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§1.Introduction.

It seems that at the present there is no in p-adic analysis a good analogue of
the Cauchy integral. In many cases the Shnirelman integral is used in this
role. The main applications of the Shnirelman integral can be found in the
study of transcendent numbers in p-adic domains ([Ad]) and in construction
of p-adic spectral theory ([Vi]). In an earlier paper ([Ha3]) we are interested in
consideration of how the Shnirelman integral is convenient for an analogue of
the Morera lemma. Namely, we considered the class of functions in the p-adic
unit disc whose Shnirelman integrals are vanishing. The functions of this class
have many properties analogous to one’s of Krasner analytic functions, but
this class is larger than the second.

In the present note we show some other situations where the above mentioned
class appears. For example, p-adic L-functions associated to modular forms
belong to this class with some "kernels”.

In §2 we recall some basic facts about the Shnirelman integral and the class S of
functions whose Shnirelman integrals are vanishing. Using the class S we give
an inverse formula for the p-adic Mellin transform in §3. In §4 the functional
equations satisfied by p-adic L-functions of modular forms are discribed in
terms of class S. Some remarks and open questions are given in the last
section.

The author would like to thank the Max-Planck-Institut fir Mathematik Bonn
for hospitality and financial support.

§2. Preliminaries.

Let p be a prime number, (), the field of p-adic number, and C, the p-adic
completion of the algebraic closure of C,. The absolute value in @, is nor-
malized so that |p| = p~' . We further use the notion v(z) for the addition
valuation on C, which extends ord,. Let D be the unit dics in Cj:

D={z€Cplz < 1)
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We donote by D, the disc {z € C,,|z| < r}.

2.1.Definition . Let f(z) be a Cp-valued function defined on all z € C, such
that |z —a| = r, where a € C, and r is a positive real number (we shall always
assume that r is in |C}|, i.e. , a rational power of p). Let 4 € C, be such that
|y} = r . Then the Shnirelman integral is defined as the following limit if it
exists:

[ f@)dz = lim = 5 fla+év) (1)

N gn=1
where the ' indicates that the limit is only over n not divisible by p.
We recall that a function f in a domain M is said to be Krasner analytic if
M is an union of open sets D;,D; C D;y; such that for each i , f|p, is a

uniform limit of rational functions having no poles in D);. From properties of
the Shnirelman integral we need the following.

2.2.Theorem.If f is Krasner analytic in D,(r), and if |y| = r, then for fized
z € C, we have:

/ f(z zj:a {O(z), if |z—a| <r; ()

, otherwise.

2.3.Theorem.Let f(z)=g(z)/h(z} , where g(z) is Krasner analytic in D,(r)
and h(z) is a polynomial. Let {z;} be the roots of h(z) in Dy(r) , and suppose
that for all i,|z; — a| < r. Define res,, f to be the coefficient of (z — 2;) in the
Laurent ezpansion of f(z) at z;. Then:

/ﬂ _J(e)(z - a)dz = Yoressf. (3)

We refer the readers to {Ko] for more detail about the Shnirelman integral.

2.4.Definition . A function f(z) in a domain M is said to be in class S(M)
if for all a,r such that D,(r) C M

./;,—1 f(z)(z —a)dz = 0. (4)

2.5.Remark 1). Some basic properties of functions of class S(M) can be
found in [Ha3).
2). We denote by H(M) and A(M) respectively the class of Krasner analytic
functions and locally analytic functions in M. Then H(M) C S(M),A(M) ¢
S(M) ([Ha3]).



§3. p adic Mellin transform.

3.1. p-adic group of characters. Let A, be an integer prime number p and

let .
¢= {4, ifp=2;
p, otherwise.

We set A,q = A and denote:
Zy =lim(Z/Ap™Z)"

The group of p-adic characters is the group of continuous holomorphisms of
Z} into C;:
X(Z3) = Homeon(Z3,C;)

We set
U=1+4qZ,={z€ Z,,v(z—1) 2 v(q)}

Then, for every ¢ € U such that v(¢g — 1) = v(q) the map z — g¢* is an
isomorphism of Z, onto U. We call g a topological generator of the group U.
For each generator g of the group U the map

X(U) = Homeon(U, C;) — C,

transforming a continuous character x of the group U into a point x(¢) —1 in
the unit disc D of C,. Also we have isomorphisms

Zy ~ (Z/AZ) X Z;

Z: ~(2/qZ)" x U (5)

From isomorphisms (5) it follows that X(Z}) is a product of a finite group
and X(U), while the last is isomorphic to D. Since D is an open disc of C,,
this isomorphism makes X(Z}) into an analytic group. A function f(x) is
said to be holomorphic function on the analytic group X(Z3) if its restriction
on each component isomorphic to D is a holomorphic function. Thus, we
can regard every holomorphic function in the group X(Z}) as a holomorphic
function in the unit disc D. Note that each Dirichlet character x of conductor
Ap™ is an element of the group Hom((Z/Ap™Z)",C}) for each m > n , and
is prolonged to an unique element of the group X(Z3) which is again denoted
by x. Thus ,the torsion subgroup of X(Z}) is identified with the group of
Dirichlet characters of conductors dp® where d|A,. Let x be such a character
and let x = x,.x1 be its decomposition in x, € X(Z/AZ)* and x1 € X(U).
Then x; takes values in the group gy = U,u,n where by pp,n we denote the



group of p"-roots of unity in C;. On the other hand, every z € Z} can be
written in the form

z = af(z)d(z)
with a(z) € (Z/A,Z)" and 8(z) € Z;. The map § :  — 0(z) is an element of
X(Z}) which is called the fundamental character.
3.2.The Mellin transform. Let u be a measureon Z} ,i.e. u is a continuous
linear functional with values in C, on the space of continuous functions in
Z}. Then the restriction of 4 on the analytic group X(Z}) gives an analytic
function:

Liu,x) = |, xdp- (6)

The function L(u, x) is called the p-adic Mellin transform of the measure .

Example. p-adic L-functions associated to modular forms are p-adic Mellin
transforms of measures associated to modular forms (see [A-V], [Vi]). We will
return to such functions in the next section. '

In this section we give an inverse formula for the p-adic Mellin transform by
using the Shnirelman integral . As an application we have an integral repre-
sentation of Morita’s p-adic I'-function. Note that the Shnirelman integral is
used by Vishik to find an inverse formula for the Stieltjes transform (see [Vi],
[Ko]).

3.3.p-adic Mellin transforms as holomorphic functions in the unit
disc.

Let

Fx) = [ xdu " ™)

be the p-adic Mellin transform of a measure y. Then by the isomorphism
(5) we can regard F' as a holomorphic function on the analytic group X(Z3).
This means that for every character x, € X(Z/AZ)* we have a holomorphic
function F, (x1) on the group X(U). Thus every p-adic Mellin transform
on X(Z}) corresponds to a collection of holomorphic functions on the group
X(U). Now let f(x1) be such a "branch” of the function F(x). Let g be a
fixed topological generator of the group U. We set

z=xi(g) — 1. (8)
For each z € U we have x = ¢'°6%/1°89 and hence that
() = (1 4 2)ous/iss,

Then the p-adic Mellin transform of the measure y corresponds to the function

£2) = [ (1+2)5=/85dy(z). ©)
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Thus for every measure u on U, the Mellin transform given by formula(9) is
a holomorphic function in the unit disc D.

3.4. Theorem. Let f(z) be a bounded holomorphic function in the unit disc D.
For x € U and m=1,2,... we consider the following functions in D

1 z: E- logz/logg 1

Gmz(2) = —— —_—
” ~-pm! ™ =1,£41 (z+1-¢)

(10)

Then the function f(z) is p-adic Mellin transform of the following measure on

U:
plz+ Un)) = [ (2)Gimal2)(z = a)dz (1)

where U, = 1 4+ p™U, a,7y are such that D,(|y]) C D and the points 1 — ¢
belong to this disc.

Proof. We first show formula (11) defines a bounded measure on U. We have:

i p{z +kp™ + (Uni1)} = / f(z) PZ—: Gm+1,0+kpm (2)(z — a)dz
k=0 a,y

k=0

By an easy calculation we obtain :

p-1
Z Gmt1,z4kpm(2) = Gmo(2).

k=0

From this it follows that

wo+ Un)} = 3 u{a + ko™ + (Unsa)):

k=0

Obviously, the function f(2)Gn z(2) is a quotion of Krasner analytic functions
in the disc Dg 4. Then we have :

P{m + (UM)} = Z res¢—-1 (f-Gm.z) =
£PT=1,641

pm_lﬁ S £(€ — 1) Tos=/ 108 (12)

By using formula (12) the boundnes of 4 will be proved in 3.7. Indeed we will
concern with more general situatons.

It remains to prove that f(z) is the p-adic Mellin transform of the measure p.
We set

F(z)= [ (1+2)"8=/ "854y (z)
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Since u is bounded, F(z) is a bounded holomorphic function in the unit disc.
Then it suffices to show that the functions f(z) and F(z) are coincide on the
set {¢{ — 1}, where { are roots of unity of degree p™,m = 1,2,... (see [A-V],
[Hal], [Ha2}).

We have:
F(¢—1) = [ gos=o8sdy(z) =

3o (€I esE/ B (¢ - 1) = f(E - 1)

(P =1,(#1
Theorem is proved.

Thus, we have a correspondance between the set H,(D) of bounded holomor-
phic functions in D and the set L(U) of continuous functionals on the space
C(U) of continuos functions on U. Namely, for any bounded measure z on U,
the p-adic Mellin transform

Mu(z) = fU(l + z)lo8=/losady

defines a bounded holomorphic function in D. Conversely, let f(z) be a
bounded holomorphic function in D . Then we have a continuous functional
Nf € L(U) which is defined by:

"1

C(Z)30m lim 3 [ f(2)8(2)Cns(2)(z - a)d

1=0

where z; runs on the set of representations of U/U,.

3.5.Theorem.M and N are mutually inverse topological isomorphism between
H,(D) and L(U).

The proof is based on the formulas of operators M, N, and standard argu-
ments.

3.6.Morita’s p-adic I'-function. We now apply Theorem 3.5. to Morita’s
p-adic I-function. In [Bal] it is proved that we may consider the function
[,(z) as the restriction on Z, of a locally analytic function I'p(z) of local
analyticity ratio p = p{-1/P)=(1/p=1}  This means for each point z € Z,
there exists p, such that on D(z,p;) N Z, the fuction I';(z) is the restriction
of F(z) = Y.>0an(z — z)" which is holomorphic on D(z,p.). The local
analyticity ratio, by definition, is the number

p = z'lEanp pz > 0



Thus, on the disc D(0,p(~*/P)=(1/P=1)) the function T',(z) is represented by a
convergent power series. We set

f(2) = T, (p71/P=0/e=1)z)

then f(z) is bounded holomorphic function on the unit disc D. We have an
integral representation of the function f(z):

f(z) = [ (1+ 2)os=/s5dy

where the measure u is defined by the formula (11). Hence, for Morita’s p-adic
[-function we have the follwing integral representation:

[p(2) = /U(l + az)les=/less g,
where o = p(1/P=1)-(1/#) and the measure p is defined by the formula:

Wz + ("0} = ey [ T(@5)Gma(2)(z - a)d.

— pm—l

3.7.Mellin transform of non-bounded measures. In [A-M], [Vi] Y. Amice
and J. Vélu, and M. Vishik defined the p-adic Mellin transform of non-bounded
measures and applied it to construct p-adic L-functions associated to modular
forms. We recall here the definition and give an inverse formula for the p-
adic Mellin transform of so-called h-addmissible measures. These measures
are defined on Z3 and the corresponding Mellin transforms are holomorphic
functions on the group X(Z3). Asin the case of bounded measures we consider
the measures on U and corresponding holomorphic functions on the unit disc

D.

Definition. Let f and g be two holomorphic functions in the unit disc D.
We say f is of class o(g)if

sup | f(z)| = o(sup |g(z)])

[2]<r l2|<r

whenr — 1 — 0.

Definition. A h-addmissible measure on U is a linear functional on the space
of functions on U which are locally polynomials of degrees less than 2 and
_satisfy the following condition:

l[-l{(lf - b)kd)b.m}l = o(p(h_k)m)’k =0, 13 ,h -1,

where ¥, is the characteristic function of the set b+ (U,).
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It is proved in [Vi] that a h-addmissible measure is prolonged to a continuous
linear functional on the space of (h—1)-differentiable functions whose derivates
of oder h—1 satisfy the Lipschitz condition. The restriction of such a functional
on the group X(U) is a holomorphic function of class o(log") and is called the
Mellin transform of the measure g. The class of such measures contains, for
example, the measures associated to modular forms.

Obviously, a h-addmissible measure is defined by giving its values on the set
{z*pm} with b€ U;m = 1,2,... and s, is the characteristic function of the
set b+ U,,.

Theorem. Let f(z) be a holomorphic function of class log” in the unit disc D.
Then f(z) is p-adic Mellin transform of the following h-addmissible measure

on U:
p{etbumy = [ F()Cmar(z)(z - a)dz (13)

wherem =1,2,....k=0,...,h~1 and Gy, p & are given by the following formula:

6— logb/log g

parap g (14)

Gmpi(z) = ;m—l— )

-— pm—l epm 641
We recall that g is a fixed topological generator of the group X (U), v(g~1) >
v(g)-

Proof. It is easy to see that the formula (13) correctly defines a linear func-
tional u on the space of functions on Z, which are locally polynomials of de-
grees less than h. To show that u satisfies the conditions of h-addmissiblility
we note that:

P{(xk'f,bb,m} — T:I___mZE-losb/logyf(gkﬁ _ 1)_
pm —p™t T

We first recall some notations. For each holomorphic functions f(z) on D and
each t, > 0 we set
| fllts = sup |f(2)I.
v(z)=to

Then we obtain:
|| log™(1 + 2)[|e,, = P™,

where t,, = 1/p™ — (p™1),m = 1,2,...,(|log"(1 + z)| is calculated by the
Newton polygon (see[Ha]). From the hypothesis we have:

1£(2)lem = o(p™)(m — o0).

Let u be the sequence {¢'¢ —1},i =0,1,...,h — 1, where {¢} is the sequence
of primitive roots of unity of degree p™(m = 1,2,...). Since the function f(z)
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is of class o(log"), one infers u is an interpolating sequence of f(z) (see [A-V],
[Hal],{Ha2]). We denote {S..(z)} the sequence of Lagrange’s interpolation
polynomials for the function f(z) and the sequence u. Then S,,(z) is defined
by the following conditions:

deg Sm(z) < hpm -
Sm(gif - 1) = f(gif - l)vi =0,...,h—1.

By Lazard’s lemma ([La]) we may represent f(z) in the form:

f@=8) I o+ Qmle) (15)

g€ -
YEpim 4=0,...,h— l

where p,, is the set of primitive roots of unity of degree p™, @.x(2) are poly-
nomials of oder Ap™ satisfying the condition:

1@mllem < 11 £llem

Since the representation (15) is unique, we have S,,(2) = @m(z), and hence
that
Smllem < M1/ llem-

From this it follows

|Smlltm = o(p™*).
Supposing S,.(z) is written in the form

hp™—1

= 5 b(m)<

=0
we have then
Smllew = max {[b(m)2'[tn} =

0<ighp™—1
maxd[bi(m)lp™/¢" 7"} > pED max b (m)] ).

Thus we have max |b(m)| = o(p™")(m — o0). Note that if we write

hp™ -1

Sm(z=1)= Y a(m)?

1=0

then we obtain also max; |a;(m)| = o(p™"). By definition of the measure u we
have:

p{(z - ¢bm} Z b)k ’( )pT-lp—m:T z E—losbllouf(gj{_l):

7=0 P =1,6#1
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E( b)""()ﬁ -Z gl I8IS (g€ ~1) =

P =1,6#£1

k pm-1
S (s T S amygie =

i=0 P 1,641 =0
i(-b)k-" ( ) Pil a;(m)gﬂ — Z: gl—logb/ logg
=0 i=0 —-Pp e
k
Z(-b)*-f( ) S ai(m)g’
1=0 g‘—b
Y a(m)(g' - a)
g'=b

Since max |a;(m)| = o(p™") from this it follows the h-addmissibility of u..

n

84.p-adic L-functions associated to modular forms.

4.1. Definition. Let -
— Z ’\ne‘)ﬂinr' (16)

n=1
be a cusp form of weight w + 2 on SL(2,Z). Further, let ¢ is a normalized
eigenfunction of the Hecke algebra, i.e. Ay = 1 and T,¢ = A,¢ for Hecke
operators T,,. We set: )

Molx8) = d00)* [ T8 (r)dr, (17)

where x is a Dirichlet character of conductor d(x). A Manin’s theorem ([Ma3],
[Mad4]) asserts that there are the numbers w; € tR and w_ € R such that for
every entire k € [0, w] the numbers

ik+1A¢(X1 k+ 1)

Alx, k) = , 18
(e 8) Gx)wi-1yex(-1) 1o

are algebraic, where G(x) is the Gauss sum
Gx)=. Y x(a)ee/i), (19)

amodd(x)

Now let A be a root of the equation:

z? - Ap:c+p‘”+1 =0
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with v,(A) < w+ 1. We set h = [vy(})]. Then there exists an unique holomor-
phic function f(x) on X(Z3) such that for every k € [0, w] and every Dirichlet
character x = x,.x1 with d(x) | A and d(x1) = p" we have:

Fx8) = 3 (=D A(x, k) (20)

The function f(x) is called p-adic L-function associated to the cusp form ¢(7)
(see [Ma3, [Mad], [M-§] , [Vi], [La], [A-V]).

Note that, f is o(log“*!).
4.2. p-adic L-functions as functions of class S.

We can regard f(x) as a holomorphic function in the unit disc by using the
isomorphism (5). We recall that p-adic L-functions f(x) associated to modular
forms satisfy the following functional equations:

F(x0) = e(xo) f(x710"7*) (21)

for all characters x € X(Z3),k = 0,1,...,w and €(xo0) = x;'(=1)(=1)¥ if
X = Xo.X1 is the decomposition of x with x, € X((Z/AZ)*),x1 € X(U). For
a given holomorphic function f(x) on X(Z3) we have a collection {f, (x1)} of
holomorphic functions on X (U), where x, € X((Z/AZ)*),x1 € X(U). Then
we can write functional equations (21) in the form:

Fro(x16%) = €(x0) f 21 (X710 F) (22)

Since the functions f,, are in class o(log”*!) the functional equation (22) holds
if it holds for all Dirichlet characters of conductors p*,n = 1,2,.... Thus,
the corresponding holomorphic functions F, (z) in D satisfy the following
equations:

Fl(€g* = 1)] = e(xo) F 1 [(€7" g% — 1)] (23)
k=0,1,.., w:E(Xo) = X;l(-l)(—l)k_l

where ¢ is a topological generator of U, £ is a root of unity of degree p*,n =
1,2,...

By Theorem (2.2) we obtain:
(2 —a)dz
- (¢g* - 1)

Ful(és* =1 = [ Fa(o);

ay
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There is an analogous formula for the right hand side of (21). We set:

1 1
P S Ve Ty T P
Thus we proved the following theorem:

GFixo(2) = Fx.(2) (24)

4.3. Theorem. For every p-adic L-function F associated to a modular form the
functions Gy, ¢ are in class S.

4.4. By using the Eichler-Shimura isomorphism we can show some new func-
tional equations for p-adic L-functions associated to modular forms and some
corresponding functions of class 5. We need more detail about the values of
p-adic L-functions of modular forms at the points x8*. From (18), (19}, and
(20) it follows that:

1. *+1d(x)* *° k
J004) = 55V Gy #x)ar (25)
On the other hand we have
b(r) = ZX S g+ bd(x) (26)
4X) bmoddx)
and hence,
_q\ksk41 k-1 o )
sxey = ELEZINT o) [7 e 4 bpdp)ar (o)
W(-1)*x(=1)  bmodd(x) 0

For any integer j = 0, ..., w we define due to Eichler (see [La]} a period of the
form ¢(7)

(@)= [ e(r)riar.

4.4.Lemma. Let b/d be a fraction in lowest form, 0 < b/d < 1. Then

b/d
/0 ¢(r)r*dr

is a linear integral combination of the periods r;(¢).

Note that the coefficients of the linear combination mentioned in Lemma(4.4)
do not depend on ¢, but depend on the weight w (see [La]).

By using Lemma (4.4) and the relations (27) we have:

12



4.5.Lemma. There ezist algebraic numbers a;(x,w, k) (not depending on ¢)
such that

N w(cap(-1f (X0%) = 3 a;(x, w, k)ri(). (28)
7
We set
Fy(x6%) = A wicryag(-1) f(x8*)- (29)
Consider the following linear system of equations with variables z;:
2 ai(x w, k)z; = Fy(x6") (30.1)
3=0
T, + (—1)’zy—r =0 (30.2)
z, + (=1 ) (8) Tuw-sti +(=1)° D (w A 3) z; =0 (30.3)
j=0,jeven \J j=0,j=smod2 \ J .
> () Tumeti ¥ 3 ("’ N 3) z;=0 (30.4)
j=1,jodd j=0,5¢smod2 \ J

Note that (30.2)-(30.4) are the Eichler-Shimura relations . The system (30.1)-
(30.4) with w + 1 variables is an infinite system, where s,k = 0,1,...,w and
x runs on the set of Dirichlet characters y. The coefficients in the left hand
side of this system do not depend on the form ¢. We rewrite (30.1)-(30.4) in
the following form:

AX=F

4.6.Conjecture. rankA = w + 1.
§5.Remarks and questions.

5.1. Let us now discuss about corollaries of Conjecture 4.6. Suppose that
Ay, Ay, ... are all the submatrices of A having maximal rank and the corre-
sponding systems of equations are the following:

AX =F, (31)

Then for every i = 1,2,.. we have a formula for the r;’s:

w

rj(¢') = Z bm,i.j(Xm,i/\nm'if(Xm.iok"m)a (32)

m=0

where Xn,; belong to a subset X; € TorsX(Z}3),nm; = conductor of xn; and
km',' € [0, w].

13



Thus,for all 1,1 = 1,2, ..., = o, ...,w we have:

w

Z_:O B i i (Xm i) A™™ f(Xmi0"™) =
5~ bmi(emiA"™ F(xm8#) (33)
m=0

Now we regard f(x) as a function on D, as it is in previous sections. By using
the Shnirelman integral we can represent the values f(x8%) in the following
form:

s = [ LEE=2, 3

where a € D, |y| < 1. Note that the integral does not depend on the choice of
a,”y.
Then (33) and (34) give us:

b ji( Xm i) A" ™ bmlJ(Xml) _
/ fz){Z[ —tgi +1 £gkm‘_{_l]}(z—a)n:iz 0. (35)

forall:,i=1,2,...,7=0,..,w.
Let {Gx(}, 2)} be the set of functions:

2O i (Xm ) AT b 1 (X m ) A
s S 36
Z[ > — f;gk’"" +1 z - &gkm., + 1,-] ( )

where 7,1, j as above. Then it is proved the following
5.2. Theorem. If Conjecture {.6 is valid, the functions fG) belong to class S.

5.3. From the Eichler-Shimura isomorphism it follows that the rank of the
coefficient matrix of the left hand side of systems (30.2), (30.3) with odd s,
(30.4) with even s equal to the dimension v of the space of cusp forms of
weight w + 2, and the similar rank of (30.2), (30.3) with even s, (30.4) with
odd s is v 4+ 1. Then Conjecture 4.3 says that:

w+2

rank{a;(x,w,k)} 2 w — (2[——] +¢),

h
where . {0, if w # 10mod12;
~ 12, if w=10modl2.
5.4. If Conjecture 4.6 holds, then the values of the periods r;(¢) are defined
by w + 1 values of the p-adic L-function associated to ¢. Then a cusp form

14



of weight w which is an eigenfunction of the Hecke algebra is uniquely defined
by values of its p-adic L-function at w + 1 points y8*.

5.5. Let f(z) be a holomorphic function of class o(log”*!) in the unit disc D.
Suppose that f(z) satisfies the conditions fGx € S for k = 1,2,...Then it is
easy to show that the values of f(z) on the set u, = {g¥¢ — 1} are defined
by the values on a finite subset of u,. Since f is of class o(log“*!) this means
that f(z) is defined by the values on a finite set. Conjecture 4.6 says that
p-adic L-functions associated to modular forms have this property.

Question.Is it true that a function f(z) of class o(log“*') is the p-adic L-

function of a cusp form ¢ if the functions fG\ are of class S¢
Note that it is a p-adic analogue of the Hecke theorem on the Mellin transform
of modular forms (see [Og], [We]).

5.6. Let ¢ be an eigenfunction of the Hecke algebra. Then for every Dirichlet
character x, ¢,(7) is an elgenfunctxon of the Hecke a.lgebra relative to T'p(d(x))
(see [Og]). Then the relation (25) give us:

FOB*) A wd(x)* = ra(¢y)-
On the other hand we have the Eichler-Shimura relations for the periods of
Py (see :77):

E ck,,-rk(qu) = 0.

Hence, for every Dirichlet character y and k = 0, ..., w we have:

<

w41

E Ck,J kf Xok) 0.

k=0
An argument analogous to those in the previous section implies that there

exist the functions:
w1 1

| STV L —

such that
fG;e €S (37)

where ¢ are roots of unity of degree p*,n =1,2,...

Question. Let f(z) be a holomorphic function of class o(log”*") in D satisfy-
ing the condition (87). Is f the p-adic L-function associated to an eigenfunction
of the Hecke algebra?

5.7. When a function of class S is a Krasner analytic function? Is it true that
A(D)NS(D) = H(D)?
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SHNIRELMAN INTEGRAL AND p-ADIC L-FUNCTIONS
ASSOCIATED TO MODULAR FORMS

Ha Huy Khoai

§1.Introduction.

It seems that at the present there is no in p-adic analysis a good analogue of
the Cauchy integral. In many cases the Shnirelman integral is used in this
role. The main applications of the Shnirelman integral can be found in the
study of transcendent numbers in p-adic domains ([Ad]) and in construction
of p-adic spectral theory ([Vi]). In an earlier paper ([Ha3)]) we are interested in
consideration of how the Shnirelman integral is convenient for an analogue of
the Morera lemma. Namely, we considered the class of functions in the p-adic
unit disc whose Shnirelman integrals are vanishing. The functions of this class
have many properties analogous to one’s of Krasner analytic functions, but
this class is larger than the second.

In the present note we show some other situations where the above mentioned
class appears. For example, p-adic L-functions associated to modular forms
belong to this class with some "kernels”.

In §2 we recall some basic facts about the Shnirelman integral and the class S of
functions whose Shnirelman integrals are vanishing. Using the class S we give
an inverse formula for the p-adic Mellin transform in §3. In §4 the functional
equations satisfied by p-adic L-functions of modular forms are discribed in
terms of class S. Some remarks and open questions are given in the last
section.

The author would like to thank the Max-Planck-Institut fir Mathematik Bonn
for hospitality and financial support.

§2. Preliminaries.

Let p be a prime number, @, the field of p-adic number, and C, the p-adic
completion of the algebraic closure of Cp. The absolute value in Q, is nor-
malized so that |p| = p~! . We further use the notion v(z) for the addition
valuation on C, which extends ord,. Let D be the unit dics in C,:

D={ze(C,,|z| <1}

1



We donote by D, the disc {z € Cp, 2| < r}.

2.1.Definition . Let f(z) be a C,-valued function defined on all z € C, such
that |z —a| = r, where a € C, and r is a positive real number (we shall always
assume that r is in |Cy|, i.e. , a rational power of p). Let v € C, be such that
|¥} = r . Then the Shnirelman integral is defined as the following limit if it
exists:

[ 1@z = lim = ¥ fa+én), (1)

Eﬂ_

where the ’ indicates that the limit is only over n not divisible by p.

We recall that a function f in a domain M is said to be Krasner analytic if
M is an union of open sets D;,D; C D;,; such that for each ¢ , f|p, is a
uniform limit of rational functions having no poles in D;. From properties of
the Shnirelman integral we need the following.

2.2.Theorem.If f is Krasner analyt:c in D,(r), and if |y| = r, then for fized
z € C, we have:

/ flz xi:a {({(z), if |z —a| <r; 2)

, otherwise.

2.3.Theorem.Let f(z)=¢(z)/h(z) , where g(z) is Krasner analytic in D,(r)
and h(z) is a polynomial. Let {z;} be the roots of h(z) in D,(r) , and suppose
that for all 1,|z; — a| < r. Define res,, f to be the coefficient of (z — z;) in the
Laurent ezpansion of f(z) at z;. Then:

/an f(z2)(z — a)dz = res,.f. (3)

We refer the readers to [Ko] for more detail about the Shnirelman integral.

2.4.Definition . A function f(z) in a domain M is said to be in class S(M)
if for all @, such that D,(r) C M

[ £z~ a)ez=o0. (4)

2.5.Remark 1). Some basic properties of functions of class S(M) can be
found in [Ha3].

2). We denote by H(M) and A(M) respectively the class of Krasner analytic
functions and locally analytic functions in M. Then H(M) C S(M),A(M) ¢

S(M) ([Ha3)).



§3. p adic Mellin transform.

3.1. p-adic group of characters. Let A, be an integer prime number p and
let .
g= {4, fp=2;

p, otherwise.
We set A,q = A and denote:

Z; = lim(Z/Ap™Z)"

The group of p-adic characters is the group of continuous holomorphisms of
Z} into C}:
X(Z}) =Homcon(Z3,C;)
We set
U=1+4q¢Z,={2€ Z,,v(z-1) 2 v(q)}

Then, for every ¢ € U such that v(g — 1) = v(g) the map z — ¢* is an
isomorphism of Z, onto U. We call g a topological generator of the group U.
For each generator g of the group U the map

X(U) = Homeom(U, C;) —C;

transforming a continuous character x of the group U into a point x(g) —1 in
the unit disc D of C,. Also we have isomorphisms

73 ~ (2/0.2) % 22

Zy ~(Z[qZ)" x U (5)

From isomorphisms (5) it follows that X(Z3) is a product of a finite group
and X(U), while the last is isomorphic to D. Since D is an open disc of Cy,
this isomorphism makes X(ZX) into an analytic group. A function f(x) is
said to be holomorphic function on the analytic group X(Z3) if its restriction
on each component isomorphic to D is a holomorphic function. Thus, we
can regard every holomorphic function in the group X(Z3) as a holomorphic
function in the unit disc D. Note that each Dirichlet character x of conductor
Ap™ is an element of the group Hom((Z/Ap™Z)*,C;) for each m > n , and
is prolonged to an unique element of the group X(Z}) which is again denoted
by x. Thus ,the torsion subgroup of X(Z}) is identified with the group of
Dirichlet characters of conductors dp™ where d|A,. Let x be such a character
and let x = x,.x1 be its decomposition in x, € X(Z/AZ)* and x; € X(U).
Then x; takes values in the group ppe = Unppn where by ppn we denote the



group of p"-roots of unity in C,. On the other hand, every z € Z3 can be
written in the form
z = a(z)f(z)

with a(z) € (Z/A,Z)" and (z) € Z;. The map 8 : z +— §(z) is an element of
X(Z3) which is called the fundamental character.

3.2.The Mellin transform. Let 4 be a measureon Z3 ,i.e. p is a continuous
linear functional with values in C, on the space of continuous functions in
Z3. Then the restriction of z on the analytic group X(Z}3) gives an analytic

function:
L{p,x) = /Z xdp. (6)

The function L(y, x) is called the p-adic Mellin transform of the measure p.

Example. p-adic L-functions associated to modular forms are p-adic Mellin
transforms of measures associated to modular forms (see [A-V], [Vi]). We will
return to such functions in the next section.

In this section we give an inverse formula for the p-adic Mellin transform by
using the Shnirelman integral . As an application we have an integral repre-
sentation of Morita’s p-adic I'-function. Note that the Shnirelman integral is
used by Vishik to find an inverse formula for the Stieltjes transform (see [Vi],
[Ko}).

3.3.p-adic Mellin transforms as holomorphic functions in the unit
disc.

Let

F(x)= / | xdp (7)

be the p-adic Mellin transform of a measure . Then by the isomorphism
(5) we can regard F' as a holomorphic function on the analytic group X(Z3).
This means that for every character x, € X(Z/AZ)* we have a holomorphic
function Fy,(x1) on the group X(U). Thus every p-adic Mellin transform
on X(Z}) corresponds to a collection of holomorphic functions on the group
X(U). Now let f(x1) be such a "branch” of the function F(y). Let g be a
fixed topological generator of the group U. We set

z=xi(g9) — 1. (8)
For each z € U we have z = ¢'*8%/1°89 and hence that
a(z) = (1 250

Then the p-adic Mellin transform of the measure u corresponds to the function
f(z) = [ (142585 (z). ©)
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Thus for every measure g on U, the Mellin transform given by formula(9) is
a holomorphic function in the unit disc D.

3.4. Theorem. Let f(z) be a bounded holomorphic function in the unit disc D.
For z € U and m=1,2,... we consider the following functions in D

1 E f_ logz/logg 1

Cmix(7) = pm —pm! P =1,6#1 m (10)

Then the function f(z) is p-adic Mellin transform of the following measure on

U:

ple+ Un)} = [ f(2)Gm(2)(z - a)dz (11)
where Uy, = 1+ p™U,a,v are such that Dy(|y]) C D and the points 1 — ¢
belong to this disc.

Proof. We first show formula (11) defines a bounded measure on U. We have:

S e+ k" + Uni)) = [ 12) S Gt i () — )

k=0 k=0
By an easy calculation we obtain :

p—-1

Z Grt1atkpm(2) = Gma(2).

k=0

From this it follows that

Bz + (Un)} = 3l + k5™ + (Unan))-
k=0

Obviously, the function f(z)G,, -(z) is a quotion of Krasner analytic functions
in the disc D, |,. Then we have :

plz +(Un)} = Z rese-1(f.Gm.z) =
€™ =1,6#1
1
—_— -1 —logz/logg 12
o (€ 1) (12)
By using formula (12) the boundnes of y will be proved in 3.7. Indeed we will
concern with more general situatons.

It remains to prove that f(z) is the p-adic Mellin transform of the measure y.

We set
F(z)= [ (1+2)=/50du(a)

5



Since p is bounded, F(z) is a bounded holomorphic function in the unit disc.
Then it suffices to show that the functions f(z) and F(z) are coincide on the
set {{ — 1}, where £ are roots of unity of degree p™,m = 1,2,... (see {A-V],
[Hal}, [Ha2]).

We have:
F(¢=1)= [ g6/ 6du(z) =

Do (Tl f(¢ — 1) = f(§ -~ 1)

(Pm=1v(¢1
Theorem is proved.

Thus, we have a correspondance between the set H,(D) of bounded holomor-
phic functions in D and the set L(U) of continuous functionals on the space
C(U) of continuos functions on U. Namely, for any bounded measure g on U,
the p-adic Mellin transform

Mu(z) = /U(l + z)\os=/le8sdy,

defines a bounded holomorphic function in D. Conversely, let f(z) be a

bounded holomorphic function in D . Then we have a continuous functional
Nf € L(U) which is defined by:

p"=-1

C(2)3 @ Jim 3= [ [(2)8(2)Gme,(2)(z = a)dz

where z; runs on the set of representations of U/U,.

3.5.Theorem.M and N are mutually inverse topological isomorphism between
Hy(D) and L(U).

The proof is based on the formulas of operators M, N, and standard argu-
ments.

3.6.Morita’s p-adic I'-function. We now apply Theorem 3.5. to Morita's
p-adic T-function. In [Bal] it is proved that we may consider the function
['p(z) as the restriction on Z, of a locally analytic function I'p(z) of local
analyticity ratio p = p(='/P)=(1/p=1)  This means for each point z € Z,
there exists p; such that on D(z, p;} N Z, the fuction I'y(z) is the restriction
of F(z) = Xn»oan(z — )" which is holomorphic on D(z,p,). The local
analyticity ratio, by definition, is the number

p=zlenzfppx>0



Thus, on the disc D(0, p{~1/P)=(1/p-1)} the function [',(z) is represented by a
convergent power series. We set

f( z) = I‘p(p(—lip)-(llp-l)z)

then f(z) is bounded holomorphic function on the unit disc D. We have an
integral representation of the function f(z):

£z = [ (14 z)os=losdy

where the measure p is defined by the formula (11). Hence, for Morita’s p-adic
I'-function we have the follwing integral representation:

T,(z) = /U (1 + az)se/ o894y

where o = p(1/7~1)-(1/%) and the measure u is defined by the formula:

1

ple+ ("0} = oy [ Ty(ez)Gins(2)( — ).

3.7.Mellin transform of non-bounded measures. In [A-M], [Vi] Y. Amice
and J. Vélu, and M. Vishik defined the p-adic Mellin transform of non-bounded
measures and applied it to construct p-adic L-functions associated to modular
forms. We recall here the definition and give an inverse formula for the p-
adic Mellin transform of so-called h-addmissible measures. These measures
are defined on Z} and the corresponding Mellin transforms are holomorphic
functions on the group X (Z3). Asin the case of bounded measures we consider
the measures on U and corresponding holomorphic functions on the unit disc

D.

Definition. Let f and g be two holomorphic functions in the unit disc D.
We say f is of class o(g)if

sup |f(z)| = o(ﬁflg lg(2)1)

whenr — 1 — 0.

Definition. A h-addmissible measure on U is a linear functional on the space
of functions on U which are locally polynomials of degrees less than 2 and
satisfy the following condition:

ls{(z = B) hym}| = o(p®9™), k = 0,1, ..., A —1,

where ), i8 the characteristic function of the set b+ (Up,).
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It is proved in [Vi] that a h-addmissible measure is prolonged to a continuous
linear functional on the space of (h—1)-differentiable functions whose derivates
of oder h—1 satisfy the Lipschitz condition. The restriction of such a functional
on the group X(U) is a holomorphic function of class o(log") and is called the
Mellin transform of the measure y. The class of such measures contains, for
example, the measures associated to modular forms.

Obviously, a h-addmissible measure is defined by giving its values on the set
{z*Ypm} with b € U,m = 1,2, ... and v} is the characteristic function of the
set b+ Up,.

Theorem. Let f(z) be a holomorphic function of class log" in the unit disc D.
Then f(2) is p-adic Mellin transform of the following h-addmissible measure
onU:

ple*m} = [ f(2)Gmpr(2)(z — a)dz (13)

a,m

wherem =1,2,...,k =0,...,h—1 and G, p x are given by the following formula:

1 Z {— logb/log g

Gmpk(2) = ——— —
P =P e 29— 1

(14)

We recall that g is a fixed topological generator of the group X(U), v(g—1) >
v(g)-

Proof. It is easy to see that the formula (13) correctly defines a linear func-
tional g on the space of functions on Z, which are locally polynomials of de-
grees less than h. To show that u satisfies the conditions of hA-addmissiblility
we note that:

P{(-’Bk‘!)b,m} — ﬁZE—logb/logﬂ'f(gkﬁ _ 1).
€

We first recall some notations. For each holomorphic functions f(2) on D and
each t, > 0 we set

Iflee = sup |f(2)].

v(z)=t,
Then we obtain:
I log*(1 + 2)lle., = p™,.
where t, = 1/p™ — (p™1),m = 1,2,...,(Jlog"(1 + 2)| is calculated by the
Newton polygon (see[Ha]). From the hypothesis we have:

I£(2)lem = o(p™*)(m — 00).

Let u be the sequence {¢'¢ — 1},1 = 0,1,...,h — 1, where {£} is the sequence
of primitive roots of unity of degree p™(m = 1,2,...). Since the function f(z)

8



is of class o(log"), one infers u is an interpolating sequence of f(z) (see [A-V],
[Hal],{Ha2]). We denote {Sm(z)} the sequence of Lagrange’s interpolation
polynomials for the function f(z) and the sequence u. Then S,,(z) is defined
by the following conditions:

deg Sm(z) < hp™ —1
Sm(d'€ 1) = f(g'€ = 1),i =0,.., A 1.

By Lazard’s lemma ([La]) we may represent f(z) in the form:

[D=¢x) I~ +Qul) (15)

g
Y€pm 1=0,...,h-1 g f 1

where g, is the set of primitive roots of unity of degree p™, @m(z) are poly-
nomials of oder hp™ satisfying the condition:

1@mllem < NI Fllem

Since the representation (15) is unique, we have S,,(z) = @Qn(z), and hence
that

ISmlltm < II.f Nerm-
From this it follows
1Smlltm = o(p™*).

Supposing S,,(z) is written in the form

hp™ -1

Sm(z) = ; bi(m)z!

we have then
|Smllem = max {|bi(m)z'|tm} =

0<i<hp™—1
mmaoc{ by (m) p~/6™ 7"} > 5P/ e b m)}.
Thus we have max [b;(m)| = o(p™)(m — o0). Note that if we write
hp™—1
Sm(z—1)= z a;(m)z‘

=0

then we obtain also max; [a;(m)| = o(p™"). By definition of the measure u we
have:

k Mk 1 .
(@-vfunt =30 (B s B g1y
HUE ) ’ } Jgo( ) Jj/ ™ —pm Cpmgl:x#l ( )

9



o ({5 -

j=o 3P =P e Sen

k [k 1 rol .
-b k—j ( ) —logb/logg lel _
S0 () I € o'

=0

i:o(—b)k_j (k) p%_:l a;(m)gj’__;__ 2 El-logb/ logg

= PP =P e

i(—b)""j (f) Y a(m)g’ =

j=0 g'=b

> a(m)(g' —a)

g'=b

Since max |a;(m)| = o(p™"*) from this it follows the h-addmissibility of 4.
§4.p-adic L-functions associated to modular forms.

4.1. Definition. Let -
é(r) = Z A, e2mnT (16)
n=1

be a cusp form of weight w + 2 on SL(2,Z). Further, let ¢ is a normalized
eigenfunction of the Hecke algebra, i.e. A} = 1 and T,¢ = A,¢ for Hecke
operators T,,. We set:

Aolx,8) = d(x)* [ T (e, (1)

where x is a Dirichlet character of conductor d(x). A Manin’s theorem ([Ma3],
[Mad4]) asserts that there are the numbers wy € iR and w_ € R such that for
every entire k € [0, w] the numbers

£k+1A¢(Xa k+ 1)

Alx, k) = , 18
%0 = G etarpaion 1o

are algebraic, where G(x) is the Gauss sum
Gx)= 3 x(a)e*e/4X. (19)

amodd(x) .
Now let A be a root of the equation:

=Mz +ptt =0
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with v,(A) < w+1. We set h = {v,(1)). Then there exists an unique holomor-
phic function f(x) on X(Z3) such that for every k € [0, w] and every Dirichlet
character x = x,.x1 with d(x) | A and d(x1) = p" we have:

Jxt) = 3= (=1 A, k) | (20)

The function f(x) is called p-adic L-function associated to the cusp form ¢(7)
(See [Ma3, [Ma‘4]a [M'S] ’ [Vlls [La']) [A"V])

Note that, f is o(log”*?).
4.2. p-adic L-functions as functions of class S.

We can regard f(x) as a holomorphic function in the unit disc by using the
isomorphism (5). We recall that p-adic L-functions f(x) associated to modular
forms satisfy the following functional equations:

F(x0%) = e(xo) f(x 710 F) (21)

for all characters x € X(Z3),k = 0,1,...,w and &(xo) = x;'(=1)(=1)**" if
X = Xo-X1 18 the decomposition of x with x, € X((Z/AZ)*),x1 € X(U). For
a given holomorphic function f(x) on X(Z3) we have a collection { f,,(x1)} of
holomorphic functions on X(U), where x, € X((Z/AZ)*),x1 € X(U). Then

we can write functional equations (21) in the form:

Fro(X18%) = €(Xo) f o1 (x716°7F) (22)

Since the functions f,, are in class o(log**") the functional equation (22) holds
if it holds for all Dirichlet characters of conductors p®,n = 1,2,.... Thus,
the corresponding holomorphic functions F,,(2) in D satisfy the following
equations:

Fyl(€g" —1)] = e(xo)F, (€7 g™ = 1)] (23)
k=0,1,...,w,e(xo) = X':l(_l)(_l)k—l

where g is a topological generator of U, £ is a root of unity of degree p",n =
1,2,....

By Theorem (2.2) we obtain:
(z —a)dz

Relles" 1= [ B oy

11



There is an analogous formula for the right hand side of (21). We set:

Grxnt(s) = Buols) ;=i =y ~ P () sy @)

Thus we proved the following theorem:

4.3.Theorem. For every p-adic L-function F' associated to a modular form the
functions Gy, ¢ are in class S.

4.4. By using the Eichler-Shimura isomorphism we can show some new func-
tional equations for p-adic L-functions associated to modular forms and some
corresponding functions of class 5. We need more detail about the values of
p-adic L-functions of modular forms at the points x8*. From (18), (19), and
(20) it follows that:

4100t
X)W(=1)kx(~1)

R IRt
On the other hand we have
G(x)

jo = go(r)rrdr. (25)

$x(1) = ax) lsmg‘;(x)x’l(b)xﬁ(‘r+b/d(x)) (26)
and hence, v
- kik 1 k-1 00
sty = CXTZAT sy [7 e 4 bdp0)ar (@1
Wi-1)*x(-1)  pmodd(x) 0

For any integer j = 0,...,w we define due to Eichler (see [La)) a period of the
form ¢(7)

(@)= [ e(r)ridr.

4.4.Lemma. Let b/d be a fraction in lowest form, 0 < bfd < 1. Then

b/d
/0 é(r)r'dr

i3 a linear integral combination of the periods r;(¢).

Note that the coeflicients of the linear combination mentioned in Lemma(4.4)
do not depend on ¢, but depend on the weight w (see [La]).

By using Lemma (4.4) and the relations (27) we have:
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4.5.Lemma. There ezist algebraic numbers a;(x,w, k) (not depending on ¢)
such that

Wiy f(x0%) = 3 a;(x, w, k)ri(4). (28)
]
We set
Fy(x8*) = Aw 11y f(x8). (29)
Consider the following linear system of equations with variables z;:
Y ai(x, w, k)z; = Fy(x8%) (30.1)
3=0
z,+(-1)’z2y-, =0 (30.2)
2, + (-1 > (s) Tuosri + (1) Y (w - 8) z; =0 (30.3)
j=0.jeven \J j=0,j=smodz \ J
) (8) Tw-sti+ (w A 3) z; =0 (30.4)
j=1,jodd i=0,jZsmod2 J

Note that (30.2)-(30.4) are the Eichler-Shimura relations . The system (30.1)-
(30.4) with w + 1 variables is an infinite system, where s,k = 0,1, ...,w and
x runs on the set of Dirichlet characters x. The coefficients in the left hand
side of this system do not depend on the form ¢. We rewrite (30.1)-(30.4) in
the following form:

AX=F

4.6.Conjecture. rankA = w+ 1.
§5.Remarks and questions.

5.1. Let us now discuss about corollaries of Conjecture 4.6. Suppose that
Ay, Aa, ... are all the submatrices of A having maximal rank and the corre-
sponding systems of equations are the following:

A; X = F. (31)

Then for every ¢ = 1,2,.. we have a formula for the r;’s:

w

ri(8) = 3 bmii(XmiA™™ f(xm,i85m), (32)

m=0

where x,; belong to a subset X; € TorsX(Z}),nm,: = conductor of xy,; and
km; € [0,w].

13



Thus,for all 1,1 =1,2,...,7 = o,...,w we have:

w

3" b i (Xmi)A™™ f (X i85 ) =

m=0

i b 15 (X 1) A" f (X 185 ) (33)

Now we regard f(x) as a function on D, as it is in previous sections. By using
the Shnirelman integral we can represent the values f(x6*) in the following
form )z —a)
b 2)(z—a), 1

f(Xe) a.'yz—fgk'Flz (3)
where a € D, |y| < 1. Note that the integral does not depend on the choice of
a,”.
Then (33) and (34) give us:

b s m ™ bt m) A" _
f f(Z){Z[ Egk"" +1 - Z—flg"m,l +1 ]}(z—a)dz_o, (35)

for all t,l=1,2,...,7=0,...,w
Let {Gi(},z)} be the set of functions:

e, Xm 1)'\ _ bm,l,j(Xm,f)Anm"
e~ e (%)

where 1,1, 7 as above. Then it is proved the following
5.2. Theorem. If Conjecture 4.6 is valid, the functions fG belong to class S.

5.3. From the Eichler-Shimura isomorphism it follows that the rank of the
coeflicient matrix of the left hand side of systems (30.2), (30.3) with odd s,
(30.4) with even s equal to the dimension v of the space of cusp forms of
weight w + 2, and the similar rank of (30.2), (30.3) with even s, (30.4) with
odd s is ¥ 4+ 1. Then Conjecture 4.3 says that:

rank{a;(x,w,k)} > w ~ (2 [w + 2] +¢),

where .
= {0, if w # 10mod12;

2, if w=10modl2.

5.4. If Conjecture 4.6 holds, then the values of the periods rj(¢) are defined
by w + 1 values of the p-adic L-function associated to ¢. Then a cusp form
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of weight w which is an eigenfunction of the Hecke algebra is uniquely defined
by values of its p-adic L-function at w + 1 points x6*.

5.5. Let f(z) be a holomorphic function of class o(log”*') in the unit disc D.
Suppose that f(z) satisfies the conditions fG; € § for k = 1,2,...Then it is
easy to show that the values of f(z) on the set u, = {g*¢ — 1} are defined
by the values on a finite subset of p,. Since f is of class o(log®*") this means
that f(z) is defined by the values on a finite set. Conjecture 4.6 says that
p-adic L-functions associated to modular forms have this property.
Question.ls it true that a function f(z) of class o(log“*!) is the p-adic L-
function of a cusp form ¢ if the functions fGy are of class S¢

Note that it is a p-adic analogue of the Hecke theorem on the Mellin transform
of modular forms (see [Og], [We]).

5.6. Let ¢ be an eigenfunction of the Hecke algebra. Then for every Dirichlet
character x, ¢,(7) is an eigenfunction of the Hecke algebra relative to T',(d(x))
(see {Og]). Then the relation (25) give us:

FOx0 )N\ wd(x)* = ri(¢y)-
On the other hand we have the Eichler-Shimura relations for the periods of
@y (see IT7):

> cniti(¢x) = 0.

Hence, for every Dirichlet character x and k = 0, ..., w we have:
w+1

3 eid(x)* f(x6%) = 0.
k=0

An argument analogous to those in the previous section implies that there
exist the functions:

w41 1
' _ . k
Gje(z) = gckud(){) z— g% +1
such that
fGice§ (37)

where £ are roots of unity of degree p",n=1,2,...

Question. Let f(z) be a holomorphic function of class o(log”*") in D satisfy-
ing the condition (87). Is f the p-adic L-function associated to an eigenfunction
of the Hecke algebra?

5.7. When a function of class S is a Krasner analytic function? Is it true that

A(D) 0 §(D) = H(D)?
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