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§ 1. Introduetion

Let 6 be a newforrn in Sk(N,v) , i.e. of integral

weight k. ,ii;: 2 , level N and nebentypus _cliaracter v'.
o

Let v denote the eorresponding primitive character.

6 has a Fourier expansion

co6(z) =[

n:::1

n 211iza q , ,( q=e )
n

and the corresponding L-function

co
L(6,s) =I:

n=1

-sa n
n

ean be written as an Euler product of the form

TT -5
L(n,s):::- (1-a

r
r

r
. prime

, ( ) k-1 -2 s) -1+ v r r .

For sirnplicity throughout this article we rnake the

technical assumption, that 6 has rational Fourier

coeffieients, i.e. all an E W • This implies that

v 2
= 1 • We denote by a

r
and the reciprocal

zeros of the Euler polynominal at r, so that we

get

1-a X + v (r)r
k -'x2

=(1-cx X). (1-8 X).
r r r

We define the "imprimitive symmetrie square" funetion

attached to 6 by
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m 2 -s -s 2 -s -1D(6,5)=' (1-0. r ). (1-a ß r ). (1-B r )] ,", r r r r
o:J r

which can ea5ily be transformed into the forrnula

2LN(v ,2s+2-2k)

D(6,s)---------------
00 LN(v,5+1-k)

co

L
n=1

2 -5a n
n

where LN denotes the Dirichlet L-function with the

Euler factors at primes dividing N removed ..

The purpose of the pre5ent paper is to use algebraicity

of special values of the function D (6,s)
o:J

and its twists

D (6,~,s) by certain Dirichlet characters X to do p-adic
00

interpolation and define in this way associated p-adic

L-functions. It turns out that D~(6, x,s) is not guite

the right object to consider. The two major "defects" are

a). that in general it does not satisfy a functional

equation in.a natural form for s ~ 2k-1-s ,

b) that it is not necessarily entire (possibly there

are poles at s=k, k-1 ).

This has already been remarked by Shimura [8] , who

proved meromorphic continuation of to the

whole s-plane with the only possibility of simple poles

at s=k, k-1 ..
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In § 2 we wo~k outexplicitely the modification of Doo

by finitely many Euler factors such that the resulting

"primitive symmetrie square ll function V'oo(n,s) together

with the twists Voo(n,A,S) under constderation are

entire functions satisfying a functional equation of

canonical type (Theorem 1) . This enables us then in § 3

to study algebraicity properties of all special values

V<XI(n,x,m) for m=1, ... , 2k-2 (Theorem 2).

Note, that m=k, k-1 might be a pole of Doo(n,x,s)

If m is not a pole of o (6,x ,s) , the algebraicity<XI

statement for V (n,x,m) easily reduces to Sturm's<XI

algebraicity results for [10] . But if m

is a pole of we must use the functional

equation satisfied by to pass to rn'=2k-1-m .

There we exploit the fact that m' is not a pole of

DCQ (n ,x, s) , thus showing "a l gebraicity for V00 (6 ,x,m' ) 11

which eventually via the functional equation yields

"algebraicity for V (6, X , rn) " .
00

In § 4 we fix a prime p~2Na and show the existencep

of p-adic L-functions Vp ,m(6,s) for m=1, .... , 2k-2,

which roughly speaking interpolate p-adically the special

values V (n,x,rn) , where X runs over all finite
00

x
characters x:1+pXp~ ~ (Theorem 3). As a consequence

of the functional equation of we will receive



1 .4

the functional equation of the p-adic L-functions:

v (6,s)::;; v 2k 1 (6,2-s).p,m p, --m

There is unpublished work of Hida treating p-adic

interpolation of the special values of D by a
co

different approach via p-adic modular forms. However,

the methods of the present paper essentially grew out

of"a refinement of the techniques in B . Arnaud's

These [1] , where he shows that the integrals of

characters against the proper (i.e. not smoothed)

Pan~iskin distribution are essentially p-integral.

The case of a newform of weight 2 is of particular

interest. There, our primitive symmetrie square is

exactly the L-function attached to the system of

l-adic representations 2 1(Sym Ht (E)) for the corres-

ponding modular elliptic curve E . A detailled treat-

ment of this case-, in particular the connection with

Iwasawa theory and the so-called main-conjecture are

the subject of a forthcoming joint paper with J. Coates

[ 3] •
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§ 2. The primitive symmetrie sguare

For the modifieation of D (6,x,s) it 1s eonvenient to ~
00

introduce the notion of a minimal form.

Definition: A newform h of level M i5 ealled minimal

(respeetively r-rninimal for a prime r), if h i5 not

a twist

charaeter

h l

1J1
of a newforrn h' of level MI< M ~

(respectively of conduetor c~lroo).

Sometimes we write w;TT~

r r
minimal form assoeiated with

where Cw lr
oo

. Let 9 be a
r .

6 , i.8. there i5 a charae-

ter E such that 9 .;6 . Sueh a 9 alwaY5 exists although
E

it needs not to be unique. We suppo5e that 9 has level

M and Fourier expansion

00 n
9 ; r: .. b q .-(

n;1 n

We define Euler factors for primes rlM by

1-5 2
Pr(X,s):= {1-(x(r)r ) if br=O and ordrM even,

1-x(r)r1- s otherwise.

Proposition 2.1 and Definition: a) The "primitive syrnme-

tric sguare" function

2
L

M
-, (X , 2 s + 2 - 2 k )c - A
X

o
L(Xv,s+1-k

00

2 -sr:lb I .X(n)nn
n;1
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is independent of the choice of an associated minimal

form 9 and differs from D (6,x,s)
!Xl

only at finitely

many Euler factors.

b) does not change, if we replace 6 eY
any twist with a character such that (c~ ,N) =1 •

In particular one can assume that N=O(4)

Proof: a) Suppose gl* 9 is a second choice of level

MI and 6=g'E
'

. For an integer Rand a prime r we

put Rr:=r ordrR . Since 9 is minimal iff 9 'is r-mini-

mal for all

M = MI andr . r

rlN we may suppose and show:

b r = 0 iff b~ =',0 ,

n
where g'= L b~ q . We know that g'~ 9 ES ' (i.e. all

.n
but finitely rnany Fourier coefficients at prirnes coincide) .

M'~M by r-minimality ofr r

Case

of g' .yields M ~M I • If
r r

and r-rninirnality

br=O , then g=g~~,,-hence

E: E '

9 , so we have M =M' in thisr r

The last case

andcase.

hence

b * 0r
yields

M >M' , then c - *1 implies br'=O ,r r ES'

andeI :-1.' / r . Note: 9 'E Sk (M' , v S1 2) .
\)~I~

(c 2) = M or (v =E
2

and M = r)- r r r r
VE· 2

being impossible since r \M' IM, we arriver r

at c = M
r

. Now apply Corollary 4.3 [2, p.235]
(Es'~)2
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Put

if

Q:==
{ C EC '

c v'E 2 eE '

c -2 - '= Mve :ee I r

and c -2 - < Mve ee' r

Then 9 1 == ge8 , is newform'of level Q.M if v'EE' * 1

(otherwise it is not a newform). So M'=QM ~M a contra-r r r'

diction. We get M =M'r r also for b *0 . It remains tor

show that b~==O implies br=O . If we assume br*O ,

we get (c ) = M == MI ~ r 2 . Again by Corollary 4.3
-2 r r r

VE
from [2] we would arrive at M' = QM > M , sincer r r

eE' * 1 (note: b' = 0 * b implies 9' * 9 ) hencer r

contradiction.

Case 9 - not a newform: Proposition 4.1 [2] teIls usee l

for r-minimal 9 with b r = 0 that all twists with

are newforms. So we know b * 0 = b'r r
and hence

c or
. 2

(v == er

'l

and

In the last case any twist of 9 by a character is a

newform by Corollary 4.1 [2] , so this is excluded here.

By Corollary 4.3 we have for

newform iff EE'

c
-2

v E
r

2* V E •r

;;;; M
r

Hence we get from Dur assumption :

- ng eE , == L bnEe'(n)q has character
n

v = E EI. Now
r

V
:: 2 <:,,2;,2 __ -1-
c.. c.. c.. (vv )E8'

r
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Apply the involution W of [ 2] 1 There is a newform
M

-1
E E' )

r
E Wh E Sk(M,vv r and AM (g) with I AM (g) [ = 1

r r
such that

g[WM = AM (9) • h
r r

and h='L
n whereeng

n

-2 b if
{

(v
r

E ) (p) .
p p * r ,

c =
P -1 b(vv r ) (p) if P = rp

By eomparison of Fourier eoeffieients we see that

g l _ 9 IsE' - 1 ,

henee gl = h and therefore MI = M . Furthermore we get
r r

b' = o iff r
2

[M ' and c \M' Irr r -2 r *
v
r~

b r = o iff r
2

[M and c _2 lMr /rr
v E

r

which completes the proof of a) .

b) It is clear that replacing 0 by 0* with (C*,N)=1

does not affect ,an associated minimal form 9 , since

o = 9
E

implies 0* = gE~ and the assumption (C~,N)=1

guarantees that 0* is again a newforrn. 0
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In all what follows we suppose that

define

(c , N) = 1 and
X

2

s-k+2-H
r (vx,s):= (2TT)-sr (S)TT- s / 2r :( x_

v
)

00
, where

') ,

HvXvx (-1) = (-1) , H
vx

= 0,1

B

ord M-m(r)

TI
. r= r.

rlM

where m(r)
= { [Or~rM ] if br=O,

o otherwise,

where the Gauß SUffi G(X) is given by

c
X

= 1: X(x) exp(2nix/c x)·
x=1

Theorem 1 The function'

has analytic continuation to the whole complex plane

where it satisfies the functional equation

R(X,s) = w
X

R(X,2k-1-s) .

R(X,s) is entire except for odd k ahd trivial X , in which

case there are exactly two simple poles: s=k, k-1 .
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The praaf will occuPY the rest of this § . We fix a

minimal form 9 assaciated with 6 and apply Theorem

-22.2 fram [5] to the newforms F 1 :=g E Sk(M,ve) and

2 -2-2F2 :=gx E Sk(MC
x

, ve X ) . One easily checks that condi-

tions A), B), C) af [5, p. 41] are satisfied. In the _

notation of that article we set

2
M' : = TI C /c 2

Xr X
r

r Ic 2
X

M":=MTI

rlc
X

2
X = 1r

Li formulates her result in terms of the pseudo-eigen-

values A (F.)
r 1

under the action of W -operators.
r

Lemma 2.2: For a prime rlM such that b =0 we have forr

Ar (9tlJ) A (g)

{ nEIIl;
r

}n (r) : = max VtlJ with c
1JJ

1r n=
).r(gxtlJ) ).:: (g-)

r X

that
.~ rOrdrM].,

n(r) '" l 2 ·

Proof: The twisting operator

like

R
X

and W -operators behave
r



where 9l R = G(X).9 . Hence
X X

The same argument for

9tPE Sk (lCm(M1C~, C
tP

.C\l_2) 1 v;2,p2) instead of 9 yields
VE:

where M(,p) denotes the level of the newform 9,p • Since

for r-minimal 9 with b =0 by Theorem 4.3 of [2] one
r

2
has (c -2)rslMr 1 we get for C,pIMr : M(tP) = M by mini-

VE:

mality of 9 1 which proves the lemma.

The lemma justifies our definition of m(r) which in

Li's article is

[ or~rM ] )
m(r):= { mi~(n(r),

For rlM' I Li defines

if b =0r 1

otherwise.



1-X (r) .Ib 1
2r- S +2 - k

r if M ==r and (vE'2) =x =1
r r r '

e (X,s)= 2 -2s1-X (r)r if b =0 and erd M even,r r r

1-x (r).r-s if b ==0 and ordrM edd,r

1 otherwise.

Since for rlM we have

k-1 if M =(c -2)rr r
'VE

lb 1

2 k-2 if M and 2= r =r 'J =Er r r r

o otherwise,

we can express the eis by the forrnula

2 -2s1-x (r)r if b =0 and ord M even,
r r

1-x(r)r-s otherwise,

hence we get the
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Rernark 2.3:

p (X,s+1)
r

We rnust introduce sorne more notation to formulate Li's

result. For r\M' define

Q :=
r

if MI
r

and

2c otherwise,
Xr

We set

-25
'i' 9 , 9 _ ( s) : = ( 2n) r (5) r (5t 1) TI e (X, s) -1 . L ( 5 )

X r g-,g-
rlM' I X

where

2 .
Lg g_(5) :=LMc (X ,2s)

, X X

00

. r
n=1

Proposition 2.4: (w. Li) The function 'i' ( s) has
g,gx

analytic continuation to the whole cornplex plane, which

is an entire function if X*1 and which has only simple
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poles at 8=0 and s=1 if X i8 trivial. It 8atisfies

the functional eguation

where

A (8): =
X

= A (s) .1fI- -(1-8)
X 9,9x

2 1-28 ordrM-rn(r)TI(x (r)r )-

rlM
2 1-2s 20rdr c xTI (X (r) r ) . . '",

rlc
X

2
X = 1r

2 (c 2 )1-28• TIG(x )/\ (X) Xrr r --
MI

rlc 2 r
X

and 9 = L :5 qnn n

This is Theorem 2.2 from [5] in our special case

Lemma 2.5: A (8 ) = (Bc 2) 1- 2s X2 (B) (G (X»)2 .
X X --_-

G(x)

Praaf: Far the prime8 rlM their contribution to A (8)
X

. t' h t th f t B1- 2 8 and X2 (B) .g1ve8 us 8 ra1g away e ac ors

For the primes rlc'2 we reduce everything to the proof
X':

of
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Lemma 2.6:

-2
" (X) =G (X )r r

(XX) (c 2)
r X·r

(4c 2)
X

r

if r * 2 ,

if r = 2

We continue the proof of Lemma 2.5 and show Lemma 2.6

later. The contribution of primes

is easy to calculate as

r Ic 2 to
X

A (s)
X

now

_ 2 1-2s 2 -s - 2 3
4 (xx 2) (4c

x
). (c

X
/2) • (4Cx ) • (xx ) (2cx )

2 2 2 2 2

if r=2 ,

otherwise,

=(G (~r)) 2
G (X )

r

By the decomposition formula for Gauß sums

and by the identity

we arrive at

= G(x )r
for quadratic characters

2 1_2S (G (X)) 2
= (c ) --

X G (X)



which immediately gives the desired formula in Lemma 2.5.

Proof of Lemma 2.6: The proof is easily reduced to show

By Theorem 4.1 of [2,p.231] we have

and by Proposition 3.4 of [2]

so that by compari50n of first Fourier coefficients we get

hence the desired formula for Ar(gX) .

As a conclusion from Proposition 2.4 we get the statement

of Theorem 1 up to holomorphy.

proposition 2.7: R(X,s) has analytic continuation to a

meromorphic function on ~ satisfying the predicted

functional eguation.

Proof: Firstly we note that '{I- -(s) =lf' (5). since
g, gx g,gx



9 X = (g)X and

n
9 = L bnq by

n
So putting
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~ (5) does not change when we replace
9 1 9x9 = L b qn I which is obvious by definition.

n
n

* 2 5R ( X I 5) : = (Be ) • ~ ( 5)
X 9,9x:

we can reformulate a slightly weaker form of proposition

2.4 via Lemma 2.5 as follows:

*Lemma 2.8: R (X,s) has analytie eontinuation to a rnero-

morphie function on ~ which satisfies the functional

equation

*R (X,s) * *-= W .R (x,1-s)
X

with the root nurnber * 2 2W :=x (B) .(G(x) /G<;())
X

*Now divide R (X,s) by the Diriehlet L-funetion

o 5/2 -5/2 0

Z(VX,s) :=c o
.Tl .L(vx,s).

vx

r (s/2)

5+1
r (-)

2

if

if

o

vx(-1)=1 I

o

vx(-1)=-1 I

and use its functional equation

o
Z(VX,s)

o
G (VX)

= .; 0 ,

v X(-1 ) c \'
VX

o
z.( VXI 1-5)

o

(where v = ·primitive eharacter associated with v)
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We get by Remark 2.3

*R (X,s)
o

Z(VX,s)

-s/2 2 3 -1/2= TT.C .(B c ) .R(x,s+k-1)
v x

hence the predicted functional equation for R(x,s)

fol19wS with the root nurnber

* I vx (-1)c j

W =W'" 0 vx
X x G(vx)

G(x)
= x2

(B)--­
G(x)2

o
v(c )x(c )G(v)x v

We still have to show the entireness of R(x,s) . The

proof is based on the following result of Shimura [8] .

Proposition 2.9: (Shimura) Let hESk(N',~) be a newform
co

with Fourier expansion h(z) = r d qn and let X be a
J)=1 n

(primitive) Dirichlet character. Then the function

2 2
LN,c (X ~ ,2s-2k+2)

R(h,x,s):= r (~X,s) X r d 2 x(n)n- s

co . LN' (X~,s-k+1) n=1 n

can be continued to a meromorphic function on ~ , which

is holomorphic except for possible simple poles at s=k

and s=k-1 . There is a pole at s=k if and only if

(i) ~x is an odd quadratic character,

(ii) fh(z) hP~(z) yk-2dxdy * 0 , where the integral
X

is taken over a fundamental domain of
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Corollary 2.10: If (c ,N')=1 then R(h,X,s) has no
X

pole at s=k, except x=1 , k is odd and h=h P •

Proof: Since (c ,N')=1 , the form hP- is a newform of
X X

level N I c 2 . Therefore the Petersson product
X

vanishes as long as h*hPi. This is guaranteed by excluding

the case k odd, x=1 , h=h P , since the Petersson product

of two newforms is non zero if and only if they coincide.

We return to our special situation, where 6=g • Define ae:

quadratic character e: and'a (primitive) character
';"

e:=e:'.e: •

e: ' by

Consider the newform with
co

h= L
n=1

nd q ,
n

where is the character mod NI
o

associated with v.

Note: 6=h'" so that by Proposition 2.1 V (f,x,s) =V (h,x,s).e: co 00

We want to relate R(h,x,s) with R(X,s) and exploit

proposition 2.9. We write

2 2
LN,c (x v ,2s-2k+2)

X
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and

Voo(h,x,s) = TI V(r) (h,r- s )-1 .
r

By Shimura's Lemma [9,p.790] we can describe the Euler

factors R(r) (r- s ) by:

R ( r) (X) =(1- 0 I; X (r) X). (1 - ß I;X (r) X) • (1 - \) NI(r) X (r) r
k -1 X)

where

= (1-0 'X). (1-ß'X)r r

is the Euler polynominal at r associated with h. The

same procedure applied to

h TT -1V ( ,X,s) = p (X,s+2-k)
00 -r

rlM

delivers

2I;.t; (X ,2s+2-2k)
X

o
L(\)X,s+1-k)

00 - -s
L b b x(n)nnn

n=1

00

L lb 1
2x(n)n-5=

n
n=1

(1-]y 2 ö 2]x(r)2r -2s)
r r -

TI I 12 -5· . I 12 -5 - -5 - ( -l\l( 1 - y X (r) r ) (1 - ö . X (r) r ) (1 - y ·6 X(r) r ). (1-y 0 X r) r .)
r r r r r r r'

where
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is the Euler polynominal of 9 at r • We observe that

all Fourier coefficients of h are rational, since the

field (D(d
1

,d2 , .... ) is generated by the d
n

with

(n,N')=1 and because by definition of s (n,N ' )=1 im­

plies (n,c-)=1, thus d =s(n).a EW . Now b .s' (n)=ds n n n n

shows for rYc I that
s

and"since d is rational
r

(1-y x(r)X) (1-6 x(r)X)=(1-s l (r)x(r)aIX) (1-s' (r)x(r)B'X) ,r r r r

so the corresponding quotient above simplifies to

1 1 ( ) ( )
2 2k-2-2s

-MrXr r"

We get for rlN ' (i. e. r fM. CI) :
s

If rlM and rlc I , thens
y =b ö =0

r r' r
and

p (X,s+2-k)
r

o k-s-1
1-x(r)v(r)r

2 -s(1-a' x(r)r )
r
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hence

if b =0 and ord Mr r
even.V (r) (h,X) =

whereas

2 2k-2 2 0 k-1(1-x(r) r X) / (1-x(r)v(r)r X)

k 1 2 0 k-1(1-X(r)r - X) (1-, a' A(r)X) / (1-)~(r)v(r)r X)
,r

otherwise,

R(r) (X) = 21-a l x(r)Xr

If rlc I , r{M , thenE:

d =E:' (r).b =0 hence
r r

R(r) (X) = 1

and

2
V =E: 1

r r since rtc -2 · We get
VE:

k-1 2 - 2 2 -2 - 2(1-x(r)r X) (1-x(r)vE: (r)y X) (1-x(r)vE: (r)y X)
r r

V, (r) (h,X) = _

o k 1
(1-X(r)v(r)r - X)

where
.k-1= r

If r I (M,c ,) , then again d =E: I (r).b =0 and therefore
E r r

R(r)(X) = 1,

whereas y = band ö = 0 y1eld
r r r
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hence

v(r) (h,x) =

2 2k-2 2· ." 0 k-1
(1-x(r) r X )/(1~-x(r)\)(r)r X) if br=O and ordrM even,

k-1 1 2 0 k-1(1-x(r)r X) (1-lb x(r)X)/(1-x(r)v(r)r X) otherwise .
r

Conclusion: For all but finitely many primes r we have

v(r) (h,X) = R(r) (X)

and moreover

R(x,s) = R(h,x,s) , Q(x,s). ,

where Q(x,s) is a product of rational functions Qr· in

-sr whose zeros and poles are on the lines Re(s)=k-1

k-2 . Moreover for ~ EAut (w)

q o.
we have Q(X,m) '~Q(x ,m) if

and any integer- m*k-1 , k-2

v =1 for rlM.r

Now we can complete the proof of the entireness of R(x,s)

By Proposition 2.9, Corollary 2.10 we know that R(X,s) is

holomorphic outside the lines Re(s)=k-1 , k-2 1 hence by

the functional equation (Proposition 2.7) is holomorphic

everywhere.
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§ 3. Algebraicity of special values

As before let 6,. -be a newform in Sk(N,v) . The aim of this

section is to study algebraicity properties of the special

values V (6, x, m) for m= 1 ,2, ..... ,2k-2 .
00

Remark 3.1: Such results for the imprimitive symmetrie

square were first proven by Sturm [ 10] . How-

ever, since the Euler factors of which do not

appear in may vanish at s=k-1 but never vanish

at s=k we will deduce also algebraicity statements at

m=k-1 from the functional equation for

We normalize the Petersson inner product for forms 6. of
J.

weight k for fo(N) such that 6162 is a cusp forw via

I k-2< 61 ' 62 >N = 61 (z) 62 ( z ) Y dxdY •

f"O(N) ....... ·H

Let w be the primitive character such that

We define the quantities

(d,4NC ) = 1 •,X

-m
Tl

z0 (6 , X , rn) :
<6,6>

for m+ 1X(-1)=(-1) ,1~rn~k-1,

k-2m-1
. Z1 (6 ,X , m): _Tl _

<6,6>
for X (-1)=(-1 )m,k~rrl~2k-2
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under the assumptions of Theorem 1. By Proposition-2~1 we

can assume that 41N.

Theorem 2: Suppose 2
X *1 • If 'V =1

r
for rfM, then the

Zi(6,x,m) ~ Aut([)-equivariant, i.e. for any automorphism

aEAut(CC)

otherwise we know that at least that Z. (6,x,rn) is algebraic.
. 1

Remark 3.2: If x has the "wrong" parity
m

x(-1)=(-1) ,

then Zo(6,x,m)=0 for m=1, ..... ,k-1 , hence the theorem

is trivially ~rue in these cases, since the r-factors in

the functional equation for v (6,x,s) imply that
00

must vanish at s=m in these cases.

Proof of Theorem 2: We start by quoting Sturm l s results

adjusted to our notation. If one defines quantities

by the same forrnula as Z. (6,x,m) except that V is
1 00

replaced by D
00

then Sturm1s result says (under the condi-

tions 4lN and
2

X *1 that the are Aut(CI:)-

equivariant (see Theorem 1 [10]). As we saw at the end

of § 2 the two functions v -and· D
00 00

only differ by a

product Q(x,s) of Euler factors with zeros and poles on

the lines Re(s)=k-l , k-2 . Moreover if \) = 1
r for rtM,
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then Q(x,m) is Aut(~)-equivariant for m*k-1 , k-2 , hence

this proves already Theorem 2 for m*k-1 , k-2 . For m=k-1

we apply the functional equation to Z1 (6,x,k) . We get

w- R(X,k-1) ,
x

so

This enables us to write

with sorne * m+kR EW • Note, that Xv ( -1 ) = ( -1 ) = 1rn

Rrn

here, so

that in particular w=vx • Since (c ,c )=1 we can decompose
X v

= x(c )v(c )G(x) .G(v)
'J x

so that by the wellknown autornorphism rule for Gauß sums

(für any autornorphism 0t which sends roots of unity to

their tth power) we get Aut(~)-equivarianceof Zo(O,X,k-1).

In case, that we only know algebraicity of Z1(o,x,k) we
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can at least conclude that Zo(6,x,k-1) is also algebraic.

For rn=k-2 one argues in the same way by going back to the

Aut(~)-equivarianceof Z1(6,x,k+1)
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§ 4. P-adic interpolation

In this section we want to interpolate p-adically the alge-

braic numbers Zi(6,x,rn) given by the specia~ values of

V (6,x,s) in the critical strip rn=1, ..... ,2k-2 . We deal
co

first with the special values of the imprimitive function
m+1

D (f,X,s) for rn=1, ..... ,k-1 and X(-1)'=(-1) . For the
00 ..

rest of this paper we fix a rational prime pt2Na and
p

embeddings i and i of an algebraic closure W ofP 00

in and in

i',
co

(Op ~'(-----~ (0 c ~)- ce •

By our assurnption the Euler polynominal

has a reciprocal root, say

(1-0; X) (1-ß X)
P P

a , which is a p-adic unit.
p

Theorem 3: Für any odd m=1, ..... ,k-1 with 2(k-m)+O(p-1)

-* ]there is a constant C(m)EW and apower series ~Grn(T)EZp[[T]

*such that for any non trivial finite character X:1+pZ~

p
we have

(c
m-1 ord c, )-1 -1 ' -1 P P X G(X) -

i f (i (x(1+p)-1) ))=± C(m)(-2-) . D <nix,m) ·p rn 00 co m '1 co
a IT <n,n>p

Proof: We choose an integer u prime to p and, following



Pan~i~kin [6 ]

4.2

we define a distribution 'flu,m on

r:=1+pZ by demanding
p

( )

m
. 2 2 k-m m-1, X

fXd11 =("1-x(u) u ( )) -p-
-u,m 2

r a
I. P

for non trivial characters X of r of conductor

m
c =p X and

X

m-1

f 2 (k-rn) p 2 -rn k-1-m 1d11 = (1-u ) • (1 - -2-) (1-ß P ) (1 -v (p) p ) , 0 (6,m) •
U,ffi P rn 6 6 cor a TI < , >

I P

Note, that we always assume N=O(4) , so that by Sturm

[10] also the last integral is algebraic. Theorem 3 is

a consequence of

Theorem 4: Pan~i~kin's distribution

any odd m= 1 , •.... ,k-1 •

is bounded for

We continue with the proof of Theorem 3. By Theorem 4 there

is a constant C(rn) such that for any cornpact open Ucr

the value C(rn).11 (U) is a p~integral algebraic number .. u ,m --

Thus we get a measure

isomorphism

*
]..I on·u,rn

z via the standard
p

----~~ r , s ~l__-+~ (1+p)s .

For the corresponding element G (T)
u,m in the Iwasawa



algebra Z [[T]]
p

4.3

we then have

Gu ,m(x(1+p)-1)= fxd~u,m

r

Since 2(k-m) t O(p-1) we can chose a uEZ such that

u 2 (k -m) t 1 (p) •

Therefore the factor 1_x(u)2u 2(k-m) is always a p-adic

unit so that it can be interpolated by a unit

*H (T) € Zp [[T]] , i.e.u.,m

Eventually we find that

G (T) :=G (T).H (T)-1 € Z [[Tl]m u,m u.,m p

is the power series with the required properties, which

completes the proof of Theorem 3.

Proof of Theorem 4: We have to show that for any y=1 (p)

the values

-r
p [fd1!u.,m +

r
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(:
m-jmx- 2 2(k-m) p

~ ~(y) (1-X(u) u ) ~

2~m ~r p
x

have p-adic absolut value bounded independent of y and

r . To begin with we define two modified forms

6(z) -ß .6(pz) ,
p

01 (z) := 6(z) -ap . 6(pz) ,

which have the properties

(i) for m ;;;1
X

(ii)

(iii) 61 IT (p)=ß p .6 1 ' 0oIT(p)=a p . 60 for Hecke operator

T (p) ,

(iv) 6~=61 (p=complex conjugation on Fourier coefficients) .

~\e put tl. c 2
~1

for m ~1 and want to give an= X
X X

integral expression for Doo (6 0 'x,s) following Shimura

[8 ] (see also [ 10] and [ 11 ] ) :
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J -3/2 2= 60 (Z)6 X(Z)Y LN(X ,2s+2-2k) E

Hr 0 (N ).......
X

where the theta-series is given by

(z,s+1,2k-1,w)' dxdy

...

6 (z) :=
X

1

2

2
E x(n}qn

n=-c:o

and the Eisenstein series is (in Shirnura's notation)

E(z,s,>..,w}

with W any set of representatives for r 'fo(N } ,
X 00 X

r _-- { -+ (01 t
1
) ,. }~ t E Z . Hence we can rewrite the integral

as Petersson inner product

. -2 ~= <6 0 (z} ,e-(z}LN(x ,2s+2-2k}E(z,s+2-2k,1-2k,w}>N
X X

We want to consider

for

2h ( z , X, s) : = eX( z) . LN (X , 25 +2- 2k) E ( z , 5 +2- 2k , 1- 2k , tu )



4.6

By definition

* 1 2 1 k
h (z,X,s)=6 (- --)LN(x ,2s+2-2k)E(- --,s+2-2k,1-2k,w).(z!N )-

X N z N z X
X X

Sturm [10] has shown that for m=1, ..... k-1 the func-

tions h=h(z,X,m) are (nonholomorphic) generalized modular

ferms (cf. [10, p. 234], [9, p. 794 f] ). By Lemma 7 of [9] such

forms can be uniquely written as

r
h = 90 + L 8(v) 9

v=1 k-2v' v
(r <

k

2

where gv is a (holomorphic) modular form of level

weight k-2v with the same nebentypus character as

where the differential operator 8(v) is defined by
k-2v

N
X

hand

with

8 (v) =
A

(v '= 1)

1

2TTi

A
(- +~)
2iy oZ

for A E: lIJ •

By Lemma 6 of [9] we get

-
<6 0 (z), h(z,x,m»N

X
= <6 0 (z), gO(z,x,m»N

X

i.e. the special value D
oo

(6 0 ,x,m) only depends on the

helomorphic projection 90 of h. Since the Petersson
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inner product is the same if we apply the operator

W
N

= (0 -1)
X N 0

X

to both arguments, we also have

<6 0 (z), h(z,x,m»N
X

* *-= <6 0 (z), h (z,x,m»N
X

Taking holomorphic projection of the g~neralized modular

* -form h (z,x,m) leads to

<6 0 (z), h(z,x,m»N
X

* *= <60 ( z) , (h ) 0 >N
X

Lemma 4.1: There are linear forms F (XO, ..... ,X )EZ[XO' .. 'x ]n r r

which depend only on k and n such that

co

and

*C.(h )0 = L
n=O

nF (c ..... ,c )qn n,o, n,r

for a fixed constant C E Z , where

*h (z,x,m)
r

= L
j=O

co

(4 TTy) -j L

n=O

nc .qn, ]

Proof: From the formula
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we get

ö (ö) 9
k-2v v

*
9 r = 9r 1 k-2rWN

x

co

= (_1)r L

n=O

by comparison of the coefficients of

tity

-r
y . Using the iden-

we arrive at

v
= L

j=O

r(A+V) , 1 Cl v-j
(v) (-4ny) -J (__) \)

j r(A+V-j) 2ni' Clz

*h
r (k-2r)

r (k-r)

(r) *
öR- 2r 9r

00 r-1 ( j +rr (k-2r) r r- j ) , n
= L L C ,-(-1) (.)n c (4ny)-]q

n=O j=O n,] r(k-r-j) ] n,r

*This being the first step towards reducing h to its

* *holomorphic part (h)O we can continue now with h

replaced by

* * r(k-2r) ('
h hör) *

(1) := - k-2r 9
rr (k-r)

which has the form

-j " (1) n(4 ny) 4 c . q
n n,J
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* *After r steps we arrive at (r)h =(h)o and we see from
( r)

the formula for the first step, that C.c will be ann,o

integral linear combination of c ..... ,c where then,o, n,r

coefficients of c n ,1,·····'cn ,r are divisible by n . This

proves the lemma.

The Fourier coefficients c . =c . (X)n,] n,] of *h" (z,x,rn) can

be explicitely determined from [8,p.86ff] and [7,p.457]:

* N N 1/2 2 -1/2h (z,x,rn)=ex(~)G(x) (-i~) ~(x ,2m+2-2k)E'(z,m+2-2k,1-2k,w) (z~)

where

EI (z,m+2-2k,1-2k,w) = E(z,m+2-2k,1-2k,w) I (~-~) ·
k-.l. X. 2

Proposition 1 in [8] says:

-
2m+3-2k

N 4
X

i-k k-1-~
i 2 1 2

Y ; LN(x ,2m+~-2k) .E ' (z,m+2-2k,1-2k,w) =

, 1
r (m+-

2
-k)

i1/2-k(2y)k-m-1/~2TI.LN(w2,2m+2-2k)+
f(m+1) r(~+1-k)

2 . 2

00 2ninx m+1 m >

L e Ln(y'--2-'2+1-k) .LN (w n ,m+1-k) .ß(n,m+2-2k)
n=-oo
n:t:G

where w denotes the primitive character given by
n

-1 k+1 nNw (a) :=(--) (--)w(a)n a a
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the functions T are defined by
n

a-ß -a-Bi (2n) r(a)r(ß)T (y,a,B)=
n

a+B-1 -2rmyn . e a (4nny , a , B)

I la+ß-1 -2TTln1Y (4 I I ß )n e a TT n y, ,a

1-o;-Br(a+ß-1). (4ny)

if n>O

if n<O,

if n=O

with the hypergeometrie function

!Xl

a(y,a,B) = f(u+1)a-1 u B-1 e -YUdu
o

and where

the sum being extended over all integers a,b>O prime to

N.p such that (ab)2 divides n . (~ = Moebius function).

We remark, that we can restrict the sum above to positive

n , since for n<O the character 'wn has the same parity

as k, i.e. wn (-1)=(-1)k., and therefore LN (w
n

,m+1-k)

vanishes for odd m=1, •.•.. ,k-1 . For n>O the values of

are

( m+1 m 1 k)- m-k+1/2 -2TTny.k-3/2(2 )m-k+3/2.

T
n

Y'-2-'2+ - -n ~ (8m;1) ~ m Tl k- m
2

- -1-x.

• r(m;1)-1 r (~+1-k)-1 . I: (('2+ 1- k +x) (4TTny)
x=O X
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and so we can express

m-1
2 ----2-- ~

LN{X ,2m+2-2k)E ' {z,m+2-2k,1-2k,w)=L L
. j=O n=O

where d. =0 except
J ,0

(4ny)-jd. qn
J,n

m+1

d -B (TT)22k-rn/2 .. (2k.-2m-3) /4 I ( 2, 2rn+2-2k)
m-1 - m-1· . :JX • 1-1 W
-2-,0 -2-

and for n>O

d. =
],n

k 1 m+ 1 ( m-1) m-1 .
k-1 - 2~ (2k-3-2rn) /4 -2- 2 -] -

(-1) 2 Tl \ oNx·'- '; .. r. • B.n. .IL(W,rn+1-k).B(n,rn+2-2k)
" , J ] ~ n

where B. : =
J

*€ W

Now we obviously get the Fourier coefficients c .=c .(x)
n,J TI,]

*of h (ziX,rn) by rnultiplying the q-expansion of the theta

series with the Fourier expansion of LN(X
2 , ... ) .E I

. (z, .... )

above as folIows:

Lemma 4.2: There are constants

for . rn-1
J=0' .... ---2-- such that

C ' ,
* (rn+1)/2C.=C.(k,m,N)EW.TT

J J .
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for j*m;1 and

c rr.-1 (X) =
n'-2-

o otherwise

Cm- 1 L x(n 1 ) .LN (w
n2

,m+1-k) .B(n 2 ,m+2-2k)

-2- n
1

,n
2

>O

N 2
"in 1 +n 2 =n

The case of the trivial character being similar to

the nontrivial case we omit the details and just state the

result:

Lemma 4.3: With the same constants as in Lemma 4.2 we have

for . m-1
J*-2-

C
n

,j(XO)=C
j

op(k-m-1)/2 [L n2m~1 -jL~p(~~~~~~+~-~o
n

1
,n

2
>o

N 2'4pn 1 +n 2 =n

and for . m-1
J=-2-

otherwise

( . ) _Jk-rn-1) /2 [
c 1 X'O -n,rn-
~

if n=O

n>O



C
m-1
-2-
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L LN (w , m+1 - k) B (n , rn +2 - 2 k) ] .•
P pn2 2

n
1

,n 2>O

N 2
'4pn 1 +n 2 =n

We are in particular interested in the behaviour of the

C O(X)I S •n,

*Lemma 4.4: There is a global factor CEW such that the

following congruence holds for any n,rEm and y prime

to p:

k
1- 1

c. [p , - ( ) (1 - ( ) 2 2 (k -m)) G ( ) - (k -1 -m)
, X y. -X u u · X c c. 2

X r-1X*X O np ,0

m ~r

X

+ ( 1-u2 (k -m) ) (c, (m-1 (] r2r XO)-p c 2r-2 XO)) aO(p ) •
n.p ,0 np 0

Proof: By Lemma 4.2 the first surn in the brackets becomes:

and by Lemma 4.3 the Xo - part in the case m*1 is given by
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m-1
+-21 (np 2r-1)--2- LN (w m+1-k)B(n,m+2-2k)

p pn,

m-1
1 m-1 2r-3 --2-

- -2P ' (np ) LN (w ,m+1-k)ß(n,m+2-2k)p pn

k . m-1

=p2 -1 .C o.(1-uZ (k-m)) L nz---Y- LN (w ,m+1-k)ß(n
Z

,m+2-:Zk)
O p n 2n

j
>

N 2 2r-1in, +n 2=np -

·pfn.
1

where we have used that ß only depends on the part of n,
prime to p and that wn only depends on the square free

part of n . For the case m=1 in a similar way we arrive at

the same expression. Now it is obviously sufficient to make

4
a fixed choice of data (n 1 ,n2 ,a,b) E z>O with ptni '

2
(ab) In 2 ' (ab,Np) = 1 and to prove for any such choice

the congruence



L
X

4 • 15

- - 2 2(k-m) -
X (y) • ( 1- x (u) u ) L ( w , m+.1 -kr-p n2

m ~r
X

since the expression in the lemma is an integral linear

combination of these sums. We remark that as weIl we could

have omitted the factors

Since
2 2

w =x and

- -2w (a)w (b)
n 2

-n N
= (_2_) v (t) X (t)

t

just by changing y .

we are reduced to show

L
X

, m ~r

X

where we have chosen such that

This again can be reduced to prove, in terms of Bernoulli

nurnbers

L
X

m ~r
X

But this congruence is exactly the condition for the smoothed

Bernoulli distribution

. -1
r r .( k - m- 1 ) I~ 1 [ Y k -m u 2 y ]

Ek (Y+P Z ) :=p -k- Bk' «-»-u2 Bk «--»
-m , u 2 .' P ,-m -m r -m r

- --. p p
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(cf. [4] p.45) to be a measure, which proves Lemma 4.4.

Lemma 4.5: The statement of Lemma 4.4 remains true if we

*replace the coefficients cn,O(X) of h (z,x,m) by the

coefficients cn(x) of the holomorphic projection

(X)

n
= L c (x).q

n
n=O

proof: By Lemma 4.1 we have

where

C.C (X)
n = F (c a(X)' ••••• ,c 1(X))n n, . m-

n,~

F n (X O' • • • • 'Xm- 1 ) Ci CXn·L' rnod, n. Z [Xo' . · ... ,Xm- 1J •
-2- -2-

The expression in brackets of Lemma 4.4 remains at least

integral if we replace the cn,a(x) by the . Cn,j(X) , so

that from F
n

being a linear form we get

C.C a-1 [pk/2-1 L X(Y). (1-x(u) 2u 2 (k-m) )G(x)c
x
-(k-1-m)c 2r-1 (x)

x*x npo
rn ;Sr

X
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~.c -1[ k/2-1 ~ -( ) (1--( )2 2(k-m))G() -(k-1-m) ( )o p • L. X y. X u u X .c X c 2r-1 X
x*xO np ,0

m :sr
x

( 1 2 (k -m)) ( () m-1 (x0)) rnod np 2r - 2
+ -u · c 2r Xo -p .c 2r-2

np ,0 np, 0

so Lemma 4.4 yields the desired congruence for r~2 , which

proves Lemma 4 for same canstant C .

Now we can finish the proof of Theorem 4 by showing that for

*some C(m) E Wand with

Mr := I:

x*XO

m :Sr
X

the product C (m) • M
r

is divisible by r
p for any rEDJ •

As we saw earlier we have

-m/2 -
D

co
(6 0 ,x,m) =(4TT) T(m/2)<6 0 (z) ,h(z,x,m»N for x*xO

X

and

where we can replace h by *(h )0 · For x*x O apply the
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trace tr=Tr . to the modular form
,f'o (Nx)...... r°(Np)

without really affecting the inner product

* *(h ) 0

D
co

(6 0 ,x,m)

one easily sees for

/ * *= (4TT)-m 2 f,(m/2) <6
0

,tr{(h )0 »Np .

:)is represented by the matrices ( 1\NPi~o (Nx) ...... r0 (Np)
') 2m -1
L X

i'mod .p

Since

for

* *tr « h ) 0 ) = L

i mod

* * (1 0)2m -1 " (h ) 0 Ik
X Npi 1

that

* * (0tr « h ) 0 Ik

Np

L
i

-i

p

k 2m -1
=P- ( 2mx-1) ('2 - 1) (h* ) 0 IT (p) X

Therefore we get with W . = (0 -01)
Np· Np

2m -1

( 2 1) (k - 1) 1 * I' X<6
0

,h(z,x,rn»N =p- rnX- '2 <6
0

kWNp! (11 )0 T(p) >N
X

Since normalizes r1 (Np) and

-1 (1 0) =(pW
Np

W
Np

o P 0

o

1
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we see that the adjoint T(p)

Np is given as

* of T(p) on the level

*T(p) -1:::: WNP 0 T(p) o WNP ,

which for any rii:m
X

via noIT(p) :::: Ci; .nO. p
implies:

2(r-m) -(2m -1)(~ -1) I (h*) I ( )2r-1
Ci;p X <6 0 ,h(z,x,m»N =p X 2 <6 0 kWNp' 0 T P >Np.

X

*Similar we get with h =h(z,xO,m) IkWNP

So if we define the modular forms

* - 2r-1
(h ) O(z,x,m) IT(p)

2 (k-m) 1 - * \ 2r+ ( 1 -u ) m (( h ) 0 (z , X0 ,m) T (p)
Tl <6,6>

m-1 * I 2r-2
-p .(h )O(z'XO,m) T(p) )

we simply have
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-m/2 \M =(4TI) .r (m/2) <6 0 kWN ' F (z) >N •r p r,y p

Since the effect of T(p) on Fourier coefficients is given by

we conclude from Lemma 4.5 and the Aut(~)-equivarianceof

-r m
Lemma 4.6: The modular forms F I : =C.p . F (z) • TI <6,6>r,y r,y.

have p-integral Fourier coefficients going to zp under

- -
i :(0 ~ (0 •p p

The space Mk(Np) of weight k modular forms of level

Np having a (O-structure, we also know that the forms

F' all lie in a finite dimensional W-vector space,r,y

hence by Lemma 4.6

of the linear form

in a Z -lattice. Therefore the values
p

restricted to the set {F' iy,rEN,y=1 (p) } must alsor,y

lie in a Zp-lattice, hence they have in particular bounded

p-adic absolut value, which proves that Pan~i~kin's

distributions ~ are in fact rneasures (i.e. bounded) .·u,m

Remark 4.7: a) If the assumption 2(k-m)$O(p-1) of Theorem 3
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is not fulfilled we still may define an element

G (T) E: Qu0 t (z [[ T] ] )m p

such that for all but finitely many characters X we have

-1 m-1 ord c
i -1(G (i (x(1+p)-1»)=i -1(c(m).(E....--

2
) P xG(X) D (6,x,m)),P m 00 00 m 00

a n <6,6>p

so that we get in any case a p-adic L-function by putting

D (6 ,s) :=G ((1+p) 1-s_1) for s E Z
p,m m p

b) By avoiding those X where one of the "missing Euler

factors" of the imprimitive symmetrie square vanishes one

also finds (by p-adic interpolation of these factors) an

element

-
Gm(T) E Quot (Zp[[T]])

such that we get p-adic interpolation of the special values

of the primitive symmetrie square by

.... m-1 ord c -
i -1(G (i -'(x(1+p)-1)))=i -1(C(m)(E...-) pxG(x) Voo (6,x,m))
p m 00 00 2 m 6 6a . n < , >

P'

for all but finitely rnany X • I would expect that in fact

G
m is apower series in Zp[[T]] and that this equality

holds for all X with the appropriate change of the right



hand side for X=Xo •
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We define the associated L-function as

v (6,s):= G ((1+p) 1-s_1)
p,m m

It is clear that by the functional ~quation satisfied by

v~ we also get a measure on r describing the p-adic

interpolation of the special values in the right half of

the critical strip m=k, ..... ,2k-2 . We define

G (T)
m

- -T
.- G2k ':"' 1- rn (1+T) for m=k, ..... , 2k - 2 .

Proposition 4.8: Por any even m=k, ..... ,2k-2 there is a

*constant C=C(m,n) E m such that for all but finitely

many X :

-1 - -1 -1 B2 2rn-k-1 mX 2
i (G (i (x(1+p)-1)))=i (Cx(-)(p 2)" G(x) V·,(n,x,m))p m CX) ~ c ~

v 0-
P

where B denotes the integer which appears in the functional

equation in Theorem 1.

The proof just consists of applying the functional equation

for V~ relating the values at m and 2k-1-m I using the

fact that for pJa we have v(p)=1 , and to follow the
- p

definition of Gm for m=k, ..... ,2k-2 . As an immediate

consequence of the definition we see that the corresponding
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functional equation of the p-adic L-functions reads:

= V 2k 1 (6,2-s)p, --m
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