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SOME ESTIMATES FOR PLANE CUSPIDAL CURVES

S.Yu .OREVKOV, M.G.ZAIDENBERG

Introd uction

Let j) be an irreducible curve in CP2 of degree d and of genus g. A classical question
is what set of singularities may it have. A necessary condition on the set of singularities
is given by the genus formula:

II

(d - l)(d - 2) = 2g +L:(JLi + ri - 1),
i=l

(1)

where Pi and ri are respectively the Milnor nurnber and the number of analytical branches
at Pi (by P1, ""PlI we denote the singular points of D). Of course, this condition is far
from being sufficient.

One of the most powerful methods for obtaining other restrictions (see [HD is applying
sorne variants of the Bogomolov-Miyaoka-Yau (BMY) inequality. This paper is devoted to
some computations that allow one to apply the BMY inequality in the following logarithmic
form (see (Miy,Corollary 1.2D. Suppose that R(CP 2 -D) ;::: O. (It is the case, for example,
when j) has more than ooe singular point, 01' 9 ;::: 1 and d;::: 4; see [W].) Let s : V -+ Cp2

be the minimal resolution of the singularities of jj and D = (1-1 (D). Then

(!( +D)2 :;:; 3e(Cp2 - D),

where K = !(V is the canonical divisor and e is the Euler characteristic.
Using the genus formula (1) one can l'epresent the right hand side of (2) as

II

2 - 2 '"'"'e(CP - D) = (d - 3d +3) - LJ fJi·
i=l

(2)

(3)

After decomposing Pic V ® Q into a direct surn of pairwise orthogonal summands, one
of which corresponds to a generic line and the others correspond to singular points, one
can represent the left hand side of (2) as

!J

(K +D)2 = (d - 3? +L:(Ki +Dd2.
i=l

1

(4)

Typeset by -4Nfs.TEX
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It is easy to see that (Ie + Dd2 depends oo1y on the weighted graph of the minimal
resolution of the singularity of D at Pi.

Combining (3) and (4), one ean write (2) as

3 3
'" (X'II' < d2

- -d~ 1,.-1 - 2 '
i=l

(5)

where O'i = 3/2 + (Ki +Dd2/2/Li are loeal eharaeteristies of the singularities. It is easy to
show that (Ki +Di)2 > -j..Li (see Proposition 6.1 below) and heuce, Cl'i > l.

In Theorem 6.2 below we prove that if D is analyticaly irreducible (one place) at Pi,
then

1
0" > 1+­
12m"

I

where ffii is the multiplicity of D at Pi. As a corollary we obtain

Theorem A. Let K(CP2 - D) 2:: O. Suppose that each singularity oE fJ is analytically
irreducible (one place) and bas Inultiplicity not greater than m. Then

Corollary B. In the hypothesis oE Tlleorem A

d2 - (gm + 3)d
9 2:: 2(2m + 1) + 1

Remarks.
1. For m = 3 Theorem A was proved by Yoshihara {YI] by the same method and his

paper, as weIl as the question posed in [LZ], inspired us for this work. Similar results are
obtained in {Y2] hy a different luethod.

2. In {MS] it is proved that if jj as above is rational, then d < 3m, which is bettel' than
the estimate d ::; 9m +2 given by Corollary B.

Inequality (2) ean be strengthened using the Zariski decomposition K v +D = H + N.
Oue of the consequences of the result of [KNS] is that (K + D)2 in (2) can be replaced
hy H 2 • (Since N 2 < 0, we obtain a stronger inequality.) Projecting H onto the direet
summands of Pie V 0 Q, we may replace the "loeal terms" (Ki + Dd2 in (3) by Hf.
It follows from Fujita's peeling theory [F] that if jj satisfies some additional couditious
then the H i also depend only on IDeal properties of the singularities. An example of such
conditions is given by Theorem 1.2 below.

We compute the (Ki + D;) and the H; in terms of discriminants of subgrapha of the
resolution graph, and if the singula.rity is analytically irreducible, in terms of Puiseux char­
acteristie pairs. An analogue of characteristic pairs for an analytically reducible singularity
(more than one pIaces) is a notion of a. splice diagrarn introdueed by Eisenbud and Neu­
mann {EN] (see Remark 2.5). It turns out that the above Hf (hut not the (Ki +Dd2

)
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are rational functions of the weights of the splice diagrams (we write them explicitly in
Corollary 2.4). It is not evident apriori, because though the weighted graph of the min­
imal resolution (and hence, H;) is uoiquely defined by the splice diagram, the process of
its reconstruction is rather complicated (it involves solving several diophantine equations,
developments iota continuous fractions, etc.)

In fact the proof of Theorem A does not use the Zariski decomposition, peeling theory
(see Sect. 1), Fujita's theorem (Theorem 2.1) etc., and though the terms H i and Ni are
involved in the proofs, they have purely formal meaning and are used just because the
formulas for them are convenient for computations. However, using these formulas and
Fujita's theorem one can obtain sorne luore strong estimates. For example, if fJ satisfies
the hypothesis of Theorem 1.2 and all its singularities are usual cusps (x2 + y3+ (higher
tenns) = 0), then H; = -1/6 and one can strengthen the estimates of Theorem A and
Corollary B as

"" P.' < 24([z2 + ~d) and 9 > 11lf2 - 141d + 1
LJ - 35 2 - 70

and if 9 = 0, then d ::; 12 (in fact, in this case d ::; 5 by [MS]).

Conjecture. The statemeJlts of Theorems 6.2 and A are true witbout the assJ.Unption oE
analytical irreducihility.

In Seet.7 we show how to modify the loeal formulas for the ease of a plane affine eurve
with one plaee at infinity. '
, The wark was done partially when both authors stayed at the Max-Planck-Institut für
Mathematik in Bann and partially when they stayed at the Fourier Institute in Grenoble.
The authors thank both these instituts for their hospitality.

1. Loeal peeling and Zariski's decomposition of K + D

Let D = Eu C be a reduced eurve with simple normal crossings on a smooth rational
projective surface V, such that the dual graph of E is a rational tree, all irreducible
components of E are linearly independant in Pie V ~ Q and the interseetion form of E is
non-degenerate.

As usual, the dual graph 01 E is a weighted graph r E, whose vertiees are the irre­
ducible components of E, the edges are the interseetion points and the weights are the
self-interseetion numbers. Besides the dual graph of E we shall also consider the dual
graph 01 C near E. It is a partially weighted graph rC,E' whose weighted part coincides
with rE and whose non-weighted vertices are the intersection points of E and C (recall
that all intersections are transversal). Such a vertex is joined by an edge with that com­
ponent of E, on which the corresponding intersection point lies. Example: if E and C are
respeetively a line aod a conie in Cp2 in general position, then r C,E ia a linear ehain of
three vertiees, where the middle one has the weight +1.

A partially weighted graph r will be ealled an extended weighted graph if all its non­
weighted vertices are ends. It is dear that the above r C,E satisfies this definition.

By definition, the di~crinimant d(r) of a weighted graph r is det( -A), where A is
the ineidence matrix of r (the intersection matrix of E, if r = r E ). The discriminant
of a partially weighted graph is defined to be the discriminant of its weighted part. The
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discriminant of an empty graph is +1. The valeney of a vertex in a graph ia the number
of incident edges. The vertex is said to be an end, linear or braneh point (or node) of r,
if its valency is 1,2 or > 2 respeetively.

A subgraph L of a partially weighted graph r is ealled a twig if all its vertices are
weighted, all but one are linear in r, one vertex (which is called a tip of L) is an end of f
and another end of L is incident to a branch point of r. This brauch point is called the
root of L (remark: root(L) f/:. L). A twig is said to be admüsible if the weights of all its
vertices are ::; -2. In this ease its interseetion form is negatively definite. The induetanee
of a twig L is defined a.s

ind(L) = d(L - tip(L))jd(L).

Denote by Veet(E) the subspaee of Pie V ® Q spanned by the irreducible eomponents
of E, and let prE : Pie V ® Q --? Veet(E) be the orthogonal projeetion (with respect to
the intersection form). Denote: CE = prE(C), DE = prE(D) and KE = prE(Kv), where
K V is the eanonical divisor of V.

We shall assuille, that fC,E is minitnal, Le. it does not contain linear or end vertiees
weighted by -1.

By a Ioeal peeling (or Fujita decomposition) of K + D near E we shall mean a decom­
position KE + D E = HE +NE, where SUPP(NE) is contained in the union of all twigs of
r C,E, and HE is orthogonal to eaeh irredueible component of NE.

It ia not diffieult to prove that if all the twigs are admissible, then the deeomposition is
uniquely defined [Fu].

Lemma 1.1. {Fu, (6.16)}. -N~ is equal to the sum oE inductances oE all twigs offc,E.

Now we describe the relation of the loeal peeling with the Zariski deeomposition of
K + D. Let us return to the notation from the introduetion. We denote also: E(i) =
0'-1 (pd, L = 0'-1 (L), where L is a generic line in p2. Let H +N be the Zariski decom­
position of K + D and let H i + Ni and H L + N L be its Ioeal Fujita decomposition near
E(i), (i = 1, ... ,s) and near L, respectively. ClearIy, HL = (d - 3)L, N L = O.

As a corollary from [Fu, 6.20-6.24] one can obtain the following

Theorem 1.2. Suppose that D is a rational tree on the surface V such that
i) X = V - D is afflne,
ii) R(X) ~ 0,
iii) the dual grapb r(D) is ulininlal and has at least two brandling points,
iv) tbere is no (-l)-curves F in V sudl that F is not cOlltained in D and F·D = 1 = F·T

for some twig T oE D.
Then H = (d - 3)L +Li Hi and N = Li Ni.

2. Computation of H1 via discrimillallts of branches of the dual graph

All the notation from the previous section is preserved. Let EI, ... , E n be irreducible
eomponents of E. Denote by Vect(E)* the dual space to Vect(E) and let (,) : Vect(E)* ®
Veet(E) be the natural pairing. Denote by e* = {Et, ... , E~} the base in Vect(E)*, dual
to the base e = {E l , ... , En }, i.e. (Ei, E j ) = Öij. Denote by A E : Vect(E) --? Vect(E)- the
linear operator, defined by the intersection fonn: (AE(D 1 ), D 2 ) = D 1 • D 2 • So, the matrix
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of AE in the hases e and e- is just the intersection matrix of E. Recall that we 8.8sume
the intersection fonn to be non-degenerate on Vect(E). Denote Ai! hy BE = (bij ).

Proposition 2.1.

wbere r ij is tbe subgraph of r E , obtained by deleting tbe sbortest patb between Ei and
E j (Ei and E j also being deleted).

Proof. Apply Cramer's inverse matrix fonnula.•

Denote by Vi and Vi (i = 1, ... , n) the valencies of Ei in r E and rC,E respectively.

Proposition 2.2.
(i) AE(KE + E) = Ei(Vi - 2)E; .
(ii) AE(CE) = Ei(Vi - v;)E; .
(iii) AE(KE +D E ) = Ei(Vi - 2)E; .

Proof. (i) For each Ei we have (KE + E)·, Ei) = I{E' Ei + E· Ei = (KE + Ei)' Ei + vi =
-2 + Vi.

(ii) By the definition Vi = vi +C . Ei.
(iii) Add (i) and (ii).•

For a branch point Ei of the graph r CIE put Ci = Vi - 2- E 1/d( L), where the summation
is over all twigs such that root( L) = Ei.

Proposition 2.3. AE(HE) = EVi>2 CiE ;'

Proof. H Vi = 1 then Ei belongs to some twig, and by the definition of local peeling
HE' Ei = O.

If Vi = 2 then either Ei lies on a twig and then HE . Ei = 0, or Ei does not intersect
any twig and then Ei . HE = Ei . (llE + DE) = (Vi - 2) = O.

If Vi> 2, denote by LI, ... , L k all twigs rooted by Ei, and let Ei 1 , ••• , Ei.. be their vertices,
incident with Ei. According to [Fu], the coefficient of E ij in NE equals I/d(L j ). Hence,

k 1
Ei' HE = Ei' (llE + DE) - Ei' NE = (Vi - 2) - ?= d(L .) = Ci·

J=1 J

•
Corollary 2.4.

(6)

wbere the summation is over all pairs (i,j), such that Vi > 2 and Vj > 2.

Proof. Let Y = AE(HE ). Then H1 = (BEY, Y) .•

Remark 2.5. One can see that (6) represents H~ as a rational function of d(rE) and
of the discriminants of the branches of re,E at brauch points (a branch of a graph r at a
vertex v is a connected component of r - v). This rational function depends only on the
topology of re,E.



6 S.YU.OREVKOV, M.G.ZAIDENBERG

In [EN] the notion of "plice diagram was introduced. A splice diagram ia a graph,
some of whose ends are rnarked as arrowheads, all nodes have weights ±1, and all enda of
edgea near nodes (more formally speaking, all pairs (n, e) where n is anode and e ia an
edge, incident to n) are weighted by integers. To each unimodular (with discriminant ±1)
extended weighted graph r corresponds a splice diagrarn ß which is constructed from r aB

foIlows: Replace each linear chain of r by a single edge, weight all the nodes by the same
integer d(f) and weight each end of edge at anode by the discriminant of the correspoding
branch of r at the node. It is shown in [EN] that if the intersection form of r is negative
definite, then the minimal extended graph is uniquely defined by the splice diagram.

For singularities of plane curves, the notion of a splice diagram ia a generalization of
the notion of Puiseux pairs (see Proposition 5.1). It is easy to see that the right hand aide
of (6) ia a rational function of the weights of the splice diagram.

Remark 2.6. The same arguments applied to aresolution of a singulariry of aplane
curve provides us a formula for the Milnor number of the singularity in terms of the weights
of the splice diagram: .

J.l, = 1 - (BEY, Z) = 1 - L bij(Vi - 2)(vj - Vj),
i,j

where Y = AE(I(E+DE), Z = AE(CE). Milnor's formula [Mil,p.93] (see also (13) below)
can be easily deduced from the above in the SaIne way that (11) is deduced frorn (9) in
Corollary 5.3 below.

3. Sonle lelnlnas on discciminants of graphs

The next two lemmas are weIl known.

Lemma 3.1. Let L be a linear weighted graph with vertices VI, ... , VA: (VI and VA: being
the ends oE L). Thell

d(L - vdd(L - VA:) - d(L)d(L - VI - VA:) = 1.

Proof. Use induction by the length of Land the recurrent formula:

where WI is the weight of VI' •

Lemma 3.2. Let r be a weighted tree, and [VI V2] its edge. Denote by r l and r 2 the
components oE r - [VI V2], cOlltainillg VI aIld V2 respectively. Then
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Lemma 3.3. Let L be a linear extrenlal dlain oE r with vertices VI, ... , Vk, such that Vk

js an end oEf and VI js cOllnected wjth f - L by the edge [VOVI]' Then

d(f - L - vo) = d(r - vk)d(L) - d(f)d(L - Vk).

Proof. Denote:

d = d(L); do = d(L - Vk)i d' = d(L - VI)i d~ = d(L - VI - Vk)i

ß = d(r); ß o = d(r - Vk); A = d(r - L); A' = d(f - L - vo).

Then, by lemma 3.2 applied to rand r - Vk in the edge [VOVI], we have:

ß = Ad - A'd'j ß o = Ado - A'd~.

Substracting the first equality lllultiplied by do from the second one multiplied by d, we
obtain

~od - ~do = A'(dod' - dd~).

But by Lemma 3.1 dod' - dd~ = 1. •

Corollary 3.4. H d(L) i= 0 and d(r) i= 0 then

d(r-Vk) d(r-L-vo) .
d(f) = d(L)d(r) + Ind(L).

Corollary 3.5. H d(r) = 1 and all t]le weights oE L are ~ -2, then

ind( L) = ra1- a,

wbere a = d(r - L - Vo) / d( L) allel by ra1 is denoted the minimal integer greater than a.

4. The case of a contractible graph

We use here the notation from Sect.2 and 3. If the graph of E is contractible, Le. if
E can be blown down by abirational lllorphislu t7E : V --+ V such that (t7E) IV -E ia an
isomorpfism and t7E(E) is a single smooth point on 'V, then the formula for (KE + E)2
and hence, for H1 can be essentially sirnplified: the sUlumation aver two indices can be
replaced by a summation over a single index.

Proposition 4.1. H E can be blown down to a smooth point, tben

n

(KE + E)2 = -2 - :E bii(Vi - 2).
i=1

(7)

Remark 4.2. Since the intersection form on Vect(E) is negative definite, all the bii are
negative.
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Proof. Since V can be obtained from V by means of successive blow-ups, we shall use the
inductioll with respect to the lltunber of irreducible components of E. H E is irreducible
with E 2 = -1, it is clear that both sides of (7) are equal to -4. Now Msume that the
proposition is valid for a pair (V, E) and let us prove it for Cl!, E), \Yhere V is the result
of a blowing-up u : V -t V of a point p on E, and E = u- I (E). Denote the irreducible
components of E and E by EI, ... , En and Eo, ... , En respectively, where Ei is the proper
transformofEi for i ~ 1 andEo = u-I(p) is theexceptionalcurveofu. LetKE,BE = (bij )

etc. be given as before with (V, E) replaced by CV, E).
We shall show that the blow·up chal1ges both sides of (7) by the same quantity. Indeed,

hence,
j(k +E = U·(KE +E) - (va - 2)Ea,

and since q* ( K E + E) is orthogonal to Eu, we have

Thus, (KE + E)2 decreases by 1 if p is a smooth point of E (case 1), and does not change
if p is the intersection point of two components of E (case 2).

Now, let us see what happens with the fight hand side of (7) in both cases.
Case 1. Without lass of generality we may assume that p E EI. Then we have: baa =

bll - 1, bii = bii for i ~ 1, Va = 1, VI = VI + 1, Vi = Vi for i ~ 2. Indeed, to prove the
first equality, it is enough to note that -boa is the determinant of the matrix -AE with
-all replaced by -(all +1), and the determinant of the complementary minor is exactly
-bu . The second equality is just the invariance of the discriminant under blowing up.
The others equalities are trivial. Thus,

n n n

- L bii(Vi - 2) = (bll - 1) - bll (VI - 1) - L bii(Vi - 2) = -1 - L bii(Vi - 2).
i=O i=2 i=I

Case 2. Without 10ss of generality we may assume that p = EI n E2 • Then we have:
bii = bii for i ~ 1, Va = 2, Vi = Vi for i ?: 1. (As above, the first equality is just the
invariance of the discriminant nnder blowing up.) The invariance of the right hand side of
(7) is a trivial consequence of these equalities.•

5. The analytically irreducible case: Computation of H1 via Puiseux pairs

Let C be a germ of an analytically irreducible curve at the origin in C 2 , and let

be its loeal analytic parametrization. Put: dl = m, ml = nj

mi = min{ j Iaj f 0, d i t j }, i > 1j
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denote by h an integer such that dh =1= 1, dh+l = 1. Thus, mi and di are defined for
i = 1, ... , h, and for i = 1, ... , h + 1 respectively, and

o< ml < ffi2 < ... < n1h,

Let ql = mt, qi = mi - ffii-l for i = 2, ... , h, and let

(8)

After changing the coordinates, if necessary, we may assume that m < n, and under this
assumption the sequence (m; ml, ffi2, ... , mh) is uniquely defined and is called the Puüeux
characterntic Jequence 0/ the Jingularity 0/ C at 0 (see [Al, [MB]).

Now, we shall describe the relations between the Puiseux characteristic sequence and
the resolution graph. Let u : V --+ C 2 be the minimal resolution of the singularity of the
curve C at the origin, E = u-l(O) and C be the proper transform of C.

Proposition 5.1. (see {EN} ). a) The dual grapll fe,E of C near E is tbe following:

•
C

(here the vertices of valency 2 are not sbown).
b) Denote by Ri, Di and Si tlle conllected cOlnponents of fe,E - Eh+i whicb are to

the left, to the bottom and to tlle right of tbe node Eh+i, respectively. Denote by Qi tbe
linear chain between Eh+i-l and E h+i (excluding Eh+i- 1 and Eh+i ). Tben

r-
d(Rd=_',

di+l

d·
d(Dd=_',

di+l
d(Si) = 1,

q'
d(Qd = -'.

di+l

•Remark. This proposition explains why splice diagram can be cOllsidered as a gener-
alization of Puiseux characteristic sequence (see Remark 2.5).

Let Il be the Milnor nUlnber of the singularity of C at O. Introduce for E and C the
notation from Sect.2 and 3. Denote by ral the smallest integer greater than a.

Proposition 5.2.
i)

ii)
h

N 2 - d1 rd1l L(Ti rr i 1)·E----+ ---
rl rl d· d·'i=l I I

(9)
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Proof. It is known that J.l = -CE' (I(E +CE +E) + 1. Hence,

2J.l + Hk = 2p. + (KE + CE + E)2 - N1 = (KE + E)2 + 2 - 01- N1. (10)

Let the irreducible components of E with Vi =I 2 be numerated as in the above diagram
(recall that Vi and Vi are the valencies of Ei in rE and in r C,E respectively). Then
va = ... = Vh = 1, Vh+l = ... = V2h-l = 3, V2h = 2 .

According to Proposition 4.1,
n h 2h-l

(KE+E)'2+2=-L bii(vi-2)=L bii- L bii •

i=l i=l i=h+l

From Propositions 2.1 and 5.1 we have
Ti di

bh+i,h+i = --- . --, i = 1, ... , h.
di+l di+l

Denote the twigs of rC,E by La, ... , Lh , where Ei is the tip of Li), so that Li = Di for
i = 1, ... , h. By Propositions 2.1,5.1 and Corollary 3.4 we have

-boa = dl + ind(Lo); -bii = rj + ind(Ld, i = 1, ... , h.
Tl di

It is clear that CE . Ei = Ö2h,i, Le. AE(CE) = Eih' Hence,

c1 = (BEEih' Eih) = ~h,2h = -rhdh.
To complete the praaf of i) and ii), we put aU these farmulas into (10) and apply Lemma

1.1 and Corollary 3.5; iii) is the SUlll of i) and ii).•

Corollary 5.3.

(11)

•
Corollary 5.4. H tlle allalytically irreducible singularity oE C at 0 has only one Pwseux
characteristic pair (i.e. iE the above m, n are relatively prime), thell

-Hk = (m - 2)(n - 2) + (m - n)2/mn.

Indeed, in this case J.l = (m -1)(n - 1), see [MiI, p. 95], and h = 1, dl = m, ql = fil =
rl = n.
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6. Estimates of H~ via the Milnor number and multiplicity

The first estimate (Proposition 6.1 below) is quite elementary and in its proof we use
nothing (exeept defini tions) from the above part of the paper. This estimate holds for any
singularity of aplane eurve. The seeond estimate (Proposition 6.2 below) is stronger and
is based on the eomputations involving the Puiseux characteristie sequenee (see Sect.5).
We prove the seeond estimate for irreducible singularities only.

Let C be a germ of a eurve at the origill in C 2 (not neeessary analytically irreducible),
and let q : V -+ C 2 , E = 11-

1 (0), be the minimal resolution of its singularity, D = E + C,
where C is the proper transform of C. We use the same notation as in Sect.2 and 3. Let
J.L be the Milnor number of C at O.

Proposition 6.1.
-J-l< (J(E+D E ? < H~ ~ O.

Proof. H~ ~ 0 By the negative definiteness of the interseetion form on Veet(E), H~ ::; O.
Since N1 < 0, it suffices to prove that J.l + (KE + DE)2 > O. Note that

J.l+(KE+DE? = (-CE'([{E+DE)+1)+(KE+DE)2 = (KE+E)(KE+CE+E)+l. (12)

Since the minimal resolution of the singularity is a composition of blow-ups, it suffices to
prove that the right hand side of (12) does not decreases under a blow-up (as in the proof
of Proposition 4.1). .

Let q : V -+ V, E = u- 1(E) be a blow-up at the point p E E with the exceptional curve
Eo = q-1 (p). Denote by C the proper transform of C and by 0' and v the multiplicities
at p of C and E respectively. Then we have:

Hence,

j(E = U*([(E) +Eo, E = u*(E) - (v - 1)Eo.

(Ke +E)(Ke +E+ CE) - (!(E + E)(KE +E +CE) = (v - 2)(0' + V - 2)E;.

Since v = 1 01' 2, this difference is either 0 01' 0' - 1. But sinee the resolution ia minimal,
a1l blow-ups are done at points of C. So, 0' ~ 1. •

Now we assume that C is analytically irreducible at 0 and use the notation from Seet.5.
Clearly, under the assuluption that m < n, m is the multiplicity of C at the origin.

Theorem 6.2.
J.l + H1 > J.l + (!(E + DE)2 ~ J-l/m,

where equality holds iE and only iE m = 2.

Proof. Milnor's formula for J-l in terms of Puiseux pairs [Mil, p.93] (see also Remark 2.5
above) is obviously equivalent to

h

Il = -d1 + 1 + Lqi(di -1).
i=1

(13)
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Substracting (13) from (11), we obtain

and hence

h

( 2 JL ( 1 ) 1 2""",, ( dj )( 1 )p+ KE+DE) --=d1 l-- --+NE +LJqj1-- 1--
m ql d1 . d1 dJ'}=1

(14)

(recall, that m = d1 ). It is dear that the last SUffi in (14) is positive.
Let, as above, Li be the twig of fe,E with the tip Ei (see the diagram in Proposition

5.1). Since ind(Ld < 1, we have

N1 > - ind(Lo) - h

and by Corollary 3.5
- ind{Lo) - d1 / ql = - rd1 / qll = -l.

Thus, the expression in the right hand side of (14) is greater than m - ~ - 1 - h (denote
this quantity by a). Since m = d1 and dd di+ 1 ? 2 we have h ~ log2 m. Hence, a > 0 for
m ? 4. If m = 3, then h = 1 and a = 2/3 > O.

To complete the proof, it reluains to consider the case m = 2. In this case ql = n is
odd, hence, rn/ml = rn/21 = (n + 1)/2, Jl = n - 1, and by (14)

JL + (I{E + DE )2 = rn /21 - 1 = {n - 1)/2 = p./2.

•
Remark 6.3. The estiluate in Theorem 6.2 is sharp in the following sense. For any

positive integer m and for any € > 0 there exists a curve C with an analytically irreducible
singularityat 0 of multiplicity m, such that

Jl +H1 < (1 +€)p./m.

Indeed, consider the curve x m = yn, where n is big enough and relatively prime with m.

7. Plane affine curves with one place at inftnity

The Puiseux expansions of an analytically irreducible singularity is very similar to that
of an affine curve with one place at illfinity (see [A, NR]). All the formulas !rom Sect.5
can be easily modified for this case. These modifications are nothing more than changing
signs at several places. Here we just reproduce the answers because the proofs are the
same as in the former case.

Let jj be the c10sure in CP2 of an algebraic curve in C 2 with one place at infinity.
Denote by L the projective line at infinity (i.e. C 2 U L = CP2). Let (j : V --. Cp2 be the
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resolution oI the singularity of D at infinity, E = u- 1(L), D = u-1(.fJ) = C + E, where C
is the proper transform of D.

As in Seet.5 we define the Puiseux charaeteristie sequence as folIows. Let

t - n + t- n+1y = a_ n a-n+l +...,
be a Ioeal analytic parametrization of the braueh of tJ with the centrum at L. Put:
d1 = m, ml = -ni and define di , qi, Ti, h by the same formulas as at the beginning of
Sect.5. Then we have

ml < 0; ml < m2 < ... < mh; d1 > d2 > ... > dh+1 = 1

and, according to (A] and [NR, Corollary 6.4], Ti < 0 for i = 1, ... , h.

Proposition 7.1. The dual graph of C near E is tbe same as in Proposition 5.1. The
discriminants oE its subgrapbs are:

Ti d· q'
d(Ri ) =--, d(Dd = _I, d(Sd = 1, d(Qd = _I •

di+l di+l di+l

•
Let Jl.oo = 27ra( C) = C(C + /<) + 2 be "the MiInor number of C at infinity".

Proposition 7.2.
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