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MODULAR OPERADS

E. GETZLEH. AND M.M. I\:APRANOV

INTRODUCTION

Recently, there has beeil inc1'casecl interest in applications of operacls outside ho­
I110tOpy theory, ll1uch of it due to the relation bctween opcrads and 1110duli spaces of

algebraic curves.

Thc forn1alislll of opcracls is elosely rclated to thc c0111binatorics of trecs (6], (8).

However, in dealing with 1110cluli spaces of curves, one encounters general grapbs, thc

case of trees corresponcling to eurves of genus O.
This suggests consiclering a "highcr genus" analoguc of the thcory of operads, in

which graphs replaee trees. \Ve call thc resulting objects l110dular operads: thcir

systeillatic stucly is thc purpose of this paper.

On thc eategory of differential graded (dg) opcrads, there is a duaJity funetor B,
the cobar-construetion, whieh is a SUl11 ove1' trees [8). On the category of dg-modular

operacls, we construct an analogous duality runetor F, the Feynlnan transfonn, whieh

is a SUTTI over arbitrary graphs (4.2). This functor is elosely relatcd to Kontscvich 's

graph c0111plcxes [14].
The behaviouf of F is l110re 111ystcrious than that of the cobar construction. For

exa111ple, for such a, sinlple operad oS Com, deseribing conll11utativc algebras, BCom is

aresolution of the Lie operad. On thc other hand, knowledge of the h0111ology of FCom

illlplies e0l11plete infonno.tion on the clilllcnsions of the spaees of Vassiliev invariants of

knots (by a. theoren1 of I<ontsevich anel 130.1'-Natan [2]; see (6.5)).
Our ll1ain 1'esult about thc Feynillan transforn1 is the co.lculation of its Euler charae­

tcristic, using the theory of syn1111etric funetions. As a ITIodel for this calculation, take

the fOl'lnula for the enulneration of gra.phs known in Inathen1atieal physies as vVick's

theOrCl11 [:3]. Consider the asyn1ptotie expansion of thc integral

J 1 ( x
2

00 akXk) dx
~1I(~, li, V3, V4,·· .) = log cxp -,- x~ - ? + L -kl ~

1. .... k=3 . V 2rrh.

for sn1all ~ anel'L (This expansion is independent of the dOlllain of integration, provided

it eontains 0.) \Vick 's theorCIn gi ves

00 00 ~n 1
H1 r-v L hg-I L ;1,! L IAut(G)] 11 alul'

g=O n=O GEr(g,n) tiEVert(G)

whcre r(g, n) is the set of conncctecl graphs G with d in1 111(G) = g, having exaetly fl,

legs IHI111bered froll1 1 to n, lvI is thc valencc of the vertex v E Vert(G), and \ Aut(G)1
is thc earclina1ity of thc automorphistn group of G.

Thc "elassical litnit" lVo = linln-to h.vll is a. SUI11 ovcr silnply cOllneetcd graphs, that

is, tl'ees. A fo1'1na1 appl.ication of the principle of stationary phase to (0.1) shows that
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I'Va is the value of the function

".2 00 a X k
.U ""' k.

a;~ - ? + L..J -",-
..., k=3 k.

at its critical value Xa: this 1S thc saille thing as the Lcgenelrc tranSfOrl1l LI of the

formal power series

. 2 00 k

f(x) = - ~) +L akk'~ .
.... k=3 .

Thc calculation of thc Eulcr charactel'istic of F is a natural gcneralizatioll of this, in

which the coefficicnts (Lk are rcplaccel by representations of the sYl1llnetric groups §k,

SU111S anel products are replaced by the operations EB and 0, and the wcight IAut(C,')r- 1

is replaced by taking the coinvariants with respect to a natural action of Aut( G).
Up to isolll0rphisl11, a sequence V = {V(k) I k 2: O} of §k-ll1oelulcs is dctennined

by its Frobenius characteristic ch(V), which is a sYlnInctric function (power scries)

l(.bI' ;1;2, •.• ) in infinite1y nlany variables. In Sectiolls 7 anel 8, we dcfine analogues of

the Legendrc and Fourier transfonns for synl111etric functions. In this way, we obtain

fonnttlas for the charactcristics of BA and FA, where A is a cyclic, respcctively modular,

operad.

Thc use of synlInetric functions in eIluIneration of graphs goes back to P6lya [20].
Our approach is slightly differcnt: while hc associates synlI1letric functions to pennuta­

tions of vertices of the graph, we associate theIn to pennutations of flags of the graph

(pairs consisting of a vertex anel an incident eelge). The idea of attaching arbitrary

representations of sYll1Inetric groups to vertices of a tree appears (under the na.nle
::blobs~) in Hanlon- Robinson [9]; they obt.aitt fornHtlas resclnbling our fOl'l11ula for thc

characteristic of BA (in P61ya's setting). The introduction of the Legcndre transfonll

in this problclll leads to a. nc\v pcrspcctive Oll this dass of problc111s by bringing out a.
hielden involutive sYlnnlctry: which is very natural fro111 thc point of view of operads.

01.11' analogue of v\Tick 's theorelll Inay be viewed as a fusion of the lllcthods of graph­

ical entllneration of quanttlln fielel theory with P61ya's ideas. Dur fornHtla for thc

character of FA has another link to quanttul1 fjeld theory, since the space of sYllllnet­

ric functions is thc Hi lbert space for the basic representation of GLrcs ( CXJ) (Kac- Raina
[12]); i11 this direction, we prcsent a. fOrInaJ rcpresentation of thc characteristic of FA
as a functiona.l integral (8.17).

ACh: NO\V LEDG EMENTS

First of all, we lnust thank P. Hanlon for sharing his idcas Oll the role of symllletric
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Founelation. This paper was writtcn whilc thc authors were guests of the J\Jlax Planck

lnstitute for ~.IIathelnatics in Bonn, whosc hosjJitality and financial support is grcatly
appreciated.
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1. CVCLIC OPEllADS

In this section, wc recall thc definition of a. cyclic operad - this will bc useful later,

since one wa.y of looking at n10dular operads is as a special kind of cyclic operad.

Dur presentation of thc thcOl'y of cyclic operads is a little different f1'0l11 our previ­

ous account [7]; we need a non-unital version of the thcory, due t.o fvlarkl [16]. One

advantage of this fOl'llntlation is that the basic operations in an operad are bilincar. In

any case, if one silnply took the original definition of an operad (!VIay [18]), anel OInit­

ted the aXi0l11S involving the unit, one would not obtain the correct notion: the best

justification for the definition whieh we prescnt is that it leads to a sill1ple construction

of the free non-uni tal operad generated by an §-tnodulc.

(1.1) §-n10dules. Throughout this paper, we work ovcr a fixed field k of charactcristic

O.
A cha.in cOInplex (dg-vector space) is a graded vector spacc \I. togethcr with a di f­

ferential 8 : Vi ----t \~-l, such that 82 = O. The suspension L:V. of a chain complex V.
hös cOlnponents (~\I)n = \/~+l, and differential equal to lninus that of V.' By ~nv.,

n E Z, we denote the n-fold iterated suspension of \~.

As in [7], denote by Sn the group Aut{1, . .. ,n} and by §n+l the group Aut{O, 1, ... ,n}.
An S-Il1odulc is a scql1ence of chain cOlnplexcs V = {V(n) I n 2:: O}, together with an

action of Sn on V(n) for each n.

A Inap of S-n10dules is callcel a wcak equivalencc if it inell1ccs isornorphisn1s in ho­
111010gy.

(1.2) Operads. An operad is an §-ll1odulc P together with bilineal' operations

0i : P(111.) 0 P(n) ----t P(1"o. + n - 1),1 ::; i ::; rn,

satisfying thc following axiorns.

(1) Ir 7r E Sm anel p E Sn, let (J E §m+n-I be the pernlutation defiJlcd by the explicit

f0f111ula.

!
7r(j),

a(j) = KU) + p(j -.; + 1),

7r(j - 11. +1),

Ha E P(n1.) (l,nd bE P(n), thell

j < ';,
i ::; j < i + 11,

i + 17. ::; j < rn. + n.

(7ra) 0i (pb) = a(a 0;rr(i) b).

(2) For a E P(k), bE P(I) allel cE P(1'n), anel 1 ::; i < j ::; rn,

(a 0i b) Oj+I_1 C = (a 0j b) 0i c.

(3) Für Cl E P(k), b E P(/) anel c E P(1'n), and 1 ::; i ::; k, 1 ::; j ::; 111.,

(a 0i b) 0i+j-l c = a 0i (b 0j c).
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(1.3) Operads and trees. 'vVe think of an elelllent of :1'(11.) as corresponding to a
rooted tree with üne vertex, 11 inputs 11lll11berecl fr0l11 1 up to Tl (and one output).

2 n-l n

The C0I11positions correspond to graJting two such trees together a,long the input of the

first tree numbered i. Axio1l1 (1) expresses thc cquivariance of this constl'uction.

2 11-1 n

Axioll1S (2) and (:3) l11ean that we can construct unalllbigliolls COll1positions correspond­

ing to the following two trees rcspectively.

k

m

III

In fact~ thc aXi0111S in1ply that the products Oj give rise to an llnall1biguolls definition of

c01l1position for any rooted trec [6], [8]. This point of view will be explained in greater

detail, in the context of l110dlilar opel'ads, in Sectioll 2.

(1.4) Cyclic S-ll1odules. A cyclic S-Il1odule V is a seqllence of vector space V(n)~

with action of §n+l on V(n). In particular, each vector space V(n) i8 a n10dllle over

the syn1111etric group Sn, anel over the cyclic group Cn+1 generated by Tn = (01 ... n).
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If V is a cyclic S-ll1oelule, anel I is a (k + 1)-elen1ent set, define

V((I)) = ( EB V(kl) .
hijections Sk+ I

J:{O, ... ,k} ---t I

This lnakes V into a. fllllctor frol11 the category of nOneI11pty finite sets anel their bijec­

tions into tbc catcgory of vcctor spaces. In the case when k = n - -I allel I = {I, ... :n},
wc write V(n)) insteael of V((I)). Note tha.t V«(n)) = V(n - 1).

(1.5) Cyclic operads. A cyclic operael [7] is a cyclic S-n10elule P whose underlying

S-1110elule has the structure of an operael, such that

(1.6)

for an)' a E :P(17~), bE :P(n). Hcre Tn stands for the cycle (01. ..n) E Sn+l.

(Cyclic) §-tnodules IHay be defined, in exactly the salnc \vay, in any SYlllIllctric

1110noidal catcgory. Thc most ilnportant case for llS will be the category of chain COll1­

plex. Other exanlples are the category of topological spaces, giving rise to topological

S-lnoelules anel operads, and thc opposite category to the category of chain cOlllplexes,

whose operads are callcd dg-cooperads.
In the reIl1ainder of this paper, unless otherwise specified, by an S-lnodule, opcrad

01' eooperad, we Illean a differential graded S-Illoelule, open\.d 01' cooperad. A Illap

of operads is called a wea.k equiva.lence if it is a wcak equivalenee of thc underlying

S-nl0dule.

(1.7) Exall1ple: endoll1orphisll1 operads. Let \I be a vectol' space with a synl­

111etric sealar product l3(x,y). vVe define a cyc1ic operad t:[V) by putting E.[\I](n) =
\/0(n+1). For a = Vo (9 ... ® Vm E t:[V]('m.) and b = Wo ® W1 ® ... (9 W n E t:[V](n) we

put

Cl Gi b = B(Vi, wo) . Vo ® VI ® ... ® Vi-1 <9 'Wl (9 ... <9 'W n ® Vi+1 0 ... 0 vm .

If diln( V) < 00 allel B is non-elegencratc, we ean ielentify t:[V](n) with Horn( \fOn, \I)
by lneans of B. In this way, thc llnele,rlying open\.d of t:[\/] bccomcs identificd with t: v ,
the encIoIllorphisIll operad of the space \I [8L [18].

(1.8) Cyclic algebras. A eyclic algebra over a cyclic opel'ael l' is a vector spacc A
togethcr with a sealar prodllet Ballei a I110rphisl11 if cyclic opcrads l' ---t t:[A].

(1.9) Exall1ples.

(1.9.1) Stable curves 0/ genus O. Definc a topological cyclic operacI Mo by letting

Mo(n) be the 1110duli space MO,n+l of stahle (n + l)-pointed curves of genus 0 [13]
(see also [8]). By definition, a. point of Mg,n is a syste111 (C, XI, . .. ,:Z:n), where C is a

projective curve of aritllllletic genus 0, with possibly nocIal singularities, Xi are elistinct

snl00th points, allcI C has no infinitesilnal autoillorphisn1s prescrving thc points Xi

(this aIllounts to saying that each COll1pOnent of C 11linus its singularities and Illarked

points has negative Euler characteristic). Tbc Sn-action on Mo,n is given by renlllllber­

ing thc punctures. Tbc C0l11position Gi takes two pointed curves (C, ;&0, .•. : x m ) and

(D, Yo, ... ,Yn) into

(CUD/(xj ,..... Yo), Xo,···, ;rj-l, YI,···, Yn, Xi+l,···, .1;m).
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(2.2)

(1.9.2) Spheres with holes. Dcfinc a topologieal eyclie operad Mo by letting 5\1o(n)
be the Inoduli spaee of data (C, Ja, . .. ,Jn), where C is a e01l1plex Inanifold iS0l110rphic

to cp I , and Ji are biholOInorphie lnaps of the uni t disk

~ = {z E C Ilzl :::; I}

into C with disjoint il11ages. Thc cotnposition 0i takes (C, Ja, ... , Im) and (D, 90, ... ,gn)
into

((c \ 1;[6.J) Ilf,Uho(t),tEoJ f) \ gor6.]),10, ... ,li-I, gI, ... , gn,fi+I, ... , Im)
Note that by applying thc total hontology funetor H.( -, k) to the topologieal operacls

Mo and Mo, we obtain eyclie operads in the category of graded vector spaecs.

2. rvIODULAR OPERADS

(2.1) Stable S-lllodules. Astahle §-n10dule is a colleetion of ehain e0l11plexes

{V((g, n)) 1 n, 9 2:: o}

with an action of Sn on V((g, n)), such that V((g, 11,)) = °if 2g + n - 2 :::; 0.
A morphisI11 V ----t W of stahle S-ll1odulcs is a eolleetion of equivariant tnaps of ehain

eon1plexes V((g, n)) --+ W((g, n)).
vVe have borrowed the tenn "stable" [rol11 the theory of 11lOduli spaces of eurves,

sinee the eouelition of stability is the sarne in the two settings.

Any eyclie S-tllodule V 111a,y be regarded as a stable §-inoelule by setting:

V(( .)) {v(n), 9 = 0,
g,n + 1 =

0, g> 0.

In the other direetion, we have the forgetful funetor, whieh we denote by Cye. If V

is astahle S-ll1odule, then Cyc(V) is a cyclie S-n10dule, and

(2.3) Cyc(V)((n)) = V((O,n)).

A stable S-ll1oclule V has a natural extension to all finite sets I:

(2.4 ) V((g,r)) = ( EB V((g, n»)
bijectiolls Sn

J:{ I ,... ,n}----t I

(2.5) Graphs. A graph G is a fi ni tc set Fla.g(G) (whose clell1cnts are called Hags)

togcther with an involution a anel a partition A. (By a partition of a set, we 111ean a

disjoil:t-t clee0l11pOsi tion into severa.l unorelered, possibly en1pty, subsets.)

The vertices of Gare the blocks of the partition .A, and the set of thel11 is denotecl

Vert(GI). The eclges of Gare the pairs of Hags fonning a two-cycle of a, anel the set of

thenl is denotecl Eelge( C,t). Thc legs of Gare the f-ixeel-points of a, and the set of then1

is dcnoted Leg(G). (Thus, eaeh fiag lies in either an eelge 01' a leg.)

"Ve rl1ay assoeiate to a graph thc finite one-dilnensiona.l eell e0111plex IGt obtained by

taking one copy of [0, ~] for eaeh flag, anel in1posing the following equivalenee relation:

the points °E [o,~] are iclentificel for all Rags in a block of the partition A, anel the points

~ E [0, tl are ielentifiecl for pairs of Rags exehangcel by tbc involution a. Für exalnple,
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the following corresponels to the set of fla.gs {1, ... , 9}, the involution er = (46)(.57) a.nel

thc partition {I, 2, :3,4, .5} U {5, 7,8, 9}.

2

4 6
3

A labelIed graph is a cOllnectcel graph G togetller with a map 9 frOl1l Vcrt( G) into

the natural nUl11bers. The value of this nu\,p at a given vertex v is calleel the genus of v

The genus g(C;) of a labelIed graph G' is thc sunl of dilll H 1(IGI, k) (thc nU111ber of

cil'cuits of G) anel the nUl11bers g(v). lt is givcn by the fOrI1lula

(2.6) g(G) = L (g(v) - 1) + I Leg(G))1 + Icolnponents of GI·
vEVert(G)

A forest is a (labelIed) graph with genus 0; a, tree is a connccteel forcst.

This definition is slightly different frOln the definition of trecs in [7]: unlikc in that

paper, we do not acltnit the tl'ee with two 1egs anel no vertices.

For any vertex v E Vert( G), the set of Rags incielent with v is dcnoted Leg(v); the

valence of thc vertex -v is thc cal'elinality of Lcg(v).

(2.7) Definition. A connected labelIed graph is called stable if 2(g(v) -1) +I Leg(v) 1 >
ofor each vertex.

(2.8) The category of graphs. Let GI, G2 be two gra,phs. A 1110rphis111 f : (,'1 --+ O2

is an injective 1l1ap f* : Flag( ( 2 ) --+ Flag(Gd such that

(1) f* 0 C1i = C12 0 f*, where eri is the involution on F'lag(C:d·

(2) The pullback with respect to f* of the partition )\1 is a rcfillenlellt of A2.
(3) f* elefines a bijection of the fixed point sets

This definition is the sanle as that of Kontsevich-Nlallin [15].
A 1110rphislll C;t --+ G'2 defines a surjective cellular 11lap 1011 --+ lG'21 which is bijectivc

on the legs. Every I11ap obtaineel in this way is a conlposition of an iSOInorphislll anel

contraction on a (possibly clisconncctcd) subgl'aph which eloes not contain any legs.

lf Gi are labelIed graphs, we say that a 111orphis111 f : GI --+ O2 preserves the 1abelling

if thc genus of any vertex of C;2 is equal to the sun1 of the genera of aU its preilllages

in (,\.

Let r((g, n)) be the (finite) set of reprcsentatives of iSOlllorphisnl classes of stahle

graphs of genus 9 with a bijection between their set of legs anel the set {I, ... , n}. vVe

consider r((g, 11.)) as a s111all category, naillely the full subcategory of the category of all

labelleel graphs anel 1110rphisI11S preserving the lahellings. It is deal' that r((g, n)) has a

tefll1inal object, consisting of the graph with a single vertex, of genus g, anel no edges.

Deilote by Aut( G) the autol11orphisl11 group of a graph G E 1"'((g, n )): if C; is a tree,

Aut(G) ~ 1.
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(2.9) The deternlinant of a graph. For a finite-dilnensional vector space V we

cIenote det(V) = ,,\j,oP(V) anel call this I-dinlensional vector space the cIeternlinant of

\I. If G is a graph, we denote by det( G) the deterl1l inant of the vector space

EB Or(e),
eE&lge(G)

where the sunl is over all edges of G anel 01'( e) is the orientation line of the edge e.
Thc cOlnplcx of ce11ular cochains of r has the fOl'1n

°--+ kVert.(G) --+ EB 01'( e) --+ 0,
eEEdgc(G)

giving the natur;:tl isolllorphisIl1

det(G) ~ cIet(kYcrt(G)) 0 det(JI1(IGI, k)).

It fo11ows that our definition of det( G) agrees with Kontsevich 's [14].

(2.10) The tripie of stahle graphs. Let V be astahle S-Inodule, and let G be a
stable graph. Dcfine V(( G)) to be the direct sunl

V((G)) = ® V((g(v), Leg(v))).
vEVert,(G)

"Ve BOW define a functor Mt- frolll the category of stahle §-1l10elules to itself, by SlnllIl1ing
over iSOlllOl'phisl11 c1asses of gl'aphs:

(2.11) M4 V((g, 11.)) = EB V((G))Auj,(G)'
GEr((g,n))

Silnilarly, we denne a functor ~AL by

IML V((g, n)) = EB (det( G) (9 V(( Cf))) .Auj,(G)
GEI'((g,n))

On the category of cyclic S-lllodules, there is a suspension functor A, given by the
fonnula

AV(n) = l:1-n sgnn+1 0V(n),

where sgnn+1 is the alternating character of §n+1 [7]. The analogue of this in the
category of graded stable S-lllodulcs is given by the fornnI1a

AV((g, n)) = l:-2(g-1 )-n sgnn 0V((g, n)).

(2.12) Proposition. Thc jll71cloT8 Mt and ML are relaled by the form'llla

~ = A- 1o~ oA.

Grafting of graphs defines, for any st.able §-Illoclule V, a natural lllap MtMtV --+
Mt V, giving to 1'+114- the structurc of a tri pIe; the unit of the tri pIe is given by the
eillbeddings V~ Mt V induced by graphs with a single vertex.

13y cOlljugation, we see that M.- = A-I 0 1\14 0 A also has the structure of a tripie.

(2.13) Definition. A I110clular operad is an algebra over the tripie Mt in the category

of stable §-llloclules. An antinloclular operacl is an algebra over thc tri pIe &1L.

8



1701' cxanlple, for any stable S-rllodulc V, MtV is a rllodular operad, called the free

rllodular apcrad gencrated by V. As for cyc1ic operads, Illodular operads Illay bc

considered in any syrllrnetric Illonoidal categories.

(2.14) The structure n1ap. If A is a lllodular operad and G E r'((g, n )), the structure

rllap MtA((g,n)) ----t A((g,n)) rcstrictcd to A((G)) C 1V14((g, 17.)) is a Sn-cquivariant rllap

IIG : A((G')) ----t A((g, n)), which we will ca.ll cOIllposition a.long thc graph G.
A modular opcrad detenllines a functor frolll the category ['((g, n)) to the category

of Sn-Ill0dules. To a labelIed grt'tph G is associated thc §n-I110dll le A((GI)). To define

thc action of 1110rphisms, it suffices La describe the I11ap A((C;)) ----t A((C; / H)) where FI
is a subgraph of C,' with no legs; this is induccd by the conlposition lllap PlI.

A nl0dular operad Illay be viewed a.s a. cyclic operacl with additional structul'c; this

point of view will be explained in detail in Section :3.

(2.15) Cyclic operads and the tripIe of trees. For a cyclic §-tl1odule V we elefine

a cyclic §-tllodule "TI.' +V by sutllining over trees:

11'+V((n)) = EB V((T)).
TEf((O,n))

Thc functor 11'+ is a tri pie and a cyclic operacl l' with T(O) = P('l) = 0 is the saIne as

an algebra over 11'+. ]n particular, wc havc frec cyc1ic opcrads 11'+V, where V is (l, cyclic

S-Illodule. Note that we have the following COIll11lutative diagranl of tripIes:

stable S-nl0dules
M±

stable §-ll1odules----4-

Cyc1 CYCl

cyclic S-nlodules
T±

cyclic S-ll1odules------=---t

(2.16) EndolTIOrphism operads. If \I is a finite-dinlensional vecto1' space with a
non-degenerate inner product l3(x,y), the endOInorphisIll Illodula,r operad c[\I] of \I
ha.s stable §-lllodule

c.[\I]((g, n)) = VOn

for all 9 such that 2(g - 1) + n > O.
To define the COIllpositioll nlaps c.[\I]((g, G)) ----t c.[\I]((g, 17.)), we identify

c.[V]((G)) ~ \l0Flag(G)

with (\10 \1)0 Edgc(G) (2) \f01l
, where Edgc(G) is thc set of edges of G, anel pair it with

the tensor power 8 0 Edge(G).

The cyclic operad Cyc c.[\I] is iS0I110rphic to a non-unita! version of the endOtllOr­

phisIll operad of \I:

n;::: 2,

n < 2.

(2.17) Modular algebras. An algebra over a rlloelulal' operad A is a chain cOll1plcx

\I with non-degencrate inner product B, together with a n10rphis1l1 of 1110d111ar operads

A ----t c. [\I].

9



Ir V has a non-degcnerate gl'aded antisYlll111etric bilinear fOrIn B(x ,y), then e[v] is

an antiI110dlllar operad. An a.Igcbra, over an antinl0dular operad A is a chain cOlnplex

V with non-degenerate graded antisYl11111etric product B, together wi th a 1110rphisI11 of

antinlodulal' opcl'ads A --+ e[V].

3. THE STIlUCTURE OF MODULAR OPER.ADS

If A is a lllodular operad , thcn the cyclic S-ll1odule

A((n)) = EBA((g, n))
9

is a cyclic operad, sllch that the compositiolls are cornpatible with thc grading by g.

In this sectiotl , we explain what additional structurc I111lst bc inlposed on such a cyclic

operad in order for it to be a 1110dular operad , and derive the consistency conditions

which aH of these clata lUUSt satisfy.

(3.1) The contraction 111aps. For a finitc set [ allel clistinct elc111ents a, b E [,
define a labelled graph G~b(g) with Olle vertex, labelled with thc genus g, such that

Flag( G~b) = [ anel there is one eelge (a loop) joining thc flags a a.nel b.

h

Ir A is a Illodular operad , we havc thc COl11position IHap

P'G~b(9) : A((g, J)) = A(( G~b(g))) --+ A((g + 1, J \ {u ,b} ))

which we denote by ~Ubl and ca.Il a contraction I11ap.

(3.2) Exanlple. Let V bc a finite-clilllcnsional vcctor spacc with a non-clegeneratc

invariant sealar pl'oduct B(x ,y). Let e[\I) be its Inodular endOlnOrphis1l1 operad (2.16);

thus e[V]((g,12 + 1)) ~ HOln(V0n , \I) 111ay bc identifiecl with the space of all n-linear

operations [roln V to itself. lf fl E e[V]((g, n + 1)) is such an operation, t1lcn ~ij(fl) E
e[V]((g + 1, 11, - 1)) is the (12 - 2)-lillear operation

( Xl, ... 1 X n-2) H L fl (Xl, ...., Xi - I , ek, ;Z: i, ... , x j - 2, f k, X j -1 , ... , X n- 2 ),

k

where {eh} allel {fk} are dual bases of V with respect to thc scala,r product B.

(3.3) Coherence for l110dular operads. A tlloclular operad A ean be rcgarcled, by

forgctting part of thc structure, as a. (non-unital) cyclic opcl'ad graded by genus:

A((n)) = EB A((g, n)).
2(9-1 )+n>O

Notc that any uniabclIed graph of genus 9 can be obtained fr0111 a tree by joining 9

pairs of 1cgs. This ilnplies that thc structul'C of a I110dular opcrad on A is uniquely

defined by the structure of a cyc1ic operad, thc grading by genus and the action of the

contl'actions ~ab'

10



'vVe 1l1llSt now to dctcnnine the relations bctwecn cOlnposition in A anel the contrac­

tions ~ab.

(3.4) Theorenl. Thc dat,(l consisting 01 a cye/ic operad A, 01 Sn-invariant decompo­
silions A((n)) = $A((g, n)) and 01 conll'actionmaps

~ab ; A((g, J)) -+ A((g + 1, I \ {Cl, b} )),

conte frorn a lnorlulnr opernd lj and on/v 11 lhc Jollowing cohe1'ence conditions are sal­
isfied:

(1) For any bljedion (J : I -+ J 01 finite sets and (l, bEI,

~a(a)a(b)(a(p)) = a(~ab(P)), /0'1' (LU /1 E A((g, I)).

(2) For any finile set. 1 and dist.incf. elements (L, b, c, dEI we haue

~ab 0 ~cd = ~cd 0 ~ab.

(:3) Fo.,. any p. E A(n), v E A(111) and 1 ::; k ::; 11.) 1 ::; i < j ::; n) we haue

Il 0k ~ij(V) = ~i+k-l,j+k-l (1/, 0k v).

(4) For any II E A(n)) 11 E A(1l1.) and 1 :S a < h: ::; 17., 1 ::; b ::; rn} we haue

~a,k+b-l (Jl 0k v) = ~a+m-k,k+m-I (J-l On r-b(l/)),

whe1'C T = (012 ... 17.) is the cyclic 'l'otalion.

Proof. The con1positions anel contractions in a 1110elular opcrad are pl'cciscly thc C0I11­

position lnaps

Pe : A((G)) -t A((g, 11))

associated with graphs C; E r((g, n)) with onc edge. Indeeel, such a graph has eithcr

two vertices (in which casc Pe is a cOlnposition od 01' one vertex (in which case IIG is

a contraction).

In a silnilar way, the relations all10ng cOlnpositions and contractions in a 111oelulal'

opcrad are cletennined by the graphs with two edges: for such a. graph, the relation
is that the result of perforn1ing the C0111positions along the two edges 1l1ay be done in

either order withollt aJfecting the resllit. Omitting the nUlnbering of legs, the graphs
with two edgcs have the following fonn:

(a) ..

11

~ .. nnn..n.~

(b)



(C)~ (cl)

~ ~

Thc relation associated to such a. graph is that we COlllpositioll givcs thc salllC result

whcther we C0l11pOSe along the solid 01' thc dottcd linc first.

The equivariancc conclition (1) is ccrt.ainly nccessary. Together with thc relations

(2-4), it gcnerates the relations cOl11ing fr0111 all possi ble labellings of graphs \Vi th two

edges anel onc 01' two verticcs. (Trees with two celges, as in (cl), sil11ply correspond to

the relations saying that A is a cyclic opcrad whose C0l11positions 0i are cOlnpatible

with the grading by genus g.) Gl'aphs (a-c) now COlTcspond respectively to conditions

(2-4) of the theorenl. D

4. TUE FEYNMAN TRANSFOIlM OF A MODULAR. OPEIlAD

1n this section, we elcfine a hOlnotopy involution F of the categol'Y of dg-lnoduIa.r

operads: that is, there is a natural transfonnatiol1 froll1 FF to thc iclentity functor such

that if A is a l110d ular operad, FFA ---7 A is a wcak equivalence. Furthcl'l110re, F is a

hOll1otOpy functor, in the sense that it Inaps wcak cquivalcnces to wcak equivalencc.

\1"/e call F thc Feynlnan transfonn, since FA is a SUI11 over gl'aphs, as is Feynlllan 's

expansion for alnplitudcs in qllantuIl1 ficld theory.

(4.1) Linear duality. In defining the Feynll1an transforlll, we restrict attention to

stable S-n10clules V such that V((g, '11)) is a c0l11plex whieh is finite-clinlensiona.l in each

clegree far each 9 and n. For slich V, wc define its linear dual VV by

VV((g, n)) = ~3(g-1)+n sgnn 0 V((g, 11.))*.

lt is deal' that (VV)V is natllrally iS0l110rphic to V.

(4.2) Definition of the transfornl F. Let A be a l110dular operad. As a stable S­

Illod uIe, the Feynillan tranfol'll1 FA equals Mt (AV), the free l110dular operad generated

by A V
• The difrerential OFA is the SUlll JFA = OAV +U, where OAV is the difrerentiaJ on

~ (AV
) induced by the differential on A V

, and U is dcfined as follo\.... s.

If Ci is a stable graph, aHd e is· an ceIge of C,', let GIe be the graph obtai ned by

contracting the edge e to a point. "Ve define a lllap

dG,e : A((G)) ---7 A((GIe))

of degree 0, in the following wa.y:

(1) if the two eneis 'Ul, Vz E Vert( G) of e are distinct, denote by v the vcrtex of

G'le obtained by 111erging thelll; then dG,e is induced by the cOlllposition in the

1110dula.r operad A

A((h 1l Leg(vd) 0A((h z, Leg(vz))) ---7 A((h l + I1 z, Lcg(v)));

(2) if the eclge e is a loop hoth of whose Hags {!+,f-} 111ect thc vertcx v, dC,e is

induced by contraction in the 1110dular operaeI A

A((h, Leg(v)) -t A((h. + 1, Leg(v) \ {!+, f-} )).
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vVe now define

to be the adjoint 111ap. Note tha.t because of the suspensions involved in the definition

of A V
, the 111ap aa,e has degree -1. (\,Ve leave to the reader the verification of this

fact. )

For two stable graplis Ci and H, thc tnatrix c1ernent

is induecd by the sutn of 8a,e over all edges e of G' such that II ~ G/ e.

(4.3) Theorenl. The n~ap OFA has square zero und lhe pair (FA = Mt. (AV
)) 1.S a

ntod'ltlar operad in t.he category 01 chain comp/exes.

Proof. 'Ne Illust prove the following st.ateIl1cnts:

(a) a0 OAv + bAv 0 a= 0;
(b) a2 = 0;
(c) a is c0111patible with cotnpositions alld contractions in Mt-Av .

Part (a) is obvious, becausc the differcntial in A which induccs bAV is c0111patiblc

with cornposition anel contraction in A.
(b) Observe that the lnatrix elCtllcnt of 82 frolll AV((H))Aut(H) to AV((G))Aut(G) is a

SUlll over pairs (ei, e2) of distinct edges of G such that H ~ (C,' / el )/ e2. The exchange

et H e2 is a fixed-point free involution on tbe set of such pairs, and the corresponding

contributions caneel each other due to the prcscnee of the sign charactel' in the definition

of A V
•

(c) The cOlnpositioIlS of the [ree operad MtAv are induced by grafting of graphs. Ir
a graph Ci is obtained by grafting gl'aphs (,'t and (i2 along two legs , then eacb vel'tex
of Geither lies in (,'1 01' in G2 • The differential fJ is induced by "splitting" vertiees iuto

edges., Thus B( (Lj 0i ([2), aj E A((Gj )), is the sunl of two tenns, one COlTcsponc1ing to

splitting vertices of [;1, the other corresponding to splitting vertices of C 2 • T'he first

of these dearly equals (aal) 0i ([2, a.nd the second is (-1 )1'11 laI ° (8U2)' Thus 8 satisfies
the Leibniz fornntla. for COlllpositioIlS. Thc c0l11patibility of contractions is provecl in

the sanlC way. D

vVe now arrive a.t the rnain result of this section.

(4.4) Theoreln. 11 A is a 'modular operadJ lh.e canonica/ lnap FFA ---1 A is a weak
equivalenceJ thaI. -is, induces an iso'tno'l'phism on ho'm%gy.

Proof. The C0l11pOnent (FFA)((g, 11)) is a SUIll over graphs III r((g, 11)), in which the
edgcs are colored black 01' whitc, dcpending Oll whether thcy rcprescnt an edge arising

fron1 the construction of thc inner 01' thc outer F. DeHote a colored graph by (C, c),
where c : Edge(G) ---1 {black, white}, and denote the corresponding eontl'ibutioll to

(FFA)((g, n)) by (FFA)((g, C, c)).

Filter the cOlllplex (FFA)((g, n)) by the nUlnber of edges in the coIorcd graph (G, c).
On the associated gradcd cornplex gr( FFA)((g, n )), thc differential is the SUlll of the

internal differential induced by the differential of A anel tenns in which a whitc edgc e



of the colorecl graph (G, c) is painted black. Dcnoting the rcsulting colored graph by

(Ci, ce), such a. tenn reAects the isomorphism

gr(FFA)((G', ce)) ~ ~-l gl'(FFA)((Ci, c)).

Denote by ((,', ce) the colorcd graph in which a black edge e o[ the colorec1 graph

(G, c) is bleached, anel let h(C;, c) be the lnap

h(G', c) : gr(FFA)((G, c)) -t gr(FFA)((g, n))

of degree +1 obta,i ned by a,veraging the ielentifications

gr( FFA)(( G', ce)) ~ ~ gr( FFA )(( G', c)).

ove1' thc eelges of G. (Here, wc lna.ke use of the aSsllll1ption that the characte1'istic of

k is zero.) Thc resl1lting nlap h : g1'(FFA) -t gr(FFA) is a contracting h01110tOpy [rOll1

the cOlnplex gr( FFA) to the SUbC0111 plex obtaincd by sumlning ove1' graphs with no

edges: but this SUbcoIl1plex is isolllorphic to A. 0

(4.5) Theorenl. The Feynman t.ransform F is a hO'lrlOtopy fundor: if f : A -t 'B 1.S

a weak equivalence of 'modular operads, t.hen so is Ff : FA -t F13.

Proof. This is easily provcd by considering a spcctral sequence associated to the cone
of the lnap Ff: we filter by nUI11ber of edges, in such a way that the EI-term of the

spectral seql1ence cquals the cone of the 111ap FH.(f), which is zero by hypothesis. The
convergencc of the spectral seqllence follows früln the fact that FA((g, n)) anel F'13((g, n))
havc contributions frOIn a finite nurnbcr of graphs, so that; thc spcctra.I scquence is

uni fonnly bounded in onc dircction. 0

(4.6) The cobar operad of a cyclic operad. If A is a cyclic operad (regardcd as a

tTIodular operad as in (2.2)), then Cyc( FA) is thc cobar operad BA of A in thc sense

of Scction 3.2 of [8].

5. rV!ODULAIl OPERADS AND MODULI SPACES OF CURVES

In this section, we givc SOlne basic cxalnplcs of modular operads, c0l11ing fr0l11 the

theory of 1110duli spaccs of stahle algebraic curves. Throllghout this section, the base
field is taken to be thc fielel of COIl1plcx l1ulnbers C.

(5.1) Deligne-Mu111ford 1110duli spaces. Define a. topologica.l 1110dular operad ]V(

by letting M((g, n)) be thc Dcligne-n1l11nford rnoduli space (or stack) Mg,n of stahle

n-pointeel curvcs of genus 9, as cOllstructeel by I(nudscn [1:3]. Ir CI E r((g, n)) is a stable

graph, then thc structure Inap

(.5.2) Pe.' : M(( (,1)) = TI M((g(vLLeg(v))) ~ M((g, n))
vEVert,(G)

is elefined by gluing thc 1l1arked points ofthe curvcs froll1 M((g(v), Lcg(v))), v E Yert(g),

according to the graph C' (see [8], 1.4.:3).
Taking homolog}', wc obtain a lnoclular operael If.(M, k) in the category of graded

vector spaccs. An algebra over this operad is the sanle as a coholnologica.l fielel theol'y
in the sense of Kontsevich-Manin [1.5].
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(5.3) Stratification of M((g,n)). For astahle curve (C,XI, . .. ,:cn ) E M((g,n)),
define a labe11ecl graph G(C, Xl, ... ,Xn ) E ['((g, n)), the dual graph of (C, Xl, ... , :(;n),
as fo11ow5. Its Rags are pairs (J{,y) where J{ is an irreducible C0111pOnent of C anel

y is either a noclal point 01' one of the Inarked points Xi lying on J(. Vertices of

G(C, Xl, . .. ,X n ) cOl'l'espond to cOlnponent.s of C; each interscction point gives rise to

an edge. Legs o[ the graph correspond to the points Xi and the i-th leg is attached to

the vertex corresponding to the conlponcnt containing Xi. If v E G( C~ Xl, ... ,Xn ) is

the vertex corrcsponding to the cOlnponcl1t 1\" E C, label v by the genus g(v) of thc

desingularization of l{.

Given Gf E r((g, n )), denote by Me C M((g, n)) the set of thc stable curvcs whose

dual graph is Gf. In this way, we obtain a stl'atiflcation of M((g, n)) whosc open stratUJ11

Mg,n, consists of s11100th curves and corresponds to the graph with HO edges. Note that

thc elosure Me of MG is iSOInorphic to M(( G))j Aut( G), anel the 111ap J--le induces the

enlbeelding of this quotient as a elosed stra.tUIll.

(5.4) Logaritlunic forlns and residues. vVe now recall sorne general facts on

logarithlnic [01"l11S [4J. Let){ bc a S11100th algebraic variety, D C X a divisor with

normal crossings, J)i C D the 10CllS of 'i-fold self intersection (in particula.r, DO =

X, DI = D), 1r : iJ -7 D thc nOflnalization tnorphisl11 anel Ei = 1r",CIDi be the shcaf on

D i spanned by branches of J) near D i
. The Poincare residucs are Inaps

(5 ..5)

Using such lnaps, we obtain aresolution of n:\, on )(:

(5.6) 0 -7 n~ -7

n~ (log D) ---1 nh (log D2) (9 ~l dct( (I) -7 n Ö2 (log IJ3) (9 ~2 det( (2) ---1 ... ,

where sheaves on each Di are regarded as sheaves on X with support in IJi.

(5.7) Logarithnlic fornls on M((g, n)). Thc cotllpactification divisor IJ((g, n)) =

M((g, n)) \ M((g, 11.)) is a divisor with nornlal crossings. Let n~t((y,n))(log D((g, 11))) be

the corresponding 10garitllInic de Rhalll COlllplcx; this is consielerccI as a chain cOInplex

by placing it in negative degree, so that n i is placed in degrec -i. Consider the

collection of c0111plexes of sheaves

n-((g, n)) = ~3(g-I)+n sgn'l (9n~1:((9,H))(logD((g, n)))

on M((g, 12)).
For a finite set J with 111 = n, denote by O-((g, J)) the sheaf on M((g, I)) associatcd

to 0- ((g, n)), as in (2.4).
Let G E r((g, n) be a. stable graph, and let Ilc be the corresponding cOlnposition

I11ap (.5.2). vVe elefinc a. tllorphis111 of cOlllplexes of sheaves

AG : Il(;O-((g, n)) ---1 ® p~fr((g(v), Leg(v))),
vEVcrt,(C)

whcre]Jv is the projection of M((G)) = Dv M((g(v), Lcg(v))) to the factor IahelIed by v.

Nalnely, M((Gf)) is the intersectioll of scveral brancltcs of the divisor D(( G, n)). These
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branches near M(( G)) are paralnetri7.ed by the edges of C. Therefore, the Poi ncare
residue (5.5) gives a lTIap

n;l((g,71» (log D((g, n))) -+ ~I &lge(C)1 det( G) ® n~((C») (log D((Cn)).

After rearranging the grading this gives preciscly the dcsired nlap AC.
Denote by Rr(M((g, n)), n·((g, n))) the c0l11plex obtained by taking global sections

of the Dolbeault resolution of n·((g,n)).

(5.8) Proposition. Tlte 'In,UjJS AC 'HUlke fhc slable S-modulc Rr(M((g,n)),n·((g,n)))
into fl 'modular coopcrad.

The proof follows by checking an obvious associativity condition for any 1110rphisl11

GI -+ G2 in r((g, n)).

(5.9) The gravity operad. Denote by 9 the Inodulal' operad fonned by taking thc

dual cOll1plexes to the above cooperad:

9((9,'11)) = nr(M((g,n)),n·((g,n)))'".

'vVe call 9 thc gravity opcrad.

The homology operad 9 of 9 has as undcl'lying stable §-lnodule

(5.10) Renlarks. (a) The cyc1ic operad Cyc(9) coincides with what was called thc

gravity operad in [8], but differs by a suspension froll1 thc definition in [.5]. In the latter
paper, an explicit presentation of the operad Cyc(9) is given.

(b) Tt is shown in [8] that the cyclic operads Cyc(9) and Cyc(9) are weakly equivalent

(where the_latter is understood to have zero differential). lt is unknown whe~her this
is true for 9 and 9.

(c) Note that the topologicaJ stable S-1110d nIe of open strata M((g, '11)) is not a tapa­

logical operad, although its h0l110logy is, onee suitable regradcd.

(5.11) The gravity operad and FH.(M). Let e.(M((g,n))) be the cOlnplex of de

Rhanl cllrrents on M(( C, n)), that is, thc topologicaJ dual of the cOiTIplex of snlooth

differential fonns. Obviollsly, these eOll1plexcs fonn a 11lodular operad E..(M), whose

honlology is the operad I-J.(M).

(5.12) Theoren1. Therc is (L wcak cquivalencc oJ modular ope'rads e.(M)) ~ F(9).

PFOO]. Specializing (.5.6) to the ease )( = M((g: n)) and D = D((g, 12 )), we find that

and

u
GEr((g,n)

IEdge(C) I==i

M((g)) ,

(5.13) nr(Di,nüi(logDi+l
) ® ~i det(E i ))

f"V EB Rr'(M((g)), n~((g))(log D«(G))) ® det(Cn).
CEf((g,n))

IEdgl)(G) I=i
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By exactness of (.5.6), we see that the right hand siele of (5.13) is na.tural1y \\leakly equiv­

a.lent to Rr (M((g, 11 )), n;1:((g,n)J. Hut the linear dual of the right-hand side of (5.13)

is F( 9)((g: '11.)), while thc linear dual of Hf' (M((g)) , n;{((g)) (log D(( G))) is e.(M((g, n)).
This cornplctes the proof. 0

(5.14) Rieluann surfaces with holes. Therc is another topological 1l10dular opcl'ad

M relatcd to tnoduli spaces, which is, in SOlne sense, dual to M, and is dcfincd as folIows.

The space M((g~n)) is thc lnodllli space of data (C, fh"" In) where C is a Rienlann

sllrfacc (colnpaet I-ditnensional cOlnplex tnanifolc!) of genus g, and fj : ~ -t C are

enlbcc!ding of thc unit disk with disjoint inlages (this is a. gcnera,lizatioll to highcr genus

of (1.9.2)). As in (.5.1), the strueture lllaps

M(((,f)) = TI M((g(v), Leg(v))) -t M((g, n)).
vEVert(G)

are induced by gIlling Rienlann surfaees.

6. MODULAll EXTENSION OF CYCLIC OPERADS

In this scction, \\'c construet a left adjoint functor to thc functor

Cvc .
{lnodular operads} -=---+ {cyeltC operads}

of (2.3), whieh we eall the lnodular extension anc! denote rvlod:

{cyclic operads}~ {Illodular operads}.

(6.1) Definition of n'lod. RecaJl (2.] 4) that every lllodular openl.d :P gi ves rise to a

fUIlctor

r((g, n)) -t {Sn-Inodules}.

If P is a cyclic operad, then we tllay define silnilar functors, but only on the subeategory

r'o{(g, 11.)) y r{(g, n)). This is thc category r'((g, n)) has a subcategory r'o((g, 11.)), whose

objects are those labellecl graphs or r((g, n)) such that g(v) = 0 fol' all vertices v, anel

whose I110rphisnls are those I110rphislns of f((g, n)) such that the inverse inlage of each

vertex in the target is a tree. Thus, if T is a, su bforest of G (a set of eelges of G
containing no circuits), we obtain a rnorphisnl G -t G/T in ro(g,n).

Ir A is a cyclic opcrad, wc deRne a stable §-nloclule rVlod(A) by

IVlod(A)((g, n)) = colinl A((G)).
GEro(g,n)

Tbe catcgory r0((9, n)) has an objcct G(g, n), consisti ng of the graph wi th n legs, 9

edges and a, single vertex. Every other object has at least Olle 111orphisn1 to (,'(g, n).
(This arnounts to the fact that every connected graph has a spanning tl'ee.) Since

A(((,'(g, 11.))) ~ ~((O, 2g + n))Allt(G(g,n))J it follows that Mod(A)((g, n)) is a quotient of
A((O,2g + n)) ~ A(2g +n - 1).

(6.2) Proposition. The stahle S-uwd71le IVloel(A) !ws a nahlTal ·modular opcrad sl'1'UC­

l1l.Te.
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P'1'oof. If we replace the colitnit in the definition of l\1od(A) ((g, n)) by the direct sunl
ovcr objccts of r0((9,11,)), wc obtain MtA, tolle free tllodular opcrad generated by A. lt_
is not harel to see tha.t the identifications involvcd in taking the colinlit preserve the
operad structure. 0

(6.3) The nlodular extension of a free cyclic operad. Thc following eliagra111
C0I11I11utes:

cyclic operaeIs~ Inoelular operads

(6.4)

cyclic opel'ads~ Inodular operads

In particular, considering a. cyclic operael with zero COlllpositions, we finel that the
I110dular extension of a free cyclic operad is a. free Inoel ular operad (with the same
generators) .

(6.5) Modular extension and Vassiliev invariants. Vassiliev has introelucecl a
filtered space \I = U:=o Vm of knot invariants of finite order (see [2)). The associated
graded space lV = gl' \I is a C0111111utative COCOllllllutative Hopf algebra. Let P =

E9 Pm be its space of priI11itives. One of the chief I'esults of Kontsevich and Bar-Natan
identifies the quotient Vk/Vk-l with the zeroth hOlllOlogy group of a certain graph
conlplex. In our language,

m

Pm ~ E9 Ho (FCom)((y, 'ln - 9 + 1))5m _ g+l'

9=0

This nlay be neatly refonnulated using the concept of modular extension. By (6.4), we
have

FCom = l\10cl(BCom),

where Com is the C0I11tllutative operad.
If A is a cyclic operad concentrated in positive degree, then Jjo(A) is a cyclic op­

erad concentrated in degree O. It is easy to see that Ivlod(A) is also concentrated in
positive degree, anel that thc Il10elular operad lla (l\1od(A)) is naturally iSOI1l0rphic to
l\1od( flo(A)).

\Ve Inay apply this observation to the cobar operad BCom of the cOinnlutative operad,
which is concentrated in positive degree anel is aresolution of the Lie operad (see [8]):

Ho(BCom) ~ Lie.

lt fo11ows that

lIo(FCom) ~ lIo( t\1oel( Lie)) ~ Mocl( Lie).

We conclucle that
m

Pm ~ EB ivfocl(Lie) ((g, rn - 9 + 1))5"'-9+ 1 ,

9=0

which 111ay be thought of as an expression, in the language of I110clular operacls, of the
relationship betwecn Vassiliev invariants anel Lie algebra.'3.

(6.6) The derived functor of 1110dular extension. The functor wlod, applied
to cyclic operads in the category of chain cOIllplexcs, is not hOinotopy invariant; it
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does not, in general, take weak equivalcllces to weak equivalenccs. This 1110tivates the

introduction of L11od: the left-derived functor of 1 lfod. To define Ln'Jod, we consider

thc canonical frce resolution BBA -+ A and apply Mod:

L110d(A) = I\10d(BBA) = FBA.

lt is clear that L I\'Iod is horllotopy invariant (since B alld F are). Also, for a free cyclic

opel'ad

A = T+V = BV,

(where V is a cyclic operad with vallishing c01npositiollS), L~1od(A) = FBBV is weakly

equivalent to FV = I\1od(A).

7. CHARACTERISTICS OF CYCLIC OPERADS

If V is a, st.able S-nlodule, we can associatc to it a sYll1l11etric function Ch(V), calleel

its characteristic. In this section and the ncxt, we givc fOl'lnulas for Ch (BA) in tenns

of Ch(A), where A is a cyclic operad, and for Ch(FA) in tenns of Ch(A), where A is a

lnodular operad. The first of these forllHllas involves a generalization of thc Legendre

transfol'ln, and the second a gencralization of the Fourier transforIll, froln power series

in Olle variable to the ring of sYllllnetl'ic fUllctions. Here, sYllltlletric functions arise

because of well-knowll correspondellce betwcen the characters of the sYllunetric group

and the ring of synl1l1ctric functiolls. POl' furt her details on thc thcory of synllnetric
functions, see Chapter 1 of I\'Iacdonald [17].

(7.1) Synlnletric functions.

Consider thc ring

1\ = Um ZITXI,' .. ,Xk]Sk

of sYlllll1etric funct.ions (power scries) in infinite1y Illany variables. The following stan­

dard sYllllnetric functions

hn(Xj) = L ;l:j, ... Xi", en(Xi) = LXi, ... :Ci" ,

il$"':$i" i,<···<i"
00

]Jn(Xi) = L x7,
i=l

are called respectively the cOIllpletc SYllllllctric functions, the clelllcntary synl111etric
functions and thc power SUI11S. It is a, basic fact that

1\ = Z [h I , h2, ... ] = Z [c I , C2, .•. ],

1\ 0 Q = Q[Pl' ]12, ... ],

that is, that each of these three series of sym111ctric fUIlctions freely generates 1\ (in the

case of the powcr su Ins, over Q). In particu lat', h1 = Cl = PI, whi Ic 17. 2 = t(pi + ]12)

and C2 = ~(pi - ]12)'

Let a be an elelnent of the synlllletric group Sn, with cycles of length (l,l 2: a2 2:
... 2: Clt; thus n = Cl, + ... + Clt. Thc cycle index of a is thc syollnetric function
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The characteristic of a finite-dilllensiona.l Sn-Illoelllle V is the sYl11111etric function

1
chn(V) = I" L Trv(a)~(a).

n. I1ESn

It ITIay be proveel that ehn(V) is in i\, 0.1 though it is onIy evident frOITI its elefini tion

that it is in 1\ 0 Q.
"Ve extenel thc definition or ehn to graeled Sn-Illodules by

chn(\I) = L(_l)i ehn(\~),
I

where \~ is the elegree i COll1pOnent or V. Fina.Ily~ the cha,racteristic cf a, gradeel 8­
Illodule V = {V(n) 1 n ~ O} slIch that V(n) is finite-clin1ensional for all 11, is

00

ch(V) = :L chn(V(n)).
n=U

"Vc denote by rk : A -t Q[:r] thc ring hOmOll101yhisln which sends

x n

hn I-t -"n.

01' equivalently, PI f---1 :z: and ]Jn I-t 0, n > I. Ir v is an Sn-l11odllle,

k( 1 ( ))
diITI( \I)xn

r . C 1n \I = ---­
n!

For this reason, we call rk thc rank hOl1lOl110rphisI11.

(7.2) Plethysnl. PlethysIll is tlic associative operation on 1\: dcnoted [ 0 9, charac­

t.erized by the fOI'l11ulas

(1) (/1 + [2) og = /1 og+ /2 og;
(2) (/1/2) 0 9 = (11 0 g)(12 0 g);
(:3) if I = /(PI, ])2, ... ), thcn pn 0/= /(Pn ,])2n,· .. ).

Note that under the rank hOln0I110rphislll, piethysl11 is carried into COll1positioIl of

power senes.

There is a l11onoida.l structure on the categol'Y of §-l11odules, with tensor product

00 k

(V 0 W)(n) = EB (V(k) GI EB ®WW1(i))).
k=O J:{I, ...,'l}-t{I,...,k} i=l S"

(An operad V is just an S-n10clule with an associa.tive conlposition V 0 V -t V.)

(7.3) Proposition. ch(V 0 W) = ch(V) 0 ch(W)

"Vhen V a.nel Ware ungraelcd, this is pl'oved in rvlacdonald [17]. In the gcneral case,

the proof depends on an analysis of the interplay between the 1l1inus signs in the Euler

characteristic anel thc action of sYIlllnetric groups Oll tensor powers of graded vector

spaces.

(7.4) Characteristic of §-nlodules. Ir v = {V((n)) 111 > I} is a cyclic §-tnodule,

its characteristic is
00

Ch(V) = L ehn(V((n))).
n=l
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There is a forgetful funetor fronl eyclie S-Illoclules to S-nl0dules, obtained by restricting
the action of V(n) = V((n + 1)) fro111 8n +1 to thc subgroup Sn. The characteristics of V
considercd as a cyclic S-modulc and a11 S-ll1odule are related by

(7.5 ) ch(V) = a~h(V)
PI

(7.6) Exanlples of characteristics. To illustratc the above definitions, let us give
S0111C exal11ples of characteristics of cyclic operads.

(7.6.1) The commutative opernd. For the C0l11Illutative operad Cam, Cam((n))
is the trivial representation of Sn for all 11 ~:3. (Note that we work with the nOll­
unital forn1 of thc COllll11utativc aperad, in which Cam((2)) = 0.) It follows that
chn ((am ((n))) = hn for 11. ~ :3, and hence that

Ch(Com) = cxp(~ 1;;,) - (1 + 11 1 + 11 2 ),

(7.6.2) The associative operad. The associative operad is a cyclic operad witli

Ass((n)) ~ Ind~'~ n;

here, Cn C Sn is a cyclic subgroup of order n andn is thc trivial character of Cn' It
follows that

chn(Ass((n))) = E 'P(d) ]J~/d,
dln n

where 'P( d) is the Euler totient funct.ion. SUlllllling over n ~ 3, we see that

00 cp(n)
Ch(Ass) = - L -log(l - ]1u) - (h l + h2 ).

n;;) 11

(7.6.3) The Lie operad. In (7.24), we will prove that thc characteristic of the Lie
operad is

. 00 p.(n)
Ch(Lle) = (1 - pd L -log(l - Pn) + Pt,

n;;1 n

where p(n) is the ~1öbius function.

(7.7) The Legendre transfOrll1. Classically, thc Legenclre transform of a convex
function f : IR -t lR is tbe function

(.cf)(~) = g(~) = ln:x(x~ - f(x)).

(See Sectian 3.3 of Arnolcl [1].) Setting ~ = J'(x), we see that

(7.8) goI' + f = X /' •

Suppose that, instead of being a convex function, !(a:) is a fannal power series of the

fonn

(7.9)
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whcre (l2 f:. 0; we dcnotc this sct of power series by QITxt. Thc equation (7.l6) dcfines
a unique power series (.cf)(~) = g(~) E Q[~t, which we again call the Legcnclrc
transfonn.

(7.10) Proposition. If 1 and gare series of Ihe fOTm (7.9)J then. [.;f = 9 if and only
if f' and g' are inverse under compositioll,. thai is,

g' 0 /' = ;l:.

Proof. Taking thc derivative of (7.8), we see tha.t

(g' 0 J')/" + /' = x/" + /'.
Cancelling f' fron1 each side and dividing by J", which is invertib1c in Q[;l;] by hypoth­
esis, wc find that 9' 0 /' = x. The sanle reasoning proves the conversc. 0

As a consequence of this proposition, we see that L is involutive: L(L/) = J.

(7.11) Land trees. Let V bc a cyclic §-Inodule with V((n)) = 0 for 1'1 :::; 2. The cyclic
§-I110d ule 11'+V was deR ned in (2.1.5).

(7.12) Proposition. Let. an = x(V((n))) mut bn = x(11'+V((n))) be the Euler c!ul'rac­
teristics of components V and 11'+V. 1f

x 2 00 0 :r n 'C 2 00 b ;I.n

I(x) = ~ - L ~ und g(x) = ~ + L ~.
2 n=3 n! 2 n=3 n! '

then 9 = Lf·

Proof. lt is a corollary of Thcorcnl 3.3.2 of [8] thal g' 0 f' = J:. The results follows by
(7.10). 0

\tVi th thc notation of thc proposition,

(7.13) bn = L TI aILeg(u)l·
n-t.rees T vEVert.(T)

In fact, thc proposition relnains true for an arbitrary scquence of rational nUlnbers

{a3' Cl4, ... }, if wc dcfine {b3, 6'1""} by (7.13).

(7.14) The Legendre transfornl for synllnetric functions. Denote by )\* the set
of syn11netric functions such that rk(J) E Q[x],..

(7.15) Theoreill. (a) If f E A.) therc is a 7.lniquc element 9 = Lf E A.. such thai

8J 8f
(7.16) 9 0 -

8
+/=PI-

8
.

PI Pi

IVe cal! L : A.. ~ A.. thc Lcgendre tronsform.

(b) The Legendre 1.'fansJorm of sY'!runel.ric !7.l.ncÜons is co.,npaliblc wilh I.hat 01 jJowe'"
senesJ in the sense thaI. lhe following diagrarn COlHrn1ll.es:

A*
J: A.~

,k1 ,k1
Q[xt r.. Q[a:t-+
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(c) The sym;met.ric funet,ions

8(Li) and 8i
DPl fJPI

are plelhyslic inverses. (iVote lhal J unlike JOT powe'I' series, this equatiol1 does Hot
delcrrnine L f.)
(d) The transformation L is an involutionJ that iSJ LL = Icl.

Proof. Jf f E A., then Bi / f)PI is invertible with rcspect to plcthyslTI. Thus (7.1ß)
defines 9 E A. uniq uely, provi ng (a). Part (b) is obvious, since rk transforms plethysTll
into cOInposition.

] tl proving (c), wc necd an analogue of the chai n rulc for fJ / Dpl acting on A:

f) (u 0 v) = (fJu 0 v) fJv .
fJPI Dpl fJPI

This fonnula is provcd by checking that both sieles a.re c0111patible with the rules (1-3)
defining plethyslTI (7.2).

Using this, the rcasoning necded to provc (c) is fonnally identical to that in the proof
of (7.10).

To prove (cl), wc note that (c) iJnpl ies

]11 iJ.r = (PI og) 0 af .
BPI fJPI fJPl

This shows that

fJf 8g fJg (8/ ) fJg ( 89 ) Df 89go-o-+/o-= Pl- 0-= ])1- 0-0-.
8Pl iJPI fJPI BPI 8PI 8pI 8Pl f)Pl

Cancellation proves that

i
fJg fJg

g+ O-=PI-,-,
8]JI 8Pl

a.nel hence that / = L9. D

For exanlple, Lh2 = e2 ancl vice versa,.
The following theorenl is related to rcsults of Otter [19] anel Hanlon-Robinson [9J on

the enulneratiol1 of unrooted trces.

(7.17) Theoren1. Lei. V be a cyclic S-module such thai V((n)) = 0 for 11. ::; 2 and V(( n))
is finite dimensional fOT aU n. Define the elements 0/ A•

.r = e2 - Ch(V) and 9 = h2 + Ch(1r+V).

Then 9 = Lf·

Proof. Recall (7.5) that ch(V) = aCh(V) / DPI' By definition of L, we Inust provc that

(h 2 +Ch(1r+V)) 0 (PI - ch(V)) +C2 - Ch(V) = PI (PI - ch(V)).

Since h2 = C2 +pi, this Inay be rewritten as

(h 2 + Ch(1r+V)) 0 (lh - ch(V)) = 11. 2 + Ch(V) - PI (PI - ch(V)).

By the fOrn1l11a

17. 2 0 (PI - ch(V)) = h 2 - PI ch(V) + 11. 2 0 ( - ch(V)) ,
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we see that this is eqllivalent ta

(7.18) Ch(11'+V) 0 (PI - ch(V)) = Ch(V) - h2 0 (- ch(V)).

"Ve prove this fonl1l1la by constructing a differential graclecl §-Inodule C = {C (( n))}
such that ch(C) equals the left-hancl siele of (7.18), a.nel ch (11. (C)) eqllaJs the right­

hand siele. Define thc §-nlodule underlying C to be the plethysn1 X 0 W, where the

§-ll1oelules X and W a.re defincd by

{
a, 11. :::; 2,

1:((n)) = (11'+V)((n)), 11. ~ :3,

1
0, 17, = 1,

W((n)) = k, 11. = 2,

~ Res~:+1 V(( 11. + 1)), n ~ :3.

Here, L: is the suspension functor on gradeel §n-rnodules. It follows fro111 (7.:3) that

ch(C) equals tbe rigbt-hand siele of (7.18).
"Ve 110W construct a differential 0 on (X 0 W) (11.). A vertex v of Cl, trce T is a. boundary

vertex if exactly one of its flags fonns part of an edge. Definc 0. colouring of a tree

to be an assignrnent of colours black anel white to its bounelary vertices; we denote a

coloured tree by (T, ß), where B is thc set or black bounelary vertices. Tlten

(7.19) (X 0 WHn) = EB ( 0 V((Leg(IJ))) 0 0 I;V((Leg(IJ)))).
coloured n-trees vEVert,{T)\B vEB

(T,B)

On the SU1111nand of (7.19) correspollding to the colourccI trce (T, B), we define

where Ov is the natural identification, of elcgrce -1, betwcell tltis surnrl1and and the

SU111111and corresponding to (T, B \ {v}).
Clearly (X 0 W)(n) splits into a direct sum of SUbcOlllplexes er corresponcIing to all

thc colourings of the tree T. Ir T has at least Olle non-bollndary vertex, thc cOIllplex

CT is contractiblc, since it is thc tensor product of the graded vector space V((T)) anel

tbc augll1ented chain c01l1plex of thc silllplex whose vertices are the boundary vertices
of T. There are two l'clllo.ining cases:

(1) the contributioll of Cr froll1 aH trees with one vertex is Ch(V);

(2) the contribution of CT froll1 0.11 trees with two vertices is h2 0 (- ch(V)).

1111 plicit here is the observation (Jordan [11]) that thc centre or a tree, the relllnant

obtained by repeatedly stripping away bOllnda,ry vertices, has either one vertcx 01' one

edge. D

(7.20) The characteristic of the cobar ~perad of a cyclic operad. Using this

theorelll, we will now write a fonnula for Ch(BA), whcre A is a cyclic operad. Up to

differential, BA b the cyclic opcrad 1r+Av , anel thllS Ch(BA) = Ch(11'ViV). ThllS, it

suffices to give a forl11lda. for eh (AV
).
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Denote by w : 1\ -t 1\ the ring hOlllolllorphislll such that w(h n ) = Cn , n 2: 1. lf \I is

a fini tc-di Incnsional Sn-rnod ule,

and thus w is an involution. Note also that w(Pn) = (-l)n-I pn .

vVe also need a lnodified involution w, defined by w(hn) = (-1 )n Cll , 01' equivalcntly

w(Pn) = -Pn' Thus, if V is a. cyclic S-ll1odule such that V((n)) is finite-dinlensional for

each n,

(7.21) ch(VV) = -w(Ch(V)).

(7.22) Corollary. Let A be a cyc/ic opeTad such lhat A((n)) = 0 fOT n ::; 2 and A((n))
-is jinil,e-dinLensional fo.,. each n) and lcl BA bc its coba.,. opc'rad. Thcn

11. 2 + Ch(BA) = Lw(h2 + Ch(A)).

Reca.11 [8] that BBA is wcakly equivalcnt to B, which suggests that thc tranSfOl'lll

Lw : 1\* -t 1\* should be an involution. TlIis follows frorn thc following rcsult.

(7.23) Proposition. 11 J E 1\*) -Lwf = L( - f)·

Proof. By Ex. 8.1 of rvlacdonalel [17], if 11 anel v are synlInctric runctions, U 0 ( -v) =

(W'll) 0 V. Ir 9 = 'c(wJ), we see that the dcfining equation

_ 8g 8g
(wf) 0 -8 + 9 = x~

PI UP1

is equivalent to

that is, -g = ,C( - J). 0

(7.24) Exalnple: the Lie operad. Thc Lie operad Lie is weakly equivalent to thc

cobar operad BCom of the COlnnllltative opcrad, anel thlls h2 + Ch(Lie) is the LegeneIre

transfonn of

w(h 2 + Ch(Lie)) = w(exp(~ 1::) - (1 + h.))

(

00 Pn)= cxp L - - - (1 - PI) .
n=1 11.

The LcgenclI-e transforIn of this synllnctric fUllction is

00 fl(n)
(1 - pd L -Iog(l - Pn) + P1·

n=l 11.

lt follows that

_ 00 fl(n)
Ch(Lle) = (1 - pd L -log(l - Pn) + h1 - h2 •

n=I '1"t
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8. CHARACTgRISTICS 01" MODULAR OPERAOS

(8.1) The ring A((I1.)). Consider thc ring ..\((n.)) of Laurent scrics with coefficicnts in

A. This ring has a desccnding filtration

pm 1\ ((n.)) = {L f;n.; If; E Fm- 2
;1\},

inelucing a topology on 1\((11.)). lf f E A, the plethyslll f 0 (-) : J\ --+ 1\ extcnels ta

A((h)) by retaining axiollls (1) allel (2) of (7.2) anel replacing (3) by

(;)') Pn 0 f(h., p" ]12,· .. ) = I(n,n, Pn, ]J2n,· .. ).

(8.2) The characteristic of a stable S-n10dule. The charactcristic of astahle

S-nlodule V is the elenlent of A((h)) givcn by the fOflnula

Ch(V) = L 119 -
1 chn (V((g,11.))).

2(9- 1)+n>O

The stability condition cnsures that Ch(V) E F I 1\((n)). Our goal is to prescnt a fornllI1a

for Ch(FA) in tenns ofCh(A).

Note that this definition is consistent witli the carlicr definition of the charactcristic

of a cyclic §-nlodulc (7.4), provided wc set 11 = 1.

For f E F 11\((11.)), lct

Exp(J) = (f hn ) 0 f = exp(f ~;') 0 .f.
n;;:O n;;:l

Note that

Exp(J + g) = Exp(f) Exp(g),

anel that lInder specialization rk : 1\((h)) --+ Q[x ]((17.)), the l11ap Exp goes into exponcn­

tiation

J(Ii, x) 1--1 e!(n,x).

(8.3) Proposition. i/V is a stablc S-nlodulc J lel. EXPn(V) hc thc stahle S-nwd'ule such

thaI.

EXPn(V)((g,n)) = ( EB Ind~~::~\(~v((g;,rl(i)))) tn'
J:I--+{l ....,n}
91+'·+911;;:9

whe'1'e Aut(f) = Aut(f-l(l)) x··· x Aut(f-'(n)). Thcn
00

Exp(Ch(V)) = L li- n Ch(ExPn(V)),
n=O

ProoJ. This follows frol11 (7.:3) anel the definition of Exp(f), f E A((fi)). 0

1nfonnally~ the stahle S-module EXPn (V) Inay be thought of as representing discon­

nectcd graphs with 11, vCl'tices anel no cdgcs: all of its flags a.re lcgs.

(8.4) Proposition. Thc Inap Exp : pi 1\ ((1i)) --+ I +F' A((N.)) is inverlible oueF Q, wilh
UlveFSc

00 II (11. ) 00 Jl (n )
Log(f) = L -log(Pn) 0 f = L -log(Pn 0 f)·

n;;:) n n;;:l 11.
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Pl'oof.

00 11(71.) (00 Pm)
Log(Exp(f)) = L -log(Pn) 0 cxp L - 0 f

n=1 n m=1 rn,

~ ll-(n) 1 (~ Pnm) 1= L- -- og exp L- - 0

n=1 n 711=1 1n

= ~ ~ p(d)Pn 0 f = f. 0
L-L- n
n=l dill

(8.5) The inner product on A. 'ra a partition). = (1 ml 2m2
... ), where Hlk = 0 for

k » 0, is associated a. InOn0l11iai

_ ml. m2p,\ - PI P2 ....

These Illonolnials [ol'ln a topological basis of A. Let Aalg be the space of finite lillear

COll1 binations of thc P.\. The sta,ndard in ner product on Aalg is deterIl1 ined by the

forn1ula
ce

( ) TI 'mo ,
P.\:P/l = 1 'rni·

i=1

Note in particular tllat (pi, ])j) = 'i6ij; the inner procluct on Aalg is the standard exten­

sion of the inner proclllct on a vector spacc to its sYlllInetric algebra (Fock space).

(8.6) Proposition. [J V alul HI are Sn-modules)

(ch n ( \I), chn(l'V)) = diln HOl1lSn( \I, ~V).

Pl'oof. This statel11cllt is wcll-known in the theol'y of sYlll111etric fllnctiotls: it follows

fr0l11 the fact that the Schur functions fonn an orthononnal basis of Aalg . 0

"VVC extencl the inner product on Aalg ta a Q((li))-valucd inner product on Aalg((n))

by Q((n))-bilinearity. Ir f E Aalg((li)) , let D(f) : i\((li.)) -t i\((Ii.)) be thc adjoint of

l111I1tiplicatioll by J with respect to this inner procluct. The following proposition is

Ex. 5.:3 of fvlacelonalel [17].

(8.7) Proposition. 1I J = f(I1" PI, ]12, ... ) E Aalg((li,))) t.hen

D( f) = 1(11" -aa,2-a
a ,:3 ~,& , ..• ).

• PI P2 UP3

(8.8) Proposition. Let. k ::; n) V be an Sk-nwdule) and HI be anSn -'Tnor!·llle. Then

D(ch,,(\I)) chn(W) = chn- k Homs, (\I, Res~~xSn_' W).

Proof. This follows by ta,king adjoints on bath sieles af the fornntla.

ch j ( U) chk ( \I) = ch j +k Ind~~~;k (U 0 \I). 0

(8.9) A Laplacian on A((li,)). "Ve now introdllce an analogllc or thc Laplacian on

A((Ii)), given by the fonnula

L\ = f h
n (* r]22 +~) .

n= I oJ ßPn 8P2n
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Note that ß is h0l1l0gcneous of elegree zero, anel thus preserves the filtration of A((n.)).
Uneler specialization l'k : 1\((n,)) -t Q[x]((lj,)), the operator ß corresponds to the La,pla­

cian ~ ;;2 on the Jine.

(8.10) Proposition. D(Exp(hh2 )) = exp(il)

Proof. 13.1' (8.7), it suffices to substitute na/8pn for Pn on thc right-hanel siele of

Exp(l1.h2 ) = exp(f: Pn) 0 (~(]Ji +P2)) = exp(f: /jn (p~ +Ihn)). 0
n=! 11.... n=l 2n

(8.11) Theoren1. IJ V 2:8 a slahle S-mod-ule) lhen

Ch(Mt V) = Log (cxp(ß) Exp(Ch (V))).

Proof. Let us first neglect h. anel explain thc appearance of thc sunl over graphs. on thc

right-hand siele of the fonnula. Fonnall.1', we set li = 1; this is legitilnate if V((g, n)) = 0

for g» O.
Applying Exp to Ch(V), we obtain the stahle S-1l1odule l'epl'esenting possi bly discon­

nected graphs each componcnt of which has one vertex. Appl.1'ing D(h 2 ) to Exp( Ch(V))

givcs the sunl over all ways of joining two legs (01' flags) of such a graph; h2 ariscs be­

cause the two ends of an edge are indistingllishable. (If edges carrieel a dil'ection, we

wou lel replace h2 by pT, thc charact.cristic of tlIc regu laI' reprcsenta.tion of §2')

SiInilarly, applying D(Exp( 11.h 2 )) to Exp( eh (V)) gives the sun1 over all ways of joining

together any nUl1lber 1\' of pairs of legs by cdges. In this way, wc sec (recall that li.

tenl porarily equaJs equals 1) that

exp(ß) Exp(Ch(V)) = Ch(W),

where W is the stable S-nl0dule such that

(8.12) W((g, n)) = EB V(( G))Aut(G),
G

whe1'e Gf runs ove1' all possibly disconnected, labelJed n-graphs such that cach C0I11­

ponent is stable. But W = Exp(Mr V), since I\t14 V is defined in a. sinlila,r way, but

sUl111ning onl.1' ovC1' connected graphs.

1'0 finish the proof, we n1ust account for the powers of Ii. in each ternl of (8.12). Each

tenn chn(V((g:n))) in Ch(V) cornes with a. factor of hg-I. The tel'111 of Exp(Ch(V))

corresponding to a labelIed graph Gf (witlI cach co 111 pOllcnt having Olle vertcx) COIncs

with a factor of 11. raiseel to the power

-I Vert(G)1 + L g(v).
vEVcrt.(G)

Each new edge introduced by the act.ion of D(Exp(l1.h2 )) contributes a factar of Ii.
Thel'efore, the tel'1l1 in (8.12) corresponcling ta a labelIed graph G conles with a factor

of Ii. raisccl to the powcr

-x(G) + L g(v).
vEVert,(G)

Applying Log has thc cffect of eliscarding a.Il the disconnected graphs er Ir G is

connecteel, thc power of li in question cquaJs g( G) -1, whel'e g( G) is defincd in (2.6). 0
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(8.13) Corollary. IJ A is a rnod1lIa'J' opcrad witll Feyrl'tnan l1'ansfo1'TTl FA) lhen

Ch(FA) = Log(exp(ß) Exp(wCh(V))),

wherc w : A« /1,)) ~ A«11,)) is !.he 'ring hornornorphisTTl, such thal w(]>ll) = -Pn and
LZ,' (li.) = -11..

PFOOf. 'This [ol1ows froIll the fact that Ch(AV
) = wCh(A), where A V is the linear dual

(4.J). (See (7.21) for the cydic case.) 0

Therc is an analoguc of (8.11) for Ch (M- V):

Ch(M... V) = Log(cxp(~) Exp(Ch(V))),

where

.6. = f /in (~,8
2

2 - -/!-) .
n=' ... 8Pn O]hn

The proof is the salne as that of (S.ll), except that the representation of §z associatecl

to an eclge is Cz iIlsteacl of hz•

(8.14) Plethystic Fourier tranSfOrll1. Let us give a fonnal interpretation of tbc

prcvious theOl'enl in tcn11S of thc Fourier transfornl on the innnitc-dinlcnsional vector

space Spec(AR) ~ Roo, with coordina.tes PI, P2, . .. l where AR = Aalg ® R.. This spacc

has a translation invariant Rielllanniall Illctric

(8.].5)

by lneans of which we l11ay idcntify the vector space Spec(AR) x Spec(ARt' with

Spec(AR 0 AR). \·Ve denotc thc function Pn 0 1 by Pn, and the function 1 0]Jn by

qn·
\Ne 111ay now rewrite (8.11) in the fo11owing fonnal way as a Fourier transfornl. Let

dlt be the Gaussian ll1casul'C on Spcc( AIR:)

d = TI exp! -pO/ ,; ) j TI exp( -(1'~ - 21Jn)/2nnn j dl'n ,
n odd 2rrnlin

n C"'Cll e1
/

2n J2rrnlin

Up to an infinite constant, the IllCaSllre cllt has density Exp( _n.- 1ez), alld is the trans­

la.tc of thc Gaussian nlcasurc associatcd to the llletric (8.1.5) by the vector (PI: Pz~ . .. ) =
(0,1,0,1, ... ).

(8.16) Theorenl.

Ch(Mt V) = Log r Exp(h- 1Plq, + Ch(V)) cl,tJR=
Proof. Using the fOrn1l11a.

(
t 8

z
) f() 100 exp( -(p - q)2/2t) f( ) 1cxp -- q = ]J (])

2 ßq2 -00 J2rrl . ,

we see that
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(8.20)

vVe sec that

exp(il)f(!i, ql, Q2,' .. )

= 1. 1(1') fi exp( -(1'" - qn - c(11)/i"f
2 j2 /211"") dpn

Roo n=1 V21fnh.1l

_rroo
'( (2 )/.). ,on) ~ f() rrOO

exp(( -p; - p2n + 2]Jn{Jn)/2nli
n

) dp71- exp - (jn + q2n .... 11-1]J .
Roo' ec(n)/2nV')'1r'1~p:;n 'n=1 n=1 .... 11 "'I.

whcl'c c(n) equals °if n is odd, and 1 if 11. is even. 0

A corollary o[ (8.1:3) is a pal'ticularly appcaling fonnllia. for Ch(FA).

(8.17) Corollary.

/i- Ih 2 + Ch( FA) = Log 1. 00 Exp ("-'PI ql + w(li- I 11 2+ Ch(A))) fi dpn - C,
R n=1

wherc C is the divergent consf.anf.

I 00 ( 1 )C = :- L - + 10g(2ifn) + n log(li) .
2 n=1 2n

In this farIn, the l'eselnblance of our theoreln to \Vick's thcorenl is dear. Although it

is possible that the Legendrc tl'ansfonn for sYlnmetric fUllctions call bc obtained [raIn

(8.J6) by the 111cthod of stationary phasc, wc do not know how to do this.

(8.18) 'The characteristic of FAss. Lct llS illustratc our fornlttla (8.17) for Ch( FA),

in the case that the operael A = Ass is thc associative opcrad. The C0111pOnents of the

Feynnlan transfonn FAss((g, 11,)) n1ay bc ielcntifieel in different regions of 9 anel n:

(1) if 9 = 0, then as is shown in [8],

{

ASS((O, 11.)), i = 0,
Hi(FAss((O, 11.))) = 0,

i # 0;

(2) if 11. = 0, thell Kontsevicll [lA] shows that

(8.19) Hj(FAss((g, 0))) = EB lf3(9-1)-i('M"II/SIl, k),
{i~o,lI>oI2(i-l )+1I=9-1}

where on the right-hand siele we have t.he singular cohonl010gy of the quotient

of the coal'se 1110duli space J\tL,,1I by S,/;
(3) if n > 0, (8.19) [na.1' be generalized - the relevant Illoduli spaces are thcn

Inoduli spaces of C0l11pact Rienla.nn surfaces with boundary, togethcr with n
points on thc boundal'Y.

In particular, it. [ollows that thc power series w(fi) = Ch(FAss)(h, PI = P2 = ... = 0)
has the following geolnetrical interpretation,

00

\11(11.) = L( _li)9-1 EB e(M"II/S ,/),
9=2 {,~o,'/>OI2b-l)+1I=9-1}

where e(M"II/SII) is the Euler characteristic of thc topological space 'M"II/SII. Our

fonllula for Ch( FAss) pennits us Lo ca.lculatc this series, a probIen) wh ich was left open

in [14].
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The reason that we can calcula.tc Ch( FAss) explicitly is that the characteristic of Ass

has such a silnple fOrIn: it is a sun1 of tenns thc n-th of which is a function only of Pn:

, ( I 2 ) 1 ( _ ) ~ tp(n)Ch(Ass) = -PI - 2P I - 10g(1 - pd + 2 -])2 - 10g(1 - !Jz) + L...J --log(l - Pn)'
n==3 11. .

This n1eans that the integral (8.17) factors into a product of integrals, each of which

is over one variable Pn. 1t is quite simple to calculatc asyn1ptotic expansions of these
integrals in n., and the result is as folIows.

(8.21) Theorenl. Dd, ün(li.) be t.hc Lfl.'fl'rent !JOlyn.o'mifLl

(r) _ ~. ~ tp(n/cl)
an 1. - L...J ,-d .

1/. dln 1,

Let Wn (Ii) be the powcr scries

Wn(ll) = f= (( -kk) o~k + (on + 1/2) log(nn.non ) + 1,_n - O'n _ C.;11.) .
k==1 _.. n 1, ...n

(The role of the last f,hree te'l"TrtS is to cancel the coe.fJicients of lii J i S; 0.) Then

Ch(FAss) = _(11,-1 + 1) f tp(n) log(l - Pn) -li-I(h l + 11. 2 ) + \11(1i),
n==1 11

where
00 00 (f)

'1'(11.) = L L ~Wn(}j{).
n==1 l==l C

(1'hi5 sum i8 convergcntJ since Wn = O( /1,n/6).)

As expected: the coefficicnt of 11- 1 in Ch(FAss) is just Ch(Ass), consistent with thc

fact that Cyc(FAss) = BAss ~ Ass. The fact that

ch(FAss((1, n))) = ch(Ass((n))), n ~ :3,

is a littlc surprising. vVe expcct that the vallishing of ch(FAss((g, n))) if 9 2:: 2 anc! n 2:: 1
is explained by the existence of a fl'ee circle action on the relevant tnoduli spaccs.

lt is quite easy to ca1culate thc first few terms of \IJ(n.):

w(Ii) = 211, + 2fi,z + 41j,3 + 21/,4 + 611s + 61i6 + 61i7 + 11,8 + 0(17.9
).

The fonnllla (8.20) for the power sel'ics \fJ(I1,) is a sun1 of contriblltions frOln different

vallles of 1/ 2:: .I. The contriblltioll of v = 1 is calclilated in Hal'cr-Zagicr ([10], page

482):

\vhere

Wn,{(li) = f (( -k)O'~~ + O'n,( 10g(nnnO'n) +~ - O'n.(·
,/;== I •. 11ftn '

Hcre~ O'n,( is thc Laurcnt polynoIl1iai

_ 1~ tp(n/d) .-d
O'n,e(h) =;; ~Jl(d/(d,C))r.p(e/(d,e))h .

There is a striking forma.I similarity betwcen this fOl'lnula and our rOrIll111a [01' ff1(1i).
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