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7~ADIC NEVANLINNA-CARTAN THEOREM

Ha Huy KHOAI AND MAI VAN TU

§1. INTRODUCTION

In recent years the Nevanlinna-Cartan theory of value distribution of holomor-
phic curves ([C]) is arousing increasing interest. By influence of Vojta’s works
establishing the deep relation between Nevanlinna theory and Diophantine ap-
proximation many results on finiteness of rational points on projective varieties
are obtained (see [N1}-[N3], [R], [RW]). S Lang conjectured that a projective va-
riety over a number field has only finitely many integral points if and only if the
corresponding complex variety is hyperbolic ([L1], [L2], [L4], [V]). It is well-known
that the Nevanlinna-Cartan theory is an effective tool in establishing the hyperbol-
icity of a complex variety. Very recently, by using the Nevanlinna-Cartan theory,
K. Masuda and J. Noguchi ([MN]) proved the existence of smooth hyperbolic hy-
persurfaces of every large degree of the complex projective space P*(C). Moreover,
they give a partial answer to the Kobayashi conjecture which states that a generic
hypersurface of large degree of the complex space P"*(C) is hyperbolic. J. Noguchi
([N4]) proved the Nevanlinna -Cartan theorem over function fields and, as a con-

sequence, derived a version of ”abc conjecture” in several variables over function
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fields. For more details on the subject we refer the reader to [N1]-[N4], [K1], {K2],
2], [ZL}.

The purpose of this note is to establish a p-adic version of the Nevanlinna-Cartan
theorem. By using this p-adic Nevanlinna-Cartan theorem, as in the complex
case, we can prove the existence of p-adic hyperbolic hypersurfaces. Notice that,
the "error term” in p-adic Nevanlinna-Cartan theorem is more precise than the
complex one, and then we obtain the hyperbolic hypersurfaces of smaller degree.

It is necessary to say a few words on ”"p-adic hyperbolicity”. In the complex
case, by Brody’s theorem ([B], [L3]) for a compact manifold X the Kobayashi
hyperbolicity is equivalent to the property that X does not contain any non-
constant holomorphic curve. Because of the discontinuity of the p-adic plane
it 1s difficult to construct an analogue of the Kobayashi semi-distance. Some
people proposed different versions of non-archimedean Kobayashi distance (see
[Ch], [N3]). So far as we know, however, there is no suitable analogue of the
Kobayashi semi-distance. In this note, by ”p-adic hyperbolicity” we mean ” p-adic

Brody hyperbolicity.

Acknowlegement. The first named author would like to thank the Max-
Planck-Institut flir Mathematik Bonn for financial support and hospitality. The

authors are grateful to Professors Kazuo Masuda and Junjiro Noguchi for sending

them the preprints [MN] and [N4].

§2. HEIGHT OF p-ADIC HOLOMORPHIC FUNCTIONS

We recall some facts on heights of p-adic holomorphic functions for later use in

this note. More details can be found in ([H1]-[H3]).
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Let p be a prime number, Q, the field of p-adic numbers, and €, the p-adic
completion of the algebraic closure of Qp. The absolute value in ), is normalized
so that |p| = p~!. We further use the notion v(z) for the additive valuation on C,
which extends ord,,.

Let f(z) be a p-adic holomorphic function on C, represented by a convergent

series

Since we have

lim {v(a,) + nv(z)} = o

1n—00

for every z € C,, it follows that for every ¢ € R there exists an n for which
v(ay,) + nt is minimal.

Definition 2.1. The height of f(z) is defined by
h(f,t) = Osll’llléloo{v((l,,) + nt}.

Now let us give a geometric interpretation of height. For each n we draw the graph
I';, which depicts v(a, z") as a function of v(z). This graph is a straight line with
slope n. Then h(f,t} is the boundary of the intersection of all of the half-planes
lying under the lines T',. Then in any finite segment [r, s],0 < r,s < 400, there
are only finitely many I',, which appear in h(f,t). Thus, h(f,t) is a polygonal line.
The point ¢t at which L(f,1) has vertices are called the critical points of f(z). A
finite segment [r, s] contains only a finitely many critical points. It is clear that if
t is a critical point, then v(«, ) + nt attains its minimum at least at two values of
n.

If v(z) = t is not a critical point, then f(z) # 0 and |f(z)| = p™*/'Y). The

function f(z) has zeros when v(z) = t;, where t, > ¢; > ... is the sequence of
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critical points; and the number of zeros (counting multiplicity) for which v(z) = ¢;
is equal to the difference n,4; — n; between the slope of h(f,t) at ¢t; — 0 and its
slope at t; + 0. It is easy to see that n; and n;y;, respectively, are the smallest

and the largest values of n at which v(n) + nt attains minimum.

Lemma 2.2. Let f(2) be a non-constant holomorphic function on C,. Then we

have

A(F,1) = h(f,8) > =t + O(1),
where O(1) 13 bounded when t - —oo

Lemma 2.3. A function f(z) is a polynomial if and only if h(f,t) = O(t) when

t— —00

The proof of Lemunas 2.2, 2.3 follows inmediately from Definition 2.1, and the

geometric interpretati(;n of height.

§3. p-ADIC NEVANLINNA-CARTAN THEOREM

Let f be a p-adic holomorphic curve in the projective space P*Cp), ie., a
holomorphic map from C, to P*(C,). We identify f with its representation by a

collection of holomorphic functions on C,:

f = (f11f21“-=fn+l);

where the functions f; have no common zeros. The curve f is said to be non-
degenerate if the image of f is not contained in any linear subspace of P*(C, ) of
dimension less than n.
Definition 3.1. The height of the holomorphic curve f is defined by:
h(f,t) = min h(fi,t).
(f: ) 1<iEnt W firt)
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We also use the notation

h‘+(f:t) = —h(f,1).

Definition 3.2. Counting function. For every holomorphic function ¢ on C,, the

following function is called the counting function of g
N(g,t) = ) _{v(ai) — 1},

where the sum is taken on all of zeros a; of g(z) (counting multiplicity) with
v(ai) > t.

Notice that, for every ¢, the sum in Definition 3.2 is a finite sum.

Now we define the truncated counting function which is due to Cartan.

Definition 3.3. For every positive entire number k denote by Ny(g,t) the sum
in Definition 3.2, where every zero «; is counted with multiplicity if its multiplicity
less that k, and &k times otherwise. We call Ny(g,t) the k-truncated counting
function of g.

We have the following obvious lemma.

Lemma 3.4. For every k> 1
Ni(g,t) < Ni(g,t) < kNi(g,1),

Ni(g,t) < N(g,t).

Now let Hy, H,,...,H, are q hyperplanes in P*(C,) in general position. This
means that these hyperplanes are linearly independent if ¢ < n, and any n + 1 of
these hyperplanes are linearly independent if ¢ > n 4 1.

Suppose that F; = 0 are the equations defining the hyperplanes H;. Then we

set:
h(f o} H,‘,t) = ]L(F,' o f,t),
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Ni(f o Hi,t) = Ni(Fi o f,1).

The following theorem is a p-adic analogue of the Nevanlinna-Cartan theorem
(D).

Theorem 3.5. Let Hy, Hy,...,H, be q hyperplanes in general position, and let

f be a non-degenerate holomorphic curve in P*(C,). Then we have

n(n + 1)

q
(q_n_l)h’-k(fvt)SZN"(fOHj)t)-I_ 9

i=1

t+0(1),

where O(1) 15 bounded when t — —oo

The ideas of the proof of Theorem 3.5 are similar to ones in the complex case
([C]), where instead of the Nevanlinna-Cartan characteristic function we use the
height function. However, there are some facts valid only in the p-adic case (for
example, Lemina 3.8). So, it is necessary to give here a detail proof.

We first prove the following

Lemma 3.6. Let Gi(z) = Fio f(z), 1 = 1,2,...q. Then for every z € C, there

are at most n functions G; such that G;(z) =0

Proof. Assume that there are z € C, and n+1 functions Go;,1 =1,2,...,n+1

such that G4, (z) = 0. Then from the system of equations
n+1
Ga;(2) = Z“?‘f;‘(z), i=1,...,n+1
J=1
and the hypothesis of general position it follows that f;(z) = 0 for every j =

1,...,n+1. This is a contradiction, since the functions f; have no common zeros.

Now let 81,082,...,84—n-1 be (¢ — n — 1) distinct numbers from the numbers
{1,2,...,q}. We set
G=(..,Gg...Gpg__1s---),
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where (fi,...,08y—n—1) is taken by all possible choices. Then G define a
holomorphic curve of P*C,), k=C g —n=1" since by Lemma 3.6 the functions

Gg,...Gp,_,., have no common zeros.

Lemma 3.7. We have
B(G,1) < (0= n— Dh(f,2) + O(1),

where O(1) does not depend on t

Proof. By definition we have

g—n-1

h(G,t) = min h(Gp,...Gpy_yst) = min Z h(Gg,,t).

(ﬂlv--:ﬁq—n—l) (ﬁl,...,ﬁq—n—l) J=l

Now let for a fixed t the following inequality holds
h(Gg,,t) < h(Gg,,t) < - < h(Gg,,t).
We then obtain
h(G,t) = h(Gpg,,t) + h(Gg,,t) + - - + h(Gp,_._,,1).

On the other hand, since the hypothesis of general position, we can represent f;
by a linear combination of Gg,_,...,Gg,:

n
f,‘ = Z aijG,B,,__,'-

=0

From this it follows that

h(fi,t) 2 min h(Gpg,_;,t) +0(1)

i<

Then we have

h(fi,t) 2 h(Gg;, 1) +0O(1), 4=12,...,q—n—1
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Thus,
h(f,t) =minh(fi,t) > h(Gg,;, 1)+ O(1), =12,...,q—n~—-1

The Lemma then is proved by sumarizing (¢ — n — 1) inequalities.

By using Lemma 3.7, to prove Theorem 3.5 it remains to estimate h(G,t).

Now for (n + 1) functions ®;,®,,...,®,41 we denote by ||®1,P2,...,Pny1]|
their Wronskian.

Let (1,2, .., n41) be distinct numbers from {1,2,...,q} and
(B1,B2,...,By-n=1) be the rest ones. As it is mentioned above, the functions
{fi} can be represented as linear combinations of Ga,,...,Ga,,,. Then we have

1

c(al,...,an+1)

|lG01"'G0n+1|I= llfl"'fn+l||1

where c(ay,...,a,41) are constants depending only on (ay,...,@n41). For sim-

plicity we denote

Eﬂ .C."i_'l G"n 1
IGay .. Gyl | T Tz ot

an41
Gor - Gon,

A(ala ce :an+l) =

n R (")
GS: ) GSl'l) Gﬂnil
Gnl C"az Tt Gan+1
From this it implies that
Gﬁl "'Gﬂq——u—l — GQ‘I " "GG"+|G,61 "'Gﬂq-—u—l
C(Ctl y e Oyl )A(CY] youn ,0’,,+1) C(Oﬂl, ey an+1)A(a1 sy a,,+])

_ Gi...G,
”fl ---fn+1”

This means that we can denote by R(z) the following function

1) Rz) = e L S

B C(CY],...,CY,,+1)A(C¥],... ,a,,+1)’
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which does not depend on choices of (ay,...,au41),{B1,...,84-n-1). We then

obtain
Gg, .- Gpy_ oy =clar,. ., ang1)R(z)A(0r, ... @)
Thus, to estimate the height of G(z), it suffices to estimate the heights of R(z)

and A(CY], Ceey an+1).

We first consider the function A. We have:

k (kn41)
Ga, G

h(A,t) = 1min )h(

(011---;011-1-1
where the minimum is taken by all permutations  (k1,...,ky41)  of numbers

{0,1,...,n}. On the other hand, we have:

e e e
2 Gl ) = I(Ggg.-—l)'ch_.-—z) " G, )
ki—1 (k:)
et Z h( Gc:;?' ,t)
i=0 o
From Lemma 2.2 it implies that
h( Cf" ,t) > —k;t 4+ 0(1)
Then we have
n+1 ng,)
h(A,t) = min h —.t)} >
(4= ){Z (Gt
n-+1
) n(n+ 1)
min -EtY+0O(1) = —————=t + 0(1
(ﬂl,...,ﬁ,,+1) z( ) ( ) 2 + ( )

=1

Now we consider the h{R,t). We first prove the following
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Lemma 3.8. For every holomorphic function ¢(z) on C, we have

—h(¢3 t) = N(d)a t) + O(l)a
where O(1) depends on ¢, but not on t

Proof. To prove Lemma 3.8 we use the geometric interpretation of heights.
Notice that for every ¢, there are only finitely many critical points of the function
@(z) with v(z) > t. Let tog > t1 > --- > t,n > t be all these critical points.

By definition of critical points, the height h(¢,s) is a linear function of s in

every segment [t;;1,%;]. Denote by n} and n] the slopes of i(¢,t) at t; 4+ 0 and

t; — 0, respectively. Then we have

h(f,to) = h(f,t) =n, (to —t1) +ny (t1 —t2) + -+ n, (t — 1)

=nyto+(ny —n )i+ (ng, —n,_ Jtm + 0t

=n,(te —t) +(n7 —n)(tr =)+ + (g =y )t — 1)
We can see that ¢(z) # 0 when v(z) > t,, and ¢(z) has n} zeros (counted with
multiplicity) with v(z) > t, , (n] — n;_;) zeros with v(z) = t;, 1 = 1,2,...,m.
Then the sum in the right hand side is exactely N(¢,?). Lemma 3.8 is proved.

Now we can return to the proof of Theorem 3.5. By Lemma 3.8 we have
h(R,t) = =N(R,t) + O(1).

For every z the function R(z) can be represented in the form (1) where Gg,(z) # 0,

i=1,2,...,g—n—1(by Lemma 3.6). Thus, the zeros of R are just only the poles

l(ki)
of A(ay,...,ant1), i-e., the poles of G('” . From the definitions of the truncated
ai
counting function and the function A it follows that
q 7
N(R,t) <Y Nu(Git) = > Nu(f o Fi,t).
i=1 =1
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Finally, we have

h(G,t) = min  {h(Gp, ... Gp,_\_1st)}

Licafgen=—1

= h,(R,t) + min {h(c(o'l,...,a',,+1)A(cr],... ,C\',,_}_]),t) 2

(O’luw-.nn-}-l)
> —.N(R,t) - wt + 0(1).
Thus,
(4= n - Di(f,1) 2 ~N(R,t) - 22D o),
This means that
q—n—-1"T(f,t) < N(R,t +Mt+0(l
9
1 n(n+1)
<Y Nu(f o Fit)+ ———=t+0(1).

i=1
Theorem 3.5 is proved.

Remark 3.9. The "error term” n'(’;;—}lt in Theorem 3.5 1s more precise than
one in the complex case, since in the p-adic case, the "theorem on logarithmic
derivative” (Lemna 2.3) is very simple.

Now we apply Theorem 3.5 for giving a ”defect relation”.

We need some notation. Let H be a hyperplane of P*(C,) such that the image
of f is not contained in H. We say that f ramifies at least d (d > 0) over H if for
all z € f~1H the degree of the pull-back divisor f*H, deg, f*H > d. This means

that if H is defined by the equation F = 0, then every zero of the function F o f

has multiplicity at least d. In the case f7'H = @ we set d = co.
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Theorem 3.10. (Defect relation). Assume f is linearly non-degenerate and ram-
ifies at least dj over Hj, 7 =1,2,...,q. Then
d n
Z(l -—)<n+1.
; d;
=1
Moreover, if f is a rational curve of degreec e (all fi(z), ¢ = 1,...,n+ 1 are

polynomaals of degree e; and mine; = ¢), then

q
n n(n -+ 1)

- )< A S
2 )sntl-—

1=1
Proof. Notice that from the geometric interpretation of height it follows that
if h*(f,t) is bounded when ¢t = —co, then f is a constant map. Thus, by the hy-
pothesis of non-degeneracy, 't (f,t) is unbounded when ¢t &+ ~o00. From Theorem
3.5 we obtain:

n(n+1) t 0O(1)
2 ARG R

g o F:
@ - e

On the other hand, from Lemma 3.4 we have

N,;(fOF,',t) =1- N"(foFiat) N(fO_F,',f)

(3) LG N(foFyt) " h*(f,t) =

nN1(f o F;,t) 0(1)
=T N(foF.,t) | ht(f,1)

By the hypothesis, N(f o F;,t) > d;N,(f o Fi,t). Theorem 3.10 is proved by
using (2), (3), and the remark that if f is a rational curve of degree e, then

ht(f,t) = —e.t + O(1) when t =+ —c0.



§4. p-ADIC HYPERBOLIC HYPERSURFACES

In this section by using Theorem 3.5 we give a p-adic version of Borel’s Lemma,
and use it to construct some examples of p-adic hyperbolic hypersurfaces.
We follow the ideas of Masuda and Noguchi [MN], where istead of the Nevanlinna-J
Cartan theorem we use Theorem 3.5.
Let (z1,...,2n4+1) be a homogeneuos cordinate system of P*(C,). Let M; =
aj,1 Q41

zy oz h 1 € 7 € s be monomials of degree [ with non-negative integral

exponents a;, € Z. Let X be a hyperswrface of degree dl of P*(C,) defined by
(4) X: eaM!4+. . 4c,MP=0,

where cy € C; are non-zero constants.

Theorem 4.1. (p-adic Borel's Lemmna). Let  f=(f1,...,fut1):Cp = X be a

non-constant holomorphic curve such that any f; #0. Assume that

Then there is a decomnposition of indices, {1,2,...,s} = UI,, such that:
1) every I, contains at least 2 indices.
11) the ratio of ]\/IJ’-I o f(2) and M{ o f(2) is constant for j k€ I,.

i) Y ;Mo f(z) =0 for all v

jel

Proof. We use the induction on the number s of the monomials. The case of

s = 2 18 trivial. Assume that the statement for the number less or equal to s —1

holds.
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We first claim that .M;-’ of, 1<y <s—1, are linearly dependent over C,.

Asuume that Mf_;l of, 1 <3 < s-—1 are linearly independent. We define a

holomorphic curve ¢ in P*~%C,) by

g:2€C, = (Mo f(2),...,M*_, o f(2)) e P*"¥C,).

Take the following hyperplanes in general position
H] = {Z = 0},...,HL....1 = {2_.._] 20},

Hy ={c1z1 + -+ cy—125—1 = 0}.
Then by Theorem 3.5 we have

n(n + 1)

(s~ (s =2)=1)h*(g,t) < Z Ny_2(go Hj,t)+ t+ O(1).
i=1

On the other hand, we have

+ — +( AL
h™(g,t) = dlsi}lsag(_l h™(M;j o f,1),

Ny_2(go Hj,t) < (s - Q)NI(M_;-" o fit) = (s —2)Ny(M; o f,t)

Hence, by Lemma (3.8) we obtain
Ny_z(go Hj,t) < (s = 2)hH(Mj o f,t) + O(1).
Thus we have

(6) Ny—2(go Hj,t) <(s— 2)12};121.)( lh+(ﬂffk of,t)+0(1), 7=0,...,s—1.

From definitions of ¢, H; and the equation defining X we can see that the

inequality (5) holds also for j = 5. Thus we have

; T(M; < ss — +(M: n(n+1)
(1151}151?(_1 h™(Mjo f,t) < s(s —2) 151}123{_1 h™(Mjo f,t)+ 5

t+0(1).
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By the hypothesis of d > s(s — 2) we have a contradiction as t — —oo.

Thus there is a non-trivial linear relation
. ' d ' d _ '
(6) ceMiof+ - +c,_ M{_,0f=0, c;€C,.

Ignoring the terms with ¢} = 0 in (6), we apply the induction hypothesis to (6).
Here it is clear that the assumption which the induction hypothesis requires is
fulfilled. Thus one reduces the number s in (4) to s — 1 or less. Applying the
induction hypothesis to the reduced equation again, we obtain our assertion.

As in the complex case, from Borel’s Lemma (Theorem 4.1) we can derive many
results on p-adic hyperbolicity. Let us mention here some of them.

We recall that the Fermat variety X in P*(C,) of degree d is defined by the

equation:

bt 2y =
The following theorem is a p-adic version of Green’s theorem ([G], [L3]).

Theorem 4.2. Let f=(fi,..., fu+1): C, — X be a holomorphic curve such
that any f; £ 0. Define an equivalence @ = f if f;/f; is constant. If d >n?—1
then for each equivalence class I we have
2 fi=0.
iel
Theorem 4.2 is a corollary of Theorem 4.1 with s = n 4- 1. Notice that, in the
complex case, the hypothesis is d > n?.
When n = 2 we obtain the following corollary of Theorem 4.2.
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Corollary 4.3. Let f,g,h, be p-adic holomorphic functions on C,, and let for
some d >3 we have

fd +gd = hd.

Then the functions f,g,h are different each from other only by a multiplicative

constant.

A similar statement for polynomials is a corollary of Mason’s thorem ([M], [L4]).

To give the examples of p-adic hyperbolic hypersuifaces let us make the follow-
ing remark. R. Brody and M. Green ([BG]) first constructed a smooth hyperbolic
hypersurface of P*(C) of even degree > 50. K. Masuda and J. Noguchi proved the
existence of hyperbolic hypersurfaces of large degree of P*(C) for any n ([MN]).
Both in [BG] and [NM] the main tool are Borel’s Lemma and purely linear al-
gebraic arguments. These algebraic arguments can apply without changes to the
p-adic case. Then by using Theorems 3.5, 4.1 and Masuda-Noguchi’s algebraic
Lemmas, as well as the computation of Noguchi and Masuda-Noguchi, we can
give the following examples of p-adic hyperbolic hypersurfaces. Notice that, the
difference of the p-adic and complex cases is in degree of hypersurfaces (it follows
from the difference of the hypothesis on the degree d in Theorem 4.1 and in Borel’s
Lemmas in complex case.

In P3(C,), we have p-adic hyperbolic hypersurfaces X given by the following
equations:

Frample 1 (Brody-Green).
Azl (mz) 4 (212)Y* =0, deven,d > 48.
Ezample 2 (J. Noguchi).

2 3 (21 2923) =0, d> 7, (deg X =3d > 21),t € C,.
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Exzample 3 (J. Noguchi).
z'lm 4+ zi" + t(zlzzz;;z4)’l =0, d 2 6(deg X =4d > 24),t € C,
Ezample 4 (K. Masuda and J. Noguchi).
A (2P e2) =0, d 26, te€ C,.

K. Masuda and J. Noguchi give several examples also for n = 4,5. We can
copy their examnples to the p-adic case (with suitable change of the degree), say,
for n = 5, we have the following p-adic hypersurface:

Ezample 4 (K. Masuda and J. Noguchi).
22 t(zie) P+ ta(222) P+ ta(2s2)) "

+t4(242g )11/5 + tﬁ(zﬁz-il.)d/s
+o( )Y+ tr(282) 0 4 ta(25 )0
+a(2521)"° + to(2323)1° =0,

t,-efC‘

*, d=>5e> 1120.
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