AN EISENSTEIN IDEAL FOR IMAGINARY QUADRATIC
FIELDS AND THE BLOCH-KATO CONJECTURE FOR HECKE
CHARACTERS

TOBIAS BERGER

ABSTRACT. For certain algebraic Hecke characters x of an imaginary quadratic
field F' we define an Eisenstein ideal in a p-adic Hecke algebra acting on cuspi-
dal automorphic forms of GL2/F. By finding congruences between Eisenstein
cohomology classes (in the sense of G. Harder) and cuspforms we prove a lower
bound for the index of the Eisenstein ideal in the Hecke algebra in terms of the
special L-value L(0, x). We further prove that its index is bounded from above
by the p-valuation of the order of the Selmer group of the p-adic Galois char-
acter associated to x ~!'. This uses the work of R. Taylor et al. on attaching
Galois representations to cuspforms of GL2/F. Together these results imply
a lower bound for the size of the Selmer group in terms of L(0, x), coinciding
with the value given by the Bloch-Kato conjecture.

1. INTRODUCTION

The aim of this work is to demonstrate the use of Eisenstein cohomology, as
developed by Harder, in constructing elements of Selmer groups for Hecke char-
acters of an imaginary quadratic field F. The strategy to first find congruences
between Eisenstein series and cuspforms and then use the Galois representations
attached to the cuspforms to prove lower bounds on the size of Selmer groups goes
back to Ribet [Rib76], and has been applied and generalized in [Wil90], [HP92],
[SU02], [BCO4] amongst others. What is different in our situation is that the sym-
metric space associated to GLy/F is not hermitian and that we therefore use for
the congruences the integral structure coming from cohomology and the theory of
Eisenstein cohomology classes.

We give a brief outline of the contents of the paper: Let p be a prime unramified
in the extension F/Q and let p be a prime of F dividing (p). Fix embeddings
F — F, — C. Let ¢1,¢2 : F*\A} — C* be two Hecke characters of infinity type
z and 271, respectively. Let R be the ring of integers in a sufficiently large finite
extension of Fj,.

We start with the second step of the strategy sketched above. In §3 we recall
proven and expected properties of the Galois representations attached to cuspforms
of GLy/F by the work of R. Taylor et al. Let T be the R-algebra generated by
Hecke operators acting on cuspidal automorphic forms of GLy/F'. For ¢ = (41, ¢2)
we define in §4 an Eisenstein ideal I4 in T. Following previous work of Wiles and
Urban we construct elements in the Selmer group of xype, where x, is the p-adic
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Galois characters associated to x := ¢1/¢2, and obtain a lower bound on its size
in terms of that of the congruence module T/Is. A complication that arises in
the application of Taylor’s theorem is that we need to work with cuspforms with
cyclotomic central character. This is achieved by a twisting argument (see, in
particular, Lemma 8).

From Section 5 on we impose some additional conditions on the prime p involving
the class number and discriminant of F'; we refer to the beginning of that section
for the exact statement. To prove the lower bound on the congruence module in
terms of the special L-value (the first step described above), we use the Eisenstein
cohomology class Eis(¢) constructed in [Ber0O6a] in the cohomology of a symmetric
space S associated to GLy/F. The class is an eigenvector for the Hecke operators
at almost all places with eigenvalues corresponding to the generators of Iy, and
its restriction to the boundary of the Borel-Serre compactification of S' is integral.
The main result of [Ber0O6a], which we recall in §5, is that the denominator ¢
of Eis(¢) € H'(S,Fy) is bounded from below by L*2(0,y) € R. We prove in
Theorem 11 the existence of a cuspidal cohomology class congruent to ¢ - Eis(¢)
modulo the L-value supposing that there exists an integral cohomology class with
the same restriction to the boundary as Eis(¢). In §6 we prove that this hypothesis
is satisfied for unramified x. We achieve this by a careful analysis of the restriction
map to the boundary 9S of the Borel-Serre compactification. Starting with a
group cohomological result for SLy(O) due to Serre [Ser70] (which we extend to all
maximal arithmetic subgroups of SLy(F)) we define an involution on H'(9S,R)
such that the restriction map

HY(S,R) = H'(8S,R)",
surjects onto the —1-eigenspace. We apply the resulting criterion to res(Eis(¢)) to
deduce the existence of a lift to H(S,R).

Combining the two steps we obtain in §7 a lower bound for the size of the
Selmer group of x,e in terms of L¥8(0,x) (unconditional for split p and unramified
x)- To conclude, we relate this result to the Bloch-Kato conjecture. This conjecture
has been proven in our case (at least for class number 1) starting from the Main
Conjecture of Iwasawa theory for imaginary quadratic fields (see [Han97], [Guo93]).
However, the method presented here, constructing elements in Selmer groups using
cohomological congruences, is very different. Our hope is that it generalizes to
higher rank groups.

These results generalize part of my thesis [Ber05] with Chris Skinner at the
University of Michigan. The author would like to thank Trevor Arnold, Kris Klosin,
Chris Skinner, and Eric Urban for helpful discussions.

2. NOTATION AND DEFINITIONS

2.1. General notation. Let F//Q be an imaginary quadratic extension and dp
its absolute discriminant. Denote the classgroup by CI(F) and the ray class group
modulo a fractional ideal m by Cly, (F). For a place v of F let F, be the completion
of F at v. We write O for the ring of integers of F';, O, for the closure of O in F,,
P, for the maximal ideal of O, 7, for a uniformizer of F,, and O for IL fnite Ov-
We use the notations A, Ay and A, Ap s for the adeles and finite adeles of Q and
F', respectively, and write A* and A% for the group of ideles. Let p be a prime of
Z that does not ramify in F, and let p C O be a prime dividing (p).
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Denote by G the absolute Galois group of F. For X a finite set of places of
F let Gy be the Galois group of the maximal extension of F unramified at all
places not in ¥. We fix an embedding F — F, for each place v of F. Denote the
corresponding decomposition and inertia groups by G, and I,, respectively. Let
gv = G, /I, be the Galois group of the maximal unramified extension of F,. For
each finite place v we also fix an embedding F', — C that is compatible with the
fixed embeddings i, : F < F, and iy : F — C(= F.). For a discrete Gp-
module (resp. G,-module) M write H'(F, M) for the Galois cohomology group
HYGp,M), and H*(F,, M) for H(G,, M).

2.2. Hecke characters. A Hecke character of F' is a continuous group homomor-
phism X : F*\ A% — C*. Such a character corresponds uniquely to a character on
ideals prime to the conductor, which we also denote by A. Define the character A°
by A\¢(x) = A(T).

Lemma 1 (Lemma 3.1 of [Ber05]). If A is an unramified Hecke character then
A=\ O

For Hecke characters A of type (Ap), i.e., with infinity type Aoo(z) = 2™Z" with
m,n € Z we define (following Weil) a p-adic Galois character

AP:GFHF;

associated to A by the following rule: For a finite place v not dividing p or the
conductor of A, put Ay (Frob,) = iy(iz)(A(my))) where Frob, is the arithmetic
Frobenius at v. It takes values in the integer ring of a finite extension of Fj.

Let € : Gp — Z,, be the p-adic cyclotomic character defined by the action of G
on the p-power roots of unity: ¢.& = &9 for ¢ with & = 1 for some m. Our
convention is that the Hodge-Tate weight of € at p is 1.

Write L(0, M) for the Hecke L-function of A. Let A a Hecke character of infinity
type 2% (%)b with conductor prime to p. Assume a,b € Z and a > 0 and b > 0. Put

2
Vdp

In most cases, this normalization is integral, i.e., lies in the integer ring of a finite
extension of F,. See [Ber06a] Theorem 3 for the exact statement.

b
L8(0,\) :== Q“2b< ) T(a+b) - L(0, \).

2.3. Selmer groups. Let p : Gp — R* be a continuous Galois character taking
values in the ring of integers R of a finite extension L of F,. Write mg for its
maximal ideal and put RY = L/R. Let R,, L,, and R, be the free rank one
modules on which G acts via p.

Following Bloch and Kato et al. we define the following Selmer groups: Let

ker(H'(F,,L,) — H'(1,, L,)) for v { p,

HYF, L)) =
I 0) {ker(Hl(Fv,Lp) — HY(Fy, Bayis @ L)) for v | p,

where B,,is denotes Fontaine’s ring of p-adic periods. Put H}c (Fy, RIV)) = im(H} (Fy,L,) —
H'(F,,R})). For a finite set of places ¥ of F' define
HY(F,,RY)
pH _ 1 \Y vy Trp
Sel”(F, p) = ker (H (PR =[] TERY |
vgES ! P
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We write Sel(F, p) for Sel’(F, p).
If p splits in F//Q and p = A, for a Hecke character A of infinity type 297" with
a,b € Z (“ordinary case”) we define

L L, ifa<0 (ie, HT-wt of p > 0),
PP 1{0}  ifa >0 (ie., HT-wt of p < 0)

and
R, = L, ?f b <0,
P {0} ifb>0.

In the ordinary case we have H}(FU,LP) = HY(F,,F,L,) for v | p (see [Guo96]
p.361, [Fla90] Lemma 2).

Lemma 2. Let p be unramified at vt p. If p(Frob,) # e(Frob,) mod p then
Sel(F, p) = Sel®\"}(F, p).
Proof. By definition Sel® "} (F, p) c Sel*(F, p) for any v. For places v as in the

lemma we have
H}(FU,RX) = ker(Hl(Fv,RZ) — Hl(Iv,Rg)gv).

It is clear that H'(I,,RY)% = Homg, (&, RY) = Hom,, (1™, RY[m%]) for
some n. By our assumption therefore H'(I,, R))% = 0 since Frob, acts on I}*™°
by e(Frob,). O

2.4. Cuspidal automorphic representations. We refer to [Urb95] §3.1 for def-
initions. We will be using the following notation: For K; = [[ K, C G(Ay) a
compact open subgroup denote by S2(Ky,C) the space of cuspidal automorphic
forms of GLo(F') of weight 2, right-invariant under K. For w a finite order Hecke
character write So(Ky,w, C) for the forms with central character w. This is isomor-
phic as a G(Af)-module to @Wfff for automorphic representations 7 of a certain
infinity type (see Theorem 3 below) with central character w. For g € G(Ay) we
have the Hecke action of [K;gKy] on Sa(Ky,C) and S2(Kf,w,C). For places v
with K, = GLy(0,) we define T, = [K; (“6 (1)) K.
2.5. Cohomology of symmetric space. Let G = Resp/qGLa, Koo = U(2)-C* C
G(R). For an open compact subgroup Ky C G(Ay) we define the adelic symmetric
space

Sk; = GQ\G(A)/ Koo K.
Note that Sk, has several connected components. In fact, strong approximation
implies that the fibers of the determinant map

Sk, —» mo(Ky) = Ap ;/det(Ky¢)F*
are connected. Any v € G(Ay) gives rise to an injection
Goo — G(A)

Joo — (90, 7)
and, after taking quotients, to a component I';\Go/ Koo — Sk, Where

I, = GQ)NEy .
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This component is the fiber over det(y). Choosing a system of representatives for
7o (K f) we therefore have

Sk, = 11 I, \Hs,
[det(v)]€mo(Ky)
where G /K has been identified with three-dimensional hyperbolic space Hz =
R>0 x C.

We denote the Borel-Serre compactification of Sk, by §Kf and write 8§Kf
for its boundary. The Borel-Serre compactification Sk ; is given by the union of
the compactifications of its connected components. For any arithmetic subgroup
I' € G(Q), the boundary of the Borel-Serre compactification of I'\Hj3, denoted by
O(I'\H3), is homotopy equivalent to

(1) IT Ts\Hs,

[nleP*(F)/T
where we identify P1(F) = B(Q)\G(Q), take n € G(Q), and put I'gn = I' N
T B(Q)n. , ,

For X C Sk, and R an O-algebra we denote by H'(X, R) (resp. H.(X,R))
the i-th (Betti) cohomology group (resp. with compact support), and the interior
cohomology, i.e., the image of H!(X, R) in H'(X, R), by H/ (X, R).

There is a Hecke action of double cosets [KgKy] for g € G(Ay) on these coho-

mology groups (see [Urb98] §1.4.4 for the definition). We put 75, = [Ky <78’ (1)) Ky]

and Sy, = [K; (75” f) Kyl.

The connection between cohomology and cuspidal automorphic forms is given by
the Eichler-Shimura-Harder isomorphism (in this special case see [Urb98] Theorem
1.5.1): For any compact open subgroup Ky C G(Ay) we have

(2) S2(Ky, C) = H{(Sk,,C)
and the isomorphism is Hecke-equivariant.
Recall from [Ber06a] Proposition 4 that for any O[+]-algebra R there is a natural
R-functorial isomorphism
(3) HY(T\H3,R) = HY(T', R),

where the group cohomology H!(T, R) is just given by Hom(T, R).

3. GALOIS REPRESENTATIONS ASSOCIATED TO CUSPFORMS FOR IMAGINARY
QUADRATIC FIELDS

Combining the work of Taylor, Harris, and Soudry with results of Friedberg-
Hoffstein and Laumon/Weissauer, one can show the following (see [BHR]):

Theorem 3. Given a cuspidal automorphic representation m of GLa(Ap) with T
isomorphic to the principal series representation corresponding to

(5 o) (i) ()

and cyclotomic central character w (i.e., w® = w), let ¥, denote the set of places
above p, the primes where © or 7€ is ramified, and primes ramified in F/Q.
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Then there exists a continuous Galois representation
Pt GF — GLQ(FP)

such that if v & X, then p, is unramified at v and the characteristic polynomial of
px(Froby) is 22 — ay(m)z +w(Py)Nmp/q(By), where a,(r) is the Hecke eigenvalue
corresponding to T,,. The image of the Galois representation lies in GLo(L) for a
finite extension L of F, and the representation is absolutely irreducible. O

Remark. (1) Taylor relates 7 to a low weight Siegel modular form via a theta
lift and uses the Galois representation attached to this form via pseudorep-
resentations and the Galois representations of cohomological Siegel modular
forms to find p.

(2) Taylor had some additional technical assumption in [Tay94] and only showed
the equality of Hecke and Frobenius polynomial outside a set of places of
zero density. For this strengthening of Taylor’s result see [BHR)].

Urban studied in [Urb98] the case of ordinary automorphic representations , and
together with results in [Urb05] on the Galois representations attached to ordinary
Siegel modular forms shows:

Theorem 4 (Corollaire 2 of [Urb05]). If w is unramified at p and ordinary at p,
i.e., lap(m)|p =1, then the Galois representation py is ordinary at p, i.e.,

o (Y1
p7r|GF: 0 \IJQ 9

where Walr, =1, and V1|1, = det(pr)|1, = €.
For p inert we will need a stronger statement:
Conjecture 5. If 7 is unramified at p then pr|a, is crystalline.

This conjecture extends Conjecture 3.2 in [CD06] and would follow if one could
prove the corresponding statement for low weight Siegel modular forms.

4. SELMER GROUP AND EISENSTEIN IDEAL

Let ¢1 and ¢ be two Hecke characters with infinity type z and 271, respectively.
Let R be the ring of integers in the finite extension L of F, containing the values
of the finite parts of ¢; and L*2(0, ¢ /¢2). Denote its maximal ideal by mz. Let
Y4 be the finite set of places dividing the conductors of the characters ¢; and their
complex conjugates and the places dividing pdp. Let Ky = [[, K, C G(Ay) be a
compact open subgroup such that K, = GLy(O,) if v ¢ .

Assume that there exists a finite order character 7 unramified outside ¥4 such

that (¢1621%)° = ¢1¢2n°.
Denote by T the R-algebra generated by the Hecke operators T, v ¢ 34 acting

on Sy (K¢, p1¢2,C). Call the ideal Iy C T generated by

{Ty — ¢1(Po)Nm(Po) — d2(Po)lv ¢ Xy}
the Fisenstein ideal associated to ¢ = (P1, ¢2).
We define Galois characters
p1 = P1pe,
P2 ¢2,pa
p p1®py
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Let X, be the set of places dividing p and those where p is ramified.

Theorem 6.
val, (#8el™ ™ (F, ) > val, (#(T/1,)).
Proof. We can assume that
T/I, # 0.

Let m C T be a maximal ideal containing I,. Taking the completion with respect
to m we write

SQ(Kf7 ¢1¢2) C)m = @ Vﬂ}jff’
=1

where V., denotes the representation space of the (finite part) of the cuspidal
automorphic representation .

By twisting the cuspforms by the finite order character 7 we can ensure that
their central character is cyclotomic. Hence we can apply Theorem 3 to associate
Galois representations pr, ey : Gz, — GL2(L;) for finite extensions L; /F} to each
m; @ n. Taking all of them together (and untwisting by 7) we obtain a continuous,
absolutely irreducible Galois representation

PT = @pm@) ®n Gy, — GLo(Twm @R L).
i=1

Here we use that T, ®% L = [[;—, L;, which follows from the strong multiplicity
one theorem. We have an embedding

Ty = ((av(m)),
where a,(7;) is the T,-eigenvalue of 7;. The coefficients of the characteristic poly-
nomial char(pr) therefore lie in Ty, and by the Chebotarev density theorem

char(pr) = char(p; & p2) mod I.

For any finite free Ty, ® L-module M any T-submodule £ C M, finite over
T, such that £L® L = M is called a Ty, -lattice.

Specializing to our situation Theorem 1 of [Urb01] (and using that the R-algebra
map surjects onto T, /1) we get:

Theorem 7 (Urban). Given a Galois representation pr as above there exists a
Gy, -stable Ty-lattice L C (T ® L)? such that Gy, acts on L/14L via

0— Ry @r (N/Iy) = L/TGL — Ry, ®r (Tm/Ig) — 0,

where N C Ty ® L is a Ty -lattice with val,(#Tw /1) < val,(#N/I4N) < oo and
no quotient of L is isomorphic to p; := p1 mod mp. O

See [Ber05] §7.3.2 for an alternative construction of such a lattice involving ar-
guments of Wiles ([Wil86] and [Wil90]).

Using the properties of the Galois representations attached to cuspforms we can
now conclude the proof of Theorem 6 by similar arguments as in [Ski04] and [Urb01].
For brevity put 7 := N/I,, and ¥ := X.
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Identifying R, = Homg (R,,, R,,) and writing s : R,, @ Ty /Iy — L @ Tw/I,
for the section as Ty, /I-modules we define a 1-cocycle ¢ : Gy — R, ® T by
c(g)(m) = the image of s(m) — g.s(g" .m)in R,, ® 7.
Consider the R-homomorphism
¢ : Homp (7T,RY) — Hl(Gg,R,\D/), ©(f) = the class of (1® f)oc.

We will show that
(i) im(p) C Sel™\ (F, p),
(ii) ker(y) =0.
From (i) it follows that
valy (#Sel™\** (F, p)) > val,(#im(y)).

From (ii) it follows that

val,(#im(p)) > val,(#Homg(7,R"Y))
= val,(#7)
> Valp(#Tm/I¢)'

For (i) we have to show that the conditions of the Selmer group at v | p are sat-
isfied: For split p it suffices to prove that the extension in Theorem 7 is split
when considered as an extension of Tp[Gp]-modules because then the class in
H'(Gy,R,®T) determined by c is the zero class. In this case the Hecke eigenvalues
ap(mi) = p- P1(p) + d2(p) Z 0 mod mp, hence the cuspforms m; @ n are ordinary
at p, so Theorem 4 applies and pr is ordinary. Observing that the Hodge-Tate
weights at p of p; and py are 0 and 1, respectively, the splitting of the extension
as T [Gyp]-modules follows from comparing the basis given by Theorem 7 with the
one coming from ordinarity.

For inert p we observe that by Conjecture 5 the p,, are all crystalline which
implies that the class determined by c is crystalline.

To prove (ii) we first observe that for any f € Homg(7,R"), ker(f) has finite
index in 7 since 7 is a finite R-module and so f € Homg (7, RY[m%]) for some
n. Suppose now that f € ker(p). We claim that the class of ¢ in H'(Gx, R, ®%r
T /ker(f)) is zero. To see this, let X = RY/im(f) and observe that there is an
exact sequence

H°Gx,R, ®r X) — H'(Gx,R, @r T /ker(f)) — H*(Gxs, R, @r RY).

Since f € ker(¢) and the second arrow in the sequence comes from the inclusion
T /ker(¢) — R induced by f, the image in the right module of the class of ¢ in
the middle is zero. Our claim follows therefore if the module on the left is trivial.
But the dual of this module is a subquotient of Homg (R,,R) on which Gy acts
trivially. By assumption, however, R, is a rank one module on which Gy acts
non-trivially.

Suppose in addition that f is non-trivial, i.e., ker(f) € 7. Note that any R-
submodule of 7 is actually a Ty-submodule since R — Ty, /I4. Hence there exists
a Ty-module A with ker(f) C A C 7 such that 7/A = R/mg. From our claim it
follows that the Ty [Gx]-extension

0— R, QR R/mg = Ry Or T/A— E/(Rpl QrA) — L/L1 —0
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is split. But this would give a Tw[Gx]-quotient of £ isomorphic to p;, which
contradicts one of the properties of the lattice constructed by Urban. Hence ker(¢)
is trivial. (]

Under conditions which will be satisfied in our later application the following
Lemma will provide us with the finite order character 1 used in the twisting above.

Lemma 8. If x = ¢1/d2 satisfies x¢ =X then there exists a finite order character
n unramified outside X, such that (¢192m*)¢ = ¢1¢p2n>.

Proof. We claim that there exists a Hecke character  unramified outside ¥4 such
that

X = Wpc.
Given such a character u we then define n = (ugp2)~!.

In the Lemma on p.81 of [Gre83] Greenberg defines a Hecke character pg :
F*\A% — C* of infinity type 27! such that pé = fig and ue is ramified exactly
at the primes ramified in F/Q. It therefore suffices to prove the claim for the finite
order character

. 2 —C
X = xpg = xpa(Bg)-
By assumption we have that
X' =1on Nmp/q(Ar) C AG C A%,

Thus '’ restricted to Q*\A*Q is either the quadratic character of F'/Q or trivial.
Since our finite order character has trivial infinite component, x’ has to be trivial on
Q*\Ajg. Hilbert’s Theorem 90 then implies that there exists u such that x" = pu/p°.

To control the ramification we analyze this last step closer: x’ factors through
A% — A, where A is the subset of A}, of elements of the form z/2¢ and the map is
x— x/x¢. I y € AN F* then y has trivial norm and so by Hilbert’s Theorem 90,
y = x/x¢ for some x € F*. Thus the induced character A — C* vanishes on ANF™*.
This implies that there is a continuous finite order character p : F*\A} — C*
which restricts to this character on A and x’ = p/u® (this argument is taken from
the proof of Lemma 1 in [Tay94]).

By the following argument we can further conclude that the induced character
vanishes on AN, 4y, O and therefore find pnon F*\AL/C* ], ¢y, O; restricting
to the character A — C*: Writing U = va O for a prime ¢ in Q we have

HY(Gal(F/Q), T[] 03 = ] H'(Gal(F/Q), Ur.),
v¢2¢ Z¢E¢
where “¢ ¢ ¥,” denotes those £ € Z such that v | £ = v ¢ 4. For the isomorphism
we use that
vE Xy =7V E My.
In fact, all these groups are trivial since all £ ¢ 3, are unramified in F/Q and so
HY(Gal(F/Q),Ury) 2 H'(G,,0}) = 1.

Ify € AN]],¢x, O) then y has trivial norm in [[,4y, O7. But as shown, its first
Galois cohomology group is trivial so there exists z € Hv¢2¢ O; N A% such that

y = x/x°. Since x’ is unramified outside ¥, the image of y under the induced
character therefore equals x’(z) = 1, as claimed above. ]
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5. BOUNDING THE EISENSTEIN IDEAL

From now on we impose the following assumptions on the prime p: Let p > 3
be a prime of Z that does not ramify in F' and does not divide #CI(F'). Assume
in addition that £ £ £1 mod p for £ | dp.

Recall the definitions and notations introduced in Section 2.5. Following Harder
we constructed in [Ber06a] Eisenstein cohomology classes in the Betti cohomology
group H'(Sk,, C). Given a pair of Hecke characters ¢ = (¢1, ¢2) with ¢1 o (2) = 2
and ¢2,00(2z) = 27! these depend on a choice of a function Wy, in the induced
representation

V/e = {0 G(Ag) — CU(bg) = 67(b)W(g)b € B(A), W(gh) = W(g)¥h € K}.

Refering to notation in [Ber06a] we choose Ky = K]‘? and ¥y, = \I/g. We recall the
definition of the compact open K: Denote by S the finite set of places where both
¢; are ramified, but ¢1/¢9 is unramified. Write 9; for the conductor of ¢;. For an
ideal 91 in O and a finite place v of F' put 9, = NO,. We define

Kl(‘ﬁv):{<i 2>EGL2(OU),CL—1,CEO mod‘ﬁv},

and
U'M,) = {k € GL2(0,) : det(k) =1 mod M, }.
Now put
Kp= ] U" ) [T K ((009012),).
veS vgS

The exact definition of Wy, will not be required in the following; we refer the
interested reader to [Ber0O6a]. For brevity we write Eis(¢) for the cohomology class
denoted by [Eis(\ll?¢17¢2)f)] in [Ber06a].

Let R again denote the ring of integers in the finite extension L of F}, obtained
by adjoining the values of the finite part of both ¢; and L*2(0, ¢1/¢2). We write

HY(X,R) := H' (X, R)tree = im(H (X, R) — H'(X, L))
for X = Sk, or dSk,. Also put
H!(Sk,,R) = H'(Sk,,L)N H'(Sk,,R).
We recall the following properties of Eis(¢) proven in [Ber(O6a:
(E1) Eis(¢) € H'(Sk;,, L) ([Ber06a] Proposition 13)
(E2) If ¢1/¢2 = (¢1/¢2)° and the conductors of the ¢; are coprime to (p) then the
image of Eis(¢) under res : H*(Sk,,C) — H*(0Sk,,C) lies in H'(9Sk,,R)

([Ber06a] Proposition 16).
(E3) For all places v outside the conductors of the ¢; the class Eis(¢) is an eigen-

vector for the Hecke operator T, = Ky (ﬂ(-)v (1) K| with eigenvalue
$2(Po) + Nm(Bo )1 (Bo)

([Ber06a] Lemma 9).
(E4) The central character of Eis(¢) is given by ¢1¢2, i.e., the Hecke operators
Ty

Sx, = Ky ( 0 73) K] act on it by multiplication by (¢162)(Bw).
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Property (E1) allows us to define the denominator (ideal) of Eis(¢), given by
S(Eis(¢)) := {a € R : a - Eis(¢) € H'(Sk,,R)}.

Under certain conditions we prove in [BerO6a] that 6(Eis(¢)) C (L¥8(0,¢1/d2)),
i.e., that the denominator is bounded from below by the special L-value.

Suppose now that we are given a Hecke character x of infinity type 22 such that
Xx¢ = X. Assume that the conductor 9t of y is coprime to (p). We would like to
find a pair of characters ¢ = (¢1, ¢2) with x = ¢1/p2 such that
(¢1) the conductor My of ¢; is coprime to (p)IM, and pt #(O/M1)*,

(¢2) dp | #O/9; and

v| MM = v="0and #0,/P, Z+1 mod p,

and such that the class Eis(¢) satisfies
(E5) 6(Eis(¢)) S (L*#(0, x))-

Remark. In Section 7 property (¢2) will allow us to apply Lemma 2 to prove a
lower bound for the Selmer group Sel’(F, Xp€) starting from Theorem 6.

Write wg/q for the quadratic Hecke character associated to the extension F/Q
and 7(x) for the Gauss sum of the unitary character Y := x/|x|. From the proof of
Theorem 29(ii) of [Ber06a] we deduce:

Theorem 9 ([Ber06a] Theorem 29). Assume that no ramified primes (or 2 if
F = Q(v/-3)) divide M and no inert primes congruent to —1 mod p divide M
with multiplicity one, and that

T(X)
M ———==1
WF/Q( ) Nm(i)ﬁ)
Then there exists a character ¢ = (¢1,¢p2) satisfying (p1) and ($2) such that (E5)
holds for Eis(¢).

We lastly need the following assumption:
(H) Assume that there exists ¢ € H(Sk,, R) with

res(c) = res(Eis(¢)) € H'(9Sk,,R).

This hypothesis is satisfied, for example, if H2(Sk,, R) has no torsion. By Lefschetz
duality (see [Gre67] (28.18) or [Mau80] Theorem 5.4.13)

HCQ(SKf,R) = HI(SKfaR)7

so the occurrence of torsion reduces to the problem of torsion in I'*P for arith-
metic subgroups I' € G(Q). This has been studied in [EGMS82], [SV83], and
[GS93] (see also [EGMI8] §7.5). An arithmetic interpretation or explanation for
the torsion has not been found yet in general (but see [EGM82] for examples in
the case of Q(v/—1)). Based on computer calculations [GS93] (2) suggests that for
I' C PSL3(O) apart from 2 and 3 only primes less than or equal to 3[PSL3(O) : T
occur in the torsion of I'*P. In all cases calculated so far, PSLy(O)*" has only 2 or
3-torsion (see also [Swa7l], [Ber06b]) but this is not known in general, hence our
different approach in the following section. Even restricting to the ordinary part
there can be torsion, see [Tay]§4. In the following section we will prove:
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Theorem 10. Let x be an unramified Hecke character of infinity type z2. Then
(H) is satisfied.

The main result of this section is the following bound on the congruence module
introduced in the previous section:

Theorem 11. Assume in addition to the assumptions on x in Theorem 9 that
p 1 #(O/DM)* and that (H) holds. Then for ¢ given by Theorem 9 there is an
R-algebra surjection

T/1, - R/ (L*£(0,x)) .

Remark. The condition p { #(O/Mdr)* can be weakened to the order of x
being coprime to p, see [Ber05] §6.1.

O

By Lemma 1 unramified characters y satisfy x¢ =%, so we deduce:
Corollary 12. Let x be an unramified Hecke character of infinity type 22. Then

for ¢ given by Theorem 9 there is an R-algebra surjection
T/1, - R/ (L*£(0,x)) .
O
Proof of Theorem 11. By [Urb98] §1.2 and §1.4.5 we have an R-linear action of the

ray class group Clopox, (F) on H'(Sk,, C) via the diamond operators Sr,. Here we
use that

K> KO = {(i 2) € GLy(0) : <Z Z) = ((1) (1)) mod zmzml}.

By (¢1) and the assumption that p { #(O/9M)*, the ray class group has order
prime to p, so R[Clonan, (F)] is semisimple. For w := ¢;¢3, which can be viewed
as a character of Clgnon, (F), let e, be the idempotent associated to w, so that
Spew = w(my)ew.

Under the Eichler-Shimura-Harder isomorphism (see (2)) we have

engl(SKf, C) = SQ(Kf,w, C).
Hence the Hecke algebra T from Section 4 is isomorphic to the R-subalgebra of
Endg (e, H (Sk,, R))

generated by the Hecke operators T, for all primes v ¢ X4 and we will identify
the two.
Recall the long exact sequence

..— H.(Sk,,R) — H'(Sk,,R) =% H"'(0Sk,,R) — H(Sk,,R) — ...

for any R-algebra R.
Note that for ¢ € H'(Sk,,R) given by (H) we have

res(e,c) = eyres(c) = e,res(Eis(¢)) = res(Eis(¢))

since S, (Eis(¢)) = w(m,)Eis(¢) by (E4).
Without loss of generality, we can assume that 6(Eis(¢)) C R; there is nothing
to prove otherwise by (E5). Let ¢ be a generator of §(Eis(¢)). Then ¢ - Eis(¢) is an

element of an R-basis of ewﬁl(SKf ,R). By construction, ¢y := § - (e,c — Eis(¢)) €
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ewH!l(SKf , L) is a nontrivial element of an R-basis of ewﬁ!l(SKf ,R). Extend ¢ to
an R-basis cg,cq,...cq of ewH!l(SKf,R). For each t € T write

d
t(co) = Y _ai(t)ei, ai(t) € R.
i=0

Then
4) T — R/(), t — ap(t) mod §

is an R-module surjection. We claim that it is independent of the R-basis chosen
and that it is a homomorphism of R-algebras with the Eisenstein ideal I con-
tained in its kernel. To prove this it suffices to check that each ag(Tr, — ¢2(Py) —
Nm(Py)é1(By)), v ¢ Ly is contained in 6R. This is an easy calculation using (E3).
Since R/(8) — R/(L*#(0,x)) by (E5), this concludes the proof of the theorem.

O

6. THE CASE OF UNRAMIFIED CHARACTERS

In this section we will prove Theorem 10, i.e., show the existence of an integral
lift of the constant term of the Eisenstein cohomology class Eis(¢). Our strategy
is to find an involution on the boundary cohomology such that (for each connected
component of Sk ,)

H'(T\H3,R) = HY(O(T\H;),R)",

where the superscript ‘-’ indicates the —1-eigenspace of this involution. We prove

the existence of such an involution for all maximal arithmetic subgroups of SLa(F),
extending a result of Serre for SL2(O). Theorem 10 is then proven by showing that
res(Eis(¢)) lies in this —1-eigenspace.

6.1. Involutions and the image of the restriction map. In this section we
work with a general arithmetic subgroup I'. Assuming that we have an orientation-
reversing involution on I'\Hj3 such that

H'(T'\H3,R) = H'(0(I'\H3),R)™

we show that the map is, in fact, surjective. The existence of such an involution
will be shown for maximal arithmetic subgroups in the following sections. We first
recall:

Theorem 13 (Poincaré and Lefschetz duality). Suppose T’ C G(Q) is an arithmetic
subgroup. Let R be a Dedekind domain in which 2 and 3 are invertible. Let v be an
orientation-reversing involution on T'\Hs. Denoting by a superscript + (resp. —)
the +1-(resp. —1-) eigenspaces for the induced involutions on cohomology groups,
we have perfect pairings

HI(T\H;,R)* x H* "(I'\H3,R)¥T > R for0<r <3

and
H"((I\Hs), R)* x H>*"(0("'\H3),R)T — R for0<r <2.

Furthermore, the maps in the eract sequence

H'(T\Ha, R) *= H'(9("\H,), R) & H2('\H;, R)
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are adjoint, i.e.,
(res(z),y) = (z,0(y)).

References. Serre states this in the proof of Lemma 11 in [Ser70] for field coefficients,
[AS86] Lemma 1.4.3 proves the perfectness for fields R and [Urb95] Theorem 1.6
for Dedekind domains as above. Other references for this Lefschetz or “relative”
Poincaré duality for oriented manifolds with boundary are [May99] Chapter 21, §4
and [Gre67] (28.18). The pairings are given by the cup product and evaluation on
the respective fundamental classes. We use that H3 is an oriented manifold with
boundary and that I' acts on it properly discontinuously and without reversing
orientation. The lemma in [Fel00] §1.1 shows that the order of any finite subgroup
of G(Q) is divisible only by 2 or 3. See also [Ber05] Theorem 5.1 and Lemma
5.2. ([

Lemma 14. Suppose in addition to the conditions of the previous theorem that R
is a complete discrete valuation ring with finite residue field of characteristic p > 2.
Suppose that we have an involution ¢ as in the lemma such that

H'(T\H3, R) = H(9("'\Hy), R)*,
where € = +1 or —1. Then, in fact, the restriction map is surjective.

Proof. Let m denote the maximal ideal of R. Since the cohomology modules are
finitely generated (so the Mittag-Leffler condition is satisfied for lim H'(-, R/m")),
it suffices to prove the surjectivity for each r € N of

H'(T\H3, R/m") - H'(("'\Hz), R/m")".

For these coefficient systems we are dealing with finite groups and can count the
number of elements in the image and the eigenspace of the involution; they turn out
to be the same. We observe that H'(0(I'\H3), R/m") = H'(9(I'\H3), R/m")* &
H'(d(T'\Hj3), R/m")~ and that, by the last lemma,

#H'(0(P\H3), R/m")* = #H' (9(I'\Hs), R/m")".

Similarly we deduce from the adjointness of res and 0 and the perfectness of the
pairings that im(res)* = im(res) and so

S4im (res) — %#Hl(a(r\ﬁg), R/m").
0

6.2. Involutions for maximal arithmetic subgroups of SLy(F'). Forn € G(Q)
let B" be the parabolic subgroup defined by B"(Q) = n~'B(Q)n. For a general
arithmetic subgroup I' C G(Q), the set {B" : [n] € B(Q)\G(Q)/T'} is a set of
representatives for the I'-conjugacy classes of Borel subgroups. The group U7 is
the unipotent radical of B". For D € PY(F) let I'p = I' N Up, where Up is the
unipotent subgroup of SLy(F) fixing D. Note that if D, € P*(F) corresponds to
[n] € B(Q)\G(Q) under the isomorphism of B(Q)\G(Q) = P!(F) given by right
action on [0 : 1] € P!(F) we have that Up, = U"(Q) and I'p, =I'NU(Q) =Tyn.

Let U(I") be the direct sum @[pjcp1(ry/rI'p. Up to canonical isomorphism this is
independent of the choice of representatives [D] € PY(F)/T. The inclusion 'p — T
defines a homomorphism

a:U() — TP,
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We first make the following observation that links U(T") to the cohomology of
the boundary components:

Lemma 15. For imaginary quadratic fields F other than Q(v/—1) or Q(v/—3),
I' C SLy(F') an arithmetic subgroup, P a parabolic subgroup of Resp,q(SLa/r) with
unipotent radical Up, and R a ring in which 2 is invertible we have

H'(Tp,R) = H'(Tu,, R),
where Tp =T NP(Q) and Ty, =T NUp(Q).

Proof. Serre shows in [Ser70] Lemme 7 that I'y, <I'p and that the quotient Wp =
I'p/Ty, can be identified with a subgroup of the roots of unity of F, i.e., of {£1}
since F' # Q(v/—1),Q(v/—3). The Lemma follows from the Inflation-Restriction
sequence. See also [Tay] p.110. O

By (1), (3), and Lemma 15 we have

(5) H'(OT\Hs),R) = [[ H'(vs,R)=H'(UT),R).
[neP(F)/T
We want to study the kernel of « for maximal arithmetic subgroups of SLa(F).
Any such is conjugate to one of the following groups (see [EGM98] Prop. 7.4.5):
For b be a fractional ideal let
H(b) := {(Ccl Z) € SLy(F)|a,d € O,b € b,cc b~}
In order to study the structure of U(H (b)) we define j : P1(F) — CI(F) to be

the map

J([z1 2 22]) = [21b + 220].
Theorem 16. For I' = H(b), the induced map

j:PYF)/T — CI(F)

is a bijection.
Proof. Let (z1,22), (11,y2) € F x F. It is easy to check (see [EGM98] Theorem
VII 2.4 for SL3(O), [Ber05] Lemma 5.10 for the general case) that the following are
equivalent:

(1) 16+ 220 = 16 + 320.

(2) There exists o € H(b) such that (z1,22) = (y1,y2)0.

It remains to show the surjectivity of j. Given a class in CI(F') take a C O
representing it. By the Chinese Remainder Theorem one can choose zo € O such
that

o ordg,(z2) = ord,(a) if p|a.
e ord,(z2) =0if p{a,ord,(b) #0.
Then one chooses z; such that
e ord,(z1b) > ord,(z2) if p|a or ordy,(b) # 0.
e ord,(z1b) = 0if p|2z2, p t a, and ordy,(b) = 0.
These choices ensure that ord,(z1b + 220) = ord,(a) for all prime ideals p.
U

Following Serre we now calculate explicitely I'[.,..,) for I' = H(b) and [z : 22] €
PL(F).
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Lemma 17. ForI' = H(b), I';;,.., is conjugate in H(b) to
I A 2
{9(0 1)0 1t €a” b},

where a = 216+ 200 and 0 is an isomorphism O ®b = a @ a~'b of determinant 1,
i.e., such that its second exterior power

A%0:A*(O@b)=b—A(a®a'b)=a®a 'b=0b
is the identity.

Proof. The main change to [Ser70] §3.6 is that we consider the lattice L := O &
b instead of O%. We claim there exists a projective rank 1 submodule E of L
containing a multiple of (z1,22). Let E be the kernel of the O-homomorphism
L=0®b— F given by (z,y) — yz1 — xz2. Since the image is a = z1b + 220, we
get L/E 2 a,s0 L/E is projective of rank 1 and L decomposes as F & L/E.

By definition T'[.,..,) fixes L N {A(z1,22), A € F}, but this is exactly E. Since
['[.,:2,] is unipotent it can therefore be identified with Home(L/E,E). For any
fractional ideal a, A?(a) = 0 and so b = A%(L) = A2(E® L/E) = E®o L/E so
E is isomorphic to (L/E)~! ® b. This implies an isomorphism Home(L/E, E) =
(L/E)'®@E =~ (L/E)"'®(L/E)"'®b = a=2b. Choosing an isomorphism 6 : L —
L/E®E = a®a~'b of determinant 1 we can represent ['[.,:z,) as stated above. [J

For I = SL2(O) [Ser70] shows (by choosing an appropriate set of representatives
of PY(F)/SLy(O) = CI(F)) that there is a well-defined action of complex conju-
gation on U(SL2(Q)) induced by the complex conjugation action on the matrix
entries of Goo = GL2(C). Denoting by U™ the set of elements of U(SL2(0O)) invari-
ant under the involution and by U’ the set of elements u + @ for u € U(SL2(0)),
the result is as follows:

Theorem 18 (Serre [Ser70] Théoreme 9). For imaginary quadratic fields F other
than Q(v/—1) or Q(v/—3) the kernel of the homomorphism « : U(SL2(0)) —
SLa(0)2b satisfies the inclusions

6U’ C ker(a) CUT.

It is this theorem that we want to generalize to H(b). After we had discovered
this generalization we found out that it had already been stated in [BN92], but for
our application we need more detail than is provided there.

Note that since H(b) is the stabilizer of any lattice m@®n with m and n fractional
ideals of F such that m~!n = b, one can deduce

Lemma 19. Let a,b be two fractional ideals of F. If [a] = [b] in C1(F)/CI(F)?,
then H(a) = H(b)Y with v € GLo(F). If the fractional ideals differ by the square
of an O-ideal, then v can be taken to be in SLa(F).

If the class of b in CI(F) is a square, H(b) is isomorphic to SLy(O) by Lemma
19, and the involution on U(SLy(®)) induced by complex conjugation and Serre’s
Théoreme 9 can easily be transferred to U(H (b)). We therefore turn our attention
to the case when

[6] is not a square in C1(F).
Note that this implies that [b] has even order, since any odd order class can be
written as a square.
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Define an involution on H (b) to be the composition of complex conjugation with
an Atkin-Lehner involution, i.e., by

= (2‘ 2) — AHAT = <—5Nj(b)‘1 _Nnal(b)a) /

0 1
where A = (—Nm(b)1 O)'

Like Serre, we will choose a set of representatives for the cusps P!(F)/H (b)
on which this involution acts. For this we observe that if T'[;,..,) fixes [21 : 29]
then AT[,,..,)A7" fixes [z1 : Z2]A™! = [Z2 : —Nm(b)z1]. We use the isomorphism
j: PYF)/H(b) — CI(F) to show that this action on the cusps is fixpoint-free. We
observe that if j([z1 : 22]) = a then j([Z1 : Z2JA~!) = [22b + Nm(b)z;,0] = [ab].
Note that [a] # [@b] in C1(F) since otherwise [a?] = [Nm(a)b] = [b], i.e., [b] a square,
contradicting our hypothesis. So CI(F') can be partitioned into pairs (a;, @;b).

Choosing [2{ : 25] € PY(F) such that a; = 2ib + 210 we obtain

(u'i7ah)

Our choice of representatives of P*(F)/H (b) shows that the involution operates on

U(H(b)) and, in fact, by identifying I'.;..;; with {6 <(1) ‘;) 0! : s € a;°b} for

0:0db— a;®a;'band Af[zi:zé]Afl with {6’ <—1t (1)) 0~ :tca b} for

0 = AGA': O @b — @ ' @b, we can describe the involution on each of the
pairs as

(s,t) €a;?b@a 26"+ (INm(b),5Nm(b) ™).

Now denote by U™ the set of elements of U(H (b)) invariant under the involution
H v AHA™!, and by U’ the set of elements u 4+ AuA~! for u € U(H(b)).

Theorem 20. For I' = H(b) with [b] a non-square in CI(F), the kernel N of the
homomorphism

o:U() — TP
coming from the inclusion T'p — T for D € PY(F) satisfies 6U' C N C UT.

Proof. With small modifications, we follow Serre’s proof of his Théoréeme 9. As in
Serre’s case, it suffices to prove the inclusion 6U’ C N, i.e., that 6(u + AuA™1!)
maps to an element of the commutator [H (b), H(b)]:

Suppose that we have 6U’ C N, but that there exists an element u € N not
contained in UT. Then the subgroup of N generated by 6U’ and u has rank
#CI1(F) + 1. This contradicts the fact that the kernel of o has rank #CI(F) (see
[Ser70] Théoreme 7). (The latter is proven by showing dually that the rank of the
image of the restriction map H*(H(b)\Hs, R) — H'(0(H(b)\Hz3), R) has half the
rank of that of the boundary cohomology. This we showed in the proof of Lemma
14).

To prove 6U' C N we make use of Serre’s Proposition 6:
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Proposition 21 ([Ser70] Proposition 6). Let q be a fractional ideal of F and let

t €qandt =1/Nm(q) so that t' € q~'. Put zy = ((1) i) and y, = (—175’ (1)>

Then (x4y:)® lies in the commutator subgroup of H(q).

1 ¢
0 1) 6 for some

tca2band f: O®b — ad®a b of determinant 1. One easily checks that AwA~!

Put a := z16 4+ 200. If u € F[zl:z2], identify it with -1 (

_ 1 0 _
—1 —1 :
then corresponds to (A0A™) <—me(b)1 1) (AGA™"). Like Serre, we use that
since [@] = [a~!], AuA~! is also given by Theorem 16 by B~1~1 _lt, (1)> 6B for

Z1
Since 6~ 'x;y;0 is a representative of w4+ BATA~' B!, we deduce from the above
Proposition with ¢ = a=2b that 6(u + BATA~'B~1) and therefore 6(u + AuA~!)
lie in [H(b), H(b)]. O

Given an involution « on d(I'\H3) define an involution on H!(9(I'\H3), R) via
the pullback of ¢ on the level of singular cocycles. We now reinterpret Serre’s
Theorem and its generalization as follows:

Proposition 22. For imaginary quadratic fields F' other than Q(v/—1) or Q(v/—3)
and R a ring in which 2 and 3 is invertible, the image of the restriction map

H'(T\H3, R) = H'(9(T'\H3), R)
is contained in the —1-eigenspace of the involution induced by
o . :Hs — H;s: (z,t) — (Z,t) if I' = SLy(O)
e 1:Hs — Hs: (z,t) — A(Z,t) for A=

_an(b),l é) if T = H(b) with
[6] a non-square in CI(F).
and these involutions are orientation-reversing.
By Lemma 14 this immediately implies:

Corollary 23. For imaginary quadratic fields F other than Q(v/—1) or Q(v/=3),
I' = SLy(O) or H(b) with [b] a non-square in CI(F), and R a complete discrete
valuation ring in which 2 and 3 are invertible and with finite residue field of char-
acteristic p > 2, the restriction map

H'(I\H3, R) = H'(0("\H;), R)~
surjects onto the —1-eigenspace of the involutions defined in the proposition.
Proof of Proposition. Write I : ' — I for the involution
{w»v if I = SLy(0),
v AyA~L if T = H(b).
The involutions ¢ extend canonically to Hz. One checks that for v € ' we have
(6) U(7-(2,1) = I(7)e(2, 1)

This implies that the involutions operate on I'\Hz and I'\H3, and hence on 9(T'\H3).
To show that they act by reversing the orientation note that complex conjugation
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corresponds to reflection in a half-plane of Hz and therefore reverses the orien-
tation. Furthermore, GLy(C) acts on Hs via A’ = (det(4)"2)A4 € SLy(C) and
SL2(C) acts without reversing orientation, as can be seen from the geometric defi-
nition of its action via the Poincaré extension of the action on P*(C) (see [EGM9S]
pp.2-3).

Using (6) one shows that under the isomorphism

H'(9(T'\Hs), R) 2 HY(U(),R)

¢ corresponds to the involution on H*(U(T'), R) = Hom(U(T'), R) given by ¢
I(p), where I(p)(u) := @(I(u)).

We can therefore check that the image of the restriction maps is contained in
the —1-eigenspace on the level of group cohomology: The restriction map is given
by

Hom(lﬂab7 R) - Hom(U(I),R) : o — po .
By Serre’s theorem and Theorem 20, 0 = p(a(ul(u))) = p(a(u)) + p(a(I(u))), so
I(poa)(u) = p(a(l(u))) = —p(a(u)) for any u € U(). O

6.3. Integral lift of constant term. We want to prove that if x = ¢1/¢2 is an
unramified character then we can lift the constant term of the Eisenstein cohomol-
ogy class to an integral class, i.e., that there exists c € Hl(SKf,R) with the same
restriction to the boundary as the Eisenstein cohomology class Eis(¢).

First observe that everywhere unramified characters with infinity type 22 exist

only for F # Q(v/—1), Q(v/=3). For unramified x we have
Kp=J] U'10) [] GL2(Ow).

v|My vy
Recall that U'(9; ) = {k € GL2(O,) : det(k) =1 mod M, ,}. Since further-
more dp | 1 by (¢2) and dp > 4 we get Ky N GLy(F) = SL2(O).

This implies that we can write Sk, as a disjoint union of I'\H3 with I" = H(b)
for suitable fractional ideals b: For a finite idele a, denote by (a) the corresponding
fractional ideal. We write

#mo(Ky)
Sk, = ] Tw\Hs,
i=1

where Ty, = G(Q)Nt;Kst; ! and the t; € G(Ay) are given by t; = (Wagbm bO ),

with
e {v;} a system of representatives of

ker(mo(Ky) — CL(F)) = O\ [[ 05 /det(K ),

e {ay} a set of representatives of C1(F)/(C1(F))? in A% ; (and we represent
the principal ideals by (1)),
e {12} a set representing C1(F)2.
Note that for these choices 'y, = H((ax)) and either ar = 1 or [(ax)] is not
a square in CI(F). This allows us to apply our results for maximal arithmetic
subgroups from the previous sections by considering the restriction maps to the
boundary separately for each connected component.
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Proposition 24. B
[res(Eis(¥y))] € (H' (95K, R) ™ trees
where H'(0Sk,,R)™ is defined via the isomorphism to

#mo(Ky) o
P H'OT.\Hs),R)"
=1

¢

where ‘-’ indicates the —1-eigenspace of the involutions defined in Proposition 22.

Remark. Together with Corollary 23 this shows the existence of an integral lift of
the constant term and proves Theorem 10.

Proof. We will consider the restriction maps to the boundary separately for each
connected component I'y,\Hj:

(€]

I

HY(T';,\Hs,R) = H'(8(T;,\H3), R) P H'(s\HsR),

[(MeP(F)/T,
where Ty, gn =Ty, N~ B(Q)n.
By (3) and Lemma 15 we have H!(T'y, g»\H3, R) & H (', y»,R). By Lemma
1, x* =X, so L(0,x) = L(0,%) and we deduce from [Ber06a] Lemma 11 and
Proof of Proposition 16 that res(Eis(¢)) restricted to this boundary component is
represented by

1 (1 =z _
™ 0= (o 1) e Wl ~ T o).

where 7 and 1., denote the images of n € G(Q) in G(A¢) and G(R), respectively,
wo.(¢1,¢2) = (P2 - |- [, 1+ |- |71), and Wy : G(Ay) — C satisfies

\IJ¢(<8 2) k) = ¢1(a)gpa(d) for (g Z) € B(Ay), ke IZISLQ(OU) C K.

Note that, in particular, U, (bg) = ¢ (b)¥ys(g) for b € B(F) C G(Ay).

We need to prove that (7) lies in the —1-eigenspace of the involution induced
by u +— @ for Ty, = SLy(O) and by u +— AuA~! for Iy, = H(b), where A =
(_]8_1 (1)) with N = Nm(b).

Case I'y,; = SL2(O): Recall that in this case t; = 0 b
and b; € A})f'

It suffices to prove that Wy(nst;) = Wy,.4(7sti). For this we use the Bruhat
decomposition of matrices in GLo(F') given by:

b/d\ (a 0
(¢ 0)-

1 0 d
. a b a b .
Since W 4( g) = Uy )W 4(g) we can consider separately the cases

> for some ~; € O

if c=0,

S = O =

ad—bc
a/e c 0 0 1 L dfe otherwise.
1 0 —c -1 0 0 1
0 d 0 d

(a) n= (8 Z) for a,b,d € F and
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0 1\ /1 e
(b) 17—(_1 0) <0 1) foree F.
We check that for (a)

oty (0 ) = o1t )a 0ot

and b o
B oy (")) = 6200l (05102 00) P o)

Since 7; € O* and x = ¢1/¢2 is unramified it suffices to show that ¥4(ns) =
Wipo.6(7¢)- In case (b) we similarly reduce to this assertion.

In (a) we get Uy(nys) = ¢1_)io(a)¢2_7(1>o(d) = ¢ Since wo.¢ has infinity type (z,2 1)
this equals Wy, 4(7). In (b) we need to calculate the Iwasawa decomposition of n
in GLo(F,) if e ¢ O, (at all other places Uy (1) = Wuy.¢(7) = 1). It is given by

G0l 1) =0 (A 5)

So, if e ¢ O, then Wy(n,) = (¢2/d1)u(e) = xy'(e), which we claim matches
T o.6(5) = (¢1/¢2)w(€)|e|=>. This follows from y¢ =y and xx = | - |2

Case I'y, = H(b): The involution maps the cusp corresponding to B" to BTAT
We therefore have to prove that

(8) \IJ¢(77ftz) = \ijo.¢(ﬁfAilti).
0 b
decomposition, we need to only consider 1 as in cases (a) and (b) above. Following

the arguments used for Case (1), Case(a) reduces immediately to showing that
Wy(t;) = Wopy.(At;). The left hand side equals ¢, ¢(2:b;)d2, ¢ (b;), the right hand

side is
N 0 0 1 leh 0 —1 b1 0
sl (8 D 5 - s )
= N7'u p(@ibi) o, r (bi) |zl

Equality follows from \xi|;1 = Nm(b).

Recall that t; = < ) for some z;,b; € A}, £ Again making use of the Bruhat

For (b), one quickly checks that for n = (_01 (1) the two sides in (8) agree.
0 1 1 e
For general n = 1 o) lg 1) one shows that, on the one hand,

xlblo_blo Olleaci
Vo b)) N0 ab)\=1 0/\o 1)

and on the other hand,

74T z;b; 0 _ z;b; 0 0 1 1 Eﬁl/N
"y o ) Lo wmuN)\-1 0/\o 1 )

Since (z;T;) = (N) the valuations of €x;/N agrees with that of ez;. Repeating
the calculation for n = wp and then applying the argument from Case 1(b) (since
x is unramified we are only concerned about the valuation of the upper right hand
entry) we also obtain equality.
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7. BLoCH-KATO CONJECTURE FOR HECKE CHARACTERS

Combining the results of the previous sections we get lower bounds on the size
of Selmer groups of certain Hecke characters. We want to state this application
and relate it to the Bloch-Kato conjecture.

Theorem 25. Assume that p satisfies the conditions from the beginning of Section
5. If p is inert in F/Q then assume Conjecture 5. Let x be an unramified Hecke
character of infinity type z2. Then

val,#Sel(F, xpe) > val,(#R/L¥8(0, x))
Proof. Put p := xpe. Theorem 6 and Corollary 12 imply
val, #Sel™e\ 57 (F, xpe) > val,(#R/L¥(0, x)),

where ¥, = {v | p}.

Recall that by (¢2) the set X4\{v | p} for the characters ¢; of Theorem 11
contains only places v such that 7 = v and #0, /B, # £1 mod p. By Lemma 1
we have x¢ = Y, which implies that p is anticyclotomic, and so we get p(Frob,) =
p(Frob) = p~1(Frob,), or p(Frob,) = £1. Hence we have ensured that

p(Frob,) # €(Frob,) mod p
for all v € £4\X, so the theorem follows from applying Lemma 2. O

Example 26. A numerical example in which the conditions of our Theorem are
satisfied and a non-trivial lower bound on a Selmer group is obtained is given by the
following: Let F' = Q(+/—67) and p = 19. One checks that 19 splits in F'. Since the
class number is 1, there is only one unramified Hecke character of infinity type z2.
Up to p-adic units L*8(0, ) is given by L(&X) where 2 is the Neron period of the
elliptic curve y% +y = 22 — 73702 + 243582, which has conductor 672 and complex
multiplication by O. Using MAGMA and Computel. [Dok04] one calculates that

L¥8(0,x) € Zyg and

Vahg(Lalg(O, X)) =1.

7.1. Comparison with other results. Assume from now on that #CI(F') = 1.
Let

U: F*\AL — C*
be a Hecke character of infinity type z~! which satisfies ¥¢ = W. Then there
exists an elliptic curve F over Q with complex multiplication by O and associated
Grossencharacter ¥. Consider

p= (V*W-7), for k> 0,5 > 0.

We now have the following proposition from [Dee99] (Proposition 4.4.3 and §5.3):
Proposition 27 (Dee). The group Sel(F,p) is finite if and only if Sel(F, p~Le) is
finite. If this is the case then

#Sel(F, p) = #Sel(F,p~te) < oo.

Since x can be written as ¥ 2 for some ¥ as above, compare therefore Theorem
25 with the following result:
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Theorem 28 (Han, [Han97]). Suppose k > j + 1. For inert p also assume that p
is non-trivial when restricted to Gal(F(Ey)/F). Then Sel(F, p) is finite and

val, #Sel(F, p) = val,(#R/L"%(0, U=FF")).

Previously, Kato proved this in the case kK > 0 and j = 0, cf. [Kat93]. For a
similar result in the case of split p see [Guo93]. Han claims that his method extends
to general class numbers. All proofs take as input the proof of the Main Conjecture
of Iwasawa theory by Rubin [Rub91].

We refer to [Guo96] §3 for the proof that these statements on the size of Selmer
groups are equivalent to the (critical cases of the) p-part of the Bloch-Kato Tama-
gawa number conjectures for the motives associated to the Hecke characters.

For cases of the Bloch-Kato conjecture when the Selmer groups are infinite see
[BCO4]. Their method is similar to ours in that they use congruences between
Eisenstein series and cuspforms, however, they work with p-adic families on U(3).
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