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Abstract. For certain algebraic Hecke characters χ of an imaginary quadratic
field F we define an Eisenstein ideal in a p-adic Hecke algebra acting on cuspi-
dal automorphic forms of GL2/F . By finding congruences between Eisenstein
cohomology classes (in the sense of G. Harder) and cuspforms we prove a lower
bound for the index of the Eisenstein ideal in the Hecke algebra in terms of the
special L-value L(0, χ). We further prove that its index is bounded from above
by the p-valuation of the order of the Selmer group of the p-adic Galois char-
acter associated to χ−1. This uses the work of R. Taylor et al. on attaching
Galois representations to cuspforms of GL2/F . Together these results imply
a lower bound for the size of the Selmer group in terms of L(0, χ), coinciding
with the value given by the Bloch-Kato conjecture.

1. Introduction

The aim of this work is to demonstrate the use of Eisenstein cohomology, as
developed by Harder, in constructing elements of Selmer groups for Hecke char-
acters of an imaginary quadratic field F . The strategy to first find congruences
between Eisenstein series and cuspforms and then use the Galois representations
attached to the cuspforms to prove lower bounds on the size of Selmer groups goes
back to Ribet [Rib76], and has been applied and generalized in [Wil90], [HP92],
[SU02], [BC04] amongst others. What is different in our situation is that the sym-
metric space associated to GL2/F is not hermitian and that we therefore use for
the congruences the integral structure coming from cohomology and the theory of
Eisenstein cohomology classes.

We give a brief outline of the contents of the paper: Let p be a prime unramified
in the extension F/Q and let p be a prime of F dividing (p). Fix embeddings
F ↪→ F p ↪→ C. Let φ1, φ2 : F ∗\A∗

F → C∗ be two Hecke characters of infinity type
z and z−1, respectively. Let R be the ring of integers in a sufficiently large finite
extension of Fp.

We start with the second step of the strategy sketched above. In §3 we recall
proven and expected properties of the Galois representations attached to cuspforms
of GL2/F by the work of R. Taylor et al. Let T be the R-algebra generated by
Hecke operators acting on cuspidal automorphic forms of GL2/F . For φ = (φ1, φ2)
we define in §4 an Eisenstein ideal Iφ in T. Following previous work of Wiles and
Urban we construct elements in the Selmer group of χpε, where χp is the p-adic
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Galois characters associated to χ := φ1/φ2, and obtain a lower bound on its size
in terms of that of the congruence module T/Iφ. A complication that arises in
the application of Taylor’s theorem is that we need to work with cuspforms with
cyclotomic central character. This is achieved by a twisting argument (see, in
particular, Lemma 8).

From Section 5 on we impose some additional conditions on the prime p involving
the class number and discriminant of F ; we refer to the beginning of that section
for the exact statement. To prove the lower bound on the congruence module in
terms of the special L-value (the first step described above), we use the Eisenstein
cohomology class Eis(φ) constructed in [Ber06a] in the cohomology of a symmetric
space S associated to GL2/F . The class is an eigenvector for the Hecke operators
at almost all places with eigenvalues corresponding to the generators of Iφ, and
its restriction to the boundary of the Borel-Serre compactification of S is integral.
The main result of [Ber06a], which we recall in §5, is that the denominator δ
of Eis(φ) ∈ H1(S, F p) is bounded from below by Lalg(0, χ) ∈ R. We prove in
Theorem 11 the existence of a cuspidal cohomology class congruent to δ · Eis(φ)
modulo the L-value supposing that there exists an integral cohomology class with
the same restriction to the boundary as Eis(φ). In §6 we prove that this hypothesis
is satisfied for unramified χ. We achieve this by a careful analysis of the restriction
map to the boundary ∂S of the Borel-Serre compactification. Starting with a
group cohomological result for SL2(O) due to Serre [Ser70] (which we extend to all
maximal arithmetic subgroups of SL2(F )) we define an involution on H1(∂S,R)
such that the restriction map

H1(S,R)
res
� H1(∂S,R)−,

surjects onto the −1-eigenspace. We apply the resulting criterion to res(Eis(φ)) to
deduce the existence of a lift to H1(S,R).

Combining the two steps we obtain in §7 a lower bound for the size of the
Selmer group of χpε in terms of Lalg(0, χ) (unconditional for split p and unramified
χ). To conclude, we relate this result to the Bloch-Kato conjecture. This conjecture
has been proven in our case (at least for class number 1) starting from the Main
Conjecture of Iwasawa theory for imaginary quadratic fields (see [Han97], [Guo93]).
However, the method presented here, constructing elements in Selmer groups using
cohomological congruences, is very different. Our hope is that it generalizes to
higher rank groups.

These results generalize part of my thesis [Ber05] with Chris Skinner at the
University of Michigan. The author would like to thank Trevor Arnold, Kris Klosin,
Chris Skinner, and Eric Urban for helpful discussions.

2. Notation and Definitions

2.1. General notation. Let F/Q be an imaginary quadratic extension and dF

its absolute discriminant. Denote the classgroup by Cl(F ) and the ray class group
modulo a fractional ideal m by Clm(F ). For a place v of F let Fv be the completion
of F at v. We write O for the ring of integers of F , Ov for the closure of O in Fv,
Pv for the maximal ideal of Ov , πv for a uniformizer of Fv , and Ô for

∏
v finiteOv.

We use the notations A,Af and AF ,AF,f for the adeles and finite adeles of Q and
F , respectively, and write A∗ and A∗

F for the group of ideles. Let p be a prime of
Z that does not ramify in F , and let p ⊂ O be a prime dividing (p).
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Denote by GF the absolute Galois group of F . For Σ a finite set of places of
F let GΣ be the Galois group of the maximal extension of F unramified at all
places not in Σ. We fix an embedding F ↪→ F v for each place v of F . Denote the
corresponding decomposition and inertia groups by Gv and Iv , respectively. Let
gv = Gv/Iv be the Galois group of the maximal unramified extension of Fv . For
each finite place v we also fix an embedding F v ↪→ C that is compatible with the
fixed embeddings iv : F ↪→ F v and i∞ : F ↪→ C(= F∞). For a discrete GF -
module (resp. Gv-module) M write H1(F, M) for the Galois cohomology group
H1(GF , M), and H1(Fv , M) for H1(Gv , M).

2.2. Hecke characters. A Hecke character of F is a continuous group homomor-
phism λ : F ∗\A∗

F → C∗. Such a character corresponds uniquely to a character on
ideals prime to the conductor, which we also denote by λ. Define the character λc

by λc(x) = λ(x).

Lemma 1 (Lemma 3.1 of [Ber05]). If λ is an unramified Hecke character then
λc = λ. �

For Hecke characters λ of type (A0), i.e., with infinity type λ∞(z) = zmzn with
m, n ∈ Z we define (following Weil) a p-adic Galois character

λp : GF → F
∗
p

associated to λ by the following rule: For a finite place v not dividing p or the
conductor of λ, put λp(Frobv) = ip(i

−1
∞ (λ(πv))) where Frobv is the arithmetic

Frobenius at v. It takes values in the integer ring of a finite extension of Fp.
Let ε : GF → Z∗

p be the p-adic cyclotomic character defined by the action of GF

on the p-power roots of unity: g.ξ = ξε(g) for ξ with ξpm

= 1 for some m. Our
convention is that the Hodge-Tate weight of ε at p is 1.

Write L(0, λ) for the Hecke L-function of λ. Let λ a Hecke character of infinity

type za
(

z
z

)b
with conductor prime to p. Assume a, b ∈ Z and a > 0 and b ≥ 0. Put

Lalg(0, λ) := Ω−a−2b

(
2π√
dF

)b

Γ(a + b) · L(0, λ).

In most cases, this normalization is integral, i.e., lies in the integer ring of a finite
extension of Fp. See [Ber06a] Theorem 3 for the exact statement.

2.3. Selmer groups. Let ρ : GF → R∗ be a continuous Galois character taking
values in the ring of integers R of a finite extension L of Fp. Write mR for its
maximal ideal and put R∨ = L/R. Let Rρ, Lρ, and R∨

ρ be the free rank one
modules on which GF acts via ρ.

Following Bloch and Kato et al. we define the following Selmer groups: Let

H1
f (Fv , Lρ) =

{
ker(H1(Fv , Lρ)→ H1(Iv , Lρ)) for v - p,

ker(H1(Fv , Lρ)→ H1(Fv , Bcris ⊗ Lρ)) for v | p,

where Bcris denotes Fontaine’s ring of p-adic periods. Put H1
f (Fv ,R∨

ρ ) = im(H1
f (Fv , Lρ)→

H1(Fv ,R∨
ρ )). For a finite set of places Σ of F define

SelΣ(F, ρ) = ker

(
H1(F,R∨

ρ )→
∏

v/∈Σ

H1(Fv ,R∨
ρ )

H1
f (Fv ,R∨

ρ )

)
.
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We write Sel(F, ρ) for Sel∅(F, ρ).
If p splits in F/Q and ρ = λp for a Hecke character λ of infinity type zazb with

a, b ∈ Z (“ordinary case”) we define

F+
p Lρ =

{
Lρ if a < 0 (i.e., HT-wt of ρ > 0),

{0} if a ≥ 0 (i.e., HT-wt of ρ ≤ 0)

and

F+
p

Lρ =

{
Lρ if b < 0,

{0} if b ≥ 0.

In the ordinary case we have H1
f (Fv , Lρ) = H1(Fv , F+

v Lρ) for v | p (see [Guo96]

p.361, [Fla90] Lemma 2).

Lemma 2. Let ρ be unramified at v - p. If ρ(Frobv) 6≡ ε(Frobv) mod p then

SelΣ(F, ρ) = SelΣ\{v}(F, ρ).

Proof. By definition SelΣ\{v}(F, ρ) ⊂ SelΣ(F, ρ) for any v. For places v as in the
lemma we have

H1
f (Fv ,R∨

ρ ) = ker(H1(Fv ,R∨
ρ )→ H1(Iv ,R∨

ρ )gv ).

It is clear that H1(Iv ,R∨
ρ )gv = Homgv

(Itame
v ,R∨

ρ ) = Homgv
(Itame

v ,R∨
ρ [mn

R]) for

some n. By our assumption therefore H1(Iv ,R∨
ρ )gv = 0 since Frobv acts on Itame

v

by ε(Frobv). �

2.4. Cuspidal automorphic representations. We refer to [Urb95] §3.1 for def-
initions. We will be using the following notation: For Kf =

∏
v Kv ⊂ G(Af ) a

compact open subgroup denote by S2(Kf ,C) the space of cuspidal automorphic
forms of GL2(F ) of weight 2, right-invariant under Kf . For ω a finite order Hecke
character write S2(Kf , ω,C) for the forms with central character ω. This is isomor-

phic as a G(Af )-module to
⊕

π
Kf

f for automorphic representations π of a certain

infinity type (see Theorem 3 below) with central character ω. For g ∈ G(Af ) we
have the Hecke action of [KfgKf ] on S2(Kf ,C) and S2(Kf , ω,C). For places v

with Kv = GL2(Ov) we define Tv = [Kf

(
πv 0
0 1

)
Kf ].

2.5. Cohomology of symmetric space. Let G = ResF/QGL2, K∞ = U(2)·C∗ ⊂
G(R). For an open compact subgroup Kf ⊂ G(Af ) we define the adelic symmetric
space

SKf
= G(Q)\G(A)/K∞Kf .

Note that SKf
has several connected components. In fact, strong approximation

implies that the fibers of the determinant map

SKf
� π0(Kf ) := A∗

F,f/det(Kf )F ∗

are connected. Any γ ∈ G(Af ) gives rise to an injection

G∞ ↪→ G(A)

g∞ 7→ (g∞, γ)

and, after taking quotients, to a component Γγ\G∞/K∞ → SKf
, where

Γγ := G(Q) ∩ γKfγ−1.
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This component is the fiber over det(γ). Choosing a system of representatives for
π0(Kf ) we therefore have

SKf
∼=

∐

[det(γ)]∈π0(Kf )

Γγ\H3,

where G∞/K∞ has been identified with three-dimensional hyperbolic space H3 =
R>0 ×C.

We denote the Borel-Serre compactification of SKf
by SKf

and write ∂SKf

for its boundary. The Borel-Serre compactification SKf
is given by the union of

the compactifications of its connected components. For any arithmetic subgroup
Γ ⊂ G(Q), the boundary of the Borel-Serre compactification of Γ\H3, denoted by
∂(Γ\H3), is homotopy equivalent to

(1)
∐

[η]∈P1(F )/Γ

ΓBη\H3,

where we identify P1(F ) = B(Q)\G(Q), take η ∈ G(Q), and put ΓBη = Γ ∩
η−1B(Q)η.

For X ⊂ SKf
and R an O-algebra we denote by H i(X, R) (resp. H i

c(X, R))
the i-th (Betti) cohomology group (resp. with compact support), and the interior
cohomology, i.e., the image of H i

c(X, R) in H i(X, R), by H i
! (X, R).

There is a Hecke action of double cosets [KfgKf ] for g ∈ G(Af ) on these coho-

mology groups (see [Urb98] §1.4.4 for the definition). We put Tπv
= [Kf

(
πv 0
0 1

)
Kf ]

and Sπv
= [Kf

(
πv 0
0 πv

)
Kf ].

The connection between cohomology and cuspidal automorphic forms is given by
the Eichler-Shimura-Harder isomorphism (in this special case see [Urb98] Theorem
1.5.1): For any compact open subgroup Kf ⊂ G(Af ) we have

(2) S2(Kf ,C)
∼→ H1

! (SKf
,C)

and the isomorphism is Hecke-equivariant.
Recall from [Ber06a] Proposition 4 that for any O[ 16 ]-algebra R there is a natural

R-functorial isomorphism

(3) H1(Γ\H3, R) ∼= H1(Γ, R),

where the group cohomology H1(Γ, R) is just given by Hom(Γ, R).

3. Galois representations associated to cuspforms for imaginary

quadratic fields

Combining the work of Taylor, Harris, and Soudry with results of Friedberg-
Hoffstein and Laumon/Weissauer, one can show the following (see [BHR]):

Theorem 3. Given a cuspidal automorphic representation π of GL2(AF ) with π∞

isomorphic to the principal series representation corresponding to
(

t1 ∗
0 t2

)
7→
(

t1
|t1|

)( |t2|
t2

)

and cyclotomic central character ω (i.e., ωc = ω), let Σπ denote the set of places
above p, the primes where π or πc is ramified, and primes ramified in F/Q.
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Then there exists a continuous Galois representation

ρπ : GF → GL2(F p)

such that if v /∈ Σπ, then ρπ is unramified at v and the characteristic polynomial of
ρπ(Frobv) is x2−av(π)x+ω(Pv)NmF/Q(Pv), where av(π) is the Hecke eigenvalue
corresponding to Tv. The image of the Galois representation lies in GL2(L) for a
finite extension L of Fp and the representation is absolutely irreducible. �

Remark. (1) Taylor relates π to a low weight Siegel modular form via a theta
lift and uses the Galois representation attached to this form via pseudorep-
resentations and the Galois representations of cohomological Siegel modular
forms to find ρπ.

(2) Taylor had some additional technical assumption in [Tay94] and only showed
the equality of Hecke and Frobenius polynomial outside a set of places of
zero density. For this strengthening of Taylor’s result see [BHR].

Urban studied in [Urb98] the case of ordinary automorphic representations π, and
together with results in [Urb05] on the Galois representations attached to ordinary
Siegel modular forms shows:

Theorem 4 (Corollaire 2 of [Urb05]). If π is unramified at p and ordinary at p,
i.e., |ap(π)|p = 1, then the Galois representation ρπ is ordinary at p, i.e.,

ρπ|Gp

∼=
(

Ψ1 ∗
0 Ψ2

)
,

where Ψ2|Ip
= 1, and Ψ1|Ip

= det(ρπ)|Ip
= ε.

For p inert we will need a stronger statement:

Conjecture 5. If π is unramified at p then ρπ|Gp
is crystalline.

This conjecture extends Conjecture 3.2 in [CD06] and would follow if one could
prove the corresponding statement for low weight Siegel modular forms.

4. Selmer group and Eisenstein ideal

Let φ1 and φ2 be two Hecke characters with infinity type z and z−1, respectively.
Let R be the ring of integers in the finite extension L of Fp containing the values
of the finite parts of φi and Lalg(0, φ1/φ2). Denote its maximal ideal by mR. Let
Σφ be the finite set of places dividing the conductors of the characters φi and their
complex conjugates and the places dividing pdF . Let Kf =

∏
v Kv ⊂ G(Af ) be a

compact open subgroup such that Kv = GL2(Ov) if v /∈ Σφ.
Assume that there exists a finite order character η unramified outside Σφ such

that (φ1φ2η
2)c = φ1φ2η

2.
Denote by T the R-algebra generated by the Hecke operators Tv, v /∈ Σφ acting

on S2(Kf , φ1φ2,C). Call the ideal Iφ ⊆ T generated by

{Tv − φ1(Pv)Nm(Pv)− φ2(Pv)|v /∈ Σφ}
the Eisenstein ideal associated to φ = (φ1, φ2).

We define Galois characters

ρ1 = φ1,pε,

ρ2 = φ2,p,

ρ = ρ1 ⊗ ρ−1
2 .
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Let Σρ be the set of places dividing p and those where ρ is ramified.

Theorem 6.

valp(#SelΣφ\Σρ(F, ρ)) ≥ valp(#(T/Iφ)).

Proof. We can assume that

T/Iφ 6= 0.

Let m ⊂ T be a maximal ideal containing Iφ. Taking the completion with respect
to m we write

S2(Kf , φ1φ2,C)m =
n⊕

i=1

V
Kf
πi,f ,

where Vπf
denotes the representation space of the (finite part) of the cuspidal

automorphic representation π.
By twisting the cuspforms by the finite order character η we can ensure that

their central character is cyclotomic. Hence we can apply Theorem 3 to associate
Galois representations ρπi⊗η : GΣφ

→ GL2(Li) for finite extensions Li/Fp to each
πi ⊗ η. Taking all of them together (and untwisting by η) we obtain a continuous,
absolutely irreducible Galois representation

ρT :=

n⊕

i=1

ρπi⊗η ⊗ η−1 : GΣφ
→ GL2(Tm ⊗R L).

Here we use that Tm ⊗R L =
∏n

i=1 Li, which follows from the strong multiplicity
one theorem. We have an embedding

Tm ↪→
n∏

i=1

Li

Tv 7→ ((av(πi)),

where av(πi) is the Tv-eigenvalue of πi. The coefficients of the characteristic poly-
nomial char(ρT ) therefore lie in Tm and by the Chebotarev density theorem

char(ρT ) ≡ char(ρ1 ⊕ ρ2) mod Iφ.

For any finite free Tm ⊗ L-module M any Tm-submodule L ⊂ M, finite over
Tm such that L⊗ L =M is called a Tm-lattice.

Specializing to our situation Theorem 1 of [Urb01] (and using that the R-algebra
map surjects onto Tm/Iφ) we get:

Theorem 7 (Urban). Given a Galois representation ρT as above there exists a
GΣφ

-stable Tm-lattice L ⊂ (Tm ⊗ L)2 such that GΣφ
acts on L/IφL via

0→ Rρ1
⊗R (N/Iφ)→ L/IφL → Rρ2

⊗R (Tm/Iφ)→ 0,

where N ⊂ Tm ⊗L is a Tm-lattice with valp(#Tm/Iφ) ≤ valp(#N/IφN) <∞ and
no quotient of L is isomorphic to ρ1 := ρ1 mod mR. �

See [Ber05] §7.3.2 for an alternative construction of such a lattice involving ar-
guments of Wiles ([Wil86] and [Wil90]).

Using the properties of the Galois representations attached to cuspforms we can
now conclude the proof of Theorem 6 by similar arguments as in [Ski04] and [Urb01].
For brevity put T := N/Iφ, and Σ := Σφ.
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Identifying Rρ = HomR(Rρ2
,Rρ1

) and writing s : Rρ2
⊗Tm/Iφ → L⊗Tm/Iφ

for the section as Tm/Iφ-modules we define a 1-cocycle c : GΣ → Rρ ⊗ T by

c(g)(m) = the image of s(m)− g.s(g−1.m) in Rρ1
⊗ T .

Consider the R-homomorphism

ϕ : HomR(T ,R∨)→ H1(GΣ,R∨
ρ ), ϕ(f) = the class of (1⊗ f) ◦ c.

We will show that

(i) im(ϕ) ⊂ SelΣ\Σρ(F, ρ),
(ii) ker(ϕ) = 0.

From (i) it follows that

valp(#SelΣ\Σρ(F, ρ)) ≥ valp(#im(ϕ)).

From (ii) it follows that

valp(#im(ϕ)) ≥ valp(#HomR(T ,R∨))

= valp(#T )

≥ valp(#Tm/Iφ).

For (i) we have to show that the conditions of the Selmer group at v | p are sat-
isfied: For split p it suffices to prove that the extension in Theorem 7 is split
when considered as an extension of Tm[Gp]-modules because then the class in
H1(Gp,Rρ⊗T ) determined by c is the zero class. In this case the Hecke eigenvalues
ap(πi) ≡ p · φ1(p) + φ2(p) 6≡ 0 mod mR, hence the cuspforms πi ⊗ η are ordinary
at p, so Theorem 4 applies and ρT is ordinary. Observing that the Hodge-Tate
weights at p of ρ1 and ρ2 are 0 and 1, respectively, the splitting of the extension
as Tm[Gp]-modules follows from comparing the basis given by Theorem 7 with the
one coming from ordinarity.

For inert p we observe that by Conjecture 5 the ρπi
are all crystalline which

implies that the class determined by c is crystalline.
To prove (ii) we first observe that for any f ∈ HomR(T ,R∨), ker(f) has finite

index in T since T is a finite R-module and so f ∈ HomR(T ,R∨[mn
R]) for some

n. Suppose now that f ∈ ker(ϕ). We claim that the class of c in H1(GΣ,Rρ ⊗R

T /ker(f)) is zero. To see this, let X = R∨/im(f) and observe that there is an
exact sequence

H0(GΣ,Rρ ⊗R X)→ H1(GΣ,Rρ ⊗R T /ker(f))→ H1(GΣ,Rρ ⊗R R∨).

Since f ∈ ker(ϕ) and the second arrow in the sequence comes from the inclusion
T /ker(ϕ) ↪→ R∨ induced by f , the image in the right module of the class of c in
the middle is zero. Our claim follows therefore if the module on the left is trivial.
But the dual of this module is a subquotient of HomR(Rρ,R) on which GΣ acts
trivially. By assumption, however, Rρ is a rank one module on which GΣ acts
non-trivially.

Suppose in addition that f is non-trivial, i.e., ker(f) ( T . Note that any R-
submodule of T is actually a Tm-submodule since R� Tm/Iφ. Hence there exists
a Tm-module A with ker(f) ⊂ A ⊂ T such that T /A ∼= R/mR. From our claim it
follows that the Tm[GΣ]-extension

0→ Rρ1
⊗R R/mR

∼= Rρ1
⊗R T /A→ L/(Rρ1

⊗R A)→ L/L1 → 0
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is split. But this would give a Tm[GΣ]-quotient of L isomorphic to ρ1, which
contradicts one of the properties of the lattice constructed by Urban. Hence ker(ϕ)
is trivial. �

Under conditions which will be satisfied in our later application the following
Lemma will provide us with the finite order character η used in the twisting above.

Lemma 8. If χ = φ1/φ2 satisfies χc = χ then there exists a finite order character
η unramified outside Σφ such that (φ1φ2η

2)c = φ1φ2η
2.

Proof. We claim that there exists a Hecke character µ unramified outside Σφ such
that

χ = µµc.

Given such a character µ we then define η = (µφ2)
−1.

In the Lemma on p.81 of [Gre83] Greenberg defines a Hecke character µG :
F ∗\A∗

F → C∗ of infinity type z−1 such that µc
G = µG and µG is ramified exactly

at the primes ramified in F/Q. It therefore suffices to prove the claim for the finite
order character

χ′ := χµ2
G = χµG(µc

G).

By assumption we have that

χ′ ≡ 1 on NmF/Q(A∗
F ) ⊂ A∗

Q ⊂ A∗
F .

Thus χ′ restricted to Q∗\A∗
Q is either the quadratic character of F/Q or trivial.

Since our finite order character has trivial infinite component, χ′ has to be trivial on
Q∗\A∗

Q. Hilbert’s Theorem 90 then implies that there exists µ such that χ′ = µ/µc.

To control the ramification we analyze this last step closer: χ′ factors through
A∗

F → A, where A is the subset of A∗
F of elements of the form x/xc and the map is

x 7→ x/xc. If y ∈ A ∩ F ∗ then y has trivial norm and so by Hilbert’s Theorem 90,
y = x/xc for some x ∈ F ∗. Thus the induced character A→ C∗ vanishes on A∩F ∗.
This implies that there is a continuous finite order character µ : F ∗\A∗

F → C∗

which restricts to this character on A and χ′ = µ/µc (this argument is taken from
the proof of Lemma 1 in [Tay94]).

By the following argument we can further conclude that the induced character
vanishes on A∩∏v/∈Σφ

O∗
v and therefore find µ on F ∗\A∗

F /C∗
∏

v/∈Σφ
O∗

v restricting

to the character A→ C∗: Writing UF,` =
∏

v|`O∗
v for a prime ` in Q we have

H1(Gal(F/Q),
∏

v/∈Σφ

O∗
v) ∼=

∏

`/∈Σφ

H1(Gal(F/Q), UF,`),

where “` /∈ Σφ” denotes those ` ∈ Z such that v | `⇒ v /∈ Σφ. For the isomorphism
we use that

v ∈ Σφ ⇒ v ∈ Σφ.

In fact, all these groups are trivial since all ` /∈ Σφ are unramified in F/Q and so

H1(Gal(F/Q), UF,`) ∼= H1(Gv ,O∗
v) = 1.

If y ∈ A ∩∏v/∈Σφ
O∗

v then y has trivial norm in
∏

v/∈Σφ
O∗

v . But as shown, its first

Galois cohomology group is trivial so there exists x ∈
∏

v/∈Σφ
O∗

v ∩ A∗
F such that

y = x/xc. Since χ′ is unramified outside Σφ the image of y under the induced
character therefore equals χ′(x) = 1, as claimed above. �
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5. Bounding the Eisenstein ideal

From now on we impose the following assumptions on the prime p: Let p > 3
be a prime of Z that does not ramify in F and does not divide #Cl(F ). Assume
in addition that ` 6≡ ±1 mod p for ` | dF .

Recall the definitions and notations introduced in Section 2.5. Following Harder
we constructed in [Ber06a] Eisenstein cohomology classes in the Betti cohomology
group H1(SKf

,C). Given a pair of Hecke characters φ = (φ1, φ2) with φ1,∞(z) = z

and φ2,∞(z) = z−1 these depend on a choice of a function Ψφf
in the induced

representation

V
Kf

φf ,C = {Ψ : G(Af )→ C|Ψ(bg) = φf (b)Ψ(g)∀b ∈ B(Af ), Ψ(gk) = Ψ(g)∀k ∈ Kf}.

Refering to notation in [Ber06a] we choose Kf = KS
f and Ψφf

= Ψ0
φ. We recall the

definition of the compact open Kf : Denote by S the finite set of places where both
φi are ramified, but φ1/φ2 is unramified. Write Mi for the conductor of φi. For an
ideal N in O and a finite place v of F put Nv = NOv . We define

K1(Nv) =

{(
a b
c d

)
∈ GL2(Ov), a− 1, c ≡ 0 mod Nv

}
,

and

U1(Nv) = {k ∈ GL2(Ov) : det(k) ≡ 1 mod Nv}.
Now put

Kf :=
∏

v∈S

U1(M1,v)
∏

v/∈S

K1((M1M2)v).

The exact definition of Ψφf
will not be required in the following; we refer the

interested reader to [Ber06a]. For brevity we write Eis(φ) for the cohomology class
denoted by [Eis(Ψ0

(φ1,φ2)f
)] in [Ber06a].

Let R again denote the ring of integers in the finite extension L of Fp obtained
by adjoining the values of the finite part of both φi and Lalg(0, φ1/φ2). We write

H̃1(X,R) := H1(X,R)free = im(H1(X,R)→ H1(X, L))

for X = SKf
or ∂SKf

. Also put

H̃1
! (SKf

,R) = H1
! (SKf

, L) ∩ H̃1(SKf
,R).

We recall the following properties of Eis(φ) proven in [Ber06a]:

(E1) Eis(φ) ∈ H1(SKf
, L) ([Ber06a] Proposition 13)

(E2) If φ1/φ2 = (φ1/φ2)
c and the conductors of the φi are coprime to (p) then the

image of Eis(φ) under res : H1(SKf
,C)→ H1(∂SKf

,C) lies in H̃1(∂SKf
,R)

([Ber06a] Proposition 16).
(E3) For all places v outside the conductors of the φi the class Eis(φ) is an eigen-

vector for the Hecke operator Tπv
= [Kf

(
πv 0
0 1

)
Kf ] with eigenvalue

φ2(Pv) + Nm(Pv)φ1(Pv)

([Ber06a] Lemma 9).
(E4) The central character of Eis(φ) is given by φ1φ2, i.e., the Hecke operators

Sπv
= [Kf

(
πv 0
0 πv

)
Kf ] act on it by multiplication by (φ1φ2)(Pv).
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Property (E1) allows us to define the denominator (ideal) of Eis(φ), given by

δ(Eis(φ)) := {a ∈ R : a · Eis(φ) ∈ H̃1(SKf
,R)}.

Under certain conditions we prove in [Ber06a] that δ(Eis(φ)) ⊂ (Lalg(0, φ1/φ2)),
i.e., that the denominator is bounded from below by the special L-value.

Suppose now that we are given a Hecke character χ of infinity type z2 such that
χc = χ. Assume that the conductor M of χ is coprime to (p). We would like to
find a pair of characters φ = (φ1, φ2) with χ = φ1/φ2 such that

(φ1) the conductor M1 of φ1 is coprime to (p)M, and p - #(O/M1)
∗,

(φ2) dF | #O/M1 and

v |M1 ⇒ v = v and #Ov/Pv 6≡ ±1 mod p,

and such that the class Eis(φ) satisfies

(E5) δ(Eis(φ)) ⊆ (Lalg(0, χ)).

Remark. In Section 7 property (φ2) will allow us to apply Lemma 2 to prove a

lower bound for the Selmer group Sel∅(F, χpε) starting from Theorem 6.

Write ωF/Q for the quadratic Hecke character associated to the extension F/Q
and τ(χ̃) for the Gauss sum of the unitary character χ̃ := χ/|χ|. From the proof of
Theorem 29(ii) of [Ber06a] we deduce:

Theorem 9 ([Ber06a] Theorem 29). Assume that no ramified primes (or 2 if
F = Q(

√
−3)) divide M and no inert primes congruent to −1 mod p divide M

with multiplicity one, and that

ωF/Q(M)
τ(χ̃)√
Nm(M)

= 1.

Then there exists a character φ = (φ1, φ2) satisfying (φ1) and (φ2) such that (E5)
holds for Eis(φ).

We lastly need the following assumption:

(H) Assume that there exists c ∈ H̃1(SKf
,R) with

res(c) = res(Eis(φ)) ∈ H̃1(∂SKf
,R).

This hypothesis is satisfied, for example, if H2
c (SKf

,R) has no torsion. By Lefschetz
duality (see [Gre67] (28.18) or [Mau80] Theorem 5.4.13)

H2
c (SKf

,R) ∼= H1(SKf
,R),

so the occurrence of torsion reduces to the problem of torsion in Γab for arith-
metic subgroups Γ ⊂ G(Q). This has been studied in [EGM82], [SV83], and
[GS93] (see also [EGM98] §7.5). An arithmetic interpretation or explanation for
the torsion has not been found yet in general (but see [EGM82] for examples in
the case of Q(

√
−1)). Based on computer calculations [GS93] (2) suggests that for

Γ ⊂ PSL2(O) apart from 2 and 3 only primes less than or equal to 1
2 [PSL2(O) : Γ]

occur in the torsion of Γab. In all cases calculated so far, PSL2(O)ab has only 2 or
3-torsion (see also [Swa71], [Ber06b]) but this is not known in general, hence our
different approach in the following section. Even restricting to the ordinary part
there can be torsion, see [Tay]§4. In the following section we will prove:
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Theorem 10. Let χ be an unramified Hecke character of infinity type z2. Then
(H) is satisfied.

The main result of this section is the following bound on the congruence module
introduced in the previous section:

Theorem 11. Assume in addition to the assumptions on χ in Theorem 9 that
p - #(O/M)∗ and that (H) holds. Then for φ given by Theorem 9 there is an
R-algebra surjection

T/Iφ � R/
(
Lalg(0, χ)

)
.

Remark. The condition p - #(O/MdF )∗ can be weakened to the order of χ|Ô∗

being coprime to p, see [Ber05] §6.1.

By Lemma 1 unramified characters χ satisfy χc = χ, so we deduce:

Corollary 12. Let χ be an unramified Hecke character of infinity type z2. Then
for φ given by Theorem 9 there is an R-algebra surjection

T/Iφ � R/
(
Lalg(0, χ)

)
.

�

Proof of Theorem 11. By [Urb98] §1.2 and §1.4.5 we have an R-linear action of the
ray class group ClMM1

(F ) on H1(SKf
,C) via the diamond operators Sπv

. Here we
use that

Kf ⊃ K(MM1) :=

{(
a b
c d

)
∈ GL2(Ô) :

(
a b
c d

)
≡
(

1 0
0 1

)
mod MM1

}
.

By (φ1) and the assumption that p - #(O/M)∗, the ray class group has order
prime to p, so R[ClMM1

(F )] is semisimple. For ω := φ1φ2, which can be viewed
as a character of ClMM1

(F ), let eω be the idempotent associated to ω, so that
Sveω = ω(πv)eω.

Under the Eichler-Shimura-Harder isomorphism (see (2)) we have

eωH1
! (SKf

,C) ∼= S2(Kf , ω,C).

Hence the Hecke algebra T from Section 4 is isomorphic to the R-subalgebra of

EndR(eωH̃1
! (SKf

,R))

generated by the Hecke operators Tπv
for all primes v /∈ Σφ and we will identify

the two.
Recall the long exact sequence

. . .→ H1
c (SKf

, R)→ H1(SKf
, R)

res→ H1(∂SKf
, R)→ H2

c (SKf
, R)→ . . .

for any R-algebra R.

Note that for c ∈ H̃1(SKf
,R) given by (H) we have

res(eωc) = eωres(c) = eωres(Eis(φ)) = res(Eis(φ))

since Sv(Eis(φ)) = ω(πv)Eis(φ) by (E4).
Without loss of generality, we can assume that δ(Eis(φ)) ( R; there is nothing

to prove otherwise by (E5). Let δ be a generator of δ(Eis(φ)). Then δ ·Eis(φ) is an

element of an R-basis of eωH̃1(SKf
,R). By construction, c0 := δ · (eωc−Eis(φ)) ∈
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eωH1
! (SKf

, L) is a nontrivial element of an R-basis of eωH̃1
! (SKf

,R). Extend c0 to

an R-basis c0, c1, . . . cd of eωH̃1
! (SKf

,R). For each t ∈ T write

t(c0) =

d∑

i=0

ai(t)ci, ai(t) ∈ R.

Then

(4) T→ R/(δ), t 7→ a0(t) mod δ

is an R-module surjection. We claim that it is independent of the R-basis chosen
and that it is a homomorphism of R-algebras with the Eisenstein ideal Iφ con-
tained in its kernel. To prove this it suffices to check that each a0(Tπv

− φ2(Pv)−
Nm(Pv)φ1(Pv)), v /∈ Σφ is contained in δR. This is an easy calculation using (E3).
Since R/(δ) � R/(Lalg(0, χ)) by (E5), this concludes the proof of the theorem.

�

6. The case of unramified characters

In this section we will prove Theorem 10, i.e., show the existence of an integral
lift of the constant term of the Eisenstein cohomology class Eis(φ). Our strategy
is to find an involution on the boundary cohomology such that (for each connected
component of SKf

)

H1(Γ\H3,R)
res
� H1(∂(Γ\H3),R)−,

where the superscript ‘-’ indicates the −1-eigenspace of this involution. We prove
the existence of such an involution for all maximal arithmetic subgroups of SL2(F ),
extending a result of Serre for SL2(O). Theorem 10 is then proven by showing that
res(Eis(φ)) lies in this −1-eigenspace.

6.1. Involutions and the image of the restriction map. In this section we
work with a general arithmetic subgroup Γ. Assuming that we have an orientation-
reversing involution on Γ\H3 such that

H1(Γ\H3,R)
res→ H1(∂(Γ\H3),R)−

we show that the map is, in fact, surjective. The existence of such an involution
will be shown for maximal arithmetic subgroups in the following sections. We first
recall:

Theorem 13 (Poincaré and Lefschetz duality). Suppose Γ ⊂ G(Q) is an arithmetic
subgroup. Let R be a Dedekind domain in which 2 and 3 are invertible. Let ι be an
orientation-reversing involution on Γ\H3. Denoting by a superscript + (resp. −)
the +1-(resp. −1-) eigenspaces for the induced involutions on cohomology groups,
we have perfect pairings

Hr
c (Γ\H3, R)± ×H3−r(Γ\H3, R)∓ → R for 0 ≤ r ≤ 3

and

Hr(∂(Γ\H3), R)± ×H2−r(∂(Γ\H3), R)∓ → R for 0 ≤ r ≤ 2.

Furthermore, the maps in the exact sequence

H1(Γ\H3, R)
res−−→ H1(∂(Γ\H3), R)

∂−→ H2
c (Γ\H3, R)
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are adjoint, i.e.,

〈res(x), y〉 = 〈x, ∂(y)〉.
References. Serre states this in the proof of Lemma 11 in [Ser70] for field coefficients,
[AS86] Lemma 1.4.3 proves the perfectness for fields R and [Urb95] Theorem 1.6
for Dedekind domains as above. Other references for this Lefschetz or “relative”
Poincaré duality for oriented manifolds with boundary are [May99] Chapter 21, §4
and [Gre67] (28.18). The pairings are given by the cup product and evaluation on
the respective fundamental classes. We use that H3 is an oriented manifold with
boundary and that Γ acts on it properly discontinuously and without reversing
orientation. The lemma in [Fel00] §1.1 shows that the order of any finite subgroup
of G(Q) is divisible only by 2 or 3. See also [Ber05] Theorem 5.1 and Lemma
5.2. �

Lemma 14. Suppose in addition to the conditions of the previous theorem that R
is a complete discrete valuation ring with finite residue field of characteristic p > 2.
Suppose that we have an involution ι as in the lemma such that

H1(Γ\H3, R)
res→ H1(∂(Γ\H3), R)ε,

where ε = +1 or −1. Then, in fact, the restriction map is surjective.

Proof. Let m denote the maximal ideal of R. Since the cohomology modules are
finitely generated (so the Mittag-Leffler condition is satisfied for lim←−H1(·, R/mr)),

it suffices to prove the surjectivity for each r ∈ N of

H1(Γ\H3, R/mr) � H1(∂(Γ\H3), R/mr)ε.

For these coefficient systems we are dealing with finite groups and can count the
number of elements in the image and the eigenspace of the involution; they turn out
to be the same. We observe that H1(∂(Γ\H3), R/mr) = H1(∂(Γ\H3), R/mr)+ ⊕
H1(∂(Γ\H3), R/mr)− and that, by the last lemma,

#H1(∂(Γ\H3), R/mr)+ = #H1(∂(Γ\H3), R/mr)−.

Similarly we deduce from the adjointness of res and ∂ and the perfectness of the
pairings that im(res)⊥ = im(res) and so

#im(res) =
1

2
#H1(∂(Γ\H3), R/mr).

�

6.2. Involutions for maximal arithmetic subgroups of SL2(F ). For η ∈ G(Q)
let Bη be the parabolic subgroup defined by Bη(Q) = η−1B(Q)η. For a general
arithmetic subgroup Γ ⊂ G(Q), the set {Bη : [η] ∈ B(Q)\G(Q)/Γ} is a set of
representatives for the Γ-conjugacy classes of Borel subgroups. The group U η is
the unipotent radical of Bη . For D ∈ P1(F ) let ΓD = Γ ∩ UD, where UD is the
unipotent subgroup of SL2(F ) fixing D. Note that if Dη ∈ P1(F ) corresponds to
[η] ∈ B(Q)\G(Q) under the isomorphism of B(Q)\G(Q) ∼= P1(F ) given by right
action on [0 : 1] ∈ P1(F ) we have that UDη

= Uη(Q) and ΓDη
= Γ∩Uη(Q) = ΓUη .

Let U(Γ) be the direct sum ⊕[D]∈P1(F )/ΓΓD. Up to canonical isomorphism this is

independent of the choice of representatives [D] ∈ P1(F )/Γ. The inclusion ΓD → Γ
defines a homomorphism

α : U(Γ)→ Γab.
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We first make the following observation that links U(Γ) to the cohomology of
the boundary components:

Lemma 15. For imaginary quadratic fields F other than Q(
√
−1) or Q(

√
−3),

Γ ⊂ SL2(F ) an arithmetic subgroup, P a parabolic subgroup of ResF/Q(SL2/F ) with
unipotent radical UP , and R a ring in which 2 is invertible we have

H1(ΓP , R) ∼= H1(ΓUP
, R),

where ΓP = Γ ∩ P (Q) and ΓUP
= Γ ∩ UP (Q).

Proof. Serre shows in [Ser70] Lemme 7 that ΓUP
/ ΓP and that the quotient WP =

ΓP /ΓUP
can be identified with a subgroup of the roots of unity of F , i.e., of {±1}

since F 6= Q(
√
−1),Q(

√
−3). The Lemma follows from the Inflation-Restriction

sequence. See also [Tay] p.110. �

By (1), (3), and Lemma 15 we have

(5) H1(∂(Γ\H3), R) ∼=
∐

[η]∈P1(F )/Γ

H1(ΓUη , R) = H1(U(Γ), R).

We want to study the kernel of α for maximal arithmetic subgroups of SL2(F ).
Any such is conjugate to one of the following groups (see [EGM98] Prop. 7.4.5):
For b be a fractional ideal let

H(b) := {
(

a b
c d

)
∈ SL2(F )|a, d ∈ O, b ∈ b, c ∈ b−1}.

In order to study the structure of U(H(b)) we define j : P1(F ) → Cl(F ) to be
the map

j([z1 : z2]) = [z1b + z2O].

Theorem 16. For Γ = H(b), the induced map

j : P1(F )/Γ→ Cl(F )

is a bijection.

Proof. Let (x1, x2), (y1, y2) ∈ F × F . It is easy to check (see [EGM98] Theorem
VII 2.4 for SL2(O), [Ber05] Lemma 5.10 for the general case) that the following are
equivalent:

(1) x1b + x2O = y1b + y2O.
(2) There exists σ ∈ H(b) such that (x1, x2) = (y1, y2)σ.
It remains to show the surjectivity of j. Given a class in Cl(F ) take a ⊂ O

representing it. By the Chinese Remainder Theorem one can choose z2 ∈ O such
that

• ord℘(z2) = ord℘(a) if ℘|a.
• ord℘(z2) = 0 if ℘ - a, ord℘(b) 6= 0.

Then one chooses z1 such that

• ord℘(z1b) > ord℘(z2) if ℘|a or ord℘(b) 6= 0.
• ord℘(z1b) = 0 if ℘|z2, ℘ - a, and ord℘(b) = 0.

These choices ensure that ord℘(z1b + z2O) = ord℘(a) for all prime ideals ℘.
�

Following Serre we now calculate explicitely Γ[z1:z2] for Γ = H(b) and [z1 : z2] ∈
P1(F ).



16 TOBIAS BERGER

Lemma 17. For Γ = H(b), Γ[z1:z2] is conjugate in H(b) to

{θ
(

1 t
0 1

)
θ−1 : t ∈ a−2b},

where a = z1b + z2O and θ is an isomorphism O⊕ b
∼→ a⊕ a−1b of determinant 1,

i.e., such that its second exterior power

Λ2θ : Λ2(O ⊕ b) = b→ Λ2(a⊕ a−1b) = a⊗ a−1b = b

is the identity.

Proof. The main change to [Ser70] §3.6 is that we consider the lattice L := O ⊕
b instead of O2. We claim there exists a projective rank 1 submodule E of L
containing a multiple of (z1, z2). Let E be the kernel of the O-homomorphism
L = O⊕ b→ F given by (x, y) 7→ yz1 − xz2. Since the image is a = z1b + z2O, we
get L/E ∼= a, so L/E is projective of rank 1 and L decomposes as E ⊕ L/E.

By definition Γ[z1:z2] fixes L ∩ {λ(z1, z2), λ ∈ F}, but this is exactly E. Since
Γ[z1:z2] is unipotent it can therefore be identified with HomO(L/E, E). For any

fractional ideal a, Λ2(a) = 0 and so b = Λ2(L) = Λ2(E ⊕ L/E) = E ⊗O L/E so
E is isomorphic to (L/E)−1 ⊗ b. This implies an isomorphism HomO(L/E, E) =
(L/E)−1⊗E ∼= (L/E)−1⊗(L/E)−1⊗b ∼= a−2b. Choosing an isomorphism θ : L→
L/E⊕E ∼= a⊕a−1b of determinant 1 we can represent Γ[z1:z2] as stated above. �

For Γ = SL2(O) [Ser70] shows (by choosing an appropriate set of representatives
of P1(F )/SL2(O) ∼= Cl(F )) that there is a well-defined action of complex conju-
gation on U(SL2(O)) induced by the complex conjugation action on the matrix
entries of G∞ = GL2(C). Denoting by U+ the set of elements of U(SL2(O)) invari-
ant under the involution and by U ′ the set of elements u + u for u ∈ U(SL2(O)),
the result is as follows:

Theorem 18 (Serre [Ser70] Théorème 9). For imaginary quadratic fields F other
than Q(

√
−1) or Q(

√
−3) the kernel of the homomorphism α : U(SL2(O)) →

SL2(O)ab satisfies the inclusions

6U ′ ⊆ ker(α) ⊆ U+.

It is this theorem that we want to generalize to H(b). After we had discovered
this generalization we found out that it had already been stated in [BN92], but for
our application we need more detail than is provided there.

Note that since H(b) is the stabilizer of any lattice m⊕n with m and n fractional
ideals of F such that m−1n = b, one can deduce

Lemma 19. Let a, b be two fractional ideals of F . If [a] = [b] in Cl(F )/Cl(F )2,
then H(a) = H(b)γ with γ ∈ GL2(F ). If the fractional ideals differ by the square
of an O-ideal, then γ can be taken to be in SL2(F ).

If the class of b in Cl(F ) is a square, H(b) is isomorphic to SL2(O) by Lemma
19, and the involution on U(SL2(O)) induced by complex conjugation and Serre’s
Théorème 9 can easily be transferred to U(H(b)). We therefore turn our attention
to the case when

[b] is not a square in Cl(F ).

Note that this implies that [b] has even order, since any odd order class can be
written as a square.
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Define an involution on H(b) to be the composition of complex conjugation with
an Atkin-Lehner involution, i.e., by

H =

(
a b
c d

)
7→ AHA−1 =

(
d −Nm(b)c

−bNm(b)−1 a

)
,

where A =

(
0 1

−Nm(b)−1 0

)
.

Like Serre, we will choose a set of representatives for the cusps P1(F )/H(b)
on which this involution acts. For this we observe that if Γ[z1:z2] fixes [z1 : z2]

then AΓ[z1:z2]A
−1 fixes [z1 : z2]A

−1 = [z2 : −Nm(b)z1]. We use the isomorphism

j : P1(F )/H(b)→ Cl(F ) to show that this action on the cusps is fixpoint-free. We
observe that if j([z1 : z2]) = a then j([z1 : z2]A

−1) = [z2b + Nm(b)z1O] = [ab].
Note that [a] 6= [ab] in Cl(F ) since otherwise [a2] = [Nm(a)b] = [b], i.e., [b] a square,
contradicting our hypothesis. So Cl(F ) can be partitioned into pairs (ai, aib).

Choosing [zi
1 : zi

2] ∈ P1(F ) such that ai = zi
1b + zi

2O we obtain

U(H(b)) =
⊕

(ai,aib)

(Γ[zi
1
:zi

2
] ⊕AΓ[zi

1
:zi

2
]A

−1).

Our choice of representatives of P1(F )/H(b) shows that the involution operates on

U(H(b)) and, in fact, by identifying Γ[zi
1
:zi

2
] with {θ

(
1 s
0 1

)
θ−1 : s ∈ a−2

i b} for

θ : O ⊕ b → ai ⊕ a−1
i b and AΓ[zi

1
:zi

2
]A

−1 with {θ′
(

1 0
−t 1

)
θ′−1 : t ∈ ai

−2b−1} for

θ′ = AθA−1 : O ⊕ b → ai
−1 ⊕ aib, we can describe the involution on each of the

pairs as

(s, t) ∈ a−2
i b⊕ ai

−2b−1 7→ (tNm(b), sNm(b)−1).

Now denote by U+ the set of elements of U(H(b)) invariant under the involution
H 7→ AHA−1, and by U ′ the set of elements u + AuA−1 for u ∈ U(H(b)).

Theorem 20. For Γ = H(b) with [b] a non-square in Cl(F ), the kernel N of the
homomorphism

α : U(Γ)→ Γab

coming from the inclusion ΓD ↪→ Γ for D ∈ P1(F ) satisfies 6U ′ ⊂ N ⊂ U+.

Proof. With small modifications, we follow Serre’s proof of his Théorème 9. As in
Serre’s case, it suffices to prove the inclusion 6U ′ ⊂ N , i.e., that 6(u + AuA−1)
maps to an element of the commutator [H(b), H(b)]:

Suppose that we have 6U ′ ⊂ N , but that there exists an element u ∈ N not
contained in U+. Then the subgroup of N generated by 6U ′ and u has rank
#Cl(F ) + 1. This contradicts the fact that the kernel of α has rank #Cl(F ) (see
[Ser70] Théorème 7). (The latter is proven by showing dually that the rank of the
image of the restriction map H1(H(b)\H3, R)→ H1(∂(H(b)\H3), R) has half the
rank of that of the boundary cohomology. This we showed in the proof of Lemma
14).

To prove 6U ′ ⊂ N we make use of Serre’s Proposition 6:
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Proposition 21 ([Ser70] Proposition 6). Let q be a fractional ideal of F and let

t ∈ q and t′ = t/Nm(q) so that t′ ∈ q−1. Put xt =

(
1 t
0 1

)
and yt =

(
1 0
−t′ 1

)
.

Then (xtyt)
6 lies in the commutator subgroup of H(q).

Put a := z1b + z2O. If u ∈ Γ[z1:z2], identify it with θ−1

(
1 t
0 1

)
θ for some

t ∈ a−2b and θ : O⊕b→ a⊕a−1b of determinant 1. One easily checks that AuA−1

then corresponds to (AθA−1)

(
1 0

−tNm(b)−1 1

)
(AθA−1). Like Serre, we use that

since [a] = [a−1], AuA−1 is also given by Theorem 16 by B−1θ−1

(
1 0
−t′ 1

)
θB for

t′ = tNm(b)−1Nm(a)2 and B ∈ H(b) taking

(
Nm(b)z2

z1

)
to Nm(a)−1

(
Nm(b)z2

z1

)
.

Since θ−1xtytθ is a representative of u+BAuA−1B−1, we deduce from the above
Proposition with q = a−2b that 6(u + BAuA−1B−1) and therefore 6(u + AuA−1)
lie in [H(b), H(b)]. �

Given an involution ι on ∂(Γ\H3) define an involution on H1(∂(Γ\H3), R) via
the pullback of ι on the level of singular cocycles. We now reinterpret Serre’s
Theorem and its generalization as follows:

Proposition 22. For imaginary quadratic fields F other than Q(
√
−1) or Q(

√
−3)

and R a ring in which 2 and 3 is invertible, the image of the restriction map

H1(Γ\H3, R)
res→ H1(∂(Γ\H3), R)

is contained in the −1-eigenspace of the involution induced by

• ι : H3 → H3 : (z, t) 7→ (z, t) if Γ = SL2(O)

• ι : H3 → H3 : (z, t) 7→ A.(z, t) for A =

(
0 1

−Nm(b)−1 0

)
if Γ = H(b) with

[b] a non-square in Cl(F ).

and these involutions are orientation-reversing.

By Lemma 14 this immediately implies:

Corollary 23. For imaginary quadratic fields F other than Q(
√
−1) or Q(

√
−3),

Γ = SL2(O) or H(b) with [b] a non-square in Cl(F ), and R a complete discrete
valuation ring in which 2 and 3 are invertible and with finite residue field of char-
acteristic p > 2, the restriction map

H1(Γ\H3, R)
res→ H1(∂(Γ\H3), R)−

surjects onto the −1-eigenspace of the involutions defined in the proposition.

Proof of Proposition. Write I : Γ→ Γ for the involution
{

γ 7→ γ if Γ = SL2(O),

γ 7→ AγA−1 if Γ = H(b).

The involutions ι extend canonically to H3. One checks that for γ ∈ Γ we have

(6) ι(γ.(z, t)) = I(γ)ι(z, t).

This implies that the involutions operate on Γ\H3 and Γ\H3, and hence on ∂(Γ\H3).
To show that they act by reversing the orientation note that complex conjugation
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corresponds to reflection in a half-plane of H3 and therefore reverses the orien-

tation. Furthermore, GL2(C) acts on H3 via A′ = (det(A)−
1

2 )A ∈ SL2(C) and
SL2(C) acts without reversing orientation, as can be seen from the geometric defi-
nition of its action via the Poincaré extension of the action on P1(C) (see [EGM98]
pp.2-3).

Using (6) one shows that under the isomorphism

H1(∂(Γ\H3), R)
(5)∼= H1(U(Γ), R)

ι corresponds to the involution on H1(U(Γ), R) = Hom(U(Γ), R) given by ϕ 7→
I(ϕ), where I(ϕ)(u) := ϕ(I(u)).

We can therefore check that the image of the restriction maps is contained in
the −1-eigenspace on the level of group cohomology: The restriction map is given
by

Hom(Γab, R)→ Hom(U(Γ), R) : ϕ 7→ ϕ ◦ α.

By Serre’s theorem and Theorem 20, 0 = ϕ(α(uI(u))) = ϕ(α(u)) + ϕ(α(I(u))), so
I(ϕ ◦ α)(u) = ϕ(α(I(u))) = −ϕ(α(u)) for any u ∈ U(Γ). �

6.3. Integral lift of constant term. We want to prove that if χ = φ1/φ2 is an
unramified character then we can lift the constant term of the Eisenstein cohomol-
ogy class to an integral class, i.e., that there exists c ∈ H̃1(SKf

,R) with the same
restriction to the boundary as the Eisenstein cohomology class Eis(φ).

First observe that everywhere unramified characters with infinity type z2 exist
only for F 6= Q(

√
−1),Q(

√
−3). For unramified χ we have

Kf =
∏

v|M1

U1(M1,v)
∏

v-M1

GL2(Ov).

Recall that U1(M1,v) = {k ∈ GL2(Ov) : det(k) ≡ 1 mod M1,v}. Since further-
more dF |M1 by (φ2) and dF > 4 we get Kf ∩GL2(F ) = SL2(O).

This implies that we can write SKf
as a disjoint union of Γ\H3 with Γ = H(b)

for suitable fractional ideals b: For a finite idele a, denote by (a) the corresponding
fractional ideal. We write

SKf
∼=

#π0(Kf )∐

i=1

Γti
\H3,

where Γti
= G(Q)∩ tiKf t−1

i and the ti ∈ G(Af ) are given by ti =

(
γjakbm 0

0 bm

)
,

with

• {γj} a system of representatives of

ker(π0(Kf )→ Cl(F )) ∼= O∗\
∏

v

O∗
v/det(Kf ),

• {ak} a set of representatives of Cl(F )/(Cl(F ))2 in A∗
F,f (and we represent

the principal ideals by (1)),
• {b2

m} a set representing Cl(F )2.

Note that for these choices Γti
= H((ak)) and either ak = 1 or [(ak)] is not

a square in Cl(F ). This allows us to apply our results for maximal arithmetic
subgroups from the previous sections by considering the restriction maps to the
boundary separately for each connected component.
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Proposition 24.

[res(Eis(Ψφ))] ∈ (H1(∂SKf
,R)−)free,

where H1(∂SKf
,R)− is defined via the isomorphism to

#π0(Kf )⊕

i=1

H1(∂(Γti
\H3),R)−

where ‘-’ indicates the −1-eigenspace of the involutions defined in Proposition 22.

Remark. Together with Corollary 23 this shows the existence of an integral lift of
the constant term and proves Theorem 10.

Proof. We will consider the restriction maps to the boundary separately for each
connected component Γti

\H3:

H1(Γti
\H3,R)

res→ H1(∂(Γti
\H3),R)

(1)∼=
⊕

[η]∈P1(F )/Γti

H1(Γti,Bη\H3,R),

where Γti,Bη = Γti
∩ η−1B(Q)η.

By (3) and Lemma 15 we have H1(Γti,Bη\H3,R) ∼= H1(Γti,Uη ,R). By Lemma
1, χc = χ, so L(0, χ) = L(0, χ) and we deduce from [Ber06a] Lemma 11 and
Proof of Proposition 16 that res(Eis(φ)) restricted to this boundary component is
represented by

(7) η−1
∞

(
1 x
0 1

)
η∞ 7→ xΨφ(ηf ti)− xΨw0.φ(ηf ti),

where ηf and η∞ denote the images of η ∈ G(Q) in G(Af ) and G(R), respectively,
w0.(φ1, φ2) = (φ2 · | · |, φ1 · | · |−1), and Ψφ : G(Af )→ C satisfies

Ψφ(

(
a b
0 d

)
k) = φ1(a)φ2(d) for

(
a b
0 d

)
∈ B(Af ), k ∈

∏

v

SL2(Ov) ⊂ Kf .

Note that, in particular, Ψφ(bg) = φ−1
∞ (b)Ψφ(g) for b ∈ B(F ) ⊂ G(Af ).

We need to prove that (7) lies in the −1-eigenspace of the involution induced
by u 7→ u for Γti

= SL2(O) and by u 7→ AuA−1 for Γti
= H(b), where A =(

0 1
−N−1 0

)
with N = Nm(b).

Case Γti
= SL2(O): Recall that in this case ti =

(
γibi 0
0 bi

)
for some γi ∈ Ô∗

and bi ∈ A∗
F,f .

It suffices to prove that Ψφ(ηf ti) = Ψw0.φ(ηf ti). For this we use the Bruhat
decomposition of matrices in GL2(F ) given by:

(
a b
c d

)
=





(
1 b/d

0 1

)(
a 0

0 d

)
if c = 0,

(
1 a/c

0 1

)(
ad−bc

c 0

0 −c

)(
0 1

−1 0

)(
1 d/c

0 1

)
otherwise.

Since Ψφ(

(
a b
0 d

)
g) = Ψφ(

(
a b
0 d

)
)Ψφ(g) we can consider separately the cases

(a) η =

(
a b
0 d

)
for a, b, d ∈ F and
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(b) η =

(
0 1
−1 0

)(
1 e
0 1

)
for e ∈ F .

We check that for (a)

Ψφ(ηf

(
γibi 0
0 bi

)
) = φ1(γibi)φ2(bi)Ψφ(ηf )

and

Ψw0.φ(ηf

(
γibi 0
0 bi

)
) = φ2(γi)|γi|φ1(bi)φ2(bi)Ψw0.φ(ηf ).

Since γi ∈ Ô∗ and χ = φ1/φ2 is unramified it suffices to show that Ψφ(ηf ) =
Ψw0.φ(ηf ). In case (b) we similarly reduce to this assertion.

In (a) we get Ψφ(ηf ) = φ−1
1,∞(a)φ−1

2,∞(d) = d
a . Since w0.φ has infinity type (z, z−1)

this equals Ψw0.φ(ηf ). In (b) we need to calculate the Iwasawa decomposition of η
in GL2(Fv) if e /∈ Ov (at all other places Ψφ(ηv) = Ψw0.φ(ηv) = 1). It is given by

(
0 1
−1 0

)(
1 e
0 1

)
=

(
e−1 0
0 e

)(
−1 0
−e−1 −1

)
.

So, if e /∈ Ov then Ψφ(ηv) = (φ2/φ1)v(e) = χ−1
v (e), which we claim matches

Ψw0.φ(ηv) = (φ1/φ2)v(e)|e|−2
v . This follows from χc = χ and χχ = | · |2.

Case Γti
= H(b): The involution maps the cusp corresponding to Bη to BηA−1

.
We therefore have to prove that

(8) Ψφ(ηf ti) = Ψw0.φ(ηfA−1ti).

Recall that ti =

(
xibi 0
0 bi

)
for some xi, bi ∈ A∗

F,f . Again making use of the Bruhat

decomposition, we need to only consider η as in cases (a) and (b) above. Following
the arguments used for Case (1), Case(a) reduces immediately to showing that
Ψφ(ti) = Ψw0.φ(A−1ti). The left hand side equals φ1,f (xibi)φ2,f (bi), the right hand
side is

Ψw0.φ(

(
N 0
0 1

)(
0 1
−1 0

)(
xibi 0
0 bi

)
) = N−1Ψw0.φ(

(
bi 0
0 xibi

)
)

= N−1φ1,f (xibi)φ2,f (bi)|xi|−1
f .

Equality follows from |xi|−1
f = Nm(b).

For (b), one quickly checks that for η =

(
0 1
−1 0

)
the two sides in (8) agree.

For general η =

(
0 1
−1 0

)(
1 e
0 1

)
one shows that, on the one hand,

ηf

(
xibi 0
0 bi

)
=

(
bi 0
0 xibi

)(
0 1
−1 0

)(
1 exi

0 1

)
,

and on the other hand,

ηfA−1

(
xibi 0
0 bi

)
=

(
xibi 0
0 biN

)(
0 1
−1 0

)(
1 exi/N
0 1

)
.

Since (xixi) = (N) the valuations of exi/N agrees with that of exi. Repeating
the calculation for η = w0 and then applying the argument from Case 1(b) (since
χ is unramified we are only concerned about the valuation of the upper right hand
entry) we also obtain equality.
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�

7. Bloch-Kato Conjecture for Hecke characters

Combining the results of the previous sections we get lower bounds on the size
of Selmer groups of certain Hecke characters. We want to state this application
and relate it to the Bloch-Kato conjecture.

Theorem 25. Assume that p satisfies the conditions from the beginning of Section
5. If p is inert in F/Q then assume Conjecture 5. Let χ be an unramified Hecke
character of infinity type z2. Then

valp#Sel(F, χpε) ≥ valp(#R/Lalg(0, χ))

Proof. Put ρ := χpε. Theorem 6 and Corollary 12 imply

valp#SelΣφ\Σρ(F, χpε) ≥ valp(#R/Lalg(0, χ)),

where Σρ = {v | p}.
Recall that by (φ2) the set Σφ\{v | p} for the characters φi of Theorem 11

contains only places v such that v = v and #Ov/Pv 6≡ ±1 mod p. By Lemma 1
we have χc = χ, which implies that ρ is anticyclotomic, and so we get ρ(Frobv) =
ρ(Frobc

v) = ρ−1(Frobv), or ρ(Frobv) = ±1. Hence we have ensured that

ρ(Frobv) 6≡ ε(Frobv) mod p

for all v ∈ Σφ\Σρ so the theorem follows from applying Lemma 2. �

Example 26. A numerical example in which the conditions of our Theorem are
satisfied and a non-trivial lower bound on a Selmer group is obtained is given by the
following: Let F = Q(

√
−67) and p = 19. One checks that 19 splits in F . Since the

class number is 1, there is only one unramified Hecke character of infinity type z2.

Up to p-adic units Lalg(0, χ) is given by L(0,χ)
Ω2 where Ω is the Neron period of the

elliptic curve y2 + y = x3 − 7370x + 243582, which has conductor 672 and complex
multiplication by O. Using MAGMA and ComputeL [Dok04] one calculates that
Lalg(0, χ) ∈ Z19 and

val19(L
alg(0, χ)) = 1.

7.1. Comparison with other results. Assume from now on that #Cl(F ) = 1.
Let

Ψ : F ∗\A∗
F → C∗

be a Hecke character of infinity type z−1 which satisfies Ψc = Ψ. Then there
exists an elliptic curve E over Q with complex multiplication by O and associated
Grössencharacter Ψ. Consider

ρ = (ΨkΨ−j)p for k > 0, j ≥ 0.

We now have the following proposition from [Dee99] (Proposition 4.4.3 and §5.3):

Proposition 27 (Dee). The group Sel(F, ρ) is finite if and only if Sel(F, ρ−1ε) is
finite. If this is the case then

#Sel(F, ρ) = #Sel(F, ρ−1ε) <∞.

Since χ can be written as Ψ−2 for some Ψ as above, compare therefore Theorem
25 with the following result:
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Theorem 28 (Han, [Han97]). Suppose k > j + 1. For inert p also assume that ρ
is non-trivial when restricted to Gal(F (Ep)/F ). Then Sel(F, ρ) is finite and

valp#Sel(F, ρ) = valp(#R/Lalg(0, Ψ−kΨ
j
)).

Previously, Kato proved this in the case k > 0 and j = 0, cf. [Kat93]. For a
similar result in the case of split p see [Guo93]. Han claims that his method extends
to general class numbers. All proofs take as input the proof of the Main Conjecture
of Iwasawa theory by Rubin [Rub91].

We refer to [Guo96] §3 for the proof that these statements on the size of Selmer
groups are equivalent to the (critical cases of the) p-part of the Bloch-Kato Tama-
gawa number conjectures for the motives associated to the Hecke characters.

For cases of the Bloch-Kato conjecture when the Selmer groups are infinite see
[BC04]. Their method is similar to ours in that they use congruences between
Eisenstein series and cuspforms, however, they work with p-adic families on U(3).
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