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Abstract. We determine the number of irreducible components of the re-

duction mod p of any Hilbert-Blumenthal moduli space with a parahoric level

structure, where p is unramified in the totally real field.

1. Introduction

In their 1984 paper [1], Brylinski and Labesse computed the L-factors of Hilbert-
Blumenthal moduli spaces for almost all good places. By that time the arithmetic
minimal compactification was not known. In [2] Chai furnished the desired minimal
compactification by observing that Rapoport’s arithmetic toroidal compactification
[23] plays the crucial role. Thus, the results of Brylinski and Labesse have been
improved for all good places (see [7, p. 137]). A next task is to treat the case
where p is unramified and the level group Kp at p is a standard Iwahoric subgroup.
This moduli space is studied in Stamm [28], following the works of Zink [35] and
of Rapoport-Zink [24]. Several local properties on geometry as well as fine global
descriptions of the surface case have been obtained in loc. cit. In this paper we
settle a global problem concerning the irreducibility in this moduli space.

Let p be a fixed rational prime. Let F be a totally real number field of degree g
and OF the ring of integers. Let n ≥ 3 be a prime-to-p integer. Choose a primitive
n-th root ζn of unity in Q ⊂ C and an embedding Q ↪→ Qp. Let (L,L+) be a
rank one projective OF -module with a notion of positivity. Let M(L,L+),n denote
the moduli space over Z(p)[ζn] that parametrizes equivalence classes of objects A =
(A, i, ι, η) over a locally Noetherian Z(p)[ζn]-scheme S, where

• A is an abelian scheme of relative dimension g;
• ι : OF → EndS(A) is a ring monomorphism;
• i : (L,L+)S → (P(A),P(A)+) is a morphism of étale sheaves such that the

induced morphism

(1.1) L⊗OF
A→ At

is an isomorphism, where (P(A),P(A)+) is the polarization sheaf of A (see
[5]);

• η : (OF /nOF )2S ' A[n] is an OF -linear isomorphism such that the pull
back of the Weil pairing ei(λ0) is the standard pairing on (OF /nOF )2 with

respect to ζn, where λ0 is any element in L+ such that |L/OFλ0| is prime
to pn.

It is proved in Rapoport [23] and Deligne-Pappas [5] that
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Theorem 1.1 (Rapoport, Deligne-Pappas). The fibers ofM(L,L+),n → Spec Z(p)[ζn]
are geometrically irreducible.

In the paper we consider the Iwahoric level structureM(L,L+),Γ0(p),n overM(L,L+),n

where M(L,L+),n has good reduction at p. The goal is to determine the set

Π0(M(L,L+),Γ0(p),n ⊗ Fp) of the irreducible components. We write Π0(X) for the
set of irreducible components of a Noetherian scheme X ; we only consider the set
Π0(X ⊗ K) of geometrically irreducible components if X is of finite type over a
field K.

Assume that p is unramified in F . LetM(L,L+),Γ0(p),n denote the moduli space
over Z(p)[ζn] that parametrizes equivalence classes of objects (A, i, ι,H, η), where

• (A, i, ι, η) is in M(L,L+),n, and
• H ⊂ A[p] is a finite flat rank pg subgroup scheme which is invariant under

the action of OF and maximally isotropic with respect to the Weil pairing
ei(λ0) as above.

Write M := M(L,L+),n ⊗ Fp and MΓ0(p) := M(L,L+),Γ0(p),n ⊗ Fp through this
paper. We will state our main results concerning the number |Π0(MΓ0(p))| in the
next section. We describe them together with background and methods. See The-
orem 2.7 and Theorem 5.1 for the precise statement.

The method in this paper is completely different from that used in [32] for the
Siegel moduli spaces. In the previous paper the proof is based on the Faltings-Chai
theorem on the p-adic monodromy for the ordinary locus [7] and a theorem proved
by Ngô and Genestier [16] that the ordinary locus is dense in the parahoric level
moduli spaces. The latter is obtained by analyzing the Kottwitz-Rapoport stratifi-
cation introduced in [12].

For the present situation, the ordinary locus is no longer dense, as has been
pointed out in Stamm [28] in the surface case. Thus Ribet’s p-adic monodromy
result [25] can only conclude the irreducibility for ordinary components. One may
need to establish a similar result of p-adic monodromy for smaller p-adic invari-
ant strata in M, which is not available yet. However, even though we can prove
these p-adic monodromy results, one still cannot conclude the irreducibility for non-
ordinary components using the standard p-adic monodromy argument. The reason
is that the forgetful morphism f :MΓ0(p) →M has fibration over smaller strata.
Furthermore, we do not have yet geometric properties for Kottwitz-Rapoport strata
ofMΓ0(p) along the direction of work of Ngô-Genestier [16].

To overcome these new difficulties, we stratify the moduli space by a suitable
p-adic invariant:

MΓ0(p) =
∐

α

MΓ0(p),α.

Then we study the corresponding discrete Hecke orbit problem, namely asking
whether the prime-to-pHecke correspondences operate transitively on the set Π0(MΓ0(p),α).
This discrete Hecke orbit problem, though itself does not have an affirmative an-
swer, can be refined through the computation of the fibers of the stratified morphism
fα : MΓ0(p),α → Mα, and is reduced to the discrete Hecke orbit problem for the
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set Π0(Mα) of irreducible components for the base. The former one can be done
using Dieudonné calculus, for which the present computation (see Sections 3 and
4) is largely based on the work [30].

The next crucial ingredient is Chai’s monodromy theorem on Hecke invariant
subvarieties. This is a global method which may be regarded as the counterpart
of the p-adic monodromy method. Its original form for Siegel moduli spaces is
developed by Chai [4]. Chai’s method works for all modular variety of PEL-type,
with the modification where the reductive group in the Shimura input data should
be replaced by the simply-connected cover of its derived group [4, p. 291]. We
supply the proof due to Chai in Section 6 for the reader’s convenience. This ingre-
dient enables us to confirm the irreducibility in the non-supersingular contribution
(components those are not supersingular). To treat the remaining supersingular
contribution, the tool is essentially the result that the Tamagawa number is one
for semi-simple, simply-connected algebraic groups [11]. The present cases heavily
rely on the computations for the geometric mass formula in [33], which is based on
a work [26] of Shimura.

The paper is organized as follows. In Section 2 we describe the main theorems
and provide the methods and ingredients. In Section 3 we give the proofs of the
theorems. In Section 4 we treat the supersingular contribution. To make the
exposition clean and more accessible, we assume p inert in F in these sections.
In Sections 5 we show how to establish the analogous results in the unramified
situation from the inert case. Section 6 provides a proof of Chai’s result on Hecke
invariant subvarieties. We attempt to write this as an independent section so that
the reader can read this section alone together with Chai’s well written paper [4].

2. Statements and methods

2.1. We keep the notation as in the previous section. Let k be an algebraically
closed field of characteristic p. We will assume in Sections 2-4 that p is inert in F .
Write f :MΓ0(p) →M the forgetful morphism; it is a proper surjective morphism.

Introduce the alpha stratification as in [8] and [30, Section 3] and decompose the
moduli spaces into strata

M =
∐
Ma, and fa :MΓ0(p),a →Ma.

It is proved in Goren and Oort [8] that each stratum Ma is smooth, quasi-affine,

of pure dimension g − |a|, and that the Zariski closure of Ma inM is smooth and

Ma = ∪a′�aMa′ .

We recall the alpha type associated to objects in M(k). Let W := W (k) be
the ring of Witt vectors over k and σ the absolute Frobenius map on W . Put
O := OF ⊗ Zp and let I := Hom(O,W ) = {σi} be the set of embeddings, arranged
in a way that σσi = σi+1 for i ∈ Z/gZ. Let A = (A, ι) be an abelian OF -variety
over k. and let M be the associated covariant Dieudonné O-module. The alpha
type of A is defined to be

a(A) := a(M) := (ai)i∈Z/gZ, where ai := dimk(M/(F, V )M)i,
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Here (M/(F, V )M)i denotes the σi-component of the k-vector space M/(F, V )M .

If A is a point inM(k), then a(A) is an element in {0, 1}I. For each a ∈ {0, 1}I,
let Ma denote the stratum of M consisting of points with alpha type a. It is

known [8] that every alpha stratumMa is non-empty. Let ∆ := {0, 1}I be the set
of possible alpha types. The partial order on ∆ is given by a′ � a if and only if
a′i ≥ ai for all i ∈ Z/gZ. In [30, Section 2] an alpha type a = (ai)i ∈ ∆ is called
generic if aiai+1 = 0 for all i ∈ Z/gZ. This notion was first introduced by Goren
and Oort [8] in which it is called spaced. It is proved in [30, Section 6] that the
alpha type of any maximal point of a Newton stratum of M is generic.

In this paper we prove

Theorem 2.1. We have dimMΓ0(p),a = g if and only if a is of generic type.

Let ∆gen ⊂ ∆ denote the set of generic alpha types. Denote by τ(a) ⊂ Z/gZ,
for a = (ai) ∈ ∆, the subset consisting of elements i such that ai = 1. The subset
τ(a) is called the alpha index corresponding to a. Write τ(a) = {n1, . . . na} with
0 ≤ ni < ni+1 < g and put na+1 = g + n1. Define the function w : ∆→ Z by

(2.1) w(a) := w(τ(a)) :=

{
2 if τ(a) = ∅;∏a

j=1(nj+1 − nj − 1) otherwise.

It is clear that w(a) > 0 if and only if a ∈ ∆gen.

Theorem 2.2. Let a be a generic alpha type.
(1) For any point x ∈ Ma(k), the fiber f−1(x) has w(a) irreducible components

of dimension |a|.
(2) The subscheme MΓ0(p),a has w(a)|Π0(Ma)| irreducible components of di-

mension g.

Since the moduli spaceMΓ0(p) is equi-dimensional of dimension g [28, Theorem
1, p. 407], we have obtained

(2.2) |Π0(MΓ0(p))| =
∑

a∈∆gen

w(a)|Π0(Ma)|.

The next step to consider the `-adic Hecke correspondences operating on the set
Π0(Ma) of irreducible components, where ` 6= p is a prime.

For any non-negative integer m ≥ 0, let H`,m be the moduli space over Fp that
parametrizes equivalence classes of objects (Aj = (Aj , ij , ιj , ηj), j = 1, 2, 3;ϕ1, ϕ2)
as the diagram

A1
ϕ1

←−−−− A3
ϕ2

−−−−→ A2,

where

• A1 and A2 are objects inM, and A3 is a g-dimensional abelian OF -variety
with a class of polarizations and a symplectic level-n structure as defined
in Section 1 but the condition (1.1) is not required;

• the morphisms ϕ1 and ϕ2 are OF -linear isogenies of degree `m such that
ϕ∗

j ij = i3 and ϕj,∗η3 = ηj for j = 1, 2.

Let H` := ∪m≥0H`,m. An `-adic Hecke correspondence is given by an irreducible
component H of H` together with natural projections pr1 and pr2. A subset Z
of M is called `-adic Hecke invariant if pr2(pr−1

1 (Z)) ⊂ Z for any `-adic Hecke
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correspondence (H, pr1, pr2). If Z is an `-adic Hecke invariant, locally closed subset
of M, then the `-adic Hecke correspondences induce correspondences on the set
Π0(Z) of irreducible components. We call Π0(Z) `-adic Hecke transitive if the
`-adic Hecke correspondences operate transitively on Π0(Z). The discrete Hecke
problem for any `-adic Hecke invariant subscheme Z is asking whether Π0(Z) is
`-adic Hecke transitive.

Theorem 2.3 (Chai). Let Z be an `-adic Hecke invariant subscheme ofM. If the
set Π0(Z) is `-adic Hecke transitive and maximal points of Z are not supersingular,
then Z is irreducible.

Notice that the formulation of Theorem 2.3 does not require our assumption on
p and the statement of Theorem 2.3 remains valid without this assumption (see
Section 6).

The following result is due to Goren and Oort [8, Corollary 4.2.4]

Theorem 2.4. For any alpha type a, the set Π0(Ma) is `-adic Hecke transitive.

An alpha stratum Ma is called supersingular if all of its maximal points are
supersingular. This is equivalent to that any point of Ma is supersingular, that
is, the stratum Ma is contained in the supersingular locus. Call an alpha type a
supersingular if the corresponding stratumMa is so. It follows from Theorems 2.3
and 2.4 that

Corollary 2.5. Any non-supersingular stratumMa is irreducible.

2.2. It remains to treat the supersingular contribution in (2.2). For a generic al-
pha type a, it is known that Ma is supersingular if and only if g = 2k is even and
|a| = k (see [8, Introduction]). They correspond to alpha types a = (1, 0, . . . , 1, 0)
and a = (0, 1, . . . , 0, 1). We actually describe all supersingular strataMa, not just
for generic ones. This is slightly more than what we need.

Choose and fix a non-zero element λ0 in L+ so that (|L/OFλ0|, np) = 1. Let
x be any point in M(L,L+),n(C). One associates a skew-Hermitian OF -module
H1(Ax(C),Z) to (Ax, ix(λ0), ιx). The isomorphism class of the skew-Hermitian
OF -module H1(Ax(C),Z) only depends on the moduli space M(L,L+),n, which we
write (VZ, 〈 , 〉, ι). Let G be the automorphism group scheme over Z associated to
the skew-Hermitian OF -module (VZ, 〈 , 〉, ι), and Γ(n) be the kernel of the reduction
map G(Z)→ G(Z/nZ). One has the complex uniformization

M(L,L+),n(C) ' Γ(n)\G(R)/SO2(R)g .

Theorem 2.6. Let Ma be a supersingular stratum.
(1) If g is odd, then Ma consists of all superspecial points and

(2.3) |Ma(k)| = [G(Z) : Γ(n)] ·

[
−1

2

]g

· ζF (−1) · (pg − 1).

(2) If g is even and |a| = g, then Ma consists of all superspecial points and

(2.4) |Ma(k)| = [G(Z) : Γ(n)] ·

[
−1

2

]g

· ζF (−1) · (pg + 1).
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(3) If g is even and |a| 6= g, then any irreducible component of Ma is isomorphic

to (P1)g−|a| and

(2.5) |Π0(Ma)| = [G(Z) : Γ(n)] ·

[
−1

2

]g

· ζF (−1).

Let ∆gen
ss ⊂ ∆gen denote the subset of supersingular generic alpha types. If g is

odd, then ∆gen
ss is empty; if a ∈ ∆gen

ss , then w(a) = 1. By Corollary 2.2, Theorem 2.6
(3) and (2.2), we get

Theorem 2.7. Notation as before. Assume that p is inert in F . Then

|Π0(MΓ0(p))| =

{[∑
a∈∆genr∆gen

ss
w(a)

]
+ 2[G(Z) : Γ(n)] ·

[
−1
2

]g
· ζF (−1) if g is even;

∑
a∈∆gen w(a) if g is odd.

The following is an elementary combinatorial result.

Lemma 2.8. For any subset τ of Z/gZ, let w(τ) be as in (2.1). One has
∑

τ⊂Z/gZ

w(τ) = 2g.

Using this fact, we rephrase Theorem 2.7 as below.

Theorem 2.9. Assume that p is inert in F . Then

(2.6) |Π0(MΓ0(p))| = 2g +
∑

a∈∆gen
ss

{
[G(Z) : Γ(n)] ·

[
−1

2

]g

· ζF (−1)− 1

}
.

See a formula for |Π0(MΓ0(p))| when p is unramified in Section 5.

3. Proof of Theorems 2.1 and 2.2

3.1. Let f :MΓ0(p) →M be the forgetful morphism, and let x = (A, iA, ιA, ηA)
be a point inMa(k). Choose a separable OF -linear polarization λA = iA(λ0) on A.
Each point in f−1(x) is given by an OF -invariant finite subgroup scheme H of A
of rank pg which is maximally isotropic with respect to the Weil pairing eλA

. Then
there is an OF -linear polarization λB , necessarily separable, on B := A/H such that
the pull back π∗λB is equal to pλA. Denote by M∗(A) the classical contravariant
Dieudonné module of A. We have an O-invariant Dieudonné submodule M ∗(B) of
M∗(A) such that

M∗(A)/M∗(B) ∼= k ⊕ · · · ⊕ k, and 〈 , 〉M∗(A) = p 〈 , 〉M∗(B).

Note that M∗(A) is canonically isomorphic to the dual M(A)t of the covariant
Dieudonné module M(A). We also know that a(M(A)t) = a(M(A)) (see [30,
Lemma 8.1]). Put M0 := M∗(A) and let τ := τ(a) be corresponding alpha index as
in Section 2. Let Xτ be the space of Dieudonné O-submodules M of M0 such that

M0/M ∼= k ⊕ · · · ⊕ k.

We regard Xτ as a scheme over k with reduced structure. For any point M in Xτ ,
it is clear that the pairing 〈 , 〉 is trivial on M0/M . Therefore we have a polarized
abelian OF -variety B = (B, λB , ιB) and an OF -linear isogeny π : A→ B such that
π∗λB = pλA and M∗(B) = M . This establishes
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Lemma 3.1. There is an (non-canonical) isomorphism ξx : f−1(x)red ' Xτ , where
f−1(x)red is the reduced subscheme underlying the fiber f−1(x).

Lemma 3.2. The scheme Xτ is isomorphic to the subscheme of (P1)g = {([si :
ti])i∈Z/gZ} defined by the equations ti−1si = 0 for i 6∈ τ and ti−1ti = 0 for i ∈ τ .

Proof. A point in Xτ (k) is represented by a k-subspace M of M 0 := M0/pM0

such that F (M) ⊂M , V (M) ⊂M , and dimk M
i
= 1 for each i ∈ Z/gZ. Hence it

is a closed subscheme of (P1)g . Choose a basis {Xi, Yi} for M0 [30, Proposition 4.2]
such that

FXi−1 =

{
Xi if i 6∈ τ ;

Yi + pciXi if i ∈ τ ;
FYi−1 =

{
pYi if i 6∈ τ ;

pXi if i ∈ τ ;

where ci are some elements of W (k) for i ∈ τ . (There should be no confusion on our
notation for the Frobenius map and the totally real field.) Let P = ([si : ti])i be a
point in (P1)g(k) and write MP for the k-subspace of M0 generated by siYi + tiXi

for i ∈ Z/gZ. We have

F (si−1Yi−1 + ti−1Xi−1) =

{
tpi−1Xi i 6∈ τ ;

tpi−1Yi i ∈ τ.

From the closed condition FMP ⊂MP we get the equations

(3.1) ti−1si = 0 for i 6∈ τ, and ti−1ti = 0 for i ∈ τ.

From the closed condition VMP ⊂MP we get the same equations as above. This
finishes the computation.

3.2. Examples. (1) If a = 0, then Xτ consists of two points: ([1 : 0], [1 : 0], . . . , [1 :
0]) and ([0 : 1], [0 : 1], . . . , [0 : 1]).

(2) If a = (1, 0, 1, 0, 0), then Xτ is defined by the equations t4t0, t0s1, t1t2, t2s3, t3s4.
There are four irreducible components:

P1 × [0 : 1]× [1 : 0]× [1 : 0]× [1 : 0], [1 : 0]× [1 : 0]×P1 × [0 : 1]× [0 : 1],

[1 : 0]×P1 × [1 : 0]×P1 × [0 : 1], [1 : 0]×P1 × [1 : 0]× [1 : 0]×P1.

Notice that for maximally dimensional components, every P1 is placed at a position
i where ai = 0.

(3) If a = (1, 0, 1, 1, 1, 0), then Xτ is defined by the equations t5t0, t0s1, t1t2, t2t3, t3t4, t4s5.
There are one 3-dimensional component [1 : 0] × P1 × [0 : 1] × P1 × [0 : 1] × P1,
and four 2-dimensional components

P1 × [0 : 1]× [1 : 0]×P1 × [1 : 0]× [1 : 0], [1 : 0]×P1 × [1 : 0]× [1 : 0]×P1 × [0 : 1],

[1 : 0]× [1 : 0]×P1 × [1 : 0]×P1 × [0 : 1], [1 : 0]× [1 : 0]×P1 × [1 : 0]× [1 : 0]×P1.

Proposition 3.3.

(1) We have dimXτ ≤ |a|. Furthermore, dimXτ = |a| if and only if a ∈ ∆gen.
(2) For a ∈ ∆gen, the scheme Xτ has w(a) irreducible components of dimension

|a|.
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Proof. We may assume that |a| > 0, as the case a = 0 is treated in Example 3.2
(1). Since the defining equations are either si = 0 or ti = 0, any irreducible
component of Xτ is of the form X =

∏
i∈Z/gZ Xi, where

Xi = [1 : 0], [0 : 1], or P1.

If i 6∈ τ , then we have ti−1si = 0. This tells us that there are at least g − |a| zeros
for si or ti in the components [si : ti] for i 6∈ τ or i− 1 6∈ τ . So Xi = P1 for at most
|a| numbers of i. This shows that dimXτ ≤ |a|.

If a 6∈ ∆gen, then one can choose i such that i − 1 6∈ τ , i ∈ τ and i+ 1 ∈ τ . It
follows from the equation titi+1 = 0 that there are at least g − |a|+ 1 zeros for si

or ti in the components [si : ti] for i ∈ Z/gZ. Thus, dimXτ < |a|. Suppose that
a ∈ ∆gen. Put si = 1 for all i ∈ Z/gZ, then the defining equations become ti−1 = 0
for i 6∈ τ . Thus, dimXτ = |a|. This proves the statement (1).

(2) Let a ∈ ∆gen and X =
∏

i∈Z/gZ Xi be an irreducible component of Xτ . Write

τ = {n1, . . . , na}. First notice that

(i) If Xi0 = P1 for some nj ≤ i0 ≤ nj+1, then Xi = [0 : 1] for i0 < i < nj+1,
and Xi = [1 : 0] for nj ≤ i < i0 or i0 < i = nj+1.

It follows that

(ii) There is at most one i ∈ Z in each interval [nj , nj+1] such that Xi = P1.
(iii) If Xi = P1 for some i ∈ τ , then dimX < |a|.

If dimX = |a|, then Xij
= P1 for one ij in each interval nj < ij < nj+1. Con-

versely, choose ij in each interval nj < ij < nj+1. Then there is unique irreducible
component X such that Xij

= P1 for each j; this follows from (i). There are∏
j(nj+1 − nj − 1) such choices. Thus, the scheme Xτ has w(a) irreducible compo-

nents of dimension |a|.

Theorem 2.1 follows from Lemma 3.1 and Proposition 3.3 (1).

3.3. Proof of Theorem 2.2. Part (1) follows from Lemma 3.1 and Proposi-
tion 3.3 (2). We prove the statement (2). We prove that irreducible components of
Xτ give rise to well-defined closed subvariety inMΓ0(p),a. Notice two isomorphisms

between f−1(x)red and Xτ are differed by an automorphism β of M 0, which sends
each factor of (P1)g to itself. If X =

∏
iXi is an irreducible component of Xτ ,

then β(X)i is equal to P1 whenever Xi = P1. By property (i) in the proof of
Proposition 3.3, we have showed that β(X) = X . Therefore,

MX := {y ∈MΓ0(p),a | ξf(y)(y) ∈ X }

is a well-defined closed subvariety of MΓ0(p),a. One has MΓ0(p),a = ∪XMX as a
union of components; any irreducible component of MΓ0(p),a is contained in MX

for one X . The morphism fa : MX → Ma is proper and surjective with fibers
isomorphic to X . Thus, Π0(MX) ' Π0(Ma) and dimMX = dimMa + dimX .
From this and Proposition 3.3 (2) the statement (2) then follows.

3.4. Proof of Lemma 2.8. If |a| = j > 0, then w(a) is the number of ways
replacing a zero by 2 in a on each interval [nj , nj+1]. In other words,

∑
|a|=j w(a)
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is the number of ways of choosing 2j positions from Z/gZ and filling them with 1

and 2 alternatively. This gives
∑

|a|=j w(a) = 2

(
g
2j

)
. Thus

∑

a∈∆

w(a) = 2 +
∑

j>0

2

(
g
2j

)
= 2g.

This completes the proof.

4. Supersingular contribution

Keep the notation and the assumption of p as before.

4.1. Let x0 = A0 = (A0, λ0, ι0, η0) be a superspecial (not necessarily separably)
polarized abelian OF -variety over k of dimension g with symplectic level-n structure
with respect to ζn. Let M0 = (M0, 〈 , 〉, ι) be its covariant Dieudonné module with
additional structures. As M0 is superspecial, the alpha type a of M0 has the form

(e1 + e2, 2− (e1 + e2), e1 + e2, . . . )

for some integers e1, e2 with 0 ≤ e1 ≤ e2 ≤ 1; see [31, Section 2]. When g is odd,
it satisfies an additional condition e1 + e2 = 1. We say that M0 is of superspecial
type (e1, e2) if its alpha type is as above.

LetGx0
denote the automorphism group scheme over Spec Z associated to (A0, λ0, ι0)

; for any commutative ring R, its group of R-points is

Gx0
(R) = {φ ∈ (EndOF

(A0)⊗R)×;φ′φ = 1},

where the map φ 7→ φ′ is the Rosati involution induced by λ0.
Let Λx0,n denote the set of isomorphism classes of polarized abelian OF -varieties

A = (A, λ, ι, η) with level-n structure (w.r.t. ζn) over k such that (c.f. (2.4) of [33])

(i) the Dieudonné module M(A) is isomorphic to M(A0), compatible with
OF ⊗ Zp-actions and quasi-polarizations, and

(ii) the Tate module T`(A) is isomorphic to T`(A0), compatible with OF ⊗Z`-
actions and the Weil pairings, for all ` 6= p.

The condition (i) implies that A is superspecial and dimA = g. Let Kn be the

kernel of the reduction map Gx0
(Ẑ)→ Gx0

(Ẑ/nẐ). There is a natural isomorphism

(4.1) Λx0,n ' Gx0
(Q)\Gx0

(Af )/Kn;

see [30, Theorem 10.5] and [33, Theorem 2.1 and Subsection 4.6]. It is proved in
[33, Theorem 3.7 and Subsection 4.6] that

(4.2) |Λx0,n| = [Gx0
(Ẑ) : Kn]

[
−1

2

]g

ζF (−1)cp,

where

(4.3) cp :=





1 g is even and e1 = e2,

pg + 1 g is even and e1 < e2,

pg − 1 g is odd,

and (e1, e2) is the superspecial type of M0.
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If T`(A0) ' (V ⊗ Z`, 〈 , 〉, ι) (Subsection 2.2) for all ` 6= p, then it is easy to see

that [Gx0
(Ẑ) : Kn] = [G(Z) : Γ(n)]. In this case, the formula (4.2) becomes

(4.4) |Λx0,n| = [G(Z) : Γ(n)]

[
−1

2

]g

ζF (−1)cp,

where cp is as above.

4.2. If g is odd, then it follows from [8, Theorem 5.4.11] thatMa is supersingular
if and only if |a| = g, that is, Ma consists of all superspecial points in M. By the
formula (4.4), we get the equation (2.3).

If g is even, then it follows from [8, Theorem 5.4.11] thatMa is supersingular if
and only if a � (1, 0, . . . , 1, 0) or a � (0, 1, . . . , 0, 1). If |a| = g, thenMa consists of
all superspecial points inM. By the formula (4.4), we get the equation (2.4). This
proves the statements (1) and (2) of Theorem 2.6.

4.3. Suppose g = 2k is even and |a| 6= g. Put a0 := (1, 0, . . . , 1, 0). We may
assume that a � a0 due to symmetry. Let M(p) be the moduli space over Fp

of g-dimensional separably polarized abelian OF -varieties with a symplectic level-
n structure with respect to ζn. We may identify the moduli space M with an
irreducible component of M(p) by choosing an suitable element λ0 ∈ L+; see [33,
Proposition 4.1].

Choose any point A0 in Ma
0
(k). Let M0 be the covariant Dieudonné module

of A0. Let N := (F, V )M0, a Dieudonné O-submodule with the induced quasi-
polarization. Then there is a tuple B = (B, λB , ιB , ηB) and an OF -linear isogeny
ϕ : B → A0 of a p-power degree, compatible with additional structures, such that
M(B) = N ⊂M0.

One easily computes that N has alpha type (0, 2, . . . , 0, 2). Then one can find a
basis {Xi, Yi} for N i [30, Lemma 4.4] such that

(4.5)
FXi = −pYi+1, FYi = pXi+1, if i is even,
FXi = −Yi+1, FYi = Xi+1, if i is odd.

Let N−1 := (F, V )−1N ; it is spanned by elements

1

p
X2i,

1

p
Y2i, X2i+1, Y2i+1, i = 0, · · · , k− 1.

We have N−1/N ∼= k2⊕ 0⊕ k2⊕· · · k2⊕ 0 as O⊗Zp
k-modules. Let X be the space

of Dieudonné O-modules M such that

N ⊂M ⊂ N−1, M/N ∼= k ⊕ 0⊕ k ⊕ · · · k ⊕ 0.

It is clear that X ∼= (P1)k.
Let Λ denote the set of isomorphism classes of objects B ′ = (B′, λ′, ι′, η′) (with

respect to ζn) such that (cf. Subsection 4.1)

• the Dieudonné module M(B′) is isomorphic to M(B), compatible with
additional structures, and

• the Tate module T`(B
′) is isomorphic to T`(B), compatible with additional

structures, for all ` 6= p.

Proposition 4.1. There is an isomorphism pr :
∐

ξ∈Λ X →Ma0
.
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Proof. We write the map set-theoretically first. For any member ξ ∈ Λ and
any point x ∈ Xξ(k) := X (k), we have M(Bξ) = N ⊂ Mx. Then one gets a
point Ax together with a polarized OF -linear isogeny ϕ : Bξ → Ax of p-power
degree such that M(Ax) = Mx. Define pr(Mx) := Ax. Then one can show that it
gives a bijective map from

∐
ξ∈Λ Xξ(k) ontoMa

0
(k). To see this map comes from

a morphism of schemes, we need to construct a moduli space with a prescribed
isogeny type a priori, and show that this map agrees with the natural projection.
Since the construction is lengthy and is the same as [30, Lemma 9.1], we refer
the reader to loc. cit. and omit the details here. Finally using the tangent space
calculation, we prove that the morphism pr is étale and particularly separable; see
the computation in Lemma 9.2 of [30]. Thus the morphism pr is isomorphism and
the proof is complete.

By the formula (4.4), we get

Lemma 4.2. |Λ| = [G(Z) : Γ(n)]
[
−1
2

]g
ζF (−1).

Denote by Ma
0
,ξ the irreducible component corresponding to ξ and write pr :

X → Ma
0
,ξ . Let M�a,ξ ⊂ Ma

0
,ξ be the closed subscheme consisting of points

with alpha type � a.

Lemma 4.3. The scheme M�a,ξ is isomorphic to (P1)g−|a|

Proof. For a point P = ([x0 : y0], [x2 : y2], · · · , [x2k−2 : y2k−2]) ∈ (P1(k))k, the
representing Dieudonné module is given by

MP = N+ < x̃2i
1

p
X2i + ỹ2i

1

p
Y2i >i=0,··· ,k−1,

where x̃2i, ỹ2i are any liftings of x2i, y2i in W , respectively.
We compute the defining equations for M�a,ξ on an affine open subset. Let

V2i := x̃2i
1
pX2i + 1

pY2i, then

MP =< X2i, V2i, X2i+1, Y2i+1 >i=0,··· ,k−1, and M2i+1
P =< X2i+1, Y2i+1 >

One computes that

((F, V )MP )2i+1
(

mod pM2i+1
P

)
=< X2i+1−x

p
2iY 2i+1, −X2i+1 +xp−1

2i+2Y 2i+1 > .

Therefore, a2i+1(MP ) = 1 if and only if xp2

2i = x2i+2.

Let τ = τ(a) ⊂ Z/gZ. We have showed that the subscheme M�a,ξ of Ma0,ξ =

(P1)k = {(x2, · · · , x2k)} defined by the equations xp2

j−1 = xj+1 for all odd j ∈ τ ,

and thus it is isomorphic to (P1)g−|a|. This completes the proof.

By Proposition 4.1 and Lemmas 4.2 and 4.3, the statement (3) of Theorem 2.6
is proved.

5. Unramified setting

In this section we only assume that p is unramified in F .
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5.1. Let

O := OF ⊗ Zp, I := Hom(O,W ), ∆ := {0, 1}I

be the same as in Section 2. Let P be the set of primes of OF lying over p. For
v ∈ P, let Ov be the completion of OF at v, fv its residue degree, Iv := Hom(Ov ,W )
and ∆v := {0, 1}Iv . One has

O = ⊕v∈POv,
∑

v∈P

fv = g,

I =
∐

v∈P

Iv, Iv ' Z/fvZ, and ∆ =
∏

v∈P

∆v .

An alpha type a = (av) ∈ ∆ is called generic if every component av is generic;
it is called supersingular if the associated alpha stratumMa is supersingular.

Let ∆gen ⊂ ∆ be the subset of generic alpha types, and ∆gen
ss ⊂ ∆gen the subset

of supersingular alpha types. The set ∆gen
ss is empty if and only if fv is odd for

some v.

Theorem 5.1. For any alpha type a, the set Π0(Ma) is `-adic Hecke transitive.

This is essentially due to Goren and Oort (cf. [8, Corollary 4.2.4]). We pro-
vide suitable details to fit the present situation: p is unramified and the objects
(A, λ, ι, η) that M parametrizes may not be principally polarized abelian OF -
varieties.

Proposition 5.2.

(1) Every alpha stratum Ma is non-empty.
(2) Every alpha stratum Ma is quasi-affine.
(3) The non-ordinary locus of M is proper.
(4) The Zariski closure Ma of each stratumMa in M is smooth.
(5) The set M0 of superspecial points is `-adic Hecke transitive.

Proof. (1) It is easy to construct a superspecial point in M. Indeed, one con-
structs a separably polarized superspecial abelian OF -variety, then one chooses a
point within its prime-to-p isogeny class so that it lies in M. Then one constructs
a deformation of this point so that the generic point has the given alpha type a.
Such a construction is a local problem, and it reduces to inert cases. This proves
the statement (1)

(2) This is a global property; it does not follow directly from the result of inert
cases. One can slightly modify the proof in loc. cit to make it work. Alternatively,
consider the forgetful morphism b :M → Ag,d,n ⊗ Fp, for some positive integer d
with (d, p) = 1. Then the image b(Ma) is contained in an Ekedahl-Oort stratum

Sϕ of Ag,d,n⊗Fp. Since Sϕ is quasi-affine [18], the image b(Ma) is also quasi-affine.
Since the morphism b is finite, the stratum Ma is quasi-affine.

(3) This follows from the semi-stable reduction theorem for abelian varieties due
to Grothendieck [9].

(4) This is a local property, and hence follows directly from the results of inert
cases.

(5) Let x0 = (A0, λ0, ι0, η0) be a superspecial point in M. Define Λx0,n, Gx0
,

Kn as in Subsection 4.1. Note that any point inM0 satisfies the conditions (i) and
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(ii) in Subsection 4.1 (see [30, Lemma 4.3]). Therefore, we have Λx0,n =M0 and
have the double coset description

(5.1) M0 ' Gx0
(Q)\Gx0

(Af )/Kn

as (4.1). By the strong approximation [21, Theorem 7.12, p. 427], the natural
map Gx0

(Q`) → Gx0
(Q)\Gx0

(Af )/Kn is surjective. This shows that the `-adic
Hecke orbit H`(A0) is equal to M0, and hence that the action of `-adic Hecke
correspondences on the set M0 is transitive.

5.2. Proof of Theorem 5.1. Using (1), (2) and (3) of Proposition 5.2, one shows
that the closure of any irreducible component W of Ma contains a point in M0.

By Proposition 5.2 (4), any point inM0 is contained in W for a unique irreducible
component W ofMa. This shows that there is a surjective `-adic Hecke equivalent
map

i :M0 → Π0(Ma) = Π0(Ma).

By Proposition 5.2 (5), the set Π0(Ma) is `-adic Hecke transitive.

An immediate consequence of Theorems 2.3 and 5.1 is the following

Corollary 5.3. Any non-supersingular stratumMa is irreducible.

5.3. Let a = (av)v ∈ ∆ be a supersingular alpha type. If fv is odd, then |av| = fv.
If fv is even, then either av � (1, 0, . . . , 1, 0) or av � (0, 1, . . . , 0, 1). Define

P1 := {v ∈ P | fv is odd }

P2(a) := {v ∈ P | fv is even and |av| = fv }

P3(a) := {v ∈ P | fv is even and |av| < fv }

Theorem 5.4. Let a ∈ ∆ be a supersingular alpha type. Then any irreducible
component of Ma is isomorphic to (P1)g−|a| and

(5.2) |Π0(Ma)| = [G(Z) : Γ(n)]

[
−1

2

]g

ζF (−1)
∏

v∈P

cv ,

where

(5.3) cv :=





pfv − 1 if v ∈ P1;

pfv + 1 if v ∈ P2(a);

1 if v ∈ P3(a).

Proof. Define a0 = (a0,v)v ∈ ∆ by

a0,v =

{
(1, 0, . . . , 1, 0) if v ∈ P3(a);

av otherwise.

We may assume that a � a0 due to symmetry. Choose any point A0 inMa
0
(k).

LetM0 be the covariant Dieudonné module of A0. DefineN = ⊕Nv ⊂M0 = ⊕M0,v

the Dieudonné O-submodule with the induced quasi-polarization by

Nv :=

{
(F, V )M0,v if v ∈ P3(a);

M0,v otherwise.

Then there is a tuple B = (B, λB , ιB , ηB) and an OF -linear isogeny ϕ : B → A0

of p-power degree, compatible with additional structures, such that M(B) = N ⊂
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M0. Let X =
∏

v∈P3(a) Xv, where Xv is defined as X in Subsection 4.3. One has

Xv ' (P1)fv/2. Define the set Λ for B as in Subsection 4.3. By Proposition 4.1 we
have an isomorphism

∐
ξ∈Λ X ' Ma

0
. Let ξ ∈ Λ and Ma

0
,ξ ' (P1)g−|a0| be the

corresponding component. By Lemma 4.3, we show thatMa ∩Ma0,ξ ' (P1)g−|a|.
Therefore, we have

(5.4) Π0(Ma) ' Π0(Ma
0
) ' Λ.

The alpha type of the factor Nv is (0, 2, . . . , 0, 2) if v ∈ P3(a) and (1, 1, . . . )
otherwise. Hence Nv has superspecial type (e1, e2) = (0, 0) if v ∈ P3(a) and
(e1, e2) = (0, 1) otherwise (Subsection 4.1). By the mass formula [33, Theorem
3.7 and Subsection 4.6] (cf. (4.4)), we get

|Λ| = [G(Z) : Γ(n)]

[
−1

2

]g

ζF (−1)
∏

v∈P

cv,

where cv is as above. This completes the proof.

5.4. Define the function w′ : ∆→ R by

(5.5) w′(a) :=

{
[G(Z) : Γ(n)]

[
−1
2

]g
ζF (−1) if a ∈ ∆gen

ss ;∏
v∈Pw(av) otherwise,

where w(av) is the function as in (2.1). It is clear that w′(a) 6= 0 if and only if
a ∈ ∆gen. It is rather unclear but indeed a fact that w′(a) ∈ Z≥0 (by (5.7)).

Theorem 5.5. Notation as above. We have

(5.6) |Π0(MΓ0(p))| =
∑

a∈∆gen

w′(a),

Proof. Suppose that a is a non-supersingular generic alpha type. It follows from
local computation in Section 3 and Corollary 5.3 thatMΓ0(p),a has w′(a) irreducible
components of dimension g.

Suppose that a is a supersingular generic alpha type. Every fiber of the map
fa has one irreducible component of dimension |a| (Section 3). Thus,MΓ0(p),a has
|Π0(Ma)| irreducible components of dimension g. It follows from Theorem 5.4 that

(5.7) |Π0(MΓ0(p),a)| = |Π0(Ma)| = w′(a).

This completes the proof.

We can rephrase Theorem 5.5 by an elementary combinatorial result (Lemma 2.8)
as follows

Theorem 5.6. We have

(5.8) |Π0(MΓ0(p))| = 2g +
∑

a∈∆gen
ss

(w′(a)− 1),

Remark 5.7.
(1) The connection of supersingular strata with class numbers and special zeta

values becomes a standard fact now. If the moduli spaceMΓ0(p) contains supersin-
gular irreducible components, then it is expect that the special zeta value ζF (−1)
occurs in the formula for |Π0(MΓ0(p))|. However, the number of irreducible com-
ponents of a supersingular stratum is also related to p in general. It is indeed
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unexpected that the number of supersingular irreducible components of MΓ0(p)

turns out to be independent of p. As a result, the number |Π0(MΓ0(p))| of irre-
ducible components is independent of p. We do not know any direct proof of this
fact without knowing the explicit formula (5.8).

(2) The p-adic invariant stratification used in this paper is nothing but the
Ekedahl-Oort stratification (see [18] and [8]). It is natural to consider this p-adic
invariant stratification for studying moduli spaces with parahoric level structure.
Indeed a parahoric level structure on an object A with a prescribed PEL-structure
is a flag of finite flat subgroup schemes of A[p] that satisfy certain conditions. This
structure only depends on the isomorphism class of A[p], but not on A. Therefore,
built on the framework of Moonen [13, 14] and Wedhorn [29], we can go a bit
further on the irreducibility problem for a PEL-type moduli spaceMKp

with level
structure of type Kp, in the case where the defining group GQp

is unramified and
Kp ⊂ G(Qp) is a parahoric subgroup. Thanks to the works loc. cit., we have a
group theoretic description of the set EO(G,µ) of Ekedahl-Oort types, and the
dimension of any Ekedahl-Oort stratum.

It may not be a very good strategy to analyze p-adic invariants inMKp
through

the forgetful morphism f :MKp
→M, whereM is the smooth moduli space with

minimal level at p. The Hilbert-Blumenthal cases are a few cases that this method
can be worked out explicitly. Nevertheless, it is still interesting to know the subset
EO(G,µ,Kp) ⊂ EO(G,µ) consisting of elements ϕ such that f−1(Sϕ) contains a
maximal point ofMKp

, where Sϕ is the Ekedahl-Oort stratum inM associated to
ϕ. And whether there is a group-theoretic meaning of this subset EO(G,µ,Kp).

(3) The irreducibility problem for the moduli spaces MKp
with parahoric level

structure is, as suggested by this work, related to the same problem for Ekedahl-
Oort strata inM, which is of interest in its own right. It seems plausible to expect
that in any irreducible component ofM, (i) any non-basic Ekedahl-Oort stratum is
irreducible, and (ii) the number of irreducible components of a basic Ekedahl-Oort
stratum is a single class number.

For Siegel moduli spaces, the statement (i) is confirmed in Ekedahl and van der
Geer [6], and the statement (ii) is confirmed in Harashita [10].

For Hilbert-Blumenthal moduli spaces, the statement (i) is essentially due to
Goren and Oort [8] and Chai [4] (Corollary 5.3), and the statement (ii) is confirmed
by Theorem 5.4 (5.4).

6. `-adic monodromy of Hecke invariant subvarieties

The goal of this section is to provide a proof of a theorem of Chai on Hecke
invariant subvarieties for Hilbert-Blumenthal moduli spaces on which Theorem 5.6
relies. We follow the proof in Chai [4] where the Siegel case is proved. There is no
novelty on the proof here and this is purely expository; the author is responsible
for any inaccuracies and mistakes. We write this as an independent section; some
setup and notation may be repeated and slightly modified.

6.1. Let F be a totally real number field of degree g and OF be the ring of
integers in F . Let V be a 2-dimensional vector space over F and ψ : V × V → Q

be a Q-bilinear non-degenerate alternating form such that ψ(ax, y) = ψ(x, ay) for
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all x, y ∈ V and a ∈ F . Let p be a fixed rational prime, not necessarily unramified
in F . We choose and fix an OF -lattice VZ ⊂ V so that VZ ⊗ Zp is self-dual with
respect to ψ. We choose a projective system of primitive prime-to-p-th roots of unity
ζ = (ζm)(m,p)=1 ⊂ Q ⊂ C. We also fix an embedding Q ↪→ Qp. For any prime-to-p
integer m ≥ 1 and any connected Z(p)[ζm]-scheme S, the choice ζ determines an

isomorphism ζm : Z/mZ
∼
→ µm(S), or equivalently, a π1(S, s̄)-invariant (1+mẐ(p))×

orbit of isomorphisms ζ̄m : Ẑ(p) → Ẑ(p)(1)s̄, where Ẑ(p) :=
∏

`6=p Ẑ` and s̄ is a
geometric point of S.

Let G be the automorphism group scheme over Z associated to the pair (VZ, ψ);
for any commutative ring R, the group of R-valued points is

(6.1) G(R) := {g ∈ GLOF
(VZ ⊗Z R) ; ψ(g(x), g(y)) = ψ(x, y), ∀x, y ∈ VZ ⊗Z R }.

Let n ≥ 3 be a prime-to-p positive integer and ` be a prime with (`, pn) = 1
and (`, disc(ψ)) = 1, where disc(ψ) is the discriminant of ψ on VZ. Let m ≥ 0 be

a non-negative integer. Let Un`m be the kernel of the reduction map G(Ẑ(p)) →

G(Ẑ(p)/n`mẐ(p)); this is an open compact subgroup of G(Ẑ(p)).
Let D = (F, V, ψ, VZ, ζ) be a list of data as above. Denote byMD,n`m the moduli

space over Z(p)[ζn`m ] that parametrizes equivalence classes of objects (A, λ, ι, [η])S

over a connected locally Noetherian Z(p)[ζn`m ]-scheme S, where

• (A, λ) is a p-principally polarized abelian scheme over S of relative dimen-
sion g,

• ι : OF → EndS(A) is a ring monomorphism such that λ ◦ ι(a) = ι(a)t ◦ λ
for all a ∈ OF , and

• [η] is a π1(S, s̄)-invariant Un`m-orbit of OF -linear isomorphisms

(6.2) η : VZ ⊗ Ẑ(p) ∼
→ T (p)(As̄) :=

∏

p′ 6=p

Tp′(As̄)

such that

(6.3) eλ(η(x), η(y)) = ζ̄n`m(ψ(x, y)) (mod (1 +mẐ(p))×), ∀x, y ∈ VZ ⊗ Ẑ(p),

where eλ is the Weil pairing induced by the polarization λ and s̄ is a geo-
metric point of S.

We write [η]Un`m for [η] in order to specify the level. LetMn`m :=MD,n`m⊗Fp

be the reduction modulo p of the moduli scheme MD,n`m . We have a natural
morphism πm,m′ : Mn`m′ → Mn`m , for m < m′, which sends (A, λ, ι, [η]U

n`m′
) to

(A, λ, ι, [η]Un`m ). Let M̃n := (Mn`m)m≥0 be the tower of this projective system.
Let (X , λ, ι, η̄)→Mn be the universal family. The coverMn`m overMn repre-

sents the étale sheaf

(6.4) Pm := IsomMn
((VZ/`

mVZ, ψ), (X [`m], eλ) ; ζ`m)

ofOF -linear symplectic level-`m structures with respect to ζ`m . This is aG(Z/`mZ)-
torsor. Let x̄ be a geometric point in Mn. Choose an OF -linear isomorphism
y : V ⊗ Z` ' T`(Xx̄) that is compatible with the polarizations with respect to ζ.

This amounts to choose a geometric point in M̃n over the point x̄. The action
of the geometric fundamental group π1(Mn, x̄) on the system of fibers (Xx̄[`m])m

gives rise to the monodromy representation

(6.5) ρMn,` : π1(Mn, x̄)→ AutOF
(T`(Xx̄), eλ)
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and to the monodromy representation (using the same notation), through the choice
of y,

(6.6) ρMn,` : π1(Mn, x̄)→ G(Z`).

Lemma 6.1. The map ρMn,` is surjective.

Proof. It is well-known that MD,n`m(C) ' Γ(n`m)\G(R)/SO(2,R)g , where
Γ(n`m) := kerG(Z) → G(Z/n`mZ). It follows that the geometric generic fiber
MD,n`m ⊗ Q is connected. It follows from the arithmetic toroidal compactifica-
tion constructed in Rapoport [23] that the geometric special fiber Mn`m is also

connected. The connectedness of M̃n confirms the surjectivity of ρMn,`.

6.2. The action of G(Z`) on M̃n extends uniquely a continuous action of G(Q`).

Descending from M̃n toMn, elements of G(Q`) induce algebraic correspondences
onMn, known as the `-adic Hecke correspondences onMn. More precisely, to each
g ∈ G(Q`) we associate an `-adic Hecke correspondence (Hg , pr1, pr2) as follows.
Extending isomorphisms η to isomorphisms

η′ : V ⊗ A
(p)
f → V (p)(A) := T (p)(A) ⊗ A

(p)
f ,

we see the class [η]Un
gives rise to a class [η′]Un

in Isom(V ⊗ A
(p)
f , V (p)(A))/Un

and [η]Un
is determined by [η′]Un

. The right translation ρg : (A, λ, ι, [η′]Un
) 7→

(A, λ, ι, [η′g]g−1Ung) gives rise an isomorphism ρg : Mn ' Mg−1Ung. Let Un,g :=
Un∩g

−1Ung andHg be the étale cover ofMn corresponding to the subgroup Un,g ⊂
Un. Let pr1 be the natural projection Hg →Mn and pr2 := ρ−1

g ◦ pr : Hg →Mn

be the composition of the isomorphism ρ−1
g with the natural projection pr : Hg →

Mg−1Ung . This defines an `-adic Hecke correspondence (Hg , pr1, pr2). For two `-
adic Hecke correspondences Hg1

= (Hg1
, p11, p12) and Hg2

= (Hg2
, p21, p22), one

defines the composition Hg2
◦ Hg1

by

(Hg2
◦ Hg1

, p1, p2),

where Hg2
◦Hg1

:= Hg1
×p12,Mn,p21

Hg2
, p1 is the composition Hg2

◦Hg1
→ Hg1

p11
→

Mn and p2 is the composition Hg2
◦ Hg1

→ Hg2

p22
→ Mn. A correspondence

(H, pr1, pr2) generated by correspondences of the form Hg is also called an `-adic
Hecke correspondence.

A subset Z of Mn is called `-adic Hecke invariant if pr2(pr−1
1 (Z)) ⊂ Z for

any `-adic Hecke correspondence (H, pr1, pr2). If Z is an `-adic Hecke invariant,
locally closed subvariety of Mn, then the `-adic Hecke correspondences induce
correspondences on the set Π0(Z) of geometrically irreducible components. We say
that Π0(Z) is `-adic Hecke transitive if the `-adic Hecke correspondences operate
transitively on Π0(Z), that is, for any two maximal points η1, η2 of Z there is an
`-Hecke Hecke correspondence (H, pr1, pr2) so that η2 ∈ pr2(pr−1

1 (η1)). Let k be
an algebraically closed field of characteristic p. For a geometric point x ∈ Mn(k),
denote by H`(x) the `-adic Hecke orbit of x; this is the set of points generated by
`-adic correspondences starting from x.

Lemma 6.2.

(1) For any point x ∈Mn(k), the corresponding abelian variety Ax is supersin-
gular if and only if the `-adic Hecke orbit H`(x) of x is finite.
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(2) Any closed `-adic Hecke invariant subscheme Z of Mn contains a supersin-
gular point.

Proof. (1) This is Lemma 7 in Chai [3]. (2) This is Proposition 6 in Chai [3].

6.3. Put G` := G⊗Q` (Subsection 6.1). One has

G` =
∏

λ|`

Gλ, Gλ = ResFλ/Q`
SL2,Fλ

.

Let prλ : G` → Gλ be the projection map. Let Z be a smooth locally closed
subscheme ofMn that is `-adic Hecke invariant. Let Z0 be a connected component
of Z, and η be the generic point of Z0. Let

ρZ0,` : π1(Z
0, η̄)→ G(Z`)

be the associated `-adic monodromy representation, and ρZ0,λ := prλ ◦ ρZ0,` be its
projection at λ.

Lemma 6.3.

(1) If the image Im ρZ0,λ is finite for one λ|`, then the image Im ρZ0,λ is finite
for all λ|`.

(2) The abelian variety Aη is not supersingular if and only if the image Im ρZ0,λ

is infinite for all λ|`.

Proof. (1) Let Z0
0 be a scheme over Fq such that Z0 = Z0

0 ⊗Fp, and let η0 be the
generic point of Z0

0 . Replacing by a finite surjective cover of Z0
0 (thus of Z0), we

may assume that End0(Aη̄) = End0(Aη0
) := End(Aη0

) ⊗Q and that Im ρZ0,λ = 1
whenever it is finite. Write the Tate module V`(Aη̄) =

∏
λ|` Vλ into the decompo-

sition with respect to the action of F , and let ρλ : Gal(k(η̄0)/k(η0))→ Aut(Vλ) be
associated λ-adic Galois representation. Let Eλ be the Fλ-subalgebra of EndFλ

(Vλ)
generated by the image ρλ(Gal(k(η̄0)/k(η0)). By a theorem of Zarhin on endomor-
phisms of abelian varieties over function fields [34], the subalgebra Eλ is semi-simple

and the endomorphism algebra End0
F (A)⊗F Fλ is isomorphic to the commutant of

Eλ in EndFλ
(Vλ). If Im ρZ0,λ = 1 for some λ, then ρλ factors through the quotient

Gal(Fp/Fq), and thus Eλ is commutative. In this case, dimFλ
End0

F (A) ⊗ Fλ is

2 or 4, and the same that dimF End0
F (A) is 2 or 4. This shows that the abelian

variety Aη0
is of CM-type. By a theorem of Grothendieck on CM abelian varieties

in characteristic p ([15, p. 220] and [17, Theorem 1.1]), Aη0
is isogenous to, over a

finite extension of k(η0), an abelian variety that is defined over a finite field. This
shows the image Im ρZ0,` is finite. Therefore, Im ρZ0,λ is finite for all λ|`.

(2) It is proved in [4, Corollary 3.5] that Aη is not supersingular if and only if
the image Im ρZ0,` is infinite. The statement then follows from (1).

Lemma 6.4. Let H be a connected normal subgroup of an algebraic group G1 ×
· · ·×Gr over a field of characteristic zero, where Gi is a connected simple algebraic
group. Then H is of the form H1 × · · · ×Hr with Hi is {1} or Gi.

Proof. See Section 9.4 in [27].

Lemma 6.5. Notation as in Subsection 6.3, if the abelian variety Aη is not super-
singular, then the image Im ρZ0,` is an open subgroup of G(Z`).
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Proof. Replacing Z by the orbit of the component Z0 under all `-adic Hecke
correspondences, we may assume that the set π0(Z) of connected components is
`-adic Hecke transitive. Put M := Im ρZ0,` and let H be the neutral component
of the algebraic envelope of M . It is proved in [4, Proposition 4.1] that M is open
in H(Q`) and H is a connected normal subgroup of G`. By Lemma 6.4, the group
H has the form

∏
λ|`Hλ with Hλ = {1} or Gλ. Since Aη is not supersingular, it

follows from Lemma 6.3 that H = G. This completes the proof.

Lemma 6.6. Let G be a connected simply-connected semi-simple algebraic group
over a local field K such that each simple factor of G is K-isotropic. Then G(K)
has no proper subgroup of finite index.

Proof. This follows immediately from the affirmative solution to the Kneser-Tits
problem for K proved by Platonov for characteristic zero cases and by Prasad and
Raghunathan for arbitrary characteristic cases (see [20] and [22]).

Theorem 6.7 (Chai). Let Z be an `-adic Hecke invariant, smooth locally closed
subscheme of Mn. Let η̄ be a geometric generic point of an irreducible compo-
nent Z0 of Z. Suppose that the abelian variety Aη̄ corresponding to the point η̄ is
not supersingular, and that the set π0(Z) of connected components is `-adic Hecke
transitive. Then the monodromy representation

ρZ0,` : π1(Z
0, η̄)→ G(Z`)

is surjective and Z is irreducible.

Proof. Let Z̃0 and Z̃ be the preimage in M̃n of the subschemes Z0 and Z,

respectively, under the morphism π : M̃n →Mn. Let Y be a connected component

of Z̃0 and M be the image Im ρZ0,`. The group Aut(Y/Z0) of deck transformations
is equal to M . Since the group G(Z`) acts transitively on the fiber π−1(x) for
any x ∈ Z and G(Q`) acts transitively on the set π0(Z), the group G(Q`) acts

transitively on the set π0(Z̃). This gives a homeomorphism (see [4, Lemma 2.8])

Q\G(Q`)
∼
→ π0(Z̃), g 7→ g[Y ],

where Q is the stabilizer of the class [Y ] (in π0(Z̃)). Clearly Q ∩ G(Z`) = M and

we have M\G(Z`) ' π0(Z̃
0). It follows from Lemma 6.5 that π0(Z̃

0) = M\G(Z`)
is finite. Write Z =

∐r
i=0 Zi as a disjoint union of connected components. Since

G(Q`) acts transitively on π0(Z) and π0(Z̃
0) is finite, each π0(Z̃i) is finite. We have

#π0(Z̃) <∞ =⇒ #Q\G(Q`) <∞ =⇒ Q = G(Q`) (Lemma 6.6) =⇒ M = G(Z`).

This shows the connectedness of Z̃ and hence that of Z. This completes the proof.
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