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SOME ESTIMATES FOR PLANE CUSPIDAL CURVES
S.Yu.OREVKOV, M.G.ZAIDENBERG

Introduction

Let D be an irreducible curve in CP? of degree d and of genus g. A classical question
is what set of singularities may it have. A necessary condition on the set of singularities
1s given by the genus formula:

d=-1)(d-2)=29+) (wi+ri—1), (1)
i=1
where p; and r; are respectively the Milnor number and the number of analytical branches
at p; (by pi1,...,ps we denote the singular points of D). Of course, this condition is far
from being sufficient.

One of the most powerful methods for obtaining other restrictions (see [H]) is applying
some variants of the Bogomolov-Miyaoka-Yau (BMY) inequality. This paper is devoted to
some computations that allow one to apply the BMY inequality in the following logarithmic
form (see [Miy,Corollary 1.2]). Suppose that & CP?—D) > 0. (It is the case, for example,
when D has more than one singular point, or ¢ > 1 and d > 4; see [W].) Let s : V — CP?
be the minimal resolution of the singularities of D and D = ¢~'(D). Then

(K + D)? < 3¢(CP? — D), (2)

where K = Ky is the canonical divisor and e is the Euler characteristic.
Using the genus formula (1) one can represent the right hand side of (2) as

e(CP? - D)= (d* —3d+3)— > _ . (3)
=1
After decomposing PicV ® Q into a direct sum of pairwise orthogonal summands, one

of which corresponds to a generic line and the others correspond to singular points, one
can represent the left hand side of (2) as

(K + D) = (d= 32 + 3 (K: + D). @

i=1

Typeset by ApS-TEX
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It is easy to see that (K; + Di)2 depends only on the weighted graph of the minimal
resolution of the singularity of D at p;.
Combining (3) and (4), one can write (2) as

Za,p, < d* — Ej-d (5)

i=1

where a; = 3/2+ (K; + D;)?/2p; are local characteristics of the singularities. It is easy to
show that (K; 4+ D;)? > —pu; (see Proposition 6.1 below) and hence, a; > 1.

In Theorem 6.2 below we prove that if D 1s analyticaly irreducible (one place) at p;,
then

1
1 —
a; > +2m‘

where m; is the multiplicity of D at p;. As a corollary we obtain

Theorem A. Let X(CP? — D) > 0. Suppose that each singularity of D is analytically
irreducible (one place) and has multiplicity not greater than m. Then

2 om 3
i < d + =d).
;F_Qm-Fl( +329)

Corollary B. In the hypothesis of Theorem A

d* — (9m + 3)d
9= 2(2m +1)

+1

Remarks.

1. For m = 3 Theorem A was proved by Yoshihara [Y1] by the same method and his
paper, as well as the question posed in [LZ], inspired us for this work. Similar results are
obtained in [Y2] by a different method.

2. In [MS] it is proved that if D as above is rational, then d < 3m, which is better than
the estimate d < 9m + 2 given by Corollary B.

Inequality (2) can be strengthened using the Zariski decomposition Ky + D = H + N.
One of the consequences of the result of [KNS] is that (K + D)? in (2) can be replaced
by H2?. (Since N? < 0, we obtain a stronger inequality.) Projecting H onto the direct
summands of PicV ® Q, we may replace the "local terms” (K; + D;)? in (3) by H?.
It follows from Fujita’s peeling theory [F] that if D satisfies some additional conditions
then the H; also depend only on local properties of the singularities. An example of such
conditions is given by Theorem 1.2 below.

We compute the (K; + D;) and the H? in terms of discriminants of subgraphs of the
resolution graph, and if the singularity is analytically irreducible, in terms of Puiseux char-
acteristic pairs. An analogue of characteristic pairs for an analytically reducible singularity
(more than one places) is a notion of a splice diagram introduced by Eisenbud and Neu-
mann [EN] (see Remark 2.5). It turns out that the above H? (but not the (K; + D;)?)
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are rational functions of the weights of the splice diagrams (we write them explicitly in
Corollary 2.4). It is not evident a priori, because though the weighted graph of the min-
imal resolution (and hence, H?) is uniquely defined by the splice diagram, the process of
its reconstruction is rather complicated (it involves solving several diophantine equations,
developments into continuous fractions, etc.)

In fact the proof of Theorem A does not use the Zariski decomposition, peeling theory
(see Sect. 1), Fujita’s theorem (Theorem 2.1) etc., and though the terms H; and N; are
involved in the proofs, they have purely formal meamng and are used just because the
formulas for them are convenient for computations. However, using these formulas and
Fujita’s theorem one can obtain some more strong estimates. For example, if D satisfies
the hypothesis of Theorem 1.2 and all its singularities are usual cusps (z? + y*+ (higher
terms) = 0), then H? = —1/6 and one can strengthen the estimates of Theorem A and
Corollary B as

3 11d? — 141d
E 12 = 5 224 T oEd
i < 35 (a 2(1) and ¢ 2> ) +1

and if ¢ = 0, then d < 12 (in fact, in this case d < 5 by [MS]).

Conjecture. The statements of Theorems 6.2 and A are true without the assumption of
analytical irreducibility.

In Sect.7 we show how to modlfy the local formulas for the case of a plane affine curve
with one place at infinity.

The work was done partially when both authors stayed at the Max-Planck-Institut far
Mathematik in Bonn and partially when they stayed at the Fourier Institute in Grenoble.
The authors thank both these instituts for their hospitality.

1. Local peeling and Zariski’s decomposition of K + D

Let D = E U C be a reduced curve with simple normal crossings on a smooth rational
projective surface V, such that the dual graph of E is a rational tree, all irreducible
components of E are linearly independant in PicV ® Q and the intersection form of F is
non-degenerate.

As usual, the dual graph of E is a weighted graph ', whose vertices are the irre-
ducible components of E, the edges are the intersection points and the weights are the
self-intersection numbers. Besides the dual graph of E we shall also consider the dual
graph of C near E. It is a partially weighted graph I'c g, whose weighted part coincides
with I'g and whose non-weighted vertices are the intersection points of £ and C (recall
that all intersections are transversal). Such a vertex is joined by an edge with that com-
ponent of E, on which the corresponding intersection point lies. Example: if E and C are
respectively a line and a conic in CP? in general position, then I'c g is a linear chain of
three vertices, where the middle one has the weight +1.

A partially weighted graph T’ will be called an eztended weighted graph if all its non-
weighted vertices are ends. It is clear that the above ['c g satisfies this definition.

By definition, the discrinimant d(I') of a weighted graph T' is det(—A), where A is
the incidence matrix of I' (the intersection matrix of E, if ' = I'g). The discriminant
of a partially weighted graph is defined to be the discriminant of its weighted part. The
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discriminant of an empty graph is +1. The valency of a vertex in a graph is the number
of incident edges. The vertex is said to be an end, linear or branch point (or node) of T,
if its valency is 1,2 or > 2 respectively.

A subgraph L of a partially weighted graph T’ is called a twig if all its vertices are
weighted, all but one are linear in I', one vertex (which is called a tip of L) isan end of T
and another end of L is incident to a branch point of I. This branch point is called the
root of L (remark: root(L) ¢ L). A twig is said to be admissible if the weights of all its
vertices are £ —2. In this case its intersection form is negatively definite. The inductance
of a twig L is defined as

ind(L) = d(L — tip(L))/d(L).

Denote by Vect(E) the subspace of PicV @ Q spanned by the irreducible components
of E, and let prg : PicV ® Q — Vect(E) be the orthogonal projection (with respect to
the intersection form). Denote: Cg = prg(C), Dg = pry(D) and Kg = prg(Kv), where
Ky is the canonical divisor of V.

We shall assume, that I'c g is minimal, i.e. it does not contain linear or end vertices
weighted by —1.

By a local peeling (or Fujita decomposition) of K + D near E we shall mean a decom-
position Kg + Dg = Hg + Ng, where supp(Ng) is contained in the union of all twigs of
Tc g, and Hg is orthogonal to each irreducible component of Ng.

It is not difficult to prove that if all the twigs are admissible, then the decomposition is
uniquely defined [Fu].

Lemma 1.1. [Fu, (6.16)]. —N% is equal to the sum of inductances of all twigs of I'c g.

Now we describe the relation of the local peeling with the Zariski decomposition of
K + D. Let us return to the notation from the introduction. We denote also: E() =
o~ (pi), L = 6~'(L), where L is a generic line in P2. Let H + N be the Zariski decom-
position of K + D and let H; + N; and H; + N be its local Fujita decomposition near
E® (i =1,...,s) and near L, respectively. Clearly, H = (d —3)L, N = 0.

As a corollary from [Fu, 6.20-6.24] one can obtain the following

Theorem 1.2. Suppose that D is a rational tree on the surface V such that

i) X =V —~ D is affine,

if) K(X) > 0,

iii) the dual graph I'(D) is minimal and has at least two branching points,

iv) there is no (—1)-curves F' in V such that F is not containedin D and F-D =1 =F.T
for some twig T of D.

Then H=(d-3)L+ % ,H;and N =3, N;.

2. Computation of H% via discriminants of branches of the dual graph

All the notation from the previous section is preserved. Let Ei,..., E, be irreducible
components of E. Denote by Vect(E)* the dual space to Vect(E) and let (,} : Vect(E)* ®
Vect(E) be the natural pairing. Denote by e* = {E}, ..., Ex} the base in Vect(E)*, dual
to the base e = {Ey, ..., E, }, 1.e. (E, E;) = §;;. Denote by Ag : Vect(E) — Vect(E)* the
linear operator, defined by the intersection form: (Ag(D;), D2) = D; - D3. So, the matrix
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of Ag in the bases e and e* is just the intersection matrix of E. Recall that we assume
the intersection form to be non-degenerate on Vect(E). Denote A5' by Bg = (bi;).

Proposition 2.1.
bij = —d(T;)/d(TE),

where T';; is the subgraph of I'g, obtained by deleting the shortest path between E; and
E; (E; and E; also being deleted).

Proof. Apply Cramer’s inverse matrix formula.l
Denote by v; and 7; (1 = 1,...,n) the valencies of E; in I'g and I'c g respectively.

Proposition 2.2.
(i) AE(KE + E) E (1/, 2)E* .
(i2) Ap(Cg) =Y (o —vi)E} .
(111) AE(KE +Dg) = 3% - 2)E} .

Proof. (3) For each E; we have (K + E),E;)=Kg -E;+E-E;=(Kg+E))-Ei+v;=
-2 + V.

(i?) By the definition 7; = v; + C - E;.

(i21) Add (¢) and (i7). B

For a branch point E; of the graph I'c g put ¢; = 7;—2~)_ 1/d(L), where the summation
is over all twigs such that root(L) = E;

Proposition 2.3. Ag(Hg) =2, ., cE!.

Proof. If v; = 1 then E; belongs to some twig, and by the definition of local peeling
Hg - E; =0.

If 7; = 2 then either E; lies on a twig and then Hg - E; = 0, or E; does not intersect
any twig and then E; - Hg = E; - (Kg+ Dg) = (#: — 2) = 0.

If ; > 2, denote by Ly, ..., L; all twigs rooted by E;, and let E;,, ..., E;, be their vertices,
incident with E;. According to [Fu], the coefficient of E;; in Ng equals 1/d(L;). Hence,

k
E,"HE=E;-(I\'E+DE)—E,~'NE=(I7,'—2)—

[ |
Corollary 2.4.
Hp =) bijeic), (6)
where the summation is over all pairs (2, j), such that ¥; > 2 and v; > 2.
Proof. Let Y = Ag(HEg). Then H}; = (BgY,Y ).

Remark 2.5. One can see that (6) represents H% as a rational function of d(I'g) and
of the discriminants of the branches of I'c g at branch points (e branch of a graph I at a
vertex v is a connected component of I' — v). This rational function depends only on the
topology of I'c k.
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In [EN] the notion of splice diagram was introduced. A splice diagram is a graph,
some of whose ends are marked as arrowheads, all nodes have weights +1, and all ends of
edges near nodes (more formally speaking, all pairs (n,e) where n is a node and e is an
edge, incident to n) are weighted by integers. To each unimodular (with discriminant +1)
extended weighted graph I corresponds a splice diagram A which is constructed from I' as
follows: Replace each linear chain of T' by a single edge, weight all the nodes by the same
integer d(I") and weight each end of edge at a node by the discriminant of the correspoding
branch of I at the node. It is shown in [EN] that if the intersection form of T" is negative
definite, then the minimal extended graph is uniquely defined by the splice diagram.

For singularities of plane curves, the notion of a splice diagram is a generalization of
the notion of Puiseux pairs (see Proposition 5.1). It is easy to see that the right hand side
of (6) is a rational function of the weights of the splice diagram.

Remark 2.6. The same arguments applied to a resolution of a singulariry of a plane
curve provides us a formula for the Milnor number of the singularity in terms of the weights
of the splice diagram: '

p=1- (BEY,Z) =1- Zbij(yi _2)(171' - Vj)’

ilj

where Y = Ag(Kg+ Dg), Z = Ap(CEg). Milnor’s formula [Mil,p.93] (see also (13) below)
can be easily deduced from the above in the same way that (11) is deduced from (9) in
Corollary 5.3 below.

3. Some lemmas on discriminants of graphs

The next two lemmas are well known.

Lemma 3.1. Let L be a linear weighted graph with vertices vy,...,vx (vi and vy being
the ends of L). Then

d(L —vy)d(L —v) —d(L)d(L — vy —vg) = 1.

Proof. Use induction by the length of L and the recurrent formula:
d(L) = —wld(L - 'Ul) - d(L — v — ‘Ug),

where w) is the weight of v,. B

Lemma 3.2. Let I' be a weighted tree, and [vyv,] its edge. Denote by I'y and T'; the
components of I — [v;v;], containing v, and v, respectively. Then

d(I") = d(l"l )d(PQ) - d(I"l - )d(rz - Uz).
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Lemma 3.3. Let L be a linear extremal chain of I' with vertices vy, ..., vk, such that v
is an end of ' and v, is connected with I' — L by the edge [vovy]. Then

AT — L — vp) = d(T — vg)d(L) — d(T)d(L — vi).

Proof. Denote:
d=d(L); dy = d(L —vi); & = d(L —v1); d) = d(L — vy — ve);
A=d(T); Ag=d(l —vi); A=d(T - L); A' = d(T — L — ).
Then, by lemma 3.2 applied to I" and T' — v, in the edge [vpv1], we have:
A=Ad— A'd; Ag=Ady - A'd).

Substracting the first equality multiplied by dy from the second one multiplied by d, we

obtain
Aod - Ado = A’(dod' - dd’o).

But by Lemma 3.1 dyd' —dd; = 1. &
Corollary 3.4. Ifd(L) # 0 and d(T") # 0 then

d(I' —vi) _ d(T' — L - wy)
dT) —  d(L)d(T)

+ ind(L).

Corollary 3.5. Ifd(I") = 1 and all the weights of L are < —2, then
AT -v)=al;  ind(L)=[a] —a,
where a = d(I' — L — vg)/d(L) and by [a] is denoted the minimal integer greater than a.

4. The case of a contractible graph

We use here the notation from Sect.2 and 3. If the graph of E is contractible, i.e. if
E can be blown down by a birational morphism oz : V — V such that (0E)|lv-£ is an
isomorpfism and og(E) is a single smooth point on V, then the formula for (Kg + E)?
and hence, for H% can be essentially simplified: the summation over two indices can be
replaced by a summation over a single index.

Proposition 4.1. If E can be blown down to a smooth point, then
(KE+E)2 = —2—25;5(1/,' -—2). (7)
=1

Remark 4.2. Since the intersection form on Vect(E) is negative definite, all the b;; are
negative.
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Proof. Since V can be obtained from V by means of successive blow-ups, we shall use the
induction with respect to the number of irreducible components of E. If E is irreducible
with E? = —1, it is clear that both sides of (7) are equal to —4. Now assume that the
proposition is valid for a pair (V, E) and let us prove it for (V, E), where V is the result
of a blowing-up ¢ : V. — V of a point p on E, and E = oc~1(E). Denote the irreducible
components of E and E by Ey,...,Ey and Ey, ..., E, respectively, where E; is the proper
transform of E; for i > 1 and Ey = 0~ (p) is the exceptional curve of 0. Let Kz, B = (b;;)
etc. be given as before with (V, E) replaced by (V, E).

We shall show that the blow-up changes both sides of (7) by the same quantity. Indeed,

I;’E' = Ut(KE) + Eﬂa. E = U'(E) - (Do - 1)E0
hence, N X i
Kig+ E=0"(Kg+ E)— (in - 2)E,,
and since 0*(Kg + E) is orthogonal to E,, we have
(Kg + E) = (6*(ig + E))* + (0 — 2)*E} = (Kg + E)? — (9 — 2)%.

Thus, (Kg + E)? decreases by 1 if p is a smooth point of E (case 1), and does not change
if p is the intersection point of two components of E (case 2).

Now, let us see what happens with the right hand side of (7) in both cases.

Case 1. Without loss of generality we may assume that p € E;. Then we have: boo =
by — 1, by = by; for i > 1, 90=1,0y =v1+1, &% = v; for 1 2 2. Indeed, to prove the
first equality, it is enough to note that —bgg is the determinant of the matrix —Ag with
—ay; replaced by —(ay; + 1), and the determinant of the complementary minor is exactly
—by1. The second equality is just the invariance of the discriminant under blowing up.
The others equalities are trivial. Thus,

- Z bii(i — 2) = (byy — 1) = byy (1 — 1) — Z‘ bii(v; —2) = -1 - Zb.,(u, —

Case 2. Without loss of generality we may assume that p = E; N E;. Then we have:
by = b;; for i > 1,99 = 2, ¥ = v; for 1 > 1. (As above, the first equality is just the
invariance of the discriminant under blowing up.) The invariance of the right hand side of
(7) is a trivial consequence of these equalities. W

5. The analytically irreducible case: Computation of H% via Puiseux pairs

Let C be a germ of an analytically irreducible curve at the origin in C?, and let
T = tmy y= antn + arl+1tn+1 + Gn # 01
be its local analytic parametrization. Put: d; =m, m; = n;

d;:gcd(d,'_l,m,'_j), m,-=min{j|aj7é0,d.~{j},t>1
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denote by h an integer such that dp # 1, dp4y = 1. Thus, m; and d; are defined for
t=1,..,h,and for : = 1,..., h + 1 respectively, and

0<my <mg < ... < my, m=d1>d2>...>dh+1=1.
Let ¢y =my, ¢i=m; —mi_y for 1 =2,...,h, and let
r, = (Q'ldl + ...+ q,-d.-)/d.-, 1=1,..,h (8)

After changing the coordinates, if necessary, we may assume that m < n, and under this
assumption the sequence (m;m;y, ma,...,my) is uniquely defined and is called the Puiseuz
characteristic sequence of the singularity of C at 0 (see [A), [Mil]).

Now, we shall describe the relations between the Puiseux characteristic sequence and
the resolution graph. Let o : V — C? be the minimal resolution of the singularity of the
curve C' at the origin, E = 07'(0) and C be the proper transform of C.

Proposition 5.1. (see [EN] ). a) The dual graph I'c g of C near E is the following:

4

Ey Epy1 Epya o Ezp C
T T
B, E, .. E,

(here the vertices of valency 2 are not shown).

b) Denote by R;, D; and S; the connected components of I'c g — En4; whxc.b are to
the left, to the bottom and to the right of the node Ej4;, respectively. Denote by Q; the
linear chain between Ey;_; and Ej4; (excluding Ep4i—y and E4;). Then

AR) =7, ADY =7, AS)=1, Q)= 7

[

Remark. This proposition explains why splice diagram can be considered as a gener-
alization of Puiseux characteristic sequence (see Remark 2.5).

Let u be the Milnor number of the singularity of C' at 0. Introduce for E and C the
notation from Sect.2 and 3. Denote by [a] the smallest integer greater than a.

Proposition 5.2.
i)

d:
2 _ 141y,
2t Hp =~ Z: du+1 i+1 T4 )

h .
Np= 2 G -1y ©

T
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1ii)
d i
24+ (Kp + D)’ = =[] +Z(’" sl
i=1 '
Proof. 1t is known that u = —Cg - (Kg + Cg + E) + 1. Hence,
2u+4+H, =2u+ (Kg+Cp+E)? -~ Ni=(Kg+E)+2-C% ~ Ni. (10)
Let the irreducible components of E with #; # 2 be numerated as in the above diagram
(recall that v; and 7; are the valencies of E; in I'g and in I'c g respectively). Then

Vg = ...=Wp = 1,u,-,+1 = .. =Vah-1 = 3,V2h =2.
According to Proposition 4.1,

2h-1
(KE+E)2+2—_Z'5"(V|—2) Zbu_ z bii.
i= i=1 i=htl
From Propositions 2.1 and 5.1 we ha.ve
Ty d.‘ <
biginti = T dm i=1,..,h

Denote the twigs of I'c g by Lq,...,Lj, where E; is the tip of L;), so that L; = D; for
1 =1,...,h. By Propositions 2.1,5.1 and Corollary 3.4 we have

oo = f_l Find(Lo  —bi = T +ind(L), =1,k
1 i

It is clear that Cg - E; = 25,4, 1.e. Ag(CEg) = EJ,. Hence,
C% = (BeE3),, E3,) = banan = —rads.

To complete the proof of 1) and ii), we put all these formulas into (10) and apply Lemma
1.1 and Corollary 3.5; iii) is the sum of i) and ii). W

Corollary 5.3.
dy
T N WU )

1 i=1

Proof. Put (8) into (9)(i) and change the order of summation:

d:
2 i+1
et H ;;dd.ﬂ d.+1 4 )
d < 11 - 1
=—q—+Zqu12(dg —ﬁ)=“q—l+szd1(1 d-z)
j=1 i=; 1+l ! i=1

Corollary 5.4. If the analytically irreducible singularity of C at 0 has only one Puiseux
characteristic pair (i.e. if the above m,n are relatively prime), then
~H% = (m = 2)(n —2) + (m — n)}/mn.
Indeed, in this case g = (m — 1)(n — 1), see [Mil, p. 95], and h =1,dy =m,qy =m; =

rn =n.
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6. Estimates of HZ via the Milnor number and multiplicity

The first estimate (Proposition 6.1 below) is quite elementary and in its proof we use
nothing (except definitions) from the above part of the paper. This estimate holds for any
singularity of a plane curve. The second estimate (Proposition 6.2 below) is stronger and
is based on the computations involving the Puiseux characteristic sequence (see Sect.5).
We prove the second estimate for irreducible singularities only.

Let C be a germ of a curve at the origin in C? (not necessary analytically irreducible),
and let 0 : V — C?%, E = ¢71(0), be the minimal resolution of its singularity, D = E + C,
where C is the proper transform of C. We use the same notation as in Sect.2 and 3. Let
¢ be the Milnor number of C at 0.

Proposition 6.1.
—pu<(Kg+ Dg)* <HE <0.

Proof. H% < 0 By the negative definiteness of the intersection form on Vect(E), HE < 0.
Since N:‘é < 0, it suffices to prove that p + (Kg + Dg)? > 0. Note that

p+(Kg+Dg)? = (-Cg-(Kg+Dg)+1)+(Kg+Dg)* = (Kg+E)(Kg+Cg+E)+1. (12)

Since the minimal resolution of the singularity is a composition of blow-ups, it suffices to
prove that the right hand side of (12) does not decreases under a blow-up (as in the proof
of Proposition 4.1).

Leto:V oV, E = a"lﬂ(E) be a blow-up at the point p € E with the exceptional curve
Ey = 071(p). Denote by C the proper transform of C and by « and v the multiplicities
at p of C and E respectively. Then we have:

Ciy = o*(Cg) — aky, Kg =0*(Kg) + Eq, E =0*(E) - (v - 1)E,.
Hence,
(Kg+E)Kz+E+Cg)— (Ke +E)Kg+E+Cg)=(v-2)(a+v-—2)E}.
Since v = 1 or 2, this difference is either 0 or @ — 1. But since the resolution is minimal,
all blow-ups are done at points of C. So, a > 1. B

Now we assume that C is analytically irreducible at 0 and use the notation from Sect.5.
Clearly, under the assumption that m < n, m is the multiplicity of C' at the origin.

Theorem 6.2.
p+Hg > p+(Keg+ Dp)* > p/m,

where equality holds if and only if m = 2.

Proof. Milnor’s formula for g in terms of Puiseux pairs [Mil, p.93] (see also Remark 2.5
above) is obviously equivalent to

h
p=—dy +1+ Eq;(d,- -1). (13)

=1
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Substracting (13) from (11), we obtain

h
1 1
p+HL=di(1—— —1+§ g;(1 — =),
E 1 ql) Jl=1.1 dJ)

and hence
i 1. 1 A d; 1
2_Fr U 2 z (1 — =2Y(1 — —
p+ (Kg+ Dg) ~ d;(1 ql) a + Ng +j=1 g;(1 7 )(1 dj) (14)

(recall, that m = d,). It is clear that the last sum in (14) is positive.
Let, as above, L; be the twig of I'c g with the tip E; (see the diagram in Proposition
5.1). Since ind(L;) < 1, we have

Ni> —ind(Lg) -k

and by Corollary 3.5
—ind(Lo) —di/q1 = —[dr/q1] = ~1.

Thus, the expression in the right hand side of (14) is greater than m — L — 1 — h (denote
this quantity by a). Since m = d; and d;/d;4, > 2 we have h < log, m. Hence, a > 0 for
m2>4. Ifm=3,then h=1and a =2/3>0.

To complete the proof, it remains to consider the case m = 2. In this case ¢ = n is
odd, hence, [n/m] = [n/2] = (n+1)/2, g =n — 1, and by (14)

p+(Kg+ D) =[n/2] -1=(n—-1)/2 = u/2.

Remark 6.3. The estimate in Theorem 6.2 is sharp in the following sense. For any
positive integer m and for any ¢ > 0 there exists a curve C with an analytically irreducible
singularity at 0 of multiplicity m, such that

u+ B < (1+ u/m.
Indeed, consider the curve z™ = y™, where n is big enough and relatively prime with m.

7. Plane affine curves with one place at inflnity

The Puiseux expansions of an analytically irreducible singularity i1s very similar to that
of an affine curve with one place at infinity (see [A, NR]). All the formulas from Sect.5
can be easily modified for this case. These modifications are nothing more than changing
signs at several places. Here we just reproduce the answers because the proofs are the
same as in the former case.

Let D be the closure in CP? of an algebraic curve in C? with one place at infinity.
Denote by L the projective line at infinity (i.e. C2 UL = CP?). Let o : V — CP? be the
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resolution of the singularity of D at infinity, E = 0~Y(L), D = 07(D) = C + E, where C
is the proper transform of D.
As in Sect.5 we define the Puiseux characteristic sequence as follows. Let

X = t#m, = a_nt'" + a_.n+1t""+1 + veny Q_n # 0,

be a local analytic parametrization of the branch of D with the centrum at L. Put:
dy, = m, m; = —n; and define d;,q;,r;,h by the same formulas as at the beginning of
Sect.5. Then we have

my < 0 m; < mg < ... < My; d1>d2>...>dh+1=1
and, according to [A] and [NR, Corollary 6.4], r; <0 fori=1,..., h.

Proposition 7.1. The dual graph of C near E is the same as in Proposition 5.1. The
discriminants of its subgraphs are:

Ty

d(R;) = -

d; qi
D) =2 d(S) =1, d(Q;)=-2-
dig1 (D3) diy1 (55 (@) diy1
|

Let ptoo = 2m,(C) = C(C 4+ K) + 2 be "the Milnor number of C at infinity”.
Proposition 7.2.

d i, di d
2;L°°—H%=r—;-—zd (d - a:'].
=1 '

i+1 i+1
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