S(Ry) being the space of all restrictions of rapidly decreasing
functions to Ry. This vector space can be written as a projective limit of Hilbert spaces,

SH(Ry) = NkenBY(R,.), with

ES(Ry) = [W{KFT™P"%(Ry) + E@(Ry )} + (1 —w] () *HA(Ry), keN,  (1.3)

where ¢, = cg/k, and ¢ is chosen in a way that Reg; > 1/2 — v + ¢ + cg for all j. These
spaces coincide for various choices of w.

For a discrete subset D of an open set U C C, the function x is called a D-excision function
(with respect to U), if

i) x is smooth, and 0 < x <1,

ii) there exist open bounded sets Uy,Us with D C Uy C U, C U, such that ¥ = 0 on Uy,
and x =1 on U\ Us.

By .AB", we denominate the space of all functions f that are meromorphic in the strip {1/2 —
v+ 9% < Rez < 1/2 —+} with poles in g; € ncQ of order less or equal to m; + 1, and satisfy

i) limso4 (1/2 =7y = 8 +140)° f(1/2 — v — 6 4 4ip) exists in L%(R,),
ii) sup{|lxofllsg; 1/2—7v+94+e<B<1/2—79} <00 Ve>0.

Here we have used the notation
1
lgll 5 = 5;./1“ (1 +121*)°1g(2) | dal, (1.4)
8

and xq is an arbitrary mr¢@Q-excision function. The topology of A(C\7cQ) and the semi—norms
from ii) induce a Fréchet topology on Ag".

Similarly, 7187 is defined as the space of all functions in AB" satisfying in addition
") limgot (1/2— 7+ 9 + 6 +10)° f(1/2 =y + 9+ § +ip) exists in L2(R,),
ii') sup{lixqflls,g; 1/2-v+9 <B<1/2 -7} < oco.

Now, in an obvious manner we get a Fréchet topology, again. To simplify the notation from
now on we will omit writing “R;” in various spaces, e.g., H*7 instead of H*7(R; ).

1.2 Global pseudo—differential operators

Here we give a summary of the calculus for global pseudo—differential operators with operator
valued symbols. A detailed and comprehensive approach to this subject can be found in [4].

1.1 Definition. Let E be a Banach space. A set {xj; A > 0} C L(E) of isomorphisms is
called a (strongly continuous) group action on E if

i) kakp=kKrp VA, 0>0 and x; = idg.



ii) For each e € E the function A — xye: Ry — F is continuous.
1.2 Example. For each A > 0 define mappings «, : D'(Ry.) = D'(R}.) by

(rau, @) = (w, \"29(A711)), ¢ € CP(Ry).

Note that if v € L}, (Ry), then (kxu)(t) = A/?u(At). On the spaces H*?, K*7, Ef, and £a,
defined in Section 1.1, we now have group actions arising from the restriction of x5 to the
corresponding spaces. From now on these group actions will be fixed when dealing with those
spaces.

For the following considerations, we fix pairs (E;, {x;,}), 7 = 0,1,2, of Banach spaces with
corresponding group actions. Furthermore, we choose a smooth and strictly positive function

' [0 R = Ry with [n] =|n|for |n| > ¢
for a certain constant ¢ > 0 and set for abbreviation
w(n) = gy
1:3 Definition. For v,m € R let
SYRI x RY; Fy, By )

denote the space of all functions ¢ € C*(R? x R?, L(Ey, E1)) satisfying

Pagla) = sup {Ix7" (m)03 0 aly, mmo(m)ll o, (1] "~ )1 } < o0
ymERY
for all multiindices o, 8 € NJ. The system of semi—norms p,g(-) induces a Fréchet topology on

Sv™(RY x RY; Ey, Ey) and the definition is independent of the concrete choice of the function
[-]. As usual, set

ST R x RY; By, Eq) = Nyer SV (R? x RY; Ey, E1)

equipped with the topology of a projective limit. Analogously we have spaces "~ °(R? x
RY; Ey, En) and S7°~%(R? x R?; Ey, E) ). Furthermore, for a function a we write

a€ Su,m(IRq X Rq;EO,El) for large l(y:n”}

if there exists a ¢ € C®°(R?7) with ¢ = 0 in some neighborhood of 0 and ¢ = 1 near infinity
such that ¢a € S“™(R? x RY; Ey, E)).

It is easily seen that
ST (RY x RE; By, Bp) - 8™ (RY x RY; Eo, By) € 8+ ™+™ (RY x RY; By, By),
and in case of Ey — E; and &gy = k1,5 on E; it holds

SU™(RY x RY; By, By) < SY™RI x RY; Eo, Ey). (1.5)



As in the scalar case we can associate to a given symbol a € S¥™(R? x RY; Ey, E1) a continuous
operator

op(a) : S(RY, Eg) — S(RY, Ey),

where S(R?, E) is the Schwartz space of rapidly decreasing functions taking values in a Fréchet
space F, by

op(@)uly) = {5y @l Fym} ) = [[ S0 aly, myuty/) ay'an.

1.4 Theorem. Ifa € S™(R! xR?; E}, Ey) and b € 8™ (RI x R?; Ey, E,) then op{a)op(b) =
op(a#tb), where for each N € N

(b)) = 3 = (@5a)(DGH) + raly,)
a<N

with a remainder ry € SY+Y ~Nm+m'=N(Re « RY. By, E,) that equals
{1-gN-! —izt o

. N> fo ——— [ €™ 07a(y,n + 66) Dybly + z,7) dudeds.

lel=N

Now we extend the definition of S¥'"™(R? x R?; Fy, ;) to the case of E; being a Fréchet space,
which can be written as a projective limit

Ei = NgenEF

with Banach spaces E! + E? « ... such that the group action given on E} induces the
corresponding group action on each E¥. Then we set

SR x RY; By, Br) = NgenSY™(RY x RY; By, EY) (1.6)

equipped with the topology of a projective limit.

1.3 Parameter dependent cut—off operator

We consider the function 5 — w(t[n]), where the right hand side has to be understood as an
operator of multiplication with the function ¢t = w(t[n]) for each fixed n € R?. Further denote
by My the multiplication with f (in some function space). The here derived Proposition 1.11
will be an important technical tool for later sections.

1.5 Lemma. Choose wy such that wo(t)w(t[n]) = w(tln]) Vn € RI, Vit € Ry.. Then we have
n = w(tn]) € CP(R, LYY, [wolH™)),  n=> w(t[n]) € CF(RY, LK™, [wo] K27)).
PROOF: At first it is clear that n = w(t[n]) € C®(R?, C§(R+)). In [17], Proposition 7, p. 27

it has be shown the continuity of M : C°(R4) = L(H*Y,H*7) and the analogous property
with X7 instead of H*7. Now the result follows by construction of wy. .



- 1.6 Lemma. For all 3,0,y € R the mapping
¢ My : C°(Ry ) = LK™, H®)

" is linear and continuous. Also one could replace H*7 by K*7 and H*¢ by K*¢. Further for
' some asymptotic type Q there is continuity of

¢ My : CP(Ry) = L(Eg, H™).

PRrOOF: Consider the decomposition Mg = My—epyM-vte =: To(¢)T1. Now Ti € L(H?*7,
- H*0) and ¢ > To(¢) : CP(Ry) = L(H*e, H*?) is continuous (see [17], Proposition 7, p. 27).
" The second claim follows from elementary norm calculations using (1.1). 0

1.7 Definition. For Q € As(v,0), © =]9,0], and ¢x = co/k as in (1.3) we define
Zh =Wk, kel
1.8 Lemma. For Q) € As{v,©) it holds
a) My € L(E}, Z§ + £q),
>b) wy —w —+ 0 in CP(Ry.) for n — oo implies M,,,, — M,, in C(Es, Zé, + Eg) for n = oo,
c) ¢ My : CP(Ry) - L(EE ,Zg) is linear and continuous,
a’) My, € L(Z§ + £q, Bf),
b’) wn —w — 0 in CP(Ry.) for n — oo implies M, = M,, in £(Z + Eg, B) for n = oo,
¢’} ¢ My : C§P(R) = C(Zé + Eq,Es) is linear and continuous.
PROOF: a),b) For abbreviation set Z*¥ = ZE,. Choose a cut—off function @ such that ww = w
and wa@ = wn. Now let f, — 0 in Ef. Hence we find sequences (f}) C [@)iCFr—0—¢,

(fH C &g, (f) c 1 -] (™% H¥(R,.), tending to zero in the corresponding spaces and
fo=fl+@f%+ 3. Then

n—o0
M full ey eq = lofillze + lwf2leq 22 0

(note that Z* + &g is a direct sum). This shows a). For b) let f € E'(’:, and f = fl+of?+f3
with a partition analogous to that of f,, above, and write Z* +&p = Zk + [wo]é—'q. Then
[(Mu, = M) fllzire, = lwn—w)f' = (wn — @)l
< “Mwn—w”;ckrr—ﬂ-%,zk”fl“,vck-'r—ﬁ—% + ”M(wn—u)wg”‘éq,zk||f2||éq

Thus we can conclude that

n—00
“Mwn - Mw”Ea,zk-th < max {"Mwn—w”pck-’v—t’—‘fk §AS) ||M(wn—-w)uo||£q,zk} — 0,

where the convergence is consequence of Lemma 1.6. The remaining parts of this Lemma can
be proved in a similar way. m



1.9 Corollary. For @ € As(v,®) we obtain
n - w(tly]) € CO(RY, L(E§, ZF +£3)),  n+ w(tln]) € CO(RY, L(Z* + Eq, EE)).
Another congsequence of Lemma 1.5 and 1.8 i
1.10 Corollary. For Q,0 € As(v,0) and each k € N we have
1+ w(tln]) € CP(RY, L(EQ,B)),  n+ wiln]) € CP(RY, LK™, Ep)).

The mapping [ : D'(R;) — D'(Ry) defined by (fu,8) = (u,t"'6(t™))), ¢ € CP(Ry),
induces isomorphisms H*7 — H*~7. Then Lemma 1.5 implies that n = 1 — w(t[n]) €
C®(RY, L(H*7, H*TH€)) Ve > 0. If we now keep in mind that

Ky w(tAn))ka = w(t[n)) (L.7)

for all A > 1 and all sufficiently large |5l, that is = w(¢[n]) is homogeneous of degree 0 for
large ||, we finally get this

1.11 Proposition. For Q@ € As(vy,0), the function n — w(t[n]) is an element of all the
. following spaces: .
SR M, M) Vo<

(here we also can replace H*7 by K*7, and H*¢ by K*?) and
SO(R;]]; S-QaEg)’ SO(]RS', Hkn—ﬁ)E(kD)i SO(R?); E(gazk'*'gQ)} SO(]R%v Zk+£Q)E(’3))
where O is the empty asymptotic type in As(vy,8). We also have

n - 1—w(tln]) € SORE; HY, HTH) Vo> v

2 Green and smoothing Mellin symbols

2.1 Meromorphic Mellin symbols

2.1 Remark. For p € C and k € Ny set
Ppi(2) 1= Moo (w(t)t7P log* t)(2).

Then 4y, x is a meromorphic function in C with exactly one pole in p of order k£ + 1, admitting
a decomposition
_ k
Ypi(z) = (-1) k!m + g(2) (2.1)
with a certain entire function g. If x is a p-excision function then

o+ X(B+10)Yp k(B +i0) € S(R,),

uniformly for real # in compact intervals.
As the notation implies, all the following constructions will be independent of the choice of w.



2.2 Proposition. (cf [9], Proposition 7.5, Corollary 7.6) The weighted Mellin transform
. M, extends to isomorphisms H*Y N HH7~? Aﬁ;”", where O is the empty asymptotic type
corresponding to (v, 9), © =]9,0].

2.3 Corollary. For each @ € As(vy,®) the Mellin transform M., induces isomorphisms
M,y (?{3”' N H“"”“”) +Eg o Ay
" From this it is clear, that A3’ is in fact a Hilbert space.

PROOF: Set Ag := {Mf; f € £g}. This is a finite dimensional vector space of meromorphic
 functions. From Remark 2.1 we derive that Zi;;’ = Iiﬁ + AQ as a direct sum, and this
immediately implies the assertion. [

2.4 Definition. A set P is called discrete asymptotic type for Mellin symbols if
P ={(pj,m;) ECxNy; j €Z}, Rep; = Foo for j = Foo.

The projection of P to the complex plane is denoted by

¥

mcP = {p;; € Z}.

To a given P we associate a space of formal series, namely

Fp = {Z%Cjkippj,k; Cik € C}

JEZ k=0

There is a canonical topology on Fp since it is isomorphic to CN. For f € Fp and real numbers
c1 < ¢g define

f[C1,02] (Z) = z Z Cjk")bpj,k(z)'

{§;e1 S Repj ez} k=0

2.5 Definition. For ;1 € R let M5 denote the vector space of all functions h that are mero-
morphic in the complex plane with poles in p; € m¢ P of order at most m; 4 1 ; further there
exists an f € Fp such that for all ¢; < ¢5 holds

e h(ﬂ + ig) - f[cl,cz](ﬁ + 7:9) € S#(Re),
uniformly for § € [e1, ca].

The element f associated to h in the latter definition is uniquely determined. In fact, if
mj
Y oj(z — pj)‘(k‘H) is the principal part of the Laurent expansion of h in p;, then f is
k=0
obtained by setting

(-1)* ,
Cjk=-—k!—0'jk, JE€Z,0<k<m,.
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Thus one can define a linear operator
T:Mp > Fp:h—Th:=f. (2.2)

Now we get a Fréchet topology on M 1‘;‘, by a system of semi-norms consisting of that for the
topology of A(C\ n¢P) and

sup ¢ (h(ﬂ +1i) — (Th)[—c'f,c';](ﬂ + 2)) , k€eN, (2.3)
—cf<pecl

where g(-) runs through a system of semi-norms of $#(R), and (c¥), (c§) are sequences tending
to infinity with k. Note that convergence of a sequence (hy,) in M4 implies the convergence of
the corresponding sequence of Laurent coeflicients (a_;-‘k) in C (and therefore the operator T' is
continuous).

2.6 Lemma. For h € M} the function
B h(B +i) : R\ Re (mcP) — S*(R)
is continuous.

"PROOF: By definition h(8+i-) € §#(R) uniformly in 8 € K for compact sets K C R\Re (ncP).
Now the result follows by the fundamental theorem of calculus. .

2.7 Lemma. For each y € R with ncP NTy/,_, = @ the mapping
b opis(h) : Mp — L(H*Y, H™H7)
is linear and continuous for all s € R.

PROOF: Clearly the mapping k — h(1/2 — v + i) : M5 — S*(R) is continuous. Now from
(1.1) and (1.2) it is immediately seen that

lopas (Rullzge-sn < esup |h(1/2 = v +ie) (@)™ [ ullper-
e

This gives the desired result. "
2.8 Definition. For given types P = {(p;,m;); j € Z}, P' = {(p;-,m;-); j € Z} define

m; sif rj € meP \ ne P’

P-P'={(rj,nj);rj €mcPUncP'}, n;= m;  sifrj €mcP \ncP

mj +m} + 1;if r; € mel’ NP
Analogously we can associate to Q € As(vy,©@) a type P Q € As(~,0).
2.9 Lemma. The mapping
ME x MY, — MPHE - (b, B') = hE

is bilinear and continuous. Here the product has to be understood as that of meromorphic
functions in the complex plane.
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PROOF: At first we verify that hh' € M j;',"}.j.‘f'. Therefore we set
S(h, h”)[cl ,cz} = h‘(Th’)[cl,cz] + (Th'){cl,cz]h" + (Th)[chcz](Th',)[Cl,Cz]'

Then xS(h, h')c, ¢,)(B+1-) € S(R) uniformly in 8 € [cy, ¢p] for each 7¢ P+ P'~excision function
x. Further holds

Wb =T (hh' Yoy c0] = (b = (ThYgy eaHB — (Th e ca1) — (T(RA ) ey 00) = S(hy B ey ea))-

Now from T'(hh')[¢, c;) =S (R, h)(c, c,) eing an entire function and [T(hh’)[cl ] — SR A )pe, .czl]
(8+14-) € S(R) uniformly in 8 € [c1, ¢2] we obtain that (hh' — T(hh')[, o,))(B +14-) € Suti (R)
uniformly in 8 € [¢1, ¢2).

Since all the involved spaces are Fréchet spaces, it is sufficient to show that the mapping is
separately continuous. To see this we use the closed graph theorem. Assume i) h), — &' in

Mf,',, and ii) hhl, - g in M}’_-‘,',*;ﬁfl. Now we have to show that hh' = g. But this is true since i)
implies that hh}, — hh' in A(C\ ncP - P’) and ii) implies that hh!, = ¢ in A(C\ncP-P'). =

2.10 Lemma. Let Q € As(v,0) and P an asymptotic type with mcP NIy = mcP N
[1/2-y+s = 8. Then the operator of multiplication

—T3Y 8T iy
| h My s M = C(AG", Ap.g7)

is linear and continuous.

PROOF: For f € Ap’ obviously hf € A({1/2=v+09 < Rez < 1/2—y}\ncP-Q). Furthermore

hf satisfies conditions i), i’) from Section 1.1 (here formulated with respect to Zi:_s"’) because

of Lemma 2.6. If xg and xp are mcQ- and mgP-excision functions, respectively, then for
X = xgXxp holds

sup{[Ix(Pf)lls—pp; 1/2 =y +9 < B <1/2 -4}
< sup{|(xph)(B+i0) (&) ™" [;1/2—v+9 <B<1/2~7, 0€R}
sup{llxqflls,s; 1/2 =7 +9 < B <1/2 -7}

From Definition 2.5 it is clear that the first supremum on the right-hand side is finite. This
shows hf € A;—,S'T. Finally both the continuity of Mj, and h — M,, follow easily by the closed
graph theorem. =

2.11 Definition. For u,m € R let ME™ denote the space of all functions h € C®°(R?, Mp)
satisfying:
m;
i) ¥ ) ou(y)(z - pj)'(k‘H) is the principal part of the Laurent expansion of hA(y) in
k=0

Pj E—‘KCP, then
sup [ ()= o(y)| <00 VB EN. (24)
y€ERY
ii) For all¢; < ¢ €R
(y,0) = Ay, B +10) — (Th)(e, e (y, B +i0) € S“™ (R x Ry)

uniformly in S € {¢1,c2]. Here T is the operator introduced in (2.2).
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MPE"™ is a Fréchet space with the semi-norms of C*°(R?, M%), that from (2.4) and that induced
from ii), cf. the construction in (2.3). As usual we define Mp*™ = N,cgME™ and analogously
ME™®, Mp% ™%, equipped with the topology of projective limits.

2.12 Remark. Obviously (2.4) is equivalent to

sup | ()P ¢k (y)| <0 VA EN,
yER?

if ¢ji(y) are the coefficients of Th(y). Beside the coefficients of the principal part of h(y), also

each Laurent coeflicient o(y) of h{y) in some point p € C satisfies the estimates (2.4). To
verify this let first p = p; € mcP. If we choose ¢, ¢; such that Rep; € [c1, ¢2] then by (2.1)

! N
(%) {h — (Th)[cl,cz]}(yapj) = (l — 1)[01 (y) + Z Z ¢k (y)gjkl (pj),
{iie1<Rep;<es} k=0

with certain entire functions g;x;, and oy(y) being the l-th coefficient of the holomorphic part
of the Laurent expansion of h(y) in p;. Now both the left-hand side and the second term on
the right-hand side are elements of S™(R{) and hence o;(y) is. The case p € C\ ncP can be
‘treated similarly.

2.13 Proposition. Let two asymptotic types P, P' be given. Then
By ol ,m—|B|
a) h e Mp™ implies Oy h € Mp .

b) The mapping
ME™ x ME™ —y MERE™ET (Y e R

is bilinear and continuous.
c¢) Ifh € Mp and v € R with icP N Ty j5_y = 0, then
y > opr, (h)(y) € C°(R?, LMY, HTHT)).

Further it holds
8op}s () () = op} (B h)(y),

1080p3 (RYW)llpor s < e ()™ W1 Wy e R (2.5)
d) If Q € As(y,0) and h € Mp™ with icP NTyjy_y = 7cP N2 y19 =@, then
y = My, € C®(RY, L(AGT, Ap.H7)).
Further it holds

ByﬂMh(y) = Mafh(y) and ||65Mh(y)” < C(y)m_lﬂl Yy € R,

13



PROOF: a) is elementary.

b) By Lemma 2.9 is hh' € Cm(IRq,MI‘;f;,’f’). Further hh' satisfies i) from Definition 2.11 by
Remark 2.12. As in the proof of Lemma 2.9 it can be seen that hh' satisfies 2.11.ii) and that
the mapping is separately continuous.

¢) follows from Lemma 2.7 (including the norm estimate in the proof).

d) follows from Lemma 2.10 and the fact that

p(@h(y) <c(y™ ¥ vyews
for each semi-norm p(-) of M%. .
We finish this section by stating three remarks which will be useful later on.
2.14 Remark. Let h € Mp™ and 4, N € R with i¢P NTy/5_,, = 0. Then

opje (MY = tNopir (T~ Vh)(y)

as operators H*?~N — H*~#7, Here t"¥ has to be understood as the operator of multiplication
M,~ @ H® = H®7N and (T°h)(y,2) = h(y,z + o). (For a proof see [16], Part I, Remark
4.2.6).

2.15 Remark. For h € M&™ set h{*)(y, z) = h(y, 1 — Z) (the reason for the notation (x) will
become clear from Lemma 2.22). Then A®*) € MAT with PO = {(1 —77,m;); j € Z}.

2.16 Remark. If h € M and n¢P NI jp_, =@ it is easy to verify that

w5 opy (h)wr = opl(h).

2.2 Associated operator valued symbols

2.17 Definition. For »,m € R U {~oo0} and some given weight-data ¢ = (7,4,0), let
Rém(R‘? X R?, g) denote the space of Green symbols, i.e., all functions

9(y, 1) € NyerS*™(RY x RI; K27, KF)

with the property
g € NyerS“™ (R x RY; K*7, 85 ),

9" € NyerS“™(R? x BRY; K78, 85T),

for certain asymptotic types @; € As(é,8), Q2 € As(—~,©) (depending on g). Here * denotes
the formal adjoint with respect to (-,-)xo00 : K% x K572 5 C.

2.18 Lemma. Let weight—data g = (v,4,0), ¢’ = (6,0,0), and N € R be given. Then the
following inclusions hold:

a) 0205 RG™(RI x RY,g) ¢ Ry 1P WP(Re x Re, g),

b) RL™ (R? x R, g') - RE™(RY x RY, g) C RS™™H™ (RY x R, (, 0,0)),

14



c) If ¥ >y and § <& then RE™(R? x R, g) C RA™(RY x RY, (%,5,9)),
d) RS™M(RY x R, g) C RE™(RI x R, (7,6,]0 +7,0])) VO<7<—9,
e) tNw(t[n))RE™(R? x RY, g) C RV ™(RI x RY, (7,6 + N,©)) and
RS™(RY x RY, g)tNw(tln]) € RZV™(RY x R, (y — N, 4,0)).
PROOF: a), b} are elementary.

¢), d) follow from K7 <+ K*7 and that for each Q € As(v,©) there is a Q@ € As(5,0) (Q ¢
As(8,]9 + 7,0])) such that Ef, — Efg VkeN.

e) Using Proposition 1.11 and the notations of Definition 1.7, the claim follows from
tN(Z5 + Eq) = (HPOTMITI=k qyk Ity g5 = ZE 4 €5

with C:) = {(g; — N,m;); q¢; € Q} € As(y+ N, ©), and the fact that LtV k(n) = [p] VN

2.19 Proposition. Let v,v € R and A(y,n) = t ™ w(t[n))op), (k) (y)@(t[n]) with h € M5
and micP NTy/_y = 0. Then we have

A€ Ny rerSV ™R x BRI K7, KMV,
Further for each Q1 € As(vy,©) there is a Q2 € As(y — v, ©) such that
A € NgenS"™(RY x RY; EY, , ES,).

(Here we assume that cg, = cp.Q, = ¢, cf. (1.3))

PRrOOF: The first claim is an immediate consequence of Remark 2.16 and Propositions 1.11,
2.13.c). By Proposition 1.11 is &(t[n]) € S°(RY; B, , 2§, + £g,). Now by Corollary 2.3 M., :
Zgl + &g, — :478? ~* isomorphically. In view of op},(h)(y) = M3 My,y M, Proposition
2.13.d), and Remark 2.16, we obtain op),(h)(y) € SO™(R? x RY; Zé,] + é'Ql,fo,,Q1 + Ep.q)-
Furthermore, w(t[n]) € SO(Rg;Z,’%_Ql + Ep.Q,,Ef,,Ql) by Proposition 1.11. Finally, as in the
proof of 2.18.e}, the factor ¢t~ causes a translation of the type P - @, and the order v {with
respect to 1) in the symbol estimates of A(y, n}. "

2.20 Definition. Let data g = (v, — 1, 8), © =] — k,0], with v, » € R and k € N be given,
Further let v € R with g — v € Ny. A functlon m on R? x R? is called a smoothing Mellin
symbol (of order (v,m) with respect to g) if it has a representation

k+v—p—1
my,n) = with) Y Y Z opxs (hja) (¥)1°G(t[n])
7=0 Jee| <7

= Z Aja('y,"]),

0<]a]<j<k+v—p—1
Ajaly,n) = w(tm)t ™ opys (hia) (¥)n*@(t])
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with
hja € M;jio'm, mcPja NTyjaey;, =0, 7= (—v)—J <% <. (2.6)

Note that m = 0 if 4 — v > k. The reason for taking k + v — ¢ — 1 as upper summation
bound is that terms corresponding to larger coefficients are Green symbols, as will be proved
in Proposition 2.30.

2.21 Definition. Let v, g = (v, — ¢, 8), be as in Definition 2.20. The space of all functions
m + g with g € RZ™(R? x R?,g) and m as described in 2.20 is denoted by

ric(R xR, g).

Note that in case of 1 — v > k we have Ry o(RT xRY, g) C RG™(R? xR, g).
The conormal symbol of order v — j of m + g is defined by

o m+g)(y,z,m) =Y hjaly,2)n®,  0<j<k+v-p-1
e <5

From the cone calculus it is seen that the notion of conormal symbols is well defined (cf. [16],
Part II, Proposition 3.1.27).

2.222 Lemma. For v, g as in Definition 2.20 and g(*) =(—y+u,~—,0) is
| (RAFLG(R X R )} = R o(R x R, g%,
that means Ryy" o(R? x RY,-) is ‘closed’ under pointwise formal adjoint.
PROOF: From the definition of Green symbols it is obvious that
{RZ™(RT x RY, )} = RG™(R? x Rq,g(‘)).

Thus we only have to consider the formal adjoint of an operator A;q, cf. Definition 2.20. Now
it is known, see e.g., [16], Part I, Lemma 5.1.10, that

Ajay.m)* = o(tn))opy 7 (RS )t HnPuw(tin))
= ()t Hopy T (T IR (y)rPw(tin)).

For the second equation we used Remark 2.14. In view of Remark 2.15 the desired result
follows. .

2.3 The behaviour under weight shifts

Here we establish a number of lemmas concerning mainly (the interaction of) smoothing Mellin
symbols and their behaviour under weight shifts.

2.23 Lemma. Let h € Mp™™, v € R with mcP NTyjp , = 0 and gy € RG™ (R x
R, (v,6,0)), 91 € RIZ;'mI(Rq x R?,(8,7,0)) be given and set

90(¥,m) = goly, mw(t[n))opt (R @)@ (EM),  gily,n) = w(t[nhop], (R) ()@ (tn])gi (v, ).
Then go € R&™™ (R? x RY, (v,4,0)) and g, € RZ™™ (RY x RY, (4,7, ©)).
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PROOF: First, it is clear that go € $¥™+™ (R? x R";}CS"",E’%), k € N, for an appropriate

type Q € As(4,0). Also g, € $¥™ (R? x RY; I’CS’J,EEI), k € N, for a certain @, € As(y,®) by
Proposition 2.19. Thus the statement follows since g; is of the same form as g;_; (7 = 0,1).
|

2.24 Proposition. Let h € Mﬁ’m and 8,y € R with a¢cPNTyjp_ = mcPNTy s = 0.
Further set 7 = min(y, d), p = max(v,é), ©® =] — |y —6|,0], and

Gly) = op};(h)(y) — ophs (h) (y)-
Then there exist asymptotic types R) € As(t,0) and Ry € As(—p,©) such that
G e SR x R, HY NHY, ERy),  G* € SO™(RI x R HO 6 NHS7, Epy).
IfrcPNTyn_pg= 0 for all real B between v and § then G = 0.

PrROOF: (cf. [19] Theorem 1.1.55). Let § > ~y and u € C°(Ry.). Let pj, j =1,...,m, be those
poles of h with 1/2 —§ < Rep; < 1/2 —~, and Z oik(y)(z — p;)~*1 be the principal part

™my
of the Laurent expansion of 4 in p;, and ) &k(z —p;)¥ be a part of the expansion of Mu in
k=0
pj. Now
1
Gyu(t) = 5= [ t7*h(y,2)(Mu)(z) dz
2m Jo

with a contour C surrounding the poles of h in the strip {1/2 — § < Rez < 1/2 — v}. From
this we get

m mj

G(yu(t) = ZZ Jg ()t P log' ¢,

J=01=0

where

di) = Y oik(®)ésm,

m-k=l

this is G(y)u € g, with Ry = {(p;,m;); 7 =1,...,m}. From the continuity of the mapping
u = &Gk H50 N HY — C we obtain

m 7

HG u”ER ZE l‘ _’Jl )m ”u“?‘f."'&n‘H""T‘

3=0I{=0

The derivatives can be treated in the same way, since
87G(y) = op},(9°h)(y) — ophs (B°h) ().

Hence the result follows by denmty of C(Ry) in H*® N M. For treating G* note that
G*(y) = opp (A)(y) = opif (b)) (w). .

For notational convenience we now set Oy =| — N, 0] for each N > 0.
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2.25 Corollary. Let h € M}‘é’m and 6,y € R with icP O\ Tyjp_y = mcP N5 = @. Then
the function

9(ym) = wtln) {on}, (W) (¥) — opls (h)(w) } @(¢ln))
is for each N > 0 an element of
R%m(Rq X Rq: (ma'x('% 5)1 miﬂ(% 5)1 eN))
If mePNT5_pg =0 for all real B between v and § then g =0.
Proor: With notations from Proposition 2.24, one obtains at first that for each N > 0 there

is a Q1 € As(r,Oy) such that w(t[n]) € S*(RY;Ep,, B ) for all k € Ny. Further &(t[n]) €

SO(RY; K5, H*5 N H*7). Hence the result simply follows from g(y,n) = w(t[n))G(y)@(t[n]).
The formal adjoint g* is treated analogously. n

2.26 Corollary. Let h € ML™ and §,7 € R with ncP Ny =7ecPNlyp qis = 0. Then
the function

9(y,m) = w(tfn]) { Fop}, (W) () — bl (TPRY(w)E } ()
is.for each N > 0 an element of

RE‘Jvm(RQ X qu (max(’Y - 5? ’T):l mln(’)’ + '51 7)1 eN))

If tePNTyjy_g =@ for all real § between y and -y — § then g = 0.

ProOOF: Follows from Remark 2.14, Corollary 2.25 and Lemma 2.18.e}. .

2.27 Lemma. Let h € Mp"™ and v € R with n¢P N Iijp—y =0 and ¢ € C§°(Ry). Then
the functions

go(y,n) = d(t[nDop L (R)Ww(tl]),  a1(y,n) = w(t])op), (R)(¥)¢(tn])

are for each N > 0 elements of

Rg’,"m(Rq X ]Rqa (7:71 eN))

PROOF: Because of Propositions 1.11, 2.19 and Lemma 1.6, it is obvious that gg € S%™(R? x
R?; K97, Eé‘)), k € N, where O is the empty assymptotic type. Choosing @ such that &¢ = ¢,
we have a decomposition of ¢ as

g1y, m) = w(En)) {opL(h) () — op}’&’N(h)(‘y)} St +w(tihop i ™ (h) (y)o(Hn)) p(tn])-

Here we can without loss of generality assume that n¢P N T, J2—y-N = 0; otherwise we could
replace N bei N + ¢ with an appropriate € > 0 and use Lemma 2.18.d). Now, by Lemma
1.6 and Corollary 2.25, the first term on the right-hand side is an element of S®»™(RY x
IRq;IC""T,Eg), k € N, with a certain @ € As(v,0Op). By Lemma 1.6 and Propositions
2.13.c), 1.11 the second term is an element of SO™(RY x R¥;K*7, E), k € N. This shows
g1 € SYMRY x R K5, BE), k € N Finally note that g5 is an operator of the form
g1-4 (.7 = 01 1) ]
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2.28 Lemma. Let h € Mp™™, h' € Mp>®™ and v < 6 € R with icP N Tyj_y = mcP' N
Lijo—s = @. Then for each choice of vy, & € R withy < 9 < 8y < d§ and rcP N Lijoeye =
ncP' NTyj9_5, = @ the function

9(y,m) = w(tln)) {opF (W) (w)wr (¢l ophs () (w) — opJs (B W) (timopSy () () } eln])

is for each N > 0 an element of
RY™™ (RY x RY, (6,7, On)).
Proor: Choose ws such that wow, = w;. Then the statement follows from the decomposition
9ly,m) = w(tfn)opie(h) (y)we(t)) [wl(t[n]){op%(h’)(y) - opi%(h’)(y)}w(t[n])] +
+ [wtln)) {opT, () (v) — o3 (h)(w) e (eln)) | wa (efnloply (B ()@t
and application of Corollary 2.25, Lemma 2.23, and Lemma 2.18.¢). ‘m

2.29 Lemma. Leth € Mp;™™ k' € M;,m‘mr andy € Rwithnc PNy 5y = ncP'Nlyjy_y =
®. Then the function

9(y,m) = w(tn)op, (k) (¥)(1 — wi(tn]))op} (h') (y)wa(t[n])

is for each N > 0 an element of

RY™™ (RY x R, (7,7,0n)).

Proor: Consider the decomposition

g(y,n) = w(tlm){op};(h)(y) — op}™ (M)W} — wi(t[n]))op}, (h') (y)wa(t[n])
N
+w(t[n)opas " (M) @)L — w1 (Em]))op}s (M) (w)we (tln])-
By using Propositions 1.11, 2.24 it can be verified, in analogy to the proofs of the latter propo-
sitions of this section, that the first term is an element of $%™+™ (R x RY; K57, Eé), keN,

for a certain Q € As(y, ©y), and the second one of $0™+m (RY x RY; K37, E%), ke N Also
g* can be handled in this way since it is of the same type as g. "

2.30 Proposition. Let data g = (7,7 — 14,©), © =] — k,0] withk € N, and h € M;™™ be
given. Further let §, N € R withncPNTyp s=0, k< pu+ NeNy,andy—pu—-N<§< .
Then

9(y,m) = w(tln)t"opl, (W) W)a(if]) € RG"™ (R x R, g).

PROOF: First we will show that g € S~V™(R? x RY; K*7, 85_‘“) for a certain type Q € As(y—
1, ©). Consider the case of § = 5. Then t¥opS,(h)(y)@(t[n]) € S~V (RI x RI; K7, HM+N)
for all » € R. Since N+pu > k, Proposition 1.11 shows that g € §~"™ (R x RY; IC’”,E’O), le
N. If § < v, we find an €9 > 0 such that 6 <y —¢p and 7cP Ny /3 yie = 0 for all 0 < e < gy.
By Corollary 2.25 and Lemma 2.18.¢), €)

g1(y,m) = w(tl))t" {op}7* (R) () — opfy () ()} (¢[n))
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is an element of REN’”’(]R"‘ xRy, (y—€,v—p1,0)) (note that §+ N > v — p) and is independent
of € (as an operator family on K£*7). But this implies g; € S~™V™(R? x IR";IC"'T,SE;‘“) for a
certain @ € As(y — u,©). Furthermore,

92(y,m) = w(tin))tV opls * (B) ()@ (t[n)

is in S~VM(RI x RI; K57, K™N—=€) 5 € R, and is independent of . This shows g €
S-Nm(RI x RY; K*7,8% *). Hence the statement at the beginning of the proof is true since
g = g1 + g2- The formal adjoint g(y,n)* = Q(t[n])tNop;f"N(T_Nh(*))(y)w(t[n]) is treated
analogously, by distinguishing the cases of § =y —py— N and § >y —u — N. [

2.4 Differentiation and composition

2.31 Theorem. Let weight-data g = (7,7 — i£,0), © =] - k,0], be given. Then
208 Ry (R x RY, g) € Ry 1™ PI(RI x RO, g).

In case of &} > k + v — . we even have

4

“ 9 RI™ (R x RI, g) € Ry l(me x w9 g).

PROOF: Since BEM;“”’" C M;w‘m-lﬂl we can assume that 8 = 0. By Lemma 2.18.a), we
only have to take a look at smoothing Mellin symbols. With the notations from Definition
2.20 we get

kt+v—pu—1
Oymly,m) = wtlt™ Y Opmyy,na(th) +
=0

k+v—p—1

+ (@ [m) (@) (Y Y my(y,m@(tn)) +
s
ktv—p—1 ’

+@[w(tnt™ - miy,n) @) (),

j=0

where m;(y,n) = ¢/ 2lal<i opy’ (hja)(y)n®. Now [n] € S(R}) and we obtain by Lemma 2.27
and Lemma 2.18.c), e), that the second and third term on the right-hand side are elements of
RLTV™HRY x RY, g)- Now an induction shows that 85m(y,n) equals

k+(v—la))-p-1 _ .
witly) Y. 7D S " opli (R (v)n°@(tln])
3=0 lo|<j
modulo a remainder in Ré_lal‘m(IR" xRY, g), with Yo = ¥j4 o[ 0+a> and ﬁjg = ﬂgﬂhj+|a),a+a-

Hence 85m € R;;_I_ﬂ’m(Rq x R?; g), cf. Definition 2.20. "
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2.32 Theorem. Let m + g € Ry (R? x RY,g) with g = (7,7 — ,0), © =] - k,0], and
m' +¢' € Ry To(RI x RY, g') with g’ = (y—p,y—p— ', ©). Then with 9, =(vr—pn—4,0)
the pointwise product satisfies

(m'+¢)Ym+g) € R”M"':ém“Lm'(Rq xR, g,).
If one of the factors is a Green symbol, so is the product.
PROOF: In view of Lemma 2.23 and Lemma 2.18.c), €), we have g'm, m'g € Rg""”m-"m‘(]Rq

xIRq,QO). The same is true for g’g because of Lemma 2.18.b). Thus we only have to consider
the term m/m. Using notations as in Definition 2.20, we have to take a look at products

Al (y,m) Ajaly, ) = woltfn])t~ @+ G pTI = (qu=ipt (1B o0 (1)) -
-w(tm)opry (hia) (¥ &(t[n)

(here Remark 2.14 was used). Now from the conditions (2.6) we obtain
Y=lp+) -+ -0+ Syp+v-j<y-p-v)-j<pya <7

In view of Lemma 2.28 (and Lemma 2.18.c), e)} we can assume that yja = yjg+v—j =0
‘with some v — [(p + p') = (v + V)] = ({ +j) < o < v, since changing of weights causes

vt —(j+1)-+|al+| 8| mA-m! (]Rq % IRq )

only a remainder g; € R, Also only a remainder go €

R;‘H’J —(F+)+|a|+]8),m4+m’ (R x RY
Iﬁ(ya n)Aja (y, 77) equals

wo (L)t~ Dopg (T =T hg)hja) ()™ FPo(tln]) + g1 + g2

and this finishes the proof. "

1g,) arises if we omit @o(¢[n])w(t[n]), cf. Lemma 2.29. Hence

2.33 Remark. With the notations and the proof of Theorem 2.32 we obtain a formula for
the behaviour of conormal symbols under multiplication:

o + N m AN m) = X [T + gt m + )] (12 (27
pt+g=j

S (X T @) manr,

lol<j *p+e=3 lalsasi<e
a+f=o

for 0<j <k+v+v —p—p —1. From this it is seen that for given m € Ry (R? x RY, g),
m" € R;er'm"’m (R? x R?, g ), there exists (for fixed cut—off functions) at most one m' €
e (RE x RY, g) such that
m'm=m" modulo Ré+"l’m+m’(lR" xR, g).
In fact the conormal symbols of m' can be discovered from solving the equations
a"M""”'

H(m'm) = o'y~ (m")

with help of the above multiplication rule (2.6).
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3 A subalgebra of global boundary value problems

3.1 Green and smoothing Mellin operators

3.1 Theorem. Let the notations be as in Theorem 2.32. Then there exists an mg + gy €
R"M+f(‘;m+m (R? x R?,g,) such that

op(m’ + ¢')op(m + g) = op(mg + go).

Further m = 0 or ' = 0 implies mg = 0.

PRrROOF: From Proposition 2.19 we know that for each @; € As(y,©) there exists an Q2 €
As(y—pu,8) such that m € S¥™(RI xR, Ef;,] , Egz), k € N. An analogous statement holds for
m'. Hence from Theorem 1.4 it is immediately seen that op(g')op(g) = op(hl) p{m’)op(g) =
op(h2), op(g')op(m) = op(hs) with certain h; € R'é v metm! (R? x R, g,) (note that * can be
pulled under the integral). For considering m’#m we use Theorem 1. 4_€w1th N2k+v —y)
and derive from Theorem 2.31 that 67m' € Rg_N'ml (R? x R?,¢'). Thus from Theorems 2.31,

2.32 it follows that m'#m € Ryfre™ ™ (R? x R, g,). =

3 2 Theorem. Let m+g € RM+G(IR‘7 x R, g) with g = (v,v — 1,0), © =] — k,0]. By (,)
denote the scalar product in L*(R9, K%0). Then there exists an mg+gp € RM+G(RQ x RY, Q(*)),
where Q(*) = (—v + u, —7, ©), such that

(op(m + g)u,v) = (u,0p(mo + go)v)

for all u € S(RY,K*"), v € S(RY, K"~"#) and arbitrary r,s € R.
ProoF: Writing m(y,n) as in Definition 2.20, we set

m*(y,n) = > Ajaly,n)*

0<]o| <G <hAv—p—1

with Aje(y,n)* as in the proof of Lemma 2.22. Now, using standard techniques for calculating
formal adjoints of global pseudo-differential operators (for further details see, e.g. [4]), we
obtain

(mo +g0)(wm) = Y aaﬂa(m +g) )+ W)
|a|<N @

for each N € N, with a remainder
(*) 1— N ! —mf o
@ =N Y [ —— 97Dy (m® + g")(z + y,n + 6¢) dzdéds.
lo|=N

Choosing N > k+v — pu, the presence of the differentiations 87 Dy in connection with Theorem

2.31 then implies that r(*) € R" Nym— N(IR‘T x R? g( )) Hence mg + go € R;}’iG(R‘f X IR‘?,Q(*))
by Lemma 2.22 and Theorem 2 31. n
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3.2 Block matrices including trace and potential conditions

To deal with boundary value problems it is necessary to introduce matrices of operator func-
tions with Green and smoothing Mellin symbols as entries in the left upper corner.

3.3 Definition. Let v,;m € RU {—~o00}, Ny, N_ € Ny and g = (v,6,0). A function g(y,7) €
NserSY™ (R x RI; K37 @ CN-, K¢ @ CV+) satisfying

g € NyerS“™ (R x R, K7 @ CV-, 8, @ CV+),

g' € NyerS”™(R? x R1; K~ @ CM+, 557 @ C-)

for certain asymptotic types @ € As(4,0), Q2 € As(—v, ©) depending on g is called a Green
symbol with trace and potential part. As a rule, for a space E with group action.{x)} we
associate with E @ CV the action {x) @ 1}. Further * means the pointwise formal adjoint in
the sense of

(gu, '”);;0.0®c"+ = (u, g*v)xo.o&,cN_

for all v € CP(R,) ® CV- and v € CP(R,) ® CN+. The space of all such functions g is
;denoted by
‘ RE™(R? xR, g; N_, N,).

3.4 Remark. Each element of R;™(R? x R?,g; N, N,) can be written as

K8 ,5‘51
gly,n) = ( git g2 )('y, n: & — & .
g21 922 CN- CN+

We call gy2 a potential and go; a trace symbol. Clearly g1; € Rz (R? x R?,g) and g3 is an
(N; x N_)-matrix with entries from §*™(R? x RY).

3.5 Definition. Let g = (7,7 - ,©), © =] — k,0], with 7,4 € R and k € N. Further let
v € R with gy —v €Ny and Ny, N_ € Ny. Now

K:;iG(Rq X ]qug; N—1N+)

denotes the space of all functions

m 0
m+g=(0 0)+g

with a smoothing Mellin symbol mn corresponding to v and the data g, cf. Definition 2.20, and
g € RZ™(R? x R?,g; N_, N, ). The corresponding conormal symbols are given by

a"M_j (m+g)= JK,I_j(m).

Now it is straightforward to generalize the Theorems 2.31, 2.32 and 3.1 to the block matrix
situation, especially we have the following
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3.6 Theorem. Let m+g € Ry} (R? x R?,g; N_, M) with g = (7,7 — 11,0), © =] - k,0],
and m' 4- g’ € RQ:‘&(R" x RY,g's M,N,) with ¢' = (y — p,y = — 1/,©). Then with g, =
(7,7 — 1 — 1/, ©), there is an mg + gy € Ri}'f(‘;m+m' (R? x R?, g.s N_, N;) such that

op(m'’ + g’)op(m + g) = op(mg + gg).

We have mg + gg = (m' + g')(m + g) + r with a certain remainder r € RV - Lmtmi—1 (R9 x
8o g g M+G

RY, g4 N-, N,). Furthermore, if m = 0 or m’ = 0 then my = 0.
3.3 Ellipticity and the nature of parametrices

In the following let g = (0,0,0), © =] — k,0], be fixed.

3.7 Definition. Let 1 denote the identity operator E — E and 1 = ( 00

operator E @ FF = E & G for various spaces , F, G.

1 0) :
, viewed as an

In view of Theorem 3.6 the operators
op(l+m+g), m+ge Rgf_l_G(IR" x R, g; N, N,),

form a subalgebra of operators S(RY, L?(R..) ®CN-) — S(R?, L4(R,. ) @ CN+). The aim of this
paragraph is to find a notion of ellipticity which is equivalent to the existence of a parametrix.

3.8 Definition. Let m + g € Ry, 5(R? x RY, g; N, N;). The symbol 1+ m + g is called
elliptic if

i) there exists an asymptotic type P with r¢cPNT)/y = @ and

(1+ofs(m+g)~" € Mp”,

ii) for large |(y,n)|
L2(R,) L*(Ry)
(l+m+g)yn: & — &
CN.. CN+

is invertible and the inverse is uniformly bounded in (y, 5).

3.9 Remark. a) Condition i) of the ellipticity actually contains three assumptions on the
conormal symbol of 1 + m + g. At first, the independence of the asymptotic type P
of y, which does not hold in general. It should be mentioned that SCHULZE developed
a calculus allowing non-constant asymptotic types (see e.g. [17], keyword: continuous
asymptotics), to which we plan to extend the present results. Second, the y—independence
of the poles induces that (1 + o%,(m + g))~! € C®(RI, MY) for an appropriate type P,
but we will need additional conditions on the functions (y, ¢) — 1+ 0%, (m+g)(y, B8 +ip)
in order to ensure (1 + o,(m + g))~! € M2". Finally, the poles must stay away from
the critical weight-line I'y /, to allow the construction of opQ,((1 + ¢%,(m + g))™1).
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b) Condition ii) of the ellipticity guarantees that
1+m+g)te SR xR L2(Ry) © CYV-, LRy ) @ CV+)  for large |(y,n)l,

cf. the notations from Definition 1.3. This simply follows by the chain rule, and the
unitarity of the standard group action on L?(R).

3.10 Theorem. Form+g € RM+G(]R" x R9,g; N_, N..} are equivalent:
i} 1+ m + g is elliptic.

ii} There is a symbol m’' + g’ € RM+G(]R" x R?, g; N, N..) such that
(1+m+g)#(1+m'+g)-1€R;°(R! xR, g; Ny, Ny),
(1+m'+g)#1+m+g)—-1¢€R; (R xR, g; N_,N_).

Here 1 is the identity operator on L?(R,) @& CN+ and L?(R, ) & CN-, respectively.

’The rest of this section is devoted to the proof of the above Theorem.

3.11 Proposition. Let 1-+m+g be elliptic. Then there exists a symbolm;+g, € RM+G(IR‘1 X
R?, g; Ny, N_) such that

(1+m+g)~ Yy, = (1 +my +g)y,n) for large |(y,7)],
l4+m+g)l4+m+g)-1¢€ Ram’_m(Rq x R, g; Ny, N3,

(1+mi+g)1l+m+g)-1€R;™ PRI xR, g; N_,N_).

PROOF: In view of Remark 2.33 and condition i} of the ellipticity, we find smoothing Mellin
symbols m;, my € Rg;,o_(_c(]R" x R, g; Ny, N_) such that .

(1+m)(l+m+g)=1-¢g (1)

(1+m+g)(l+my)=1~g" (2)

with certain g’ € RE°(RY x R?,g; N_,N_), g" € RE(R? x RY, ¢; Ny, N,.). Note that it is

possible to write on the right—hand side 1 instead of 1, since 1 € S**(R? x R?;CV,CV) and
thus 1 — 1 € RY°(R? x R%;CY,CV). Equations (1) and (2) yield

14+m+g)! = 1+m+gQ+my)+g(1+m+g)'g” (3)

= 14my+(14+m)g"+g1+m+g)lg". (4)

Now choose some ¢ € C$°(R??) such that 1 + m + g is invertible in supp (1 — ¢) and set

g = (1—¢)g’(1+mz)+g’(1—¢)(1+m+g) 'g”,
g = (1-¢)1+m)g"+g(1-9)(1+m+g)'g",
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which are elements of RG(R? x R?,g; N4, N_) in view of Remark 3.9.b). Now writing 1 +
m +g =(1-¢{l+m +g(1+m)+g(l+m+g)~'g"}+¢(1+m,;), we get from (1)
and (3)

(1+m +g)l+m+g)=1-¢+¢(1~-g)=1~¢g
and analogously from (2) and (4)
(1+m+g)(1+me+gy)=1—¢g".

Multiplying the latter two equations with (1 + mjy + g;) and (14 m, +g,) from the right and
the left, respectively, and then subtracting the resulting equations yields

(1+m +g))=(1+my+g,)+¢g"”
with a certain remainder g € R%O(Rq x R?,g; Ny, N_). Hence we obtain
A+m+g)1+m +g)=1-¢@&" - (1+m+g)g"),

and this finishes the proof, since ¢ is compactly supported in (y, 7). ]

3.12 Lemma. Letg; € Réﬁj’m_j(IR‘? xR?,g; N_, N, ), j € Ny, be a sequence of Green symbols
where the involved asymptotic types are independent of j. Then there is a g € RZ" (R? X
R?, g; N_, N ) satisfying

N
j=0

The element g is uniquely defined modulo R~ (R? x RY,g; N_, N;) and we write
o0
g~ D8
7=0

PROOF: The proof is completely analogous to that for scalar valued (global) pseudo—differential
operators, i.e., we obtain g by

(s 0}

gw,n) =Y x(u/ci,n/c;)g;(y,m)

=0

with a y € C%°(R%9) being zero in a neighborhood of 0 and identically 1 near infinity, and real
numbers ¢; tending to infinity with j sufficiently fast. "

PROOF OF THEOREM 3.10, i) = ii): By Proposition 3.11 there exists an m; +g; € Ryy, (R x
R?, g; N.., N_) such that

Ql+rm+g)#Q+mi+g))=1-r
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with r € R;;_i__(;(kq x R?, g; Ny, Ny). For j > k we have r#l ¢ R(}j’_j(qu x R?,g; Ny, Ny),

moreover, the corresponding assymptotic types are independent of j. Thus by Lemma 3.12
there is a g, € R *(R? x RY, g; Ny, N;) with

B2 ~ Z S

izk
Now we define m' + g’ by
=
1+m' +g = (1+m +g)#( ) ¥ +g,).
=0
Then clearly (14 m +g)#(1+m' +g') —1€ R;™ " (R? x R?, g; Ny, Ny). Analogously we
obtain m"” +g” with (1+m"” +g")#(14+m+g)~1€ R (R?! x RY, g; N_, N_). But then

(1+ml+gl):(1+mf+gl)#(1+m+g)#(1+mlf+gh')=(1+mﬂ+gh')

‘modulo RG™"%(R? x Re, g; N, N_). .

PROOF OF THEOREM 3.10, ii) = i): By Theorem 3.6 there are certain remainders ri,¥; €
Ry o (RY x RY,g; Ny, N} such that

1+m+g)l+m+g)+r=1+m+g)#1l+m' +g)=1+75.

Now r:=r; —F € S~L~H(R? x RY; L?(R; ) @ CV+, L?(R; ) ® CM+) shows the invertibility of
(1-r1)(y,m) : L*(Ry) ® CV+ — L?(R;) & CM+ for large |(y,7)|. Hence from

(1+m+g)(l+m'+g)=1-r

we derive the surjectivity of 1 4+ m + g as an operator L2(R.) @ CV- — L*(R;) & CN+ for
large |(y,n)|. Interchanging the roles of (1 + m + g) and (1 + m’ + g') yields the injectivity,
hence invertibility of 1 + m + g for large |(y,7)| and

(l+m+g)'=01+m'+g)1-r)"L

Clearly the righthand side is a uniformly bounded family of operators LZ(R,) @ CM+ —
L?(R,)®CN- (for large |(y,7)|). Hence condition ii) of the ellipticity is fulfilled. Finally from
o%(r) = 0 and 0%, ((m + g)(m' + g')) = 0%, (m + g)o,(m’ + g’) we deduce

b= —0o%(m' +g)

ofe(m +g)(1 + o3 (m +g))”
and obtain condition i) of the ellipticity by the following Lemma 3.13. "
3.13 Lemma. Ifh € M5%° and h' € M5 and K'(1 + h')~! = h, then (1 + K')~' € MD°.

PROOF: This statement is a simple consequence of (1 +A) ' =1-h(1+R) 1 =1-h¢€
1+ M= ¢ MP°. .
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4 The algebra on the infinite wedge

Here we show how to modify the operators considered before to obtain an algebra of global
wedge pseudo-differential operators on the infinite (open stretched) wedge R? x X”*. Here
X" =Ry x X is the open (stretched) cone with base X, and X is a closed compact smooth
manifold of dimension dim X = n. We will state explicitely the generalized versions of all the
objects (i.c., underlying Hilbert spaces, symbols, and so on) involved in Sections 1 to 3. Then
all results obtained for the half-space situation carry over to the general case RY x X”*. Proofs
are dropped, since they are completely analogous to those given before.

As usual, L#(X) denotes the pseudo-differential operators of order i on X, and L¥#(X; R} the
parameter—dependent ones with parameter ¢ € R. Under the identification g2 R:B+ip—p
we also consider L*(X;T'g).

4.1 Remark. For each ;1 € R and reals ¢; < ¢y there exists a function R¥(z) € A({z €
C; 1 < Rez < ¢z}, L*(X)) such that

i) RH(B+1ip) € L*(X;R,) continuously in 8 € ]ey, ¢o],
ii) R¥(z) induces isomorphisms H*(X) — H* #(X) for all s € R and each 2.
Such an R* is called (holomorphic) order-reduction of order p.

We now turn to the definition of the underlying distribution spaces on X”. For s,v € R let
H*Y(X") be the completion of C§P(X ") = C§P(Ry, C®(X)) with respect to the norm

= [ IREMu@Iag ldal
Fl?_l_q,

To an f € L¥(X;I'yj;.,) we associate a Mellin pseudo-differential operator, defined on
C§(X") by

1 —
[opa(f)u] (1) = 37 t7° f(2)(Mu)(2) dz.
e Fl/i—'r
This extends by continuity to operators
opjs(f) : HOTHMEXR) o HIEIA(XY) Vs ER (4.1)

A distribution u € D'(X") is said to be an element of H?, (X"} if for each diffeomorphism

k:U CX — V C §" where S" is the unit sphere in R'*", and each ¢ € C§°(U) the
push—forward of ¢u to R**™ \ {0} under

Ry x U= R\ {0} : (,2) = tr(z)

belongs to H*(R'*" \ {0}), i.e., the closure of C§°(R'*™ \ {0}) in H*(R!*™). A (Hilbert) norm
on H:,,.(X") is obtained by a standard construction using a partition of unity. Now the cone
Sobolev spaces are defined as

KX = [ HOT(XD) + [1 = ] Hlge (X).
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For vy € R, © =]9,0], we write @ € As(vy,0) if
Q={(qjamJ)ECxNﬂy n_-zizl_7+i9<Re‘Ij<%1—71]‘:01"'1‘3\(}

for some N € Ny. To such a type associate spaces

N mj

E(xY) = {(to)» N &ula)t % loght; & € H(X) )},

j=0 k=0
EQ(XA) = nseké'cg)(XA)a

which are canonically isomorphic to a finite product of H*(X) and C*°{X), respectively. Writ-
ing K& (X") = NesoK577?7¢(X ") we then set

Kg (X" = Kg7 (XM + (X", KZT(XN) = NeerKy(X7),

which are Fréchet spaces. Finally, we define the space of rapidly decreasing functions on X*
as S(X") = S(R, C*°(X))|r, and set
: SR = WIEFT(X") 4 [1 - wlS(X"),

;.vhich is a projective limit of the Hilbert spaces
BH(XP) = [wl{ K777 (XM) + EH(XM} + [1 - w] ()" HEne(XY), kEN,

where c¢x = cqg/k and cg is chosen in a way that Req; > "J;—l -7+ 9 +c¢q for all 5.

The standard group action, cf. Example 1.2, now is the restriction of the mapping D'(X") -
D'(X") defined by
(o, s) = (w, AT s(A7"t,2)),

where s(t,z) is a smooth, compactly supported section in the density bundle over X". In
particular, this induces on X%(X") a group of unitary operators.

Proposition 1.11 concerning the parameter—dependent cut—off operator now takes the following
form:

4.2 Proposition. Let Q € As(v,0) and Zs(XA) = HY9%(X"N) N H*Y(XN). Then the
function n +— w(t{n]) is an element of

SO(RE; HOM(X), HO4(X™)) Vo<~
(here we also can replace H*7(X") by K*7(X"), and H*¢(X") by K*2(X")) and
SORE; ES(XN), BG(XM),  SU(RE; HETO(XM), ES(XM),
SO(RY; BG(X™), Z8(XM) +£5(X™),  SURE; 25(X7) + EG(X™), BG(X™).
Here O is the empty asymptotic type in As(y, ). We also have

7= 1—w(tln)) € SORL; HY(X"), H (X)) Ve
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To prove that a Mellin pseudo-differential operator with meromorphic symbol, cf. the def-
initions below, preserves asymptotics, one needs the spaces AB*(X M), which are defined as
follows:

4.3 Definition. Set Sy = {z € C; L — v+ 9 < Rez < 21 — y}. Further let R°(z) be a
holomorphic order-reduction of order s defined on a strip containing the closure of S, . Then
AB'Y(X ) is the space of all meromorphic functions f € A(Sye \ 7cQ, H*(X)) with poles in
g; € mcQ of order at most m; + 1, that additionally satisfy

i) both lims_,g+ R*(2H —y — 8 +1p) f(2E — v — 6 +ig) and
limg_yo+ R¥ (2L — v+ 9 + 6 +dp) f (B — v + 9 + § + ip) exist in LE(R,, L2(X)),

i) for arbitrary mcQ-excision function yg is
1 8 2 1/2.
s { (55 | IR @ s el 5 B € Sy} < oo

A Fréchet topology (in fact a Hilbert topology) is established by taking the semi-norms of
A(Sy,0 \ 7cQ, H°(X)) and that given in ii).

Now we pass to the symbols of the pseudo—differential operators on R? x X”. Again, we start
with discrete asymptotic types for Mellin symbols, cf. Definition 2.4. For a given type P define
a space of formal series

Fp(X) = {chjk¢pj,k§ Cik € L*W(X)},
jEZ k=0

with ¥y, as in Remark 2.1. This space is canonically isomorphic to a countable product of
L™°(X). For f € Fp(X) and real numbers ¢; < ¢ set

Jler,ea)(2) = > > cikthp; k(2).

{f;e1<Rep;<ca} k=0

4.4 Definition. For x4 € R let M5(X) denote the space of all meromorphic functions h €
A(C\ nc P, L*(X)), where the poles in p; € mcP are at most of order m; + 1, and the Laurent
coefficients of the principal part of h in p; being elements of L=°°(X). Further one asks that
there exists an f € Fp(X) such that for all ¢; < ¢y

R(B +10) — fley,cz) (B + i0) € LF(X;R,)
continuously in 8 € [¢;,¢2]. The element f is uniquely determined. As in (2.2) we can define
an operator T : Mp(X) = Fp(X) : h = Th = f, and then equip M%(X) with a Fréchet

topology given by the following semi-norm systems:

i) that from A(C\ =P, L*(X)),
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ii) that induced by the mappings

E)k ‘ )
h = azk{( ;J) 5t I}Z(Z)}lz_—pj : MP(X) — ] OO(X-)
f()t&ll]EZ,O(k(mJ,

iii) those given by
sup ¢ (h(ﬁ +10) — (Th)_cx o5y (B + ie)) ;

—cf<BLcy

where g(-) runs through a system of semi-norms of L*(X;R,) and c,ck — co.

4.5 Definition. Thespace Mp™(X), #,m € R, consists of all h € C° (R, ME(X)) satisfying:

m;
) If Y ou(y)(z — p;)~%+D is the principal part of the Laurent expansion of h(y) in
k=0

D G_'rrcP, then

sup ()%™ ¢ (8%0;k(y)) < oo
yeR?

for all @ € N] and semi-norms q{-) of L=®(X).

ii} For all ¢ < ¢ € R, each semi—norm ¢(-) of L*(X;R,), and all « € N is
sup { (1)1 q (93 [(y, B+ i0) — (Th)je,c: B +i0)]) s 1 S B e, y €K} < o0

ME™(X) is a Fréchet space if equipped with the semi—norms of C°°(R?, M5(X)) and those
from i}, ii).

Using the same techniques as in Section 2.1 it is then not difficult to verify the analog of
Proposition 2.13 for the case X" instead of Ry. The only modification is that in 2.13.c) we
congider the Op},,_n/ ? instead of op}s, and in 2.13.d) we replace condition m¢P N T, J2—y =
e N ]._'1/2_74_,9 = @ by ncP ﬂl"%_,’, =ncP N P&}l_’ﬁ_ﬂ = .

Finally we consider the associated Green and smoothing Mellin symbols. The definition of the
Green symbols is completely analogous to Definition 2.17 and Definition 3.3, respectively. Con-
cerning the smoothing Mellin symbols, cf. Definition 2.20, there appears a slight modification,
caused by the fact that the dimension of the base X enters in the weights and weight-lines.
Thus, in Definition 2.20 we have to replace conditions (2.6) by

hja € M;;o’m(X), mePia Moy, =0, ¥—1n/2—(p—v)—j <o <y —n/2.

The important Proposition 2.24, dealing with the behaviour of smoothing Mellin operators
under weight shifts, generalizes in the following way:

4.6 Proposition. Let h € ME™(X) and 6,y € R with t¢P Nap y=mcPNTap 4= @.
2 2
Further set T = min(y, ), o = max(y,4), © =] — |y — §/,0], and

G(y) = oo}y "2 (W)(w) — opr ™A (h)(w).
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Then there exist asymptotic types Ry € As(1,8) and R; € As(—p,©) such that

G € NyrerSP™ (R x RGHW(XN) N HSY(XN), ER (XM,
G* € MererSO™(R? x R HO O (XN NHD (XN, ER, (XM).

IfreP N FE2|-_I_JG = @ for all real B between v and § then G = 0.

Now all the material from Sections 2 and 3 can be verified for the case X*. For completness
we finally restate the ellipticity, cf. Definition 3.8.

4.7 Definition. Let m +g € R}Y, ;(R? x R?,g; N_, N, ). The-symbol 1+ m + g is called
elliptic if

i} there exists an asymptotic type P with 7¢P NI npL = § and

(1+ o3 (m+g)~" € Mp°(X),

ii) for large |(y, )|

ICO’O(X”‘) KU,O(X/\)
l+m+gly,n): & — &
(CN‘ CN"'

is invertible and the inverse is uniformly bounded in (y, 7).
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