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§ 1. Introduction

Let 4 be a newform in Sk(N,v) . i.e. of integral

weight k..z 2 , level N and nebentypus.character v .
[o]

Let v denote the corresponding primitive character.

§ has a Fourier expansion

T aq’, |

. _e2nlz)
1

4 (z)

n
and the corresponding L-function

-5

L(4 s)=¥ a.n
' n=1 n

can be written as an Euler product of the form

L(ﬁ,s)=TT-(1—arr-s + b(r)rk_1_25)_1.

r
.prime

For simplicity throughout this article we make the
technical assumption, that 4 has rational Fourier
coefficients, i.e. all a, € @ . This implies that
v2 = 1 , We denote by o and Br the reciprocal
zeros of the Euler polynominal at r , so that we
get

k-1

1-a_X + v(r)r X2=(1-arX).(1-Brx).

We define the "imprimitive symmetric square" function

attached to § by



P(§,8) =TT (1=a2x™%) . (1-a B _r™%)  (1-82r™%)177,
o r

which can easily be transformed into the formula

LN(v2,25+2—2k)

D(ﬂ,S)"'
© LN(u,s+1—k) n

nmM™s
P
o]
o]

1

where LN denotes the Dirichlet L-function with the

Euler factors at primes dividing N removed.

The purpose of the present paper is to use algebraicity

of special values of the function D_({§,s) and its twists
Dw(ﬁ,y,s) by certain Dirichlet characters x to do p-adic
interpolation and define in this way associated p-adic
L-functions. It turns out that D;{ﬁ,x,s) is not quite

the right object to consider. The two major "defects" are

a). that in general it does not satisfy a functional -

equation in.a natural form for s —» 2k-1-s ,

b) that it is not necessarily entire (possibly there

are peles at s=k , k-1 ).

This has already been remarked by Shimura (8] , who
proved meromorphic continuation of D_(§,x,s) to the
whole s-plane with the only possibility of simple poles

at s=k , k=1 .
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In § 2 we work out éxplicitely the modification of Dg
by finitely many Euler factors such that the resulting

"primitive symmetric square" function D_(4§,s) together

with the twists ©?0_({,x,s) under consideration are
entire functions satisfying a functional equation of

canonical type (Theorem 1). This enables us then in § 3

to study algebraicity properties of all special values
D {($,x,m for m=1, ... , 2k-2 (Theorem 2).

Note, that m=k , k-1 might be a pole of D_(f,x,s)

If m is not a pole of D_{f,x,s) , the algebraicity
statement for D_(4,x,m) easily reduces to Sturm's
algebraicity results for Dm(ﬁ,x,m) {10] . But if m
is a pole of Dm(é,x,s) we must use the functional
equation satisfied by D_(§,x,s) to pass to m'=2k-1-m
There we exploit the fact that m' is not a pole of
D_(§,x,s) , thus showing "algebraicity for 7D_(§,x,m")"
which eventually via the functional equation yields

"algebraicity for D_(§,x,m)".

In § 4 we fix a prime pJZNap and show the existence

of p-adic L-functions Dp'm(ﬁ,s) for m=1, ...., 2k-2,
which roughly speaking interpolate p-adically the special
values D_(§,x,m) , where x runs over all finite

characters X:1+pzp——> ¢ (Theorem 3). As a consequence

of the functional equation of Dm(g,x,s) we will receive
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the functional equation of the p-adic L-functions:

Dp'm(ﬂ,s) = Dp,2k-1-m(6’2_s)'

There is unpublished work of Hida treating p-adic
interpolation of the special values of D_ by a
different approach via p-adic modular forms. However,
the methods of the present paper essentially grew out
of a refinement of the techniques in B . Arnaud's
Thése [1] , where he shows that the integrals of
characters against the proper (i.e. not smoothed)

pPandifkin distribution are essentially p-integral.

The case of a newform of weight 2 is of particular
interest. There, our primitive symmetric square is
exactly the L-function attached to the system of

2HE(E)) for the corres-

l-adic representations (Sym
ponding modular elliptic curve E . A detailled treat-
ment of this case, in particular the connection with
Iwasawa theory and the so-called main-conjecture are

the subject of a forthcoming joint paper with J. Coates

(31 .



§ 2. The primitive symmetric square

For the modification of Dm(é,x,s) it is convenient to ﬁ

introduce the notion of a minimal form.

Definition: A newform h of level M is called minimal

(respectively r-minimal for a prime r ), if &2 1is not

a twist h¢ of a newform #h' of level M'< M by a
character (respectively of conductor c¢|rm).

Sometimes we write y=[][y where ¢, |r . Let g be a
rr

¥
r
minimal form associated with § , i.e. there is a charac-
ter ¢ such that gé=5 . Such a g always exists although
it needs not to be unique. We suppose that g has level

M and Fourier expansion

We define Euler factors for primes r|M by

1-(x (r)z ~%) 2

1-s

Dr(x,s):= { if b =0 and ord M even,

T-x(xr)r otherwise.

Proposition 2.1 and Definition: a) The "primitive symme-

tric square" function

2
LMCi(ﬁ  28+2=2K) )
Dm(é’X'S):=TTpr(XIS+2"k)-1 - ZIbnlz

r|M

S

- x(n)n~
L{(xv,s+1=-k n=1



is independent of the choice of an associated minimal

form g and differs from D_{(§,x,s) only at finitely

many Euler factors.

b) D_(§,x,s) does not change, if we replace { by

any twist 6¢ with a character ¢ such that (cw,N)=1

In particular one can assume that N=0(4)

Proof: a) Suppose g¢g'# g 1is a second choice of level

M' and 5=g‘€. . For an integer R and a prime r we

ordrR

put R _:=r . Since g 1is minimal iff g 'is r-mini-

mal for all r|N we may suppose c_» ce,lrm and show:

—_ 1
Mr —_Mr and

where g'= I bﬁ qn . We know that g': I (i.e. all

.n
but finitely many Fourier coefficients at primes coincide).

Case 9oz is newform: Then g'= 9.z and r-minimality

of g' yields M _zM! . If b_=0 , then g=g'_  , hence
rr r i
MéaMr by r-minimality of g , so we have Mr=M£ in this

t —_ 4 : | -
case. If br¢0 and Mr>Mr , then cEE,¢1 implies br—O '

hence r2|M} and c¢ [M'/r . Note: g'€ Sk(M',vE'z).

_ _ 2 -
= M or (vr—s and Mr =r) .

br* 0 vyields (c 2)r My

ve | :
The last case being impossible since r21M£|Mr, we arrive

at ¢ Ly = M. - Now apply Corollary 4.3 [2, p.235]
(ee')



Put

: { Cegr 1f ezl oy 2 M.,
Q:=

-2 -, if veler' +# 1 and c -2 -, < M
VE EE VE EE

Then g's= 9ez is newform of level é.M if vee' # 1
{otherwise it is not a newform). So M£=6MraMr , & contra-
diction. We get Mr=M£ also for br¢0 . It remains to
show that b£= implies‘ br=0 . If we assume br¢0 '

) = M. = ML 2 r2 . Again by Corollary 4.3

we get (¢ r r

=2
VE -
from [2] we would arrive at Mé = QMr > Mr , since

ee' # 1 (note: bé =0 =* br implies g' # g ) hence

contradiction.

.

Case g -, not a newform: Proposition 4.1 {2] tells us

for r-minimal g with br = 0 that all twists with

8y

c¢|rm are newforms. So we know b_ # 0 =Db! and hence

c = M_ or (v_ =2 ¢ and M_ = r).

In the last case any twist of g by a character is a

newform by Corollary 4.1 [2] , so this is excluded here.

By Corollary 4.3 we have for ¢ 5 = Mr
v_E
r
- newform iff ece' # v 2
gee' wewfo €E re .
Hence we get from our assumption : V.= ee' . Now
gozr = % bnaE'(n)qn has character ve4e®s'? - (vv;1)€gf :

n
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Apply the involution W’.1 of [2] ! There is a newform

-

-1 - r .
h € Sk(M,vvr ee') and AMr(g) € @ with |xMr(g)| =1
such that ‘
g[WM =y (@) h

and h=I cnqn where
n

-2 .
(vr e”) (p) . bp if p+r,

p -1 5 ; -
(vvr ) (p) . bp if p=1r .

By comparison of Fourier coefficients we see that

9" ~ 8egr ~ h

€ ]

fap
[
o]
(¢}
(1
o
1]

h and therefore Mé = M_ . Furthermore we get

o
-
1§

. 2 '
0 iff r"|M] and c _2|Mr/; /

Vv
ré

o
i

. 2
0 iff r IMr and c _2|Mr/r ,

V_.E
r

which completes the proof of a).

b) It is clear that replacing {4 by 5¢ with (cw,N)=1

does not affect an associated minimal form g , since

§ = 9 implies and the assumption (c ,N)=1

Y
is again a newform. o

y = 9ey

guarantees that 5¢



In all what follows we suppose that (cX,N)

define
S_k+2_Hxv
fm(vx,s):= (2n)‘sF (S)"—s/zp;( )
2
H

v vy (=1) = (=1) X, Hoy = 001 -

ordrM-m(r) {
B : = TTr.‘ where m(r) : =

riM
% () Gt /

W:=XB — ‘:_ R
X G(xv).c(x)2 vxi=hey,

where the GauB sum G(x) is given by

C

G(x) : = ¥ x(x) exp(2nix/CX).
x=1

Theorem 1 : The function’

R(x,s):=(B%c 3¢ ~1)s/2

e T (vx,8) .D_(§,x,5)

has analytic continuation to the whole complex plane

and

where

} if b_=0,
. r

where it satisfies the functional equation

R(x,s) = W Rix,2k-1-s).

R{x,s) is entire except for odd k and trivial

case there are exactly two simple poles:

X

k-1

!

0 otherwise,

in which



The proof will occupy the rest of this § . We fix a

minimal form g associated with 4 and apply Theorem

2.2 from [5] to the newforms F,i=g € Sk(M,sz) and

_ 2 -2
Fpi=gy € S, (Mc , ve

tions A), B), C) of 1[5, p. 41] are satisfied. In the

;2) . One easily checks that condi-

notation of that article we set

. 2
M':= T < /e,

rox;
rlc 5
X
(I } 2
M'':=M T c .
r
r|c
2 _
Xp =1

Li formulates her result in terms of the pseudo-eigen-

values Ar(Fi) under the action of W -operators.

Lemma 2.2: For a prime r|M such that br=0 we have for

| kr(gw) Ar(g) .
n (r):= max { neEw; - = Vy with cwlr }
kr(gilp) )\i;(g)‘()
) ord_M
that n(r) = [ 2r ]I

Proof: The twisting operator Rx and Wr-operators behave

like



2:77

QIRX\Wr = XM ) .g|w_|R

X

where glRX = G(E).gX . Hence

A (g) _
X g - M)

r'93
The same argument for

.Cu_z), vgzwz) instead of g yields

2
gwe Sk(lcm(M,c
ve

v

? C

Y

A (g,) _

TETEE:) = x (M(¥) )

r-ux

where M(y) denotes the level of the newform gw . Since

for r-minimal g with b _=0 by Theorem 4.3 of [2] one
2 -

has (¢ —Z)rSJﬁr , we get for cw\Mr : M(y) = M by mini-

ve
mality of g , which proves the lemma.

The lemma justifies our definition of m(r) which in

Li's article is

[ordrM ]
nlr) := { mnin{n(x), 5 )y  if br=0 ,
0 otherwise.

For r|M'' Li defines



(1-x(r) .

2_-s+2-k
b [“r

1-)( (r) |br|2r—(5+k-1)
Gr(x.s)='< 1-)(2(r)r-ZS

l-x(r).x °

1

\
r|M we have

(e

r if Mr=(c

Since for

)

VE

k-2

if M =r and
r

=ﬁr

0 otherwise,

.
we can express the 0's
4
1-x2(r) %% if b_=0
@r(x,s) - <
1-x(r)r~° otherwise,
\

hence we get the

~2'r

if M = ) =y =
1 =T and (ve )r—xr—1,

if M_=(c_,)_ and x_=1
r _“..\)'32 r r '

if br=0 and ordrM even,

if br=0 and ordrM odd,

otherwise.

v _€2
r r '

by the formula

and ordrM even,



2.9

Remark 2.3:

Or(x,S) = o {x,s%1) .

We must introduce some more notation to formulate Li's

result. For r|M' define

" 2
M! if M! > ¢ .
r r
) r
.= <
Qr'
C 2 otherwise,
Xy
\\
and
| S2, . = 2,.= 2,2 - \ 2 24y
Ar(x).—xr( 1) .ve (xxr) (er)f(xxr)(Mr)G(Xr)'Ar(gi) ;—5
Xy
We set
y (s) :=(2m) 28 -1
grg=8 Is)T(s+1) TT o_(x,s) .L_ __(s)
X r 849 r
: rlMll X
where
2 X ) 2 - k_1
Ly g (8) iy, F28) . £ ib [Z.x(min (s+k=1)
X X n=1
Proposition 2.4: (W. Li) The function Wg g_(s) has
"X

analytic continuation to the whole complex plane, which

is an entire function if x#1 and which has only simple




poles at s=0 and s=1 if x 1is trivial. It satisfies

the functional equation

v (s) = A_(s).¥= =—(1-s) ,
Qrgx X Q:QX
where .
ord_M-m(r)
A, (s):= TTx2(rc!™28) - ¢
r|iM
_ 2ord,c
. TT(x?‘(r)r1 28y X
rlc
X
2
Xy = 1
c 2 \1-2s -5, - 2 .
. TTG(Xi) Ar(x) Xr Qr (er) (Qrcxr/M I')
rlc 5 ML
X

and § = % ann

This is Theorem 2.2 from [5] in our special case

2 2
Lemma 2.5: A (s) = (BcX

, )1-25 XZ(B) G(x)

G(x)

Proof: For the primes r|M their contribution to Ax(s)

81725  ang x2(B) .

gives us straight away the factors
For the primes r\c-'2 we reduce everything to the proof
X

of '



Lemma 2.6:

G [ Rxp) (e, ?) ifrs2,
-2 .Xr
A =G ——9 2
G(x4) 4 (xx,) MCX ) if r = 2
r

We continue the proof of Lemma 2.5 and show Lemma 2.6

later. The contribution of primes «r|c 2
X

to AX(S) now

is easy to calculate as

(
- 2 - s -
40 ) e, T te, /2728 e 2 S o) Hee )
] 2 X X X 2 X
2 2 2 2 2
2 _2 {Gix ) <
r
Glxy) - Glx ) —= if r=2 ,
Glx,) |
(xx.) (c 2)C1_ZSC _25()(; )2 (c ?3 otherwise,
. Xy Xpo Xp I Xe
\.
2
G(x,) -
S(—E ] L e? 1 rovet
G(Xr) Xr r

By the decomposition formula for GauB sums

GOx) = TT txxp) (e, ).Glx,)

r|c £
X

and by the identity G(xr) = G(ir) for quadratic characters

Xy, Wwe arrive at

2 2

_ — G(x. .} _ae | G(x)

1T (cxz)1 2S(xxr)(cx4) . 3 = (Ci 1-2s —
r r G(xr) G(x)

rlc
X



which immediately gives the desired formula in Lemma 2.5.

Proof of Lemma 2.6: The proof is easily reduced to show

. G(y.)
_ = 2, = 2 vy o r

Ar(gx) = (xxr)(cxr).ve (cxr).xr( 1) P .
r

By Theorem 4.1 of [2,p.231] we have

- 92 _ -
Ar(gir) = ve (c%r)'xr(-1)'G(Xr)/G(Xr)

and by Proposition 3.4 of [2]

- 2
g- |R-_ [W_ = (xx.)(c_%).g= |W_|R- ,
Xp XXy ¥ T Xy TOXXy

so that by comparison of first Fourier coefficients we get
GlXx.) A (8=) = (xx.) (c.%) . A_(g= ) .G(Xx_)
r'"Tr Yy r X, r¥x.'C r !
r r
hence the desired formula for Ar(gi) .

-

As a conclusion from Proposition 2.4 we get the statement

of Theorem 1 up to holomorphy.

Proposition 2.7: R(x,s) has analytic continuation to a

meromorphic function on € satisfying the predicted

functional equation.

Proof: Firstly we note that VY= ——(s)=¥ _{%). since

QIQX QIQX



EE = (§)X and ?g g_(s) does not change when we replace
2
g =k bnqn by g =% bnqn ; which is obvious by definition.
n n
So putting
* 2,s
R ,S) = ¥
(x,s) (ch) 9'92(5)

we can reformulate a slightly weaker form of Proposition

2.4 via Lemma 2.5 as follows:

*
Lemma 2.8: R (x,s) has analytic continuation to a mero-

morphic function on & which satisfies the functional

equation

* * k-
R (x,s) = WX.R (x,1-8)

*
with the root number WX:=)(2(B).(G(X)/G(;('))2

*
Now divide R (x,s) by the Dirichlet L-function

o s/2 =-s/2 o F(s/2) if wx(-1)=1,
e« =0
Z(VX'S)'-CuX LT Livyx,s). S+1 .
r {(—) 1if wvx(-1}=-1,
2

and use its functional equation

o
_ o G(vx) °o_
CZlvx,s) = o/ Z{¥x,1-s)
. UX(-1)CVX )

o
(where v = primitive character associated with v )



We get by Remark 2.3

*

R (x,s)
——— = T.C
Z(\’XIS) v

-s/2 2

. (B c§>‘1/2.n(x,s+k—1> ,

hence the predicted functional eguation for R(yx,s)

follows with the root number

-
x Yox(-Tc ? ,  Glx) vx-The,,
Wx=wx: N == x7) — 2 vic ) x (c )G(S)
G(vx) G(x) X v
We still have to show the entireness of R(yx,s) . The

proof is based on the following result of Shimura [8]

Proposition 2.9: (Shimura) Let hsSk(N',y) be a newform

with Fourier expansion h(z) = £ dnqn and let x be a
n=1
(primitive) Dirichlet character. Then the function

2 2
LN'C (x"u",28-2k+2)

R(hIXIS):= Fm(UXIS) X rd
' LN,(xu,s-k+1) n=1

x(n)n~%

2
n

can be continued to a meromorphic function on T , which

is holomorphic except for possible simple poles at s=k

and s=k-1 . There is a pole at s=k if and only if

(i) ux 1is an odd guadratic character,

k-2

(ii) jh(z)hpi(z) y~ “dxdy # 0 , where the integral

is taken over a fundamental domain of




1 2 'E’— - = n
r (N cx) ~H and h'y(2z):= £ x(n)d g
° n

Corollary 2.10: If (cX,N')=1 then R(h,x,s) has no

pole at s=k , except x=1 , k is odd and h=h"

Proof: Since (cX,N')=1 , the form #P- is a newform of
X

level N'ci . Therefore the Petersson product

< h'hpi> = jh(z)hpzfz)gk_zdxdy

P— . : .
vanishes as long as h#h Y. This is guaranteed by excluding
the case k odd, x=1, h=h" ; since the Petersson product

of two newforms is non zero if and only if they coincide.

We return to our special situation, where 5-——9E . Define a

quadratic character e and a (primitive) character ¢' by

2
r]M,Er=1

Consider the newform h:=g€.€Sk(N',v

g) with k= E dq",

Q

where is the character mod N' associated with v .

VN.
Note: 5=h; so that by Proposition 2.1 Dm(f,x,s)=Dm(h,x,s).
We want to relate R(h,x,s) with R(x,s) and exploit

Proposition 2.9. We write

2 2
LN'C (x"v™,2s-2k+2)
X .
LN.(XU}s-k+1)

™8
[oN)

i «(nyn”%= TT &) (£75) 1
r

n



and

0_(h,x,s) =TT 0% (h,x78)7"
r

By Shimura's Lemma [9,p.790] we can describe the Euler

factors R'T) (r7%) by:

R () =(1-a' 2 xtm) %)L (-8 20 (0)%) L (T-vg, (1) x () 257

where

k=-1,2 \
1-er+vN.(r)r X° = (1—a£X).(1—BrX)

is the Euler polynominal at r associated with &

same procedure applied to

L (x2,25+2-2K)
X

0, (hx,8) = TTp (59200 — EbB_ x(mn

L{vx,s+1-k)

n=1
r|M

delivers

£ |b| 2y (n)n"S=

n=1 2 o 2 -2
- =<8
(= ]y 78 T () “r %)

1X)

. The

r(1-|Yr|2x(r)r_s)(1-|6r|2x(r)r_s)(1—qf3rxuﬂr-s).H-&rarxhﬂr-i

where

%)



-2 k-1,2 _ . _
1-b _X+e v (x)r" X" = (1-y_X).(1-8 X)

is the Euler polynominal of g at r . We observe that
all Fourier coefficients of h are rational, since the
field m(d1,d2,....) is generated by the dn with
(n,N')=1 and because by definition of ; {(n,N')=1 im-
. ~y = __.-' . ? 1 =
plies (n,ce) 1 , thus dn e(n).an€m . Now bn.e (n) d,

shows for rfce. that

(1=y X) (1=5 %) =1-e" (1) A x+E" 2 (2) uy, (1) 2T 5= (-8 (2) a0 (12" (2) B1)
and since dr is rational

(1=7, X (1) X) (18 x (x) X} =(1=¢" (x) x (£) o’X) (1~e" (x) x (x) B)X) ,

so the corresponding quotient above simplifies to

1—1M(r)x(r)zrzk._z_25

(1-a2 %X (£)£7%) (1-81%x (1) x™3) (1-v, (x) x (x) 271 75) 2

We get for r/N' (i.e. rfM.cE.)
2 (0 = R (x) .

If r|M and rfce, , then yr=br, ,

pr(x,s+2-k)
0 (n,x75) = (1=a!®x(r)x™%)

Ty () v (r) 2575~




2.18

hence
(1-x(r)2r2k-2X2) / (1-x(r);(r}rk_1x) if br=0 anéitardrM
20 (4 %)= even.
(1-x (x) rk-1X) (1= a]':QX (r)x) / (1—')§(r)3 (r)£'X) otherwise .
whereas

(T (x) = 1—a£2x(r)x

2 .
If r|cE. , /M , then vr=E£ since rfc P We get
ve

— L} —
dr—s (r).br-O hence

RV (x) = 1

and
(x50 2 (1 (0 5% (1) v, 20 (1 (v ()7 20
D; (r) U’L,X) =
| (1=x(x)v (1) 2 Tx)
where lyr|2 = 57T

If r|(M,cE,} , then again dr=e'(r).br=0 and therefore

(x)

R Xy =1,

whereas Y, T br and Sr = 0 vyield



D(r)ULrﬁs)=pr(x,s+2-k)(1-|br|2x(rjr-s)/(1_xtr):(r)rk-1—s)

hence

('

2. 2k-2.2

2 (h,x) = <

\

Conclusion: For all but finitely many primes r we have

o) (h,xy = R x)

and moreover

R(er) = R(hIXIS) ' Q(er)' '

where Q(x,s) is a product of rational functions Qr‘ in

'r'® whose zeros and poles are on the lines Re(s)=k-1 ,

k-2 . Moreover for o€Aut (@) and any integer msk-1 , k-2

we have Q(x,m)qco(xa,m) if vr=1 for rfM .

Now we can complete the proof of the entireness of R(x,s)
By Proposition 2.9, Corollary 2.10 ﬁe know that R{(x,s) is
holomorphic outside the lines Re(s)=k-1 , k-2 , hence by
the functicnal equation (Proposition 2.7) is holomorphic

everywhere.

(1-x(r)rk‘1X)(1-|br|zx(r)x)/(1-x(r)3(r)rk‘1x) otherwise .

I

(1-x () °r X )/(1§x(i)3(r)rk—1x) if br=0 and ordrM even,



§ 3. Algebraicity of special values

As before let 4§ -be a newform in Sk(N,v) . The aim of this
section is to study algebraicity properties of the special

values D _(§,x,m) for m=1,2,..... ,2k-2

Remark 3.1: Such results for the imprimitive symmetric

square D_(f,x,s) were first proven by Sturm [10] . ﬁow—
ever, since the Euler factors of U _{({§,x,s) which do not
appear in Dm(é,x,s) may vanish at s=k-1 but never wvanish
at s=k we will deduce also algebraicity statements at

m=k-1 from the functional equation for D_({,x,s)

We normalize the Petersson inner product for forms 61 of

weight k for T,(N}) such that 6162 is a cusp form via

< fiiby >y = I §9(2) 6, (2) Y Paxay

rn s

Let © be the primitive character such that

0 (@ = (@) (@) (G Agh for (a,aNe) = 1.

We define the gquantities

=-m
m
Zo(§,x,m) 1=—— G(Z)D_(§,x,m) for x(-1)=(-1™"T, 1smsk-1,
<. 4>
2m-1 -2
) 21(6,er):=“—————— Gix")D_(§,x,m) for X (-1)=(-1 y ™k smg2k-2

<$.4>



under the assumptions of Theorem 1. By Provosition 2.1 we

can assume that 4|N.

Theorem 2: Suppose X2*1 . If vr=1 for r/M , then the

Zi(ﬂ,x,m) are Aut(C)-equivariant, i.e. for any automorphism

o€Aut (C)
o o
zi(él’XIm) =zi(6lx Im) r
otherwise we know that at least that _Zi(ﬁ,x,m) is algebraic.

Remark 3.2: If x has the "wrong" parity X(-1)=(—1)m '

then Z,(§,x,m=0 for m=1,..... ;k-1 , hence the theorem
is trivially true in thése cases, since the I'-factors in
the functional equation for Dm(ﬁ,x,s) imply that Dm(ﬁ,x,s)

must vanish at s=m in these cases.

Proof of Theorem 2: We start by quoting Sturm's results

adjusted to our notation. If one defines quantities Zi(ﬁ,x,m}
by the same formula as Zi(ﬁ,x,m) except that D is
replaced by D_ then Sturm's result says (under the condi-
tions 4|N and x2¢1 ) that the Z, (§,x,m) are Aut(C)-
equivariant (see Theorem 1 [10] ). As we saw at the end

of § 2 the two functions Dm fand- D, only differ by a
product Q(x,s) of Euler factors with zeros and poles on

the lines Re(s)=k-1 , k-2 . Moreover if vr=1 for «r/M ,



then Q(x,m) is Aut(C)-equivariant for m#k-1 , k-2 , hence
this proves already Theorem 2 for m+k-1 , k=2 . For m=k-1

we apply the functional equation to 21(5,§,k) . We get
R()_(rk) = W)‘(‘ R(Xlk_1) ’

SO

2.3

(B%c C-1)k/2 k
X v

2m *r )7 20 (o 4,30 =

= Wi(Bzcic;1)k-1/2(2n)_k+1f(k-1).W-k/zf(%)vm(ﬁrxrk-1)

This enables us to write

2 G(xv) G (x) 2
x (B)

G(w)

R
G(x) 2 m

Zo(lelk_‘l) = 21(61)-(11() 7
G(x™)

m+k=

*
with some Rmew . Note, that yv(-1)=(-1) 1 here, so

that in particular w=vy . Since (cx,cv)=1 we can decompose
G(w) = G(xv) = x(c )v(c )G(X).G(V)

so that by the wellknown automorphism rule for GauB sums

g g (o]
Glx) T = X(t) Saly D

(for any automorphism o, which sends roots of unity to

their tth power) we get Aut(C)-equivariance of Z,(4,x,k=-1).

In case, that we only know algebraicity~of 21(6,§,k) we



can at least conclude that Z.(4,x,k-1) is also algebraic.
For m=k-2 one argues in the same way by going back to the

Aut (C) -equivariance of 21(6,§,k+1) .



§ 4. P-adic interpolation

In this section we want to interpolate p-adically the alge-
braic numbers Zi(ﬁ,x,m) given by the special values of
Dm(ﬁ,x,s} in the critical strip m=1,.....,2k-2 . We deal
first with the special values of the imprimitive function
D, (£,x,s8) for m=1,..... k-1 and x(—1)ﬁ(-1)m+1. For the
rest of this paper we fix a rational prime pkzNap and
embeddings ip and i_ of an algebraic closure @ of
Q in ap and in C

- iP

i

By our assumption the Euler polynominal
k=-1,2
1-a_X + X“ = (1-a X) (1-B X
a, viplp ( ap)( p)

has a reciprocal root, say up , which is a p-adic unit.

Theorem 3: For any odd m=1,..... ,k=1 with 2(k-m)#0{p-1)

there is a constant c(m)eﬁ* and a power series G _(T)€Z,[[T]]

*
such that for any non trivial finite character y:1+pI—>C
P

we have

m1, ord c.
-1 -1, -1 p P x G(x) -
i 6 G, (1) -1)) =i T Cm —5 ——— D, (§:x,m)
P %5 T <§, 4>

Proof: We choose an integer u prime to p and, following



pandifkin [6] we define a distribution My on

I‘:=1+pzp by demanding

_ | 2 2(k-m) [ ™1 | "X G(X)
deuu m=(1-)((u) u )W =— . Dw(élem)
r o 2 mo<f. >

' ‘ p

for non trivial characters x of T of conductor

mX
°X=p and
=1 :
fan, =(=*® ) (1o 0 (-8 2™ (1= (p1p T ™ ——D_(§,m .
r P m o
T %5 T <f, 4>

Note, that we always assume N=0(4) , so that by Sturm
[10] also the last integral is algebraic. Theorem 3 is

a consequence of

Theorem 4: Pandidkin's distribution Hyom is bounded for
[

any odd m=1,..... Lk=1 .

We continue with the proof of Theorem 3. By Theorem 4 there
is a constant C(m) such that for any compact open UcT

the value C(m).uu m(U) is a p=integral algebraic number.
Yu,m
*
Thus we get a measure Huom ©B zp via the standard
) 14

isomorphism

I, —> r, sb—> (1+p) °

For the corresponding element G (T) in the Iwasawa

r



4.3

algebra zp[[T]] we then have

= Ix(1+p)sdu* (s) .

Gy, m(x (1+P)=1) = [xdu, o um

z
r P

Since 2(k-m) # O0(p-1) we can chose a €I such that

U.2 (k—m)?” (p) .

2u2(k—m)

Therefore the factor 1-x(u) is always a p-adic

unit so that it can be interpolated by a unit

*
Hu'm(T) € zp [[T]l] , i.e.

_ 4= 2 2(k-m)
Hu'm(x(1+p) 1) = 1=-x(u)"u .
Eventually we find that
_ -1
Gm(T)'"Gu,m(T)'Hu,m(T) € zp[[T]]

is the power series with the required properties, which

completes the proof of Theorem 3.

Proof of Theorem 4: We have to show that for any y=1(p)

the values

T -r
pu’m(y+p zp) p [Idgu'm +

T
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m
m-113\"x -
- - p G(x)
Ly (ex(w 22— ) — b (¢,xim))
X a T<§,6>
25mx$r P

have p-adic absolut value bounded independent of y and

r . To begin with we define two modified forms
:= z) -B_. z
§olz) = §(z) -B_.f(pz) ,

51(2) = §(z) -ap.ﬁ(pZ) '

which have the properties

(i) Dm(ﬁo,x,s) = D_(§,x,s) for mXET ,
pm—1
(11)  fauy, =0-FE ™y o oy 1 b (4,m
r ! o wo<h,b>

(iii) 1§.||T(p)=13p,5.| . 60|T(p)=ap.60 for Hecke operator
T(p)

(iv) 68:61 (p=complex conjugation on Fourier coefficients).

We put N.cxz - Nx for mxz1 and want to give an
integral expression for Dm(ﬁo,x,s) following Shimura

[8] (see also [10] and [11] ):

s/

(am "3 Prts/20, (8% 8)



= ffo2)0-(2)y /2L (x?,2542-2K) & (z,5+1,2k-1,u) dxdy

o} N ™~

where the theta-series is given by

8 _(z) := — % x(n)gq" ,

and the Eisenstein series is (in Shimura's notation)

E(z,s,A,u) := YS/Z z m(dY)j(Y,Z))\lj(i{,Z)i_zs

€W
=Ty

with W any set of representatives for rm\ro(NX) '

r_= {i (1 t); t €1 } . Hence we can rewrite the integral
0 1
as Petersson inner product

-s/2

(4m) "% %1 (s/2)D_(§4,xs8) = .

= éﬁo(z),si(z)LN(§2,25+2-2k)E(z,s+2—2k,1—2k,;)>N )
X

We want to consider

0 -1
kKN 0
X

W (z,x,8) t= hiz,x,s)

for

h(z,x,s):zex(z).LN(x2,23+2—2k)E(z,s+2-2k,1-2k,w)



By definition

1 1
*
h (z,x,s)=86 (- —)L (x2,25+2—2k)E(— —,5+2-2k ,1-2k,0), (2VN
X N
N z N z
X X
Sturm [10] has shown that for m=1,.....k-1 the func-
tions h=h(z,x,m) are {(nonholomorphic) generalized modular
forms (cf. [10,p.234}, [9,p.794f]). By Lemma 7 of [9] such
forms can be uniquely written as
r (v) k
h = g, + £ 6 a, (r < — )
v=1 k=2v 2
where g, is a (holomorphic) modular form of level NX '

weight k-2v with the same nebentypus character as h  and

where the differential operator V) is defined by
k=-2v
(v} _ A
with
1 A 5
§, = — (— + —) for 2 €W

By Lemma 6 of [9] we get

<60(z)l h(zr;rm)>N = <60(z)r Qo(zl;:m)>N ’
X X

i.e. the special value Dm(do,x,m) only depends on the

holomorphic projection 99 of h . Since the Petersson

x)

k



inner product is the same if we apply the operator

to both arguments, we also have

- _ * * -
<60(Z)r h(Zinm)>Nx = <60(Z)I h (ZIXIm)>N

X

Taking holomeorphic projection of the generalized modular

* -
form h (z,x,m) leads to

<fglz)s hiz,X,m>y = <50(z),(h*)0*>Nx :

X

Lemma 4.1: There are linear forms Fn(XO,...

which depend only on k and n such that

cok) =1 n
.| )0 —n=0 Fn(cn,o, ..... 'Cn,r)q
and
Fn(xo, ..... Xr) = C.X0 mod n
for a fixed constant C € I , where
% r _jm n
h (z,x,m) = L (4ny) T C, <9 .
§=0 ‘ n=0 rJ

Proof: From the formula

,Xr)EZ[XO,.. X

r

]



r
$)
h = ga+ X 6( g
0 y=1 k-2v Y
we get
* r o n
9y = grlk-ZrWN = (-1 z €n,r4
X

by comparison of the coefficients of y_r . Using the iden-

tity
v r(x+v) 2 Vv 3 ¥-j
sV = () () T — —)”
3=0  J T(x+v-3) 2wi" 3z
we arrive at
h* ) I'(k-2r) s (r) *
k-2r gr
I'(k-r)

w -1 ., T (k-2r) s .
=¥ x (C — (-1 I (%)nT e (4my) "Ig"
n=0 j=0 \ " het '
*
This being the first step towards reducing h to its
* ' *
holomorphic part (h )0 we can continue now with *h

replaced by



* *
After r steps we arrive at (r)h =(h )o and we see from

r)

the formula for the first step, that C.c will be an

n,o
integral linear combination of ¢ _ ..... ,C where the
n,o, n,r
coefficients of ¢ cesee,C are divisible by n . This
n,1, n,r
proves the lemma.
The Fourier coefficients ¢ .=C . (x) of h?(z,x m} can
n,3 n,j !

be explicitely determined from [8,p.86ff] and [7,p.457]:

A" (2 xm) =63 ()G x) (<i52) /21y (7 2me2-20) B (2,me2-2k, 1-2K 00 (/) /2

where
E'(z,m+2-2k,1-2k,w) = E(z,m+2-2k,1-2k,w) .

Proposition 1 in [8]  says:

Im+3-2k
— 1k x-1-D :
N 4 . 2 2, 2

X 1 Y ;LN(X ,2m+2-2k) .E'(z,m+2-2k,1-2k,w) =

—

ka*%'k) 1/2-K - k-m=1/2 2
i (2y) .2TT.LN(m ,2m+2-2k) +

ML) r(Ze1-k)

© 213 ;
SR nlnxTn(y’m;1’E+1_k)_LN(mn,m+1-k).B(n,m+2-2k)

n==w

n+0

where W, denotes the primitive character given by

_,=1,k+1,nN
mn(a):—(E_) (5—

)N(a) '



4.10

the functions T, are defined by

,

n®*B1e72MY (4rmy,a,8) if >0
1B em B r e (v,a,8=9 Inl*P eV (4nlnly, 8,00 12000,

I (a+B=1) . (4ny) @B if n=

.

with the hypergeometric function
o(y,o,B8) = I(u+1)a_1u8_1e_yudu ,
0

and where

1—k—sb3-2k-25

r

B{n,s) = ¥ u(a)w (a)wz(b)a
n
a,b
the sum being extended over all integers a,b>0 prime to
N.p such that (ab)z divides n . (p = Moebius function).
We remark, that we can restrict the sum above to positive
n , since for n<0 the character wo has the same parity

as k , i.e. mn(—1)=(-1)k', and therefore LN(wn,m+1-k)

vanishes for odd m=1,..... (k=1 . For n>0 the'values of
T, are
rn(y,m;1,%+1—k)=nm-k+1/2e—2“nyik'3/2(Zq)m_k+3/2'
E%l m—1 m
_ _ 2 m, ._ k-3 -1-x
&N T Geag Tt B ) Mk (dmmy) T2

x=0



and so we can express

m-1
2 2 > n
L.(x",2m+2-2K)E'(z,m+2-2k,1-2k,w) =X L (4ny) Ja q
. N s _ J.n
3=0 n=0
where dj,o=0 except
m+1
_ 2 k= m/2,, (2k-2m-3) /4 2
Ut Bpgs (0 Zv Ty (w2, 2m02-2%)
27 2
and for n>0 :
d, =
J/n
k- 1 o (2k 3 2r)/4 m-1 m-1 5
xk-1.5" 2 2 -2 (_2‘) < - -
12 e 4 : Bjn,2 Ly (o m+1-K) B (n,m+2-2k)
r(3+1-k+3) .
where B, := € Q
Jj m+1
—7—)F(2+1-k)
Now we obviously get the Fourier coefficients <, j=cn j(x)
L4 1
*
of h (z,x,m) by multiplying the g-expansion of the theta

series with the PFourier expansion of LN(X2,...).E'(Z,...J

above as follows:

*
Lemma 4.2: There are constants (', Cj=Cj(k,m,N)€Q .n(m+1)/2

for j=0,....9%l such that

m=-1 .
c_ .(x)=C..c k™2 0. x(n,)n ? (w_ ,m+1-k) .8 (n.,m+2-2k)
n,j 5% -G - x{nqin, N n, B0y,
n1,n2>0

12+n

ulh:__l,z

27 n
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for j*m%l and

\
_d k-m-2 - 2 Cowrse N2 U
C o=y LC'LG(x) ox(ny) Ly (0, 2m+2-2k) if n=7 n, >+
n, 2
0 otherwise
J
Cm_1 b3 x(n1).LN(mnz,m+1*k).B(nz,m+2—2k)
2 n1,n2>0
%—n12+n2=n

The case of the trivial character X=Xq being similar to
the nontrivial case we omit the details and just state the

result:

Lemma 4.3: With the same constants as in Lemma 4.2 we have

. .m
for j#—— :

_ {k—m—‘l)/ZI: =2 I
cn'j(XO)"Cj'p z n2 LNp(mpn f]I'['l'i"I-k).
n1,n2>0
N2
gpny *npEn
m-1
1.2
.B(nz,m+2—2k)+§n LNp(wpn,m+1—k)B(n,m+2—2k{] ,
m-1
and for ==
N 7 =
r ,
et . N 2 1 . _
.LNp(x0,2m+2—2k) if n=gpn,”, Vi if n=0
o (v, )_ék-m—‘l}/2|j‘< >< ?
n,m-1'%p!=
0 otherwise 1 n>0
. J L J
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C . b2 L i-k) B - :
m=1 Np(wpn21m+ ) (n2,m+2 2k) ] .
2~ n,,ny>0

N 2.
Z—pn1 +n2 =N

We are in particular interested in the behaviour of the

cn'o(x)'s .

*
Lemma 4.4: There is a global factor CeQ such that the

following congruence holds for any n,r€N and y prime

to p:
ko,
c.ip? . I .2y g R (g
X*X np“*T",0
m sr
X
2 (k=m) m—1 r
+(1-u ) (c. (xa) —P c (x~))1s0(p™) .
n.pzr,O 0 npzr_z,o 0

Proof: By Lemma 4.2 the first sum in the brackets becomes:

k
2 -
2 _ - -
P .C0 z x(y).(1~x(u)2u2(k-m))G(x)ch(x).
X*Xg '
m sr
X
m-1
- 2
. I x(n).L..(w. ,m+1K).B8(n,,m+2-2k)}n
1 By, 2 2
n,>0
_j
2r-1

N 2
qhy *nyEnp

and by Lemma 4.3 the IXO - part in the case m#%1 1is given by
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k .
z! 2 (k-m) m%l
2 -m
P .CO.(1—u ). = (nz/p) LNp(mpn ,m+1—k)B(n2,m+2—2k)
n.>0 o 2
2 2
gPny *ny=np i
m=1
1 2r=-1, 2
+§(np ) Np(wpn,m+1_k)ﬁ(n’m+2—2k)
m—1
—pm“1 z (nz/ ) 2 Ly (w n m+1—k)B(n2,n+2—2k)
n.>0 p P Phyy
» 2 _
m—1
1 _m-1 2r-3, 2
- P! (np ) LNp(wpn,m+1-k)B(n,m+2-2k)
lf. -1 m-1
—p? LCho u2(k—m)) Z n L. (w_. ,m+1-k)B{(n,,m+2=2k)
0 2 Np ' 'n 2
n_.>0 2
J
2re
4n1 +n2=np r-1
pin

where we have used that B8 only depends on the part of n
prime to p and that Wy only dep;nds on the square free
part of n . For the case m=1 in a similar way we arrive at
the same expression. Now it is obviously sufficient to make

a fixed choice of data (n,,n,,a,b) € Iy with pfn, ,
(ab)2|n2 . (ab,Np) = 1 and to prove for any such choice

the congruence



- - 12 2(k-m) - i
I x(y).(1-x(u)"u )L _(w_ ,m+1-k)} A
X Pt . o e
m =r =L Kema1_ _ . '
X 1 “n, (P)P o 1mn (a)a® (b)) =0 (p%) ,.

2 '

since the expression in the lemma is an integral linear
combination of these sums. We remark that as well we could

have omitted the factors Bn (a) 52 (b) just by changing vy

2
Since w2=x2 and

-n2N

w_ o (t) = =

) v (t) x(t)

we are reduced to show

- - - - _ K -m-1
Xy O () 2w, LG meto L (-G (e )

X 2 2 2

.m sr CZo(ph)

n

where we have chosen u,=u mod pr such that (u2,n2N)=1

This again can be reduced to prove, in terms of Bernoulli

numbers
- - - - kK-m-
EoX(y) . Omi (uy)w, ™ ——201-3_ (p)p" ") =0 (p7)
2 2
m =r
X

But this congruence is exactly the condition for the smoothed

Bernoulli distribution

' r, .. rik-m=1)717_ .
Ek-m,uzgy*p zp)i'P : k-m[Bk-m(<pr >)-u, Bk-—m(< b




(cf. [4] p.45) to be a measure, which proves Lemma 4.4.

Lemma 4.5: The statement of Lemma 4.4 remains true if we

*
replace the coefficients Cn,O(X) of h (z,x,m) by the

coefficients cn(x) of the holomorphic projection

* ® n
h 0(z,x,m) =T cn(x).q
n=0

Proof: By Lemma 4.1 we have

C.cn(x) = Fn(cn,O(X)’ ..... =N m—1(X))
=
where
Fo({XgreoesX _)=CXgumod. n.Z{Xy, ... .. X _qd -
2 2

The expression in brackets of Lemma 4.4 remains at least

integral if we replace the <c {x) by the -¢c_ .(x) , so
n,0 n,j

that from F. being a linear form we get

c.c ~Tpk/2-1

- - 2. 2(k-m) -(k=1-m)
0 T x{y).(1=-x(u)"u )Glx)e, cnPZr_T(x)
X*¥Xq
m =r
X
s(1-uemmy 1

(c (xA)-p" ¢ o xa)) ]
np2r 0 npzr 240
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ST 2 2 3w xR e e T
X*Xg np /0
m_sr

X
np ,0 np .0

so Lemma 4.4 yields the desired congruence for rz2 , which

proves Lemma 4 for some constant C .

Now we can finish the proof of Theorem 4 by showing that for

*
some C(m) € @ and with

=1
- - D m vy
M= T Xy . Gy Ze? By oy X Gd g gy m)
X*XO . ? mo<f§,4>
m sr
X
i m-1
e (qeu2Ceemy o PTTN . D_(§q,m)
apz nm<6,6>

the product C(m).Mr is divisible by pr for any re€nN
As we saw earlier we have

-m/2

D,(6grx,m)=(4m) F(m/2)<60(z),h(z,§,m)>N for x#xg

X

and

-m/2

D,, (§q,m) =(4m) T r(m/2) <f o (2) s h (2 xgm) >

*
where we can replace h by (h )o - For x#x, apply the



* *
trace tr=T to the modular form (h )O

s S
FO(NX)\FO(Np)
without really affecting the inner product

-m/2

T
D, (§grx,m) = (4m) f(m/2) <50,tr((h Yo 1>y

P

1 0
Since FO(NX)\FO(Np) is represented by the matrices

2 2m ~1 Npi 1
for i mod p X one easily sees for

* * * * 1 0
tr ({(h ), )= I om =1 (A ), |
0 e 0 'k
i mod Npi 1
that
0 -1 1 -1
* * *
er ((h )y Iy = T (Rl 2m, =1
Np O + 0 p
(2m -1 (& -1y * T
=p 2 (h') 5| T (p)
0 -1
Therefore we get with WN t=
P Np O
K 2mX—1
-(2m_ -1 (3 - 1 W h :
chormtzomng 2PN E T D g g Wiy
Since WNp normalizes I1(Np) and
f1 o P 0
"Np "up *
0 p '



*
we see that the adjoint T(p) of T(p) on the level

Np is given as

T(P)* = WNP- o T(P) o W

which for any rzm  via 60!T(p) =_ap'60 implies:

2(xr- -m, )]
a

k
~(2m ~1) (5 ~1)
P

<60.h(z,x m) >, =p
x

*
Similar we get with h =h(z,x0:m)|kwNP

-1
2 m
ap r(1-.E_~;) <60,h(z,x0,m)>Np
[0 ]
P
_ 2r_ m 1 * 2r-2
‘<6o|kWNp OIT(p) -(h" ), [T(p) >Np

So if we define the modular forms

k
_ (m=1)m -(2m_-1).(5 -1)

Foo@)i= £ x(y). (xw 2o 5 p x ko T2 G

'Y m
X#X g S m<h, 6>

(h") g (z,%m) |T(p) 257"
p=u? ) (0% (kg 0m) | Tee) 2
mo<f, 4>
- * -
2™ (0 (zxgom) | TUR) 2P

we simply have

* 2r
<fg Ixnpr (B ) oI T(P)
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_ -m/2
Mr-(4n) .F(m/2)<50|kwNp,Fr’y(z)>Np

Sincé the effect of T(p) on Fourier coefficients is given by

T(P)'(h*) =% ¢ q' — T ¢ qn
O p=o n=0 °P

we conclude from Lemma 4.5 and the Aut(C) ~equivariance of

Zo(er:m)

. . -r m
Lemma 4.6: The modular forms F £,y C.p .Fr’y(z).q <§,4>

have p-integral Fourier coefficients going to Zp under

lp:m —_ Qp

The space Mk(Np) of weight k modular forms of level
Np having a {-structure, we alsoc know that the forms
F'y y all lie in a finite dimensional @-vector space,

hence by Lemma 4.6 in a Zp—lattice. Therefore the values

of the linear form

F>

- 2 .
LM (Np) —> €, F —> (41) m/2 1 (m/2) <60|kwNp, Np

restricted to the set { F'r'y;y,rem,ys1(p) } must also

lie in a Zp-lattice, hence they have in particular bounded
p~-adic absolut value, which proves that pandi¥kin's
distributions are in fact measures (i.e. bounded).

u,m

Remark 4.7: a) If the assumption 2(k-m)z£0(p-1) of Theorem 3
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is not fulfilled we still may define an element
6o (T) € Quot (z [[TI])

such that for all but finitely many characters yx we have

-1 -1 ord ¢
m orp

17N (1, - =i T em L By PXEWDL g (g5 my),
P % n<$,4>

so that we get in any case a p-adic L-function by putting

1-8-1) for s €T1_ .

Dp'm(ﬁ,s):=gm((1+p) p

b) By avoiding those yx where one of the "missing Euler
factors" of the imprimitive symmetric sguare vanishes one
also finds (by p-adic interpolation of these factors) an

element
Gm(T) € Quot (Zp[[T]])

such that we get p-adic interpolation of the special values

of the primitive symmetric square by

m—1 ord c

i _1(én(iw_1(X(1+p)'1)))=im_1(C(m)(ELET4 P X 9%;1___ D, (§,x,m))
P Oy T <4, 4>

for all but finitely many x . I would expect that in fact

~

Gm is a power series in Zp[[T]] and that this equality

holds for all x with the appropriate change of the right
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hand side for X=Xg -+
We define the associated L-function as
0o o (§r8) == G ((1+p) "7-1) .
It is clear that by the functional equation satisfied by
D_ we also get a measure on T descfibing the p-adic
interpolation of the special values in the right half of

the critical strip m=k,.....,2k=-2 . We define

G (T) := G... (

Proposition 4.8: For any even m=k,..... ,2k-2 there is a

*
constant C=C(m,4§) € @ such that for all but finitely

man X

=15 e -1 -1, B3 pR-1 my G{x) %D, (4,%.,m))
o Gplle G -1 =5, (e () (137—) w4 X
p

p
where B denotes the integer which appears in the functional

equation in Theorem 1.

The proof just consists of applying the functional equation
for 0_ relating the values at m and 2k-1-m , using the
fact that for p)’ap we have v(p)=1 , and to follow the
definition of ém for m=k,.....,2k-2 ., As an immediate

consequence of the definition we see that the corresponding



functional equation of the p-adic L-functions reads:

Dp’m(érs) = D (612'5) .

p,2k=1-m
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