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CUT AND PASTE INVARIANTS OF MANIFOLDS VIA

ALGEBRAIC K-THEORY

RENEE HOEKZEMA, MONA MERLING, LAURA MURRAY,

CARMEN ROVI AND JULIA SEMIKINA

Abstract. Recent work of Inna Zakharevich and Jonathan Campbell has fo-

cused on building machinery for studying scissors congruence problems via al-

gebraic K-theory, and applying these tools to studying the Grothendieck ring of

varieties. In this paper we give a new application of their framework: we construct

a spectrum that recovers the classical SK (“schneiden und kleben,” German for

“cut and paste”) groups for manifolds on π0, and we construct a derived version

of the Euler characteristic.

Contents

1. Introduction 1

Conventions 4

Acknowledgements 4

2. Scissors congruence groups for manifolds with boundary 5

2.1. SK-groups for manifolds with boundary 5

2.2. SKK-groups for manifolds with boundary 9

3. K-theory of categories with squares 11

3.1. Overview of Campbell and Zakharevich’s square K-theory 11

3.2. Category with squares from a Waldhausen category 13

4. K-theory of manifolds with boundary 16

4.1. The category with squares for manifolds with boundary 16

4.2. The computation of K0(Mfd∂n) 17

5. The derived Euler characteristic for manifolds with boundary 20

5.1. The lift of the singular chain functor 20

5.2. Recovering the Euler characteristic on π0 21

References 22

1. Introduction

The classical scissors congruence problem asks whether given two polyhedra with

the same volume P and Q in R3, one can cut P into a finite number of smaller
1
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polyhedra and reassemble these to form Q. Precisely, P and Q are scissors congruent

if P =
⋃m
i=1 Pi and Q =

⋃m
i=1Qi, where Pi ∼= Qi for all i, and the subpolyhedra in

each set only intersect each other at edges or faces. There is an analogous definition

of an SK (German “schneiden und kleben,” cut and paste) relation for manifolds:

Given a closed smooth oriented manifold M , one can cut it along a separating

codimension 1 submanifold Σ with trivial normal bundle and paste back the two

pieces along an orientation preserving diffeomorphism Σ → Σ to obtain a new

manifold, which we say is “cut and paste equivalent” or “scissors congruent” to it.

We give a pictorial example of this relation:

1. Start with T 2 2. Cut along four copies of S1 3. Paste back along boundaries

Figure 1. Example of a cut and paste operation

Zakharevich has formalized the notion of scissors congruence via the notion of an

assembler–this is a Grothendieck site with a few extra properties, whose topology

encodes the cut and paste operation. She constructs an associated K-theory spec-

trum, which on π0 recovers classical scissors congruence groups [Zak17b]. Specific

examples of assemblers recover scissors congruence groups for polytopes and the

Grothendieck ring of varieties, as π0 of their corresponding K-theory spectra. The

higher K-groups encode further geometric information. Independently, Campbell

has introduced the formalism of subtractive categories, a modification of the def-

inition of Waldhausen categories, to define a K-theory spectrum of varieties that

recovers the Grothendieck ring of varieties on π0 [Cam19]. Though the approaches

to encoding scissors congruence abstractly are different, the resulting spectra of

Zakharevich and Campbell are shown to be equivalent in [CZ19a].

The focus of Zakharevich and Campbell has been to construct and study a K-

theory spectrum of varieties, and this spectrum level lift of the Grothendieck ring of

varieties has led to a fruitful research program to better understand varieties. For
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example, an analysis of K1 for the K-theory spectrum of varieties allowed Zakhare-

vich to elucidate structure on the annihilator of the Lefschetz motive [Zak17a], and

Campbell, Wolfson and Zakharevich use a lift of the zeta function for varieties to

show that π1 of the K-theory spectrum for varieties contains nontrivial geometric in-

formation [CWZ19]. Studying cut and paste relations for manifolds via K-theoretic

machinery remains as of yet unexplored. We start this exploration in this paper.

Unfortunately, the framework from [Zak17b, Cam19] does not directly apply to

the case of manifolds. The problem is that if one tries to find a common refinement

of two different SK-decompositions of a manifold, one might have to cut boundaries

and one gets manifolds with corners. This makes some of the axioms in both the

assembler approach and the subtractive category approach break down. However,

work in progress of Campbell and Zakharevich on “K-theory with squares,” K�, a

further synthetization of scissors congruence relations as K-theory that generalizes

Waldhausen K-theory, does give the right framework to construct the desired scis-

sors congruence spectrum for manifolds. Encompassing the manifold example was

also one of the motivations behind Campbell’s and Zakharevich’s development of

“K-theory with squares”.

The study of SK-invariants and SK-groups in [KKNO73] focuses on closed man-

ifolds. However, in order for the K�-theoretic scissors congruence machinery to

apply, we need to work in the category of manifolds with boundary, since the pieces

in an SK-decomposition have boundary. This is not well-explored classically, as

most of the existing work on SK-groups is for closed manifolds. We generalize the

notion of SK-equivalence to the case of manifolds with boundary and denote the

corresponding group by SK∂
n. Our definition of SK∂

n is different from the one men-

tioned in [KKNO73] in that we insist that every boundary along which we cut gets

pasted, and this is crucial for the further application of the K-theoretic technology.

We formulate a suitable notion of a category with squares Mfd∂n, that fits into

the framework of the K-theory with squares framework, and whose distinguished

squares exactly encode the “cut-and-paste” relations for n-dimensional manifolds

with boundary. We show that the Ω-spectrum obtained from the construction of

Campbell and Zakharevich, applied to Mfd∂n, which we denote by K�(Mfd∂n), recov-

ers the SK∂
n as its zeroth homotopy group:

Theorem A. There is an isomorphism K�
0 (Mfd∂n) ∼= SK∂

n, where K�
0 (Mfd∂n) is π0

of a scissors congruence K-theory spectrum K�(Mfd∂n).

For closed manifolds, there is a more refined notion of SKK-invariance which

differs from SK-invariance by a controlled correction term that is allowed to de-

pend only on the gluing diffeomorphisms but not the cut submanifold pieces. The

SKK-groups can be interpreted as Reinhardt vector field bordism groups [KKNO73],



4 R. HOEKZEMA, M. MERLING, L. MURRAY, C. ROVI AND J. SEMIKINA

which equivalently can be seen to be π0 of the Madsen-Tillman spectrum MTSO(n)

[Ebe13], or π1 of the cobordism category. We give a definition of SKK-groups for

manifolds with boundary, and the conjecture, which we will investigate in future

work, is that they arise as π1 of K�(Mfd∂n). This expectation is inspired by discus-

sions with Inna Zakharevich and Jonathan Campbell and is reminiscent of results

on K1 that Zakharevich has obtained in other contexts.

Scissors congruence invariants for manifolds (SK-invariants) are abelian group

valued homomorphisms from the monoid of manifolds under disjoint union, which

factor through the SK-group. It is well known classically that for closed manifolds

the Euler characteristic and the signature, and linear combinations thereof, are the

only SK-invariants, and these are still SK-invariants of manifolds with boundary.

In this paper, we show that the Euler characteristic as a map to Z, viewed as the

zeroth K-theory group of Z, is the π0 level of a map of spectra from the scissors

congruence spectrum for manifolds with boundary that we define. In future work,

we plan to also investigate the signature map to the zeroth L-theory group of Z.

Theorem B. There is a map of K-theory spectra

K�(Mfd∂)→ K(Z),

which on π0 agrees with the Euler characteristic for smooth compact manifolds with

boundary.

The paper is organized as follows. In Section 2 we introduce the definitions of SK-

and SKK-groups for smooth compact manifolds with boundary and we prove that

they are related to the classical SK and SKK groups for smooth closed manifolds via

exact sequences. In Section 3 we review the set-up of categories with squares and

their K-theory as defined by Campbell and Zakharevich. In Section 4 we construct

the category of squares for smooth compact manifolds with boundary and prove

Theorem A, and in Section 5 we prove Theorem B.

Conventions. All manifolds in this paper are smooth, compact and oriented. We

will distinguish between closed manifolds and manifolds with boundary. We will use

the notation M̄ for the manifold M with reversed orientation.

Acknowledgements. We are greatly indebted to Jonathan Campbell and Inna

Zakharevich for their generosity in sharing their work in progress on squares K-

theory, which our project relies on, and for their extensive patience in explaining

it to us and answering our questions. It is a great pleasure to also acknowledge

the contributions to this project arising from discussions with Jonathan Block, Jim

Davis, Greg Friedman, Soren Galatius, Herman Gluck, Fabian Hebestreit, Matthias
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Finally, we thank the organizers of the Women in Topology III program and the

Hausdorf Research Institute for Mathematics for their hospitality during the work-

shop. The WIT III workshop was supported through grants NSF-DSM 1901795,

NSF-HRD 1500481 - AWM ADVANCE grant and the Foundation Compositio Math-

ematica, and we are very grateful for their support. The second named author was

supported by grant NSF-DMS 1709461. The third named author was supported

by grant NSF-DMS 1547292. The fifth named author was supported by the Max

Planck Society and Wolfgang Lück’s ERC Advanced Grant “KL2MG-interactions”
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2. Scissors congruence groups for manifolds with boundary

2.1. SK-groups for manifolds with boundary. We start by reviewing the defini-

tions of the classical scissors congruence groups of smooth closed oriented manifolds,

namely the SKn-groups introduced in [KKNO73]. The “scissors congruence” or “cut

and paste” relation on smooth closed oriented manifolds is given as follows: cut an

n-dimensional manifold M along a codimension 1 smooth submanifold Σ with trivial

normal bundle that separates M in the sense that the complement of Σ in M is a

disjoint union of two components M1 and M2, each with boundary diffeomorphic to

Σ. Then paste back the two pieces together along an orientation preserving diffeo-

morphism φ : Σ → Σ. We say M and M1 ∪φM2 are “cut and paste equivalent” or

“scissors congruent.”

Note that for a codimension 1 submanifold Σ with trivial normal bundle that

does not separate M (for example the inclusion of S1 × {0} into S1 × S1) we can

take the union with a second copy of Σ embedded close to it, and the disjoint union

Σ t Σ then separates M .

Definition 2.1. Two smooth closed manifolds M and N are SK-equivalent (or

scissors congruent or cut and paste equivalent) if N can be obtained from M by a

finite sequence of cut and paste operations.

Example 2.2. In Figure 2 we can see that T 2 ] T 2tS2 is SK-equivalent to T 2tT 2.

Let Mn be the monoid of diffeomorphism classes of smooth closed oriented n-

dimensional manifolds [M ] under disjoint union. The SKn-group from [KKNO73] is

defined to satisfy the universal property that any abelian valued monoid map from

Mn which respects SK-equivalence (also called an SK-invariant) factors through it.
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φ ↓ ψ ↓' ∈ SK2

Figure 2. Example of an SK-relation

Definition 2.3. The scissors congruence group SKn for smooth closed oriented n-

dimensional manifolds is the quotient of the Grothendieck group Gr(Mn) by the

SK-equivalence relation.

Explicitly, SKn is the free abelian group on diffeomorphism classes [M ] modulo

the following relations:

(1) [M tN ] = [M ] + [N ];

(2) Given compact oriented manifolds M1,M2 and orientation preserving diffeo-

morphisms φ, ψ : ∂M1 → ∂M2,

[M1 ∪φ M̄2] = [M1 ∪ψ M̄2],

where M̄2 is M2 with reversed orientation.

We note that in order to define a scissors congruence spectrum, we need to work in

a category of manifolds with boundary since the pieces in the cut and paste relation

are manifolds with boundary. Therefore, we introduce a definition of SK-groups

for manifolds with boundary; these are the groups which we will recover as π0 of a

scissors congruence K-theory spectrum.

We define the “cut and paste relation” on smooth compact manifolds with bound-

ary analogously to that on closed manifolds: cut an n-dimensional manifold M along

a codimension 1 smooth submanifold Σ with trivial normal bundle, which separates

M , and for which Σ ∩ ∂M = ∅. Then paste back the two pieces together along

an orientation preserving diffeomorphism φ : Σ→ Σ. We emphasize that we do not

allow boundaries to be cut, and we require that all boundaries which come from

cutting to be pasted back together, leaving the existing boundaries of a manifold

untouched by the cut and paste operation.
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Definition 2.4. Two smooth compact manifolds with boundary will be called SK-

equivalent if one can be obtained from the other via a finite sequence of cut and

paste operations in the sense described above.

Remark 2.5. Our definition of the cut and paste relation for manifolds with bound-

ary is different than the one in [KKNO73, Chapter 5], where M1 ∪φM2 ∼M1 tM2.

Namely, they allow pieces that are cut to not be pasted back together. In order

to apply the K-theoretic machinery to obtain the SK∂
n-group as π0 of a K-theory

spectrum, it is important to use our definition of SK∂
n.

Definition 2.6. Let M∂
n be the monoid of diffeomorphism classes of smooth com-

pact oriented n-dimensional manifolds with boundary under disjoint union. The

scissors congruence group SK∂
n for smooth compact oriented manifolds is the quo-

tient of the Grothendieck group Gr(M∂
n) by the SK-equivalence relation.

Explicitly, SK∂
n is the free abelian group on diffeomorphism classes of smooth

compact oriented n-dimensional manifolds (with or without boundary) modulo the

following relations:

(1) [M tN ] ∼ [M ] + [N ];

(2) Given compact oriented manifolds M1,M2, closed submanifolds Σ ⊆ ∂M1

and Σ′ ⊆ ∂M2, and orientation preserving diffeomorphisms φ, ψ : Σ→ Σ′,

[M1 ∪φ M̄2] = [M1 ∪ψ M̄2].

Example 2.7. In Figure 3 we see an example of an SK∂
n-relation.

φ ↓ ψ ↓' ∈ SK∂
n

Figure 3. Example of an SK∂-relation

We now relate our definition of SK∂
n with the classical SKn via an exact sequence.

Denote by Cn the Grothendieck group of the monoid of diffeomorphism classes of

smooth closed oriented n-dimensional nullcobordant manifolds under disjoint union.

Theorem 2.8. For every n ≥ 1 the following sequence is exact
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0 −−−−→ SKn
α−−−−−−→

[M ] 7→[M ]
SK∂

n
β−−−−−−→

[N ] 7→[∂N ]
Cn−1 −−−−→ 0.

Proof. Note that the map α : SKn → SK∂
n taking a class of manifolds in SKn to a

class containing the same manifolds in SK∂
n is well-defined, since every relation from

the definition of SKn is also a relation in the definition of SK∂
n. The map β that takes

a class of manifolds to the diffeomorphism class of the boundary is well-defined, since

the equivalence relation from the definition of SK∂
n preserves the boundary.

We show exactness at the middle term. It is clear from the definition that Im α ⊆
kerβ. Let us show the reverse inclusion. Let x ∈ kerβ. Every element of SK∂

n can

be written in the form x = [M ] − [N ], where M,N are compact smooth oriented

n-manifolds with boundary (not necessarily connected).

Let M̄ be the copy of M with the opposite orientation and let DM be the double

of M, i.e. DM = M ∪id M̄. Note that DM is a closed manifold. Since Cn−1 is a

free abelian group and β(x) = [∂M ]− [∂N ] = 0 we conclude that the ∂M and ∂N

are diffeomorphic. Hence we may glue M̄ to N along the boundary. We will call

this gluing diffeomorphism φ (it does not have to be unique, we just pick one) and

denote by L the closed manifold, which is the result of this gluing. Therefore,

DM = M ∪id M̄,

and

L = N ∪φ M̄.

Hence in SK∂
n,

[N ] + [DM ] = [N ∪id (∂N × [0, 1])] + [M ∪id M̄ ]

= [N ∪φ M̄ ] + [(∂N × [0, 1]) ∪φM ]

= [L] + [M ].

Consequently,

x = [M ]− [N ] = [DM ]− [L] ∈ Imα.

See Figure 4 for an illustration of such an element.

Finally, let us show injectivity of the map α. Let Rn be the subgroup of Gr(M∂
n)

generated by the SK-relation [M1∪φ M̄2]− [M1∪ψ M̄2], so that SKn = Gr(M∂
n)/Rn.

Note that the set of elements that generate this relation is closed under summation,(
[M1 ∪φ M̄2]− [M1 ∪ψ M̄2]

)
+
(
[M ′1 ∪φ′ M̄ ′2]− [M ′1 ∪ψ′ M̄ ′2]

)
= [(M1 tM ′1) ∪φtφ′ (M̄2 t M̄ ′2)]− [(M1 tM ′1) ∪ψtψ′ (M̄2 t M̄ ′2)].

Thus Rn is precisely the set of elements of this form, and similarly for the subgroup

R∂n of Gr(M∂
n), which generates the SK-relation for manifolds with boundary. Then
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it is clear that

R∂n ∩Gr(M∂
n) = Rn,

and injectivity of α follows. �

' ∈ SK∂
n+ +

N DM N ∪φ M̄ = L ∂N × I ∪φ M
= M

' ∈ SK∂
n− −

M N DM L

− ∈ Im α

M N

Figure 4. Example of an element in Im(α : SKn → SK∂
n)

2.2. SKK-groups for manifolds with boundary. One can define a more refined

relation than that of cutting and pasting called SKK (“scheiden und kleben, kontrol-

lierbar”=“controllable cutting and pasting”) in which we keep track of the gluing

diffeomorphisms. The resulting SKKn-groups obtained by modding out by the SKK-

equivalence relation have been interpreted as Reinhardt vector field bordism groups

[KKNO73], which have also been shown to arise as π0 of the Madsen-Tillman spectra

MTSO(n) [Ebe13].

In this subsection we review the definition of the group SKKn and we define a

version for manifolds with boundary, which we fit into an exact sequence with the

classical SKK-group for closed manifolds. We conjecture that the SKK-group for

manifolds with boundary that we define arises as π1 of the scissors congruence K-

theory spectrum we define in Section 3. We will investigate this connection in future

work.
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Again, letMn be the monoid of diffeomorphism classes of smooth closed oriented

n-dimensional manifolds [M ] under disjoint union. An SKK-invariant is an abelian

valued monoid map λ fromMn for which the difference λ(M ∪φ M̄ ′)−λ(M ∪ψ M̄ ′)
only depends on the orientation preserving diffeomorphisms φ, ψ : ∂M → ∂M ′, and

not on the manifolds M and M ′. Clearly the SK-invariants are those SKK-invariants

for which this difference is 0. The SKKn-group from [KKNO73] is defined to satisfy

the universal property that any SKK-invariant factors through it.

Definition 2.9. The controllable scissors congruence group SKKn for smooth closed

oriented n-dimensional manifolds is the quotient of the Grothendieck group Gr(Mn)

by the relation

[M1 ∪φ M̄ ′1] − [M1 ∪ψ M̄ ′1] = [M2 ∪φ M̄ ′2] − [M2 ∪ψ M̄ ′2]

for compact oriented manifolds M1,M
′
1 and M2,M

′
2 such that ∂M1 = ∂M2 and

∂M ′1 = ∂M ′2, and orientation preserving diffeomorphisms φ, ψ : ∂M1 → ∂M ′1.

Example 2.10. Figure 5 provides an example of an SKK-relation.

φ ↓ ↓ ψ φ ↓ ↓ ψ

Figure 5. Example of an SKK-relation

We introduce a definition of SKKn-groups for n-dimensional smooth compact

oriented manifolds with boundary analogously to our definition of SK∂
n, and we show

we can measure the difference to the classical definition for closed manifolds given

above via an exact sequence. As above, we letM∂
n be the monoid of diffeomorphism

classes [M ] of smooth compact oriented n-dimensional manifolds with boundary

under disjoint union.

Definition 2.11. The controllable scissors congruence group SKK∂
n for smooth com-

pact oriented n-dimensional manifolds is the quotient of the Grothendieck group

Gr(M∂
n) by the relation

[M1 ∪φ M̄ ′1] − [M1 ∪ψ M̄ ′1] = [M2 ∪φ M̄ ′2] − [M2 ∪ψ M̄ ′2]

for compact oriented manifolds M1,M
′
1,M2,M

′
2, and Σ ⊆ ∂Mi and Σ′ ⊆ ∂M ′i closed

submanifolds for i = 1, 2, and φ, ψ : Σ→ Σ′ orientation preserving diffeomorphisms.

Theorem 2.12. For every n ≥ 1 the following sequence is exact
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0 −−−−→ SKKn
α−−−−−−→

[M ] 7→[M ]
SKK∂

n
β−−−−−−→

[N ]7→[∂N ]
Cn−1 −−−−→ 0.

Proof. This proof will be a more elaborate version of the proof of Theorem 2.8. It

follows as before that the maps α, β are well-defined.

We show exactness at the middle term. It is clear from the definition that Imα ⊆
kerβ. Let us show the inverse inclusion. Let x ∈ kerβ. Every element of SKK∂

n can

be written in the form x = [M ] − [N ], where M,N are compact smooth oriented

n-manifolds (not necessarily connected). As before, since β(x) = 0 we have that ∂M

and ∂N are diffeomorphic. Hence we may replace M by a diffeomorphic manifold

with boundary ∂N ; we will still denote this replacement by M.

Let M̄ be the copy of M with the opposite orientation and let DM be the double

of M, i.e. DM = M ∪id M̄. The same way we define N̄ and DN . Using the fact

that ∂M ∼= ∂N we get that the following equalities hold in the group SKK∂
n:(

[M ] + [DN ]
)
−
(

[M ∪id N̄ ] + [N ]
)

=
(

[M ∪id (∂M × [0, 1])] + [N ∪id N̄ ]
)
−
(

[M ∪id N̄ ] + [N ∪id (∂N × [0, 1])]
)

=
(

[M ∪id M̄ ] + [N ∪id N̄ ]
)
−
(

[M ∪id N̄ ] + [N ∪id M̄ ]
)

=
(

[DM ] + [DN ]
)
−
(

[M ∪id N̄ ] + [N ∪id M̄ ]
)
,

where the middle equality follows from the equivalence relations applied to

M1 = M tN, M ′1 = (∂M × [0, 1]) t N̄ ,

and

M2 = M tN, M ′2 = M̄ t N̄ .
Therefore,

[M ]− [N ] = [DM ]− [N ∪id M̄ ] ∈ Imα.

The injectivity of the map α can be shown using the same argument as the one used

for the injectivity statement in Theorem 2.8, since again the sets of defining relations

for SKKn and SKK∂
n are subgroups of the corresponding Grothendieck groups. �

3. K-theory of categories with squares

3.1. Overview of Campbell and Zakharevich’s square K-theory. This sub-

section is an exposition of the definitions and results that we need from [CZ19b].

Definition 3.1. A category with squares is a category C equipped with a choice of

basepoint object O, two subcategories cC and fC of morphisms referred to as cofi-

brations (denoted ) and cofiber maps (denoted ), and distinguished
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squares

A B

�

C D

satisfying the following conditions:

1) C has coproducts and distinguished squares are closed under coproducts.

2) Distinguished squares are commutative squares in C and compose horizontally

and vertically.

3) Both cC and fC contain all isomorphisms of C.
4) If a commutative square satisfies the property that either both horizontal maps

or both vertical maps are isomorphisms, then the square is distinguished.

Campbell and Zakharevich developed the framework of categories with squares

in order to describe a generalized construction of K-theory spectra, inspired by the

Waldhausen construction. We review their construction of K-theory for a category

with squares from [CZ19b]. Let [k] denote the category 0→ 1→ · · · → k.

Definition 3.2. Let C be a category with squares. Define C(k) to be the subcategory

of Fun([k], C) whose objects are sequences of cofibration maps

C0 � C1 � · · ·� Ck,

and whose morphisms are natural transformations in which every commutative

square is distinguished.

Varying over k by composing cofibrations and distinguished squares, we get a

simplicial category, denoted C•. The squares K-theory of C is defined, analogously

to the definition for Waldhausen categories, as follows:

Definition 3.3. Let C be a category with squares. The squares K-theory space of

C is

K�(C) ' ΩO|N qC•|
where ΩO is the based loop space, based at the distinguished object O ∈ N0C(0).

Campbell and Zakharevich prove that this K-theory space is an infinite loop

space using a form of the additivity theorem for categories with squares. By abuse

of notation, we will refer to the resulting K-theory spectrum also as K�(C). A map

of categories of squares, which is a functor that preserves distinguished basepoint

objects and distinguished squares, induces a map of K-theory spectra.

Theorem 3.4 ([CZ19b]). Let C be a category with squares. The space K�(C) is an

infinite loop space.
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They also give an explicit description of the K0-group for certain categories with

squares, which we record here.

Lemma 3.5 ([CZ19b]). Let C be a category with squares with basepoint O satisfying:

(1) O is initial or terminal in cC.

(2) O is initial or terminal in fC.

(3) For all objects A,B ∈ C, there exists some object X ∈ C and distinguished

squares:

O A

�

B X

O B

�

A X

Then

K�
0 (C) ∼= Z{obC}/ ∼

where ∼ is the equivalence relation generated by

(1) [O] = 0

(2) [A] + [D] = [B] + [C] for every distinguished square

A B

�

C D

.

3.2. Category with squares from a Waldhausen category. Campbell and Za-

kharevich prove that square K-theory is indeed a good generalization of the Wald-

hausen construction, in the sense that given a Waldhausen category C one can asso-

ciate to it a category with squares such that the Waldhausen and square K-theories

agree. For our purposes in Section 5, we need to associate a slightly different cate-

gory with squares to a Waldhausen category than that defined in [CZ19b]. We will

show that the Waldhausen K-theory and squares K-theory are also compatible in

this case; the proof is completely analogous to the proof given in [CZ19b], but we

include the version for our particular case here for completeness. We comment on

our choices in Remark 5.3 below.

Definition 3.6. Let C be a Waldhausen category with weak equivalences. Define

an associated category with squares C� in the following way. The horizontal maps

are the cofibrations � in C, and the vertical maps are all maps. The distinguished

squares are the squares

A B

�

C D
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with the property that the unique map C ∪A B
'−→ D is a weak equivalence. The

distinguished basepoint object is the zero object.

Proposition 3.7. The category C� satisfies the axioms of a category with squares

from Definition 3.1.

Proof. We check the four axioms. For (1), C has coproducts because it is a Wald-

hausen category. Suppose that

C ∪A B
'−→ D and C ′ ∪A′ B′

'−→ D′.

Note that since pushouts and coproducts commute with each other, and since

C ∪A B t C ′ ∪A′ B′
'−→ D tD′

by the gluing axiom, distinguished squares are closed under coproducs.

To check axiom (2), suppose we compose two distinguished squares horizontally

A B E

� �

C D F

We have a chain of weak equivalences

C ∪A E ∼= (C ∪A B) ∪B E
'−→ D ∪B E

'−→ F,

where the first weak equivalence is by the gluing axiom.

Now suppose we compose two distinguished squares vertically

A B

�

C D

�

E F

Similarly, we have

E ∪A B ∼= E ∪C (C ∪A B)
'−→ E ∪C D

'−→ F,

where again the first weak equivalence is by the gluing axiom.

Axiom (3) is immediate since the isomorphisms are contained in the cofibrations

in a Waldhausen category, and we don’t have any restrictions on the vertical maps.
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To check axiom (4), suppose first that the two vertical morphisms in a commuting

square in C
A B

�

C D

are isomorphisms. Then C ∪A B ∼= B ∼= D and the square is a pushout square.

Similarly, if the horizontal maps are isomorphisms, C ∪AB ∼= C ∼= D, and again the

square is a pushout. �

Proposition 3.8. The Waldhausen K-theory KWald(C) agrees with the K-theory

K�(C�) of the associated category with squares from Definition 3.6.

Proof. By definition, K�(C�) is the realization of the bisimplicial set with (p, q)-

simplexes given by

A00 A01 · · · A0p

� � �

A10 A11 · · · A1p

� � �

...
...

. . .
...

� � �

Aq0 Aq1 · · · Aqp

in which each square is distinguished. Thus it is the nerve of the category whose

objects are sequences of cofibrations

A0 � A1 � · · ·� An

and morphisms maps of such diagrams that satisfy the condition that for every i ≤ j
the induced map

A′i ∪Ai Aj → A′j
is a weak equivalence. Thus the above is precisely the bisimplicial set obtained by

applying the nerve to Thomason’s simplicial category wT qC defined in [Wal87, page

334].
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By Thomason-Waldhausen, there is a zig-zag of equivalences via some intermedi-

ate construction

wT qC wT+ qC'
oo

'
// wS qC.

Therefore, via a zig-zag, we have an equivalence of K-theory spectra

K�(C�) ' KWald(C). �

Remark 3.9. The category with squares associated to the Waldhausen category

C in Definition 3.6 is different from the category with squares associated to C in

[CZ19b, Example 1.2.]. However, they have equivalent K-theories since they are

both equivalent to the usual Waldhausen K-theory KWald(C). For the category

with squares from [CZ19b, Example 1.2.], this is proved directly in [CZ19b, Lemma

1.5.].

4. K-theory of manifolds with boundary

In this section we use the framework described in Section 3 in order to define

a K-theory spectrum for the category of n-dimensional compact smooth manifolds

with boundary, which recovers as π0 the scissors congruence group SK∂
n.

4.1. The category with squares for manifolds with boundary. We start by

defining a category with squares structure on the category Mfd∂n of smooth compact

n-dimensional manifolds with boundary and smooth maps.

Definition 4.1. Let Mfd∂n be the category of smooth compact n-dimensional man-

ifolds with boundary and smooth maps. We define the subcategories cMfd∂n of

horizontal maps (denoted �) and and fMfd∂n of vertical maps (denoted ↪→) to both

be given by the morphisms in Mfd∂n which are smooth embeddings of manifolds

with boundary f : M → N such that ∂M is mapped to a submanifold with trivial

normal bundle, and such that each connected component of the boundary ∂M is

either mapped entirely onto a boundary component or entirely into the interior of

N . We define distinguished squares to be those commutative squares in Mfd∂n

N M

M ′ M ∪N M ′.

that are pushout squares, i.e. such that M ∪NM ′ is a smooth manifold. The chosen

basepoint object is the empty manifold.

Example 4.2. Figure 6 gives pictorial examples of distinguished squares in Mfd∂n .
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� �

Figure 6. Two examples of distinguished squares

Lemma 4.3. The category Mfd∂n with the structure from Definition 4.1 satisfies the

axioms of a category with squares from Definition 3.1.

Proof. The coproduct in Mfd∂n is given by disjoint union of manifolds, and the

collection of distinguished squares is closed under disjoint union. Pushout squares

are commutative and compose horizontically and vertically. Consider the diagram

A B

C D

R.

i

j j′
f

i′

f ′

l

If j′ is an isomorphism then we can define the map l uniquely as fj′−1; similarly

if i′ is an isomorphism. Therefore in both cases this is a pushout diagram. Hence

Mfd∂n satisfies the definition of a category with squares. �

4.2. The computation of K0(Mfd∂n). Using Lemma 3.5 for the category with

squares Mfd∂n defined above, we show that the K�
0 -group agrees with the SK∂

n-group.

Theorem 4.4. For the manifold category with squares Mfd∂n from Definition 4.1,

K�
0 (Mfd∂n) ∼= SK∂

n.

Proof. The empty set is initial in both cMfd∂n and fMfd∂n. Moreover, for all objects

M and N in Mfd∂n, there exist pushout squares
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∅ N

�

M M tN

∅ M

�

N M tN.

Therefore Mfd∂n satisfies the conditions of Lemma 3.5, which gives a description of

the relations of the left hand side.

First, assume that the relations from K�
0 hold. To show that these imply the

relations in SK∂
n, we first need to check that the generating objects are compatible

(note that SK∂
n is generated by diffeomorphism classes of manifolds, whereas K0 a

priori is generated by manifolds). Consider a diffeomorphism M
φ−→M ′. Then

∅ M

�

∅ M ′

φ

is a distinguished square; and so the relations in K�
0 give that:

[M ] + [∅] = [M ′] + [∅]
[M ] = [M ′]

Next, consider the square

∅ M

�

M ′ M tM ′.

This is a distinguished square, which means that

[M ] + [M ′] = [M tM ′] + [∅]
= [M tM ′].

For the other relation in SK∂
n, consider compact oriented manifolds M,M ′, closed

submanifolds Σ ⊆ ∂M and Σ′ ⊆ ∂M ′, and orientation preserving diffeomorphisms

φ, ψ : Σ→ Σ′. We want to show that

[M ∪φM ′] = [M ∪ψ M ′].
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Consider (Σ× ε) where ε = [0, ε] for some small ε ≥ 0. We can extend the maps

φ, ψ by the identity to maps φ̃, ψ̃ from (Σ× ε) to (Σ′ × ε), which we consider inside

M and M ′ respectively as collars of the boundary components. This is possible as

the boundary has trivial normal bundle. We have that M ∪φM ′ is diffeomorphic to

M ∪φ̃M
′. Using the maps φ, ψ, consider the squares

(Σ× ε) M

�

M ′ M ∪φM ′
φ̃

(Σ× ε) M

�

M ′ M ∪ψ M ′.

ψ̃

The relation given by distinguished squares implies:

[M ∪φM ′] + [(Σ× ε)] = [M ] + [M ′]

= [M ∪ψ M ′] + [(Σ× ε)]

Thus, [M ∪φM ′] = [M ∪ψ M ′].

In the other direction, assume that the relations for SK∂
n hold. Consider relation

(1) in Definition 2.6 applied to the following:

[∅ t ∅] = [∅] + [∅]
[∅] = [∅]

Thus, for ∅, the initial object in our category with squares, we have [∅] = 0.

Finally, for relation (2) of Definition 2.6, suppose the following is a distinguished

square:

A B

�

C D

Define N := A∩ cl(B−A) ⊆ ∂A, where cl(B−A) is the closure of the complement

of A in B, i.e. N is the part of the boundary of A that is mapped to the interior of

B. We define

M := cl(B −A) t (N × ε),
M ′ := A t C.

Let id : N tN → N tN be the identity map; let τ : N tN → N tN be the twist

map. Note that M ∪id M
′ ∼= B t C and M ∪τ M ′ ∼= A t D. Then the fact that
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[M ∪id M
′] = [M ∪τ M ′] gives the relations

[B t C] = [A tD]

[B] + [C] = [A] + [D]. �

5. The derived Euler characteristic for manifolds with boundary

The Euler characteristic map χ : M∂
n → Z from the monoid of diffeomorphism

classes of smooth compact manifolds is an SK-invariant, since χ(M∪ΣN) = χ(M)+

χ(N) − χ(Σ); thus it factors through SK∂
n. We show that the Euler characteristic

map χ : SK∂
n → Z lifts to a map of spectra. The strategy will be to construct a map

of categories with squares from the category of smooth compact oriented manifolds

with boundary to the category with squares from Definition 3.6 associated to the

Waldhausen category of perfect Z-chain complexes. The main theorem we prove in

this section is the following.

Theorem 5.1. There is a map of K-theory spectra

K�(Mfd∂)→ K(Z),

which on π0 agrees with the Euler characteristic for smooth compact manifolds with

boundary.

We first prove the propositions we need in the next section and give the proof of

the theorem at the end of the final section.

5.1. The lift of the singular chain functor. Let Chperf
Z be the Waldhausen

category of perfect chain complexes, i.e., those complexes that are quasi-isomorphic

to a bounded finitely generated Z-complex, with cofibrations given by levelwise

injective maps and weak equivalences given by quasi-isomorphisms. Consider the

associated category with squares (Chperf
Z )� as defined in Definition 3.6.

Consider the singular chain functor

S : Mfd∂n → Chperf
Z

which sends a compact manifold with boundary to its singular chain complex. The

homology of this complex is finitely generated in each degree and bounded since our

manifolds are compact.

Proposition 5.2. The map S is a map of categories with squares

S : Mfd∂n → (Chperf
Z )�
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Proof. Suppose we have a distinguished square

A B

�

C D

in Mfd∂ , and we apply S to it. In the resulting square in Chperf
Z , the horizontal maps

are levelwise injective, as required. So in order to show that it is a distinguished

square, it remains to show that the map

S(A) ∪S(A) S(B)→ S(D)

is a quasisomorphism.

Note that by our construction of distinguished squares in Mfd∂ the union of the

interiors of B and C covers D. Let Sn(B +C) be the subgroup of Sn(D) consisting

of n-chains that are sums of n-chains in B and n-chains in C. By the standard

Mayer-Vietoris argument, the following sequence is exact

0 −−−−→ Sn(A) −−−−−−→
x 7→(x,−x)

Sn(B)⊕ Sn(C) −−−−−−−→
(y,z) 7→y+z

Sn(B + C) −−−−→ 0.

Hence the chain complex S∗(B + C) is a pushout S∗(B) ∪S∗(A) S∗(C). On the

other hand by [Hat02, Proposition 2.21], the inclusions Sn(B+C)→ Sn(D) induce

isomorphisms on homology groups, which finishes the proof. �

Remark 5.3. The reason for the choices in our Definition 3.6 of a category with

squares associated to a Waldhausen category is precisely to make the above propo-

sition work. The difference between the category with squares in Definition 3.6 and

that in [CZ19b, Example 1.2] is that we allow the Waldhausen category C to have

weak equivalences and not only isomorphisms, so we can apply it to the category

of chain complexes, and we allow all maps as vertical maps as opposed to only the

cofiber maps. This more relaxed definition of the distinguished squares is crucial in

allowing us to show that distinguished squares in the category of manifolds map to

distinguished squares in the category of chain complexes.

5.2. Recovering the Euler characteristic on π0. Lastly, we claim that

K(Chperf
Z ) ' K(Z) via an isomorphism under which S(M) corresponds to χ(M)

on π0 for a smooth compact oriented manifold M .

Denote by ChbZ the category of bounded finitely generated Z-modules, so the

perfect chain complexes are those that are quasi-isomorphic to complexes in ChbZ.

Clearly, ChbZ ⊆ Chperf
Z and moreover by the discussion in [Wei13, V. 2.7.2] (or
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alternatively directly by the Waldhausen approximation theorem) this inclusion in-

duces an isomorphism on K-groups. A similar argument for cohomology appears in

[CWZ19, Lemma 2.8].

Proposition 5.4. The map q : K0(Chperf
Z )→ K0(ChbZ) sending a perfect chain com-

plex C∗ to the class of the corresponding quasi-isomorphic chain complex H(C∗) ∈
ChbZ is well-defined and is an isomorphism.

Proof. The map is well-defined since quasi-isomorphic chain complexes have isomor-

phic homology, and it is surjective because of the inclusion ChbZ ⊆ Chperf
Z . On the

other hand if Y = q(X) vanishes in K0(ChbZ) then we may identify X with Y in

K0(Chperf
Z ) and it will also vanish there, because the set of defining relations (which

we quotient out in the presentation for K0) of K0(Chperf
Z ) contains the defining

relations of K0(ChbZ). �

Now, recall that the map φ : K0(ChbZ) → K0(Z) given by [C∗] 7→ χ(C∗) =∑
i(−1)i[Ci] is an isomorphism [Wei13, Proposition II.6.6.]. By an easy exer-

cise using the additivity property, the Euler characteristic of a bounded complex

only depends on its homology and χ(C∗) =
∑

i(−1)i[Hi(C∗)]. Thus the com-

position q ◦ φ : K0(Chperf
Z ) → K0(Z) is also an isomorphism and maps [C∗] to

χ(C∗) =
∑

i(−1)i[Hi(C∗)].

Proof of Theorem 5.1. From Proposition 5.2, the singular chain functor S : Mfd∂n →
(Chperf

Z )� is a map of categories with squares when the right hand side is given the

structure of a category with squares from Definition 3.6. This then induces a map

on K-theory spectra

K�(Mfd∂)→ K�((Chperf
Z )�

)
.

By Proposition 3.8 the target is K(Z). By Proposition 5.4 and the discussion fol-

lowing it, the map on π0 agrees with the Euler characteristic. �
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