SCORZA QUARTICS OF TRIGONAL SPIN CURVES AND THEIR VARIETIES OF POWER SUMS

HIROMICHI TAKAGI AND FRANCESCO ZUCCONI

Abstract

Our fundamental result is the construction of new subvarieties in the varieties of power sums for the Scorza quartics of any general pairs of trigonal curves and non-effective theta characteristics. This is a generalization of Mukai's description of smooth prime Fano threefolds of genus twelve as the varieties of power sums for plane quartics. Among other applications, we give an affirmative answer to the conjecture of Dolgachev and Kanev on the existence of the Scorza quartics for any general pairs of curves and non-effective theta characteristics.

Contents

1. Introduction 2
1.1. Varieties of power sums and the Waring problem 2
1.2. Mukai's contribution 3
1.3. Geometry of conics and lines and the main result 4
1.4. Applications 6
1.5. Final remarks 7
2. Blowing up the quintic del Pezzo threefold B along a \mathbb{P}^{1} of degree d 7
2.1. Review on geometries of B 7
2.2. Construction of smooth rational curves C_{d} of degree d on B 11
2.3. Curve \mathcal{H}_{1} parameterizing marked lines 16
2.4. Surface \mathcal{H}_{2} parameterizing marked conics 18
2.5. Varieties of power sums for special non-degenerate quartics F_{4} 27
3. The existence of the Scorza quartic 36
3.1. Theta-correspondence on $\mathcal{H}_{1} \times \mathcal{H}_{1}$ 36
3.2. Duality between \mathcal{H}_{1} and \mathcal{H}_{2} 38
3.3. Discriminant locus 38
3.4. Definition of the Scorza quartic 39
3.5. Dolgachev-Kanev's conjecture on the existence of the Scorza quartic 40
3.6. $\quad F_{4}$ is the Scorza quartic for $\left(\mathcal{H}_{1}, \theta\right)$ 41
3.7. Moduli space of trigonal spin curves 42
References 43
[^0]
1. Introduction

1.1. Varieties of power sums and the Waring problem.

Throughout the paper, we work over \mathbb{C}, the complex number field.
The problem of representing a homogeneous form as a sum of powers of linear forms has been studied since the last decades of the $19^{\text {th }}$ century. This is called the Waring problem for a homogeneous form. We are interested in the study of the global structure of a suitable compactification of the variety parameterizing all such representations of a homogeneous form. To give a precise definition of such a compactification consider a $(v+1)$-dimensional vector space V. Let $F \in S^{m} \check{V}$ be a homogeneous forms of degree m on V, where \check{V} is the dual vector space of V. Let $\mathbb{P}_{*} \check{V}$ be the projective space parameterizing one-dimensional vector subspaces in \check{V}, which is sometime denoted by $\check{\mathbb{P}}^{v}$.

Definition 1.1.1. The varieties of power sums of F is the following set with reduced structure:

$$
\operatorname{VSP}(F, n):=\overline{\left\{\left(\left[H_{1}\right], \ldots,\left[H_{n}\right]\right) \mid H_{1}^{m}+\cdots+H_{n}^{m}=F\right\}} \subset \operatorname{Hilb}^{n}\left(\mathbb{P}_{*} \check{V}\right)
$$

We call the Waring rank of F the minimum of n such that $\operatorname{VSP}(F, n) \neq \emptyset$.
There are other compactifications, for example, the one in the n-th symmetric product of $\mathbb{P}_{*} \check{V}$, but for our treatment we need the one in the Hilbert scheme.

As far as we know, the first global descriptions of positive dimensional varieties of power sums for some homogeneous forms were given by S. Mukai.

The most intensively studied cases of varieties of power sums, including Mukai's case, are where F is a general $(v+1)$-nary homogeneous form of degree m for some $m, v \in \mathbb{N}$, and n is the Waring rank of F, which we denote by $n(m, v)$.

By a standard parameter count, we can easily compute the expected dimension of $\operatorname{VSP}(F, n)$ for a general homogeneous form F. Since the dimension of the vector space of $(v+1)$-nary homogeneous forms of degree m is $\binom{m+v}{m}$, the expected dimension is

$$
\operatorname{expdim} \operatorname{VSP}(F, n):=(v+1) n-\binom{m+v}{m}
$$

Thus
it is expected that

$$
n(m, v)=\left\lceil\frac{1}{v+1}\binom{m+v}{m}\right\rceil
$$

It is known, however, that there are exceptions to $n(m, v)$ by the following result of J. Alexander and A. Hirschowitz [AH95]:

m	v	$n(m, v)$
2	arbitrary	$v+1$
3	4	8
4	2	6
4	3	10
4	4	15

Here is the table of the known descriptions of $\operatorname{VSP}(F, n(m, v))$.

m	v	$n(m, v)$	VSP $(F, n(m, v))$	Ref.
$2 a-1$	1	a	1 point	Sylvester
2	2	3	quintic del Pezzo threefold	Mukai [Muk92]
3	2	4	\mathbb{P}^{2}	Dolgachev and Kanev [DK93]
4	2	6	prime Fano threefold of genus twelve	[Muk92]
5	2	7	1 point	Hilbert, Richmond, Palatini
6	2	10	polarized $K 3$ surface of genus 20	[Muk92]
7	2	12	5 points	Dixon and Stuart
8	2	15	16 points	[Muk92]
2	3	4	$G(2,5)$	Ranestad and Schreier [RS00]
3	3	5	1 point	Sylvester's Pentahedral Theorem
3	4	8	W	[RS00]
3	5	10	S	Iliev and Ranestad [IR01b]

In the table,

- W is a fivefold and is the variety of lines in the fivefold linear complete intersection $\mathbb{P}^{10} \cap \mathrm{OG}(5,10) \subset \mathbb{P}^{15}$ of the ten-dimensional orthogonal Grassmaniann $\operatorname{OG}(5,10)$,
- S is a smooth symplectic fourfold obtained as a deformation of the Hilbert square of a polarized $K 3$ surface of genus eight, and
- see the introduction of [RS00] or [Dol04] for the references of the results in the $19^{\text {th }}$ and early $20^{\text {th }}$ centuries.
As we can see in the table, the study before Mukai's one were devoted only to the cases where $\operatorname{dim} \operatorname{VSP}(F, n(m, v))=0$ and mostly the cases where F has a unique representation. Recently, using the technique of birational geometry, M. Mella proved in [Mel06] that, if $m>v>1$, then the uniqueness holds only in the case where $(m, v)=(5,2)$.

In [IR01a], Iliev and Ranestad treat some special $(v+1)$-nary cubics F and prove that, if $v \geq 8$, then the Waring rank of F is less than that of a general cubic.

In [IK99] Iliev and Kanev study varieties of power sums more systematically.

1.2. Mukai's contribution.

Let V_{22} be a smooth prime Fano threefold of genus twelve, namely, a smooth projective threefold such that $-K_{V_{22}}$ is ample, the class of $-K_{V_{22}}$ generates Pic V_{22}, and the genus $g\left(V_{22}\right):=\frac{\left(-K_{V_{22}}\right)^{3}}{2}+1$ is equal to twelve. V_{22} can be embedded into \mathbb{P}^{13} by the linear system $\left|-K_{V_{22}}\right|$. Mukai discovered the following remarkable result [Muk92, §6, Theorem 11] (see also [DK93], [Sch01], and [Dol04, Theorem 3.12] for some details):

Theorem 1.2.1. For a general ternary quartic form $F_{4}, \operatorname{VPS}\left(F_{4}, 6\right) \subset \operatorname{Hilb}^{6} \check{\mathbb{P}}^{2}$ is a smooth prime Fano threefold of genus twelve, where we use the dual notation for later convenience. Moreover every general V_{22} is of this form.

To characterize a general V_{22} he studied the Hilbert scheme of lines on a general $V_{22} \subset \mathbb{P}^{13}$ showing that it is isomorphic to a smooth plane quartic curve $\mathcal{H}_{1} \subset \mathbb{P}^{2}$. He thought how to recover V_{22} by \mathcal{H}_{1}. For this, one more data was necessary. Using the incidence relation on $\mathcal{H}_{1} \times \mathcal{H}_{1}$ defined by intersections of lines on V_{22}, he found a non-effective theta characteristic θ on \mathcal{H}_{1}. As explained in [DK93, $\S 6,7$], there is a beautiful result of G . Scorza which asserts that, associated to the pair $\left(\mathcal{H}_{1}, \theta\right)$,
there exists another plane quartic curve $\left\{F_{4}=0\right\}$ in the same ambient plane as \mathcal{H}_{1}. (By saluting Scorza, $\left\{F_{4}=0\right\}$ is called the Scorza quartic.) Then, finally, Mukai proved that V_{22} is recovered as $\operatorname{VSP}\left(F_{4}, 6\right)$. Mukai observed that conics on V_{22} are parameterized by the plane \mathcal{H}_{2} and \mathcal{H}_{2} is naturally considered as the plane $\check{\mathbb{P}}^{2}$ dual to \mathbb{P}^{2}. Moreover, he showed, for one representation of F_{4} as a power sum of linear forms H_{1}, \ldots, H_{6}, the six points $\left[H_{1}\right], \ldots,\left[H_{6}\right] \in \check{\mathbb{P}}^{2}$ correspond to six conics through one point of V_{22}.

Even if F_{4} is taken as a special ternary quartic, $\operatorname{VSP}\left(F_{4}, 6\right)$ may be still a smooth prime Fano threefold of genus twelve. Mukai [Muk92, §7] shows that, if F_{4} is the square of a non-degenerate quadratic form, then $\operatorname{VSP}\left(F_{4}, 6\right)$ is so called the Mukai-Umemura threefold discovered in [MU83] as a smooth $\mathrm{SO}(3, \mathbb{C})$-equivariant compactification of $\mathrm{SO}(3, \mathbb{C}) /$ Icosa. N. Manolache and F.-O. Schreyer [MS01] and F. Melliez and K. Ranestad [MR05] show that, if F_{4} is the Klein quartic, then $\operatorname{VSP}\left(F_{4}, 6\right)$ is a smooth compactification of the moduli space of (1,7)-polarized abelian surfaces.

1.3. Geometry of conics and lines and the main result.

Our main result, given in the end of the section 2, is a generalization of Mukai's result Theorem 1.2.1; we describe certain subvarieties of the varieties of power sum of special quartic forms in any number $v+1$ of variables. The quartics correspond to the ones of Theorem 1.2.1 if $v=2$.

For this we generalize Mukai's study of the geometries of lines and conics on V_{22}. We recall Iskovskih's description of the so-called double projection of a V_{22} from a general line as follows:

where

- f^{\prime} is the blow-up along a general line,
- B is the smooth quintic del Pezzo threefold, namely, a smooth projective threefold such that $-K_{B}=2 H$, where H is the ample generator of $\operatorname{Pic} B$ and $H^{3}=5$, and
- f is the blow-up along a smooth rational curve of degree five (with respect to H).
Generalizing this situation we consider a general smooth rational curve of degree d on B, where d is an arbitrary integer greater than or equal to 5 . In 2.2 , we establish the existence of such a C and we study some of its properties, especially, the relations to lines and conics on B intersecting it. Let $f: A \rightarrow B$ be the blow up of B along C. In 2.3.2 and 2.4.2, we define lines and conics on A, which are appropriate generalizations of lines and conics on V_{22}. We say l is a line on A if l is a reduced connected curve with $-K_{A} \cdot l=1, E_{C} \cdot l=1$ and $p_{a}(l)=0$, where $E_{C}:=f^{-1}(C)$ is the exceptional divisor of $f: A \rightarrow B$. We say q is a conic on A if q is a reduced connected curve with $-K_{A} \cdot q=2, E_{C} \cdot q=2$ and $p_{a}(q)=0$.

We see that lines on A are parameterized by a smooth trigonal canonical curve \mathcal{H}_{1} of genus $d-2$ (Corollary 2.3.1). Conics on A turn out to be parameterized by a smooth surface \mathcal{H}_{2}. The study of \mathcal{H}_{2} is quite delicate. For this purpose, we
consider the intersection of lines and conics and introduce the divisor $D_{l} \subset \mathcal{H}_{2}$ parameterizing conics which intersect a fixed line l. We show that C has $\frac{(d-2)(d-3)}{2}$ bisecant lines and using this we can state the apparently simple result:

Theorem 1.3.1 (see Theorem 2.4.18). The surface \mathcal{H}_{2} which parameterizes conics on A is smooth and it is obtained by the blow-up $\eta: \mathcal{H}_{2} \rightarrow S^{2} C \simeq \mathbb{P}^{2}$ at the points c_{i} where c_{i} is the point of $S^{2} C$ corresponding to the intersection of the bisecants β_{i} and $C, i=1, \ldots, \frac{(d-2)(d-3)}{2}$.

Moreover, we show that if $d \geq 6$, then $\left|D_{l}\right|$ is very ample and embeds \mathcal{H}_{2} in $\check{\mathbb{P}}^{d-3}$, and if $d=5,\left|D_{l}\right|$ defines a birational morphism $\mathcal{H}_{2} \rightarrow \check{\mathbb{P}}^{2}$. Here we use the dual notation for later convenience. If $d \geq 6$, then \mathcal{H}_{2} is so called the White surface (see [Whi24] and [Gim89]). It is interesting for us that the classical White surface naturally appears in this set up.

A deeper understanding of the geometry of conics requires the notion of intersection of two conics and, more precisely, the divisor $D_{q} \subset \mathcal{H}_{2}$ parameterizing conics which intersect a fixed conic q. It is easy to see that $D_{q} \sim 2 D_{l}$.

Now assuming $d \geq 6$ we consider $\mathcal{H}_{2} \subset \check{\mathbb{P}}^{d-3}=\mathbb{P}_{*} \check{V}$. By the double projection of B from a general point b, we see that there are $n:=\frac{(d-1)(d-2)}{2}$ conics (counted with multiplicities) through b. It is crucial that the number n is equal to the dimension of the quadratic forms on $\check{\mathbb{P}}^{d-3}$. Nevertheless infinitely many conics on A pass through a point on the strict transform of a bi-secant line of C. Hence to have a finiteness result we have to consider the blow-up $\rho: \widetilde{A} \rightarrow A$ along the strict transforms of bi-secant lines of C on B. Then by a careful analysis on mutually intersecting conics on A we construct a morphism $\Phi: \widetilde{A} \rightarrow \operatorname{Hilb}^{n} \check{\mathbb{P}}^{d-3}$ obtained by an attaching process which associates n conics on A to each point \widetilde{a} of \widetilde{A}; see Definition 2.5.8 for the precise definition of attached conics. To produce the quartic we are looking for, we show that the proper locus $\left\{[q] \in \mathcal{H}_{2} \mid[q] \in D_{q}\right\}$ on \mathcal{H}_{2} is cut out by a quartic, whose equation is denoted by \check{F}_{4}. Moreover we show that \check{F}_{4} is non-degenerate, this means that the polar map induced by \check{F}_{4} from $S^{2} \check{V}$ to $S^{2} V$ is an isomorphism. Then the required quartic F_{4} is the dual quartic to \check{F}_{4}, namely, the quartic form in $S^{4} \breve{V}$ such that its induced polar map from $S^{2} V$ to $S^{2} \check{V}$ is the inverse of that of \check{F}_{4}.

For the precise statement of our main result, we need the following definition:
Definition 1.3.2. For a subvariety S of $\mathbb{P}_{*} \check{V}$, we set
$\operatorname{VSP}(F, n ; S):=\overline{\left\{\left(\left[H_{1}\right], \ldots,\left[H_{n}\right]\right) \mid\left[H_{i}\right] \in S, H_{1}^{m}+\cdots+H_{n}^{m}=F\right\}} \subset \operatorname{VSP}(F, n)$
and we call it the varieties of power sums of F confined in S.
As far as we know, $\operatorname{VSP}(F, n ; S)$ is essentially a new object to study.
Our main theoretical result is the following:
Theorem 1.3.3 (=Theorem 2.5.12). There is an injection $\Phi: \widetilde{A} \rightarrow \operatorname{Hilb}^{n} \check{\mathbb{P}}^{d-3}$ mapping a point a of \widetilde{A} to the point representing the n conics on A attached to a. Moreover the image is an irreducible component of $\operatorname{VSP}\left(F_{4}, n ; \mathcal{H}_{2}\right)$.

In the sequel 1.4, we explain a more significant geometrical meaning of the special quartic F_{4}.

Based on Mukai's result we can state the following conjecture: Φ is an embedding and $\operatorname{Im} \Phi=\operatorname{VSP}\left(F_{4}, n ; \mathcal{H}_{2}\right)$.

We remark that, for $d \leq 8$, the number n is equal to the Waring rank of a general ($d-2$)-nary quartic, and especially, the cases where $d=5,6,7$ cover exceptional cases of Alexander and Hirschowitz.

Even if $d=5$, we have a similar result, which is an elaboration on Theorem 1.2.1. The explanation is technical: see 2.5.3.

1.4. Applications.

In the section 3, we give some applications of our study of A for a pair of a canonical curve of any genus and a non-effective theta characteristic, a spin curve for short.

Dolgachev and Kanev [DK93, §9] give a modern account of Scorza's beautiful construction of a certain quartic hypersurface, so called the Scorza quartic, associated to every spin curve. It is expected that the Scorza quartic is useful for the study of a spin curve but no deeper properties of the Scorza quartic were unknown. Firstly, its construction is not so explicit. Secondly, Scorza's construction itself depends on three assumptions on spin curves (see [DK93, (9.1) (A1)-(A3)]) and it were unknown whether these conditions are fulfilled for a general spin curve of genus >3. Thus the existence of the Scorza quartic was conditional except for the genus 3 case, where Scorza himself solved the problem. We give contributions for these two subjects.

In 3.1 , using the incidence correspondence on $\mathcal{H}_{1} \times \mathcal{H}_{1}$ defined by intersections of lines on A, we define a non-effective theta characteristic θ on the trigonal curve \mathcal{H}_{1}. This is a generalization of Mukai's result explained as in 1.2.

In 3.2 , we observe that there is a natural duality between \mathcal{H}_{1} and \mathcal{H}_{2}, which induces the natural identification $\mathbb{P}^{d-3}=\mathbb{P}^{*} H^{0}\left(\mathcal{H}_{1}, K_{\mathcal{H}_{1}}\right)$, where for clarity reasons we denote by \mathbb{P}^{d-3} the projective space dual to the ambient projective space $\check{\mathbb{P}}^{d-3}$ of \mathcal{H}_{2}, and by $\mathbb{P}^{*} H^{0}\left(\mathcal{H}_{1}, K_{\mathcal{H}_{1}}\right)$ the ambient projective space of the canonical embedding of \mathcal{H}_{1}.

In 3.3, we recall the definition of the discriminant loci and we compute it explicitly for $\left(\mathcal{H}_{1}, \theta\right)$. In 3.4 , we recall the precise definition of the Scorza quartic for a spin curve.

By virtue of our explicit computation of the discriminant, we prove in 3.5 that the pair $\left(\mathcal{H}_{1}, \theta\right)$ satisfies the conditions [DK93, (9.1) (A1)-(A3)], which guarantee the existence of the Scorza quartic for the pair $\left(\mathcal{H}_{1}, \theta\right)$. Then, by a standard deformation theoretic argument, we can then verify that the conditions (A1)-(A3) hold also for a general spin curve, hence we answer affirmatively to the Dolgachev-Kanev Conjecture:

Theorem 1.4.1 (=Theorem 3.5.3). The Scorza quartic exists for a general spin curve.

Moreover we can find explicitly the Scorza quartic for $\left(\mathcal{H}_{1}, \theta\right)$. In fact, by definition, the Scorza quartic $\left\{F_{4}^{\prime}=0\right\}$ for $\left(\mathcal{H}_{1}, \theta\right)$ lives in $\mathbb{P}^{*} H^{0}\left(\mathcal{H}_{1}, K_{\mathcal{H}_{1}}\right)$ but, as we remark above, we can consider $\left\{F_{4}^{\prime}=0\right\} \subset \mathbb{P}^{d-3}$. In 3.6, we prove that the special quartic $\left\{F_{4}=0\right\} \subset \mathbb{P}^{d-3}$ in Theorem 1.3.3 coincides with the Scorza quartic $\left\{F_{4}^{\prime}=0\right\}$.

We recommend the readers who are interested only in the subsections 3.1-3.5 to skip the subsection 2.5.

Finally, in 3.7, we show that A is recovered from the pair $\left(\mathcal{H}_{1}, \theta\right)$. This implies that $\left(\mathcal{H}_{1}, \theta\right)$'s fill up an open subset of the moduli of trigonal spin curves. In particular, \mathcal{H}_{1} is a general trigonal curve for a general C.

1.5. Final remarks.

In this paper, we only consider a general rational curve on B but there are interesting special cases. In the forthcoming paper, applying the method of this paper, we will study the blow-ups of B along special smooth rational curves of degree six and pairs of canonical curves of genus four and even theta characteristics.

Acknowledgment. We are thankful to Professor S. Mukai for valuable discussions and constant interest on this paper. We received various useful comments from K. Takeuchi, A. Ohbuchi, S. Kondo, to whom we are grateful. The first author worked on this paper partially while he was working at the Research Institute for Mathematical Sciences, Kyoto University until March, 2004, and when he was staying at the Johns Hopkins University under the program of Japan-U.S. Mathematics Institute (JAMI) in November 2005 and at the Max-Planck-Institut für Mathematik from April, 2007 until March, 2008. Besides he gave talks on this paper in the seminars and the conferences at the Waseda University, the Tohoku University, the Johns Hopkins University, the Princeton University, and Mathematisches Forschungsinstitut Oberwolfach. The second author gave a talk on this paper in the seminar at the S.I.S.S.A. (Trieste) on May 2007 and at the Workshop on Hd. MMP. December 2007 (Warwick). The authors worked jointly during the first author's stay at the Università di Udine on August 2005, and the Levico Terme conference on Algebraic Geometry in Higher dimensions on June 2007. The authors are thankful to all institutes, and organizers of the seminars for the warm hospitality they received. Both authors would like to dedicate this paper to Miles Reid with full gratitude.

2. Blowing up the quintic del Pezzo threefold B along a \mathbb{P}^{1} of DEGREE d

In this section, we study the geometries of the blow-up A of the quintic del Pezzo threefold B along a smooth rational curve of degree d, which is nothing but the special threefold we mention in the abstract. In 2.1 we review the description of lines and conics on B, and 2-ray games originating from B. Based on this, we construct in 2.2 smooth rational curves of degree d, where d is an arbitrary positive integer, having nice intersection properties with respect to lines and conics. The results in 2.2 are delicate but their proof is more or less based on standard parameter count. In 2.3 and 2.4 , we study the families of curves on A of degree one or two with respect to the anti-canonical sheaf of A (we call them lines and conics on A respectively). The curve \mathcal{H}_{1} parameterizing lines on A and the surface \mathcal{H}_{2} parameterizing conics on A are two of the main characters in this paper. See Corollary 2.3.1 and Theorem 2.4.18 for a quick view of their properties. Finally in 2.5 , we prove the main theorem (Theorem 2.5.12). See 2.5.3 for the relationship of our result with Mukai's one we mentioned in the introduction.

2.1. Review on geometries of B.

Let V be a vector space with $\operatorname{dim}_{\mathbb{C}} V=5$. The Grassmannian $G(2, V)$ embeds into \mathbb{P}^{9} and we denote the image by $G \subset \mathbb{P}^{9}$. It is well-known that the quintic del

Pezzo 3-fold, i.e., the Fano 3-fold B of index 2 and of degree 5 can be realized as $B=G \cap \mathbb{P}^{6}$, where $\mathbb{P}^{6} \subset \mathbb{P}^{9}$ is transversal to G (see [Fuj81], [Isk77, Thm 4.2 (iii), the proof p.511-p.514]).

Let \mathcal{H}_{1}^{B} and \mathcal{H}_{2}^{B} be the Hilbert scheme, respectively, of lines and of conics on B. We collect basic known facts on lines and conics on B almost without proof.
2.1.1. Lines on B. Let $\pi: \mathbb{P} \rightarrow \mathcal{H}_{1}^{B}$ be the universal family of lines on B and $\varphi: \mathbb{P} \rightarrow B$ the natural projection. By [FN89a, Lemma 2.3 and Theorem I$], \mathcal{H}_{1}^{B}$ is isomorphic to \mathbb{P}^{2} and φ is a finite morphism of degree three. In particular the number of lines passing through a point is three counted with multiplicities. We recall some basic facts about π and φ which we use in the sequel.

Before that, we fix some notation.
Notation 2.1.1. For an irreducible curve C on B, denote by $M(C)$ the locus $\subset \mathbb{P}^{2}$ of lines intersecting C, namely, $M(C):=\pi\left(\varphi^{-1}(C)\right)$ with reduced structure. Since φ is flat, $\varphi^{-1}(C)$ is purely one-dimensional. If $\operatorname{deg} C \geq 2$, then $\varphi^{-1}(C)$ does not contain a fiber of π, thus $M(C)$ is a curve. See Proposition 2.1.3 for the description of $M(C)$ in case C is a line.
Definition 2.1.2. A line l on B is called a special line if $\mathcal{N}_{l / B} \simeq \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)$.
Proposition 2.1.3. It holds:
(1) for the branched locus B_{φ} of $\varphi: \mathbb{P} \rightarrow B$ we have:
$(1-1) B_{\varphi} \in\left|-K_{B}\right|$,
(1-2) $\varphi^{*} B_{\varphi}=R_{1}+2 R_{2}$,
(1-3) $R_{1} \simeq R_{2} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$, and
(1-4) $\varphi: R_{1} \rightarrow B_{\varphi}$ and $\varphi: R_{2} \rightarrow B_{\varphi}$ are injective,
(2) R_{2} is contracted to a conic Q_{2} by $\pi: \mathbb{P} \rightarrow \mathcal{H}_{1}^{B}$. Moreover Q_{2} is the branched locus of $\pi_{\mid R_{1}}: R_{1} \rightarrow \mathcal{H}_{1}^{B}$,
(3) Q_{2} parameterizes special lines. If l is not a special line on B, then $\mathcal{N}_{l / B}=$ $\mathcal{O}_{l} \oplus \mathcal{O}_{l}$,
(4) if l is a special line, then $M(l)$ is a line, and $M(l)$ is tangent to Q_{2} at [l]. If l is not a special line, then $M(l)$ is the disjoint union of a line and the point [l]. By abuse of notation, we denote by $M(l)$ the one-dimensional part of $M(l)$ for any line l. Vice-versa, any line in \mathcal{H}_{1}^{B} is of the form $M(l)$ for some line l,
(5) the locus swept by lines intersecting l is a hyperplane section T_{l} of B whose singular locus is l. For every point b of $T_{l} \backslash l$, there exists exactly one line which belongs to $M(l)$ and passes through b. Moreover, if l is not special, then the normalization of T_{l} is \mathbb{F}_{1} and the inverse image of the singular locus is the negative section of \mathbb{F}_{1}, or, if l is special, then the normalization of T_{l} is \mathbb{F}_{3} and the inverse image of the singular locus is the union of the negative section and a fiber, and
(6) if l is not a special line, then $\varphi^{-1}(l)$ is the disjoint union of the fiber of π corresponding to l, and the smooth rational curve dominating $M(l)$.

Proof. See [FN89a, §2] and [Ili94, §1].
By the proof of [FN89a] we see that B is stratified according to the ramification of $\varphi: \mathbb{P} \rightarrow B$ as follows:

$$
B=\left(B \backslash B_{\varphi}\right) \cup\left(B_{\varphi} \backslash C_{\varphi}\right) \cup C_{\varphi}
$$

where C_{φ} is a smooth rational normal sextic and if $b \in B \backslash B_{\varphi}$ exactly three distinct lines pass through it, if $b \in\left(B_{\varphi} \backslash C_{\varphi}\right)$ exactly two distinct lines pass through it, one of them is special, and finally C_{φ} is the loci of $b \in B$ through which it passes only one line.

2.1.2. Conics on B.

Proposition 2.1.4. The Hilbert scheme of conics on B is isomorphic to $\mathbb{P}^{4}=\mathbb{P}_{*} \check{V}$. The support of a double line is a special line and the double lines are parameterized by a rational normal quartic curve $\Gamma \subset \mathbb{P}_{*} \check{V}$ and the secant variety of Γ is a singular cubic hypersurface which is the closure of the loci parameterizing reducible conics.

Proof. See [Ili94, Proposition 1.2.2].

The identification is given by the map sp: $\mathcal{H}_{2}^{B} \rightarrow \mathbb{P}_{*} \check{V}$ with $[c] \mapsto\langle\operatorname{Gr}(c)\rangle=$ $\mathbb{P}_{c}^{3} \subset \mathbb{P}_{*} V$, where for a general conic $c \subset B$ we set

$$
G r(c):=\cup\left\{r \in \mathbb{P}_{*} V \mid[r] \in c\right\} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1} .
$$

2.1.3. Two-ray games based on B. We are interested in the geometry of the 3 -fold A obtained by blowing-up B along a curve $C:=C_{d}$ as constructed in Proposition 2.2.4. To understand this geometry we need to describe some two-ray games originating from B.

Definition 2.1.5. Let b be a point of B. We call the rational map from B defined by the linear system of hyperplane sections singular at b the double projection from b.

Proposition 2.1.6. (1) Let b be a point of B. Then the target of the double projection from b is \mathbb{P}^{2}, and the double projection from b and the projection $B \rightarrow \bar{B}_{b}$ from b fit into the following diagram:

where $\pi_{1 b}$ is the blow-up of B at $b, B_{b} \rightarrow B_{b}^{\prime}$ is the flop of the strict transforms of lines through b, and $\pi_{2 b}: B_{b}^{\prime} \rightarrow \mathbb{P}^{2}$ is a (unique) \mathbb{P}^{1}-bundle structure. We denote by E_{b} the $\pi_{1 b}$-exceptional divisor and by E_{b}^{\prime} the strict transform of E_{b} on B_{b}^{\prime}. Moreover we have the following descriptions:

$$
\begin{equation*}
-K_{B_{b}^{\prime}}=H+L, \tag{1-1}
\end{equation*}
$$

where H is the strict transform of a general hyperplane section of B, and L is the pull back of a line on \mathbb{P}^{2},
(1-2) if $b \notin B_{\varphi}$, then the strict transforms l_{i}^{\prime} of three lines l_{i} through b on B_{b} have the normal bundle $\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$. The flop $B_{b} \rightarrow B_{b}^{\prime}$ is the Atiyah flop. In particular, $E_{b}^{\prime} \rightarrow E_{b}$ is the blow-up at the three points $E_{b} \cap l_{i}^{\prime}$.
If $b \in B_{\varphi} \backslash C_{\varphi}$, then $E_{b} \rightarrow E_{b}^{\prime}$ can be described as follows: let l and m be two lines through b, where l is special, and m is not special. Let l^{\prime} and m^{\prime} be the strict transforms of l and m on B_{b}. First blow up E_{b} at two
points $t_{1}:=E_{b} \cap l^{\prime}$ and $t_{2}:=E_{b} \cap m^{\prime}$ and then blow up at a point t_{3} on the exceptional curve e over t_{1}. Finally, contract the strict transform of e to a point. Then we obtain E_{b}^{\prime} (this is a degeneration of the case (a)). See [FN89b] in case of $b \in C_{\varphi}$, and
(1-3) a fiber of $\pi_{2 b}$ not contained in E_{b}^{\prime} is the strict transform of a conic through b, or the strict transform of a line $\nexists b$ intersecting a line through b. The description of the fibers of $\pi_{2 b}$ contained in E_{b}^{\prime} is as follows: if $b \notin B_{\varphi}$, then $\pi_{2 b \mid E_{b}^{\prime}}: E_{b}^{\prime} \rightarrow \mathbb{P}^{2}$ is the blow-down of the strict transforms of three lines connecting two of $E_{b} \cap l_{i}^{\prime}$, namely, $E_{b} \rightarrow \mathbb{P}^{2}$ is the Cremona transformation.
Assume that $b \in B_{\varphi} \backslash C_{\varphi}$. Then $\pi_{2 b \mid E_{b}^{\prime}}: E_{b}^{\prime} \rightarrow \mathbb{P}^{2}$ is the blow-down of the strict transforms of two lines, one is the line connecting t_{1} and t_{2}, the other is the line whose strict transform passes through $t_{3} . E_{b} \rightarrow \mathbb{P}^{2}$ is a degenerate Cremona transformation. See [FN89b] in case of $b \in C_{\varphi}$.
(2) Let l be a line on B. Then the projection of B from l is decomposed as follow:

where $\pi_{1 l}$ is the blow-up along l and $B \rightarrow Q$ is the projection from l and $\pi_{2 l}$ contracts onto a rational normal curve of degree 3 the strict transform of the loci swept by the lines of B touching l. Moreover

$$
\begin{equation*}
-K_{B_{l}}=H+H_{Q} \tag{2.3}
\end{equation*}
$$

where H and H_{Q} are the pull backs of general hyperplane sections of B and Q respectively. We denote by E_{l} the $\pi_{1 l}$-exceptional divisor.
(3) Let q be a smooth conic on B. Then the projection of B from q behaves as follow:

where $\pi_{1 q}$ is the blow-up of B along q and $\pi_{2 q}: B_{q} \rightarrow \mathbb{P}^{3}$ is the divisorial contraction of the strict transform T_{q} of the loci swept by the lines touching q. Moreover

$$
\begin{equation*}
-K_{B_{q}}=H+H_{\mathbb{P}}, \tag{2.5}
\end{equation*}
$$

where H and $H_{\mathbb{P}}$ are the pull backs of general hyperplane sections of B and \mathbb{P}^{3} respectively.

Proof. These results come from explicit computations and are more or less known. Especially, for (2), refer [Fuj81], and for (3) (and (2)), refer [MM81], No. 22 for (3) (No. 26 for (2)). See also [MM85], p. 533 (7.7) for a discussion.
(1) is less known. We have only found the paper [FN89b], in which they deal with the most difficult case (c). Here we only sketch the construction of the flop in the middle case (b) to intend the reader to get a feeling of birational maps from B.

Let b be a point of $B_{\varphi} \backslash C_{\varphi}$. We use the notation of the statement of (12). The flop of m^{\prime} is the Atiyah flop. We describe the flop of l^{\prime}. By $\mathcal{N}_{l / B} \simeq$ $\mathcal{O}_{\mathbb{P}^{1}}(1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$, it holds that $\mathcal{N}_{l^{\prime} / B_{b}} \simeq \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-2)$. Hence the flop of l^{\prime} is a special case of Reid's one [Rei83, Part II]. We show that the width is two in Reid's sense. Let T_{1} be the normalization of T_{l}. By Proposition 2.1.3 (5), $T_{1} \simeq \mathbb{F}_{3}$ and the inverse image of the singular locus of T_{l} is the union of the negative section C_{0} and a fiber r. Let $\mu: \widetilde{B}_{b} \rightarrow B_{b}$ be the blow-up along l^{\prime} and F the exceptional divisor. Let T_{2} be the strict transform of T_{l} on \widetilde{B}_{b}. Then T_{2} is the blow-up of T_{1} at two points $s_{1} \in C_{0}$ and $s_{2} \in r$. Denote by C_{0}^{\prime} and r^{\prime} the strict transforms of C_{0} and r. We prove that $\mathcal{N}_{r^{\prime} / \widetilde{B}_{b}} \simeq \mathcal{O}_{\mathbb{P}^{1}}(-1)^{\oplus 2}$. Note that $F \cap T_{2}=C_{0}^{\prime} \cup r^{\prime}$. The curves C_{0}^{\prime} and r^{\prime} are two sections on F. Let T_{1}^{\prime} be the image of T_{2} on B_{b}. By $\mathcal{N}_{l^{\prime} / B_{b}} \simeq \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-2)$ and $T_{2}=\mu^{*} T_{1}^{\prime}-2 F$, it holds $F \simeq \mathbb{F}_{2}$, and $T_{2 \mid F} \sim 2 G_{0}+3 \gamma$, where G_{0} is the negative section of F and γ is a fiber of $F \rightarrow l^{\prime}$. Note that $F \cdot C_{0}^{\prime}=\left(F_{\mid T_{2}} \cdot C_{0}^{\prime}\right)_{T_{2}}=-3$ and $F \cdot r^{\prime}=\left(F_{\mid T_{2}} \cdot r^{\prime}\right)_{T_{2}}=0$, and $F \cdot G_{0}=0$ and $F \cdot\left(G_{0}+3 \gamma\right)=-3$. Thus we have $C_{0}^{\prime} \sim G_{0}+3 \gamma$ and $r^{\prime}=G_{0}$ on F. Now we see that $-K_{\widetilde{B}_{b}} \cdot r^{\prime}=\left(\mu^{*}\left(-K_{B_{b}}\right)-F\right) \cdot r^{\prime}=0$. Therefore, by $\left(r^{\prime}\right)^{2}=-1$ on T_{2}, it holds that $\mathcal{N}_{r^{\prime} / \widetilde{B}_{b}} \simeq \mathcal{O}_{\mathbb{P}^{1}}(-1)^{\oplus 2}$.

It is easy to see that we can flop r^{\prime}. Let $\widetilde{B}_{b} \rightarrow \widetilde{B}_{b}^{\prime}$ be the flop of r^{\prime} (now we consider locally around r^{\prime}). Let F^{\prime} be the strict transform of F on $\widetilde{B}_{b}^{\prime}$. By [Rei83], $F^{\prime} \simeq F$ and there is a blow-down $\widetilde{B}_{b}^{\prime} \rightarrow \widetilde{B}_{b}^{\prime \prime}$ of F^{\prime} such that $\widetilde{B}_{b}^{\prime \prime}$ is smooth. $\widetilde{B}_{b} \rightarrow \widetilde{B}_{b}^{\prime \prime}$ is the flop of l^{\prime}.

By this description of the flop, we can easily obtain (1-2).
As a first application of the above operations, we have the following result, which we often use:

Corollary 2.1.7. Let b_{1} and b_{2} be two (possibly infinitely near) points on B such that there exists no line on B through them. Then there exists a unique conic on B through b_{1} and b_{2}.

Proof. We project B from b_{1} as in (2.1). Then the assertion follows by the description of fibers of $\pi_{2 b_{1}}$ as in Proposition 2.1.6 (1-3).

2.2. Construction of smooth rational curves C_{d} of degree d on B.

We construct smooth rational curves of degree d on B with certain properties.
Proposition 2.2.1. There exists a smooth rational curve C_{d} of degree d on B such that
(a) a general line on B intersecting C_{d} is uni-secant,
(b) C_{d} is obtained as a smoothing of the union of a smooth rational curve C_{d-1} of degree $d-1$ on B and a general uni-secant line of it on B,
(c) $\mathcal{N}_{C_{d} / B} \simeq \mathcal{O}_{\mathbb{P}^{1}}(d-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(d-1)$. In particular $h^{1}\left(\mathcal{N}_{C_{d} / B}\right)=0$ and $h^{0}\left(\mathcal{N}_{C_{d} / B}\right)=2 d$, and
(d) if $d=5$, then C_{5} is a normal rational curve and is contained in a unique hyperplane section S, which is smooth. If $d \geq 6$, then C_{d} is not contained in a hyperplane section.

Proof. We argue by induction on d.
If $d=1$, we have the assertion since $\mathcal{N}_{C_{1} / Q} \simeq \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}$ for a general line C_{1}.

Now assume that C_{d-1} is a general smooth rational curve of degree $d-1$ on B. By induction, a general secant line l of C on Q is uni-secant. Set $Z:=C_{d-1} \cup l$ and $\mathcal{N}_{Z / Q}:=\mathcal{H o m}_{\mathcal{O}_{Q}}\left(\mathcal{I}_{Z}, \mathcal{O}_{Q}\right)$. By induction, the normal bundle of C_{d-1} satisfies (c).

Thus, by $\mathcal{N}_{l / Q} \simeq \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}$ and [HH85, Theorem 4.1 and its proof], it holds $h^{1}\left(\mathcal{N}_{Z / Q}\right)=0$, and moreover $Z:=C_{d-1} \cup l$ is strongly smoothable, namely, we can find a smoothing C_{d} of Z with the smooth total space. By the upper semi-continuity theorem, we have $h^{1}\left(\mathcal{N}_{C_{d} / Q}\right)=0$.

Thus the Hilbert scheme of Q is smooth at $\left[C_{d}\right]$ and is of dimension $2 d$, which is also the dimension of the component of the Hilbert scheme containing $\left[C_{d}\right]$. On the other hand, varying C_{d-1} and l, we have a family of reducible curves of dimension $2(d-1)+1=2 d-1$. Thus the smoothing constructed as above is general in the component of the Hilbert scheme whose generic point parameterizes smooth rational curves of degree d.

It is easy to see that a general line m intersecting C_{d-1} does not intersect l, thus m is a uni-secant line of $C_{d-1} \cup l$. This implies (a) for C_{d} by a deformation theoretic argument.

To check the form of the normal bundle, simply assume by induction that $\mathcal{N}_{C_{d-1} / Q}=\mathcal{O}_{\mathbb{P}^{1}}(d-2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(d-2)$. Set $\mathcal{N}_{C_{d} / Q}:=\mathcal{O}_{\mathbb{P}^{1}}\left(a_{d}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(b_{d}\right)\left(a_{d} \geq b_{d}\right)$ for the smoothing C_{d} of Z. We show that $a_{d}=b_{d}=d-1$.

It suffices to prove $h^{0}\left(\mathcal{N}_{Z / Q}(-d)\right)=0$. In fact, then, by the upper semicontinuous theorem, we have $h^{0}\left(\mathcal{N}_{C_{d} / Q}(-d)\right)=0$ and $a_{d}, b_{d} \leq d-1$. Thus, by $a_{d}+b_{d}=2 d-2$, it holds $a_{d}=b_{d}=d-1$.

The equality $h^{0}\left(\mathcal{N}_{Z / Q}(-d)\right)=0$ easily follows from the following three exact sequences, where $t:=C_{d-1} \cap l$:

$$
\begin{gathered}
0 \rightarrow \mathcal{N}_{Z / Q} \rightarrow \mathcal{N}_{Z / Q \mid C_{d-1}} \oplus \mathcal{N}_{Z / Q \mid l} \rightarrow \mathcal{N}_{Z / Q} \otimes \mathcal{O}_{Q} \mathcal{O}_{t} \rightarrow 0 . \\
0 \rightarrow \mathcal{N}_{C_{d-1} / Q} \rightarrow \mathcal{N}_{Z / Q \mid C_{d-1}} \rightarrow T^{1}(t) \rightarrow 0 \\
0 \rightarrow \mathcal{N}_{l / Q} \rightarrow \mathcal{N}_{Z / Q \mid l} \rightarrow T^{1}(t) \rightarrow 0
\end{gathered}
$$

Finally we prove (d). In case $d=5$, we have only to notice that a general hyperplane section of B_{5} is a del Pezzo surface of degree 5 which contains a smooth C_{5}. For $d \geq 6$, the assertion follows by induction.

We denote by \mathcal{H}_{d}^{B} the union of components of the Hilbert scheme of B whose general points parameterize smooth rational curves of degree d obtained inductively as in Proposition 2.2.1.

The following proposition describe relations between C_{d} and lines and conics on B.

Proposition 2.2.2. A general C_{d} as in Proposition 2.2.1 satisfies the following conditions:
(1) there exist no k-secant lines of C_{d} on B with $k \geq 3$,
(2) there exist at most finitely many bi-secant lines of C_{d} on B, and any of them intersects C_{d} simply,
(3) bi-secant lines of C_{d} on B are mutually disjoint,
(4) neither a bi-secant line nor a line through the intersection point between a bisecant line and C_{d} is a special line,
(5) there exist at most finitely many points b outside C_{d} such that all the lines through b intersect C_{d}, and such points exist outside bi-secant lines of C_{d},
(6) there exist no k-secant conics of C_{d} with $k \geq 5$,
(7) there exist at most finitely many quadri-secant conics of C_{d} on B, and no quadri-secant conic is tangent to C_{d}, and
(8) $q_{\mid C_{d}}$ has no point of multiplicity greater than two for any multi-secant conic q.

Proof. We can prove the assertions by simple dimension count based upon Proposition 2.2.1. We assume that $d \geq 4$ since otherwise we can verify the assertion easily.
(1). Let \mathcal{D} be the closure of the set

$$
\left\{\left(\left[C_{d}\right],[l]\right) \mid C_{d} \cap l \text { consists of } 3 \text { points }\right\} \subset \mathcal{H}_{d}^{B} \times \mathcal{H}_{1}^{B}
$$

Let $\pi_{d}: \mathcal{D} \rightarrow \mathcal{H}_{d}^{B}$ and $\pi_{1}: \mathcal{D} \rightarrow \mathcal{H}_{1}^{B}$ be the natural morphisms induced by the projections. The claim follows if we show that $\operatorname{dim}_{\mathbb{C}} \mathcal{D} \leq 2 d-1$ since $\operatorname{dim} \mathcal{H}_{d}^{B}=2 d$.

Thus we estimate $\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}^{2 d}\left(\mathbb{P}^{1}, B ; p_{i} \mapsto s_{i}, i=1,2,3\right)$ at $[\pi]$, where $p_{i}, i=$ $1,2,3$ are fixed points of $\mathbb{P}^{1},[\pi]$ is a general point and the degree is measured by $-K_{B}$. By $d \geq 4$ and Proposition 2.2.1 (c), it holds that $h^{0}\left(\mathbb{P}^{1}, \pi^{*} T_{B}\left(-p_{1}-p_{2}-\right.\right.$ $\left.\left.p_{3}\right)\right)=2 d-6$ and $h^{1}\left(\mathbb{P}^{1}, \pi^{*} T_{B}\left(-p_{1}-p_{2}-p_{3}\right)\right)=0$. Then

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}^{2 d}\left(\mathbb{P}^{1}, B, p_{i} \mapsto s_{i}, i=1,2,3\right)_{[\pi]}=h^{0}\left(\pi^{*} T_{B}\left(-p_{1}-p_{2}-p_{3}\right)\right)=2 d-6 .
$$

This implies that $\operatorname{dim}_{\mathbb{C}} \pi_{1}^{-1}([l]) \leq 2 d-6+3=2 d-3$ since the three points can be chosen arbitrarily. Then $\operatorname{dim}_{\mathbb{C}} \mathcal{D} \leq 2 d-1$ since $\operatorname{dim}_{\mathbb{C}} \mathcal{H}_{1}^{B}=2$.
(2). Now let \mathcal{D} be the closure of the set

$$
\left\{\left(\left[C_{d}\right],[l]\right) \mid C_{d} \cap l \text { consists of } 2 \text { points }\right\} \subset \mathcal{H}_{d}^{B} \times \mathcal{H}_{1}^{B}
$$

As before, let $\pi_{d}: \mathcal{D} \rightarrow \mathcal{H}_{d}^{B}$ and $\pi_{1}: \mathcal{D} \rightarrow \mathcal{H}_{1}^{B}$ be the natural morphisms induced by the projections. By $d \geq 4$ and Proposition 2.2.1 (c), it holds that $h^{0}\left(\mathbb{P}^{1}, \pi^{*} T_{B}\left(-p_{1}-\right.\right.$ $\left.\left.p_{2}\right)\right)=2 d-3$ and $h^{1}\left(\mathbb{P}^{1}, \pi^{*} T_{B}\left(-p_{1}-p_{2}\right)\right)=0$. Then

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}^{2 d}\left(\mathbb{P}^{1}, B, p_{i} \mapsto s_{i}, i=1,2\right)_{[\pi]}=h^{0}\left(\pi^{*} T_{B}\left(-p_{1}-p_{2}\right)\right)=2 d-3 .
$$

Since $\operatorname{dim}_{\mathbb{C}} \operatorname{Aut}\left(\mathbb{P}^{1}, p_{1}, p_{2}\right)=1$ it holds that $\operatorname{dim}_{\mathbb{C}} \pi_{1}^{-1}([l]) \leq 2 d-3+2-1=2 d-2$. Hence $\operatorname{dim}_{\mathbb{C}} \mathcal{D}=2 d$. Hence C_{d} has only a finite number of bisecant lines.

We now show that the loci where C_{d} has a tangent bisecant is a codimension one loci inside \mathcal{H}_{d}^{B}. Let B_{t} be the blow-up of B in a point $t \in C_{d}$ and let l be a bi-secant which is tangent to C_{d} at t (if it exists). Let E be the exceptional divisor, and C^{\prime} and l^{\prime} the strict transforms of C and l respectively. By hypothesis there exists a unique point $s \in E \cap C^{\prime} \cap l^{\prime}$. We estimate $\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}^{d-2}\left(\mathbb{P}^{1}, B_{t}, p \mapsto s\right)_{[\pi]}$, where p is a fixed point of $\mathbb{P}^{1},[\pi]$ is a general point, and the degree is measured by $-K_{B_{t}}$. In this case $h^{0}\left(\pi^{*} T_{B_{t}}(-p)\right)=2 d-2$ hence $\operatorname{dim}_{\mathbb{C}} \pi_{1}^{-1}([l]) \leq 2 d-2+1-2=2 d-3$. This implies the claim.

The cases (3), (4) and (5) are similar. Thus we only give few comments for (5). Set \mathcal{D} be the closure of the set

$$
\begin{array}{r}
\left\{\left(\left[C_{d}\right],\left[l_{1}\right],\left[l_{2}\right],\left[l_{3}\right]\right) \mid C_{d} \cap l_{i} \neq \emptyset(i=1,2,3),\right. \\
\left.l_{1} \cap l_{2} \cap l_{3} \neq \emptyset, l_{1} \cap l_{2} \cap l_{3} \notin C_{d}, l_{i} \text { are distinct }\right\} \\
\subset \mathcal{H}_{d}^{B} \times \mathcal{H}_{1}^{B} \times \mathcal{H}_{1}^{B} \times \mathcal{H}_{1}^{B} .
\end{array}
$$

For the former half of (5), we have only to prove that $\operatorname{dim} \mathcal{D} \leq 2 d$. This can be carried out by a similar dimension count as above. For the latter half of (5), we use
the inductive construction of C_{d} besides dimension count. We can omit the proof of $(6)-(8)$ since are definitely similar to those of (1)-(3).

Notation 2.2.3. Denote by $\beta_{i}(i=1, \cdots, s)$ bi-secant lines of C_{d}.
In the following proposition, we describe some more relations between C_{d} and lines on B by using $M\left(C_{d}\right) \subset \mathcal{H}_{1}^{B}$.
Proposition 2.2.4. A general C_{d} as in Proposition 2.2.1 satisfies the following conditions:
(1) C_{d} intersects B_{φ} simply,
(2) $M_{d}:=M\left(C_{d}\right)$ intersects Q_{2} simply,
(3) M_{d} is an irreducible curve of degree d with only simple nodes (recall that in Proposition 2.1.3, we abuse the notation by denoting the one-dimensional part of $\pi\left(\varphi^{-1}\left(C_{1}\right)\right)$ by $\left.M\left(C_{1}\right)\right)$,
(4) for a general line l intersecting $C_{d}, M_{d} \cup M(l)$ has only simple nodes as its singularities, and
(5) $M_{d} \cup M\left(\beta_{i}\right)$ has only simple nodes as its singularities.

Proof. We show the assertion inductively using the smoothing construction of C_{d} from the union of C_{d-1} and a general uni-secant line l of C_{d-1}.

In case of $d=1$, by letting C_{1} be a general line, the assertion follows from Proposition 2.1.3. By induction on d assume that we have a smooth $C_{d-1}(d \geq 2)$ satisfying (1)-(5). We verify $C_{d-1} \cup l$ satisfies the following (1)'-(5)', which are suitable modifications of (1)-(5):
(1)' $C_{d-1} \cup l$ intersects B_{φ} simply by (1) for C_{d-1} and generality of l.
(2)' $M_{d-1} \cup M(l)$ intersects Q_{2} simply by (2) for C_{d-1} and generality of l.
(3)' $M_{d-1} \cup M(l)$ is not irreducible but is of degree d and has only simple nodes by
(4) for C_{d-1}.
(4)' $M_{d-1} \cup M(l) \cup M(m)$ has only simple nodes as its singularities for a general line m intersecting C_{d-1}.

Indeed, since m is also general, $M_{d-1} \cup M(m)$ has only simple nodes by (4) for C_{d-1}. Thus we have only to prove that $M_{d-1} \cap M(l) \cap M(m)=\emptyset$, namely, there is no secant line of C_{d-1} intersecting both l and m. Fix a general l and move m. If there are secant lines r_{m} of C_{d-1} intersecting both l and m for general m 's, then r_{m} moves whence we have $M(l) \subset M_{d-1}$, a contradiction.
(5)' For a bi-secant line β of $C_{d-1} \cup l$ except the lines through $C_{d-1} \cap l$, the curve $M_{d-1} \cup M(l) \cup M(\beta)$ has only simple nodes as its singularities.

Indeed, if β is a bi-secant line of C_{d-1}, then the assertion follows from (5) for C_{d-1} by a similar way to the proof of (4)'. Suppose that β is a uni-secant line of C_{d-1} intersecting l. We have only to prove that there is no secant line of C intersecting both l and β. If there is such a line r, then l, β and r pass through one point. This does not occur for general l and β by Proposition 2.2.2 (5).

Thus, by a deformation theoretic argument, we see that C_{d} satisfies (1)-(5).
Notation 2.2.5. Consider the double projection from b, see proposition 2.1.6 [(1)]. Throughout the paper, we denote by $C_{b}^{\prime}, C_{b}^{\prime \prime}$ and C_{b} the strict transforms of $C:=C_{d}$ on B_{b}, B_{b}^{\prime} and \mathbb{P}^{2} respectively.

The following result is one of the key properties of the component \mathcal{H}_{d}^{B}. Its importance and difficulty lies in the actual fact that it holds for every $b \in B$.

Proposition 2.2.6. Let C_{d} be a general smooth rational curve of degree d on B constructed as in Proposition 2.2.1. Then, for any point $b \in B$, the restriction of π_{b} to C_{d} is birational if $d \geq 5$.

Proof. We prove the assertion by induction based on the construction of C_{d} from $C_{d-1} \cup l$, where l is a general uni-secant line of C_{d-1} on B.

Assume that $d=5$ and $\pi_{b \mid C_{5}}$ is not birational for a b. Then C_{b} is a line or conic in \mathbb{P}^{2}. Let S be the pull-back of C_{b} by $\pi_{2 b}$. If C_{b} is a line, then C_{5} is contained in a singular hyperplane section, which is the strict transform of S on B (recall that $B \longrightarrow \mathbb{P}^{2}$ is the double projection from b). This contradicts Proposition 2.2.1 (d). Assume that C_{b} is a conic.

The only possibility is that $L \cdot C_{b}^{\prime \prime}=4$ and $C_{b}^{\prime \prime} \rightarrow C_{b}$ is a double cover since $\operatorname{deg} C_{b} \cdot \operatorname{deg}\left(C_{b}^{\prime \prime} \rightarrow C_{b}\right) \leq 5$. By Proposition 2.1.6 (1-1), it holds $H \cdot C_{b}^{\prime \prime}=6$. Then by $L=H-2 E_{b}^{\prime}$, we have $E_{b}^{\prime} \cdot C_{b}^{\prime \prime}=1$. Note that $E_{b}^{\prime 2} S=2$. On S, we can write $E_{b \mid S}^{\prime} \sim C_{0}+p l$ and $C_{b}^{\prime \prime} \sim 2 C_{0}+q l(p, q \geq 0)$, where C_{0} is the negative section of S and l is a fiber of $S \rightarrow C_{b}^{\prime \prime}$. Set $e:=-C_{0}^{2}$. By $E_{b}^{\prime} \cdot C_{b}^{\prime \prime}=1$ and $E_{b}^{\prime 2} S=2$, we have $q+2 p-2 e=1$ and $2 p-e=2$. Thus $e=2 p-2$ and $q=2 p-3$. Since $C_{b}^{\prime \prime}$ is irreducible, $q \geq 2 e$, whence $2 p-3 \geq 2(2 p-2)$, i.e., $p=0$ and $q=-3$, a contradiction.

Assume that $d \geq 6$. Let $\mathcal{C} \rightarrow \Delta$ be the one-parameter smoothing of $C_{d-1} \cup l$ such that \mathcal{C} is smooth. We consider the trivial family of the double projections $B \times \Delta \rightarrow \mathbb{P}^{2} \times \Delta$ from $b \times \Delta$. Denote by $\mathcal{C}_{b}^{\prime}, \mathcal{C}_{b}^{\prime \prime}$ and \mathcal{C}_{b} the strict transforms of \mathcal{C} on $B_{b}^{\prime} \times \Delta, B_{b}^{\prime \prime} \times \Delta$ and $\mathbb{P}^{2} \times \Delta$ respectively. We also denote by $C_{d-1, b}^{\prime}, C_{d-1, b}^{\prime \prime}$, and $C_{d-1, b}$ the strict transforms of C_{d-1} on $B_{b}^{\prime}, B_{b}^{\prime \prime}$ and \mathbb{P}^{2} respectively. It suffices to prove that there exists at least one point on C_{d-1} where $\mathcal{C} \rightarrow \mathcal{C}_{b}$ is birational.

Indeed, set

$$
\mathcal{N}:=\left\{(b, t) \in B \times \Delta \mid \mathcal{C} \rightarrow \mathcal{C}_{b} \text { is not birational at any point of } \mathcal{C}_{t}\right\}
$$

and let $\Delta^{\prime} \subset \Delta$ be the image of \mathcal{N} by the projection to Δ. \mathcal{N} is a closed subset, and so is Δ^{\prime} since $B \times \Delta \rightarrow \Delta$ is proper. Thus Δ^{\prime} consists of finitely many points since the origin is not contained in Δ^{\prime}. For a point $t \in \Delta$ sufficiently near the origin, $\mathcal{C}_{t} \rightarrow \mathcal{C}_{t, b}$ is birational for any b.

By induction, we may assume that $C_{d-1} \rightarrow C_{d-1, b}$ is birational. Note that $C_{d-1, b}$ is not a line since otherwise C_{d-1} is contained in a singular hyperplane section as we see above in the case of C_{5}, a contradiction. As for l, if $b \notin l$, then the image of l is a line or a point on \mathbb{P}^{2}. If $b \in l$, then the strict transform of l on B_{b} is a flopping curve. Thus \mathcal{C}_{b} contains the line corresponding to l. We investigate the other possible irreducible components of the central fiber $\mathcal{C}_{b, 0}$ of $\mathcal{C}_{b} \rightarrow \Delta$. If $b \notin C_{d-1} \cup l$, then the only possibility is that $\mathcal{C}_{b, 0}$ contains the image of a flopped curve, which is a line on \mathbb{P}^{2}. Thus $\mathcal{C} \longrightarrow \mathcal{C}_{b}$ is birational at a point of C_{d-1}. If $b \in C_{d-1} \cup l$, then $\mathcal{C}_{b, 0}$ contains the image m_{b} of the strict transform $m_{b}^{\prime \prime}$ of a line m_{b}^{\prime} in E_{b} through $E_{b} \cap\left(C_{d-1, b}^{\prime} \cup l_{b}^{\prime}\right)$, where l_{b}^{\prime} is the strict transform of l on B_{b}. The line m_{b}^{\prime} is nothing but the exceptional curve for $\mathcal{C}_{b}^{\prime} \rightarrow \mathcal{C}$ (recall that \mathcal{C} is a smooth surface). Moreover, if $b \in l$, then by the description of $E_{b} \rightarrow \mathbb{P}^{2}, m_{b}$ is a line since l_{b} is a flopping curve. Thus $\mathcal{C} \rightarrow \mathcal{C}_{b}$ is birational at a point of C_{d-1}. Suppose that $b \in C_{d-1} \backslash l$. If m_{b}^{\prime} intersects a flopping curve, m_{b} is a line or a point, thus $\mathcal{C} \rightarrow \mathcal{C}_{b}$ is birational at a point of C_{d-1}. In the other case, m_{b} is a conic. If $b \notin \cup_{i} \beta_{i}$, then $\operatorname{deg} C_{d-1, b}=d-3$ by Proposition 2.1.6 (1-1). By $d \geq 6, C_{d-1, b}$ is not a conic, thus $\mathcal{C} \rightarrow \mathcal{C}_{b}$ is birational at a point of C_{d-1}. Assume $b \in \beta_{i}$. Then
$\operatorname{deg} C_{d-1, b}=d-4$. We have only to show that if $d=6$, then $C_{d-1, b} \neq m_{b}$. By Proposition 2.2.2 (4), the flop is of type (a) in Proposition 2.1.6 (1-2). The line m_{b}^{\prime} intersects three lines which are the strict transforms of three fibers of π_{b} contained in E_{b}^{\prime}. On the other hand, by $E_{b}^{\prime} \cdot C_{d-1, b}^{\prime \prime}=2$, the curve $C_{d-1, b}^{\prime \prime}$ intersects at most two fibers of π contained in E_{b}^{\prime}. Thus $C_{d-1, b} \neq m_{b}$, and $\mathcal{C} \rightarrow \mathcal{C}_{b}$ is birational at a point of C_{d-1}.

We restate the proposition in terms of the relation between C_{d} and multi-secant conics of C_{d} on B as follows:

Corollary 2.2.7. Let b be a point of B not in any bi-secant line of C_{d} on B. If $d \geq 5$, then there exist finitely many k-secant conics of C_{d} on B through b with $k \geq 2$ if $b \notin C_{d}$ (resp. with $k \geq 3$ if $b \in C_{d}$).

Proof. For a point $b \in B$ outside bi-secant lines of C_{d} on B, there exist a finite number of singular multi-secant conics of C_{d} through b since the number of lines through b is finite, and the number of lines intersecting both a line through b and C_{d} is also finite by Proposition 2.2 .4 (3). Therefore we have only to consider smooth multi-secant conics q of C_{d} through b. By Proposition 2.1.6 (1-3), the strict transform q^{\prime} of such a conic q on B_{b}^{\prime} is a fiber of $\pi_{2 b}$. If $b \notin C_{d}$, then q^{\prime} intersects C_{b}^{\prime} twice or more counted with multiplicities, thus by Proposition 2.2.6, the finiteness of such a q follows. We can prove the assertion in case of $b \in C_{d}$ similarly, thus we omit the proof.

Remark. We refine this statement in Lemmas 2.4.13 and 2.5.7.

2.3. Curve \mathcal{H}_{1} parameterizing marked lines.

We fix a general $C:=C_{d}$ as in 2.2. Let $f: A \rightarrow B$ be the blow-up along C. We start the study of the geometry of A. The first step consists of finding the curves, if any, which replace the lines of ordinary geometry.
2.3.1. Construction of \mathcal{H}_{1} and marked lines. Set $\mathcal{H}_{1}:=\varphi^{-1} C \subset \mathbb{P}$ and $M:=M_{d}$. We begin with a few corollaries of Proposition 2.2.4:

Corollary 2.3.1. If $d \geq 2$, then \mathcal{H}_{1} is a smooth curve of genus $d-2$ with the triple cover $\mathcal{H}_{1} \rightarrow C$. In particular, if $d \geq 3$, then \mathcal{H}_{1} is a smooth non-hyperelliptic trigonal curve of genus $d-2$.

Proof. By Propositions 2.1.3 and 2.2.4 (1), it holds that \mathcal{H}_{1} is smooth and the ramification for $\mathcal{H}_{1} \rightarrow C$ is simple by Proposition 2.2.4 (1). Since $B_{\varphi} \in\left|-K_{B}\right|$ and $d=\operatorname{deg} \mathrm{C}$, we can compute $g\left(\mathcal{H}_{1}\right)$ by the Hurwitz formula:

$$
2 g\left(\mathcal{H}_{1}\right)-2=3 \times(-2)+d \times 2, \text { equivalently, } g\left(\mathcal{H}_{1}\right)=d-2
$$

Corollary 2.3.2. The number s of nodes of M is $\frac{(d-2)(d-3)}{2}$, whence C has $\frac{(d-2)(d-3)}{2}$ bi-secant lines on B.

Proof. By the inductive construction of C we see that $\pi_{\mid \mathcal{H}_{1}}: \mathcal{H}_{1} \rightarrow M$ is birational. By 2.2.4 (3) $p_{a}(M)=\frac{(d-1)(d-2)}{2}$. Then by 2.2.4 (3) we know the number of nodes of M since $g\left(\mathcal{H}_{1}\right)=d-2$. The latter half follows since a bi-secant line of C corresponds to a node of M.

Now we select some lines on B which we use in the sequel. Note that

$$
\mathcal{H}_{1}=\{([l], t) \mid[l] \in M, t \in C \cap l\} \subset M \times C
$$

and the elements of \mathcal{H}_{1} deserve a name:
Definition 2.3.3. The pair of a secant line l of C on B and a point $t \in C \cap l$ is called a marked line.

Let (l, t) be a marked line. If $C \cap l$ is one point, then $\{t\}=C \cap l$ is uniquely determined. For a bi-secant line β_{i} of C, there are two choices of t. Thus \mathcal{H}_{1} parameterizes marked lines.
2.3.2. Lines on the blow-up A of B along C_{d}.

We prove that each marked line corresponds to a curve of anticanonical degree 1 on the blow-up A of B along C. This gives us a suitable notion of line on A.
Notation 2.3.4.
(1) Let $f: A \rightarrow B$ be the blowing up along C and E_{C} the f-exceptional divisor,
(2) $\left\{p_{i 1}, p_{i 2}\right\}=C \cap \beta_{i} \subset B$,
(3) $\zeta_{i j}=f^{-1}\left(p_{i j}\right) \subset E_{C} \subset A$, and
(4) $\beta_{i}^{\prime} \cap \zeta_{i j}=p_{i j}^{\prime} \in E_{C} \subset A$,
where $i=1, \ldots, s$ and $j=1,2$.
Definition 2.3.5. We say that a connected curve $l \subset A$ is a line on A if
(i) $-K_{A} \cdot l=1$, and
(ii) $E_{C} \cdot l=1$.

We point out that since $-K_{A}=f^{*}\left(-K_{B}\right)-E_{C}$ and $E_{C} \cdot l=1$ then $f(l)$ is a line on B intersecting C. More precisely:

Proposition 2.3.6. A line l on A is one of the following curves on A :
(i) the strict transform of a uni-secant line of C on B, or
(ii) the union $l_{i j}=\beta_{i}^{\prime} \cup \zeta_{i j}$, where $i=1, \ldots, s$ and $j=1,2$.

In particular l is reduced and $p_{a}(l)=0$.
Notation 2.3.7. For a line l on A, we usually denote by \bar{l} its image on B.
Corollary 2.3.8. The curve $\mathcal{H}_{1} \subset \mathbb{P}$ is the Hilbert scheme of the lines of A.
Proof. Let \mathcal{H}_{1}^{\prime} be the Hilbert scheme of lines on A, which is a locally closed subset of the Hilbert scheme of A. By the obstruction calculation of the normal bundles of the components of lines on A, it is easy to see that \mathcal{H}_{1}^{\prime} is a smooth curve. Denote by $\mathcal{U}_{1} \rightarrow \mathcal{H}_{1}^{\prime}$ the universal family of the lines on A and let $\overline{\mathcal{U}}_{1}$ be the image of \mathcal{U}_{1} on $B \times \mathcal{H}_{1}^{\prime}$ (with induced reduced structure).

Claim 2.3.9. $\overline{\mathcal{U}} \rightarrow \mathcal{H}_{1}^{\prime}$ is a \mathbb{P}^{1}-bundle.
Proof of the claim. Let \mathcal{L} be the pull-back of the ample generator of Pic B by

$$
\mathcal{U}_{1} \hookrightarrow A \times \mathcal{H}_{1}^{\prime} \rightarrow B \times \mathcal{H}_{1}^{\prime} \rightarrow B
$$

Since $\varrho: \mathcal{U}_{1} \rightarrow \mathcal{H}_{1}^{\prime}$ is flat and $h^{0}\left(l, \mathcal{L}_{\mid l}\right)=2$ for a line l on $B, \mathcal{E}:=\varrho_{*} \mathcal{L}$ is a locally free sheaf of rank two. $\mathbb{P}(\mathcal{E})$ is nothing but the \mathbb{P}^{1}-bundle contained in $B \times \mathcal{H}_{1}^{\prime}$ whose fiber is the image of a line on A. This implies that $\mathbb{P}(\mathcal{E})=\overline{\mathcal{U}}$ as schemes and $\overline{\mathcal{U}}$ is a \mathbb{P}^{1}-bundle.

By the claim same we have a natural morphism $\mathcal{H}_{1}^{\prime} \rightarrow \mathbb{P}^{2}$, whose image is M. By Proposition 2.3.6 $\mathcal{H}_{1}^{\prime} \rightarrow M$ is birational and surjective. Since \mathcal{H}_{1}^{\prime} and \mathcal{H}_{1} are smooth, they are both normalizations of M, then $\mathcal{H}_{1}^{\prime} \simeq \mathcal{H}_{1}$.

Remark. For a bi-secant line β_{i}, we have two choices of marking, $p_{i 1}$ or $p_{i 2}$. We describe which line on A corresponds to $\left(\beta_{i}, p_{i j}\right)$. Denote by $\mathcal{U}_{1} \rightarrow \mathcal{H}_{1}$ the universal family of the lines on A and consider the following diagram:

Then $\mathcal{U}_{1} \rightarrow \overline{\mathcal{U}}_{1}$ is the blow-up along $\left(C \times \mathcal{H}_{1}\right) \cap \overline{\mathcal{U}}_{1}$, which is the union of a section of $\overline{\mathcal{U}}_{1} \rightarrow \mathcal{H}_{1}$ consisting markings and finite set of points $\left(p_{i, 3-j},\left[\beta_{i}, p_{i j}\right]\right)$. Thus the marked line $\left(\beta_{i}, p_{i j}\right)$ corresponds to the line $l_{i, 3-j}$.

2.4. Surface \mathcal{H}_{2} parameterizing marked conics.

Now we define a notion of conic on A. We proceed as in the case of lines, first defining the notion of marked conic.

2.4.1. Construction of \mathcal{H}_{2} and marked conics.

Definition 2.4.1. The pair of a k-secant conic q on B with $k \geq 2$ and a zerodimensional subscheme $\eta \subset C$ of length two contained in $q_{\mid C}$ is called a marked conic.

From now on, we assume that $d \geq 3$.
Marked conics are parameterized by

$$
\mathcal{H}_{2}^{\prime}:=\left\{([q],[\eta]) \mid[q] \in \overline{\mathcal{H}}_{2}^{\prime}, \eta \subset C \cap q\right\} \subset \overline{\mathcal{H}}_{2}^{\prime} \times S^{2} C
$$

with reduced structure, where $\overline{\mathcal{H}}_{2}^{\prime} \subset \mathbb{P}^{4}$ is the locus of multi-secant conics of C on B.

By Corollary 2.1.7 and $d \neq 1$, the natural projection of $\mathcal{H}_{2}^{\prime} \rightarrow S^{2} C$ is one to one outside $\left[\beta_{i \mid C}\right]$ and the diagonal of $S^{2} C$, thus by the Zariski main theorem, it is an isomorphism outside $\left[\beta_{i \mid C}\right]$ and the diagonal of $S^{2} C$.

We denote by e_{i}^{\prime} the fiber of $\mathcal{H}_{2}^{\prime} \rightarrow S^{2} C$ over a $\left[\beta_{i \mid C}\right]$. Since B is the intersection of quadrics, any conic cannot intersect a line twice properly. Thus any conic $\supset \beta_{i \mid C}$ contains β_{i}. This implies that $e_{i}^{\prime} \simeq \mathbb{P}^{1}$, and e_{i}^{\prime} parameterizes marked conics of the form

$$
\left\{\left(\left[\beta_{i} \cup \alpha\right],\left[\beta_{i \mid C}\right]\right) \mid \alpha \text { is a line such that } \alpha \cap \beta_{i} \neq \emptyset\right\} .
$$

Over the diagonal of $S^{2} C, \mathcal{H}_{2}^{\prime} \rightarrow S^{2} C$ is finite since for $t \in C$, there exist a finite number of reducible conics with t as a singular point or conics tangent to C at t.

Hence \mathcal{H}_{2}^{\prime} is the union of the unique two-dimensional component, which dominates $S^{2} C$, and possibly lower dimensional components mapped into the diagonal of $S^{2} C$ or e_{i}^{\prime}. Note that $\mathcal{H}_{2}^{\prime} \rightarrow \overline{\mathcal{H}}_{2}^{\prime}$ is finite since choices of markings of a multi-secant conic of C is finitely many by $d \geq 3$.

Claim 2.4.2. e_{i}^{\prime} is contained in the unique two-dimensional component of \mathcal{H}_{2}^{\prime}.

Proof. We have only to prove that $\overline{\mathcal{H}}_{2}^{\prime}$ is two-dimensional near the generic point of the image of e_{i}^{\prime} since $\mathcal{H}_{2}^{\prime} \rightarrow \overline{\mathcal{H}}_{2}^{\prime}$ is one to one near the generic point of the image of e_{i}^{\prime}. Let $\mathcal{V}_{2} \rightarrow \mathcal{H}_{2}^{B} \simeq \mathbb{P}^{4}$ be the universal family of conics on B and $\overline{\mathcal{H}}_{2}^{\prime \prime}$ the inverse image of $C \times C$ by $\mathcal{V}_{2} \times \mathbb{P}^{4} \mathcal{V}_{2} \rightarrow B \times B$. Since the morphism $\mathcal{V}_{2} \times \mathbb{P}^{4} \mathcal{V}_{2} \rightarrow \mathcal{V}_{2} \rightarrow \mathbb{P}^{4}$ is flat, $\mathcal{V}_{2} \times \mathbb{P}^{4} \mathcal{V}_{2}$ is purely six-dimensional. Thus any component of $\overline{\mathcal{H}}_{2}^{\prime \prime}$ has dimension greater than or equal to two. Though the inverse image of the diagonal of $C \times C$ is three-dimensional, any other component of $\overline{\mathcal{H}}_{2}^{\prime \prime}$ is at most two-dimensional by a similar investigation to \mathcal{H}_{2}^{\prime}. Thus $\overline{\mathcal{H}}_{2}^{\prime}$ is two-dimensional near the generic point of the image of e_{i}^{\prime} since $\overline{\mathcal{H}}_{2}^{\prime}$ is the image of the two-dimensional part of $\overline{\mathcal{H}}_{2}^{\prime \prime}$ by $\mathcal{V}_{2} \times \mathbb{P}^{4} \mathcal{V}_{2} \rightarrow \mathbb{P}^{4}$ near the generic point of the image of e_{i}^{\prime}.

Notation 2.4.3. Let \mathcal{H}_{2} be the normalization of the unique two-dimensional component of \mathcal{H}_{2}^{\prime} and $\overline{\mathcal{H}}_{2} \subset \overline{\mathcal{H}}_{2}^{\prime}$ the image of \mathcal{H}_{2}. Denote by η the natural morphism $\mathcal{H}_{2} \rightarrow S^{2} C$. Set

$$
c_{i}:=\left[\beta_{i \mid C}\right] \in S^{2} C \simeq \mathbb{P}^{2}
$$

and

$$
e_{i}:=\eta^{-1}\left(c_{i}\right),
$$

where $i=1, \ldots, s$.
By the above consideration, $\eta: \mathcal{H}_{2} \rightarrow S^{2} C$ is isomorphic outside [$\beta_{i \mid C}$] and $\mathcal{H}_{2} \rightarrow \overline{\mathcal{H}}_{2}$ is the normalization. Thus we see that \mathcal{H}_{2} parameterizes marked conics outside the inverse image of c_{i}. We need to understand the inverse image by η of the diagonal.

Claim 2.4.4. Assume that $([q],[2 b]) \in \mathcal{H}_{2}$ for $b \in C$ and a conic q. Then
(1) q is reduced,
(2) if q is smooth at b, then q is tangent to C at b, and
(3) if q is singular at b, then the strict transform of q is connected on A. Moreover, $b \notin \beta_{i}$ nor B_{φ}.

Proof. By Proposition 2.1.6 (1-3) and a degeneration argument, q corresponds to the fiber of $\pi_{2 b}$ through the point t^{\prime} in $C_{b}^{\prime \prime} \cap E_{b}^{\prime}$ coming from $t:=C_{b}^{\prime} \cap E_{b}$.
(1) Assume by contradiction that q is non-reduced. By Proposition 2.1.4, q is a multiple of a special line l. By Proposition 2.2.2 (4), l is a uni-secant line of C. Let m be the other line through b (by generality of C, we have $l \neq m$). Let l^{\prime} and m^{\prime} be the strict transforms of l and m on B_{b} respectively. By Proposition 2.1.6 (1-3), the fiber of $\pi_{2 b}$ through t^{\prime} is the strict transform of the line in E_{b} joining $l^{\prime} \cap E_{b}$ and $m^{\prime} \cap E_{b}$. Hence by the assumption, $l^{\prime} \cap E_{b}, m^{\prime} \cap E_{b}$ and $C_{b}^{\prime} \cap E_{b}$ are collinear. By dimension count similar to the proof of Proposition 2.2.2, we can prove that a general C does not satisfy this condition.
(2) This follows from the previous discussion.
(3) Set $q=l_{1} \cup l_{2}$, where l_{1} and l_{2} are the irreducible components of q, and let l_{i}^{\prime} be the strict transform of l_{i} on B_{b}. By (1), it holds $l_{1} \neq l_{2}$. Then the fiber of $\pi_{2 b}$ corresponding to q is the strict transform of the line on E_{b} through $E_{b} \cap l_{1}^{\prime}$ and $E_{b} \cap l_{2}^{\prime}$. Note that A is obtained from B_{b} by blow- up B_{b} along C_{b}^{\prime} and then contracting the strict transform of E_{b}. Thus the former half of the assertion follows. The latter half follows again by simple dimension count.

2.4.2. Conics on A.

Definition 2.4.5. We say that a curve $q \subset A$ is a conic on A if
(i) q is connected and reduced,
(ii) $-K_{A} \cdot q=2$,
(iii) $E_{C} \cdot q=2$, and
(iv) $p_{a}(q)=0$.

Using this definition, we can classify conics on A similarly to Proposition 2.3.6:
Proposition 2.4.6. Let q be a conic on A. Then $\bar{q}:=f(q) \subset B$ is a k-secant conic of C with $k \geq 2$. Moreover one of the following holds:
(a) \bar{q} is smooth at $\bar{q} \cap C . q$ is the union of the strict transform q^{\prime} of \bar{q} and $k-2$ distinct fibers $\zeta_{1}, \ldots, \zeta_{k-2}$ of E_{C} such that $\zeta_{i} \cap q^{\prime} \neq \emptyset$,
(b) \bar{q} is the union of two uni-secant lines \bar{l} and \bar{m} such that $C \cap \bar{l} \cap \bar{m} \neq \emptyset . q$ is the union of the strict transforms l and m of \bar{l} and \bar{m} respectively (we assume that $l \cap m \neq \emptyset$), or
(c) \bar{q} is the union of β_{i} and a line \bar{r} through $a p_{i j} . q$ is the union of the fiber $\zeta_{i j}$ over $p_{i j}$ and the strict transforms β_{i}^{\prime} and r^{\prime} of β_{i} and \bar{r} respectively.

Notation 2.4.7. We usually denote by $\bar{q} \subset B$ the image of a conic q on A.
Let \mathcal{H}_{2}^{A} be the normalization of the two-dimensional part of the Hilbert scheme of conics on A, which is a locally closed subset of the Hilbert scheme of A. Let $\mu: \mathcal{U}_{2} \rightarrow \mathcal{H}_{2}^{A}$ be the pull-back of the universal family of conics on A.

Lemma 2.4.8. Let $\overline{\mathcal{U}}_{2}$ be the image of \mathcal{U}_{2} on $B \times \mathcal{H}_{2}^{A}$ (with induced reduced structure) then $\overline{\mathcal{U}}_{2} \rightarrow \mathcal{H}_{2}^{A}$ is a conic bundle.

Proof. The proof is similar to that of Claim 2.3.9.
Let \mathcal{L} be the pull-back of the ample generator of $\operatorname{Pic} B$ by

$$
\mathcal{U}_{2} \hookrightarrow A \times \mathcal{H}_{2}^{A} \rightarrow B \times \mathcal{H}_{2}^{A} \rightarrow B
$$

Since $\mu: \mathcal{U}_{2} \rightarrow \mathcal{H}_{2}^{A}$ is flat and $h^{0}\left(q, \mathcal{L}_{\mid q}\right)=3$ for a conic q on A (recall that q is reduced), then $\mathcal{E}:=\mu_{*} \mathcal{L}$ is a locally free sheaf of rank 3 . Letting $\mathbb{P}^{6}=\langle B\rangle$, $\mathbb{P}(\mathcal{E})$ is the \mathbb{P}^{2}-bundle contained in $\mathbb{P}^{6} \times \mathcal{H}_{2}^{A}$ whose fiber is the plane spanned by the image of a conic on A. Let $\mathcal{Q}:=\left(B \times \mathcal{H}_{2}^{A}\right) \cap \mathbb{P}(\mathcal{E})$, where the intersection is taken in $\mathbb{P}^{6} \times \mathcal{H}_{2}^{A}$. A scheme theoretic fiber of $\mathcal{Q} \rightarrow \mathcal{H}_{2}^{A}$ is the image of a conic of A since B is the intersection of quadrics. Then $\mathcal{Q}=\overline{\mathcal{U}}_{2}$ as schemes and $\overline{\mathcal{U}}_{2}$ is a conic bundle.

Proposition 2.4.9. The two surfaces \mathcal{H}_{2}^{A} and \mathcal{H}_{2} are isomorphic.
Proof. By Lemma 2.4.8, there exists a natural morphism $\bar{\nu}: \mathcal{H}_{2}^{A} \rightarrow \overline{\mathcal{H}}_{2}^{\prime}$. By Proposition 2.4.6, $\bar{\nu}$ is finite and birational, hence $\bar{\nu}$ lifts to the morphism $\nu: \mathcal{H}_{2}^{A} \rightarrow \mathcal{H}_{2}$ since $\mathcal{H}_{2} \rightarrow \overline{\mathcal{H}}_{2}$ is the normalization. By the Zariski main theorem, ν is an inclusion. By Claim 2.4.4 (1) and (3), and Proposition 2.4.6, ν is also surjective.

By Proposition 2.4.9 we can pass freely from conics on A, that is elements of \mathcal{H}_{2}^{A} to marked conics and vice-versa according to the kind of argument we will need. In particular we can speak of the universal family $\mu: \mathcal{U}_{2} \rightarrow \mathcal{H}_{2}$ of marked conics meaning $\mathcal{U}_{2}:=\mathcal{U}_{2}^{A}$ and \mathcal{H}_{2}^{A} identified to \mathcal{H}_{2} via ν.

Corollary 2.4.10. The Hilbert scheme of conics on A is an irreducible surface (and \mathcal{H}_{2} is the normalization). The normalization is injective, namely, \mathcal{H}_{2} parameterizes conics on A in one to one way.

Proof. By Proposition 2.4.6, the image of \mathcal{H}_{2} in the Hilbert scheme parameterizes all the conics, thus the first part follows.

For the second part, we have already seen that \mathcal{H}_{2} parameterizes conics on A in one to one way outside $\cup_{i} e_{i}$. Let α be a general line intersecting β_{i}, and α^{\prime} the strict transform of α on A. By easy obstruction calculation, we see that the Hilbert scheme of conics on A is smooth at $\left[\beta_{i}^{\prime} \cup \alpha^{\prime}\right]$. Thus general points of e_{i} also parameterizes conics on A. Then, however, since $e_{i}^{\prime} \simeq \mathbb{P}^{1}$, where e_{i}^{\prime} is the inverse image of $\left[\beta_{i \mid C}\right]$ by $\mathcal{H}_{2}^{\prime} \rightarrow S^{2} C$, it holds that $e_{i} \simeq e_{i}^{\prime} \simeq \mathbb{P}^{1}\left(\mathcal{H}_{2} \rightarrow S^{2} C\right.$ has only connected fibers). This implies the assertion.

2.4.3. Description of \mathcal{H}_{2}.

We want to investigate further the morphism $\eta: \mathcal{H}_{2} \rightarrow S^{2} C \simeq \mathbb{P}^{2}$.
Notation 2.4.11. For a point $b \in C$, set

$$
L_{b}:=\overline{\left\{[q] \in \mathcal{H}_{2} \mid \exists, b^{\prime} \neq b, f(q) \cap C=\left\{b, b^{\prime}\right\}\right\}} .
$$

By Corollary 2.1.7, $\eta\left(L_{b}\right)$ is a line in $S^{2} C \simeq \mathbb{P}^{2}$.
To understand better $\eta: \mathcal{H}_{2} \rightarrow \mathbb{P}^{2}$ we need to find special loci inside \mathcal{H}_{2}. A natural step is to study the locus of conics which intersect a fixed line.

Let $\mathcal{U}_{1}^{\prime} \subset \mathcal{U}_{2} \times \mathcal{H}_{1}$ be the pull-back of \mathcal{U}_{1} via the following diagram:

where $\widehat{\mathcal{D}}_{1}$ is the image of \mathcal{U}_{1}^{\prime} on $\mathcal{H}_{2} \times \mathcal{H}_{1}$.
By definition

$$
\widehat{\mathcal{D}}_{1}=\{([q],[l]) \mid q \cap l \neq \emptyset\} \subset \mathcal{H}_{2} \times \mathcal{H}_{1}
$$

First we need to know which component of $\widehat{\mathcal{D}}_{1}$ is divisorial or dominates \mathcal{H}_{1}.
Let $\psi: \mathcal{U}_{2} \rightarrow A$ be the morphism obtained via the universal family $\mu: \mathcal{U}_{2} \rightarrow \mathcal{H}_{2}$. Next lemma is necessary to prove the finitess of ψ outside $\cup_{i=1}^{s} \beta_{i}^{\prime} \subset A$.
Lemma 2.4.12. Let \bar{l} be a general uni-secant line of C and $l_{b} \subset \mathbb{P}^{2}$ the image of \bar{l} by the double projection from a point b. For a general point $b \notin C, \operatorname{deg} C_{b}=d$ and $C_{b} \cup l_{b}$ has only simple nodes. For a general point b of $C, \operatorname{deg} C_{b}=d-2$ and $C_{b} \cup l_{b}$ has only simple nodes.

Proof. The claims for $\operatorname{deg} C_{b}$ follows from Propositions 2.1.6 (1-1) and 2.2.6. As for the singularity of $C_{b} \cup l_{b}$, the claim follows from simple dimension count. For simplicity, we only prove that for a general point b, C_{b} has only simple nodes. By Proposition 2.2.2, we may assume that any multi-secant conic through b is smooth, bi-secant and intersects C simply. Let \bar{q} be a smooth bi-secant conic through b. We may assume that $\mathcal{N}_{\bar{q} / B} \simeq \mathcal{O}_{\mathbb{P}^{1}}(1)^{\oplus 2}$. Let q^{\prime} be the strict transform of \bar{q} on B_{b}^{\prime}. Let $\widetilde{B}^{\prime} \rightarrow B_{b}^{\prime}$ be the blow-up along $q^{\prime}, E_{q^{\prime}}$ the exceptional divisor and $\widetilde{C}^{\prime \prime}$ the strict transform of $C_{b}^{\prime \prime}$. Note that $E_{q^{\prime}} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$ since $\mathcal{N}_{q^{\prime} / B_{b}^{\prime}} \simeq \mathcal{O}_{\mathbb{P}^{1}}^{\oplus 2}$. Then C_{b} has simple
nodes at the image of q^{\prime} if and only if the two points in $E_{q^{\prime}} \cap \widetilde{C}^{\prime \prime}$ does not belong to the same ruling with the opposite direction to a fiber of $E_{q^{\prime}} \rightarrow q^{\prime}$. Let $\widetilde{B}_{\bar{q}} \rightarrow B$ be the blow-up along $\bar{q}, E_{\bar{q}}$ the exceptional divisor and \widetilde{C} the strict transform of C. It is easy to see that a ruling of $E_{\bar{q}}$ with the opposite direction to a fiber of $E_{\bar{q}} \rightarrow \bar{q}$ corresponds to that of $E_{q^{\prime}}$ with the opposite direction to a fiber of $E_{q^{\prime}} \rightarrow q^{\prime}$. Thus C_{b} has simple nodes at the image of q^{\prime} if and only if the two points in $E_{\bar{q}} \cap \widetilde{C}$ does not belong to the same ruling with the opposite direction to a fiber of $E_{\bar{q}} \rightarrow \bar{q}$. We can show that this is the case for a general b by simple dimension count.

From now on, we assume $d \geq 5$ throughout the paper since we need Proposition 2.2.6.

We do not have the finiteness of ψ all over A. To obtain a finite morphism, we blow-up A more in 2.5.1. Till now we can prove:
Proposition 2.4.13. ψ is finite of degree $n:=\frac{(d-1)(d-2)}{2}$ and flat outside $\cup_{i=1}^{s} \beta_{i}^{\prime}$.
Proof. Let $a \in A \backslash \cup_{i=1}^{s} \beta_{i}^{\prime}$ and set $b:=f(a)$. If $b \notin C$, then the finiteness of ψ over a follows from Corollary 2.2.7. Moreover, by Lemma 2.4.12, the number of conics through a general a is n. Thus $\operatorname{deg} \psi=n$. We will prove that ψ is finite over $a \in E_{C} \backslash \cup_{i=1}^{s} \beta_{i}^{\prime}$. Once we prove this, the assertion follows. Indeed, \mathcal{U}_{2} is Cohen-Macaulay since \mathcal{H}_{2} is smooth and any fiber of $\mathcal{U}_{2} \rightarrow \mathcal{H}_{2}$ is reduced, thus ψ is flat.

Let $a \in E_{C} \backslash \cup_{i=1}^{s} \beta_{i}^{\prime}$. The assertion is equivalent to that only finitely many conics belonging to L_{b} pass through a. If $b \notin \cup_{i=1}^{s} \beta_{i}$, then L_{b} is irreducible. If $b \in \cup_{i=1}^{s} \beta_{i}$, then $L_{b}=L_{b}^{\prime}+e_{i}$, where L_{b}^{\prime} is the strict transform of $\eta\left(L_{b}\right)$ whence is irreducible. Note that almost all the conics belonging to e_{i} does not pass through $a \notin \cup_{i=1}^{s} \beta_{i}^{\prime}$. Let $S_{b} \subset A$ be the locus swept by the conics of the family L_{b} if $b \notin \cup_{i=1}^{s} \beta_{i}$, or the locus swept by the conics of the family L_{b}^{\prime} if $b \in \cup_{i=1}^{s} \beta_{i}$. S_{b} is irreducible. Let $\bar{S}_{b}:=f\left(S_{b}\right), \bar{S}_{b}^{\prime}$ and $\bar{S}_{b}^{\prime \prime}$ the strict transforms of \bar{S}_{b} on B_{b} and B_{b}^{\prime} respectively. Then $\bar{S}_{b}^{\prime \prime}=\pi_{2 b}^{*} C_{b}$. Let $d_{b}:=\operatorname{deg} C_{b}$. By Proposition 2.1.6 (1-1), $d_{b}=d-2$ if $b \notin \cup_{i=1}^{s} \beta_{i}$, or $d-3$ if $b \in \cup_{i=1}^{s} \beta_{i}$. Since $\bar{S}_{b}^{\prime \prime} \sim d_{b} L$ and $L=H-2 E_{b}^{\prime}$, we have $\bar{S}_{b \mid E_{b}}^{\prime}$ is a curve of degree $2 d_{b}$ in $E_{b} \simeq \mathbb{P}^{2}$.

Since A is obtained from B_{b} by blowing up C_{b}^{\prime} and then contracting the strict transform of E_{b}, a point a over b corresponds to a line l_{a} in E_{b} through $t:=E_{b} \cap C_{b}^{\prime}$. If $C_{b}^{\prime \prime}$ does not intersect fibers of $\pi_{2 b}$ contained in E_{b}^{\prime}, then $\bar{S}_{b \mid E_{b}}^{\prime}$ is irreducible. Thus no l_{a} is contained in $\bar{S}_{b \mid E_{b}}^{\prime}$ and we are done. Assume that $C_{b}^{\prime \prime}$ intersects a fiber l^{\prime} of $\pi_{2 b}$ contained in E_{b}^{\prime}. By Claim 2.4.4 (3), $b \notin B_{\varphi}$ nor $b \notin \cup_{i=1}^{s} \beta_{i}$ for a general C. Since L_{b} is irreducible, it suffices to prove the finiteness and nonemptyness of the set of conics through a general point a over b. Equivalently, we have only to show that a general l_{a} intersects $\bar{S}_{b \mid E_{b}}^{\prime}$ outside t. Since l^{\prime} intersects $C_{b}^{\prime \prime}$ simply at one point, C_{b} is smooth at the image t^{\prime} of l^{\prime} on \mathbb{P}^{2}. Thus $\bar{S}_{b \mid E_{b}}^{\prime}=C_{b}^{\prime \prime \prime}+l$, where $C_{b}^{\prime \prime \prime}$ and l are the strict transforms of C_{b} and l^{\prime}. Note that $C_{b}^{\prime \prime \prime}$ is smooth at t and $\operatorname{deg} C_{b}^{\prime \prime \prime}=2 d_{b}-1=2 d-5 \geq 5$ by $d \geq 5$. Thus a general l_{a} intersect $C_{b}^{\prime \prime \prime}$ outside t.

Remark. Though we do not need it later, we describe the fiber of ψ over a general point $a \in E_{C} \backslash \cup_{i=1}^{s} \beta_{i}^{\prime}$ for reader's convenience.

Set $b:=f(a)$. As in the proof of Proposition 2.4.13, a point a over b corresponds to a line l_{a} in E_{b} passing through $E_{b} \cap C_{b}^{\prime}$. By Lemma 2.4.12, it holds that $\operatorname{deg} C_{b}=$
$d-2$ and C_{b} has $\frac{(d-3)(d-4)}{2}$ simple nodes for a general $b \in C$. This means that $\frac{(d-3)(d-4)}{2}$ tri-secant conics pass through b. By Proposition 2.4.6, corresponding to a tri-secant conic \bar{q}, there is a unique conic q on A containing the fiber of E_{C} over b and such a conic on A contains a. Thus we obtain $\frac{(d-3)(d-4)}{2}$ conics through a. By definition of L_{b}, these conics do not belong to L_{b}.

We need more $n-\frac{(d-3)(d-4)}{2}=2 d-5$ conics through a. We show that there exist $2(d-2)-1$ conics through a on A coming from the family parameterized by L_{b}. We use the notation of the proof of Proposition 2.4.13. For a general $b \in C$, $C_{b}^{\prime \prime}$ does not intersect fibers of $\pi_{2 b}$ contained in E_{b}^{\prime}. Thus $\bar{S}_{b \mid E_{b}}^{\prime}$ is an irreducible curve of degree $2(d-2)$ on E_{b}. Thus there are $2(d-2)$ intersection points of $\bar{S}_{b \mid E_{b}}^{\prime}$ and l_{a}. Among those, the intersection point $C_{b}^{\prime} \cap E_{b}$ does not correspond to a conic on A through a since it comes from the tangent of C. Thus we have $2(d-2)-1$ conics as desired.

We need to study mutual intersection of a conic and a line in special cases. Let $\mathcal{F} \subset \mathcal{H}_{2} \times \mathcal{H}_{1}$ be the image in $\mathcal{H}_{2} \times \mathcal{H}_{1}$ of the inverse image of $\left(\left(\cup \beta_{i}^{\prime}\right) \times \mathcal{H}_{1}\right) \cap \mathcal{U}_{1} ;$ that is

$$
\mathcal{F}:=\left\{([q],[l]) \mid q \cap \beta_{i}^{\prime} \cap l \neq \emptyset\right\} .
$$

A point $([q],[l]) \in \mathcal{F}$ iff i) $l=l_{i j}$ and $q \cap \beta_{i}^{\prime} \neq \emptyset$ or ii) $l \neq l_{i j}, l \cap \beta_{i}^{\prime} \neq \emptyset$ and $q \cap \beta_{i}^{\prime} \cap l \neq \emptyset$. For every $i=1, \ldots, s, j=1,2$ the family of those $([q],[l])$ which satisfies i) or ii) has dimension one and clearly does not dominate \mathcal{H}_{1}.
Corollary 2.4.14. Any component of $\widehat{\mathcal{D}}_{1}$ which is not contained in \mathcal{F} dominates \mathcal{H}_{1}. Moreover, any non-divisorial component of $\widehat{\mathcal{D}}_{1}$ outside \mathcal{F} (if it exists) is a onedimensional component whose generic point parameterizes reducible conics, namely, a one-dimensional component of

$$
\{([q],[l]) \mid l \subset q\} .
$$

Remark. Here we leave the possibility that a one-dimensional component whose generic point parameterizes reducible conics is contained in a divisorial component of $\widehat{\mathcal{D}}_{1}$. We, however, prove that this is not the case in Corollary 2.4.19. Hence, finally, the fiber of $\widehat{\mathcal{D}}_{1} \rightarrow \mathcal{H}_{1}$ over a general $[l] \in \mathcal{H}_{1}$ parameterizes conics which properly intersect l.

Proof. By Proposition 2.4.13, $\mathcal{U}_{2} \rightarrow A$ is finite and flat outside $\cup \beta_{i}^{\prime}$. Then $\mathcal{U}_{2} \times \mathcal{H}_{1} \rightarrow$ $A \times \mathcal{H}_{1}$ is flat outside $\left(\cup \beta_{i}^{\prime}\right) \times \mathcal{H}_{1}$. By base change, $\mathcal{U}_{1}^{\prime} \rightarrow \mathcal{U}_{1}$ is flat and finite outside $\left(\left(\cup \beta_{i}^{\prime}\right) \times \mathcal{H}_{1}\right) \cap \mathcal{U}_{1}$. Then every irreducible component of \mathcal{U}_{1}^{\prime} which is not mapped to $\left(\left(\cup \beta_{i}^{\prime}\right) \times \mathcal{H}_{1}\right) \cap \mathcal{U}_{1}$ is two-dimensional, and dominates \mathcal{U}_{1}, hence dominates \mathcal{H}_{1}. Therefore any component of $\widehat{\mathcal{D}}_{1}$ which is not contained in \mathcal{F} dominates \mathcal{H}_{1}.

We find a possible non-divisorial component of $\widehat{\mathcal{D}}_{1}$ outside \mathcal{F}. Let $\gamma \subset \mathcal{U}_{1}^{\prime}$ be a curve mapped to a point, say, $([q],[l])$ on $\mathcal{H}_{2} \times \mathcal{H}_{1}$. The image of γ on A is an irreducible component of q, say, q_{1}. The image of γ on \mathcal{U}_{1} is $q_{1} \times[l]$, thus q_{1} is also an irreducible component of l. We have the following three possibilities:
(1) l is irreducible, hence $q_{1}=l$ and $q=l \cup m$, where m is another line. Such ($[q],[l])$ form the one-dimensional family of reducible conics,
(2) $l=l_{i j}$ and $\beta_{i}^{\prime} \subset q$. Namely $[q] \in e_{i}$, or $q=\beta_{i}^{\prime} \cup \alpha \cup \zeta_{i k}$, where α is the strict transform of a line on B intersecting β_{i} and C outside $\beta_{i} \cap C$, or
(3) $l=l_{i j}$ and $\zeta_{i j} \subset q$ and $f(q)$ is a tri- or quadri-secant conic of C such that $p_{i j} \in f(q)$.

Thus we have the second assertion.
Notation 2.4.15. Let $\mathcal{D}_{1} \subset \mathcal{H}_{2} \times \mathcal{H}_{1}$ be the divisorial part of $\widehat{\mathcal{D}}_{1}$. Since \mathcal{H}_{1} is a smooth curve $\mathcal{D}_{1} \rightarrow \mathcal{H}_{1}$ is flat. Let D_{l} be the fiber of $\mathcal{D}_{1} \rightarrow \mathcal{H}_{1}$ over $[l] \in \mathcal{H}_{1}$. Clearly we can write $D_{l} \hookrightarrow \mathcal{H}_{2}$.

Next two lemmas are basic to understand the geometry of \mathcal{H}_{2}.
Lemma 2.4.16. Let \bar{l}_{1} and \bar{l}_{2} be two general secant lines of C such that $\bar{l}_{1} \cap \bar{l}_{2}=\emptyset$. Let $B \rightarrow Q \rightarrow \mathbb{P}^{2}$ be the successive linear projections from \bar{l}_{1} and then the strict transform of \bar{l}_{2} on Q. Let \bar{l} be another general secant line of C, and C^{\prime} and $\bar{l}^{\prime} \subset \mathbb{P}^{2}$ be the images of C and \bar{l} respectively. Then $C \cup \bar{l} \rightarrow C^{\prime} \cup \bar{l}^{\prime}$ is birational and $C^{\prime} \cup \bar{l}^{\prime}$ has only simple nodes as its singularities, where, by birational, we means that $\operatorname{deg} C^{\prime} \cup \bar{l}^{\prime}=d-1$. In particular (since $\operatorname{deg} C^{\prime}=d-2$ and C^{\prime} is rational) C^{\prime} has $\frac{(d-3)(d-4)}{2}$ simple nodes, equivalently, there exist $\frac{(d-3)(d-4)}{2}$ bi-secant conics of C intersecting both \bar{l}_{1} and \bar{l}_{2}.

Proof. We show the assertion using the inductive construction of $C=C_{d}$. The assertion follows for $d=3$ directly. Consider a smoothing from $C_{d-1} \cup \bar{m}$ to C_{d}. Let \bar{m}_{1} and \bar{m}_{2} two general secant lines of C_{d-1} such that $\bar{m}_{1} \cap \bar{m}_{2}=\emptyset$. Let $B \rightarrow Q \longrightarrow \mathbb{P}^{2}$ be the successive linear projections from \bar{m}_{1} and then from the strict transform of \bar{m}_{2} on Q. Let \bar{r} be another general secant line of C_{d-1}, and $C_{d-1}^{\prime}, \bar{m}^{\prime}$ and $\bar{r}^{\prime} \subset \mathbb{P}^{2}$ be the images of C_{d-1}, \bar{m} and \bar{r} respectively. Then we have only to show that $C_{d-1} \cup \bar{m} \cup \bar{r} \rightarrow C_{d-1}^{\prime} \cup \bar{m}^{\prime} \cup \bar{r}^{\prime}$ is birational and $C_{d-1}^{\prime} \cup \bar{m}^{\prime} \cup \bar{r}^{\prime}$ has only simple nodes as its singularities assuming $C_{d-1} \cup \bar{r} \rightarrow C_{d-1}^{\prime} \cup \bar{r}^{\prime}$ is birational and $C_{d-1}^{\prime} \cup \bar{r}^{\prime}$ has only simple nodes as its singularities.

Since \bar{m} is also general, $C_{d-1} \cup \bar{m} \rightarrow C_{d-1}^{\prime} \cup \bar{m}^{\prime}$ is birational and $C_{d-1}^{\prime} \cup \bar{m}^{\prime}$ has only simple nodes as its singularities. Thus $C_{d-1} \cup \bar{m} \cup \bar{r} \rightarrow C_{d-1}^{\prime} \cup \bar{m}^{\prime} \cup \bar{r}^{\prime}$ is clearly birational. To show $C_{d-1}^{\prime} \cup \bar{m}^{\prime} \cup \bar{r}^{\prime}$ has only simple nodes as its singularities, it suffices to prove that there are no secant conics of C_{d-1} intersecting all the \bar{m}_{1}, \bar{m}_{2}, \bar{m} and \bar{r}. This follows from the fact that a secant conic \bar{q} of C_{d-1} intersects finitely many secant lines of C_{d-1} by $M(\bar{q}) \not \subset M\left(C_{d-1}\right)$.
Lemma 2.4.17. Let \bar{l}_{0} be a general secant line of C. Let $B \rightarrow Q \rightarrow \mathbb{P}^{2}$ be the successive linear projections from \bar{l}_{0} and then the strict transform of $a \beta_{i}$ on Q. Let \bar{l} be another general secant line of C, and C^{\prime} and $\bar{l}^{\prime} \subset \mathbb{P}^{2}$ be the images of C and \bar{l} respectively. Then $C \cup \bar{l} \rightarrow C^{\prime} \cup \bar{l}^{\prime}$ is birational and $C^{\prime} \cup \bar{l}^{\prime}$ has only simple nodes as its singularities. In particular (since $\operatorname{deg} C^{\prime}=d-3$ and C^{\prime} is rational) C^{\prime} has $\frac{(d-4)(d-5)}{2}$ simple nodes, equivalently, there exist $\frac{(d-4)(d-5)}{2}$ bi-secant conics of C intersecting β_{i} and \bar{l}_{0} except conics containing β_{i}.

Proof. Similarly to the previous lemma, we show the assertion using the inductive construction of $C=C_{d}$. The assertion follows for $d=4$ directly. Consider a smoothing from $C_{d-1} \cup \bar{m}$ to C_{d}. Let \bar{m}_{0} be a general secant line of C_{d-1}, and β a bi-secant line of $C_{d-1} \cup \bar{m}$ different from two lines through $C_{d-1} \cap \bar{m}$. Let $B \longrightarrow Q \longrightarrow \mathbb{P}^{2}$ be the successive linear projections from \bar{m}_{0} and then the strict transform of β on Q. Let \bar{r} be another general secant line of C_{d-1}, and $C_{d-1}^{\prime}, \bar{m}^{\prime}$ and $\bar{r}^{\prime} \subset \mathbb{P}^{2}$ be the images of C_{d-1}, \bar{m} and \bar{r} respectively.

First we suppose that β is a bi-secant line of C_{d-1}. Then we have only to show that $C_{d-1} \cup \bar{m} \cup \bar{r} \rightarrow C_{d-1}^{\prime} \cup \bar{m}^{\prime} \cup \bar{r}^{\prime}$ is birational and $C_{d-1}^{\prime} \cup \bar{m}^{\prime} \cup \bar{r}^{\prime}$ has only
simple nodes as its singularities assuming $C_{d-1} \cup \bar{r} \rightarrow C_{d-1}^{\prime} \cup \bar{r}^{\prime}$ is birational and $C_{d-1}^{\prime} \cup \bar{r}^{\prime}$ has only simple nodes as its singularities. The proof is the same as that of Lemma 2.4.16, so we omit it.

Next suppose that β is a uni-secant line of C_{d-1} intersecting \bar{m} outside $C_{d-1} \cap \bar{m}$. Note that, by the projection $B \rightarrow \mathbb{P}^{2}, \bar{m}$ is contracted to a point. Moreover, β is a general uni-secant line since so is \bar{m}. Thus, by Lemma 2.4.16, $C_{d-1} \cup \bar{m} \cup$ $\bar{r} \rightarrow C_{d-1}^{\prime} \cup \bar{m}^{\prime} \cup \bar{r}^{\prime}$ is birational and $C_{d-1}^{\prime} \cup \bar{m}^{\prime} \cup \bar{r}^{\prime}$ has only simple nodes as its singularities.

Now we reach the precise description of \mathcal{H}_{2}.
Theorem 2.4.18. $\eta: \mathcal{H}_{2} \rightarrow \mathbb{P}^{2}$ is the blow-up at c_{1}, \ldots, c_{s} and e_{i} are η-exceptional curves. Moreover \mathcal{H}_{2} has the following properties:
(1)

$$
D_{l} \sim(d-3) h-\sum_{i=1}^{s} e_{i}
$$

where h is the strict transform of a general line on \mathbb{P}^{2}.
(2)

$$
h^{1}\left(\mathcal{H}_{2}, \mathcal{O}_{\mathcal{H}_{2}}\left((d-4) h-\sum_{i=1}^{s} e_{i}\right)\right)=0
$$

(3) $\left|D_{l}\right|$ is base point free. In case of $d=5$, the image of $\Phi_{\left|D_{l}\right|}$ is $\check{\mathbb{P}}^{2}$. In case of $d \geq 6, D_{l}$ is very ample and $\left|D_{l}\right|$ embeds \mathcal{H}_{2} into $\check{\mathbb{P}}^{d-3}$.
(4) If $d \geq 6$, then $\mathcal{H}_{2} \subset \check{\mathbb{P}}^{d-3}$ is projectively Cohen-Macaulay and is the intersection of cubics.

Remark. (1) If $d \geq 6$, then $\mathcal{H}_{2} \subset \check{\mathbb{P}}^{d-3}$ is so called the White surface (see [Whi24] and [Gim89]). In [Man01], the white surface attains the maximal degree among projectively Cohen Macaulay rational surfaces in a fixed projective space.
(2) We use the dual notation $\check{\mathbb{P}}^{d-3}$ for later convenience.

Proof. (1) Let $\pi_{C}: C \times C \rightarrow S^{2} C$ be the natural projection and L_{b}^{\prime} a ruling of $C \times C$ in one fixed direction such that $\pi_{C}\left(L_{b}^{\prime}\right)=\eta\left(L_{b}\right)$. By applying the Bertini theorem to $\left|L_{b}^{\prime}\right|$, we see that $\pi_{C}^{*} \eta\left(D_{l}\right)$ and L_{b}^{\prime} intersect simply for a general $b \in C$ whence $\eta\left(D_{l}\right)$ intersects $\eta\left(L_{b}\right)$ simply since π_{C} is étale at $\pi_{C}^{*} \eta\left(D_{l}\right) \cap L_{b}^{\prime}$. Then D_{l} intersects L_{b} simply since η is isomorphic at $D_{l} \cap L_{b}$. For a general $b \in C$, we consider the double projection $\pi_{b}: B \longrightarrow \mathbb{P}^{2}$ from b as in Proposition 2.1.6 (1). Let \bar{l} be a general line on B intersecting C and l_{b} the image of \bar{l} by π_{b}. We can assume that $b \neq c:=C \cap \bar{l}$. Obviously l_{b} is a line. By Lemma 2.4.12, $\operatorname{deg} C_{b}=d-2$ and the curve $C_{b} \cup l_{b}$ has only simple nodes. Hence the number of points in $C_{b} \cap l_{b}$ is $d-2$, one of them counts for the unique conic through b and c. This last conic gives a conic on A which does not intersects l. The other $d-3$ points count for elements of D_{l}. Then $\eta\left(D_{l}\right)$ is a curve of degree $d-3$.

Let \bar{l}_{1} and \bar{l}_{2} be two general secant lines of C such that $\bar{l}_{1} \cap \bar{l}_{2}=\emptyset$. By Lemma 2.4.16, $\#\left(D_{l_{1}} \cap D_{l_{2}}\right)=\frac{(d-3)(d-4)}{2}$. This immediately gives for the intersection product $D_{l_{1}} \cdot D_{l_{2}} \geq \frac{(d-3)(d-4)}{2}$. On the other hand, $D_{l} \cap e_{i} \neq \emptyset$ for a general l since $D_{l} \cap e_{i}$ contains the point corresponding to a marked conic $\left(\beta_{i} \cup \alpha, \beta_{i \mid C}\right)$, where α is the unique line intersecting β_{i} and l. Moreover, for two general l_{1} and $l_{2}, D_{l_{1}} \cap D_{l_{2}} \cap e_{i}=\emptyset$. Now the curves e_{i} have negative self intersection then
$D_{l_{1}} \cdot D_{l_{2}} \leq(d-3)^{2}-s=\frac{(d-3)(d-4)}{2}$. Therefore $D_{l_{1}} \cdot D_{l_{2}}=\frac{(d-3)(d-4)}{2}$. Moreover $e_{i}^{2}=-1$ and since $e_{i} \cap e_{j}=\emptyset$ we obtain that $\eta: \mathcal{H}_{2} \rightarrow \mathbb{P}^{2}$ is the blow-up at c_{1}, \ldots, c_{s}. Consequently, $D_{l} \sim(d-3) h-\sum_{i=1}^{s} e_{i}$ for a general $[l] \in \mathcal{H}_{1}$, and, by the flatness of $\mathcal{D}_{1} \rightarrow \mathcal{H}_{1}$, that holds for any $[l] \in \mathcal{H}_{1}$.
(2) Let $L_{p_{i j}}^{\prime}=L_{p_{i j}}-e_{i}$ (note that $e_{i} \subset L_{p_{i j}}$). We see that $L_{p_{i j}}^{\prime} \subset D_{l_{i j}}$ and $D_{l_{i 1}}-L_{p_{i 1}}^{\prime}=D_{l_{i 2}}-L_{p_{i 2}}^{\prime}$, which we denote by $D_{\beta_{i}}$. Note that

$$
D_{\beta_{i}} \sim(d-4) h-\sum_{k \neq i} e_{k}
$$

It is easy to see that $D_{\beta_{i}}$ have the following properties:

$$
\begin{align*}
D_{\beta_{i}} \cap e_{i} & =\emptyset . \tag{2.7}\\
D_{\beta_{i}} \cap D_{\beta_{j}} \cap D_{\beta_{k}} & =\emptyset . \tag{2.8}
\end{align*}
$$

We only prove (2.7). Since $D_{\beta_{i}} \cap e_{i} \neq \emptyset$ would imply that e_{i} is a component of $D_{\beta_{i}}$, it suffices to prove that, for a general $l, D_{\beta_{i}} \cap D_{l}$ does not contain a point of e_{i}. By Lemma 2.4.17, $D_{\beta_{i}} \cap D_{l}$ contains $\frac{(d-4)(d-5)}{2}$ points corresponding to bi-secant conics intersecting β_{i} and l except conics containing β_{i}. On the other hand, we have $D_{l} \cdot D_{\beta_{i}}=\frac{(d-4)(d-5)}{2}$, thus the conics we count in Lemma 2.4.17 correspond to all the intersection of $D_{\beta_{i}} \cap D_{l}$. Consequently, $D_{\beta_{i}} \cap D_{l}$ does not contain a point of e_{i}.

By (2.7) and the trivial equality

$$
(d-4) h-\sum_{i \geq k+1} e_{i}=D_{\beta_{k}}+e_{1}+\cdots+e_{k-1}
$$

we obtain $e_{k} \not \subset \mathrm{Bs}\left|(d-4) h-\sum_{i \geq k+1} e_{i}\right|$.
Since $\mathcal{O}_{\mathcal{H}_{2}}\left((d-4) h-\sum_{i \geq k+1} e_{i}\right) \otimes_{\mathcal{O}_{\mathcal{H}_{2}}} \mathcal{O}_{e_{k}} \simeq \mathcal{O}_{e_{k}}$ we have that

$$
H^{0}\left(\mathcal{H}_{2}, \mathcal{O}_{\mathcal{H}_{2}}\left((d-4) h-\sum_{i \geq k+1} e_{i}\right)\right) \rightarrow H^{0}\left(\mathcal{H}_{2}, \mathcal{O}_{e_{k}}\right)
$$

is surjective. Hence by the exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathcal{H}_{2}}\left((d-4) h-\sum_{i \geq k} e_{i}\right) \rightarrow \mathcal{O}_{\mathcal{H}_{2}}\left((d-4) h-\sum_{i \geq k+1} e_{i}\right) \rightarrow \mathcal{O}_{e_{k}} \rightarrow 0
$$

we have $H^{1}\left(\mathcal{H}_{2}, \mathcal{O}_{\mathcal{H}_{2}}\left((d-4) h-\sum_{i=1}^{s} e_{i}\right)\right) \simeq H^{1}\left(\mathcal{H}_{2}, \mathcal{O}_{\mathcal{H}_{2}}(d-4) h\right)$. Since it is easy to see that $h^{1}\left(\mathcal{H}_{2}, \mathcal{O}_{\mathcal{H}_{2}}(d-4) h\right)=0$, we have (2).
(3) Since no conic on A intersects all the line on $A,\left|D_{l}\right|$ has no base point. In case $d=5$, the image of $\Phi_{\left|D_{l}\right|}$ is \mathbb{P}^{2} by $\left(D_{l}\right)^{2}=1$.

Assuming $d \geq 6$, we prove that D_{l} is very ample. By (2) and [DG88, Theorem 3.1], it suffices to prove that

$$
h^{0}\left(\mathcal{H}_{2}, \mathcal{O}_{\mathcal{H}_{2}}\left(h-\sum_{j=1}^{d-3} e_{i_{j}}\right)\right)=0
$$

for any set of $d-3$ exceptional curves $e_{i_{1}}, \ldots, e_{i_{d-3}}$. Assume by contradiction that there exists an effective divisor $L \in\left|h-\sum_{j=1}^{d-3} e_{i_{j}}\right|$ for a set of $d-3$ exceptional curves $e_{i_{1}}, \ldots, e_{i_{d-3}}$. By $\frac{(d-2)(d-3)}{2}-(d-3) \geq 3$, we find at least three e_{i} such that $i \notin\left\{j_{1}, \ldots, j_{d-3}\right\}$. For an $i \notin\left\{j_{1}, \ldots, j_{d-3}\right\}$, noting $D_{l} \sim D_{\beta_{i}}+h-e_{i}, D_{l} \cdot L=0$, and $L \cdot\left(h-e_{i}\right)>0$, we have $L \subset D_{\beta_{i}}$. This contradicts (2.8) since the number of i such that $i \notin\left\{j_{1}, \ldots, j_{d-3}\right\}$ is at least 3 .

We show that $h^{0}\left(\mathcal{H}_{2}, \mathcal{O}_{\mathcal{H}_{2}}\left(D_{l}\right)\right)=d-2$. By the Riemann-Roch theorem, $\chi\left(\mathcal{O}_{\mathcal{H}_{2}}\left(D_{l}\right)\right)=d-2$. Since $h^{2}\left(\mathcal{H}_{2}, \mathcal{O}_{\mathcal{H}_{2}}\left(D_{l}\right)\right)=h^{0}\left(\mathcal{H}_{2}, \mathcal{O}_{\mathcal{H}_{2}}\left(-D_{l}+K_{\mathcal{H}_{2}}\right)\right)=0$, we see that $h^{0}\left(\mathcal{H}_{2}, \mathcal{O}_{\mathcal{H}_{2}}\left(D_{l}\right)\right)=d-2$ is equivalent to $h^{1}\left(\mathcal{H}_{2}, \mathcal{O}_{\mathcal{H}_{2}}\left(D_{l}\right)\right)=0$. Since $\left|D_{l}\right|$ has no base point, so is $\left|(d-3) h-\sum_{i \geq k+1} e_{i}\right|$. Thus the proof that $h^{1}\left(\mathcal{H}_{2}, \mathcal{O}_{\mathcal{H}_{2}}\left(D_{l}\right)\right)=0$ is almost the same as the above one showing (2) and we omit it.
(4) follows from [Gim89, Proposition 1.1].

Remark. In case of $d=5$, the morphism defined by $\left|D_{l}\right|$ contracts three curves $D_{e_{i}}(i=1,2,3)$, which are nothing but the strict transforms of three lines passing through two of c_{j}. Namely, the composite $S^{2} C \leftarrow \mathcal{H}_{2} \rightarrow \check{\mathbb{P}}^{2}$ is the Cremona transformation.

The following corollary contains the nontrivial result that for a general $[l] \in \mathcal{H}_{1}$, D_{l} parameterizes conics which properly intersect l.

Corollary 2.4.19. For a general $[l] \in \mathcal{H}_{1}, D_{l}$ does not contain any point corresponding to the line pairs $l \cup m$ with $[m] \in \mathcal{H}_{1}$.

Proof. Fix $[m] \in \mathcal{H}_{1}$ such that $l \cup m$ is a line pair. If (\bar{m}, b) is the marked line given by m then we have $d-2$ line pairs $l \cup m, l_{1} \cup m, \ldots, l_{d-3} \cup m$. Since $L_{b} \sim h$ then $h \cdot D_{l}=d-3$ and definitely $\left[l_{1} \cup m\right], \ldots,\left[l_{d-3} \cup m\right] \in D_{l}$. Thus $[l \cup m] \notin D_{l}$.

2.5. Varieties of power sums for special non-degenerate quartics F_{4}.

In Proposition 2.4.13 we have seen that $\psi: \mathcal{U}_{2} \rightarrow A$ is finite and flat outside $\cup_{i=1}^{n} \beta_{i}^{\prime}$. We can modify the morphism $\psi: \mathcal{U}_{2} \rightarrow A$ to obtain a finite one. See Proposition 2.5.7, which is the goal of 2.5.1. This and our understanding of the geometry of \mathcal{H}_{2} give an important morphism whose target is $\operatorname{VSP}\left(F_{4}, n ; \mathcal{H}_{2}\right)$: see Theorem 2.5.12.
2.5.1. Special blow-up \widetilde{A} of A. Similarly to (2.6), we consider the following diagram:

Let $\mathcal{U}_{2}^{\prime} \subset \mathcal{U}_{2} \times \mathcal{H}_{2}$ be the pull-back of \mathcal{U}_{2} and $\widehat{\mathcal{D}}_{2}$ the image of \mathcal{U}_{2}^{\prime} on $\mathcal{H}_{2} \times \mathcal{H}_{2}$. Similarly to the investigation of the diagram (2.6), we see that the image \mathcal{F}^{\prime} in $\mathcal{H}_{2} \times \mathcal{H}_{2}$ of the inverse image of $\cup_{i=1}^{n} \beta_{i}^{\prime} \times \mathcal{H}_{2}$ is not divisorial nor does not dominate \mathcal{H}_{2}. Moreover, any component of $\widehat{\mathcal{D}}_{2}$ outside \mathcal{F}^{\prime} dominates \mathcal{H}_{2}, and is divisorial or possibly the diagonal of $\mathcal{H}_{2} \times \mathcal{H}_{2}$. Note that dislike the diagram (2.6), there is no other non-divisorial component in this case. Compare the proof of Corollary 2.4.14. Here we leave the possibility that the diagonal of $\mathcal{H}_{2} \times \mathcal{H}_{2}$ is contained in the divisorial component of $\widehat{\mathcal{D}}_{2}$. We, however, prove this is not the case in Lemma 2.5.9.

Let $\mathcal{D}_{2} \subset \mathcal{H}_{2} \times \mathcal{H}_{2}$ be the union of the divisorial components of $\widehat{\mathcal{D}}_{2}$ with reduced structure. \mathcal{D}_{2} is Cartier since $\mathcal{H}_{2} \times \mathcal{H}_{2}$ is smooth. $\mathcal{D}_{2} \rightarrow \mathcal{H}_{2}$ is flat since \mathcal{D}_{2} is Cohen-Macaulay, \mathcal{H}_{2} is smooth and $\mathcal{D}_{2} \rightarrow \mathcal{H}_{2}$ is equi-dimensional. Let D_{q} be the fiber of $\mathcal{D}_{2} \rightarrow \mathcal{H}_{2}$ over $[q] \in \mathcal{H}_{2}$ via the projection to the second factor.

We are almost ready to define the modification of $\psi: \mathcal{U}_{2} \rightarrow A$ we are looking for. To find the range we consider the blow-up of A along $\cup_{i=1}^{n} \beta_{i}^{\prime}$ and we denote it by $\rho: \widetilde{A} \rightarrow A$.
Lemma 2.5.1.

$$
\mathcal{N}_{\beta_{i}^{\prime} / A}=\mathcal{O}_{\beta_{i}^{\prime}}(-1) \oplus \mathcal{O}_{\beta_{i}^{\prime}}(-1)
$$

Proof. We prove the assertion by using the inductive construction of C_{d}. The assertion is clear for $d=1$ since C_{1} has no bi-secant line. Suppose the assertion holds for C_{d-1}. Choose a general uni-secant line $\bar{l} \subset B$ of C_{d-1}. Let $\bar{m}_{1}, \ldots, \bar{m}_{d-2}$ be the lines on B intersecting both C_{d-1} and \bar{l} outside $C_{d-1} \cap \bar{l}$. Let $A^{\prime} \rightarrow B$ be the blow-up along $C_{d-1} \cup \bar{l}$. Note that the smoothing $C_{d-1} \cup \bar{l}$ to C_{d} induces that of A^{\prime} to A. Let \widetilde{m}_{i} be the strict transform of \bar{m}_{i} on A^{\prime}. By the smoothing construction of C_{d} from $C_{d-1} \cup \bar{l}$ and the assumption on induction, we have only to prove $\mathcal{N}_{\widetilde{m}_{i} / A^{\prime}}=\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$. Let $A_{1}^{\prime} \rightarrow B$ be the blow-up along \bar{l} and $A_{2}^{\prime} \rightarrow A_{1}^{\prime}$ the blow-up along the strict transform of C_{d-1}. Denote by m_{i}^{\prime} and $m_{i}^{\prime \prime}$ the strict transform of \bar{m}_{i} on A_{1}^{\prime} and A_{2}^{\prime} respectively. Then $\mathcal{N}_{\widetilde{m}_{i} / A^{\prime}}=\mathcal{N}_{m_{i}^{\prime \prime} / A_{2}^{\prime}}$. Since m_{i}^{\prime} is a fiber of $A_{1}^{\prime} \rightarrow Q$ (cf. Proposition 2.1.6 (2)), we have $\mathcal{N}_{m_{i}^{\prime} / A_{1}^{\prime}}=\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$. Let F be the exceptional divisor of $A_{1}^{\prime} \rightarrow Q$ and F^{\prime} the strict transform of F on A_{2}^{\prime}. We may suppose F and C_{d-1}^{\prime} intersect transversely, thus $F^{\prime} \rightarrow F$ is the blow-up at $d-2$ points $m_{i}^{\prime} \cap C_{d-1}^{\prime}(i=1, \ldots, d-2)$. Thus $F^{\prime} \cdot m_{i}^{\prime \prime}=-1$ and $\mathcal{N}_{m_{i}^{\prime \prime} / F^{\prime}}=\mathcal{O}_{\mathbb{P}^{1}}(-1)$, and this implies the assertion.

We add the following piece of notation:
Notation 2.5.2. (1) $E_{i}:=\rho^{-1}\left(\beta_{i}^{\prime}\right)$. By Lemma 2.5.1, $E_{i} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$,
(2) $f_{i}:=$ a general fiber of $\rho_{\mid E_{i}}: E_{i} \rightarrow \beta_{i}^{\prime}$,
(3) $\tilde{\gamma}_{i}:=$ a general fiber of the other projection $E_{i} \rightarrow \mathbb{P}^{1}$,
(4) $\widetilde{E}_{C}:=$ the strict transform of E_{C}, and
(5) $\widetilde{\zeta}_{i j}:=$ the strict transform of the fiber $\zeta_{i j}$ of E_{C} over $p_{i j} \in C \cap \beta_{i}$, where $i=1, \ldots, s$ and $j=1,2$.
The domain of the finite morphism is $\widetilde{\mathcal{U}}_{2}:=\mathcal{U}_{2} \times{ }_{A} \widetilde{A}$; in other words, $\widetilde{\mathcal{U}}_{2}$ is the blow-up of \mathcal{U}_{2} along $\mathcal{U}_{2} \cap\left(\cup_{i=1}^{s} \beta_{i}^{\prime} \times \mathcal{H}_{2}\right)$. We obtain that the natural morphism $\widetilde{\mathcal{U}}_{2} \rightarrow \widetilde{A}$ is finite after an analysis of the morphism $\mathcal{U}_{2} \rightarrow A$ in the neighborhood of some special conics and via the suitable notion of conic on \widetilde{A}.

Note that, by Proposition 2.2.4 (5), there are $d-4$ lines $\alpha_{1}, \ldots, \alpha_{d-4}$ distinct from β_{i} and intersecting both C and β_{i} outside $C \cap \beta_{i}$. Set $t_{k}:=\alpha_{k} \cap C$. Corresponding to α_{k}, there are two marked conics $\left(\alpha_{k} \cup \beta_{i} ; p_{i 1}, t_{k}\right)$ and $\left(\alpha_{k} \cup \beta_{i} ; p_{i 2}, t_{k}\right)$, which does not belong to e_{i} (by the choice of marking). We denote by $\xi_{i j k}$ the conics on A corresponding to ($\alpha_{k} \cup \beta_{i} ; p_{i j}, t_{k}$), where $i=1, \ldots, s, j=1,2$, and $k=1, \ldots, d-4$.
Lemma 2.5.3. $\xi_{i j k}$ does not belong to $D_{\beta_{i}}$.
Proof. By the projection from β_{i}, the image \bar{q} of a general conic q belonging to $D_{\beta_{i}}$ maps to a bi-secant line of the image $C^{\prime} \subset Q$ of C, and α_{k} maps to a point $p_{i j k}$. Let $p_{i j}^{\prime}$ be the point of C^{\prime} corresponding to $p_{i j}$. Let F be the exceptional divisor over β_{i}, and F^{\prime} the image of F on Q. We say a ruling of $F^{\prime} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$ is horizontal if it does not come from a fiber of $F \rightarrow \beta_{i}$. If $\left[\xi_{i j k}\right] \in D_{\beta_{i}}$, then $\xi_{i j k}$ corresponds to a bi-secant line of C^{\prime}, which must be the horizontal ruling of F^{\prime} through $p_{i j}^{\prime}$ and $p_{i j k}$. By inductive construction of C, we can prove that $p_{i j}^{\prime}$ and $p_{i j k}$ do not lie on a horizontal ruling. Thus we have the claim.

Definition 2.5.4. We say that a curve $\widetilde{q} \subset \widetilde{A}$ is a conic on \widetilde{A} if
(i) \widetilde{q} is connected and reduced,
(ii) $-K_{\widetilde{A}} \cdot \widetilde{q}=2$,
(iii) $\widetilde{E}_{C} \cdot \widetilde{q}=2$,
(iv) $E_{i} \cdot \widetilde{q}=0$, and
(v) $p_{a}(\widetilde{q})=0$.

Similarly to the case of conics on A, we know there exists a unique two-dimensional component of the Hilbert scheme of \widetilde{A} parameterizing conics on \widetilde{A}. Let $\mathcal{H}_{2}^{\widetilde{A}}$ be the normalization of the two-dimensional component. Similarly to the proof of Proposition 2.4.9, we can show $\mathcal{H}_{2}^{\widetilde{A}}$ is proper and there is a natural birational morphism $\mathcal{H}_{2}^{\widetilde{A}} \rightarrow \overline{\mathcal{H}}_{2}$. Since $\mathcal{H}_{2} \rightarrow \overline{\mathcal{H}}_{2}$ is the normalization, we have also a natural morphism $\mathcal{H}_{2}^{\widetilde{A}} \rightarrow \mathcal{H}_{2}$. We do not need a full classification of conics on \widetilde{A} but only the following:
Lemma 2.5.5. (1) There is a unique conic \widetilde{q} on \widetilde{A} corresponding to a conic q on A belonging to e_{i}, and moreover, \widetilde{q} is isomorphic to q over the component β_{i}^{\prime}. In particular, $\mathcal{H}_{2}^{\widetilde{A}} \rightarrow \mathcal{H}_{2}$ is isomorphic near e_{i}.
(2) A conic belonging to $D_{\beta_{i}}$ is smooth near β_{i}^{\prime}. There is a unique conic \widetilde{q} on \widetilde{A} corresponding to a conic q on A belonging to $D_{\beta_{i}}$, and, over $\beta_{i}^{\prime}, \widetilde{q}$ is isomorphic to the union of q and the fiber of E_{i} over $q \cap \beta_{i}^{\prime}$. In particular, $\mathcal{H}_{2}^{\widetilde{A}} \rightarrow \mathcal{H}_{2}$ is isomorphic near $D_{\beta_{i}}$.
Proof. This follows from an explicit calculation as in the proof of Proposition 2.3.6. For the first statement of (2), we use Proposition 2.2.2 (5) and Lemma 2.5.3.

Let $\Gamma:=\mathcal{U}_{2} \cap\left(\cup_{i=1}^{s} \beta_{i}^{\prime} \times \mathcal{H}_{2}\right)$. Outside $\cup_{i} \beta_{i}^{\prime} \times e_{i}, \Gamma$ is set-theoretically the disjoint union of

$$
\Gamma_{i}:=\left\{(x,[q]) \mid[q] \in D_{\beta_{i}}, x \in q \cap \beta_{i}^{\prime}\right\}(i=1, \ldots, s),
$$

which is a section of μ over $D_{\beta_{i}}$, and

$$
\Gamma_{i j k}:=\left\{\left(x,\left[\xi_{i j k}\right]\right) \mid x \in \beta_{i}^{\prime}\right\}(k=1, \ldots, d-4, j=1,2) .
$$

Lemma 2.5.6. Along $\Gamma_{i j k}, \mathcal{U}_{2}$ is smooth and Γ is reduced.
Proof. To show that \mathcal{U}_{2} is smooth near $\Gamma_{i j k}$, we have only to see that the conic $\xi_{i j k}$ is strongly smoothable. Note that $\mathcal{N}_{\beta_{i}^{\prime} / A} \simeq \mathcal{O}_{\mathbb{P}_{1}}(-1)^{\oplus 2}, \mathcal{N}_{\alpha_{k}^{\prime} / A} \simeq \mathcal{O}_{\mathbb{P}_{1}} \oplus \mathcal{O}_{\mathbb{P}_{1}}(-1)$ and $\mathcal{N}_{\zeta_{i, 3-j / A}} \simeq \mathcal{O}_{\mathbb{P}_{1}} \oplus \mathcal{O}_{\mathbb{P}_{1}}(-1)$. We apply [HH85, Theorem 4.1] by setting $C=\beta_{i}^{\prime}$, $D=\alpha_{k}^{\prime} \cup \zeta_{i, 3-j}$ and $S=\left(\alpha_{k}^{\prime} \cap \beta_{i}^{\prime}\right) \cup\left(\zeta_{i, 3-j} \cap \beta_{i}^{\prime}\right)$. We check the conditions a) and b) of [ibid.]. The condition a) clearly holds. The condition b) follows from the following two facts:
(1) let F be the exceptional divisor of the blow up of B along α_{k}. Note that $F \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$. We say a fiber of $F \rightarrow \mathbb{P}^{1}$ in the other direction to $F \rightarrow \alpha_{k}$ a horizontal fiber. Then the intersection points of the strict transform of C and F, and the strict transform of β_{i} and F do not lie on a common horizontal fiber.

This can be proved by the inductive construction of $C=C_{d}$ in a similar fashion to the proof of Lemma 2.5.1, and
(2) let G be the exceptional divisor of the blow up of A along $\zeta_{i, 3-j}$. Note that $G \simeq \mathbb{F}_{1}$. Then the intersection points of the strict transform of β_{i}^{\prime} and G does not lie on the negative section of G.

This can be easily proved by noting $\zeta_{i, 3-j}$ is a fiber of E.

Thus, by [HH85, Theorem 4.1], $\xi_{i j k}$ is strongly smoothable.
Second, we prove that Γ is reduced along $\Gamma_{i j k}$. We have only to prove that $\mathcal{U}_{2} \rightarrow A$ is unramified along $\Gamma_{i j k}$ since then Γ is the étale pull-back of β_{i}^{\prime} near $\Gamma_{i j k}$, hence is reduced.

By the inductive construction of $C=C_{d}$ and the following exact sequence:

$$
0 \rightarrow \mathcal{N}_{\beta_{i}^{\prime} / A} \rightarrow \mathcal{N}_{\xi_{i j k} / A \mid \beta_{i}^{\prime}} \rightarrow T_{S}^{1} \rightarrow 0
$$

we can prove that $\mathcal{N}_{\xi_{i j k} / A \mid \beta_{i}^{\prime}} \simeq \mathcal{O}_{\mathbb{P}^{1}}{ }^{2}$. Thus $H^{0}\left(\mathcal{N}_{\xi_{i j k} / A}\right) \otimes \mathcal{O}_{\xi_{i j k}} \rightarrow \mathcal{N}_{\xi_{i j k} / A}$ is surjective at a point of $\Gamma_{i j k}$ since it factor through the surjection $H^{0}\left(\mathcal{N}_{\xi_{i j k} / A \mid \beta_{i}^{\prime}}\right) \otimes$ $\mathcal{O}_{\beta_{i}^{\prime}} \rightarrow \mathcal{N}_{\xi_{i j k} / A \mid \beta_{i}^{\prime}}$. Thus $\mathcal{U}_{2} \rightarrow A$ is unramified along $\Gamma_{i j k}$.

The next proposition contains the finitess result we need.
Proposition 2.5.7. $\widetilde{\mathcal{U}}_{2}$ is Cohen-Macaulay and the natural morphism $\widetilde{\psi}: \widetilde{\mathcal{U}}_{2} \rightarrow \widetilde{A}$ is finite (of degree $n:=\frac{(d-1)(d-2)}{2}$). In particular, $\widetilde{\psi}$ is flat.
Proof. Lemma 2.5.5 shows that $\widetilde{\mathcal{U}}_{2} \rightarrow \mathcal{H}_{2}$ is isomorphic to the universal family of conics on \widetilde{A} over e_{i} and $D_{\beta_{i}}$. Thus $\widetilde{\mathcal{U}}_{2}$ is Cohen-Macaulay over e_{i} and $D_{\beta_{i}}$ since so are the fibers. Note that $\widetilde{\mathcal{U}}_{2} \rightarrow \mathcal{U}_{2}$ is the blow-up along Γ_{i} near Γ_{i} and is an isomorphism near $\beta_{i}^{\prime} \times e_{i}$.

Lemma 2.5 .6 shows that $\tilde{\mathcal{U}}_{2} \rightarrow \mathcal{U}_{2}$ is the blow-up along $\Gamma_{i j k}$ near $\xi_{i j k} \times\left[\xi_{i j k}\right]$, and $\widetilde{\mathcal{U}}_{2}$ is smooth over $\Gamma_{i j k}$. Thus $\widetilde{\mathcal{U}}_{2}$ is Cohen-Macaulay. To see $\widetilde{\psi}$ is finite, we have only to note that the inverse images of $\beta_{i}^{\prime} \times e_{i}$ on $\widetilde{\mathcal{U}}_{2}$ and the exceptional divisor of $\widetilde{\mathcal{U}}_{2} \rightarrow \mathcal{U}_{2}$ are not contracted by $\widetilde{\psi}$.

From now on in the section 3 , we assume that $d \geq 6$ and we consider $\mathcal{H}_{2} \subset \check{\mathbb{P}}^{d-3}$. Consider the following diagram:

Definition 2.5.8. Let \widetilde{a} be a point of \widetilde{A}. We say that $\left[\widetilde{\psi}^{-1}(\widetilde{a})\right] \in \operatorname{Hilb}^{n} \check{\mathbb{P}}^{d-3}$ is the cluster of conics attached to \widetilde{a} and denote it by $\left[\mathcal{Z}_{\widetilde{a}}\right]$. A conic q such that $[q] \in \operatorname{Supp} \mathcal{Z}_{\widetilde{a}}$ is called a conic attached to \widetilde{a}.
Remark. Though we do not need it later, we describe the fiber of $\widetilde{\psi}$ over a general point $\widetilde{a} \in E_{i}$ for some i for reader's convenience. In other words, we exhibit n conics attached to \widetilde{a}.

Set $a:=\rho(\widetilde{a}) \in A$ and $b:=f(a) \in \beta_{i}$. We use notations of Proposition 2.4.13. Since $\operatorname{deg} C_{b}=d-2$, the number of bi-secant conics through b not belonging to the family e_{i} is given by the number of double points of C_{b}, which is $\frac{(d-3)(d-4)}{2}$. Moreover $2(d-4)$ conics $\xi_{i j k}$ through a.

The number of remaining conics is $3=n-\frac{(d-3)(d-4)}{2}-2(d-4)$. Such conics will belong to e_{i}. By Lemma 2.5.5, $\widetilde{\mathcal{U}}_{2} \rightarrow \mathcal{H}_{2}$ is isomorphic to the universal family of conics on \widetilde{A} over e_{i}. Thus a desired conic on A is the image of a conic \widetilde{q} on \widetilde{A} such that $\widetilde{a} \in \widetilde{q}$ and $\rho(\widetilde{q})$ belongs to e_{i}. We show there are three such conics. Let S_{i} be the strict transform on \widetilde{A} of the locus of lines intersecting β_{i}. Then it is easy to
see that $S_{i \mid E_{i}}$ does not contain any fiber γ_{i} of the second projection $\sigma_{i}: E_{i} \rightarrow \mathbb{P}^{1}$. Moreover $S_{i \mid E_{i}} \sim 2 \gamma_{i}+3 f_{i}$. Let γ_{i}^{\prime} be the fiber of σ_{i} through \widetilde{a}. Then γ_{i}^{\prime} intersect S_{i} at three points. Corresponding to these three points, there are three lines on B intersecting β_{i}. Denote by l_{1}, l_{2} and $l_{3} \subset A$ the strict transforms of these three lines. Then $\beta_{i}^{\prime} \cup l_{j}(j=1,2,3)$ are the conics on A what we want.

By Proposition 2.5.7 and the universal property of Hilbert schemes, we obtain a naturally defined map $\Psi: \widetilde{A} \rightarrow \operatorname{Hilb}^{n} \check{\mathbb{P}}^{d-3}$. This is clearly injective because n conics attached to a point $\widetilde{a} \in \widetilde{A}$ uniquely determines \widetilde{a}.

The task is to understand the image of Ψ.
2.5.2. Morphism from \widetilde{A} to VSP.

To understand the image of $\Psi: \widetilde{A} \rightarrow \operatorname{Hilb}^{n} \check{\mathbb{P}}^{d-3}$ we construct explicitly a quartic polynomial which plays the role of the plane quartic in the Mukai's interpretation of V_{22}.

Lemma 2.5.9. \mathcal{D}_{2} does not contain the diagonal of $\mathcal{H}_{2} \times \mathcal{H}_{2}$. In particular we have the following:
let \widetilde{a} be a general point of \widetilde{A} and $q_{1}, q_{2}, \ldots, q_{n} \in \mathcal{H}_{2}$ the conics attached to \widetilde{a}. Then

$$
D_{q_{i}}\left(\left[q_{i}\right]\right) \neq 0
$$

for $1 \leq i \leq n$.
Proof. Here we assume $d \geq 3$. It suffices to prove that $D_{q}([q]) \neq 0$ for a general $[q] \in \mathcal{H}_{2}$. This is equivalent to that the image D_{q}^{b} on $\overline{\mathcal{H}}_{2}$ of D_{q} does not contain $[\bar{q}]$. Note that D_{q}^{b} is the closure of the locus of multi-secant conics of C intersecting properly \bar{q}. Now the assertion follows from the inductive construction of C_{d} from $C_{d-1} \cup \bar{l}$. From now on, we denote D_{q}^{b} for C_{d} by $D_{q, d}^{b}$. If $d=3$, then $D_{q} \sim 0$, thus the assertion trivially true. If $D_{q^{\prime}, d-1}^{b}\left(\left[\bar{q}^{\prime}\right]\right) \neq 0$ for a general multi-secant conic \bar{q}^{\prime} of C_{d-1}, then $D_{q, d}^{b}([\bar{q}]) \neq 0$ for a general multi-secant conic \bar{q} of C_{d}.

The proof of the following lemma is almost identical to the one of Theorem 2.4.18; then we omit it:

Lemma 2.5.10. $D_{q} \sim 2(d-3) h-2 \sum_{i=1}^{e} e_{i}$ for a conic q, namely, D_{q} is a quadric section of $\mathcal{H}_{2} \subset \check{\mathbb{P}}^{d-3}$.

We proceed to construct the quartic polynomial. By the seesaw theorem, it holds that $\mathcal{D}_{2} \sim p_{1}^{*} D_{q}+p_{2}^{*} D_{q}$. Consider the morphism $\mathcal{H}_{2} \times \mathcal{H}_{2}$ into $\check{\mathbb{P}}^{d-2} \times \check{\mathbb{P}}^{d-3}$ defined by $\left|p_{1}^{*} D_{l}+p_{2}^{*} D_{l}\right|$, which is an embedding since $d \geq 6$. Since it is easy to see that

$$
H^{0}\left(\mathcal{H}_{2} \times \mathcal{H}_{2}, \mathcal{D}_{2}\right) \simeq H^{0}\left(\check{\mathbb{P}}^{d-3} \times \check{\mathbb{P}}^{d-3}, \mathcal{O}(2,2)\right),
$$

it holds that \mathcal{D}_{2} is the restriction of a unique (2,2)-divisor on $\check{\mathbb{P}}^{d-3} \times \check{\mathbb{P}}^{d-3}$, which we denote by $\left\{\widetilde{\mathcal{D}}_{2}=0\right\}$. Since $\left\{\widetilde{\mathcal{D}}_{2}=0\right\}$ is also symmetric, we may take the equation $\widetilde{\mathcal{D}}_{2}$ so that it is the bi-homogenization of an equation \check{F}_{4} of a quartic in $\check{\mathbb{P}}^{d-3}$ (cf. [DK93, §1]). Moreover the fiber of $\left\{\widetilde{\mathcal{D}}_{2}=0\right\}$ over a point $p \in \widetilde{\mathbb{P}}^{d-3}$ is defined by the polar $P_{p}\left(\check{F}_{4}\right)$, which we denote by \widetilde{D}_{p}. For $[q] \in \mathcal{H}_{2}$, we denote $\widetilde{D}_{[q]}$ simply by \widetilde{D}_{q}. By construction, $D_{q}=\left\{\widetilde{D}_{q}=0\right\} \cap\left(\mathcal{H}_{2} \times \mathcal{H}_{2}\right)$. We may choose the defining equation H_{q} of the hyperplane of \mathbb{P}^{d-3} corresponding to $[q]$ such that $P_{H_{q}^{2}}\left(\check{F}_{4}\right)=\widetilde{D}_{q}$.

From now on, we write $\mathbb{P}^{d-3}=\mathbb{P}_{*} V$, where V is the $d-2$-dimensional vector space. The crucial point in the following assertions is that the number of the conics attached to a point of \widetilde{A} coincides with $\operatorname{dim}_{\mathbb{C}} S^{2} V$.

Let \widetilde{a} be a general point of \widetilde{A} and q_{1}, \ldots, q_{n} are the conics attached to \widetilde{a}. By the definition of $\widetilde{D}_{q_{i}}$ and generality of \widetilde{a}, we have the following (we use Lemma 2.5.9):

$$
\begin{equation*}
\widetilde{D}_{q_{j}}\left(\left[q_{i}\right]\right)=0(j \neq i) \text { and } \widetilde{D}_{q_{i}}\left(\left[q_{i}\right]\right) \neq 0 \tag{2.11}
\end{equation*}
$$

(2.11) implies $\widetilde{D}_{q_{1}}, \ldots, \widetilde{D}_{q_{n}}$ are linearly independent. Thus by $P_{H_{q_{i}}^{2}}\left(\check{F}_{4}\right)=\widetilde{D}_{q_{i}}$, it holds that the apolarity map

$$
\begin{aligned}
\operatorname{ap}_{\check{F}_{4}}: S^{2} \check{V} & \rightarrow S^{2} V \\
G & \mapsto P_{G}\left(\check{F}_{4}\right)
\end{aligned}
$$

is an isomorphism. Moreover, $H_{q_{1}}^{2}, \ldots, H_{q_{n}}^{2}$ are linearly independent. Thus \check{F}_{4} is non-degenerate in the sense of Dolgachev. By [Dol04, §2.3], there exists a unique quartic form F_{4} such that $\mathrm{ap}_{F_{4}}=\mathrm{ap}_{\tilde{F}_{4}}^{-1}$. In particular, it holds

$$
P_{\widetilde{D}_{q}}\left(F_{4}\right)=H_{q}^{2}
$$

F_{4} is called the quartic form dual to \check{F}_{4}.
To see the relation between the set of conics attached to a general point of \widetilde{A} and the representation of F_{4} as a sum of powers of linear forms we need to find conditions which force n conics to be attached to $\widetilde{a} \in \widetilde{A}$. Next lemma is sufficient for our purposes.

Lemma 2.5.11. Let q_{1}, \ldots, q_{n} be n distinct conics such that
(1) $\widetilde{D}_{q_{i}}\left(\left[q_{j}\right]\right)=0$ for all $i \neq j$,
(2) all the \bar{q}_{i} are smooth,
(3) if three of \bar{q}_{i} pass through a point b, then any other \bar{q}_{i} does not intersect a line through b outside b, and
(4) no two of \bar{q}_{i} intersect at a point of $C \cup \cup_{i} \beta_{i}$.

Then the q_{i} 's are attached to a point of \widetilde{A}.
Proof. By the assumption (1), $\bar{q}_{1}, \ldots, \bar{q}_{n}$ are mutually intersecting multi-secant conics of C. By the assumption (4), it suffices to prove $\bar{q}_{1}, \ldots, \bar{q}_{n}$ pass through one point of B.

Step 1. Let $b \in B$ be a point such that five of \bar{q}_{i}, say, $\bar{q}_{1}, \ldots, \bar{q}_{5}$ pass through b. Then all the \bar{q}_{i} pass through b.

By the double projection from $b, \bar{q}_{1}, \ldots, \bar{q}_{5}$ are mapped to points p_{1}, \ldots, p_{5} on \mathbb{P}^{2}. Suppose by contradiction that a smooth conic \bar{q}_{j} does not pass through b. Let $q_{j}^{\prime}, q_{j}^{\prime \prime}$ and \widetilde{q}_{j} be the strict transforms of \bar{q}_{j} on B_{b}, B_{b}^{\prime} and \mathbb{P}^{2}, and set $S:=\pi_{2 b}^{*} \widetilde{q}_{j}$. By the assumption (3), \bar{q}_{j} does not intersect a line through b. Thus \widetilde{q}_{j} is a smooth conic through p_{1}, \ldots, p_{5}. The conic \widetilde{q}_{j} is unique since a conic through five points is unique. It holds that $-K_{B_{b}^{\prime}} \cdot q_{j}^{\prime \prime}=4$ and $S \cdot q_{j}^{\prime \prime}=4$, thus $S \simeq \mathbb{F}_{2}$ and $q_{j}^{\prime \prime}$ is the negative section. This implies that q_{j} is also unique. By reordering, we may assume that $j=n$. We have the configuration such that all the conics pass through b except q_{n}. Denote by p_{i} the image of $q_{i}(i \neq n)$. Then \widetilde{q}_{n} and C_{b} intersect at p_{i}. By $d \geq 6$, it holds $\operatorname{deg} C_{b} \geq 3$, thus $\widetilde{q}_{n} \neq C_{b}$. By the assumption (4), $b \notin C$. Therefore \widetilde{q}_{n} and C_{b} intersect at $n-1$ singular points of C_{b}. Since $\operatorname{deg} C_{b} \leq d$, it
holds $2(n-1) \leq 2 d$, a contradiction.
Step 2. If four conics $\bar{q}_{1}, \ldots, \bar{q}_{4}$ pass through one point b, then all the conics pass through b.

By contradiction and Step 1, we may assume that all the conics except $\bar{q}_{1}, \ldots, \bar{q}_{4}$ do not pass through b. Pick up two any conics, say, \bar{q}_{5} and \bar{q}_{6}, not passing through b. Considering the double projection from b as in Step 1. Denote by $\widetilde{q}_{j}(j \geq 5)$ the image of \bar{q}_{j} on \mathbb{P}^{2}. By the assumption (3), \bar{q}_{5} and \bar{q}_{6} do not intersect a line through b, thus \widetilde{q}_{5} and \widetilde{q}_{6} are conics on \mathbb{P}^{2}. Therefore $\bar{q}_{5} \cap \bar{q}_{6}$ lies on one of $\bar{q}_{1}, \ldots, \bar{q}_{4}$ since otherwise \widetilde{q}_{5} and \widetilde{q}_{6} would intersect at five points and this is a contradiction as in Step 1. Thus any two conics intersect on $\bar{q}_{1}, \ldots, \bar{q}_{4}$. Let p_{i} be the intersection $\bar{q}_{i} \cap \bar{q}_{5}$ for $i=1, \ldots, 4$. Then $\bar{q}_{j}(j \geq 5)$ pass through one of p_{i}. Thus one of p_{i}, say, p_{1}, there pass through at least $\left\lceil\frac{(n-5)}{4}\right\rceil$ conics. By Step $1,\left\lceil\frac{(n-5)}{4}\right\rceil \leq 2$ (already \bar{q}_{1} and \bar{q}_{5} pass through p_{1}). This implies $d=6$. We exclude this case in Step 3. Note that if $d=6$, then the four conics $\bar{q}_{1}, \bar{q}_{2}, \bar{q}_{5}$, and \bar{q}_{6} mutually intersect and the all the intersection points are different. By reordering conics, we assume that $\bar{q}_{i}(1 \leq i \leq 4)$ satisfy this property.
Step 3. We complete the proof.
Assume by contradiction that $\bar{q}_{1}, \ldots, \bar{q}_{n}$ do not pass through one point on B. If $d \geq 7$, then, by Steps 1 and 2 ,
(2.12) at most three of \bar{q}_{i} 's pass through any intersection point.

Let m be the number of conics in a maximal tree T of \bar{q}_{i} 's such that two conics in T pass through any intersection point. Note that T is connected since \bar{q}_{i} 's mutually intersect. The number of the intersection points of \bar{q}_{i} 's contained in T is $\frac{m(m-1)}{2}$.

By the maximality of T, a conic not belonging to T passes through one of the intersection points of conics in T. By (2.12), no two conics not belonging to T pass through one of the intersection point of conics in T. Hence it holds $\frac{m(m-1)}{2}+m \geq n$. This implies that $m \geq d-2$ by $n=\frac{(d-1)(d-2)}{2}$. By reordering, we assume that $\bar{q}_{1}, \ldots, \bar{q}_{m}$ belong to T. If $d=6$, then we take $\bar{q}_{1}, \ldots, \bar{q}_{4}$ as in the last part of Step 2. Consider the projection $B \rightarrow \mathbb{P}^{3}$ from \bar{q}_{1}. Then $\bar{q}_{2}, \ldots, \bar{q}_{m}$ are mapped to lines l_{2}, \ldots, l_{m} intersecting mutually on \mathbb{P}^{3} and the intersection points are different. Thus l_{2}, \ldots, l_{m} span a plane, which in turn shows that $\bar{q}_{1}, \ldots, \bar{q}_{m}$ span a hyperplane section H on B. Since C intersects \bar{q}_{i} at two point or more, C intersects H at $2 m$ points or more by the assumption (4). But $2 m \geq 2(d-2)>d, C$ must be contained in H, a contradiction to Proposition 2.2.1 (d).

We think the next theorem to be of theoretical relevance in itself and as a first result to understand varieties of sum of powers confined in a subvariety.

Theorem 2.5.12. $\operatorname{Im} \Phi$ is an irreducible component of $\operatorname{VSP}\left(F_{4}, n ; \mathcal{H}_{2}\right)$.
Proof. Set

$$
Z:=\left\{\left(\left[H_{1}\right], \ldots,\left[H_{n}\right]\right) \in \operatorname{Hilb}^{n} \check{\mathbb{P}}^{d-3} \mid H_{1}^{4}+\ldots+H_{n}^{4}=F_{4},\left[H_{i}\right] \in \mathcal{H}_{2}\right\} .
$$

For a general point \widetilde{a} and conics q_{1}, \ldots, q_{n} attached to \widetilde{a}, we have (2.11). Conversely, n conics q_{i} satisfying (2.11) and the assumptions (2)-(4) of Lemma 2.5.11 determine a point of \widetilde{A}. Note that the assumptions (2)-(4) of Lemma 2.5.11 are open conditions. Thus we have only to prove that (2.11) is equivalent to

$$
\begin{equation*}
\alpha_{1} H_{q_{1}}^{4}+\ldots+\alpha_{n} H_{q_{n}}^{4}=F_{4} \text { with some nonzero } \alpha_{i} \in \mathbb{C} \tag{2.13}
\end{equation*}
$$

We see that (2.13) is equivalent to
(2.14) If $\{G=0\} \subset \check{\mathbb{P}}^{d-3}$ is any quartic through $\left[q_{1}\right], \cdots,\left[q_{n}\right]$, then $P_{F_{4}}(G)=0$.

Indeed, by the apolarity pairing, $\left\langle G, H_{q_{i}}^{4}\right\rangle=0 \Leftrightarrow G\left(\left[q_{i}\right]\right)=0$, thus, the assumption on G is equivalent to $G \subset\left\langle H_{q_{1}}^{4}, \ldots, H_{q_{n}}^{4}\right\rangle^{\perp}$. Therefore (2.13) is equivalent to $\left\langle H_{q_{1}}^{4}, \ldots, H_{q_{n}}^{4}\right\rangle^{\perp} \subset\left\langle F_{4}\right\rangle^{\perp}$. Since F_{4} is non-degenerate, this is equivalent to (2.13).

We show (2.11) implies (2.14). If (2.11) holds, then $\widetilde{D}_{q_{i}}(i \neq 1)$ generate the space of linear forms passing through $\left[q_{1}\right]$, we may write $G=Q_{2} \widetilde{D}_{q_{2}}+\cdots+Q_{n} \widetilde{D}_{q_{n}}$, where Q_{i} are quadratic forms on $\check{\mathbb{P}}^{d-3}$. By $G\left(\left[q_{i}\right]\right)=0$ for $i \neq 1$, we have $Q_{i}\left(\left[q_{i}\right]\right) \widetilde{D}_{q_{i}}\left(\left[q_{i}\right]\right)=0 . \quad \widetilde{D}_{q_{i}}\left(\left[q_{i}\right]\right) \neq 0$ implies that $Q_{i}\left(\left[q_{i}\right]\right)=0$. Thus Q_{i} is a linear combination of $\widetilde{D}_{q_{j}}(j \neq i)$. Consequently, G is a linear combination of $\widetilde{D}_{q_{i}} \widetilde{D}_{q_{j}}$ $(1 \leq i<j \leq n)$. Thus $P_{F_{4}}(G)=0$ follows from that

$$
P_{F_{4}}\left(\widetilde{D}_{q_{i}} \widetilde{D}_{q_{j}}\right)=P_{H_{q_{i}}}\left(\widetilde{D}_{q_{j}}\right)=\widetilde{D}_{q_{j}}\left(\left[q_{i}\right]\right)=0
$$

Finally we show (2.13) implies (2.11). By (2.13), it holds

$$
H_{q_{i}}^{2}=P_{\widetilde{D}_{q_{i}}}\left(F_{4}\right)=\sum \alpha_{j}\left\langle\widetilde{D}_{q_{i}}, H_{q_{j}}^{4}\right\rangle H_{q_{j}}^{2}
$$

Since $H_{q_{j}}^{2}$ are linearly independent, (2.11) holds.
Definition 2.5.13. We say $\operatorname{Im} \Phi$ is the main component of $\operatorname{VSP}\left(n, F_{4} ; \mathcal{H}_{2}\right)$.
The following lemma characterizes the main component of VSP $\left(n, F_{4} ; \mathcal{H}_{2}\right)$, which will play a crucial role in 3.7 :
Lemma 2.5.14. Let $\left(\mathcal{H}_{2}^{k}\right)^{o}$ and $\left(\operatorname{Hilb}^{k \check{\mathbb{P}}^{d-3}}\right)^{o}(k \in \mathbb{N})$ be the complements of all the small diagonals of $\mathcal{H}_{2}^{k}\left(k\right.$ times product of $\left.\mathcal{H}_{2}\right)$ and $\operatorname{Hilb}^{k} \check{\mathbb{P}}^{d-3}$ respectively. Set

$$
\operatorname{VSP}^{o}\left(F_{4}, n ; \mathcal{H}_{2}\right):=\left\{\left(\left[H_{1}\right], \ldots,\left[H_{n}\right]\right) \mid\left[H_{i}\right] \in \mathcal{H}_{2}, H_{1}^{m}+\cdots+H_{n}^{m}=F_{4}\right\}
$$

Let V^{o} be the inverse image of $\operatorname{VSP}^{o}\left(F_{4}, n ; \mathcal{H}_{2}\right)$ by the natural projection $\left(\mathcal{H}_{2}^{n}\right)^{o} \rightarrow$ $\left(\operatorname{Hilb}^{n} \check{\mathbb{P}}^{d-3}\right)^{o}$. Let $\left(\mathcal{H}_{2}^{n}\right)^{o} \rightarrow\left(\mathcal{H}_{2}^{2}\right)^{o}$ be the projection to any of two factors. Then a component of V^{o} dominating \mathcal{D}_{2} dominates the main component of $\operatorname{VSP}\left(F_{4}, n ; \mathcal{H}_{2}\right)$.

Proof. Let $\left(\left[q_{1}\right],\left[q_{2}\right]\right) \in \mathcal{D}_{2} \cap\left(\mathcal{H}_{2}^{2}\right)^{o}$ be a general point and $\left\{q_{i}\right\}(i=1, \ldots, n)$ any set of mutually conjugate n conics including q_{1} and q_{2}. Since q_{1} and q_{2} are general, we may assume that all the q_{i} are general. By Lemma 2.5.11 and Theorem 2.5.12, it suffices to prove that q_{1}, \ldots, q_{n} satisfies the conditions (2)-(4) of Lemma 2.5.11.
(2). Let \bar{r}_{1} and \bar{r}_{2} are mutually intersecting smooth conics on B and \bar{r}_{3} a line pair on B intersecting both \bar{r}_{1} and \bar{r}_{2}. Since the Hilbert scheme of conics on B is 4 -dimensional, the pair of \bar{r}_{1} and \bar{r}_{2} depends on 7 parameters. If we fix \bar{r}_{1} and \bar{r}_{2}, then \bar{r}_{3} depends on 1 parameter. Thus the configuration $\bar{r}_{1}, \bar{r}_{2}, \bar{r}_{3}$ depends on 8 parameters. Fix \bar{r}_{1}, \bar{r}_{2} and \bar{r}_{3}. We count the number of parameters of C_{d} such that C_{d} intersects each of $\bar{r}_{i}(i=1,2,3)$ twice. The number of parameters is $h^{0}\left(\left(\mathcal{O}_{\mathbb{P}^{1}}(d-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(d-1)\right) \otimes \mathcal{O}_{\mathbb{P}^{1}}(-6)\right)+6=2 d-12+6=2 d-6$, where +6 means the sum of the numbers of parameters of two points on $\bar{r}_{i}(i=1,2,3)$. By $2 d-6+8=2 d+2$, a general C_{d} has 2-dimensional pairs of mutually intersecting bi-secant conics which intersect at least one bi-secant line pair of C_{d}. Thus general pairs of mutually intersecting bi-secant conics of C_{d}, which form a 3-dimensional family, do not intersect a bi-secant line pair of C_{d}.
(3). Assume by contradiction that \bar{q}_{i}, \bar{q}_{j} and \bar{q}_{k} pass through a point b, and \bar{q}_{l} does not pass through b but intersects a line through b. Then by the double
projection from b, \bar{q}_{l} is mapped to a line through the three singular points of the image of C_{b} corresponding to \bar{q}_{i}, \bar{q}_{j} and \bar{q}_{k}. Thus we have only to prove that for a general point of b on B, three double points of the image of C_{b} do not lie on a line.

Fix a general point $b \in B$. Let $\bar{r}_{1}, \bar{r}_{2}, \bar{r}_{3}$ be three conics on B through b such that by the double projection from b, they are mapped to three colinear points on \mathbb{P}^{2}. The number of parameters of C_{d} 's intersecting each of \bar{r}_{i} twice is $h^{0}\left(\left(\mathcal{O}_{\mathbb{P}^{1}}(d-1) \oplus\right.\right.$ $\left.\left.\mathcal{O}_{\mathbb{P}^{1}}(d-1)\right) \otimes \mathcal{O}_{\mathbb{P}^{1}}(-6)\right)=2 d-12$ since $h^{1}\left(\left(\mathcal{O}_{\mathbb{P}^{1}}(d-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(d-1)\right) \otimes \mathcal{O}_{\mathbb{P}^{1}}(-6)\right)=0$ Note that the number of parameters of $\bar{r}_{1}, \bar{r}_{2}, \bar{r}_{3}$ is 5 since that of lines in \mathbb{P}^{2} is 2 , and that of three points on a line is 3 . Thus the number of parameters of C_{d} 's such that its image of the double projection from b has three colinear double points is at most $2 d-1$. Hence a general C_{d} does not satisfy this property.
(4). Let r_{1} and r_{2} be a general pair of mutually conjugate conics on A such that \bar{r}_{1} and \bar{r}_{2} are smooth, and \bar{r}_{1} and \bar{r}_{2} intersect at a point on $C \cup \cup_{i} \beta_{i}$. Such general pairs of conics r_{1} and r_{2} form a two-dimensional family since $\operatorname{dim} C \cup \cup_{i} \beta_{i}=1$ and if one point t of $C \cup \cup_{i} \beta_{i}$ is fixed, then such pairs of conics such that $t \in \bar{r}_{1} \cap \bar{r}_{2}$ form a one-dimensional family. For a general pair of r_{1} and r_{2}, the number of the sets of n mutually conjugate conics including r_{1} and r_{2} is finite since $D_{r_{1}}$ and $D_{r_{2}}$ has no common component. Thus $\left\{q_{i}\right\}$ does not contain such a pair by generality whence $\left\{q_{i}\right\}$ satisfies (4).
2.5.3. Relation with Mukai's result. Here we sketch how the argument goes on if $d=5$ and explain a relation of our result with Theorem 1.2.1.

Assume that $d=5$. Associated to the birational morphism $\mathcal{H}_{2} \rightarrow \check{\mathbb{P}}^{2}$, there exists a non finite birational morphism

$$
\Phi: \widetilde{A} \rightarrow V_{22}:=\operatorname{VSP}\left(F_{4}, 6\right) \subset \operatorname{Hilb}^{6} \check{\mathbb{P}}^{2}
$$

which fits into the following diagram:

where

- V_{22} is a smooth prime Fano threefold of genus twelve,
- ρ^{\prime} is the blow-down of the three ρ-exceptional divisors $E_{i}(i=1,2,3)$ over the strict transform β_{i}^{\prime} in the other direction. In other words, $A \rightarrow A^{\prime}$ is the flops of $\beta_{1}^{\prime}, \beta_{2}^{\prime}$ and β_{3}^{\prime} (cf. Lemma 2.5.1), and
- the morphism f^{\prime} contracts the strict transform of the unique hyperplane section S containing C (see Proposition 2.2.1 (d)) to a general line on V_{22}.
The rational map $V_{22} \rightarrow B$ is the famous double projection of V_{22} from a general line m first discovered by Iskovskih (see [Isk78]).

We explain how f^{\prime} and ρ^{\prime} are interpreted in our context. As we remarked after the proof of Theorem 2.4.18, the morphism $\mathcal{H}_{2} \rightarrow \check{\mathbb{P}}^{2}$ defined by $\left|D_{l}\right|$ contracts three curves $D_{e_{i}}$ which parameterize conics intersecting β_{i}^{\prime}. By noting S is covered
by the images of such conics, this corresponds to that the morphism f^{\prime} contracts the strict transform of S.

We can see that any conic on A except one belonging to $D_{e_{i}}$ corresponds to that on V_{22} in the usual sense, and the component of Hilbert scheme of V_{22} parameterizing conics is naturally isomorphic to $\check{\mathbb{P}}^{2}$. The three conics on V_{22} corresponding to the images of $D_{e_{i}}$ are $\beta_{i}^{\prime \prime} \cup m$, where $\beta_{i}^{\prime \prime}$ are the images of the flopped curve corresponding to β_{i}^{\prime}.

Let $a \in E_{i}$. Then six conics on A attached to a are $\xi_{i j 1}(j=1,2)$, a conic q_{a} from $D_{e_{i}}$ and three conics from e_{i} (see the remark at the end of 2.5.1). Moreover, if a moves in a fiber γ of the other projection $E_{i} \rightarrow \mathbb{P}^{1}$, then only the conic q_{a} from $D_{e_{i}}$ varies. By the contraction $\mathcal{H}_{2} \rightarrow \check{\mathbb{P}}^{2}$, there is no difference among points on γ. This is the meaning of the contraction ρ^{\prime} of E_{i} in the other direction.

Finally we remark that \mathcal{H}_{1} is also naturally isomorphic to the component of Hilbert scheme of V_{22} parameterizing lines.

3. The existence of the Scorza quartic

In this section we will use the geometries of \mathcal{H}_{1} and \mathcal{H}_{2} to give an affirmative answer to the conjecture of Dolgachev and Kanev [DK93, Introduction p. 218] (see Theorem 3.5.3).

3.1. Theta-correspondence on $\mathcal{H}_{1} \times \mathcal{H}_{1}$.

In this subsection, we regard \mathcal{H}_{1} as the component of the Hilbert scheme of A parameterizing lines on A.

We will define a non-effective theta characteristic on \mathcal{H}_{1} by investigating the following set:

$$
I:=\left\{\left(\left[l_{1}\right],\left[l_{2}\right]\right) \in \mathcal{H}_{1} \times \mathcal{H}_{1} \mid l_{1} \text { and } l_{2} \text { intersect }\right\}
$$

We need a more precise and technical definition of I. First we reconsider the desingularization morphism $\pi_{\mid \mathcal{H}_{1}}: \mathcal{H}_{1} \rightarrow M \subset \mathbb{P}^{2}$; see Corollary 2.3.2.
Lemma 3.1.1. $h^{0}\left(\mathcal{H}_{1},\left(\pi_{\mid \mathcal{H}_{1}}\right)^{*} \mathcal{O}_{M}(1)\right)=3$.
Proof. Let $h: S \rightarrow \mathcal{H}_{1}^{B} \simeq \mathbb{P}^{2}$ be the blow-up of \mathcal{H}_{1}^{B} at the $s=\frac{(d-2)(d-3)}{2}$ nodes of M. Then $\mathcal{H}_{1} \sim d \lambda-2 \sum_{i=1}^{s} \varepsilon_{i}$, where λ is the pull-back of a general line and ε_{i} are exceptional curves. By the exact sequence

$$
0 \rightarrow \mathcal{O}_{S}\left(\lambda-\mathcal{H}_{1}\right) \rightarrow \mathcal{O}_{S}(\lambda) \rightarrow \mathcal{O}_{\mathcal{H}_{1}}\left(\left(\pi_{\mid \mathcal{H}_{1}}\right)^{*} \mathcal{O}_{M}(1)\right) \rightarrow 0
$$

together with $h^{0}\left(\mathcal{O}_{S}(\lambda)\right)=3$ and $h^{0}\left(\mathcal{O}_{S}\left(\lambda-\mathcal{H}_{1}\right)\right)=h^{1}\left(\mathcal{O}_{S}(\lambda)\right)=0$, we see that $h^{0}\left(\mathcal{H}_{1},\left(\pi_{\mid \mathcal{H}_{1}}\right)^{*} \mathcal{O}_{M}(1)\right)=3$ is equivalent to $h^{1}\left(\mathcal{O}_{S}\left(\lambda-\mathcal{H}_{1}\right)\right)=0$. By the RiemannRoch theorem, we have $\chi\left(\mathcal{O}_{S}\left(\lambda-\mathcal{H}_{1}\right)\right)=0$. Thus by $h^{0}\left(\mathcal{O}_{S}\left(\lambda-\mathcal{H}_{1}\right)\right)=0$, $h^{1}\left(\mathcal{O}_{S}\left(\lambda-\mathcal{H}_{1}\right)\right)=0$ is equivalent to $h^{2}\left(\mathcal{O}_{S}\left(\lambda-\mathcal{H}_{1}\right)\right)=0$. By the Serre duality, $h^{2}\left(\mathcal{O}_{S}\left(\lambda-\mathcal{H}_{1}\right)\right)=h^{0}\left(\mathcal{O}_{S}\left((d-4) \lambda-\sum_{i=1}^{s} \varepsilon_{i}\right)\right.$. Thus we have only to prove that there exists no plane curve of degree $d-4$ through s nodes of M. We prove this fact by using the inductive construction of $C=C_{d}$. In case $d=2$, the assertion is obvious. From now on in the proof, we put the suffix d to the object depending on d. For example, $s_{d}:=\frac{(d-2)(d-3)}{2}$. Assuming $h^{0}\left(\mathcal{O}_{S_{d}}\left((d-4) \lambda_{d}-\sum_{i=1}^{s_{d}} \varepsilon_{i, d}\right)=0\right.$, we prove $h^{0}\left(\mathcal{O}_{S_{d+1}}\left((d-3) \lambda_{d+1}-\sum_{i=1}^{s_{d+1}} \varepsilon_{i, d+1}\right)=0\right.$.

Recall that we constructed C_{d+1} by the smoothing of the union of C_{d} and a general uni-secant line \bar{l} of C_{d}. By a standard degeneration argument, we have only to prove that there exists no plane curve of degree $d-3$ through s_{d+1} nodes of
$M_{d} \cup M(\bar{l})$, where s_{d} of s_{d+1} nodes are those of C_{d} and the remaining $s_{d+1}-s_{d}=d-2$ nodes are $M_{d} \cap M(\bar{l})$ except the two points corresponding to the two other lines \bar{l}^{\prime}, $\bar{l}^{\prime \prime}$ through $C_{d} \cap \bar{l}$. Assume that there exists a plane curve G of degree $d-3$ through s_{d+1} nodes of $M_{d} \cup M(\bar{l})$. Then $G \cap M(\bar{l})$ contains at least $d-2$ points. Since $\operatorname{deg} G=d-3$, this implies $M(\bar{l}) \subset G$. Thus there exists a plane curve of degree $d-4$ through s_{d} nodes of M_{d}, a contradiction.

We denote by δ the g_{3}^{1} on \mathcal{H}_{1} which defines $\varphi_{\mid \mathcal{H}_{1}}: \mathcal{H}_{1} \rightarrow C$. Let l, l^{\prime} and $l^{\prime \prime}$ be three lines on A such that $[l]+\left[l^{\prime}\right]+\left[l^{\prime \prime}\right] \sim \delta$. Then $\bar{l}, \bar{l}^{\prime}$ and $\bar{l}^{\prime \prime}$ are lines through one point of C. Set

$$
\theta:=\left(\pi_{\mid \mathcal{H}_{1}}\right)^{*} \mathcal{O}_{M}(1)-\delta .
$$

Let l be any line on A and $l^{\prime}, l^{\prime \prime}$ lines such that $[l]+\left[l^{\prime}\right]+\left[l^{\prime \prime}\right] \sim \delta$. By $\theta+[l]=$ $\pi_{\mid \mathcal{H}_{1}}^{*} \mathcal{O}_{M}(1)-\left[l^{\prime}\right]-\left[l^{\prime \prime}\right]$ and Lemma 3.1.1, we have $h^{0}\left(\mathcal{H}_{1}, \mathcal{O}_{\mathcal{H}_{1}}(\theta+[l])\right)=1$. Let $p_{i}: \mathcal{H}_{1} \times \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}(i=1,2)$ be the two projections and Δ the diagonal of $\mathcal{H}_{1} \times \mathcal{H}_{1}$. Set $\mathcal{L}:=\mathcal{O}_{\mathcal{H}_{1} \times \mathcal{H}_{1}}\left(p_{2}{ }^{*} \theta+\Delta\right)$. By $h^{0}\left(\mathcal{H}_{1}, \mathcal{O}_{\mathcal{H}_{1}}(\theta+[l])\right)=1$ for any $[l] \in \mathcal{H}_{1}$, we see that $p_{1 *} \mathcal{L}$ is an invertible sheaf. Define an ideal sheaf \mathcal{I} by $p_{1}{ }^{*} p_{1 *} \mathcal{L}=\mathcal{L} \otimes \mathcal{I}$. \mathcal{I} is an invertible sheaf and let I be the divisor defined by \mathcal{I}. Then we can extract the following definition:

Definition 3.1.2. I is called the theta-correspondence. We will denote by $I([l])$ the fiber of $I \rightarrow \mathcal{H}_{1}$ over $[l]$.

The following result is a generalization of Mukai's result [Muk04, §4, Theorem] in our setting:
Proposition 3.1.3. θ is a non-effective theta characteristic.
Proof. By invoking [DK93, Lemma 7.2.1] and the definition of I, it suffices to prove the following:
(a) $h^{0}\left(\mathcal{H}_{1}, \mathcal{O}_{\mathcal{H}_{1}}(\theta+[l])\right)=1$ for any $[l] \in \mathcal{H}_{1}$,
(b) I is reduced,
(c) I is disjoint from the diagonal,
(d) I is symmetric, and
(e) I is a $\left(g\left(\mathcal{H}_{1}\right), g\left(\mathcal{H}_{1}\right)\right)$-correspondence.

Let l be any line on A and $l^{\prime}, l^{\prime \prime}$ lines such that $[l]+\left[l^{\prime}\right]+\left[l^{\prime \prime}\right] \sim \delta$.
We have proved (a) already.
Noting that the line in \mathbb{P}^{2} joining $\left[\bar{l}^{\prime}\right]$ and $\left[\bar{l}^{\prime \prime}\right]$ parameterizes the lines on B intersecting \bar{l}, we see that the fiber of $I \rightarrow \mathcal{H}_{1}$ over a general $[l]$ is reduced. Hence I is reduced.

We prove (c). It is equivalent to show that the support of $I([l])$ does not contain [l]. By definition $\theta+[l]=\pi_{\mid \mathcal{H}_{1}}^{*} \mathcal{O}_{M}(1)-\left[l^{\prime}\right]-\left[l^{\prime \prime}\right]$. If \bar{l} is a uni-secant and is not special, then $M(\bar{l})$ does not contain $[\bar{l}]$, thus we are done. If \bar{l} is special, then, by Propositions 2.1.3 (4) and 2.2.4 (2), we are done. If \bar{l} is a bi-secant then by Proposition 2.2.2 (4), we are done.

We prove (d). Let m be a line on A such that $[m]$ is contained in the support of $I([l])$. It suffices to prove that for a general $l,[l]$ is contained in the support of $I([m])$. For a general l, we may assume that $m \neq l^{\prime}$ or $l^{\prime \prime}$. Then it is easy to verify this fact.

Finally we prove (e). Since I is symmetric and $\operatorname{deg}(\theta+[l])=d-2=g\left(\mathcal{H}_{1}\right)$, the divisor is a $\left(g\left(\mathcal{H}_{1}\right), g\left(\mathcal{H}_{1}\right)\right)$-correspondence.

3.2. Duality between \mathcal{H}_{1} and \mathcal{H}_{2}.

Denote by \mathbb{P}^{d-3} the projective space dual to $\check{\mathbb{P}}^{d-3}$. The family

induces the morphism

$$
\begin{array}{rll}
\mathcal{H}_{1} & \rightarrow & \mathbb{P}^{d-3} \\
{[l]} & \mapsto & {\left[D_{l}\right] .}
\end{array}
$$

by the universal property of the Hilbert scheme. Since $D_{l} \neq D_{l^{\prime}}$ for $l \neq l^{\prime}, \mathcal{H}_{1} \rightarrow$ \mathbb{P}^{d-3} is injective.

Consider the projection $\mathcal{D}_{1} \rightarrow \mathcal{H}_{2}$ and denote by \widetilde{H}_{q} the fiber over [q]. Since \mathcal{D}_{1} is a Cartier divisor in a smooth 3 -fold $\mathcal{H}_{1} \times \mathcal{H}_{2}$ then \mathcal{D}_{1} is Cohen-Macaulay. Since no conic on A intersects infinitely many lines on $A, \mathcal{D}_{1} \rightarrow \mathcal{H}_{2}$ is finite. Then $\mathcal{D}_{1} \rightarrow \mathcal{H}_{2}$ is flat since \mathcal{H}_{2} is smooth. Note that for a general q, \widetilde{H}_{q} parameterizes all the lines intersecting q. By considering the morphism $\pi_{\mid \mathcal{H}_{1}}: \mathcal{H}_{1} \rightarrow M \subset \mathbb{P}^{2}$, it is easy to see that for a general conic $q, \widetilde{H}_{q} \in\left|\pi^{*} \mathcal{O}_{M}(2)-2 \delta\right|$, namely, $\widetilde{H}_{q} \sim 2 \theta \sim K_{\mathcal{H}_{1}}$. By the flatness of $\mathcal{D}_{1} \rightarrow \mathcal{H}_{2}$, it holds \widetilde{H}_{q} for any q.

Recall that we denote by $\left\{H_{q}=0\right\}$ the hyperplane in \mathbb{P}^{d-3} corresponding to $[q] \in \check{\mathbb{P}}^{d-3}$. Note that, for $[l] \in \mathcal{H}_{1}$ and $[q] \in \mathcal{H}_{2},[l] \in\left\{H_{q}=0\right\}$ if and only if $D_{l}([q])=0$. Thus $\widetilde{H}_{q}=\left\{H_{q}=0\right\}$. Consequently, the injection $\mathcal{H}_{1} \rightarrow \mathbb{P}^{d-3}$ is the canonical embedding $\Phi_{\left|K_{\mathcal{H}_{1}}\right|}: \mathcal{H}_{1} \rightarrow \mathbb{P}^{d-3}$ by $\widetilde{H}_{q} \sim K_{\mathcal{H}_{1}}$.

In case $d=5$, a similar construction gives the duality of the canonical embedding $\mathcal{H}_{1} \subset \mathbb{P}^{2}$ and the birational morphism $\mathcal{H}_{2} \rightarrow \check{\mathbb{P}}^{2}$.

3.3. Discriminant locus.

We follow [DK93, 7.1.4 p.279]. Let $\Gamma \subset \mathbb{P}^{g-1}$ be a canonical curve of genus g and θ^{\prime} a non-effective even theta characteristic on Γ. By the Riemann-Roch theorem, it holds that $h^{0}\left(\theta^{\prime}+x\right)=1$ for a point $x \in \Gamma$. Let
$I:=\left\{(x, y) \mid y\right.$ is in the support of the unique member of $\left.\left|\theta^{\prime}+x\right|\right\} \subset \Gamma \times \Gamma$.
We call this the theta-correspondence, which is consistent with Definition 3.1.2. We denote by $I(x)$ the fiber of $I \rightarrow \Gamma$ over x and call it the theta-polyhedron attached to x. In other words, $I(x)$ is the unique member of $\left|\theta^{\prime}+x\right|$ as a divisor.

Since the linear hull $\langle I(x)-y\rangle$ is a hyperplane of \mathbb{P}^{g-1}, then we can define a morphism $\pi_{\theta^{\prime}}: I \rightarrow\left|K_{\Gamma}\right|=\check{\mathbb{P}}^{g-1}$ as a composition of the embedding $I \hookrightarrow \Theta_{\Gamma}$ and the Gauss map $\gamma: \Theta_{\Gamma}^{\text {ns }} \rightarrow \check{\mathbb{P}}^{g-1}$,
where $\Theta_{\Gamma} \subset J(\Gamma)$ is the theta divisor and $\Theta_{\Gamma}^{\text {ns }}$ is the nonsingular locus of Θ_{Γ}.
Definition 3.3.1. The image $\Gamma\left(\theta^{\prime}\right)$ of the above morphism $\pi_{\theta^{\prime}}: I \rightarrow \check{\mathbb{P}}^{g-1}$ is called the discriminant locus of $\left(\Gamma, \theta^{\prime}\right)$.

Set-theoretically $\pi_{\theta^{\prime}}$ is the map $(x, y) \mapsto\langle I(x)-y\rangle$. The hyperplane $\langle I(x)-y\rangle$ is called the face of $I(x)$ opposed to y.

From now on in the section 4 , we assume that $d \geq 6$ for the pair $\left(\mathcal{H}_{1}, \theta\right)$ and we consider $\mathcal{H}_{2} \subset \check{\mathbb{P}}^{d-3}$.

For the pair $\left(\mathcal{H}_{1}, \theta\right)$, we can interpret $\Gamma(\theta)$ by the geometry of lines and conics on A as follows:

Proposition 3.3.2. For the pair $\left(\mathcal{H}_{1}, \theta\right)$, the discriminant locus $\Gamma(\theta)$ is contained in \mathcal{H}_{2}, and the generic point of the curve $\Gamma(\theta)$ parameterizes line pairs.
Proof. Take a general point $\left(\left[l_{1}\right],\left[l_{2}\right]\right) \in I$, equivalently, take two general intersecting lines l_{1} and $l_{2} . l_{1} \cup l_{2}$ is a line pair and the lines corresponding to the points of $I\left(\left[l_{1}\right]\right)-\left[l_{2}\right]$ are lines intersecting l_{1} except l_{2}. Thus by 3.2 , the point in $\check{\mathbb{P}}^{d-3}$ corresponding to the hyperplane $\left\langle I\left(\left[l_{1}\right]\right)-\left[l_{2}\right]\right\rangle$ is nothing but $\left[l_{1} \cup l_{2}\right] \in \mathcal{H}_{2}$. This implies the assertion.

Proposition 3.3.3. The curve $\Gamma(\theta)$ belongs to the linear system $\mid 3(d-2) h-$ $4 \sum_{i=1}^{s} e_{i}$ on \mathcal{H}_{2}.
Proof. We can write:

$$
\Gamma(\theta) \sim a h-\sum m_{i} e_{i}
$$

where $a \in \mathbb{Z}$ and $m_{i} \in \mathbb{Z}$. For a general $b \in C, L_{b}$ intersects $\Gamma(\theta)$ simply. Thus a is the number of line pairs whose images on B pass through b. There exists three lines l_{1}, l_{2} and l_{3} through b. It suffices to count the number of reducible conics on B having one of l_{i} as a component except $l_{1} \cup l_{2}, l_{2} \cup l_{3}$ and $l_{3} \cup l_{1}$. Thus $a=3(d-2)$.

We will count the number of line pairs belonging to e_{i}. Each of such line pairs is of the form $l_{i j ; k} \cup l_{i j}$, where $l_{i j ; k}(k=1,2)$ is the strict transform of the line through $p_{i j}$ distinct from β_{i}. Thus the number of such pairs is four and $m_{i} \geq 4$.

Finally we will count the number of line pairs intersecting a general line l. By Corollary 2.4.19, D_{l} does not contain any line pair $l \cup l^{\prime}$. Since the number of lines on A intersecting a fix line on A is $d-2$, we see that $D_{l} \cdot \Gamma(\theta) \geq(d-2)(d-3)$. Then

$$
(d-2)(d-3) \leq \Gamma(\theta) \cdot D_{l}=(d-3) a-\sum_{i=1}^{s} m_{i}
$$

where $s=\frac{(d-2)(d-3)}{2}$. This implies that $m_{i}=4$.

Corollary 3.3.4. For $\left(\mathcal{H}_{1}, \theta\right)$, it holds that $\operatorname{deg} \Gamma(\theta)=g(g-1)$ and $p_{a}(\Gamma(\theta))=$ $\frac{3}{2} g(g-1)+1$.
Proof. The invariants of $\Gamma(\theta)$ are easily calculated.

3.4. Definition of the Scorza quartic.

By Definition 3.3.1, we have the following diagram:

We can define:

$$
\bar{D}_{H}:=\pi_{\theta^{\prime} *} p^{*}(H \cap \Gamma),
$$

where H is an hyperplane of \mathbb{P}^{g-1}. It is easy to see:

$$
\operatorname{deg} \bar{D}_{H}=2 g(g-1)
$$

Let $S^{m} \check{V}$ the space of m-th symmetric forms on the vector space V. Note that an element of $S^{m} \check{V}$ defines a hypersurface of degree m in $\mathbb{P}_{*} V$. Let $F \in S^{2 k} \check{V}$ be a nondegenerate homogeneous form of degree $2 k$ and $\check{F} \in S^{2 k} V$ the dual homogeneous
form to F defined as in [Dol04, §2.3]. Following [Dol04, 4.1], we define the variety of the conjugate pairs

$$
\mathrm{CP}(F):=\left\{\left(\left[H_{1}\right],\left[H_{2}\right]\right) \in \mathbb{P}_{*} \check{V} \times \mathbb{P}_{*} \check{V} \mid\left\langle H_{1}^{k}, P_{H_{2}^{k}}(\check{F})\right\rangle=0\right\}
$$

where \langle,$\rangle is the polarity pairing. Let$

$$
\Delta:=\mathrm{CP}(F) \cap\left(\text { the diagonal of } \mathbb{P}_{*} \check{V} \times \mathbb{P}_{*} \check{V}\right)
$$

Since the diagonal of $\mathbb{P}_{*} \check{V} \times \mathbb{P}_{*} \check{V}$ is isomorphic to $\mathbb{P}_{*} \check{V}$ then $\Delta \simeq\{\check{F}=0\}$.
Set $D_{H}^{\prime}:=P_{H^{k}}(\check{F})$ for a hyperplane $H \subset \mathbb{P}_{*} V$. Then we can write:

$$
\mathrm{CP}(F)=\left\{\left(\left[H_{1}\right],\left[H_{2}\right]\right) \in \mathbb{P}_{*} \check{V} \times \mathbb{P}_{*} \check{V} \mid D_{H_{2}}^{\prime}\left(\left[H_{1}\right]\right)=0\right\} .
$$

Definition 3.4.1. A non-degenerate quartic $\left\{F_{4}^{\prime}=0\right\}$ is called the Scorza quartic for $\left(\Gamma, \theta^{\prime}\right)$ if $\left\{D_{H}^{\prime}=0\right\} \cap \Gamma(\theta)=\bar{D}_{H}$ for a hyperplane $\{H=0\}$ such that $\Gamma \cap\{H=0\}$ is reduced, where D_{H}^{\prime} is defined as above for F_{4}^{\prime}.
3.5. Dolgachev-Kanev's conjecture on the existence of the Scorza quartic. We show that the following properties hold for general pairs of canonical curves Γ and even theta characteristics θ^{\prime} as Dolgachev and Kanev conjectured.
(A1) The number of theta-polyhedrons having a general face in common is two. Equivalently, the degree of the map $I \rightarrow \Gamma\left(\theta^{\prime}\right)$ is two,
(A2) $\Gamma\left(\theta^{\prime}\right)$ is not contained in a quadric, and
(A3) I is reduced.
By [DK93, Theorem 9.3.1], these three conditions are sufficient for the existence of the Scorza quartic for the pair $\left(\Gamma, \theta^{\prime}\right)$.

First we show that for our trigonal curve \mathcal{H}_{1} and the even theta characteristic θ defined by intersecting lines the above conditions hold.
Lemma 3.5.1. $\left(\mathcal{H}_{1}, \theta\right)$ satisfies (A1)-(A3).
Proof. (A1) This condition means that for general lines l and l^{\prime} on A such that $\left([l],\left[l^{\prime}\right]\right) \in I$ the face $\left\langle I([l])-\left[l^{\prime}\right]\right\rangle$ belongs only to $I([l])$ and to $I\left(\left[l^{\prime}\right]\right)$.

By contradiction assume that there exists a line m on A such that $m \neq l, m \neq l^{\prime}$ and $\left\langle I([l])-\left[l^{\prime}\right]\right\rangle$ is a face of $I([m])$. Then some $d-3$ points of $I([m])$ lie on the hyperplane $\left\langle I([l])-\left[l^{\prime}\right]\right\rangle$, equivalently, m intersects $d-3$ lines on A corresponding to the points of $I([l]) \cup I\left(\left[l^{\prime}\right]\right)$ except l and l^{\prime}. By $d \geq 6$, it holds that, for l or l^{\prime}, say, l, there exist two lines intersecting both l and m. Consider the projection $B \rightarrow Q$ from $f(l)=\bar{l}$:

We use the notation of Proposition 2.1.6 (2). Now notice that by generality of l, $\bar{l} \neq \bar{m}:=f(m)$ is equivalent to have $l \neq m$. Since there exist two lines intersecting both \bar{l} and \bar{m}, we have $\bar{l} \cap \bar{m}=\emptyset$. Thus the strict transform \bar{m}^{\prime} of \bar{m} on Q is a line. Since there exist two lines intersecting both \bar{l} and $\bar{m}, \bar{m}^{\prime}$ intersects the image $E_{\bar{l}}^{\prime}$ of $E_{\bar{l}}$ at two points. Since $E_{\bar{l}}^{\prime}$ is a hyperplane section on Q, this implies that $\bar{m}^{\prime} \subset E_{\bar{l}}^{\prime}$, a contradiction.
(A2) This condition is satisfied by Theorem 2.4.18 (4) and Proposition 3.3.3.
(A3) We prove this in the proof of Proposition 3.1.3.

Let

$$
\Gamma^{\prime}(\theta):=I /(\tau)
$$

where τ is the involution on I induced by that of $\Gamma \times \Gamma$ permuting the factors. Note that $I \rightarrow \Gamma(\theta)$ factor through $\Gamma^{\prime}(\theta)$.
Corollary 3.5.2. For $\left(\mathcal{H}_{1}, \theta\right)$, it holds $\Gamma(\theta)^{\prime} \simeq \Gamma(\theta)$.
Proof. By Lemma 3.5.1, (A1) holds for $\left(\mathcal{H}_{1}, \theta\right)$. Thus, by [DK93, Corollary 7.1.7], we have $p_{a}\left(\Gamma(\theta)^{\prime}\right)=\frac{3}{2} g(g-1)+1$. Thus, by Corollary 3.3.4, $p_{a}\left(\Gamma(\theta)^{\prime}\right)=p_{a}(\Gamma(\theta))$. By (A1) again, the natural morphism $\Gamma(\theta)^{\prime} \rightarrow \Gamma(\theta)$ is birational. Therefore it holds $\Gamma(\theta)^{\prime} \simeq \Gamma(\theta)$.

By a moduli argument we prove the conjecture for a general pair $\left(\Gamma, \theta^{\prime}\right)$.
Theorem 3.5.3. A general spin curve satisfies the conditions (A1)-(A3). In particular, the Scorza quartic exists for a general spin curve.

Proof. Let \mathcal{M} be the moduli space of couples $\left(\Gamma, \theta^{\prime}\right)$, where Γ is a curve of genus g and θ^{\prime} is a theta characteristic such that $h^{0}\left(\Gamma, \theta^{\prime}\right)=0$. Classically, \mathcal{M} is known to be irreducible (see [Cor]). Let U be a suitable finite cover of an open neighborhood of a couple $\left(\mathcal{H}_{1}, \theta\right)$ such that there exists the family $\mathcal{G} \rightarrow U$ of pairs of canonical curves and non-effective theta characteristics. Denote by $\left(\Gamma_{u}, \theta_{u}\right)$ the fiber of $\mathcal{G} \rightarrow U$ over $u \in U$. By Lemma 3.5.1, $\left(\mathcal{H}_{1}, \theta\right)$ satisfies (A1)-(A3). Since the conditions (A1) and (A3) are open conditions, these are true on U. Thus we have only to prove that the condition (A2) is still true on U. Let $\mathcal{J} \rightarrow U$ be the family of Jacobians and $\Theta \rightarrow U$ the corresponding family of theta divisors. By [DK93, p.279-282], the family \mathcal{I} of theta-correspondences embeds into Θ, and by the family of Gauss maps $\Theta \rightarrow \check{\mathbb{P}}^{g-1} \times U$, we can construct the family $\widetilde{\mathcal{G}} \rightarrow U$ whose fiber $\widetilde{\mathcal{G}}_{u} \subset \check{\mathbb{P}}^{g-1}$ is the discriminant $\Gamma\left(\theta_{u}\right)$. By Corollary 3.5.2, it holds $\Gamma(\theta)^{\prime} \simeq \Gamma(\theta)$ for $\left(\mathcal{H}_{1}, \theta\right)$. Thus we have also $\Gamma\left(\theta_{u}\right)^{\prime} \simeq \Gamma\left(\theta_{u}\right)$ for $u \in U$. By [DK93, Corollary 7.1.7], we see that $p_{a}\left(\Gamma\left(\theta_{u}\right)\right)$ and $\operatorname{deg} \Gamma\left(\theta_{u}\right)$ are constant for $u \in U$. Thus $\widetilde{\mathcal{G}} \rightarrow U$ is a flat family since the Hilbert polynomials are constant. Since no quadric contains $\Gamma(\theta)$ for $\left(\mathcal{H}_{1}, \theta\right)$, neither does $\Gamma\left(\theta_{u}\right)$ for $u \in U$ by the upper semi-continuity theorem.

Remark. Let $\left(\Gamma, \theta^{\prime}\right)$ be a general pair of a canonical curve Γ and a non-effective theta characteristic θ^{\prime}. In the proof of Theorem 3.5.3, we prove that $\Gamma\left(\theta^{\prime}\right)^{\prime} \simeq \Gamma\left(\theta^{\prime}\right)$.

3.6. F_{4} is the Scorza quartic for $\left(\mathcal{H}_{1}, \theta\right)$.

Note that, for F_{4}, it holds $\mathcal{D}_{2}=\operatorname{CP}\left(F_{4}\right)_{\mid \mathcal{H}_{2} \times \mathcal{H}_{2}}$ and $\widetilde{D}_{q}=P_{H_{q}^{2}}\left(\check{F}_{4}\right)$.
Let $\left\{F_{4}^{\prime}=0\right\}$ be the Scorza quartic for $\left(\mathcal{H}_{1}, \theta\right)$. Let D_{H}^{\prime} be defined as in 3.4 for F_{4}^{\prime}. We simply denote $D_{H_{q}}^{\prime}$ by D_{q}^{\prime}.
Proposition 3.6.1. F_{4} is the Scorza quartic for $\left(\mathcal{H}_{1}, \theta\right)$.
Proof. The assertion is equivalent to the following equality:

$$
\mathrm{CP}\left(F_{4}^{\prime}\right)_{\mathcal{H}_{2} \times \mathcal{H}_{2}}=\mathrm{CP}\left(F_{4}\right)_{\mid \mathcal{H}_{2} \times \mathcal{H}_{2}}
$$

Since both sides have the structures of quadric section bundles over \mathcal{H}_{2}, it suffices to prove $\left\{D_{q}^{\prime}=0\right\}=\left\{\widetilde{D}_{q}=0\right\}$ for a generic q. Since there is no quadric containing $\Gamma(\theta)$ by Lemma 3.5.1, it is sufficient to show that $\left\{D_{q}^{\prime}=0\right\} \cap \Gamma(\theta)=\left\{\widetilde{D}_{q}=0\right\} \cap \Gamma(\theta)$. The set $\left\{\widetilde{D}_{q}=0\right\} \cap \Gamma(\theta)$ consists of points corresponding to the line pairs intersecting q. On the other hand, $\left\{D_{q}^{\prime}=0\right\} \cap \Gamma(\theta)=\bar{D}_{H_{q}}$ by the definition of the Scorza quartic
since H_{q} is reduced for a general q. By the definition of $\bar{D}_{H_{q}}$, we can easily show the set $\bar{D}_{H_{q}}$ also consists of points corresponding to the line pairs intersecting q. Thus $\left\{D_{q}^{\prime}=0\right\} \cap \Gamma(\theta)=\left\{\widetilde{D}_{q}=0\right\} \cap \Gamma(\theta)$ as desired.

3.7. Moduli space of trigonal spin curves.

As in Mukai's case we can reconstruct the threefold \widetilde{A}, that is the couple (B, C), via the curve \mathcal{H}_{1} and a non-effective theta characteristic θ on it.
Proposition 3.7.1. \widetilde{A} is recovered from $\left(\mathcal{H}_{1}, \theta\right)$.
Proof. From $\left(\mathcal{H}_{1}, \theta\right)$, we can define $\Gamma(\theta)$ as in Definition 3.3.1 and F_{4} by Proposition 3.6.1. By Theorem 2.4.18 and Proposition 3.3.3, \mathcal{H}_{2} is recovered from $\Gamma(\theta)$ as the intersection of cubics containing $\Gamma(\theta)$. By Theorem 2.5.12 and Lemma 2.5.14, \widetilde{A} is recovered from F_{4} and \mathcal{H}_{2}.

For the next result, we denote \widetilde{A} by \widetilde{A}_{d}.
Recall that we denote by \mathcal{H}_{d}^{B} the union of components of the Hilbert scheme of B whose general points parameterize smooth rational curves of degree d obtained inductively as in Proposition 2.2.1. By the remark after the proof of Proposition 3.7.5, \mathcal{H}_{d}^{B} is irreducible.

We identify \mathcal{H}_{d}^{B} with the moduli space of \widetilde{A}_{d}, which we denote by \mathcal{M}_{d}. Let \mathcal{M}_{g}^{\prime} and $\widetilde{\mathcal{M}}_{g}^{\prime}$ be the moduli space of trigonal curves of genus g and the moduli space of pairs of trigonal curves of genus g and even theta characteristics, respectively. We can define the rational map $\pi_{\mathcal{M}}: \mathcal{M}_{d} \rightarrow \widetilde{\mathcal{M}}_{d-2}^{\prime}$ by setting $\widetilde{A}_{d} \mapsto\left(\mathcal{H}_{1}, \theta\right)$.
Corollary 3.7.2. $\pi_{\mathcal{M}}$ is birational. Moreover, $\operatorname{Im} \pi_{\mathcal{M}}$ is an irreducible component of $\widetilde{\mathcal{M}}_{d-2}^{\prime}$ dominating $\mathcal{M}_{d-2}^{\prime}$. In particular a general \mathcal{H}_{1} is a general trigonal curve of genus $d-2$.
Proof. The first assertion follows from Proposition 3.7.1.
Since $\operatorname{dim} \mathcal{H}_{d}^{B}=2 d$ and $\operatorname{dim} \operatorname{Aut}\left(B, C_{d}\right) \leq 3$, we see that $\operatorname{dim} \mathcal{M}_{d} \geq 2 d-3$. On the other hand, $\operatorname{dim} \mathcal{M}_{d-2}^{\prime}=2 d-3$ and a smooth curve has only a finite number of theta-characteristics. Thus the latter part follows from the first.

Combining Theorem 2.5.12, Proposition 3.6.1 and Corollary 3.7.2, we obtain:
Corollary 3.7.3. Let F_{4} be the Scorza quartic for a general trigonal spin curve of genus $d-2(d \geq 6)$ and \mathcal{H}_{2} the intersection of cubics containing the discriminant locus of the trigonal spin curve. Set $n:=\frac{(d-1)(d-2)}{2}$. Then the normalization of the main component of $\operatorname{VSP}\left(F_{4}, n ; \mathcal{H}_{2}\right)$ is isomorphic to the blow-up of quintic del Pezzo threefold B along a general smooth rational curve of degree d and then the strict transforms of its bi-secant lines on B.

By our study we see some other problems which are of a certain interest:
Problem 3.7.4. (1) Is the Hilbert scheme of curves of B whose generic point corresponds to a smooth rational curve of degree d irreducible, namely, is \mathcal{H}_{d}^{B} the unique irreducible component?
(2) Is $\widetilde{\mathcal{M}}_{g}^{\prime}$ irreducible?

If $d=5,(2)$ is true by [DK93, Lemma 7.7.1]. We show that (1) is true also for $d \leq 6$. (Probably if $d \leq 5$, then it is known. Our contribution is for $d=6$).

Proposition 3.7.5. If $d \leq 6$, then the answer to Problem 3.7.4 (1) is affirmative.

Proof. For a smooth projective variety X in some projective space, let $\mathcal{C}_{d}^{0}(X)$ be the components of the Hilbert scheme of X whose general points parameterize smooth rational curves of degree d. By [Per02], $\mathcal{C}_{d}^{0}(G(a, b))$ is irreducible, where $G(a, b)$ is the Grassmannian parameterizing a-dimensional sub-vector spaces in a fixed b dimensional vector space. The claim is that $\mathcal{C}_{d}^{0}\left(\mathbb{P}^{6} \cap G(2,5)\right)$ is irreducible, where $\mathbb{P}^{6} \subset \mathbb{P}^{9}$ is transversal to $G(2,5)$. The claim is true for $d=1$ since $\mathcal{H}_{1}^{B} \simeq \mathbb{P}^{2}$.

Let \mathcal{B} be the irreducible family of del Pezzo 3 -folds $B=G(2,5) \cap \mathbb{P}^{6}$, where $\mathbb{P}^{6} \subset \mathbb{P}^{9}$ is transversal to $G(2,5)$. Let

$$
J=\left\{\left(\left[C_{d}^{0}\right],[B]\right) \in \mathcal{C}_{d}^{0}(G(2,5)) \times \mathcal{B} \mid C_{d}^{0} \subset B\right\}
$$

The claim is equivalent to show that a general fiber $J \rightarrow \mathcal{B}$ is irreducible. Since $d \leq 6$, a smooth rational curve of degree d is contained in at least a six-dimensional projective space. Thus a general fiber of $J \rightarrow \mathcal{C}_{d}^{0}(G(2,5))$ is non-empty and irreducible. Since $\mathcal{C}_{d}^{0}(G(2,5))$ is irreducible, it holds J is irreducible. By the argument of [MT01, Proof of Theorem 3.1 p.17], we have only to show that there is one particular component $\mathcal{C}_{d}^{0 \star}(B)$ of a general fiber $J \rightarrow \mathcal{B}$ invariant under monodromy.

By induction let us assume that $\mathcal{C}_{d-1}^{0}(B)$ is irreducible. Let $\left[C_{d-1}^{0}\right] \in \mathcal{C}_{d-1}^{0}(B)$ be a generic element. The family of lines $[l] \in \mathcal{H}_{1}^{B}$ which intersect a general element of $\mathcal{C}_{d-1}^{0}(B)$ is irreducible by Proposition 2.2.4 (3). This implies that the family $\mathcal{C}_{d-1,1}^{0}(B)$ of reducible curves $C_{d}^{0}=C_{d-1}^{0} \cup l$ such that $\left[C_{d-1}^{0}\right] \in \mathcal{C}_{d-1}^{0}(B),[l] \in \mathcal{H}_{1}^{B}$ and length $C_{d-1}^{0} \cap l=1$ is irreducible. Similarly to the proof of Proposition 2.2.1, we see that the locus containing the points corresponding to the smoothings of curves from $\mathcal{C}_{d-1,1}^{0}(B)$ is an irreducible component of J.

Remark. The proof of the proposition shows that \mathcal{H}_{d}^{B} is irreducible for any d.

References

[AH95] J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995), no. 2, 201-222.
[Cor] M. Cornalba, Moduli of curves and theta-characteristics, Lectures on Riemann surfaces (Trieste, 1987), World Sci. Publ., Teaneck, NJ, 1989, pp. 560-589.
[DG88] E. Davis and A. Geramita, Birational morphisms to \mathbb{P}^{2} : an ideal-theoretic perspective, Math. Ann. 279 (1988), 435-448.
[DK93] I. Dolgachev and V. Kanev, Polar covariants of plane cubics and quartics, Adv. Math. 98 (1993), no. 2, 216-301.
[Dol04] I. Dolgachev, Dual homogeneous forms and varieties of power sums, Milan J. of Math. 72 (2004), no. 1, 163-187.
[FN89a] M. Furushima and N. Nakayama, The family of lines on the Fano threefold V_{5}, Nagoya Math. J. 116 (1989), 111-122.
[FN89b] , A new construction of a compactification of \mathbb{C}^{3}, Tohoku Math. J. 41 (1989), no. 4, 543-560.
[Fuj81] T. Fujita, On the structure of polarized manifolds with total deficiency one, part II, J. Math. Soc. of Japan 33 (1981), 415-434.
[Gim89] A. Gimigliano, On Veronesean surfaces, Nederl. Akad. Wetensch. Indag. Math. 51 (1989), no. 1, 71-85.
[HH85] R. Hartshorne and A. Hirschowitz, Smoothing algebraic space curves, Algebraic geometry, Sitges (Barcelona), 1983, Lecture Notes in Math., vol. 1124, Springer-Verlag, BerlinNew York, 1985, pp. 98-131.
[IK99] A. Iarrobino and V. Kanev, Power sums, Gorenstein algebra and determinantal loci, Lecture Notes in Math., vol. 1721, Springer-Verlag, Berlin-New York, 1999.
[Ili94] A. Iliev, The Fano surface of the Gushel threefold, Comp. Math. 94 (1994), no. 1, 81-107.
[IR01a] A. Iliev and K. Ranestad, Canonical curves and varieties of sums of powers of cubic polynomials, J. Algebra 246 (2001), no. 1, 385-393.
[IR01b] ,K3 surfaces of genus 8 and varieties of sums of powers of cubic fourfolds, Trans. Amer. Math. Soc. 353 (2001), no. 4, 1455-1468.
[Isk77] V. A. Iskovskih, Fano 3-folds 1 (Russian), Izv. Akad. Nauk SSSR Ser. Mat 41 (1977), English transl. in Math. USSR Izv. 11 (1977), 485-527.
[Isk78] , Fano 3-folds 2 (Russian), Izv. Akad. Nauk SSSR Ser. Mat 42 (1978), 506-549, English transl. in Math. USSR Izv. 12 (1978), 469-506.
[Man01] M. Mancini, Rational projectively Cohen-Macaulay surfaces of maximum degree, Collect. Math. 52 (2001), no. 2, 117-126.
[Mel06] M. Mella, Singularities of linear systems and the Waring problem, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5523-5538.
[MM81] S. Mori and S. Mukai, Classification of Fano 3 -folds with $b_{2} \geq 2$, Manuscripta Math. 36 (1981), 147-162.
[MM85] \qquad , Classification of Fano 3-folds with $b_{2} \geq 2$, I, Algebraic and Topological Theories (Kinosaki, 1984), Kinokuniya, Tokyo, 1985, to the memory of Dr. Takehiko MIYATA, pp. 496-545.
[MR05] F. Melliez and K. Ranestad, Degenerations of (1,7)-polarized abelian surfaces, Math. Scand. 97 (2005), no. 2, 161-187.
[MS01] N. Manolache and F.-O. Schreyer, Moduli of (1,7)-polarized abelian surfaces via syzygies, Math. Nachr. 226 (2001), 177-203.
[MT01] D. Markushevich and A. S. Tikhomirov, The Abel-Jacobi map of a moduli component of vector bundles on the cubic threefold, J. Algebraic Geom. 10 (2001), no. 1, 37-62.
[MU83] S. Mukai and H. Umemura, Minimal rational threefolds, Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 490518.
[Muk92] S. Mukai, Fano 3-folds, London Math. Soc. Lecture Notes, vol. 179, Cambridge Univ. Press, 1992, pp. 255-263.
[Muk04] , Plane quartics and Fano threefolds of genus twelve, The Fano Conference, Univ. Torino, Turin, 2004, pp. 563-572.
[Per02] N. Perrin, Courbes rationnelles sur les variétés homogènes, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 1, 105-132.
[Rei83] M. Reid, Minimal models of canonical 3-folds, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131180.
[RS00] K. Ranestad and F. Schreyer, Varieties of sums of powers, J. Reine Angew. Math. 525 (2000), 147-181.
[Sch01] F-O. Schreyer, Geometry and algebra of prime Fano 3-folds of genus 12, Compositio Math. 127 (2001), no. 3, 297-319.
[Whi24] M. P. White, On certain nets of plane curves, Proc. Cambridge Phil. Soc. 22 (1924), $1-11$.

Graduate School of Mathematical Sciences, the University of Tokyo, Tokyo, 1538914, JAPAN, TAKAGI@MS.U-TOKyo.ac.JP
D.I.M.I., the University of Udine, Udine, 33100 Italy, Francesco.Zucconi@dimi.uniud.it

[^0]: Date: 1.22, 2007.
 1991 Mathematics Subject Classification. Primary 14J45; Secondary 14N05, 14H42.
 Key words and phrases. Waring problem, Variety of power sums, theta characteristic, Scorza quartic, Fano threefold, two ray game.

