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p-ADIC NEVANLINNA-CARTAN THEOREM

HA HUY I(HOAI AND MAI VAN Tu

§l. INTRODUCTION

In recent years the Nevanlinna-Cartan theory of value distribution of holomor

phic curves ([C]) is arousing incl'easing int.erest. By influence of Vojta's works

establishing the deep relation between Nevanlinna. theol'y allel Diophantine ap

proxiIuation luany results on finiteness of rational points on projective varieties

are obtained (see [NIJ-[N3], [H.], [RW]). SLang conjectul'ed that a projective va

riety over a number field has only finitely luallY integral points if and only if the

corresponding cOIllplex variety is hypel'bolic ([LI], [L2], [L4], [V]). It is well-known

that the Nevanlinna-Cart.;:ul theory is an effective tool in establishing the hyperbol

icity of a cOluplex variety. Very recently, by using the Nevanlinna-Cartan theory,

I<':. Masuda and J. Noguchi ([MN]) proved the existence of Slllooth hyperbolic hy

persurfaces of every large degree of the c0111plex projective space P7l(C). Moreover,

they give a partial answer to the I(obayashi conjecture which states that a generic

hypersurface of large degree of the c0111plex space rn(C) is hyperbolic. J. Noguchi

([N4J) proved the Nevanlinna -Cartan theorenl aver function fields and, a.s a con

sequence, derived a. version of "abc conjecture" in several variables over function
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fields. For lnore details on the subject we refer the reader to [NI]-[N4], [KI], [K2],

[Z], [ZL].

The purpose of this note is to establish a p-adic version of the Nevanlinna-Cartan

theorelll. By llsing this p-adie Nevanlinna-Cartan theorem, as in the eOlllplex

ease, we ean prove the existence af p-adic hyperbalic hypersurfaees. Notice that,

the "errar term" in p-adic Nevanlinna-Cartan theorelll is more precise than the

eOlllplex aue, and then we obtaill thc hyperbolic hypersurfaces of slualler degree.

It is llecessary to say a few worcls on II p-adie hyperbolieity". In the complex

case, by Brody's theorem ([B], [L3]) for a conlpact lnanifold X the I<obayashi

hyperbolicity is equivalent to the property that X does not contain any non

constant hololuorphic curve. Beeause of the discolltinuity of the p-adie plane

it is difficult to construet an analogue of the Kobayashi senli-distance. SOlue

people proposed different versiOllS of non-arehinledean I<obayashi distanee (see

[Ch], [N3]). So far as we know, however, there is no suitable analogue of the

I<obayashi selui-distance. In this note, by "p-adic hyperbolicity" we luean II p-adic

Brody hyperbolicity.

Acknowlegelnent. Tbe first nmlled author would like to thank the Max

Planck-Institut für Matheluatik Bonn for financial support anel hospitality. The

anthors are grateful to Professors I<azuo Masuda allel Junjiro Noguchi for sending

thenl the preprints [MN] and [N4].

§2. REIGHT OF ]J-ADIC nOLOMORPHIC FUNCTIONS

We recall some facts on heights of ]J-adic holonlorphic functions for later use in

this note. More details cau be faund in ([HI]-[H3]).
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Let p be a prinle n1l111ber, Qp thc fielel uf p-adic ntllubcrs, and Cp the p-adic

cOll1pletion of the algebraic elosure of Qp. The absolute value in Qp is normalized

so that Ipl = p-l. We further use the notion v(z) for the additive valuation on Cp

which extends ordp .

Let J(z) be a p-adic hololllorphic function on Cp represented by a convergent

senes
00

J(z) = L (l.n
zn .

n;:;O

Since we have

linl {v(a n ) + nv(z)} = 00
n-too

for every z E Cp, it follows that for every t E IR there exists an n for which

v( (Ln) + nt is lllinimal.

Definition 2.1. The height of f( z) is defined by

h(j, t) = 1uin {v(a n ) + nt}.
O$n<oo

Now let us give a geoluetric interpretation of height. For each n we draw the graph

r n which depicts v(anz n ) as a fllnction of v(z). This graph is a straight line with

slope n. Then h(J, t) is the boundary of the intersection of all of the half-planes

lying nnder the lines r n . Then in any finite segnH~nt [7', s], 0 < 7', S < +00, there

are only finitely 111any f n which appeal' in h(j, t). Thus, h(j, t) is a polygonalline.

The point t at which h(j, t) has vertices are called the critical points of f(z). A

finite seg1uent [7', s] contains only a finitely 1uany cl'itical points. It is elear that if

t is a critical point, then v(an) + nt attains its luiniluulll at least at two values of

n.

If v(z) = t is not a cl'itic<J point, then f(z) =I 0 and If(z)1 = p-h(!,t), The

function j(z) has zeros when v(z) = t;, where t o > t] > ... is the sequence of
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critical points; anel the nUluber of zeros (coullting l11ultiplicity) for which v(z) = ti

is equal to t he eliffel'ence 111+1 - n 1 betweell the slope of h(J1t) at t1 - 0 anel its

slope at ti + O. It is easy to see that ni anel ni+l1 respectively, are the smallest

and the Im'gest values of n at which v(n) + nt attains Ininimlun.

Lenuna 2.2. Let f (z) be a no71- constant holomorl'hi c fu71ctio71 on Cp. Th en we

haue

h(f', t) - h(/, t) 2:: -t + 0(1),

where 0(1) is bounlied whe71 t --+ -00

Lemma 2.3. A fnnctiun f(z) is a ]Jolyn01nial if and only ij h(J, t) = O(t) whe71

t--+-oo

The proof of Lenllnas 2.2 , 2.3 follows il11111eeli ately frolll DefinitiOll 2.1 , anel the

geollletric interpret.ati~nof height.

§3. p-ADIC NEVANLINNA-CARTAN THEOREM

Let 1 be a p-aelic holomorphic curve in the projective space IP n (Cp), l.e., a

hololuorphic nlap fronl et:;J to IP n (Cp ). We ielentify / with its representation by a

collection of holol11orphic functions on Cp:

f = (/1, fz, . .. 1 fn+I) ,

where the functions 11 have no COllUllon zeros. The curve f is said to be non-

degenerate if the iluage of / is not contailleel in auy linear subspace of IP n ( Cp ) of

dinlension less t.han n.

Definition 3.1. The height of the holol11orphic curve f is elefineel by:
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We also use the notation

h+(j, t) = -h(f, t).

Definition 3.2. C07tfltiug f7tuctiou. For every hololllorphic function 9 on Cp, the

following function is called the co7tnting j7tnctiou of 9

N(y, t) = L {v(a;) - t},
Clj

where the sunl is taken Oll an of zeros (Li of g(z) (counting multiplicity) with

v(a;) ~ t.

Notice that, for every t, the SUIU in Definition 3.2 is a finite sumo

Now we define the truucated c07Lutiug j'/Lflction which is due to Cartan.

Definition 3.3. For every positive entire uUluber k denote by Nk(y, t) the sum

in Definition 3.2, where every zero (l,i is counted with l1lUltiplicity if its lllUltiplicity

less that k, alld k tilues otherwise. We call Nk(y, t) the k-truncated co'ltnting

junctiofl oj g.

We have the following obvious lenuua..

Lemlua 3.4. For every k ~ 1

Now let H1 , H2, ... ,H(/ are q hyperplanes in IF U ( Cp ) in gen eral ]JOsition. This

meaus that these hyperplanes a.re linearly independent if q ~ 11, and any n + 1 of

these hyperplanes are linearly independent if q 2: 11 + 1.

Suppose that Pi = 0 are the equations defining the hyperplanes Hi. Then we

set:

h(f 0 H i , t) = h(Fi 0 f, t),

5



The following theorenl is a p-adic analogue of the Nevunlinna-Cartan theorell1

([CD·

Theorenl 3.5. Let H 1 , H 2 , .•. ,Hq be q hYIJe1jJlanes in general position, and let

f be a 11on-deg enerate Iwlo1no1jJhic curve in IP 71 ( Cp) . Then 'llJe hav e

IJ

'" n(n + 1)(q - n - 1)h+(j, t) :S ~ N u (! 0 Hj, t) + 2 t + 0(1),
j=l

where 0(1) is boundcd when t -7 -00

The ideas of the proof of Theorell1 3.5 are siInilar to ones in the complex case

([CD, where instead of the Nevanlinna-Cartal1 characteristic function we use the

height function. However, there are sonle facts valid only in the p-adic case (for

exaruple, Lenuuft 3.8). So, it is necessal'Y to give here a detail proof.

We first prove the following

Lemnla 3.6. Let Gi(Z) = Fi o/(z), i = 1,2, ... q. Then /or every Z E Cp there

are at 1nost n /unctions Gi such that Gi(z) = 0

Proof. Assullle that there are z E lC;J and 71.+ 1 functions GOi' i = 1,2, ... ,n+ 1

such that Ger; (z) = O. Then frolll the system of eqnations

u+1

C;n,(z) = L nji fj(z), 'l = 1, ... ,11 + 1
j=l

and the hypothesis of general position it follows that fj(z) = 0 for every j =

1, ... , 11 + 1. This is a contracliction, since the functions fj have no comnl011 zeros.

Now let ßI, ß2, ... ,ßq - n -I be (q - 11 - 1) distil1ct nUlllbers fronl the numbers

{I, 2, ... ,q}. We set

(j



where (ßl, ... 1 ßIJ-n-l) is taken by all possible choices. Then G define a

hololll0rphic curve of rk(C) k = Cq -
n

-
1 since by Leuuua 3.6 the functions]I , q ,

Gr. Gp have no COllU110n zeros."lI' . . ,/- .. -1

Lenllna 3.7. We Iw,ve

h(G, t) ::; (q - Tl - 1)11.(/, t) + 0(1),

where O( 1) dues nut dc])end un t

Proof. By definition we have

q-n-l

2::= h(Gßi,t).
j=l

Now let for a fixed t the followillg inequality holds

We then obtain

h(G, t) = h(Gß1 , t) + h(Gß2l t) + ... + h(Gßq_n_l l t).

On the other hand, since the hypothesis of general position, we cau represellt fi

1l

fi = 2::= aij Gß'/-i .
j=O

From this it follows that.

h(/i,t) 2:: nl~ll h(Gß _",t) + 0(1)
O~]~n q )

Then we have

j = 1,2, ... ,q- n - 1.
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Thus,

h(I, t) = luin h(Ii, t) ~ h(C;ßj , t) + 0 (1), j = 1,2, ... ,q -n - 1.

The LelTInla then is proved by sUlllarizing (q - TI, - 1) inequalities.

By using Lenuua 3.7, to prove Theorelu 3.5 it reillains to estiIllate h(G, t).

Now for (11 + 1) functions <PI, <P2, ... , <P n+1 we denote by 1I<PI, <!-2, . " , <p n+111

their Wronskian.

Let be clistinct. nUlubers frolll {1,2,.",'l} anel

1 1 1

C;~i GI G~

et7 ~ ~G U2 °n+l

(ß1, ß2, ... ,ßq-U-l) be the rest ones. As it is luentioned above, the functions

{fd can be repl'esented as linear cOlllbinations of Gel'}' ... 1 Gan+1 • Then we have

where c(0'1, ... , 0'n+ 1) are constants depending only on (al," . , O'n+d. Für SilU-

plicity we denote

IIGaI ••• Gan +1 11
A(al,'" ,au +l) = -----.....:....

Ga1 ••• GOn+1

G(n)
-2.L
°"1

Frolu this it iluplies that

Gßl ... Gß'I_n_l-----------'------ =
c( 0:1, ... ,O'u+1 )A(al, ... ,O' n +1)

GOI' •• GOn +1 Gßt ... Gßq_n_l

C( 0::1, , G:n+l )A(0:'1, ... , a n +l)

GI Gf}

1111 ". In+dl

This means that we can dennte by R.( z) the following function

(1) R,(z) = Gß-1 ... Gß,,-n-l

c(0'1, ... , D: n +1 )A(0'1, ... 1 o' n +1) ,
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which does not depend on choices of (0'], ... ,O'u+1), (ß1, ... ,ßq-u-1). We then

obtain

Thus, to esti1nate the height of C (z ), it suffices to es tilnate the heights of R( z )

aud A(O'l, . .. ,O'u+1)'

We first cOllsider the function A. We have:

C(kd C(kn+d
1(A ) . 1 ( TO l 0 11 +1 )
~ ,t = Inln 1. -GI ... G ' t

(Ol, ... ,On+l) TO} 0n+1

where the lnilliulllln is takell by all pennutatiolls of lltllnbers

{O, 1, ... ,n}. On the other hand, we have:

.1.:;-1 G(k i )

= L h( GOi ,t).
j=O 0;

Froln Lelnlna 2.2 it iInplies that

Then we have
11+ 1 c( k;)

h(A, t) = . nün {L h( CO; ,t)} 2::
(OI, ... ,On+l) . Ta·

1=1 I

u+1 n(n + 1
lnill 2:(-kit) + 0(1) = - )t +0(1).

(O'l'''',O'n+d . 2
1=1

Now we consider the h(R, t). Vve first prove the following



Le111nla 3.8. For etJ ery 'wlo rnor]Jhic fun ction 4>( z) on Cp we hav e

-h(cj;, t) = N(cj;, t) + 0(1),

where 0(1) de]1cuds on 4>, but not on t

Proof. Ta prove Lenllna 3.8 we use the geolnetric interpretation of heights.

Notice that far every t, there are only finitely Inany critical points of the function

4>(z) with v(z) ~ t. Let t o > t 1 > ... > tm ~ t be all these critical points.

By definition of critical points, the height 11.(1),..'>) is a linear function of s in

every segnlent [tj+l, t;}. Denote by n; anel 11.; thc slopes of h(ep, t) at tj + 0 aud

tj - 0, respectively. Then we have

We can see that ep(z) "# 0 when v(z) > t a , and ep(z) has 11; zeros (counted with

multiplicity) with v( z) 2:: t o , (n; - 11;_1) zeros with v( z) = tj, i = 1,2, ... , r71.

Then the SUITI in the right hanel side is exactely N (4>, t). Lenllua 3.8 is proved.

Now we can return to the proof of Theoreul 3.5. By Lemlua 3.8 we have

h(R., t) = -N(R., t) + 0(1).

For every z the func tion R.(z) can be represented in the fOrIn (1) where Gß; ( z) "# 0,

i = 1,2, ... ,q - 'n - 1 (by Lenulla 3.6). Thus, the zeros of Rare just only the poles
G,(k;)

of A(al, ... ,ün+l), i.e., the poles of~. From the definitions of the truncated
Ga;

counting function and the function A it follows that

q q

N(R., t) :s; L Nn(Gi, t) = L Nn(f 0 Fj , t).
i=1 i=l
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Finally, we have

h(G, t) = luin {h(Gßl ... Gßrj-n-l' t)}
(ßl ' .. "#'1- .. -1)

= h(R., t) + luin {h(c(O'l, ... , O'n+dA(O'I,.'. ,00u+I), t) ~
(0'1, ... ,0'11+1)

_ Jol(R ) _ n(n + 1) O()
~ ., t 2 t + 1.

Thus,

n(n + 1)
('1 - 11. - 1)11.(/, t) ~ -N(R., t) - 2 t + 0(1).

This lneans that

n(n + 1)
(q - 11. - 1)11+(/, t) :::; N(R., t) + 2 t +0(1)

fJ
~ n(n.+l)

:::; L Nn(.f 0 Pi. t ) + 2 t + 0(1).
i=I

Theorenl 3.5 is proved.

'11('11. + 1) . . .
Reillark 3.9. The"error tenn" 2 t In Thcorenl 3.5 l~ lnore prCClse than

oue in the cOluplex ease, since in the p-adic case, the "theorelll on logarithlnic

derivative" (Leuuua 2.3) is very silllple.

Now we apply Theorelll 3.5 for giving a "defeet relation" .

We neecl S0l11e notation. Let H he a hyperplane of IP U (CrJ) such that the image

of f is not. contained in H. We say that / HI7nifies at least d (d > 0) ot/er H if for

all z E f -1 H the degree of the pull-hack divisor f *H, clegz f· H ~ d. This means

that if H is defined by the equation F = 0, then every zero of the funetion F 0 f

has lnultiplicity at least d. In the ease j-I H = (/) we set cl = 00.
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Theoren13.10. (De/cct rcla,tiun). AS8'/L11~e / is liucarly non-dcgcnc1utc (lnd ram,-

ificll at lcast clj over Hj, j = 1,2, ... , q. Thcn

fJ

""(I-~):::;n+l.
L d'
j=l )

Morcovcr, i/ / is a Hltio71fll curvc 0/ deyree e (oll /i (z),

]wlyno7nials 0f dcgree ej and lllin ej = e), th e11

I:
fJ

( n ) n(n + 1)
1-- <n+l- .

I - ?,r,)' ... e
)=1

1, ... ,11. + 1 are

Proof. Notice that. fronl the geollletric interpretation of height. it follows that

if 17,+(/, t) is bounded when t -+ -00, then / is a constant nla.p. Thus, by the hy-

pothesis of non-degeneracy, 11.+(/, t) is unbounded when t -+ -00. Fronl Theorelll

3.5 we obtain:

(2) ~{ Nn(/oFi,t)} ( ) '12(11+1) t 0(1)
~ 1- h+(/,t) :::; 11+1 + 2 °h+(f,t)+h+(f,t)"

On the other hanel, fnHll Lenuna. 3.4 we have

(3)

> 1 _ n!'l] (/0 F i , t) + _0_(_1)_
- N(f 0 Fi , t) h+(!, t)

By the hypothesis, N(f 0 Fi , t) 2: rljNdf 0 Fi , t). Theorelll 3.10 is provecl by

using (2), (3), allel the reluark t.hat if f is a. rat.ional curve of elegrec e, then

11,+(/, t) = -e.t +0(1) when t -+ -00.
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§4. p-ADIC HYPEftBOLIC HYPERSURFACES

In this section by using Theorelll 3.5 we give a p-adic version of Borel's Lemma,

~uld use it to construct sonle exaluples of p-adic hyperbolic hyperslllfaces.

We follow the ideas of Masuda and Noguchi [MN}, where istead of the Nevanlinlla-I

Cartan theorelll we use Theorerll 3.5.

Let (ZI, .. . ,zn+d be a hOlllogeneuos cordinate system of IPn(lI:;I)' Let Mj =

z~j·l •.• Z~~i+l 1:::; j :::; $ be Illononüals of degree 1 with non-negative integral

exponents 0: j v E Z. Let X be a hypersnrface of degree cll of Ir n (Cp ) defined by

(4)

where Cj E C;' are non-zero constants.

Theorenl 4.1. (p.(Ldic Borel's Lem.rna). Let I = (11,' .. ,fn+1) : Cp -r X be a

nou-constant }wlornvr],hic C1/.7'Ve snch that (Luy Ij =t O. Ass'/Lrne that

I ~ s(s -2).

Then there is a decvr/L]1vsition 0/ indices, {I, 2, ... , s} = uIv, .'HLCh thai:

i) every I v canto,ins (Li lewd 2 indices.

ii) the nLiio v/1vff 0 j(z) aud Ml~ o/(z) is constant for j, k E Iv.

iii) L Cj Mf 0 f (z) == 0 for (LU 1/

jE!",

Proof. We use the induction on the luunher 8 of the lllolloluials. The case of

s = 2 is trivial. Asslllue that the stateluellt for the llllluber less 01' equal to s - 1

holds.
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We first clainl that. lvIf 0 f, 1 ~ j ~ .5 - 1 , are lincarly dependent over Cp.

Asululle t.hat lvIf 0 f, 1::; j ::; .5 - 1 are linearly independent. We define a

holoillorphic curve 9 in IPs- 2(Cp ) by

Take the followillg hyperplanes in general position

H I = {z = O}, ... , H~_I = {Z,~_I = O},

Then by Theorenl 3.5 we have

~ n(n + 1)
(.5 - (oS - 2) - 1)h+ (9, t) ::; L.J lV8 - 2 ([loBj , t) + 2 t + 0 (1).

j=1

On the other hand, wc have

/\'8-2(9 0 Bj, t) ::; (8 - 2)N1 (Mj 0 /, t) = (s - 2)N1 (Mj 0 f, t)

Hence, by Lellllllu (3.8) we obtain

Thus we have

(5)

Fronl definitions of 9, Bj alld the equation defining X we can see that the

inequali ty (5) holds also for j = .5. Th118 we have

14



By the hypothesis of d 2: s(s - 2) we have a contradiction as t -+ -00.

Thus there is a non-trivial linerlJ: relation

(6)

Ignoring the tenns with cj = 0 in (6), we apply the induction hypothesis to (6).

Here it is deal' that thc asslunptiol1 which thc induction hypothesis requires is

fulfilled. ThllS one rcdllces the l111lnber s in (4) to s - 1 01' less. Applying the

induction hypothesis to the l'educed equatioll again, we obtain our assertion.

As in the COlllplex case, fronl Borei's Leinina (Theorein 4.1) we can derive Inany

results on p-adic hyperbolicity. Let U8 Illention here S0111e of theill.

We recall that the FeruHlt 1JOricty X in pfl(lC1,) of degl'ee cl is defined by the

equation:

tl + + tl 0zl . . . zu+l = .

The following theOl'eill is a l'-ndic version of Green's theorenl ([G], [L3]).

Theorenl 4.2. Let I = (11, . .. ,/u+l) : ~J ~ X be a hvlo1nvr]Jhic c'lLrve such

that (L11Y Ij =/= O. Definf~ (l11 eq'/J,iv(Llence 'l ~ I if fi/ fj i~ consto,nt. 1/ d 2: 11,2 - 1

thell fU1' each eq71.ivlLlence dass I we have

Theorenl 4.2 is a. corollary of Theorenl 4.1 with .5 = n + 1. Notice that, in the

complex case, the hypothesis is d 2: n 2
•

When n. = 2 we obta.in the followillg cOl'ollary of Theorenl 4.2.
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Corollary 4.3. Let f, 9, h, I)(~ ]J-udic IwlornofJ)hic f'ILllctiOll."i on Cp , und let for

sonte d ~ 3 'we huve

f tl + tl = hll
9 ' .

Thell the !1Lllctiolls /, g, h a.re different elLch !ro1T~ other only by a multi]Jlicative

COllstant.

A siInilar statelnent for polynonlinls iS Cl. corollary of Mason's thoreln ([M], [L4]).

To give the exaluples of p-adic hyperbolic hypersllrfaces let us make the follow-

ing relnark. R.. Brody and M. Green ([BG]) first constructed a sn100th hyperbolic

hypersurface of JFD3 (C) of even degree 2: 50. K. Masuda anel .J. Noguchi proved the

existellce of hyperbolic hypersurfaces of large elegree of PU(C) for allY n ([MN]).

Both in [BG] anel [NM] the lllain tool are Borel's Lenuua anel purely linear al-

gebraic argulllents. These algebraic argtunents can apply without changes to the

p-aelic case. Then by using TheoreIllS 3.5, 4.1 anel Masuela-Noguchi's algebraic

Lellllllas, as weIl a$ the COlllputation of Noguchi and Masuda-Noguchi, we can

give the following exalnples of p-adic hyperbolic hypersurfaccs. Notice that, the

difference of the p-aclic ancl cOlllplex cases is in elegrce of hyperstufaces (it follows

fron1 the clifference of the hypothesis on the elegree d in Theorelll 4.1 anel in Borel 's

Lenunas in cOluplex case.

In P3 (1C]I)' we havc p-aelic hYPcl'bolic hYPcl'surfaces X givcll by the following

equatiollS:

Exa.1Tl,l,le 1 (Brody-Greell).

tl + + d + ( )d/2 + ( )d/2 0Z I . . . Z 4 Z 1 Z'2 Z 1 Z;l =,

EXGUl,l,le 2 (.1. Noguchi).

d even, d ~ 48.

3 I1 + + 3 I1 + t ( )d 0 I > 7 ( 1 X 3 1> 21) t tf"*zl . . . z4 ZI Z2 Z :1 = 1 (, _ ,( eg = (_ 1 E "V/I'

Hi



Exa111ple :1 (.J. Noguchi ).

Exam]Jle 4 (K. Masuda and J. Noguchi).

le Masuda anel .J. Noguchi give several exaluples also for n, = 4,5. We can

copy their exalnples to the p-adic case (with suitable change of the elegree), say,

for n = 5, we have the following ]J-adic hypcrsurfnce:

Exa71l-Jlle 4 (I<' Masuda and .J. Noguchi).

+t (-2 ;t ) d / 5 + t ( 2.,.. ~t ) /L /5 + t ( 2 :l)d /5
G '" 1 Z:l 7 z2 ~ <1 8 Z:l z5

t j E c;, cl = 5e 2: 1120.
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