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HA HUY I(HOAI AND MAI VAN Tu

§l. INTRODUCTION

In recent years the Nevanlinna-Cartan theory of value distribution of holomor­

phic curves ([C]) is arousing incl'easing int.erest. By influence of Vojta's works

establishing the deep relation between Nevanlinna. theol'y allel Diophantine ap­

proxiIuation luany results on finiteness of rational points on projective varieties

are obtained (see [NIJ-[N3], [H.], [RW]). SLang conjectul'ed that a projective va­

riety over a number field has only finitely luallY integral points if and only if the

corresponding cOIllplex variety is hypel'bolic ([LI], [L2], [L4], [V]). It is well-known

that the Nevanlinna-Cart.;:ul theory is an effective tool in establishing the hyperbol­

icity of a cOluplex variety. Very recently, by using the Nevanlinna-Cartan theory,

I<':. Masuda and J. Noguchi ([MN]) proved the existence of Slllooth hyperbolic hy­

persurfaces of every large degree of the c0111plex projective space P7l(C). Moreover,

they give a partial answer to the I(obayashi conjecture which states that a generic

hypersurface of large degree of the c0111plex space rn(C) is hyperbolic. J. Noguchi

([N4J) proved the Nevanlinna -Cartan theorenl aver function fields and, a.s a con­

sequence, derived a. version of "abc conjecture" in several variables over function
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fields. For lnore details on the subject we refer the reader to [NI]-[N4], [KI], [K2],

[Z], [ZL].

The purpose of this note is to establish a p-adic version of the Nevanlinna-Cartan

theorelll. By llsing this p-adie Nevanlinna-Cartan theorem, as in the eOlllplex

ease, we ean prove the existence af p-adic hyperbalic hypersurfaees. Notice that,

the "errar term" in p-adic Nevanlinna-Cartan theorelll is more precise than the

eOlllplex aue, and then we obtaill thc hyperbolic hypersurfaces of slualler degree.

It is llecessary to say a few worcls on II p-adie hyperbolieity". In the complex

case, by Brody's theorem ([B], [L3]) for a conlpact lnanifold X the I<obayashi

hyperbolicity is equivalent to the property that X does not contain any non­

constant hololuorphic curve. Beeause of the discolltinuity of the p-adie plane

it is difficult to construet an analogue of the Kobayashi senli-distance. SOlue

people proposed different versiOllS of non-arehinledean I<obayashi distanee (see

[Ch], [N3]). So far as we know, however, there is no suitable analogue of the

I<obayashi selui-distance. In this note, by "p-adic hyperbolicity" we luean II p-adic

Brody hyperbolicity.

Acknowlegelnent. Tbe first nmlled author would like to thank the Max­

Planck-Institut für Matheluatik Bonn for financial support anel hospitality. The

anthors are grateful to Professors I<azuo Masuda allel Junjiro Noguchi for sending

thenl the preprints [MN] and [N4].

§2. REIGHT OF ]J-ADIC nOLOMORPHIC FUNCTIONS

We recall some facts on heights of ]J-adic holonlorphic functions for later use in

this note. More details cau be faund in ([HI]-[H3]).
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Let p be a prinle n1l111ber, Qp thc fielel uf p-adic ntllubcrs, and Cp the p-adic

cOll1pletion of the algebraic elosure of Qp. The absolute value in Qp is normalized

so that Ipl = p-l. We further use the notion v(z) for the additive valuation on Cp

which extends ordp .

Let J(z) be a p-adic hololllorphic function on Cp represented by a convergent

senes
00

J(z) = L (l.n
zn .

n;:;O

Since we have

linl {v(a n ) + nv(z)} = 00
n-too

for every z E Cp, it follows that for every t E IR there exists an n for which

v( (Ln) + nt is lllinimal.

Definition 2.1. The height of f( z) is defined by

h(j, t) = 1uin {v(a n ) + nt}.
O$n<oo

Now let us give a geoluetric interpretation of height. For each n we draw the graph

r n which depicts v(anz n ) as a fllnction of v(z). This graph is a straight line with

slope n. Then h(J, t) is the boundary of the intersection of all of the half-planes

lying nnder the lines r n . Then in any finite segnH~nt [7', s], 0 < 7', S < +00, there

are only finitely 111any f n which appeal' in h(j, t). Thus, h(j, t) is a polygonalline.

The point t at which h(j, t) has vertices are called the critical points of f(z). A

finite seg1uent [7', s] contains only a finitely 1uany cl'itical points. It is elear that if

t is a critical point, then v(an) + nt attains its luiniluulll at least at two values of

n.

If v(z) = t is not a cl'itic<J point, then f(z) =I 0 and If(z)1 = p-h(!,t), The

function j(z) has zeros when v(z) = t;, where t o > t] > ... is the sequence of
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critical points; anel the nUluber of zeros (coullting l11ultiplicity) for which v(z) = ti

is equal to t he eliffel'ence 111+1 - n 1 betweell the slope of h(J1t) at t1 - 0 anel its

slope at ti + O. It is easy to see that ni anel ni+l1 respectively, are the smallest

and the Im'gest values of n at which v(n) + nt attains Ininimlun.

Lenuna 2.2. Let f (z) be a no71- constant holomorl'hi c fu71ctio71 on Cp. Th en we

haue

h(f', t) - h(/, t) 2:: -t + 0(1),

where 0(1) is bounlied whe71 t --+ -00

Lemma 2.3. A fnnctiun f(z) is a ]Jolyn01nial if and only ij h(J, t) = O(t) whe71

t--+-oo

The proof of Lenllnas 2.2 , 2.3 follows il11111eeli ately frolll DefinitiOll 2.1 , anel the

geollletric interpret.ati~nof height.

§3. p-ADIC NEVANLINNA-CARTAN THEOREM

Let 1 be a p-aelic holomorphic curve in the projective space IP n (Cp), l.e., a

hololuorphic nlap fronl et:;J to IP n (Cp ). We ielentify / with its representation by a

collection of holol11orphic functions on Cp:

f = (/1, fz, . .. 1 fn+I) ,

where the functions 11 have no COllUllon zeros. The curve f is said to be non-

degenerate if the iluage of / is not contailleel in auy linear subspace of IP n ( Cp ) of

dinlension less t.han n.

Definition 3.1. The height of the holol11orphic curve f is elefineel by:
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We also use the notation

h+(j, t) = -h(f, t).

Definition 3.2. C07tfltiug f7tuctiou. For every hololllorphic function 9 on Cp, the

following function is called the co7tnting j7tnctiou of 9

N(y, t) = L {v(a;) - t},
Clj

where the sunl is taken Oll an of zeros (Li of g(z) (counting multiplicity) with

v(a;) ~ t.

Notice that, for every t, the SUIU in Definition 3.2 is a finite sumo

Now we define the truucated c07Lutiug j'/Lflction which is due to Cartan.

Definition 3.3. For every positive entire uUluber k denote by Nk(y, t) the sum

in Definition 3.2, where every zero (l,i is counted with l1lUltiplicity if its lllUltiplicity

less that k, alld k tilues otherwise. We call Nk(y, t) the k-truncated co'ltnting

junctiofl oj g.

We have the following obvious lenuua..

Lemlua 3.4. For every k ~ 1

Now let H1 , H2, ... ,H(/ are q hyperplanes in IF U ( Cp ) in gen eral ]JOsition. This

meaus that these hyperplanes a.re linearly independent if q ~ 11, and any n + 1 of

these hyperplanes are linearly independent if q 2: 11 + 1.

Suppose that Pi = 0 are the equations defining the hyperplanes Hi. Then we

set:

h(f 0 H i , t) = h(Fi 0 f, t),
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The following theorenl is a p-adic analogue of the Nevunlinna-Cartan theorell1

([CD·

Theorenl 3.5. Let H 1 , H 2 , .•. ,Hq be q hYIJe1jJlanes in general position, and let

f be a 11on-deg enerate Iwlo1no1jJhic curve in IP 71 ( Cp) . Then 'llJe hav e

IJ

'" n(n + 1)(q - n - 1)h+(j, t) :S ~ N u (! 0 Hj, t) + 2 t + 0(1),
j=l

where 0(1) is boundcd when t -7 -00

The ideas of the proof of Theorell1 3.5 are siInilar to ones in the complex case

([CD, where instead of the Nevanlinna-Cartal1 characteristic function we use the

height function. However, there are sonle facts valid only in the p-adic case (for

exaruple, Lenuuft 3.8). So, it is necessal'Y to give here a detail proof.

We first prove the following

Lemnla 3.6. Let Gi(Z) = Fi o/(z), i = 1,2, ... q. Then /or every Z E Cp there

are at 1nost n /unctions Gi such that Gi(z) = 0

Proof. Assullle that there are z E lC;J and 71.+ 1 functions GOi' i = 1,2, ... ,n+ 1

such that Ger; (z) = O. Then frolll the system of eqnations

u+1

C;n,(z) = L nji fj(z), 'l = 1, ... ,11 + 1
j=l

and the hypothesis of general position it follows that fj(z) = 0 for every j =

1, ... , 11 + 1. This is a contracliction, since the functions fj have no comnl011 zeros.

Now let ßI, ß2, ... ,ßq - n -I be (q - 11 - 1) distil1ct nUlllbers fronl the numbers

{I, 2, ... ,q}. We set

(j



where (ßl, ... 1 ßIJ-n-l) is taken by all possible choices. Then G define a

hololll0rphic curve of rk(C) k = Cq -
n

-
1 since by Leuuua 3.6 the functions]I , q ,

Gr. Gp have no COllU110n zeros."lI' . . ,/- .. -1

Lenllna 3.7. We Iw,ve

h(G, t) ::; (q - Tl - 1)11.(/, t) + 0(1),

where O( 1) dues nut dc])end un t

Proof. By definition we have

q-n-l

2::= h(Gßi,t).
j=l

Now let for a fixed t the followillg inequality holds

We then obtain

h(G, t) = h(Gß1 , t) + h(Gß2l t) + ... + h(Gßq_n_l l t).

On the other hand, since the hypothesis of general position, we cau represellt fi

1l

fi = 2::= aij Gß'/-i .
j=O

From this it follows that.

h(/i,t) 2:: nl~ll h(Gß _",t) + 0(1)
O~]~n q )

Then we have

j = 1,2, ... ,q- n - 1.
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Thus,

h(I, t) = luin h(Ii, t) ~ h(C;ßj , t) + 0 (1), j = 1,2, ... ,q -n - 1.

The LelTInla then is proved by sUlllarizing (q - TI, - 1) inequalities.

By using Lenuua 3.7, to prove Theorelu 3.5 it reillains to estiIllate h(G, t).

Now for (11 + 1) functions <PI, <P2, ... , <P n+1 we denote by 1I<PI, <!-2, . " , <p n+111

their Wronskian.

Let be clistinct. nUlubers frolll {1,2,.",'l} anel

1 1 1

C;~i GI G~

et7 ~ ~G U2 °n+l

(ß1, ß2, ... ,ßq-U-l) be the rest ones. As it is luentioned above, the functions

{fd can be repl'esented as linear cOlllbinations of Gel'}' ... 1 Gan+1 • Then we have

where c(0'1, ... , 0'n+ 1) are constants depending only on (al," . , O'n+d. Für SilU-

plicity we denote

IIGaI ••• Gan +1 11
A(al,'" ,au +l) = -----.....:....­

Ga1 ••• GOn+1

G(n)
-2.L
°"1

Frolu this it iluplies that

Gßl ... Gß'I_n_l-----------'------ =
c( 0:1, ... ,O'u+1 )A(al, ... ,O' n +1)

GOI' •• GOn +1 Gßt ... Gßq_n_l

C( 0::1, , G:n+l )A(0:'1, ... , a n +l)

GI Gf}

1111 ". In+dl

This means that we can dennte by R.( z) the following function

(1) R,(z) = Gß-1 ... Gß,,-n-l

c(0'1, ... , D: n +1 )A(0'1, ... 1 o' n +1) ,
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which does not depend on choices of (0'], ... ,O'u+1), (ß1, ... ,ßq-u-1). We then

obtain

Thus, to esti1nate the height of C (z ), it suffices to es tilnate the heights of R( z )

aud A(O'l, . .. ,O'u+1)'

We first cOllsider the function A. We have:

C(kd C(kn+d
1(A ) . 1 ( TO l 0 11 +1 )
~ ,t = Inln 1. -GI ... G ' t

(Ol, ... ,On+l) TO} 0n+1

where the lnilliulllln is takell by all pennutatiolls of lltllnbers

{O, 1, ... ,n}. On the other hand, we have:

.1.:;-1 G(k i )

= L h( GOi ,t).
j=O 0;

Froln Lelnlna 2.2 it iInplies that

Then we have
11+ 1 c( k;)

h(A, t) = . nün {L h( CO; ,t)} 2::
(OI, ... ,On+l) . Ta·

1=1 I

u+1 n(n + 1
lnill 2:(-kit) + 0(1) = - )t +0(1).

(O'l'''',O'n+d . 2
1=1

Now we consider the h(R, t). Vve first prove the following



Le111nla 3.8. For etJ ery 'wlo rnor]Jhic fun ction 4>( z) on Cp we hav e

-h(cj;, t) = N(cj;, t) + 0(1),

where 0(1) de]1cuds on 4>, but not on t

Proof. Ta prove Lenllna 3.8 we use the geolnetric interpretation of heights.

Notice that far every t, there are only finitely Inany critical points of the function

4>(z) with v(z) ~ t. Let t o > t 1 > ... > tm ~ t be all these critical points.

By definition of critical points, the height 11.(1),..'>) is a linear function of s in

every segnlent [tj+l, t;}. Denote by n; anel 11.; thc slopes of h(ep, t) at tj + 0 aud

tj - 0, respectively. Then we have

We can see that ep(z) "# 0 when v(z) > t a , and ep(z) has 11; zeros (counted with

multiplicity) with v( z) 2:: t o , (n; - 11;_1) zeros with v( z) = tj, i = 1,2, ... , r71.

Then the SUITI in the right hanel side is exactely N (4>, t). Lenllua 3.8 is proved.

Now we can return to the proof of Theoreul 3.5. By Lemlua 3.8 we have

h(R., t) = -N(R., t) + 0(1).

For every z the func tion R.(z) can be represented in the fOrIn (1) where Gß; ( z) "# 0,

i = 1,2, ... ,q - 'n - 1 (by Lenulla 3.6). Thus, the zeros of Rare just only the poles
G,(k;)

of A(al, ... ,ün+l), i.e., the poles of~. From the definitions of the truncated
Ga;

counting function and the function A it follows that

q q

N(R., t) :s; L Nn(Gi, t) = L Nn(f 0 Fj , t).
i=1 i=l
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Finally, we have

h(G, t) = luin {h(Gßl ... Gßrj-n-l' t)}
(ßl ' .. "#'1- .. -1)

= h(R., t) + luin {h(c(O'l, ... , O'n+dA(O'I,.'. ,00u+I), t) ~
(0'1, ... ,0'11+1)

_ Jol(R ) _ n(n + 1) O()
~ ., t 2 t + 1.

Thus,

n(n + 1)
('1 - 11. - 1)11.(/, t) ~ -N(R., t) - 2 t + 0(1).

This lneans that

n(n + 1)
(q - 11. - 1)11+(/, t) :::; N(R., t) + 2 t +0(1)

fJ
~ n(n.+l)

:::; L Nn(.f 0 Pi. t ) + 2 t + 0(1).
i=I

Theorenl 3.5 is proved.

'11('11. + 1) . . .
Reillark 3.9. The"error tenn" 2 t In Thcorenl 3.5 l~ lnore prCClse than

oue in the cOluplex ease, since in the p-adic case, the "theorelll on logarithlnic

derivative" (Leuuua 2.3) is very silllple.

Now we apply Theorelll 3.5 for giving a "defeet relation" .

We neecl S0l11e notation. Let H he a hyperplane of IP U (CrJ) such that the image

of f is not. contained in H. We say that / HI7nifies at least d (d > 0) ot/er H if for

all z E f -1 H the degree of the pull-hack divisor f *H, clegz f· H ~ d. This means

that if H is defined by the equation F = 0, then every zero of the funetion F 0 f

has lnultiplicity at least d. In the ease j-I H = (/) we set cl = 00.
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Theoren13.10. (De/cct rcla,tiun). AS8'/L11~e / is liucarly non-dcgcnc1utc (lnd ram,-

ificll at lcast clj over Hj, j = 1,2, ... , q. Thcn

fJ

""(I-~):::;n+l.
L d'
j=l )

Morcovcr, i/ / is a Hltio71fll curvc 0/ deyree e (oll /i (z),

]wlyno7nials 0f dcgree ej and lllin ej = e), th e11

I:
fJ

( n ) n(n + 1)
1-- <n+l- .

I - ?,r,)' ... e
)=1

1, ... ,11. + 1 are

Proof. Notice that. fronl the geollletric interpretation of height. it follows that

if 17,+(/, t) is bounded when t -+ -00, then / is a constant nla.p. Thus, by the hy-

pothesis of non-degeneracy, 11.+(/, t) is unbounded when t -+ -00. Fronl Theorelll

3.5 we obtain:

(2) ~{ Nn(/oFi,t)} ( ) '12(11+1) t 0(1)
~ 1- h+(/,t) :::; 11+1 + 2 °h+(f,t)+h+(f,t)"

On the other hanel, fnHll Lenuna. 3.4 we have

(3)

> 1 _ n!'l] (/0 F i , t) + _0_(_1)_
- N(f 0 Fi , t) h+(!, t)

By the hypothesis, N(f 0 Fi , t) 2: rljNdf 0 Fi , t). Theorelll 3.10 is provecl by

using (2), (3), allel the reluark t.hat if f is a. rat.ional curve of elegrec e, then

11,+(/, t) = -e.t +0(1) when t -+ -00.
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§4. p-ADIC HYPEftBOLIC HYPERSURFACES

In this section by using Theorelll 3.5 we give a p-adic version of Borel's Lemma,

~uld use it to construct sonle exaluples of p-adic hyperbolic hyperslllfaces.

We follow the ideas of Masuda and Noguchi [MN}, where istead of the Nevanlinlla-I

Cartan theorelll we use Theorerll 3.5.

Let (ZI, .. . ,zn+d be a hOlllogeneuos cordinate system of IPn(lI:;I)' Let Mj =

z~j·l •.• Z~~i+l 1:::; j :::; $ be Illononüals of degree 1 with non-negative integral

exponents 0: j v E Z. Let X be a hypersnrface of degree cll of Ir n (Cp ) defined by

(4)

where Cj E C;' are non-zero constants.

Theorenl 4.1. (p.(Ldic Borel's Lem.rna). Let I = (11,' .. ,fn+1) : Cp -r X be a

nou-constant }wlornvr],hic C1/.7'Ve snch that (Luy Ij =t O. Ass'/Lrne that

I ~ s(s -2).

Then there is a decvr/L]1vsition 0/ indices, {I, 2, ... , s} = uIv, .'HLCh thai:

i) every I v canto,ins (Li lewd 2 indices.

ii) the nLiio v/1vff 0 j(z) aud Ml~ o/(z) is constant for j, k E Iv.

iii) L Cj Mf 0 f (z) == 0 for (LU 1/

jE!",

Proof. We use the induction on the luunher 8 of the lllolloluials. The case of

s = 2 is trivial. Asslllue that the stateluellt for the llllluber less 01' equal to s - 1

holds.

13



We first clainl that. lvIf 0 f, 1 ~ j ~ .5 - 1 , are lincarly dependent over Cp.

Asululle t.hat lvIf 0 f, 1::; j ::; .5 - 1 are linearly independent. We define a

holoillorphic curve 9 in IPs- 2(Cp ) by

Take the followillg hyperplanes in general position

H I = {z = O}, ... , H~_I = {Z,~_I = O},

Then by Theorenl 3.5 we have

~ n(n + 1)
(.5 - (oS - 2) - 1)h+ (9, t) ::; L.J lV8 - 2 ([loBj , t) + 2 t + 0 (1).

j=1

On the other hand, wc have

/\'8-2(9 0 Bj, t) ::; (8 - 2)N1 (Mj 0 /, t) = (s - 2)N1 (Mj 0 f, t)

Hence, by Lellllllu (3.8) we obtain

Thus we have

(5)

Fronl definitions of 9, Bj alld the equation defining X we can see that the

inequali ty (5) holds also for j = .5. Th118 we have

14



By the hypothesis of d 2: s(s - 2) we have a contradiction as t -+ -00.

Thus there is a non-trivial linerlJ: relation

(6)

Ignoring the tenns with cj = 0 in (6), we apply the induction hypothesis to (6).

Here it is deal' that thc asslunptiol1 which thc induction hypothesis requires is

fulfilled. ThllS one rcdllces the l111lnber s in (4) to s - 1 01' less. Applying the

induction hypothesis to the l'educed equatioll again, we obtain our assertion.

As in the COlllplex case, fronl Borei's Leinina (Theorein 4.1) we can derive Inany

results on p-adic hyperbolicity. Let U8 Illention here S0111e of theill.

We recall that the FeruHlt 1JOricty X in pfl(lC1,) of degl'ee cl is defined by the

equation:

tl + + tl 0zl . . . zu+l = .

The following theOl'eill is a l'-ndic version of Green's theorenl ([G], [L3]).

Theorenl 4.2. Let I = (11, . .. ,/u+l) : ~J ~ X be a hvlo1nvr]Jhic c'lLrve such

that (L11Y Ij =/= O. Definf~ (l11 eq'/J,iv(Llence 'l ~ I if fi/ fj i~ consto,nt. 1/ d 2: 11,2 - 1

thell fU1' each eq71.ivlLlence dass I we have

Theorenl 4.2 is a. corollary of Theorenl 4.1 with .5 = n + 1. Notice that, in the

complex case, the hypothesis is d 2: n 2
•

When n. = 2 we obta.in the followillg cOl'ollary of Theorenl 4.2.
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Corollary 4.3. Let f, 9, h, I)(~ ]J-udic IwlornofJ)hic f'ILllctiOll."i on Cp , und let for

sonte d ~ 3 'we huve

f tl + tl = hll
9 ' .

Thell the !1Lllctiolls /, g, h a.re different elLch !ro1T~ other only by a multi]Jlicative

COllstant.

A siInilar statelnent for polynonlinls iS Cl. corollary of Mason's thoreln ([M], [L4]).

To give the exaluples of p-adic hyperbolic hypersllrfaces let us make the follow-

ing relnark. R.. Brody and M. Green ([BG]) first constructed a sn100th hyperbolic

hypersurface of JFD3 (C) of even degree 2: 50. K. Masuda anel .J. Noguchi proved the

existellce of hyperbolic hypersurfaces of large elegree of PU(C) for allY n ([MN]).

Both in [BG] anel [NM] the lllain tool are Borel's Lenuua anel purely linear al-

gebraic argulllents. These algebraic argtunents can apply without changes to the

p-aelic case. Then by using TheoreIllS 3.5, 4.1 anel Masuela-Noguchi's algebraic

Lellllllas, as weIl a$ the COlllputation of Noguchi and Masuda-Noguchi, we can

give the following exalnples of p-adic hyperbolic hypersurfaccs. Notice that, the

difference of the p-aclic ancl cOlllplex cases is in elegrce of hyperstufaces (it follows

fron1 the clifference of the hypothesis on the elegree d in Theorelll 4.1 anel in Borel 's

Lenunas in cOluplex case.

In P3 (1C]I)' we havc p-aelic hYPcl'bolic hYPcl'surfaces X givcll by the following

equatiollS:

Exa.1Tl,l,le 1 (Brody-Greell).

tl + + d + ( )d/2 + ( )d/2 0Z I . . . Z 4 Z 1 Z'2 Z 1 Z;l =,

EXGUl,l,le 2 (.1. Noguchi).

d even, d ~ 48.

3 I1 + + 3 I1 + t ( )d 0 I > 7 ( 1 X 3 1> 21) t tf"*zl . . . z4 ZI Z2 Z :1 = 1 (, _ ,( eg = (_ 1 E "V/I'

Hi



Exa111ple :1 (.J. Noguchi ).

Exam]Jle 4 (K. Masuda and J. Noguchi).

le Masuda anel .J. Noguchi give several exaluples also for n, = 4,5. We can

copy their exalnples to the p-adic case (with suitable change of the elegree), say,

for n = 5, we have the following ]J-adic hypcrsurfnce:

Exa71l-Jlle 4 (I<' Masuda and .J. Noguchi).

+t (-2 ;t ) d / 5 + t ( 2.,.. ~t ) /L /5 + t ( 2 :l)d /5
G '" 1 Z:l 7 z2 ~ <1 8 Z:l z5

t j E c;, cl = 5e 2: 1120.
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