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MODULAR OPERADS

E. GETZLER AND M.M. KAPRANQV

INTRODUCTION

Recently, there has been increased interest in applications of operads outside ho-
motopy theory, much of it due to the relation between operads and moduli spaces of
algebraic curves. ‘

The formalism of operads is closely related to the combinatorics of trees [6], [8].
However, in dealing with moduli spaces of curves, one encounters general graphs, the
case of trees corresponding to curves of genus 0.

This suggests considering a “higher genus” analogue of the theory of operads, in
which graphs replace trees. We call the resulting objects modular operads: their
systematic study is the purpose of this paper.

On the category of differential graded (dg) operads, there is a duality functor B,
the cobar-construction, which is a sum over trees [8]. On the category of dg-modular
operads, we construct an analogous duality [unctor F, the Feynman transform, which
is a sum over arbitrary graphs (4.2). This functor is closely related to Kontsevich’s
graph complexes [14].

The behaviour of F is more mysterious than that of the cobar construction. For
example, for such a simple operad as Com, describing commuiative algebras, BCom is
a resolution of the Lie operad. On the other hand, knowledge of the homology of FCom
implies complete information on the dimensions of the spaces of Vassiliev invariants of
knots (by a theorem of Kontsevich and Bar-Natan [2]; see (6.5)).

Our main result about the Feynman transform is the calculation of its Euler charac-
teristic, using the theory of symmetric functions. As a model for this calculation, take
the formula for the enumeration of graphs known in mathematical physics as Wick’s
theorem [3]. Consider the asymptotic expansion of the integral

, . 1 z? © apxk dz
(0.1) W(E hva, e, ) = 10gf°’>‘l) E("’ﬁ -7t Lz:;, T) Vorh

for small € and h. (This expansion is independent of the domain of integration, provided
it contains 0.) Wick’s theorem gives
1
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n

where ['(g,n) is the set of connected graphs G with dim H; (&) = g, having exactly »
legs numbered from 1 to n, |v] is the valence of the vertex v € Vert(G), and | Aut(G)|
is the cardinality of the automorphism group of G.

The “classical limit” Wy = lim,_,, AW is a sum over simply connected graphs, that
is, trees. A formal application of the principle of stationary phase to (0.1) shows that
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Wy 1s the value of the function

’lf-*‘— EGL’L

at its critical value zg: this is the same thing as the Legendre transform Lf of the
formal power series

f(- % Z LL'.L

The calculation of the Euler characteristic of F is a natural generalization of this, in
which the coeflicients «; are replaced by representations of the symmetric groups Sy,
sums and products are replaced by the operations @ and ®, and the weight | Aut(G)[™!
is replaced by taking the coinvariants with respect to a natural action of Aut(G).
Up to isomorphism, a sequence V = {V(k) | £ > 0} of Sig-modules is determined
by its Frobenius characteristic ch(V), which is a symmetric function (power series)
f(zy,2q,...) in infinitely many variables. In Sections 7 and 8, we define analogues of
the Legendre and Fourier transforms for symmetric functions. In this way, we obtain
formulas for the characteristics of BA and FA, where A is a cyclic, respectively modular,
operad.

The use of symmetric functions in enumeration of graphs goes back to Pdlya [20].
Our approach is slightly different: while he associates symmetric functions to permuta-
tions of vertices of the graph, we associate them to permutations of {lags of the graph
(pairs consisting of a vertex and an incident edge). The idea of attaching arbitrary
representations of symmetric groups to vertices of a tree appears (under the name
“blobs”) in Hanlon-Robinson (9]; they obtain lormulas resembling our formula for the
characteristic of BA (in Polya’s setting). The introduction of the Legendre transform
in this problem leads to a new perspective on this class of problems by bringing out a
hidden involutive symmetry, which is very natural from the point of view of operads.

Our analogue of Wick’s theorem may be viewed as a fusion of the methods of graph-
ical enumeration of quantum field theory with Pdlya’s ideas. Our formula for the
character of FA has another link to quantum field theory, since the space of symmet-
ric functions is the Hilbert space for the basic representation of GL,es(00) (Kac-Raina
[12]); in this direction, we present a formal representation of the characteristic of FA
as a functional integral (8.17).
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1. CYCLIC OPERADS

In this section, we recall the definition of a cyclic operad — this will be useful later,
since one way of looking at modular operads is as a special kind of cyclic operad.

Our presentation of the theory of cyclic operads is a little different from our previ-
ous account [7]; we need a non-unital version of the theory, due to Markl [16]. One
advantage of this formulation is that the basic operations in an operad are bilinear. In
any case, if one simply took the original definition of an operad (May [18]), and omit-
ted the axioms involving the unit, one would not obtain the correct notion: the best
justification for the definition which we present is that it leads to a simple construction
of the free non-unital operad generated by an S-module.

(1.1) S-modules. Throughout this paper, we work over a fixed field k of characteristic
0.

A chain complex (dg-vector space) is a graded vector space V, together with a dif-
ferential d : V; — Vi_;, such that §* = 0. The suspension £V, of a chain complex V,
has components (£V), = V.41, and differential equal to minus that of V,. By £"V,,
n € Z, we denote the n-fold iterated suspension of V,.

Asin [7], denote by S, the group Aut{l,...,n} and by S,.4; the group Aut{0,1,...,n}.
An S-module is a sequence of chain complexes V = {V(n) | n > 0}, together with an
action of §,, on V(n) for each n.

A map of S-modules is called a weak equivalence if it induces isomorphisms in ho-
mology.

(1.2) Operads. An operad is an S-module P together with bilinear operations
0, : P(M)@P(n) = Pm+n—~1),1 <i<m,

satisfying the following axioms.

(1) If mr € Sy and p € Sy, let 0 € §,,4-1 be the permutation defined by the explicit

formula
m(3), j<i,
oc(g) =) +p(l—i+1), i<j<i+4n,
w(j—n+1), t+n <y <m+n.

If « € P(m) and b € P(n), then
(ma)o;i (pb) = o(aor() b).
(2) Fora € P(k), be P(l) and c € P(m),and 1 <i < j < m,
(ao;b)ojyi—y c=(ao;b)o;c
(3) Fora e P(k),beP(l)and ce P(m),and 1 <1<k, 1 <5 <m,
(@o; b)o;y;-1¢=ao;(bojc).
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(1.3) Operads and trees. We think of an element of P(n) as corresponding to a
rooted tree with one vertex, n inputs numbered from 1 up to n (and one output).

1 2 n-1 n

The compositions correspond to grafting two such trees together along the input of the
first tree numbered 7. Axiom (1) expresses the equivariance of this construction.

Axioms (2) and (3) mean that we can construct unambiguous compositions correspond-
ing to the following two trees respectively.

i m

In fact, the axioms imply that the products o; give rise to an unambiguous definition of
composition for any rooted tree [6], [8]. This point ol view will be explained in greater
detail, in the context of modular operads, in Section 2.

(1.4) Cyclic S-modules. A cyclic S-module V is a sequence of vector space V(n),
with action of Sp4; on V(n). In particular, each vector space V(n) is a module over
the symmetric group S,, and over the cyclic group C,4; generated by 7, = (01...n).
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If Vis a cyclic S-module, and [ is a (k + 1)-element set, define

= @ vw)

bijections

[0, k) —

Sk

This makes V into a functor from the category of nonempty finite sets and their bijec-
tions into the category of vector spaces. In the case when k =n—1and I = {1,...,n},
we write V((n)) instead of V(7). Note that V((n)) = V(n — 1).

(1.5) Cyclic operads. A cyclic operad [7] is a cyclic S-module P whose underlying
S-module has the structure of an operad, such that

(1.6) Tmtn-1( 0m b) = (T00) 0y (Ta)

for any « € P(m), b € P(n). Here 7, stands for the cycle (01...n) € Sp41.

(Cyclic) S-modules may be defined, in exactly the same way, in any symmetric
monoidal category. The most important case for us will be the category ol chain com-
plex. Other examples are the category of topological spaces, giving rise to topological
S-modules and operads, and the opposite category to the category of chain complexes,
whose operads are called dg-cooperads.

In the remainder of this paper, unless otherwise specified, by an S-module, operad
or cooperad, we mean a differential graded S-module, operad or cooperad. A map
of operads is called a weak equivalence if it is a weak equivalence of the underlying
S-module. .

(1.7) Example: endomorphism operads. lLet V be a vector space with a sym-
metric scalar product B(z,y). We define a cyclic operad E[V] by putting £[V](n) =
VOt Fora = vy @ ... Q@ vy € E[V](m) and b= wo @ w, @ ... @ w, € E[V](n) we

put
a Oib: B(Uﬁfwﬂ) ' U0®Ul Q... ®Ui—-1 @tul ® ---@lwn. @U,‘+1 ® ®Um-

If dim(V) < oo and B is non-degencrate, we can identify E[V](n) with Hom(V®"* V)
by means of B. In this way, the underlying operad of £[V] becomes identified with Ev
the endomorphism operad of the space V' [3], [18].

(1.8) Cyclic algebras. A cyclic algebra over a cyclic operad P is a vector space A
together with a scalar product B and a morphism if cyclic operads P — E£[A].

(1.9) Examples.

(1.9.1) Stable curves of genus 0. Definc a topological cyclic operad Mg by letting
Mo(n) be the moduli space Mo 41 of stable (n + 1)-pointed curves of genus 0 [13]
(see also [8]). By definition, a point of M, , is a system (C,zy,...,2,), where C is a
projective curve of artthmetic genus 0, with possibly nodal singularities, z; are distinct
smooth points, and €' has no infinitesimal automorphisms preserving the points z;
(this amounts to saying that each component of C' minus its singularities and marked
points has negative Euler characteristic). The S,-action on Mg, is given by renumber-
ing the punctures. The composition o; takes two pointed curves (C, g, ....z,) and
{(D,yo,...,yn) into

(C]_[D/ Y)Y Oy ey Ty YLy e vy Yny Tty e e - ,.1:,,1).
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(1.9.2) Spheres with holes. Define a topological cyclic operad Mo by letting ﬁo(v?.)
be the moduli space of data (C, fo, ..., f.), where C is a complex manifold isomorphic
to CP', and f; are biholomorphic maps of the unit disk

A={zeC||z| <1}

into C with disjoint images. The composition o; takes (C, fo,..., fm)and (D, go,..., ¢u)
into

((C \ f:[A]) Hf;({)Ngo(t),tEE'A(l) \ gO[A])afO} Ve 3f1'—lagl9 e agna.fi+]y' fy m)

Note that by applying the total homology functor H,(—, k) to the topological operads
M, and My, we obtain cyclic operads in the category of graded vector spaces.

2. MODULAR OPERADS

(2.1) Stable S-modules. A stable S-module is a collection of chain complexes

{V((g;n) [ n,g 2 0}

with an action of S, on V((g,n)), such that V({(g,n)) = 0if 2¢ +n —2 <0.

A morphism V — W of stable S-modules is a collection of equivariant maps of chain
complexes V((g,n)) — Wi((g,n)).

We have borrowed the term “stable” from the theory of moduli spaces of curves,
since the condition of stability is the same in the two settings.

Any cyclic S-module V may be regarded as a stable S-module by setting:

V(n ) = 01
(22) Vgt 1)={ "
0, g > 0.

In the other direction, we have the forgetful functor, which we denote by Cyc. If V
is a stable §-module, then Cyc(V) is a cyclic S-module, and

(2.3) Cyce(V)({(n)) = V((0,n)).
A stable $-module V has a natural extension to all finite sets /:

(24) Ven=( & Viem),

bijections

f:{l,...,n.}'—)]

n

(2.5) Graphs. A graph G is a finite set Flag((G') (whose elements are called flags)
together with an involution ¢ and a partition A. (By a partition of a set, we mean a
disjoint decomposition into several unordered, possibly empty, subsets.)

The vertices of ( are the blocks of the partition A, and the set of them is denoted
Vert((/). The edges of GG are the pairs of flags forming a two-cycle of o, and the set of
them is denoted Edge((). The legs of ¢ are the fixed-points of o, and the set of them
is denoted Leg((). (Thus, each flag lies in either an edge or a leg.)

We may associate to a graph the finite one-dimensional cell complex |G|, obtained by
taking one copy of [0, -;-] for each flag, and imposing the following equivalence relation:
the points 0 € [0, %] are identified for all flags in a block of the partition A, and the points
% € [0, %] are identified lor pairs of flags exchanged by the involution o. For example,
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the following corresponds to the set of flags {1,...,9}, the involution ¢ = (46)(57) and
the partition {1,2,3,4,5} U {6,7,8,9}.

A labelled graph is a connected graph G together with a map ¢ from Vert(() into
the natural numbers. The value of this map at a given vertex v is called the genus of v

The genus g(G) of a labelled graph G is the sum of dim H'(|G|, k) (the number of
circuits of () and the numbers g(v). It is given by the formula

(2.6) 9(G)= 3 (g(v)— 1)+ |Leg(G))| + [components of C|.
vEVert(G)

A forest is a (labelled) graph with genus 0; a tree is a connected forest.

This definition is slightly different from the definition of trees in [7]: unlike in that
paper, we do not admit the tree with two legs and no vertices.

For any vertex v € Vert(('), the set of flags incident with v is denoted Leg(v); the
valence of the vertex v is the cardinality of Leg(v).

(2.7) Definition. A connected labelled graph is called stable if 2(g(v)—1)+]| Leg(v)] >
0 for each vertex.

(2.8) The category of graphs. Let (i}, i3 be two graphs. A morphism f: &y — G
is an injective map f* : Flag(G2) — Flag(G)) such that

(1) f*ooi =070 f*, where o; is the involution on Flag(G,).

(2) The pullback with respect to f* of the partition A, is a refinement of As.

(3) f~ defines a bijection of the fixed point sets

[lag(G2)’? — Flag(Gh)7.

This definition is the same as that of Kontsevich-Manin [15].

A morphism Gy — G defines a surjective cellular map |G| — |G} which is bijective
on the legs. Every map obtained in this way is a composition of an isomorphism and
contraction on a (possibly disconnected) subgraph which does not contain any legs.

If G are labelled graphs, we say that a morphism f : Gy — (3 preserves the labelling
if the genus of any vertex of (3 is equal to the sum of the genera of all its preimages
in (4.

Let I'((g,n)) be the (finite) set of representatives of isomorphism classes of stable
graphs of genus ¢ with a bijection between their set of legs and the set {1,...,n}. We
consider I'{(g, n)) as a small category, namely the full subcategory of the category of all
labelled graphs and morphisms preserving the labellings. It is clear that I'((¢,n)) has a
terminal object, consisting of the graph with a single vertex, of genus g, and no edges.

Denote by Aut(G) the automorphism group of a graph G € I'(g,n)): if G is a tree,
Aut(G) = 1.
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(2.9) The determinant of a graph. For a finite-dimensional vector space V' we
denote det(V) = A'*P(V) and call this I-dimensional vector space the determinant of
V. If ¢ is a graph, we denote by det(() the determinant of the vector space

D Orfe),

e€ lidge(G)

where the sum is over all edges of &G and Or(e) is the orientation line of the edge e.
The complex of cellular cochains of I' has the form

0— k"D 5 B Orle) >0,
ecbldge(G)

giving the natural isomorphism
det(G) = det(kV°™) @ det( H'(|G], k)).
It follows that our definition of det(G) agrees with Kontsevich’s [14].

(2.10) The triple of stable graphs. Let V be a stable S-module, and let G be a
stable graph. Define V(((/)) to be the direct sum

V)= @ V(g(v), Leg(v)).

veVert(G)

We now define a functor M from the category of stable S-modules to itself, by summing
over isomorphism classes of graphs:

(211) M{-V((ga 72)) = @ V((C"))Aut(a)'
Gel((g.n)

Similarly, we define a functor M_ by

M. V(g,n) = D (det(C)®V(C))

Ger(gm) Aut{G)

On the category of cyclic S-modules, there is a suspension functor A, given by the
formula

AV(n) = &' " sgn,.,, @V(n),

where sgn, ., is the alternating character of S,4, {7]. The analogue of this in the
category of graded stable S-modules is given by the formula

AV((g,n)) = 870" sgn, @V((g, n)).
(2.12) Proposition. The functors My and M_ are relaled by the formula
My =A"1o Mz o A,

Grafting of graphs defines, for any stable S-module V, a natural map M, M.V —
MLV, giving to M, the structure of a triple; the unit of the triple is given by the
embeddings V — M,V induced by graphs with a single vertex.

By conjugation, we see that M. = A~! o M, o A also has the structure of a triple.

(2.13) Definition. A modular operad is an algebra over the triple ML, in the category
of stable S-modules. An antimodular operad is an algebra over the triple ML_.
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For example, for any stable §-module V, MV is a modular operad, called the free
modular operad generated by V. As for cyclic operads, modular operads may bhe
considered in any symmetric monoidal categories.

(2.14) The structure map. I{ A is a modular operad and &' € I'((¢, n)), the structure
map M} A((g,n)) = A((g, n)) restricted to A(()) C M4 ((g,n)) is a Sy-equivariant map
te - A(G) — A(lg,n)), which we will call composition along the graph .

A modular operad determines a functor from the category ['((¢,n)) to the category
of S,-modules. To a labelled graph G is associated the S,-module A(G)). To define
the action of morphisms, it suffices to describe the map A((G)) — A(G/H)) where H
is a subgraph of ¢/ with no legs; this is induced by the composition map g ;.

A modular operad may be viewed as a cyclic operad with additional structure; this
point of view will be explained in detail in Section 3.

(2.15) Cyclic operads and the triple of trees. For a cyclic S-module V we define
a cyclic S-module T,V by summing over trees:

V)= @ V().
TeT{(0,n))
The functor T is a triple and a cyclic operad P with P(0) = P(1) = 0 is the same as
an algebra over T4. In particular, we have free cyclic operads TV, where V is a cyclic
S-module. Note that we have the following commutative diagram of triples:

M
stable S-modules —=— stable S-modules

Cycl Cycl

cyclic S-modules SLEIN cyclic S-modules

(2.16) Endomorphism operads. If V is a finite-dimensional vector space with a
non-degenerate inner product B(z,y), the endomorphism modular operad £[V] of V
has stable S-module

E[VI(g,n) = V&
for all g such that 2(g — 1) +n > 0.
To define the composition maps £[V]({(g, G)) — E[V]({(g,n)), we identify

EIV](G) = voris®

with (V @ V)®Edse(G) @ V8 wliere Bdge(() is the set of edges of G, and pair it with
the tensor power 3®Edse(C),

The cyclic operad Cyc E[V] is isomorphic to a non-unital version of the endomor-
phism operad of V:

Hom(Ve™ V),

Cyc&[V](n) = {0

n > 2,
, n < 2.

(2.17) Modular algebras. An algebra over a modular operad A is a chain complex
V with non-degenerate inner product B, together with a morphism of modular operads

A — E[V].



If V has a non-degenerate graded antisymmetric bilinear form B(z,y), then E[V] is
an antimodular operad. An algebra over an antimodular operad A is a chain complex
V with non-degenerate graded antisymmetric product B, together with a morphism of
antimodular operads A — E[V].

3. THE STRUCTURE OF MODULAR OPERADS

If A is a modular operad, then the cyclic S-module
A((n) = D A((g,n)
g

is a cyclic operad, such that the compositions are compatible with the grading by ¢.
In this section, we explain what additional structure must be imposed on such a cyclic
operad in order for it to be a modular operad, and derive the consistency conditions
which all of these data must satisfy.

(3.1) The contraction maps. For a finite set [ and distinct elements a,b € I,
define a labelled graph GZ,(g) with one vertex, labelled with the genus ¢, such that
Flag(G!,) = I and there is one edge (a loop) joining the flags « and b.

a

b

If A is a modular operad, we have the composition map

tat () - A9, 1) = A(Go(9)) = Alg + 1,1\ {a,6}))
which we denote by £, and call a contraction map.

(3.2) Example. Let V be a [inite-dimensional vector space with a non-degenerate
invariant scalar product B(z,y). Let £[V] be its modular endomorphism operad (2.16);
thus E[V]({(g,n + 1)) = Hom(V®" V) may be identified with the space of all n-linear
operations from V to itsell. If & € E[V]{(g,n + 1)) is such an operation, then &;(u) €
EV){(g +1,n — 1)) is the (n — 2)-linear operation

(z1,...,Tn-2) Z,u(n:l, ey Timyy Bl iy ey Tjm2y [l Tjmty e oy Tne2),
k

where {e} and {fi} are dual bases of V' with respect to the scalar product B.

(3.3) Coherence for modular operads. A modular operad A can be regarded, by
forgetting part of the structure, as a (non-unital) cyclic operad graded by genus:
Am)y= &b Algn).
2(g—1)4n>0

Note that any unlabelled graph of genus ¢ can be obtained from a tree by joining g
pairs ol legs. This implies that the structure of a modular operad on A is uniquely
defined by the structure of a cyclic operad, the grading by genus and the action of the
contractions £gp.

10



We must now to determine the relations between composition in A and the contrac-
tions &yp.

(3.4) Theorem. The data consisting of a cyclic operad A, of S,-invariant decompo-
sitions A((n)) = @ A((g,n)) and of contraction maps

Eub + Al(g, 1) — Ally +1, I\ {a,b})),

come from a modular operad if and only if the following coherence conditions are sat-

isfied:
(1) For any bijection o : I — J of finile sels and a,b € I,

Eota)on) (o (1)) = o(Eas(pe)),  Jor all € A((g, ).

(2) For any finite set I and distinct elements a,b,¢c,d € | we have

§a.b o Ecd = ‘fcd o éab-

(3) Foranypu e An), v€ A(m) and 1 <k <n, 1 <1< j<n, we have

10k &i5(V) = Gigrn jar—1(pt 08 V).

(4) Foranyp e A(n), vr€ A(m) and 1l <a <k <n,1<b<m, we have

6a,k+b—1 (,“ Cy U) = §a+m—k.k+m—l (# Cu T_b(V))a

where T = (012...n) is the cyclic rotation.

Proof. The compositions and contractions in a modular operad are precisely the com-
position maps

pe A(G) = Allg,n))

associated with graphs G € I'((g,n)) with one edge. Indeed, such a graph has either
two vertices (in which case p¢ is a composition o;) or one vertex (in which case u¢ is
a contraction).

In a similar way, the relations among compositions and contractions in a modular
operad are determined by the graphs with two edges: for such a graph, the relation
is that the result of performing the compositions along the two edges may be done in
either order without affecting the result. Omitting the numbering of legs, the graphs
with two edges have the following form:




() (d)

The relation associated to such a graph is that we composition gives the same result
whether we compose along the solid or the dotted line first.

The equivariance condition (1) is certainly necessary. Together with the relations
(2-4), it generates the relations coming from all possible labellings of graphs with two
edges and one or two vertices. (Trees with two edges, as in (d), simply correspond to
the relations saying that A is a cyclic operad whose compositions o; are compatible
with the grading by genus ¢.) Graphs (a-c) now correspond respectively to conditions
(2-4) of the theorem. O

4, THE FEYNMAN TRANSFORM OF A MODULAR OPERAD

In this section, we define a homotopy involution F of the category of dg-modular
operads: that is, there is a natural transformation from FF to the identity functor such
that if A is a modular operad, FFA — A is a weak cquivalence. Furthermore, F is a
homotopy functor, in the sense that it maps weak equivalences to weak equivalence.
We call F the Feynman transform, since FA is a sum over graphs, as is Feynman’s
expansion for amplitudes in quantum field theory.

(4.1) Linear duality. In defining the Feynman transform, we restrict attention to
stable S-modules V such that V((g,n)) is a complex which is finite-dimensional in each
degree for each g and n. For such V, we define its linear dual VY by

VV((Q? n)) = SB(g—1)+n Sg“n ®V((ga 77’))*‘
It is clear that (VY)Y is naturally isomorphic to V.
(4.2) Definition of the transform F. Let A be a modular operad. As a stable S-
module, the Feynman tranform FA equals M (AY), the free modular operad generated
by AY. The diflerential 8r4 is the sum d¢q = dav + O, where d4v is the diflerential on
M. (AY) induced by the differential on A, and 9 is defined as follows.

If G is a stable graph, and e is an edge of G, let (//e be the graph obtained by
contracting the edge e to a point. We define a map

d.e : A(G) = A(G/e)

of degree 0, in the following way:

(1) if the two ends vi,v; € Vert(() of e are distinct, denote by v the vertex of
(i/e obtained by merging them; then dg . is induced by the composition in the
modular operad A

A((hy, Leg(v1)) @ A ha, Leg(vs)) = Al(hy + ha, Log(v));

(2) if the edge e is a loop both of whose flags {fi, f-} meet the vertex v, dg is
induced by contraction in the modular operad A

A((h, Lieg(v)) = A((h + 1, Leg(®) \ {f+, J-})).

12



We now define
dge = dis, : AY(G/e) = AY(G)

to be the adjoint map. Note that because of the suspensions involved in the definition
of AY, the map dg. has degree —1. (We leave to the reader the verification of this
fact.)

For two stable graphs G and H, the matrix element

O+ A (H ) aue(ry = A (G awo)

is induced by the sum of Jg . over all edges e of G such that H = G/e.

(4.3) Theorem. The map 6pq has square zero and the pair (FA = ML.(AY)) is «
modular operad in the category of chain complezes.

Proof. We must prove the following statements:
(a) BOJ_AV—}—(S_AV 0620;
(b) 9* =0
(c) O is compatible with compositions and contractions in ML AY.

Part (a) is obvious, because the differential in A which induces dav is compatible
with composition and contraction in A.

(b) Observe that the matrix element of 8% from AY((H ) auyn) to AY(G)awo) is a
sum over pairs ey, ez) of distinct edges of ¢ such that H = ((//e;)/es. The exchange
ey ¢ ey is a fixed-point free involution on the set of such pairs, and the corresponding
contributions cancel each other due to the presence ol the sign character in the definition
of AY.

(c) The compositions of the free operad M, AY are induced by grafting of graphs. If
a graph G is obtained by grafting graphs G; and G, along two legs, then each vertex
of ¢/ either lies in ¢/, or in G3. The differential @ is induced by “splitting” vertices into
edges.- Thus d(a; o; az), a; € A(G})), is the sum of two terms, one corresponding to
splitting vertices of G, the other corresponding to splitting vertices of (/3. The first
of these clearly equals (9a,) o; ag, and the second is (—l)"”'al o (Jaq). Thus @ satisfies
the Leibniz formula for compositions. The compatibility of contractions is proved in
the same way. O

We now arrive at the main result of this section.

(4.4) Theorem. If A is a modular operad, the canonical map FFA — A is a weak
equivalence, that is, induces an isomorphism on homology.

Proof. The component (FFA){(g,n)) is a sum over graphs in I'((g,n)}, in which the
edges are colored black or white, depending on whether they represent an edge arising
from the construction of the inner or the outer F. Denote a colored graph by (G ¢),
where ¢ : Edge(G) — {black, white}, and denote the corresponding contribution to
(FFA)(g.7) by (FFA)(g, G c).

Filter the complex (FFA)((g,n)) by the number of edges in the colored graph (G, ¢).
On the associated graded complex gr(FFA)}({(g,n)), the differential is the sum of the
internal differential induced by the differential of A and terms in which a white edge e

13



of the colored graph ((/,c) is painted black. Denoting the resulting colored graph by
(G, ce), such a term reflects the isomorphism

gr(FFA)(G, c,)) = S  gr (FFA)(G, ¢)).

Denote by ((,c®) the colored graph in which a black edge ¢ of the colored graph
(G, c) is bleached, and let A(G, ¢) be the map

h(G,c) : gr(FFA)(G, c)) — gr(FFA)(g,n))
of degree +1 obtained by averaging the identifications
gr(FFA)(G, %)) = Zgr(FFA)(G, c)).

over the edges of (. (Here, we make use of the assumption that the characteristic of
k is zero.) The resulting map h : gr(FFA) — gr(FFA) is a contracting homotopy from
the complex gr(FFA) to the subcomplex obtained by summing over graphs with no
edges: but this subcomplex is isomorphic to A. O

(4.5) Theorem. The Feynman transform F is a homotopy functor: if f: A — B is
a weak equivalence of modular operads, then so is Ff : FA — FB.

Proof. This is easily proved by considering a spectral sequence associated to the cone
of the map Ff: we filter by number of edges, in such a way that the E'-term of the
spectral sequence equals the cone of the map FH.(f), which is zero by hypothesis. The
convergence of the spectral sequence follows from the fact that FA((g, n)) and FB((g,n))
have contributions from a fintte number of graphs, so that the spectral sequence is
uniformly bounded in one direction. O

(4.6) The cobar operad of a cyclic operad. If A is a cyclic operad (regarded as a
modular operad as in (2.2)), then Cyc(FA) is the cobar operad BA of A in the sense
of Section 3.2 of [8].

5. MODULAR OPERADS AND MODULI SPACES OF CURVES

In this section, we give some basic examples ol modular operads, coming from the
theory of moduli spaces of stable algebraic curves. Throughout this section, the base
field is taken to be the field of complex numbers C.

(5.1) Deligne-Mumford moduli spaces. Define a topological modular operad M
by letting M((g,n)) be the Deligne-Mumford moduli space (or stack) M, of stable
n-pointed curves of genus ¢, as constructed by Knudsen [13]. If ¢ € I'((g,n)) is a stable
graph, then the structure map

(5.2) pa  M(G) = [T M(g(v), Leg(v)) — M((g,))

veVert((F)
is defined by gluing the marked points of the curves from M((g(v), Leg(v))), v € Vert(g),
according to the graph G (see [8], 1.4.3).
Taking homology, we obtain a modular operad H,(M, k) in the category of graded

vector spaces. An algebra over this operad is the same as a cohomological field theory
in the sense of Kontsevich-Manin [15].



(5.3) Stratification of M((g,n)). For a stable curve (C,zy,...,z,) € M((g,n),
define a labelled graph G(C,zy,...,z,) € [((g,n)), the dual graph of (C,z1,...,e,),
as follows. Its flags are pairs (K,y) where K is an irreducible component of C' and
y 1s either a nodal point or one of the marked points z; lying on K. Vertices of
G(C,zy,...,2,) correspond to components of C; each intersection point gives rise to
an edge. Legs of the graph correspond to the points z; and the i-th leg is attached to
the vertex corresponding to the component containing z;. If v € G(C,zy,...,z,) is
the vertex corresponding to the component &' € C, label v by the genus g(v) of the
desingularization of K.

Given G € I['((g,n)), denote by Mg C M((g,n)) the set of the stable curves whose
dual graph is G. In this way, we obtain a stratification of M((¢, 7)) whose open stratum
M, », consists of smooth curves and corresponds to the graph with no edges. Note that
the closure Mg of Mg is isomorphic to M((G))/ Aut(G), and the map u¢ induces the
embedding of this quotient as a closed stratum.

(5.4) Logarithmic forms and restdues. We now recall some general facts on
logarithmic forms [4]. Let X" be a smooth algebraic variety, D C X a divisor with
normal crossings, D' C D the locus of i-fold self intersection (in particular, D° =
X, D'=D), n: D — D the normalization morphism and € = 7.Cl|pi be the sheal on
D¥ spanned by branches of D near D*. The Poincaré residues are maps

(5.5) Q% (log D)}D,. — Q3. (log D) ® T det(c').
Using such maps, we obtain a resolution of 2% on X:

(5.6) 0 — 0y —
Q% (log D) — Q% (log D?*) @ L' det(e') — Q% (log D) @ T det(c®) — ...

where sheaves on each D' are regarded as sheaves on X with support in D*,

(5.7) Logarithmic forms on M((g,n)). The compactification divisor D((g,n)) =
M((g,n)) \ M((g,n)) is a divisor with normal crossings. Let Q;—T((g'n))(]og D((g,n))) be
the corresponding logarithmic de Rham complex; this is considered as a chain complex
by placing it in negative degree, so that Q' is placed in degree —:i. Consider the
collection of complexes ol sheaves

Q*((g,n) = S~ sgn, @0 (log D((g,n)

on M((g,n)).

For a finite set [ with |/| = n, denote by Q°*((g, I)) the sheafl on M((g, 1)) associated
to 2*((¢g,n)), as in (2.4).

Let G € T'((g,n) be a stable graph, and let pg be the corresponding composition
map (5.2). We define a morphism of complexes of sheaves

Ao 1 ug(gn) & m2(9(v), Leg(v))),
vEVert(G)

where p, is the projection of M((G)) = [T, M((¢(v), Leg(v))) to the lactor labelled by v.

Namely, M((@)) is the intersection of scveral branches of the divisor D((G,n)). These
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branches near M((G')) are parametrized by the edges of Gi. Therefore, the Poincaré
residue (5.5) gives a map

Vitgmy (108 D((9: 7)) — SO det(C) © i (log D(G))).

After rearranging the grading this gives precisely the desired map Ag.
Denote by RIM((g,n)),2*(g,n))) the complex obtained by taking global sections
of the Dolbeault resolution of Q°*((g, n)).

(5.8) Proposition. The maps Ag make the stable S-module RI’ (ﬁ((g, n), (g, n)))

into @ modular cooperad.

The proof follows by checking an obvious associativity condition for any morphism
G1 — Gy in (g, n)).

(5.9) The gravity operad. Denote by G the modular operad formed by taking the
dual complexes to the above cooperad:

§((g,n) = R0 (M((g,n)), 2*((g,7)

We call G the gravity operad. B
The homology operad G of G has as underlying stable S-module

G =H,(G) = H*(M,C)".

*

(5.10) Remarks. (a) The cyclic operad Cyc(G) coincides with what was called the
gravity operad in [8], but differs by a suspension {rom the definition in [5]. In the latter
paper, an explicit presentation of the operad Cyc(G) is given.

(b) Tt is shown in [8] that the cyclic operads Cyc(g) and Cyc(G) are weakly equivalent
(where the latter is understood to have zero differential). It is unknown whether this
is true for § and G. ‘

(c) Note that the topological stable S-module of open strata M({g,n)) is not a topo-
logical operad, although its homology is, once suitable regraded.

(5.11) The gravity operad and FH,(M). Let £,(M((g,n))) be the complex of de
Rham currents on M(((/,n)), that is, the topological dual of the complex of smooth

differential forms. Obviously, these complexes form a modular operad £,(M), whose
homology is the operad H,(M).

(5.12) Theorem. Therc is a weak equivalence of modular operads £,(M)) ~ F(G).
Proof. Specializing (5.6) to the case X = M((g,n)) and D = D((g,n)), we find that
D= U M),

Gel{g.n)
| Edge(G)l:i

and
(513) RP(D', Qpi(log D) @ £ det(e))
~ @ RM(M(9), B,y log DIG)) @ det(C)).
Gel((g.n)

| Edge(G) =t
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By exactness of (5.6), we see that the right hand side of (5.13) is naturally weakly equiv-
alent to Rl( ((g,m), QM« )J) But the linear dual of the right-hand side of {5.13)

is F(S)((g,n)), while the linear dual of RI' (M(( ), M(( )(log D((G))) is £,(M((g,n).
This completes the proof. 0O

(5 14) Riemann surfaces with holes. There is another topological modular operad
M related to moduli spaces, which is, in some sense, dual to M, and is defined as follows.
The space M((J,n)) is the moduli space of data (C, f1,..., fo) where C is a Riemann
surface (compact 1-dimensional complex manifold) of genus ¢, and f; : A — C are
embedding of the unit disk with disjoint images (this is a generalization to higher genus
of (1.9.2)). As in (5.1), the structure maps

M(G) = TI M(g(v), Leg(v)) — M(g,n).

vE Vert((F)

are induced by gluing Riemann surfaces.

6. MODULAR EXTENSION OF CYCLIC OPERADS

In this section, we construct a left adjoint functor to the functor
Cy .
{modular operads} =<5 {cyclic operads}
of (2.3), which we call the modular extension and denote Mod:

. Mod
{cyclic operads} —% {modular operads}.

(6.1) Definition of Mod. Recall (2.14) that every modular operad P gives rise to a
functor

['((g,n)) — {S,-modules}.

If P is a cyclic operad, then we may define similar functors, but only on the subcategory
Uo((g,n)) — T'((g,n)). This is the category I'((g,n)) has a subcategory I'y((¢, n)), whose
objects are those labelled graphs of I'((¢,n)) such that g(v) = 0 for all vertices v, and
whose morphisms are those morphisins of I'(g, 7)) such that the inverse image of each
vertex in the target is a tree. Thus, if 7" is a subforest of ¢ (a set of edges of ¢
containing no circuits), we obtain a morphism ¢ — G/T in 'g(g,n).
If A is a cyclic operad, we define a stable S-module Mod(A) by
Mod(A)(g,n) = colim A(G)).

Gely (gln)

The category I'g((g,n)) has an object G/(g,n), consisting of the graph with n legs, ¢
edges and a single vertex. Every other object has at least one morphism to (/(g,n).
(This amounts to the [act that every connected graph has a spanning tree.) Since
A(G(g,n))) = A(0,29 + n))auc(gm)), it follows that Mod(A)((g,n)) is a quotient of
A(0,2g +n)) = A(2g +n - 1).

(6.2) Proposition. The stable S-module Mod(A) has a natural modular operad struc-

lure,



Proof. If we replace the colimit in the definition of Mod(A)((g,n)) by the direct sum
over objects of ['o((g,n)), we obtain M, A, the free modular operad generated by A. It
is not hard to see that the identifications involved in taking the colimit preserve the
operad structure. {1

(6.3) The modular extension of a free cyclic operad. The following diagram
commutes:

cyclic operads —S 5 modular operads

(6.4) Bl Fl

. Mod
cyclic operads —— modular operads

In particular, considering a cyclic operad with zero compositions, we find that the
modular extension of a free cyclic operad is a free modular operad (with the same
generators).

(6.5) Modular extension and Vassiliev invariants. Vassiliev has introduced a
filtered space V = UL_, Vin of knot invariants of finite order (see {2]). The associated
graded space W = grV is a commutative cocommutative Hopf algebra. Let P =
@ P,. be its space of primitives. One of the chief results of Kontsevich and Bar-Natan
identifies the quotient Vi/Vj_, with the zeroth homology group of a certain graph
complex. In our language,

m

P 2 €D Ho(FCom)((g,m — g+ 1)sp_gs-
=0
This may be neatly reformulated using the concept of modular extension. By (6.4), we
have

FCom = Mod(BCom),

where Com is the commutative operad.

If A is a cyclic operad concentrated in positive degree, then Hy(A) is a cyclic op-
erad concentrated in degree 0. It is easy to see that Mod(A) is also concentrated in
positive degree, and that the modular operad Hg(Mod(A)) is naturally isomorphic to
Mod( H(A)).

We may apply this observation to the cobar operad BCom of the commutative operad,
which is concentrated in positive degree and is a resolution of the Lie operad (see [8]):

Hy(BCom) = Lie.

It follows that
Ho(FCom) 2 Ho(Mod(Lie)) = Mod(Lie).

We conclude that

m

Pnl g @ i\"IOd(Lle)((g’ m == g + l))sm—g+l ?

=0
which may be thought of as an expression, in the language of modular operads, of the
relationship between Vassiliev invariants and Lie algebras.

(6.6) The derived functor of modular extension. The functor Mod, applied
to cyclic operads in the category of chain complexes, is not homotopy invariant; it
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does not, in general, take weak equivalences to weak equivalences. This motivates the
introduction of L Mod, the left-derived lunctor of Mod. To define L Mod, we consider

the canonical free resolution BBA — A and apply Mod:
L Mod(A) = Mod(BBA) = FBA.

It is clear that L Mod is homotopy invariant (since B and F are). Also, for a free cyclic
operad
Jq = T+V = BV,

(where V is a cyclic operad with vanishing compositions), L Mod(A) = FBBV is weakly
equivalent to FV = Mod(A).

7. CHARACTERISTICS OF CYCLIC OPERADS

If V is a stable S-module, we can associate to it a symmetric function Ch(V), called
its characteristic. In this section and the next, we give formulas for Ch(BA) in terms
of Ch(A), where A is a cyclic operad, and for Ch(FA) in terms of Ch(A), where A is a
modular operad. The first of these formulas involves a generalization of the Legendre
transform, and the second a generalization of the Fourier transform, from power series
in one variable to the ring of symmetric functions. Here, symmetric functions arise
because of well-known correspondence between the characters ol the symmetric group
and the ring of symmetric functions. [For further details on the theory of symmetric
functions, see Chapter 1 of Macdonald [17].

(7.1) Symmetric functions.
Consider the ring
A= LiﬂlZﬂrﬂl,.. .,a:k]]sk

of symmetric functions (power series) in infinitely many variables. The following stan-
dard symmetric functions

ha(z) = Z Tip . Ty, eplTi) = Z T i,
i< Cin i1 <
o0
> — In
pa(2) = Z-"Ji ;
i=1
are called respectively the complete symmetric functions, the elementary symmetric
functions and the power sums. [t is a basic fact that

A = Z[hi, ha,...] = Z]er, e, ... ],
A ®Q = QHPMP?:"']]S

that is, that each of these three series of symmetric functions freely generates A (in the
case of the power sums, over Q). In particular, by = ¢; = py, while hy = ;—(p‘]r2 + )
and e; = 2(p? — p).

Let o be an element of the symmetric group S,, with cycles of length «¢; > a; >
<o 2 ag; thus n = ay + - - - + a¢. The cycle index of ¢ is the symmetric function

Y(o) = pay - - Pa, € A
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The characteristic of a finite-dimensional S§,-module V is the symmetric function

ch,. (V) = ]—' > Trv(o)p(o).

n. cES,

[t may be proved that ch,(V) is in A, although it is only evident from its definition
that it is in A @ Q.
We extend the definition ol ch, to graded §,-modules by
chy(V) =3 (=1) ch,u(Vi),
where V; is the degree ¢ component of V. Iinally, the characteristic of a graded S-
module V = {V(n) | n > 0} such that V(n) is Anite-dimensional for all n is

e}

ch(V) = > cha(V(n)).

n=0

We denote by rk : A — Q[z] the ring homomorphism which sends
hy — —,
n!
or equivalently, p; = z and p, — 0, n > 1. If V is an §,-module,
dim(V)z"
rk(ch,(V)) = —(—l)—
7.

For this reason, we call rk the rank homomorphism.

(7.2) Plethysm. Plethysm is the associative operation on A, denoted f o ¢, charac-
terized by the formulas

(1) (i +f2)og=fiog+ faog;

(2) (if2)og=(fioglfrog);

(3 if [ = f(p1,p2,...), then puo f = f(pn, pon,-..).
Note that under the rank homomorphism, plethysm is carried into composition of
power series.

There is a monoidal structure on the category of S-modules, with tensor product

fos) k
oW =B(vre B WU .
k=0 F{1.n}— {1, k) =1 k

(An operad V is just an S-module with an associative composition VoV — V.)
(7.3) Proposition. ch(Vo W) = ch(V) o ch(W)

When V and W are ungraded, this is proved in Macdonald [17]. In the general case,
the proof depends on an analysis of the interplay between the minus signs in the Euler
characteristic and the action of symmetric groups on tensor powers of graded vector
spaces.

(7.4) Characteristic of S-modules. [ V = {V((n)) | n > 1} is a cyclic S-module,

its characteristic is
fa])

Ch(V) = 3" ch,(V((n)).

n=1
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There is a forgetful functor from cyclic S-modules to S-modules, obtained by restricting
the action of V(n) = V({(n+1)) from S, 4, to the subgroup S,. The characteristics of V
considered as a cyclic S-module and an S-module are related by

dCh(V)

(7.5) ch(V) = o

(7.6) Examples of characteristics. To illustrate the above definitions, let us give
some examples of characteristics ol cyclic operads.

(7.6.1) The commutative operad. For the commutative operad Com, Com((n))
is the trivial representation of S§, for all n > 3. (Note that we work with the non-
unital form of the commutative operad, in which Com((2)) = 0.) It follows that
ch,(Com({{(n))) = h, for n > 3, and hence that

Ch(Com) = mp(z ]::) - (I +hy + hg).

n=1

(7.6.2) The associative operad. The associative operad is a cyclic operad with
Ass((n)) = Indgn 1

here, C, C 8, is a cyclic subgroup of order n and 1 is the trivial character of C,. [t
_ follows that
ch, (Ass((n)) Z (¢ n/d

dln ?

where ¢(d) is the Euler totient function. Summmg over n > 3, we see that

h(Ass) 5 20 Jow(1 = pu) = (hy + ha).

(7.6.3) The Lie operad. In (7.24), we will prove that the characteristic of the Lie
operad is

Ch(Lie) = (1 —p) 3 “‘Ez’) log(1 — pa) + p1,

n=1

where p(n) is the Mébius function.

(7.7) The Legendre transform. Classically, the Legendre transform of a convex
function f: R — R is the function

(L&) =9(8) = m;tX(:cE - f(:c)).
(See Section 3.3 of Arnold [1].) Setting £ = f'(z), we see that

(7.8) gof'+f==zf.

Suppose that, instead of being a convex function, f(x) is a formal power series of the
form

(7.9) fz) = i o

2]

T

€ Q[z],



where ay # 0; we denote this set of power series by Q[z]_. The equation (7.16) defines
a unique power series (Lf)(€) = ¢(€) € Q[€],, which we again call the Legendre
transform.

(7.10) Proposition. If [ and g are series of the form (7.9), then Lf = ¢ if and only
if f" and ¢’ are inverse under composition, that is,
gof =u.
Proof. Taking the derivative of (7.8), we see that
(60 "+ ="+ .
Cancelling [’ from each side and dividing by f”, which is invertible in Q[z] by hypoth-
esis, we find that ¢’ o f* = @. The same reasoning proves the converse. O

As a consequence of this proposition, we see that L is involutive: L(Lf) = f.

(7.11) L and trees. Let V be a cyclic S-module with V((n)) = 0 for » < 2. The cyclic
S-module T,V was defined in (2.15).

(7.12) Proposition. Let a, = x(V((n))) and b, = x(T V(n)) be the Euler charac-
teristics of components V and T V. If

x? 2 @t

f(-’b‘)=?—z

n=3

and g(z

N[f‘?

n.

then g=Lf.

Proof. 1t is a corollary of Theorem 3.3.2 of [8] that ¢’ o /' = 2. The results follows by
(7.10). O

With the notation of the proposition,

(713) bn = Z H (L|L£S(U)|'

n-trees T yeVert(T)

In fact, the proposition remains true for an arbitrary sequence of rational numbers

{as,aa, ...}, if we define {bs,ba,...} by (7.13).

(7.14) The Legendre transform for symmetric functions. Denote by A, the set
of symmetric functions such that rk(f) € Q[z]..

(7.15) Theorem. (a) If f € A., there is a unique element g = Lf € A, such that
0
(7.16) gool 4/ =pal.

We call L : A. = A. the Legendre transform.
(b) The Legendre transform of symmetric funclions is compalible with that of power
series, in the sense that the following diagram commules:

A, —=5 Al
rkl rkl
Qz]. —— QI
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(c) The symmelric funclions
AL)) and ——
dm Op
are plethystic inverses. (Nole that, unlike for power series, this equation does nol
determine L f.)
(d) The transformation L is an involution, that is, LL = 1d.

Proof. If f € A., then Jf/0p; is invertible with respect to plethysm. Thus (7.16)
defines ¢ € A. uniquely, proving (a). Part (b) is obvious, since rk transforms plethysm
mto composition.

In proving (c), we need an analogue of the chain rule for d/dp; acting on A:

0(0) (auo)(?v

—(uov)=|=—ov)—.
Ipr pr -/ dpy
This formula is proved by checking that both sides are compatible with the rules (1-3)
defining plethysm (7.2).

Using this, the reasoning needed to prove (c¢) is formally identical to that in the proof

of (7.10).
To prove (d), we note that (c¢) implies
of ( 39) i
— = |p= 0.
m m Ilapl o,

This shows that
af dg dg [ t)f) dy _( 89) af dg
R (P‘ ap ) o~ \Pap,) " ops " opy

Cancellation proves that
dg dy

9+f05]:=3115};,

and hence that f =Lg. O

For example, Lh; = e; and vice versa.
The following theorem is related to results of Otter [19] and Hanlon-Robinson [9] on
the enumeration of unrooted trees.

(7.17) Theorem. Lel V be a cyclic S-module such that V({(n)) = 0 forn <2 and V((n))
is finite dimensional for all n. Define the elements of A.

[ =es— Ch(V) and g = hy + Ch(T,V).

Then g =Lf.
Proof. Recall (7.5) that ch(V) = 9 Ch(V)/dp:. By definition of £, we must prove that

(h2 + Ch(T4V)) o (1 — ch(V)) + €2 = Ch(V) = p; (p1 — ch(V)).
Since he = ez + p¥, this may be rewritten as

(h2 + C(T4V)) o (1 = ch(V)) = hay + Ch(V) = pi (p1 — ch(V)).
By the formula

ha o (pr — ch(V)) = hy — py ch(V) + hg o (~ ch(V)),
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we see that this is equivalent to
(7.18) Ch(T4V) o (py — ch(V)) = Ch(V) — hy 0 (—ch(V)).

We prove this formula by constructing a differential graded $-module C = {C((n))}
such that ch(C) equals the left-hand side of (7.18), and ch(H,(C')) equals the right-
hand side. Define the S-module underlying C to be the plethysm X o W, where the
S-modules X and W are defined by

) {0’ ns
n =
(TV)(n), n >3,

0
W) = {k,
by Resg:“ V(n+1), n>3.

Here, ¥ is the suspension functor on graded S,-modules. It follows from (7.3) that
ch(C) equals the right-hand side of (7.18).

We now construct a differential § on (XoW)(n). A vertex v of a tree T' is a boundary
vertex if exactly one of its flags forms part of an edge. Define a colouring of a tree
to be an assigniment of colours black and white to its boundary vertices; we denote a
coloured tree by (T, B), where B is the set ol black boundary vertices. Then

(7.19) (XoW)n)= P ( ® V((Leg(v)))@®EV((Leg(v)))).

coloured n-trees vEVert{T)\B vel
(T.B}

On the summand of (7.19) corresponding to the coloured tree (T, B), we define

5= 6,

vER

where §, is the natural identification, of degree —1, between this summand and the
summand corresponding to (7', B\ {v}).

Clearly (X o W)(n) splits into a direct sum of subcomplexes Cr corresponding to all
the colourings of the tree T'. If T' has at least one non-houndary vertex, the complex
Cr is contractible, since it is the tensor product of the graded vector space V((T')) and
the augmented chain complex of the simplex whose vertices are the boundary vertices
of T. There are two remaining cases:

(1) the contribution of Cr from all trees with one vertex is Ch(V);
(2) the contribution of Cr from all trees with two vertices is hq 0 (_ ch(V)).

Implicit here is the observation (Jordan [11]) that the centre of a tree, the remnant

obtained by repeatedly stripping away boundary vertices, has either one vertex or one

edge. O

(7.20) The characteristic of the cobar operad of a cyclic operad. Using this
theorem, we will now write a formula for Ch(B.A), where A 1s a cyclic operad. Up to
differential, BA is the cyclic operad T AY, and thus Ch(BA) = Ch(T.AY). Thus, it
suffices to give a formnla for Ch(AY).
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Denote by w : A — A the ring homomorphism such that w(h,) =e,, n 2 1. If V is
a finite-dimensional S,-module,

w(ch,(V)) = ch,(sgn, ®V),

and thus w is an involution. Note also that w(p,) = (=1)*""p,.

We also need a modified involution @, defined by &(h,) = (—1)"e,, or equivalently
@(pa) = —pn. Thus, if V is a cyclic S-module such that V((n)) is finite-dimensional for
each n,

(7.21) ch(VY) = —=&o(Ch(V)).

(7.22) Corollary. Let A be a cyclic operad such that A((n)) =0 for n <2 and A((n))
s finite-dimensional for each n, and let BA be its cobar operad. Then

ho + Ch(BA) = Li(hy + Ch(A)).

Recall [8] that BBA is weakly equivalent to B, which suggests that the transform
L& : AL — A, should be an involution. This follows from the [ollowing result.

(7.23) Proposition. If f € A,, —Laf = L(—f).

Proof. By Ex. 8.1 of Macdonald [17], if v and v are symmetric (unctions, w o (~v) =
(@u)ow. If g = L(wf), we see that the defining equation

dg . _  Og
(&) 5)’; "9 TC)P]
is equivalent to
d(=9) __9(=9)
e Ipy (~g) == dp

that is, —g = L(—f). O

(7.24) Example: the Lie operad. The Lie operad Lie is weakly equivalent to the
cobar operad BCom of the commutative operad, and thus h; + Ch(Lie) is the Legendre
transform of

&(hs + Ch(Lie)) = Q(cxp(Z f:) (14 ))

n=1
= cxp(i —?j—:-) — (] —Pl).
n=1 '

The Legendre transform of this symmetric function is

(I—p1) i ”E:l) log(1 — pa) + p1.

n=1

1t follows that

Ch(Lie) =(1 —m) Z log (1 = pu)+ Iy — hs.
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8. CHARACTERISTICS OF MODULAR OPERADS

(8.1) The ring A((R)). Consider the ring A((R)) of Laurent series with coefficients in
A. This ring has a descending filtration

Fm/\ {Zf'rx‘f c ™= 211\}

inducing a topology on A((R)). If f € A, the plethysm fo (=) : A — A extends to
A((1)) by retaining axioms (1) and (2) of (7.2) and replacing (3) by
(3 puo f(lypiypey...) = f(R Py pany -+ )

(8.2) The characteristic of a stable S-module. The characteristic of a stable
S-module V is the element of A((/i)) given by the formula

Ch(v)= > h ' cha(V(g,n))-

2(g—1)+n>0

The stability condition ensures that Ch(V) € F'A((K)). Our goal is to present a formula
for Ch(FA) in terms of Ch(A).

Note that this definition is consistent with the carlier definition of the characteristic
of a cyclic §-module (7.4), provided we set i = 1.

For f € F'A((R)), let

Exp(f (Z hn) = exp(i %) o f.

n=0 n=1

Note that
Exp([f -+ ¢g) = Exp([f) Exp(g),

and that under specialization rk : A(h)) — Q[z](%)), the map Exp goes into exponen-
tiation

T(h, ) s efh),

(8.3) Proposition. [fV is a stable S-module, lel Lxp,, (V) be the stable S-module such
that

Expn(w«g,ﬂn)):( D :lz:ﬁ?(@v (aG)) ))S

fI—r{l..n}
gn1+tgn=g

where Aut(f) = Aut(f~1(1)) x -+ x Aut(f~'(n)). Then
Exp(Ch(V Z ™ Clh{Exp,(V)).

Proof. This follows from (7.3) and the definition of Exp(f), f € A((h)). O

Informally, the stable S-module Exp,_ (V) may be thought of as representing discon-
nected graphs with n vertices and no edges: all of its flags are legs.

(8.4) Proposition. The map Exp : F'A((R)) — 14+ F'A((}})) is invertible over Q, with

inverse
Log(/) = 3 “iog(pa o 1 = 3 X 1ogp 0 1)
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Proof.

Log(Exp(f)) = i k) log(ps) o exp(i P_m) of

7

i p(n) log exp(i M) of

n

_ i p{d)pno f T

n

(8.5) The inner product on A. To a partition A = (1™2™2 ) where my = 0 for
k > 0, 1s associated a monomial

py=pitpet L.

These monomials form a topological basis of A. Let A, be the space of finite linear
combinations of the py. The standard inner product on A, is determined by the
formula

1Mim,!

—

(P.\:pu) =
1

-

Note in particular that (p;, pj) = ¢di;; the inner product on A,jg is the standard exten-
sion of the inner product on a vector space to its symmetric algebra (Fock space).

(8.6) Proposition. If V and W are S,-modules,
(chy(V), chy(W)) = dim Homg, (V, W).

Proof. This statement is well-known in the theory of symmetric functions: it follows
from the fact that the Schur functions form an orthonormal basis of Ay, O

We extend the inner product on Agy to a Q((A))-valued inner product on Agg((R))
by Q((R))-bilinearity. If f € Aag((7), let D(f) : A(R)) — A((%)) be the adjoint of
multiplication by f with respect to this inner product. The following proposition is
Ex. 5.3 of Macdonald [17].

(8.7) Proposition. If [ = f(h,pi,p2,...) € Aagl(lt)), then
D(f) = fh, 52,22 ,3.2,..).
(8.8) Proposition. Lel k < n, V be an Sg-module, and W be an S,-module. Then
D(chy(V)) cha(W) = chy—g I-lomSL_(V, Resg:xsn_k W).
Proof. This follows by taking adjoints on both sides of the formula

ch;j(U) chg(V) = chjpx lllclgj;"ék(U @V). O

(8.9) A Laplacian on A{{(/1)}. We now introduce an analoguc ol the Laplacian on
A((R)), given by the formula

< . fn d

n=1 8?)2"
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Note that A is homogeneous of degree zero, and thus preserves the filtration of A((R)).
Under specialization rk : A(R)) — Q[z]((i)), the operator A corresponds to the Lapla-
ki d

cian 575 on the line.

(8.10) Proposition. D(Exp(/ihs)) = exp(A)

Proof. By (8.7), it suffices to substitute nd/dp, for p, on the right-hand side of

oo} n I ©o f'.”
Exp(fih) = eXP(Z %) 0 (.35(13? + Pz)) = exp(z —(p2 + pzn)) O

n=1 n=1 2"’

(8.11) Theorem. IfV is a stable S-module, then
Ch(ML. V) = Log(exp(A) Exp(Ch(V))).

Proof. Let us first neglect /i and explain the appearance of the sum over graphs. on the
right-hand side of the formula. Formally, we set i = 1; this is legitimate if V((g,n)) =0
for g > 0.

Applying Exp to Ch(V), we obtain the stable S-module representing possibly discon-
nected graphs each component of which has one vertex. Applying D(h;) to Exp(Ch(V))
gives the sum over all ways of joining two legs (or flags) of such a graph; h; arises be-
cause the two ends of an edge are indistinguishable. (If edges carried a direction, we
would replace h, by p?, the characteristic of the regular representation of S,.)

Similarly, applying D(Exp(hh2)) to Exp(Ch(V)) gives the sum over all ways of joining
together any number N of pairs of legs by edges. In this way, we see (recall that &
temporarily equals equals 1) that

exp(A) Exp(Ch(V)) = Ch(W),

where W is the stable §-module such that
(8.12) W((g,n) = D V(G auas
a

where G runs over all possibly disconnected, labelled n-graphs such that each com-
ponent is stable. But W = Exp(ML. V), since M,V is defined in a similar way, but
summing only over connected graphs.

To finish the proof, we must account for the powers of /i in each term of (8.12). Each
term ch,(V({(g,n))) in Ch(V) comes with a factor of A#~!. The term of Exp(Ch(V))
corresponding to a labelled graph G (with each component having one vertex) comes
with a factor of /i raised to the power

—|Vert(G)+ > g(v).
vEVert{G)
Fach new edge introduced by the action of D(Exp(hhz)) contributes a factor of A.
Therefore, the term in (8.12) corresponding to a labelled graph & comes with a factor
of h raised to the power
@O+ T )
vEVert ()
Applying Log has the effect of discarding all the disconnected graphs G. If G is
connected, the power of /i in question equals g(G)—1, where ¢(() is defined in (2.6). 0O
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(8.13) Corollary. If A is @ modular operad with Feynman transform FA, then
Ch(FA) = Log (exp(A) Exp(w Ch(\?))),

where @ : A((R)) — A((R) is the ring homomorphism such that &(p,) = —p, and
w(h) = —-h.

Proof. This follows from the fact that Ch(AY) = @ Ch(A), where AV is the linear dual
(4.1). (See (7.21) for the cyclic case.} O

There is an analogue of (8.11) for Ch(MLV):
Ch(M. V) = Log(exp(A) Exp(Ch(V))),

where

_ o] . 02 0
A=Y (i —-_"].
— 2dpr  Opon
The proof is the same as that of (8.11), except that the representation of $; associated
to an edge is e, instead of /.

(8.14) Plethystic Fourier transform. Let us give a formal interpretation of the
previous theorem in terms of the Fourier transform on the infinite-dimensional vector
space Spec(Ag) = R%, with coordinates py, py,..., where Ag = Ay, @ R. This space
has a translation tnvariant Riemannian metric

(8.15) (pi, ps) = idij,
by means of which we may identify the vector space Spec(Agr) X Spec(Agr)* with
Spec(Ap ® AR). We denote the function p, @ 1 by p,, and the function 1 ® p, by
Gn-

We may now rewrite (8.11) in the following formal way as a Fourier transform. Let
dit be the Gaussian measure on Spec(Ag)

dpy, dp,
dit = | | exp(—p? /2nh" )\ ——— exp(—(p* — 2p,)/2nh") —— ——.
' n odd l ( p"/ ) v 2mnhn nle_\Icn : ( (] " ! )/ )81"2'1\/ 2anh?

Up to an infinite constant, the measure dy has density Exp(—A~le;), and is the trans-
late of the Gaussian measure associated to the metric (8.15) by the vector (py,ps,...) =
(0,1,0,1,...).

(8.16) Theorem.
Ch(M,V) = Log/R Exp(h™'prgr + Ch(V)) du

Proof. Using the formula

2 o oxpl{—(p — 2 9
oo (50 ) = [ SO 1),

we see that

. _ S = exp(—(pn — qn)?/2nh")
exp(A) [ g1, o, ) = ]Rmexp(zh )f(ﬁ-,p)nl;[l —L [0,

_ . 0\ S exp(=(pn = qn)?/2nh")
= fi pl—> K {pn.
/Rm J(h,pexp ( nz=:1 l a]’zn) ,,1;[1 V2rnh? @

29



We see that

exp(L\)f(fi, qis g2, ... )
e exp(—(pn — g — c(n)M1)2 /20 R") dp,

ne1 vV 2rnhn

o © exp((=p2 — pan + 2pngn)/2nK") dp,
exp r, + q2n)/ 200" f ) L .
g [ In qz )/ ) Rmf(])nl;[l ec(“)n“m :

where ¢(n) equals 0 if n is odd, and 1 if n is even. [J

A corollary of (8.13) is a particularly appealing formula for Ch(FA).
(8.17) Corollary.

im'hy + Ch(FA) = Log/ Exp (ﬁ._]plq] + @l hy 4+ Ch(A ) H dp, — C,
RN

where C' is the divergent constant
] (s u)

1
C= 5 ) (% + log(27n) +n log(h))

“ n=1
In this form, the resemblance of our theorem to Wick’s theorem is clear. Although it
is possible that the Legendre transform for symmetric functions can be obtained from
(8.16) by the method of stationary phase, we do not know how to do this.

(8.18) The characteristic of FAss. Let us illustrate our formula (8.17) for Ch(FA),
in the case that the operad A = Ass is the associative operad. The components of the
Feynman transform FAss((g,n)) may be identified in different regions of g and n:

(1) if g = 0, then as is shown in [8],

Ass((0,n)), i=0,
0, 1 #0;
(2) if n = 0, then Kontsevich [14] shows that

(8.19)  H;(FAss((g,0)) = P 3D~ L /S, K),

{r20,0>002(v1)+v=g~1}

Hi(FAss((0,n))) = {

where on the right-hand side we have the singular cohomology of the quotient
of the coarse moduli space M, , by S,;

(3) if n > 0, (8.19) may be generalized — the relevant moduli spaces are then
moduli spaces of compact Riemann surfaces with boundary, together with n
points on the boundary.

[n particular, it follows that the power series W(h) = Ch(FAss)(fi,py = p; = --- = 0)
has the following geometrical interpretation,

[« o]
(8.20) W(h) = 3 (—h)y! s> (M. /S0),

g=2 {¥20,u>012(v—1)+v=g—1}

where e(M,,,/8,) is the Euler characteristic of the topological space M, ,/S,. Our
formula for Ch(FAss) permits us to calculate this series, a problem which was left open
in [14].
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The reason that we can calculate Ch(FAss) explicitly is that the characteristic of Ass
has such a simple form: it is a sum of terms the n-th of which is a function only of p,:

Ch(Ass) = (—p] — 1p} —log(1 — p.)) + 5 ( —py — log(1 — p2) ) + Z

n=3

Iog (1 — pn)

This means that the integral (8.17) factors into a product of integrals, each of which
is over one variable p,. 1t is quite simple to calculate asymptotic expansions of these
integrals in A, and the result is as follows.

(8.21) Theorem. Let a, (i) be the Laurent polynomial
Z w(n / d)

Let W, (1) be the power series

Wl Zg_kk) o5 (o +]/))l°€(”5"0n)+—!——aﬂ_0_(73'.),.

in
= nh

(The role of the last three terms is to cancel the coefficients of k', i < 0.) Then

Ch(FAss) = —(h~" + 1) Z L) Jog(1 = pu) — B + ha) + (),
n=1
where )
— Y ¢
Y(h) = E g 7 U, (hY)
(This sum is convergent, since ¥, = O(h*/¢).)

As expected, the coefficient of A~! in Ch(FAss) is just Ch(Ass), consistent with the
fact that Cyc(FAss) = BAss ~ Ass. The fact that

ch(FAss((1,n))) = ch(Ass((n))),n > 3,

is a little surprising. We expect that the vanishing of ch(FAss((g,n)))if ¢ > 2 and n > 1
is explained by the existence of a free circle action on the relevant moduli spaces.
It is quite easy to calculate the first few terms of W(h):

W(h) = 2k + 20 + 41° + 20" + 6K° + 61 + 67 + K® + O(K°).

The formula (8.20) for the power series W(h) is a sum of contributions from different
values of v > 1. The contribution of » = 1 is calculated in Harer-Zagier ([10], page

482):

S (M )0 = Al Z )W, o(h),

y=1 n=1 =1
where

U, e(h) =

Qn ¢.
nhn ‘

gk

C(—k)o';fé + anelog(nhay) +

,.
Il
._.—

Here, e is the Laurcnt ynomial

fa3 1-‘— td/(d —go(n/d) i~d
nelh) dlz,f O aa ey

There is a striking formal similarity between this formula and our formula for W(£).
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