The p-adic L-functions attached to Rankin convolutions of modular forms

C.-G. Schmidt

Max-Planck-Institut für Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3
Federal Republic of Germany

§ 1. Introduction

Let 6 be a newform in $S_{k}(N, \nu)$, i.e. of integral weight $k . \geq 2$, level N and nebentypus.character v. Let $\stackrel{\circ}{v}$ denote the corresponding primitive character. 6 has a Fourier expansion

$$
f(z)=\sum_{n=1}^{\infty} a_{n} q^{n}, \quad\left(q=e^{2 \pi i z}\right)
$$

and the corresponding L-function

$$
L(6, s)=\sum_{n=1}^{\infty} a_{n} n^{-s}
$$

can be written as an Euler product of the form

$$
L(f, s)=\prod_{r}^{r}{ }_{\text {prime }}\left(1-a_{r^{\prime}} r^{-s}+\dot{v}(r) r^{k-1-2 s}\right)^{-1} .
$$

For simplicity throughout this article we make the technical assumption, that 6 has rational Fourier coefficients, i.e. all $a_{n} \in \mathbb{Q}$. This implies that $v^{2}=1$. We denote by α_{r} and B_{r} the reciprocal zeros of the Euler polynominal at r, so that we get

$$
1-a_{r} X+v(r) r^{k-1} X^{2}=\left(1-\alpha_{r} X\right) \cdot\left(1-\beta_{r} X\right)
$$

We define the "imprimitive symmetric square" function attached to 6 by

$$
\underset{\infty}{D}(6, s)=\prod_{r}\left[\left(1-\alpha_{r}^{2} r^{-s}\right) \cdot\left(1-\alpha_{r}{ }^{\beta} r_{r} r^{-s}\right) \cdot\left(1-B_{r}^{2} r^{-s}\right)\right]^{-1},
$$

which can easily be transformed into the formula

$$
\underset{\infty}{D(f, s)}=\frac{L_{N}\left(v^{2}, 2 s+2-2 k\right)}{L_{N}(v, s+1-k)} \sum_{n=1}^{\infty} a_{n}^{2} n^{-s},
$$

where L_{N} denotes the Dirichlet L-function with the Euler factors at primes dividing N removed.

The purpose of the present paper is to use algebraicity of special values of the function $D_{\infty}(6, s)$ and its twists $D_{\infty}(6, x, s)$ by certain Dirichlet characters x to do p-adic interpolation and define in this way associated p-adic L-functions. It turns out that $D_{\infty}(6, x, s)$ is not quite the right object to consider. The two major "defects" are
a) that in general it does not satisfy a functional equation in a natural form for $s \longrightarrow 2 k-1-s$,
b) that it is not necessarily entire (possibly there are poles at $s=k, k-1$).

This has already been remarked by Shimura [8], who proved meromorphic continuation of $D_{\infty}(f, x, s)$ to the whole s-plane with the only possibility of simple poles at $s=k, k-1$.

In $\S 2$ we work out explicitely the modification of D_{∞} by finitely many Euler factors such that the resulting "primitive symmetric square" function $D_{\infty}(6, s)$ together with the twists $D_{\infty}(\sigma, \lambda, s)$ under consideration are entire functions satisfying a functional equation of canonical type (Theorem 1). This enables us then in § 3 to study algebraicity properties of all special values

$$
D_{\infty}(f, x, m) \text { for } m=1, \ldots, 2 k-2 \text { (Theorem } 2 \text {). }
$$

Note, that $m=k, k-1$ might be a pole of $D_{\infty}(f, x, s)$. If m is not a pole of $D_{\infty}(6, x, s)$, the algebraicity statement for $D_{\infty}(6, x, m)$ easily reduces to Sturm's algebraicity results for $D_{\infty}(f, x, m) \quad[10]$. But if m is a pole of $D_{\infty}(6, x, s)$ we must use the functional equation satisfied by $D_{\infty}(6, x, s)$ to pass to $m^{\prime}=2 k-1-m$. There we exploit the fact that m^{\prime} is not a pole of $D_{\infty}(f, x, s)$, thus showing "algebraicity for $D_{\infty}(6, x, m)$ " which eventually via the functional equation yields "algebraicity for $D_{\infty}(f, x, m)$ ".

In $\S 4$ we fix a prime $p \nmid 2 \mathrm{Na} p$ and show the existence of p-adic L-functions $D_{p, m}(6, s)$ for $m=1, \ldots, 2 k-2$, which roughly speaking interpolate p-adically the special values $D_{\infty}(b, x, m)$, where x runs over all finite characters $\dot{x}: 1+p_{P}^{x} \rightarrow \mathbb{C}^{x} \quad$ (Theorem 3). As a consequence of the functional equation of $D_{\infty}(6, x, s)$ we will receive
the functional equation of the p-adic L-functions:

$$
D_{p, m}(6, s)=D_{p, 2 k-1-m}(6,2-s) .
$$

There is unpublished work of Hida treating p-adic interpolation of the special values of D_{∞} by a different approach via p-adic modular forms. However, the methods of the present paper essentially grew out of a refinement of the techniques in B. Arnaud's Thèse [1], where he shows that the integrals of characters against the proper (i.e. not smoothed) Pančiškin distribution are essentially p-integral.

The case of a newform of weight 2 is of particular interest. There, our primitive symmetric square is exactly the I-function attached to the system of 1-adic representations $\left(S y m^{2} H_{\ell}^{1}(E)\right)$ for the corresponding modular elliptic curve E. A detailled treatment of this case, in particular the connection with Iwasawa theory and the so-called main-conjecture are the subject of a forthcoming joint paper with J. Coates [3].

For the modification of $D_{\infty}(f, x, s)$ it is convenient to $?$ introduce the notion of a minimal form.

Definition: A newform h of level M is called minimal (respectively r-minimal for a prime r), if h is not a twist h_{ψ}^{\prime} of a newform h^{\prime} of level $M^{\prime}<M$ by a character ψ (respectively of conductor $\left.c_{\psi} \mid r^{\infty}\right)$.

Sometimes we write $\psi=\prod_{\mathbf{r}} \psi_{r}$ where $c_{\psi_{r}} \mid r^{\infty}$. Let g be a minimal form associated with 6 , i.e. there is a character ε such that $g_{\varepsilon}=6$. Such a g always exists although it needs not to be unique. We suppose that g has level M and Fourier expansion

$$
g=\sum_{n=1}^{\infty} \ldots b_{n} q^{n} \cdot \because
$$

We define Euler factors for primes $r \mid M$ by

$$
\rho_{r}(x, s):=\left\{\begin{array}{l}
1-\left(x(r) r^{1-s}\right)^{2} \text { if } b_{r}=0 \text { and ord } r^{M} \text { even, } \\
1-x(r) r^{1-s} \text { otherwise. }
\end{array}\right.
$$

Proposition 2.1 and Definition: a) The "primitive symme-

tric square" function
$D_{\infty}(6, x, s):=\prod_{r \mid M}(x, s+2-k)^{-1} \frac{L_{M c_{\dot{\chi}}}\left(x^{2}, 2 s+2-2 k\right)}{L(x \stackrel{\circ}{\nu}, s+1-k} \sum_{n=1}^{\infty}\left|b_{n}\right|^{2} \cdot x(n) n^{-s}$
is independent of the choice of an associated minimal
form g and differs from $D_{\infty}(6, x, s)$ only at finitely many Euler factors.
b) $D_{\infty}(6, x, s)$ does not change, if we replace 6 by any twist b_{ψ}. with a character ψ such that $\left(c_{\psi}, N\right)=1$. In particular one can assume that $N \equiv 0(4)$.

Proof: a) Suppose $g^{\prime} \neq g$ is a second choice of level M^{\prime} and $\sigma_{=g^{\prime}} \varepsilon^{\prime}$. For an integer R and a prime r we put $R_{r}:=r$ ord $_{r}$. Since g is minimal iff g is r-minimal for all $r \mid N$ we may suppose $c_{\varepsilon}, c_{\varepsilon}, \mid r^{\infty}$ and show: $M_{r}=M_{r}^{\prime}$ and

$$
\mathrm{b}_{\mathrm{r}}=0 \text { i.ff } \mathrm{b}_{\mathrm{r}}^{\prime}=.0,
$$

where $g^{\prime}=\sum_{n} b_{n}^{\prime} q^{n}$. We know that $g^{\prime} \approx g_{\varepsilon} \bar{\varepsilon}$, (i.e. all but finitely many Fourier coefficients at primes coincide).

Case $g_{\varepsilon \bar{\varepsilon}}$ is newform: Then $g^{\prime}=g_{\varepsilon \bar{\varepsilon}}$, and r-minimality of g^{\prime} yields $M_{r} \geqq M_{r}^{\prime}$. If $b_{r}=0$, then $g=g_{\underline{\varepsilon} \varepsilon}^{\prime}$; hence $M_{r} \geq M_{r}$ by r-minimality of g, so we have $\bar{M}_{r}=M_{r}$ in this case. If $b_{r} \neq 0$ and $M_{r}>M_{r}^{\prime}$, then $c_{\varepsilon \bar{\varepsilon}}, \neq 1$ implies $b_{r}^{\prime}=0$, hence $r^{2} \mid M_{r}^{\prime}$ and $c_{\nu \bar{\varepsilon}, 2} \mid M^{\prime} / r$. Note: $g^{\prime} \in S_{k}\left(M^{\prime}, \nu \bar{\varepsilon} '^{2}\right)$. $b_{r} \neq 0$ yields $\left(c_{\nu \varepsilon} \bar{\varepsilon}^{2}\right)_{r}^{\prime \cdot}=M_{r}$ or $\left(\nu_{r}=\varepsilon^{2}\right.$ and $\left.M_{r}=r\right)$. The last case being impossible since $r^{2}\left|M_{r}^{\prime}\right| M_{r}$, we arrive at $\mathrm{c}_{(\bar{\varepsilon} \varepsilon ;)^{2}}=\mathrm{M}_{\mathrm{r}}$. Now apply Corollary 4.3 [2, p.235].

Put

$$
\tilde{\tilde{Q}}:=\left\{\begin{array}{l}
C_{\varepsilon \bar{\varepsilon}}, \quad \text { if } C_{\nu \bar{\varepsilon}}^{2} \varepsilon \bar{\varepsilon}, \geq M_{r}, \\
C_{\nu \bar{\varepsilon}} \bar{M}_{\varepsilon} \bar{\varepsilon}, \text { if } \nu \bar{\varepsilon}^{2} \varepsilon \bar{\varepsilon}, \neq 1 \text { and } c_{\nu \bar{\varepsilon}} \overline{2}_{\varepsilon \bar{\varepsilon}},<M_{r} .
\end{array}\right.
$$

Then $g^{\prime}=g_{\varepsilon \bar{\varepsilon}}$, is newform of level $\tilde{Q} . M$ if $\nu \bar{\varepsilon} \bar{\varepsilon} ' \neq 1$ (otherwise it is not a newform). So $M_{r}^{\prime}=\tilde{Q}_{M_{r}} \geqq M_{r}$, a contradiction. We get $M_{r}=M_{r}^{\prime}$ also for $b_{r} \neq 0$. It remains to show that $b_{r}^{\prime}=0$ implies $b_{r}=0$. If we assume $b_{r} \neq 0$, we get $\left.\left(c_{V \varepsilon}\right)_{r}\right)_{r}=M_{r}=M_{r}^{\prime} \geq r^{2}$. Again by Corollary 4.3 from [2] we would arrive at $M_{r}^{\prime}=\tilde{Q} M_{r}>M_{r}$, since $\varepsilon \bar{\varepsilon}^{\prime} \neq 1$ (note: $b_{r}^{\prime}=0 \neq b_{r}$ implies $g^{\prime} \neq g$) hence contradiction. Case $g_{\varepsilon} \bar{\varepsilon}$, not a newform: Proposition 4.1 [2] tells us for r-minimal g with $b_{r}=0$ that all twists g_{ψ} with $c_{\psi} \mid r^{\infty}$ are newforms. So we know $b_{r} \neq 0=b_{r}^{\prime}$ and hence

$$
c v_{v_{r}} \bar{\varepsilon}^{2}=M_{r} \quad \text { or } \quad\left(v_{r}=\varepsilon^{2} \quad \text { and } \quad M_{r}=r\right)
$$

In the last case any twist of g by a character is a newform by Corollary 4.1 [2] , so this is excluded here. By Corollary 4.3 we have for $c_{\nu_{r}} \bar{\varepsilon}^{-2}=M_{r}$:

$$
g_{\varepsilon \bar{\varepsilon}}, \text { newform inf } \varepsilon \bar{\varepsilon}, \neq \bar{v}_{r} \varepsilon^{2} \text {. }
$$

Hence we get from our assumption : $\nu_{r}=\varepsilon \varepsilon \varepsilon^{\prime}$. Now $g_{\varepsilon} \bar{\varepsilon},=\sum_{\mathrm{n}} \mathrm{b}_{\mathrm{n}} \varepsilon \bar{\varepsilon}^{\prime}(\mathrm{n}) \mathrm{q}^{\mathrm{n}}$ has character $\nu \bar{\varepsilon}^{2} \varepsilon^{2} \bar{\varepsilon}^{\prime 2}=\left(\nu \nu_{r}^{-1}\right) \varepsilon \bar{\varepsilon}^{\prime}$:

2.4

Apply the involution $W_{M_{r}}$ of [2] ! There is a newform $h \in S_{k}\left(M, \nu \nu_{r}^{-1} \varepsilon \bar{\varepsilon}^{\prime}\right) \quad$ and ${\stackrel{r}{\lambda_{M}}}_{M_{r}}(g) \in \bar{\sigma}^{\prime}$ with $\quad\left|\lambda_{M_{r}}(g)\right|=1$ such that

$$
g \mid W_{M_{r}}=\lambda_{M_{r}}(g) \cdot h
$$

and $h=\sum_{n} c_{n} q^{n}$ where

$$
c_{p}=\left\{\begin{array}{l}
\overline{\left(v_{r} \bar{\varepsilon}^{-2}\right)(p)} \cdot b_{p} \text { if } p \neq r \\
\left(\nu \nu_{r}^{-1}\right)(p) \cdot \bar{b}_{p} \text { if } p=r
\end{array}\right.
$$

By comparison of Fourier coefficients we see that

$$
g^{\prime} \sim g_{\varepsilon} \bar{\varepsilon}^{\prime} \sim h,
$$

hence $g^{\prime}=h$ and therefore $M_{r}^{\prime}=M_{r}$. Furthermore we get

$$
\begin{aligned}
& b_{r}^{\prime}=0 \text { iffy. } \quad r^{2} \mid M_{r}^{\prime} \text { and } c_{\nu_{r}}-2 \mid M_{r}^{\prime} / r, \\
& b_{r}=0 \text { inf } \quad r^{2} \mid M_{r} \text { and } c_{\nu_{r}} \bar{E}^{2} \mid M_{r} / r,
\end{aligned}
$$

which completes the proof of a).
b) It is clear that replacing 6 by σ_{ψ} with $\left(c_{\psi}, N\right)=1$ does not affect an associated minimal form g, since $\sigma=g_{E}$ implies $\sigma_{\psi}=g_{E \Psi}$ and the assumption $\left(c_{\psi}, N\right)=1$ guarantees that σ_{ψ} is again a newform.

2.5

In all what follows we suppose that $\left(c_{X}, N\right)=1$ and define

$$
\begin{aligned}
& \dot{\Gamma}_{\infty}(v x, s):=(2 \pi)^{-s_{\Gamma}}(s) \pi^{-s / 2} \Gamma:\left(\frac{s-k+2-H_{x \nu}}{2}\right) \text {, where } \\
& v: \quad v x(-1)=(-1)^{H_{v x}}, H_{v x}=0,1 .
\end{aligned}
$$

$B:=\operatorname{Tr}^{\text {ord }} r^{M-m(r)}$ where $m(r):=\left\{\left[\frac{\text { ord }_{r}^{M}}{2}\right]\right.$ if $b_{r}=0$, $r \mid M \quad 0$ otherwise,
$W_{X}:=x^{2}(B) \frac{G(X)^{2}}{G(X \nu) \cdot G(\bar{x})^{2}} \sqrt{\because \dot{U}(-1) C_{X \nu}}$
where the Gauß sum $G(x)$ is given by

$$
G(x):=\sum_{x=1}^{c_{x}} x(x) \quad \exp \left(2 \pi i x / c_{x}\right)
$$

Theorem 1 : The function
$R(x, s):=\left(B^{2} c_{x}{ }^{3} c_{\nu}{ }^{-1}\right) s / 2 \bar{\Gamma}_{\infty}(\nu x, s) . D_{\infty}(f, x, s)$
has analytic continuation to the whole complex plane
where it satisfies the functional equation

$$
R(x, s)=W_{x} \cdot R(\bar{x}, 2 k-1-s) .
$$

$R(x, s)$ is entire except for odd k and trivial x, in which case there are exactly two simple poles: $s=k, k-1$.

The proof will occupy the rest of this § . We fix a minimal form g associated with 6 and apply Theorem 2.2 from [5] to the newforms $F_{1}:=g \in S_{k}\left(M, \nu \bar{\varepsilon}^{-2}\right)$ and $F_{2}:=g \bar{\chi} \in S_{k}\left(M_{X}^{2}, \nu \bar{\varepsilon}^{2} \bar{\chi}^{2}\right)$. One easily checks that conditions A), B), C) of $[5, \mathrm{p} .41]$ are satisfied. In the notation of that article we set

$$
\begin{aligned}
& M^{\prime}:= \prod c_{x_{r}}^{2} / c x_{r}^{2} \\
& r c_{x^{2}} \\
& M^{\prime \prime}:= m \prod_{x_{r}}^{2} . \\
& r \mid c_{x} \\
& x_{r}^{2}=1
\end{aligned}
$$

Li formulates her result in terms of the pseudo-eigenvalues $\lambda_{r}\left(F_{i}\right)$ under the action of W_{r}-operators.

Lemma 2.2: For a prime $r \mid M$ such that $b_{r}=0$ we have for
$n(r):=\max \left\{n \in \mathbb{M} ; \frac{\lambda_{r}\left(g_{\psi}\right)}{\bar{\lambda}_{r}(g-\bar{\chi} \psi}=\frac{\lambda_{r}(g)}{\lambda_{\dot{r}}(g-)} \forall \psi\right.$ with $\left.c_{\psi} \mid r^{n}\right\}$ that $n(r) \geq\left[\frac{\text { ord }_{r}{ }^{M}}{2}\right]$.

Proof: The twisting operator R_{X} and W_{r}-operators behave like

$$
g\left|R_{X}\right| W_{r}=\bar{x}\left(M_{r}\right) \cdot g\left|W_{r}\right| R_{\chi}
$$

where $g \mid R_{X}=G(\bar{x}) \cdot g_{X}$. Hence

$$
\frac{\lambda_{r}(g)}{\lambda_{r}(g \bar{x})}=\bar{x}\left(M_{r}\right)
$$

The same argument for
$g_{\psi} \in S_{k}\left(\operatorname{lcm}\left(M, c_{\psi}^{2}, c_{\psi}, C_{\nu \varepsilon} \bar{\varepsilon}^{2}\right), \nu \varepsilon^{-2}{ }^{2}\right)$ instead of g yields

$$
\frac{\lambda_{r}\left(g_{\psi}\right)}{\lambda_{r}\left(g_{\psi \bar{x}}\right)}=\bar{x}\left(M(\psi)_{r}\right)
$$

where $M(\psi)$ denotes the level of the newform g_{ψ}. Since for r-minimal g with $b_{r}=0$ by Theorem 4.3 of [2] one has $\left(c_{\nu \bar{\varepsilon}}^{-2}\right)_{r} \leq \sqrt{M}_{r}$, we get for $c_{\psi}^{2} \mid M_{r}: M(\psi)=M$ by minimality of g, which proves the lemma.

The lemma justifies our definition of $m(r)$ which in Li's article is

$$
m(x):= \begin{cases}\min \left(n(x),\left[\frac{\text { ord }_{r} M}{2}\right],\right. & \text { if } b_{r}=0 \\ 0 & \text { otherwise } .\end{cases}
$$

For r|M'' Li defines
$\theta_{r}(x, s)= \begin{cases}1-x(r) \cdot\left|b_{r}\right|^{2} r^{-s+2-k} & \text { if } M_{r}=r \text { and }\left(v \varepsilon^{-2}\right)_{r}=x_{r}=1, \\ 1-x(r)\left|b_{r}\right|^{2} r_{r}^{-(s+k-1)} & \left.\text { if } M_{r}=(c)-\varepsilon^{-2}\right)_{r} \text { and } x_{r}=1, \\ 1-x^{2}(r) r^{-2 s} & \text { if } b_{r}=0 \text { and ord } r_{r}^{M} \text { even, } \\ 1-x(r) . r^{-s} & \text { if } b_{r}=0 \text { and ord } r^{M} \text { odd, } \\ 1 & \text { otherwise. }\end{cases}$

Since for $r \mid M$ we have

$$
\left|b_{r}\right|^{2}=\left\{\begin{array}{l}
r^{k-1} \text { if } \quad M_{r}=\left(c_{v E}^{2}\right)_{r} \\
r^{k-2} \text { if } \quad M_{r}=r \text { and } \quad v_{r}=\varepsilon_{r}^{2}, \\
0 \text { otherwise, }
\end{array}\right.
$$

we can express the $\theta^{\prime} s$ by the formula

$$
\theta_{r}(x, s)=\left\{\begin{array}{l}
1-x^{2}(r) r^{-2 s} \text { if } b_{r}=0 \text { and ord } r_{r}^{M} \text { even }, \\
1-x(r) r^{-s} \text { otherwise, }
\end{array}\right.
$$

hence we get the

$$
\theta_{r}(x, s)=\rho_{r}(x, s+1)
$$

We must introduce some more notation to formulate Li's result. For $r \mid M^{\prime}$ define
$Q_{r}:= \begin{cases}M_{r}^{\prime 2} & \text { if } M_{r}^{\prime}>c_{X_{r}}, \\ c_{X_{r}}^{2} & \text { otherwise, }\end{cases}$
and
$\wedge_{r}(x):=\bar{x}_{r}^{2}(-1) \cdot \bar{v} \varepsilon^{2}\left(x \bar{x}_{r}\right)^{2}\left(c_{x_{r}}^{2}\right) \cdot\left(\bar{x} x_{r}\right)\left(M_{r}^{\prime}\right) G\left(x_{r}^{2}\right) \cdot \lambda_{r}\left(g_{x}^{-}\right)^{2} \frac{Q_{r}}{c_{x_{r}}^{2}}$
We set

where
$L_{g, g_{\chi}}(s):=L_{M C_{X}}\left(\chi^{2}, 2 s\right) \quad \sum_{n=1}^{\infty}\left|b_{n}\right|^{2} \cdot \chi(n) n^{-(s+k-1)} \quad$.

Proposition 2.4: (W. Li) The function ${ }^{\Psi_{g, ~}} \bar{\chi}^{(s)}$ has analytic continuation to the whole complex plane, which is an entire function if $x \neq 1$ and which has only simple
poles at $s=0$ and $s=1$ if X is trivial. It satisfies the functional equation

$$
{ }_{g_{,}, g_{\bar{\chi}}}(s)=A_{\chi}(s) \cdot \Psi_{\bar{g},}^{g_{\bar{x}}}(1-s),
$$

where

$$
\begin{aligned}
& A_{X}(s):=\prod_{r \mid M}\left(x^{2}(r) r^{1-2 s}\right),{ }^{\text {ord }} r^{M-m(r)} \\
& \text { - } \prod\left(\chi^{2}(r) r^{1-2 s}\right)^{2 o r d_{r}{ }^{c} \chi} \\
& r \mid c_{x} \\
& x_{r}^{2}=1
\end{aligned}
$$

and $\bar{g}=\sum_{n} \bar{b}_{n} q^{n}$.

This is Theorem 2.2 from [5] in our special case $\mathrm{F}_{1}=g, \mathrm{~F}_{2}=g_{\mathrm{X}}$:

Lemma 2.5: $A_{x}(s)=\left(B C_{x}^{2}\right)^{1-2 s} x^{2}(B)\left(\frac{G(x)}{G(\bar{x})}\right)^{2}$.
Proof: For the primes $r \mid M$ their contribution to $A_{X}(s)$ gives us straight away the factors $B^{1-2 s}$ and $X^{2}(B)$. For the primes $r \mid C_{2}$ we reduce everything to the proof of

Lemma 2.6:

$$
\wedge_{r}(x)=G\left(\bar{x}_{r}^{2}\right) \frac{G\left(x_{r}\right)^{2}}{G\left(\bar{x}_{r}\right)^{2}} \begin{cases}\left(\bar{x} x_{r}\right)\left(c_{x_{r}}^{2}\right) & \text { if } r \neq 2, \\ 4\left(\bar{x} x_{r}\right)\left(4 c_{x_{r}}^{2}\right) & \text { if } r=2,\end{cases}
$$

We continue the proof of Lemma 2.5 and show Lemma 2.6 later. The contribution of primes $r \mid c_{X}$ to $A_{X}(s)$ now is easy to calculate as

$$
\begin{aligned}
& G\left(x_{r}^{2}\right) \cdot G\left(\bar{x}_{r}^{2}\right)\left(\frac{G\left(x_{r}\right)}{G\left(\bar{x}_{r}\right)}\right)^{2}\left\{\begin{array}{l}
4\left(\bar{x} x_{2}\right)\left(4 c_{x}\right)_{2}^{2} \cdot\left(c_{x_{2}} / 2\right)^{1-2 s} \cdot\left(4 c_{x}^{2}\right)^{-s} \cdot\left(x \bar{x}_{2}\right)^{2}\left(2 c_{x_{2}}^{3}\right) \\
2 \\
\text { if } \quad r=2,
\end{array}\right. \\
& \left(\bar{x} x_{r}\right)\left(c_{x_{r}}^{2}\right) c_{x_{r}}^{1-2 s_{c_{r}}}{ }_{x_{r}}^{-2 s}\left(x \bar{x}_{r}\right)^{2}\left(c_{x_{r}}^{3}\right) \text { otherwise, } \\
& =\left(\frac{G\left(x_{r}\right)}{G\left(\bar{x}_{r}\right)}\right)^{2} \cdot\left(c_{x_{r}}^{2}\right)^{1-2 s}\left(x_{x_{r}}\right)\left(\bar{c}_{x_{r}}^{4}\right) \cdot .
\end{aligned}
$$

By the decomposition formula for Gauß sums

$$
G(x)=\prod_{r \mid c_{x}}\left(x \bar{x}_{r}\right)\left(c_{x_{r}}\right) \cdot G\left(x_{r}\right)
$$

and by the identity $G\left(X_{r}\right)=G\left(\bar{X}_{r}\right)$ for quadratic characters x_{r} we arrive at

$$
\prod_{r \mid c_{x}}\left(c_{x_{r}}^{2}\right)^{1-2 s}\left(x_{x_{r}}\right)\left(c_{x_{r}}^{4}\right) \cdot\left(\frac{G\left(x_{r}\right)}{G\left(\bar{x}_{r}\right)}\right)^{2}=\left(c_{x}^{2}\right)^{1-2 s}\left(\frac{G(x)}{G(\bar{x})}\right)^{2}
$$

which immediately gives the desired formula in Lemma 2.5. Proof of Lemma 2.6: The proof is easily reduced to show

$$
\lambda_{r}(g \bar{x})=\left(x \bar{x}_{r}\right)\left(c_{x_{r}}^{2}\right) \cdot \bar{v} \varepsilon{ }^{2}\left(c_{x_{r}}\right) \cdot \bar{x}_{r}(-1) \frac{G\left(\bar{x}_{r}\right)}{G\left(x_{r}\right)}
$$

By Theorem 4.1 of [2,p.231] we have

$$
\lambda_{r}\left(g \bar{x}_{r}\right)=\bar{v} \varepsilon^{2}\left(c_{x_{r}}\right) \cdot \bar{x}_{r}(-1) \cdot G\left(\bar{x}_{r}\right) / G\left(x_{r}\right)
$$

and by Proposition 3.4 of [2]

$$
g \bar{x}_{r}\left|R_{\bar{x} x_{r}}\right| W_{r}=\left(x \bar{x}_{r}\right)\left(c_{x_{r}}^{2}\right) \cdot g \bar{x}_{r}\left|W_{r}\right| R_{\bar{x} x_{r}},
$$

so that by comparison of first Fourier coefficients we get

$$
G\left(\bar{x} x_{r}\right) \cdot \lambda_{r}(g-j)=\left(x \bar{x}_{r}\right)\left(c_{x_{r}}{ }^{2}\right) \cdot \lambda_{r}\left(g \bar{x}_{r}\right) \cdot G\left(\bar{x} x_{r}\right),
$$

hence the desired formula for $\lambda_{r}(g-)$.

As a conclusion from Proposition 2.4 we get the statement of Theorem 1 up to holomorphy.

Proposition 2.7: $R(x, s)$ has analytic continuation to a meromorphic function on \mathbb{C} satisfying the predicted functional equation.

Proof: Firstly we note that $\psi \bar{g}, \overline{g_{\bar{X}}}(s)=\Psi_{g, g \bar{\chi}}$ (\$) since
$\overline{g_{\bar{x}}}=(\bar{g})_{X}$ and ${ }_{g} g_{g} g_{\chi}^{(s)}$ does not change when we replace $g=\sum_{n} b_{n} q^{n}$ by $\bar{g}=\sum_{n}^{\chi} \bar{b}_{n} q^{n}$, which is obvious by definition. So putting

$$
R^{*}(x, s):=\left(B C_{\chi}^{2}\right)^{s} \cdot \Psi_{g, g_{\chi}}(s)
$$

we can reformulate a slightly weaker form of Proposition 2.4 via Lemma 2.5 as follows:

Lemma 2.8: $R^{*}(x, s)$ has analytic continuation to a meromorphic function on \mathbb{C} which satisfies the functional equation

$$
R^{*}(x, s)=W_{x}^{*} \cdot R^{*}(\bar{x}, 1-s)
$$

with the root number $W_{X}^{*}:=\chi^{2}(B) \cdot(G(x) / G(\vec{x}))^{2}$. Now divide $R^{*}(x, s)$ by the Dirichlet L-function $Z(\stackrel{\circ}{v X}, s):=c_{v X}^{\circ} s / 2 . \pi-s / 2 . L(\stackrel{\circ}{v X}, s) .\left\{\begin{array}{lll}F(s / 2) & \text { if } & \stackrel{\circ}{v X(-1)=1,} \\ \Gamma\left(\frac{s+1}{2}\right) & \text { if } & \stackrel{\circ}{v X(-1)=-1,}\end{array}\right.$
and use its functional equation
(where $\stackrel{\circ}{v}=$ primitive character associated with v)

We get by Remark 2.3

$$
\frac{R^{*}(x, s)}{Z(v x, s)}=\pi \cdot c_{v}^{-s / 2} \cdot\left(B^{2} c_{X}^{3}\right)^{-1 / 2} \cdot R(x, s+k-1),
$$

hence the predicted functional equation for $R(x, s)$
follows with the root number
$W_{X}=W_{x}^{*} * \frac{\sqrt{v x(-1) c_{v x}}}{G(v x)}=x^{2}(B) \frac{G(x)}{G(\bar{x})^{2}} \cdot \frac{\sqrt{v x(-1) c_{v x}}}{v\left(c_{X}\right) x\left(c_{v}\right) G(v)}$.

We still have to show the entireness of $R(x, s)$. The proof is based on the following result of Shimura [8].

Proposition 2.9: (Shimura) Let $h \in S_{k}\left(N^{\prime}, \mu\right)$ be a newform with Fourier expansion $h(z)=\sum_{n=1}^{\infty} d_{n} q^{n}$ and let x be a (primitive) Dirichlet character. Then the function
$R(h, \chi, s):=\Gamma_{\infty}(\mu \chi, s) \frac{L_{N^{\prime}} c_{\chi}^{\left(x^{2} \mu^{2}, 2 s-2 k+2\right)}}{L_{N},(x \mu, s-k+1)} \sum_{n=1} d_{n}^{2} x(n) n^{-s}$
can be continued to a meromorphic function on \mathbb{C}, which is holomorphic except for possible simple poles at $s=k$ and $s=k-1$. There is a pole at $s=k$ if and only if
(i) μx is an odd quadratic character,
(ii) $\int h(z) \overline{h^{\rho} \bar{x}^{(z)}} y^{k-2} d x d y \neq 0$, where the integral
$\Gamma_{0}\left(N^{\prime} C_{x}^{2}\right) \backslash H$ and $h^{\rho} \bar{x}(z):=\sum_{n} \bar{x}(n) \bar{d}_{n} q^{n}$.

Corollary 2.10: If $\left(c_{X^{\prime}}, N^{\prime}\right)=1$ then $R(h, x, s)$ has no pole at $s=k$, except $x=1, k$ is odd and $h=h^{p}$.

Proof: Since $\left(c_{\chi}, N^{\prime}\right)=1$, the form $h_{\bar{\chi}}^{\rho}$ is a newform of level $N^{\prime} C_{X}^{2}$. Therefore the Petersson product

$$
\left\langle h, h_{\bar{x}}^{\rho}\right\rangle=\int h(z) \overline{h^{\rho}-(z)} y^{k-2} \mathrm{dxdy}
$$

vanishes as long as $h \neq h^{\rho} \bar{\chi}$. This is guaranteed by excluding the case k odd, $x=1, h=h^{\rho}$, since the Petersson product of two newforms is non zero if and only if they coincide.

We return to our special situation, where $\delta=g_{\varepsilon}$. Define a quadratic character \tilde{E} and (primitive) character ε^{\prime} by

$$
\begin{aligned}
& \tilde{\varepsilon}:=\prod_{r \mid M, \varepsilon_{r}^{2}=1} \varepsilon_{r}, \varepsilon=\varepsilon^{\prime} \cdot \tilde{\varepsilon} .
\end{aligned}
$$

Consider the newform $h:=g_{\varepsilon}, \in S_{k}\left(N^{\prime}, \nu_{N}{ }^{\prime}\right)$ with $h=\sum_{n=1}^{\infty} d_{n} q^{n}$, where v_{N} ' is the character mod N ' associated with $\stackrel{\circ}{v}$. Note: $\quad f=h_{\varepsilon}^{\sim}$ so that by Proposition $2.1 \quad D_{\infty}(f, x, s)=D_{\infty}(h, x, s)$. We want to relate $R(h, x, s)$ with $R(x, s)$ and exploit Proposition 2.9. We write

$$
\frac{L_{N^{\prime} C_{X}}\left(\chi^{2} v^{2}, 2 s-2 k+2\right)}{L_{N^{\prime}}(\chi \cup, s-k+1)} \cdot \sum_{n=1}^{\infty} d_{n}^{2} \chi(n) n^{-s}=\prod_{r} R^{(r)}\left(r^{-s}\right)^{-1}
$$

and

$$
D_{\infty}(h, x, s)=\prod_{r} D^{(r)}\left(h, r^{-s}\right)^{-1}
$$

By Shimura's Lemma [9,p.790] we can describe the Euler factors $R^{(r)}\left(r^{-s}\right)$ by:

where

$$
1-d_{r} X+\nu_{N}(r) r^{k-1} X^{2}=\left(1-\alpha_{r}^{\prime} X\right) \cdot\left(1-\beta_{r}^{\prime} X\right)
$$

is the Euler polynominal at r associated with h. The same procedure applied to

$$
D_{\infty}(h, x, s)=\prod_{r \mid M} \rho_{r}(x, s+2-k)^{-1} \frac{L_{M C}\left(x^{2}, 2 s+2-2 k\right)}{L(v \chi, s+1-k)} \sum_{n=1}^{\infty} b_{n} \bar{b}_{n} x(n) n^{-s}
$$

delivers

$$
\begin{aligned}
& \sum_{\mathrm{n}=1}^{\infty}\left|b_{n}\right|^{2} x(n) n^{-s}= \\
& \prod_{r} \frac{\left(1-\left|\gamma_{r}{ }^{2} \delta_{r}^{2}\right| x(r)^{2} r^{-2 s}\right)}{\left(1-\left|\gamma_{r}\right|^{2} x(r) r^{-s}\right)\left(1-\left|\delta_{r}\right|^{2} x(r) r^{-s}\right)\left(1-\gamma_{r} \bar{\delta}_{r} x(r) r^{-s}\right) \cdot\left(1-\bar{\gamma}_{r} \delta_{r} x(r) r{ }^{-s}\right)}
\end{aligned}
$$

where

$$
1-b_{r} X+\varepsilon^{-2} v_{M}(r) r^{k-1} X^{2}=\left(1-\gamma_{r} X\right) \cdot\left(1-\delta_{r} X\right)
$$

is the Euler polynominal of g at r. We observe that all Fourier coefficients of h are rational, since the field $Q\left(d_{1}, d_{2}, \ldots.\right)$ is generated by the d_{n} with $\left(n, N^{\prime}\right)=1$ and because by definition of $\tilde{\varepsilon}\left(n, N^{\prime}\right)=1$ implies $\left(n, c_{\varepsilon}^{\sim}\right)=1$, thus $d_{n} \tilde{\varepsilon}(n) . a_{n} \in \mathbb{Q}$. Now $b_{n} \cdot \varepsilon^{\prime}(n)=d_{n}$ shows for ryce, that
$\left(1-\gamma_{r} X\right)\left(1-\delta_{r} X\right)=1-\varepsilon^{\prime}(r) d_{r^{\prime}} X+\bar{\varepsilon}^{\prime 2}(r) \nu_{M}(r) r^{k-1} X^{2}=\left(1-\bar{\varepsilon}^{\prime}(r) \alpha_{r}^{\prime} X\right)\left(1-\bar{\varepsilon}^{\prime}(r) B_{r}^{\prime} X\right)$
and since d_{r} is rational
$\left(1-\bar{\gamma}_{r} X(r) X\right)\left(1-\bar{\delta}_{r} X(r) X\right)=\left(1-\varepsilon^{\prime}(r) X(r) \alpha_{r}^{\prime} X\right)\left(1-\varepsilon^{\prime}(r) X(r) B_{r}^{\prime} X\right)$,
so the corresponding quotient above simplifies to

$$
\frac{1-1_{M}(r) \times(r)^{2} r^{2 k-2-2 s}}{\left(1-\alpha_{r}^{2} \times(r) r^{-s}\right)\left(1-B_{r}^{\prime 2} \times(r) r^{-s}\right)\left(1-v_{M}(r) \times(r) r^{k-1-s}\right)^{2}}
$$

$$
D^{(r)}(h, x)=R^{(r)}(X) .
$$

If $r \mid M$ and $r \nmid c_{\varepsilon}$, then $Y_{r}=b_{r}, \delta_{r}=0$ and

$$
D^{(r)}\left(h, r^{-s}\right)=\frac{\rho_{r}(\chi, s+2-k)}{1-\chi(r) \cup(r) r^{k-s-1}}\left(1-\alpha_{r}^{,^{2}} \chi(r) r^{-s}\right)
$$

hence

whereas

$$
R^{(r)}(X)=1-\alpha_{r}^{\prime}{ }^{2} X(r) X
$$

If $r \mid c_{\varepsilon}, r \chi_{M}$, then $\nu_{r}=\varepsilon_{r}^{\prime 2}$ since $r y_{\nu \varepsilon}{ }^{-2}$. We get $d_{r}=\varepsilon^{\prime}(r) . b_{r}=0$ hence

$$
R^{(r)}(X)=1
$$

and

$$
D_{i}^{(r)}(h, X)=\frac{\left(1-x(r) r^{k-1} X\right)^{2}\left(1-x(r) \overline{v e}^{2}(r) \gamma_{r}^{2} X\right)\left(1-x(r) \nu \bar{\epsilon}^{2}(r) \bar{\gamma}_{r}^{2} X\right)}{\left(1-x(r) \stackrel{\circ}{ }(r) r^{k-1} X\right)}
$$

where $\left|\gamma_{r}\right|^{2}=\dot{r}^{k-1}$.

If $r \mid\left(M, C_{\varepsilon},\right)$, then again $d_{r}=e^{\prime}(r) \cdot b_{r}=0$ and therefore

$$
R^{(x)}(x)=1,
$$

whereas $\quad \gamma_{r}=b_{r}$ and $\delta_{r}=0$ yield

$$
D^{(x)}\left(h, r^{-s}\right)=\rho_{r}(x, s+2-k)\left(1-\left|b_{r}\right|^{2} x(r) r^{-s}\right) /\left(1-x(r) \stackrel{\circ}{\vee}(r) r^{k-1-s}\right),
$$

hence

Conclusion: For all but finitely many primes r we have

$$
D^{(r)}(h, X)=R^{(r)}(X)
$$

and moreover

$$
R(x, s)=R(h, x, s), Q(x, s) .
$$

where $Q(x, s)$ is a product of rational functions Q_{r} in r^{-s} whose zeros and poles are on the lines $\operatorname{Re}(s)=k-1$, $k-2$. Moreover for $\sigma \in \operatorname{Aut}(\overline{\mathbb{Q}})$ and any integer $m \neq k-1, k-2$ we have $Q(x, m)^{\alpha}=Q\left(X^{\sigma}, m\right)$ if $v_{r}=1$ for $r \nmid M$.

Now we can complete the proof of the entireness of $R(x, s)$. By Proposition 2.9, Corollary 2.10 we know that $R(x, s)$ is holomorphic outside the lines $\operatorname{Re}(s)=k-1, k-2$, hence by the functional equation (Proposition 2.7) is holomorphic everywhere.

§ 3. Algebraicity of special values

As before let 6 .. be a newform in $S_{k}(N, \nu)$. The aim of this section is to study algebraicity properties of the special values $D_{\infty}(6, x, m)$ for $m=1,2, \ldots, 2 k-2$.

Remark 3.1: Such results for the imprimitive symmetric square $D_{\infty}(f, x, s)$ were first proven by Sturm [10] . However, since the Euler factors of $D_{\infty}(6, x, s)$ which do not appear in $D_{\infty}(6, x, s)$ may vanish at $s=k-1$ but never vanish at $s=k$ we will deduce also algebraicity statements at $m=k-1$ from the functional equation for $D_{\infty}(6, x, s)$.

We normalize the Peterson inner product for forms σ_{i} of weight k for $\Gamma_{0}(N)$ such that $\sigma_{1} \sigma_{2}$ is a cusp form via

$$
\begin{gathered}
<f_{1}, f_{2}>_{N}=\int f_{1}(z) \overline{f_{2}(z)} y^{k-2} d x d y . \\
\Gamma_{0}(N) \cdot H
\end{gathered}
$$

Let ω be the primitive character such that

$$
\omega(d)=v(d) \cdot x(d)\left(\frac{-1}{d}\right)^{k}\left(\frac{\ddot{x}(-1)}{d}\right) \text { for }\left(d, 4 N c_{x}\right)=1 .
$$

We define the quantities

$$
\begin{aligned}
& Z_{0}(6, x, m):=\frac{\pi^{-m}}{\langle 6,6\rangle} G(\bar{\omega}) D_{\infty}(6, x, m) \text { for } x(-1)=(-1)^{m+1}, 1 \leqq m \leq k-1, \\
& z_{1}(6, x, m):=\frac{\pi^{k-2 m-1}}{\langle 6,6\rangle} G\left(\bar{x}^{2}\right) D_{\infty}(6, x, m) \quad \text { for } x(-1)=(-1)^{m}, k \leq m \leq 2 k-2
\end{aligned}
$$

under the assumptions of Theorem 1. By Proposition $2: 1$ we can assume that $4 \mid N$.

Theorem 2: Suppose $x^{2} \neq 1$. If $v_{r}=1$ for $r \nmid M$, then the $z_{i}(6, x, m)$ are Aut (\mathbb{C})-equivariant, i.e. for any automorphism oEAut(\mathbb{C})

$$
z_{i}(f, x, m)^{\sigma}=z_{i}\left(f, x^{\sigma}, m\right),
$$

otherwise we know that at least that $Z_{i}(6, x, m)$ is algebraic.

Remark 3.2: If x has the "wrong" parity $x(-1)=(-1)^{m}$, then $Z_{0}(f, x, m)=0$ for $m=1, \ldots, k-1$, hence the theorem is trivially true in these cases, since the Γ-factors in the functional equation for $D_{\infty}(f, x, s)$ imply that $D_{\infty}(f, x, s)$ must vanish at $s=m$ in these cases.

Proof of Theorem 2: We start by quoting Sturm's results adjusted to our notation. If one defines quantities $Z_{i}(6, x, m)$ by the same formula as $Z_{i}(6, x, m)$ except that D_{∞} is replaced by D_{∞} then Sturm's result says (under the conditions $4 \mid N$ and $x^{2} \neq 1$) that the $z_{i}(6, x, m)$ are $A u t(\mathbb{C})-$ equivariant (see Theorem 1 [10]). As we saw at the end of § 2 the two functions D_{∞} and D_{∞} only differ by a product $Q(x, s)$ of Euler factors with zeros and poles on the lines $\operatorname{Re}(s)=k-1, k-2$. Moreover if $v_{r}=1$ for $r \nmid M$,
then $Q(x, m)$ is Aut($\mathbb{C})$-equivariant for $m \neq k-1, k-2$, hence this proves already Theorem 2 for $m \neq k-1, k-2$. For $m=k-1$ we apply the functional equation to $z_{1}(6, \bar{x}, k)$. We get

$$
R(\bar{x}, k)=W_{\bar{x}} R(x, k-1),
$$

so
$\left(B^{2} C_{X}{ }^{3} c_{\nu}^{-1}\right)^{k / 2}(2 \pi)^{-k} \Gamma^{\prime}(k) \pi^{-k / 2} \Gamma_{\Gamma}(1) D_{\infty}(6, \bar{x}, k)=$
$=W_{\chi}\left(B^{2} C_{\chi}^{3} C^{-1}\right)^{k-1 / 2}(2 \pi)^{-k+1} \Gamma(k-1) \cdot \pi^{-k / 2} \Gamma\left(\frac{1}{2}\right) D_{\infty}(6, x, k-1)$.

This enables us to write
$Z_{0}(6, x, k-1)=z_{1}(6, \bar{x}, k) \frac{G(\bar{\omega})}{G\left(x^{2}\right)} x^{2}(B) \frac{G(\bar{x} \nu) G(x)^{2}}{G(\bar{x})^{2}} R_{m}$
with some $R_{m} \in \mathbb{Q}^{*}$. Note, that $\chi \vee(-1)=(-1)^{m+k}=1$ here, so that in particular $\omega=v x$. Since $\left(c_{x}, c_{\nu}\right)=1$ we can decompose

$$
G(\bar{w})=G(\bar{x} v)=\bar{x}\left(c_{v}\right) v\left(c_{\chi}\right) G(\bar{x}) \cdot G(v)
$$

so that by the wellknown automorphism rule for Gauß sums

$$
G(x)^{\sigma} t=\bar{x}(t)^{\sigma} t G\left(x^{\sigma}\right)
$$

(for any automorphism σ_{t} which sends roots of unity to their $t^{\text {th }}$ power) we get Aut($\left.\mathbb{C}\right)$-equivariance of $Z_{0}(f, x, k-1)$. In case, that we only know algebraicity of $z_{1}(6, \bar{x}, k)$ we

3.4

can at least conclude that $Z_{0}(6, x, k-1)$ is also algebraic. For $m=k-2$ one argues in the same way by going back to the Aut($\mathbb{C})$-equivariance of $z_{1}(6, \bar{x}, k+1)$.

§ 4. P-adic interpolation

In this section we want to interpolate p-adically the algebraic numbers $Z_{i}(6, x, m)$ given by the special values of $D_{\infty}(f, x, s)$ in the critical strip $m=1, \ldots ., 2 k-2$. We deal first with the special values of the imprimitive function $D_{\infty}(f, x, s)$ for $m=1, \ldots \ldots, k-1$ and $x(-1)=(-1)^{m+1}$. For the rest of this paper we fix a rational prime $p \nmid 2 N a_{p}$ and embeddings i_{p} and i_{∞} of an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} in $\overrightarrow{\mathbb{D}}_{\mathrm{p}}$ and in \mathbb{C} :

$$
\overline{\mathbb{Q}}_{\mathrm{p}} \stackrel{{ }^{\mathrm{i}_{\mathrm{p}}}}{\rightleftarrows} \stackrel{\mathrm{i}_{\infty}}{\mathbb{~}} \mathbb{C}
$$

By our assumption the Euler polynominal

$$
1-a_{p} x+v(p) p^{k-1} x^{2}=\left(1-\alpha_{p} x\right)\left(1-\beta p^{x}\right)
$$

has a reciprocal root, say α_{p}, which is a p-adic unit.

Theorem 3: For any odd $m=1, \ldots \ldots, k-1$ with $2(k-m) \neq(p-1)$ there is a constant $C(m) \in \overline{\mathbb{Q}}^{*}$ and a power series $G_{m}(T) \in \mathbb{Z}_{P}[[T]]$ such that for any non trivial finite character $x: 1+p \mathbb{P} \rightarrow \mathbb{C}$ we have

$$
\left.i_{p}^{-1}\left(G_{m}^{\left(i_{\infty}^{-1}\right.}(\chi(1+p)-1)\right)\right)=i_{\infty}^{-1}\left(C(m)\left(\frac{p^{m-1}}{\alpha_{p}^{2}}\right)^{o r d_{p}^{c} \dot{\chi} G(\chi)} \frac{\pi^{m}\langle f, 6\rangle}{} D_{\infty}(6, \bar{x}, m)\right) .
$$

Proof: We choose an integer u prime to p and, following

Pančiškin [6] we define a distribution $\mu_{u, m}$ on $\Gamma:=1+p_{p}{ }_{p}$ by demanding
$\int_{\Gamma} x d \mu u, m=\left(1-x(u)^{2} u^{2(k-m)}\right)\left(\frac{p^{m-1}}{\alpha_{p}^{2}}\right)^{m} \times \frac{G(\bar{x})}{\pi^{m}<6,6>} D_{\infty}(6, x, m)$ for non trivial characters x of Γ of conductor $c_{x}=p^{m} x$ and
$\int \Gamma_{i} d \mu_{u, m}=\left(1-u^{2(k-m)}\right) \cdot\left(1-\frac{p^{m-1}}{\alpha_{p}^{2}}\right)\left(1-B_{p}^{2} p^{-m}\right)\left(1-v(p) p^{k-1-m}\right) \frac{1}{\pi^{m}\langle f, 6\rangle} D_{\infty}(6, m)$.

Note, that we always assume $N \equiv 0(4)$, so that by Sturm [10] also the last integral is algebraic. Theorem 3 is a consequence of

Theorem 4: Pančiškin's distribution ${ }^{\mu} u, m$ is bounded for any odd $m=1, \ldots \ldots, k-1$.

We continue with the proof of Theorem 3. By Theorem 4 there is a constant $C(m)$ such that for any compact open $U \subset \Gamma$ the value $C(m) \cdot \mu_{u, m}(\underline{u})$ is a p-integral algebraic number. Thus we get a measure $\mu_{u, m}^{*}$ on X_{p} via the standard isomorphism

$$
\mathbf{z}_{\mathrm{p}} \longrightarrow \Gamma, \mathrm{~s} \longmapsto(1+\mathrm{p})^{\mathrm{s}} .
$$

For the corresponding element $G_{u, m}(T)$ in the Iwasawa
algebra $z_{p}[[T]]$ we then have

$$
G_{u, m}(x(1+p)-1)=\int_{\Gamma} x d_{u, m}=\int_{\mathbf{z}_{p}}(1+p)^{s} d_{\mu}{ }^{*} u, m(s) .
$$

Since $2(k-m) \not \equiv 0(p-1)$ we can chose a $u \in \mathbb{Z}$ such that

$$
u^{2(k-m)} \not \equiv 1(\mathrm{p}) .
$$

Therefore the factor $1-\bar{x}(u)^{2} u^{2(k-m)}$ is always a p-adic unit so that it can be interpolated by a unit

$$
\begin{aligned}
& H_{u, m}(T) \in \mathbb{Z}_{p}[[T]]^{*}, \text { i.e. } \\
& H_{u, m}(x(1+p)-1)=1-\bar{x}(u)^{2} u^{2(k-m)} .
\end{aligned}
$$

Eventually we find that

$$
G_{m}(T):=G_{u, m}(T) \cdot H_{u, m}(T)^{-1} \in z_{p}[[T]]
$$

is the power series with the required properties, which completes the proof of Theorem 3.

Proof of Theorem 4: We have to show that for any $y \equiv 1(p)$ the values

$$
\stackrel{\mu}{u}_{u, m}\left(y+p^{r} \mathbf{z}_{\mathrm{p}}\right)=\mathrm{p}^{-\mathrm{r}}\left[\int_{\Gamma}^{d \mu_{u}} \mathrm{~m}^{+}+\right.
$$

$$
\begin{aligned}
& 4.4 \\
& \left.\underset{\substack{x \\
2 \leq m_{x} \leq r}}{ } \quad \bar{x}(y)\left(1-x(u)^{2} u^{2(k-m)}\right)\left(\frac{p^{m-1}}{\alpha_{p}^{2}}\right)^{m} x \frac{G(\bar{x})}{\pi^{m}<6, \gamma>} D_{\infty}(6, x ; m)\right]
\end{aligned}
$$

have p-adic absolut value bounded independent of y and r. To begin with we define two modified forms

$$
\begin{aligned}
& f_{0}(z):=f(z)-\beta_{p} \cdot f(p z), \\
& f_{1}(z):=f(z)-\alpha_{p} \cdot f(p z),
\end{aligned}
$$

which have the properties
(i)

$$
D_{\infty}\left(f_{0}, x, s\right)=D_{\infty}(f, x, s) \text { for } m_{x} \geqq 1,
$$

(ii) $\quad \int d_{u} \mu_{i, m}=\left(1-u^{2(k-m)}\right) \cdot\left(1-\frac{p^{m-1}}{\alpha_{p}^{2}}\right) \frac{1}{\pi^{m}\langle\gamma, \gamma\rangle} D_{\infty}\left(\sigma_{0}, m\right)$,
(iii) $\quad \sigma_{1}\left|T(p)=\beta_{p} \cdot \sigma_{1}, \sigma_{0}\right| T(p)=\alpha_{p} \cdot \sigma_{0}$ for Hecke operator $T(p)$,
(iv) $\quad 6_{0}^{\rho}=6_{1}$ ($\rho=$ complex conjugation on Fourier coefficients).

We put N.c ${ }_{x}{ }^{2}=N_{x}$ for $m_{x} \geq 1$ and want to give an integral expression for $D_{\infty}\left(\sigma_{0}, x, s\right)$ following Shimura [8] (see also [10] and [11]):

$$
(4 \pi)^{-s / 2} \Gamma(s / 2) D_{\infty}\left(6_{0}, x, s\right)
$$

$$
4.5
$$

$$
\begin{aligned}
= & \int f_{0}(z) \overline{\theta-(z)} y^{-3 / 2} L_{N}\left(x^{2}, 2 s+2-2 k\right) E \quad(z, s+1,2 k-1, \omega) \\
& \Gamma_{0}\left(N_{x}\right)^{H}
\end{aligned}
$$

where the theta-series is given by

$$
\theta_{x}(z):=\frac{1}{2} \sum_{n=-\infty}^{\infty} x(n) q^{n^{2}}
$$

and the Eisenstein series is (in Shimura's notation)

$$
E(z, s, \lambda, \omega):=y^{s / 2} \sum \omega\left(d_{\gamma}\right) j(\gamma, z)^{\lambda}|j(\gamma, z)|_{X}^{-2 s}
$$

with W_{X} any set of representatives for $\Gamma_{\infty} \Gamma_{0}\left(N_{X}\right)$, $\Gamma_{\infty}=\left\{ \pm\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right) ; t \in \mathbb{Z}\right\}$. Hence we can rewrite the integral as Petersson inner product

$$
\begin{aligned}
& (4 \pi)^{-s / 2} \Gamma(s / 2) D_{\infty}\left(\hat{6}_{0}, \chi, s\right)= \\
& \\
& =\dot{\sigma}_{0}(z), \theta-(z) L_{N}\left(\bar{x}^{2}, 2 s+2-2 k\right) E(z, s+2-2 k, 1-2 k, \bar{\omega})>_{N_{X}}
\end{aligned}
$$

We want to consider

$$
h^{*}(z, x, s):=\left.h(z, x, s)\right|_{k}\left(\begin{array}{lr}
0 & -1 \\
N_{x} & 0
\end{array}\right)
$$

for

$$
h(z, \chi, s):=\theta_{\chi}(z) \cdot L_{N}\left(\chi^{2}, 2 s+2-2 k\right) E(z, s+2-2 k, 1-2 k, \omega)
$$

By definition
$h^{*}(z, x, s)=\theta_{X}\left(-\frac{1}{N_{X} z}\right) L_{N}\left(\chi^{2}, 2 s+2-2 k\right) E\left(-\frac{1}{N_{\chi} z}, s+2-2 k, 1-2 k, \omega\right) \cdot\left(z \sqrt{N_{X}}\right)^{-k}$

Sturm [10] has shown that for $m=1, \ldots . . k-1$ the functions $h=h(z, x, m)$ are (nonholomorphic) generalized modular forms (cf. [10,p.234], [9,p.794f]). By Lemma 7 of [9] such forms can be uniquely written as

$$
h=g_{0}+\sum_{v=1}^{r} \delta_{k-2 v}(v) g_{v} \quad\left(r<\frac{k}{2}\right)
$$

where g_{ν} is a (holomorphic) modular form of level N_{X}, weight $k-2 \nu$ with the same nebentypus character as h and where the differential operator $\delta_{k-2 v}^{(v)}$ is defined by

$$
\delta_{\lambda}^{(\nu)}=\delta_{\lambda+2 v-2} \cdots \delta_{\lambda+2} \delta_{\lambda} \quad(\nu \geq 1)
$$

with

$$
\delta_{\lambda}=\frac{1}{2 \pi i}\left(\frac{\lambda}{2 i y}+\frac{\partial}{\partial z}\right) \text { for } \quad \lambda \in \mathbb{I} .
$$

By Lemma 6 of [9] we get

$$
\left\langle f_{0}(z), h(z, \bar{x}, m)\right\rangle_{N_{X}}=\left\langle f_{0}(z), g_{0}(z, \bar{x}, m)\right\rangle_{N_{x}},
$$

i.e. the special value $D_{\infty}\left(f_{0}, x, m\right)$ only depends on the holomorphic projection g_{0} of h. Since the Petersson

$$
4.7
$$

inner product is the same if we apply the operator

$$
\mathrm{W}_{\mathrm{N}_{\mathrm{x}}}=\left(\begin{array}{cc}
0 & -1 \\
\mathrm{~N}_{\mathrm{x}} & 0
\end{array}\right)
$$

to both arguments, we also have

$$
\left\langle\sigma_{0}(z), h(z, \bar{x}, m)\right\rangle_{N_{x}}=\left\langle\sigma_{0}^{*}(z), h^{*}(z, \bar{x}, m)\right\rangle_{N_{x}} .
$$

Taking holomorphic projection of the generalized modular form $h^{*}(z, \bar{x}, m)$ leads to

$$
\left\langle\hat{f}_{0}(z), h(z, \bar{x}, m)\right\rangle_{N_{X}}=\left\langle\hat{b}_{0}(z),\left(h^{*}\right)_{0}^{*}\right\rangle_{N_{X}} .
$$

Lemma 4.1: There are linear forms $F_{n}\left(X_{0}, \ldots \ldots, x_{r}\right) \in \mathbb{Z}\left[X_{0}, \ldots, x_{r}\right]$ which depend only on k and n such that

$$
c \cdot\left(h^{*}\right)_{0}=\sum_{n=0}^{\infty} F_{n}\left(c_{n, 0}, \cdots, c_{n, r}\right) q^{n}
$$

and

$$
F_{n}\left(x_{0}, \ldots . x_{r}\right) \equiv C \cdot x_{0} \bmod n
$$

for a fixed constant $C \in \mathbf{Z}$, where

$$
h^{*}(z, x, m)=\sum_{j=0}^{r}(4 \pi y)^{-j} \sum_{n=0}^{\infty} c_{n, j} q^{n}
$$

Proof: From the formula

$$
h=g_{0}+\sum_{\nu=1}^{r}{ }_{k-2 v}^{(\delta)} g_{v}
$$

we get

$$
g_{r}^{*}=\left.g_{r}\right|_{k-2 r} W_{N}=(-1)^{r} \sum_{n=0}^{\infty} c_{n, r} q^{n}
$$

by comparison of the coefficients of y^{-r}. Using the identity

$$
\delta_{\lambda}^{(v)}=\sum_{j=0}^{v}\left({ }_{j}^{v}\right) \frac{\Gamma(\lambda+\nu)}{\Gamma(\lambda+\nu-j)}(-4 \pi y)^{-j}\left(\frac{1}{2 \pi i} \frac{\partial}{\partial z}\right)^{\nu-j}
$$

we arrive at

$$
\begin{aligned}
& h^{*}-\frac{\Gamma(k-2 r)}{\Gamma(k-r)} \delta_{k-2 r}^{(r)} g_{r}^{*} \\
& =\sum_{n=0}^{\infty} \sum_{j=0}^{r-1}\left(c_{n, j}-(-1)^{j+r} \frac{r^{\Gamma(k-2 r)}}{\Gamma(k-r-j)}\left(\sum_{j}^{r}\right) n^{r-j_{C}}{ }_{n, r}\right)(4 \pi y)^{-j} q^{n} .
\end{aligned}
$$

This being the first step towards reducing h^{*} to its holomorphic part $\left(h^{*}\right)_{0}$ we can continue now with h^{*} replaced by

$$
(1)^{h^{*}}:=h^{*}-\frac{\Gamma(k-2 r)}{\Gamma(k-r)} \delta_{k-2 r}(r) g_{r}^{*}
$$

which has the form

$$
(1)^{h^{*}=} \sum_{j=0}^{r-1}(4 \pi y)^{-j} \sum_{n} c_{n, j}{ }^{(1)} q^{n}
$$

After r steps we arrive at $(r)^{h^{*}}=\left(h^{*}\right)_{0}$ and we see from the formula for the first step, that $C . C_{n, 0}(r)$ will be an integral linear combination of $c_{n, 0}, \ldots, c_{n, r}$ where the coefficients of $c_{n, 1}, \cdots \ldots, c_{n, r}$ are divisible by n. This proves the lemma.

The Fourier coefficients $c_{n, j}=c_{n, j}(x)$ of $h^{*}(z, x, m)$ can be explicitely determined from [8,p.86ff] and [7,p.457]:
$\left.h^{*}(z, x, m)=\theta-\mathcal{N}^{2} z\right) G(x)\left(-i \frac{N_{2}}{2}\right)^{1 / 2} L_{N}\left(x^{2}, 2 m+2-2 k\right) E^{\prime}(z, m+2-2 k, 1-2 k, \omega)\left(z \sqrt{N_{x}}\right)^{-1 / 2}$
where
$E^{\prime}(z, m+2-2 k, 1-2 k, \omega)=\left.E(z, m+2-2 k, 1-2 k, \omega)\right|_{k-\frac{1}{2}}\left(\begin{array}{cc}0 & -1 \\ N_{x} & 0\end{array}\right)$.
Proposition 1 in [8]. says:

$$
\begin{aligned}
& N_{x}^{\frac{2 m+3-2 k}{4}} i^{\frac{1}{2}-k k^{k-1-\frac{m}{2}} L_{N}\left(x^{2}, 2 m+2-2 k\right) \cdot E^{\prime}(z, m+2-2 k, 1-2 k, \omega)=} \\
& \frac{\Gamma\left(m+\frac{1}{2}-k\right)}{\Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{m}{2}+1-k\right)} i^{1 / 2-k}(2 y)^{k-m-1 / 2} \cdot 2 \pi \cdot L_{N}\left(\omega^{2}, 2 m+2-2 k\right)+ \\
& \left.\sum_{n=-\infty}^{\infty} e^{2 \pi i n x_{\tau}} \begin{array}{l}
n \neq 0 \\
n \neq 0
\end{array}, \frac{m+1}{2}, \frac{m}{2}+1-k\right) \cdot L_{N}\left(\omega_{n}, m+1-k\right) \cdot B(n, m+2-2 k)
\end{aligned}
$$

where ω_{n} denotes the primitive character given by

$$
\omega_{n}(a):=\left(\frac{-1}{a}\right)^{k+1}\left(\frac{n N}{a}\right) \omega(a),
$$

the functions ${ }^{\tau} \mathrm{n}$ are defined by
$i^{\alpha-\beta}(2 \pi)^{-\alpha-\beta} \Gamma(\alpha) \Gamma(\beta) \tau_{n}(y, \alpha, B)= \begin{cases}n^{\alpha+\beta-1} e^{-2 \pi n y_{\sigma}(4 \pi n y, \alpha, B)} & \text { if } n>0 \\ |n|^{\alpha+\beta-1} e^{\left.-2 \pi|n| y_{\sigma(4)}|n| y, B, \alpha\right)} & \text { if } n<0, \\ \Gamma(\alpha+\beta-1) \cdot(4 \pi y)^{1-\alpha-\beta} & \text { if } n=0\end{cases}$
with the hypergeometric function

$$
\sigma(y, \alpha, B)=\int_{0}^{\infty}(u+1)^{\alpha-1} u^{\beta-1} e^{-y u} d u
$$

and where

$$
B(n, s)=\sum_{a, b} \mu(a) \omega_{n}(a) \omega^{2}(b) a^{1-k-s_{b}} 3-2 k-2 s
$$

the sum being extended over all integers $a, b>0$ prime to N.p such that $(a b)^{2}$ divides n. ($\mu=$ Moebius function). We remark, that we can restrict the sum above to positive n, since for $n<0$ the character ω_{n} has the same parity as k, i.e. $\omega_{n}(-1)=(-1)^{k}$, and therefore $L_{N}\left(\omega_{n}, m+1-k\right)$ vanishes for odd $m=1, \ldots \ldots, k-1$. For $n>0$ the values of τ_{n} are

$$
\begin{aligned}
& \tau_{n}\left(y, \frac{m+1}{2}, \frac{m}{2}+1-k\right)=n^{m-k+1 / 2} e^{-2 \pi n y_{i}}{ }_{i}^{k-3 / 2}(2 \pi)^{m-k+3 / 2} . \\
& . \Gamma\left(\frac{m+1}{2}\right)^{-1} \Gamma\left(\frac{m}{2}+1-k\right)^{-1} \sum_{\dot{x}=0}^{\frac{m-1}{2}}\binom{\frac{m-1}{2}}{x} \Gamma\left(\frac{m}{2}+1-k+x\right)(4 \pi n y)^{k-\frac{m}{2}-1-x}
\end{aligned}
$$

and so we can express
$L_{N}\left(x^{2}, 2 m+2-2 k\right) E^{\prime}(z, m+2-2 k, 1-2 k, w)=\sum_{j=0}^{\frac{m-1}{2}} \sum_{n=0}^{\infty}(4 \pi y)^{-j} d_{j, n} q^{n}$
where $d_{j, 0}=0$ except
$d_{\frac{m-1}{2}, 0}=B_{\frac{m-1}{2}} \cdot(\pi)^{\frac{m+1}{2} \cdot 2^{k-m / 2} N_{x}(2 k-2 m-3) / 4} \cdot I_{2 T T}\left(\omega^{2}, 2 m+2-2 k\right)$
and for $n>0$:
$d_{j, n}=$
$(-1)^{k-1} 2^{k-\frac{1}{2}} \frac{m+1}{2} \cdot N_{i} \cdot(2 k-3-2 m) / 4\left(\frac{m-1}{2}\right)_{B_{j} n^{2}}{ }^{\frac{m-1}{2}-j} \cdot L_{N}\left(\omega_{n}, m+1-k\right) \cdot B(n, m+2-2 k)$
where

$$
B_{j}:=\frac{\Gamma\left(\frac{m}{2}+1-k+j\right)}{\Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{m}{2}+1-k\right)} \in \Phi^{*} .
$$

Now we obviously get the Fourier coefficients $c_{n, j}=c_{n, j}(x)$ of $h^{*}(z ; x, m)$ by multiplying the q-expansion of the theta series with the Fourier expansion of $L_{N}\left(x^{2}, \ldots\right) . E^{\prime}(z, \ldots)$ above as follows:

Lemma 4.2: There are constants $C^{\prime}, C_{j}=C_{j}(k, m, N) \in \Phi^{*} . \pi(m+1) / 2$ for $j=0, \ldots \frac{m-1}{2}$ such that

$$
\begin{gathered}
C_{n, j}(x)=C_{j} \cdot c_{x}^{k-m-2} \cdot G(x) \cdot \\
\left.{ }^{n_{1}, n_{2}>0} \sum_{x} \bar{x}_{1}\right) n_{2}^{\frac{m-1}{2}-j} \cdot L_{N}\left(\omega_{n_{2}}, m+1-k\right) \cdot B\left(n_{2}, m+2-2 k\right) \\
\frac{N}{4} n_{1}{ }^{2}+n_{2}=n
\end{gathered}
$$

for $j \neq \frac{m-1}{2}$ and
$c_{n, \frac{m-1}{2}}(x)=\left\{\begin{array}{ll}c^{k-m-2} \cdot C^{\prime} \cdot G(x) \cdot \bar{x}^{-}\left(n_{1}\right) \cdot L_{N}\left(\omega^{2}, 2 m+2-2 k\right) & \text { if } n=\frac{N}{4} n_{1}^{2} \\ x & \text { otherwise }\end{array}\right\}+$

$$
\begin{aligned}
& \mathrm{C}_{\frac{\mathrm{m}-1}{}}^{2} \sum_{\mathrm{n}_{1}, \mathrm{n}_{2}>0}{ }^{\mathrm{x}}\left(\mathrm{n}_{1}\right) \cdot \mathrm{L}_{\mathrm{N}}\left(\omega_{\mathrm{n}_{2}}, \mathrm{~m}+1-\mathrm{k}\right) \cdot B\left(\mathrm{n}_{2}, \mathrm{~m}+2-2 \mathrm{k}\right) \\
& \\
& \mathrm{N}_{4} \mathrm{n}_{1}{ }^{2}+\mathrm{n}_{2}=\mathrm{n}
\end{aligned}
$$

The case of the trivial character $x_{=} x_{0}$ being similar to the nontrivial case we omit the details and just state the result:

Lemma 4.3: With the same constants as in Lemma 4.2 we have for $j \neq \frac{m-1}{2}$:

$$
\begin{aligned}
c_{n, j}\left(x_{0}\right)=c_{j} \cdot p^{(k-m-1) / 2} & {\left[\sum _ { n _ { 1 } , n _ { 2 } > 0 } n _ { 2 } ^ { \frac { m - 1 } { 2 } - j } L _ { N p } \left(\omega_{p n_{2}}{ }^{\prime m+1-k)} .\right.\right.} \\
& \frac{N^{4} p n_{1}{ }^{2}+n_{2}=n}{} .
\end{aligned}
$$

. $\left.B\left(n_{2}, m+2-2 k\right)+\frac{1}{2} n^{\frac{m-1}{2}-j} L_{N p}\left(\omega_{p n}, m+1-k\right) B(n, m+2-2 k)\right]$, and for $j=\frac{m-1}{2}$:

$$
\left.\begin{array}{rl}
\frac{C^{m-1}}{2} & \left.\cdot{ }_{\mathrm{n}_{1}, \mathrm{n}_{2}>0} \mathrm{~L}_{\mathrm{Np}}\left({ }^{(\omega} \mathrm{pn}_{2}, \mathrm{~m}+1-\mathrm{k}\right) \quad \mathrm{B}\left(\mathrm{n}_{2}, \mathrm{~m}+2-2 \mathrm{k}\right)\right]
\end{array}\right] .
$$

We are in particular interested in the behaviour of the $c_{n, 0}(x)^{\prime} s$.

Lemma 4.4: There is a global factor $C \in \mathbb{Q}^{*}$ such that the following congruence holds for any $n, r \in \mathbb{D}$ and y prime to p :
$C \cdot\left[p^{\frac{k}{2}-1} \cdot \sum_{x \neq x_{0}} \bar{x}(y) \cdot\left(1-\bar{x}(u)^{2} u^{2(k-m)}\right) \cdot G(x) c_{x}^{-(k-1-m)} c{ }_{n p^{2 r-1}, 0}^{(\bar{x})}\right.$ $m_{x} \leqq r$
$\left.+\left(1-u^{2(k-m)}\right)\left(c_{n \cdot p^{2 r}, 0}^{\left(x_{0}\right)-p^{m-1} c} n p^{2 r-2}, 0\left(x_{0}\right)\right)\right]_{n} 0\left(p^{r}\right)$.

Proof: By Lemma 4.2 the first sum in the brackets becomes:

$$
\begin{aligned}
& p^{\frac{k}{2}-1} \cdot C_{x^{\prime} \neq \chi_{0}}^{\Sigma} \bar{x}(y) \cdot\left(1-\bar{x}(u)^{2} u^{2(k-m)}\right) G(x) C_{x} G(\bar{x}) . \\
& m_{x} \leq r \\
& \begin{array}{l}
\cdot \sum_{n_{j}>0} x\left(n_{1}\right) \cdot I_{N} \cdot\left(\bar{\omega}_{n_{2}}, m+1-k\right) \cdot B\left(n_{2}, m+2-2 k\right) n_{2} \frac{m-1}{2} \\
\frac{N}{4} n_{1}{ }^{2}+n_{2}=n p^{2 r-1}
\end{array}
\end{aligned}
$$

and by Lemma 4.3 the x_{0} - part in the case $m \neq 1$ is given by

$$
\begin{aligned}
& p^{\frac{k}{2}-1} \cdot C_{0} \cdot\left(1-u^{2(k-m)}\right) \cdot\left[\sum_{n_{j}>0} .\left(n_{2 / p}\right)^{\frac{\dot{m}-1}{2}} L_{N p}\left(\omega_{p n_{2}}, m+1-k\right) B\left(n_{2}, m+2-2 k\right)\right. \\
& \frac{\mathrm{N}}{4} \mathrm{pn}_{1}{ }^{2}+\mathrm{n}_{2}=\mathrm{np}^{2 r} \\
& +\frac{1}{2}\left(n p^{2 r-1}\right)^{\frac{m-1}{2}} L_{N p}\left(\omega_{p n}, m+1-k\right) B(n, m+2-2 k) \\
& -p^{m-1} \sum_{n_{j}>0}\left(n_{2 / p}\right)^{\frac{m-1}{2}} L_{N p}\left(\omega_{p n_{2}}, m+1-k\right) B\left(n_{2}, n+2-2 k\right) \\
& \frac{\mathrm{N}}{4} \mathrm{Fn} n_{1}^{2}+n_{2}=n p^{2 r-2} \\
& -\frac{1}{2} p^{m-1}\left(n p^{2 r-3}\right)^{\frac{m-1}{2}} L_{N p}\left(\omega_{p n}, m+1-k\right) B(n, m+2-2 k) \\
& =p^{\frac{k}{2}-1} \cdot C_{0} \cdot\left(1-u^{2(k-m)}\right) \sum_{n_{j}>0} n^{\frac{m-1}{2}} L_{N p}\left(\omega_{n_{2}}, m+1-k\right) B\left(n_{2}, m+2-2 k\right) \\
& \frac{N}{4} n_{1}{ }^{2}+n_{2}=n p^{2 r-1} \\
& p / n_{i}
\end{aligned}
$$

where we have used that B only depends on the part of n prime to p and that ω_{n} only depends on the square free part of n. For the case $m=1$ in a similar way we arrive at the same expression. Now it is obviously sufficient to make a fixed choice of data $\left(n_{1}, n_{2}, a, b\right) \in x_{>0}^{4}$ with $p \nmid n_{i}$, $(a b)^{2} \mid n_{2},(a b, N p)=1$ and to prove for any such choice the congruence

$$
\begin{aligned}
& \sum_{x} \bar{x}(y) \cdot\left(1-\bar{x}(u)^{2} u^{2(k-m)}\right) L_{p}\left(\bar{\omega}_{n_{2}}, m+1-k\right) \\
& m_{x} \leq r \\
& \\
& \left(1-\bar{\omega}_{n_{2}} \cdot(p) p^{k-m-1} \bar{\omega}_{n}(a) \omega^{-2}(b)\right) \equiv 0\left(p^{r}\right)
\end{aligned}
$$

since the expression in the lemma is an integral linear combination of these sums. We remark that as well we could have omitted the factors $\bar{\omega}_{n_{2}}(a) \bar{\omega}^{-2}(b)$ just by changing y. Since $\omega^{2}=x^{2}$ and

$$
\omega_{n_{2}}(t)=\left(\frac{-\mathrm{n}_{2} \mathrm{~N}}{\mathrm{t}}\right) v(\mathrm{t}) x(\mathrm{t})
$$

we are reduced to show

$$
\sum_{x} \quad \bar{x}(y) \cdot\left(1-\bar{\omega}_{n_{2}}\left(u_{2}\right)^{2} u_{2}^{2(k-m)}\right) L\left(\bar{\omega}_{n_{2}}, m+1-k\right) \cdot\left(1-\bar{\omega}_{n_{2}}(p) p^{k-m-1}\right)
$$

where we have chosen $u_{2} \equiv u \bmod p^{r}$ such that $\left(u_{2}, n_{2} N\right)=1$. This again can be reduced to prove, in terms of Bernoulli numbers

$$
\sum_{x}^{m_{X} \leq r} \quad \bar{x}(y) \cdot\left(1-\bar{\omega}_{n_{2}}\left(u_{2}\right) u_{2}^{k-m}\right) \frac{{ }_{k}-m, \bar{\omega}_{n_{2}}}{k-m}\left(1-\bar{\omega}_{n_{2}}(p) p^{k-m-1}\right) \equiv 0\left(p^{r}\right) .
$$

But this congruence is exactly the condition for the smoothed Bernoulli distribution

$$
E_{k-m, u_{2}}\left(y+p^{r} z_{p}\right):=p^{r(k-m-1)} \frac{1}{k-m}\left[B _ { k - m } \left(\left\langle\frac{Y}{p^{r}}>\right)-u_{2}^{k--r n_{B_{k-m}}\left(<\frac{u_{2}^{-1} y}{\left.p^{r}>\right)}\right]}\right.\right.
$$

(cf. [4] p.45) to be a measure, which proves Lemma 4.4.

Lemma 4.5: The statement of Lemma 4.4 remains true if we replace the coefficients $c_{n, 0}(x)$ of $h^{*}(z, x, m)$ by the coefficients $c_{n}(x)$ of the holomorphic projection

$$
h_{0}^{*}(z, x, m)=\sum_{n=0}^{\infty} c_{n}(x) \cdot q^{n} .
$$

Proof: By Lemma 4.1 we have

$$
C . c_{n}(x)=F_{n}\left(c_{n, 0}(x), \ldots \ldots, c_{n, \frac{m-1}{2}}(x)\right)
$$

where

$$
F_{n}\left(x_{0}, \ldots, x_{\frac{m-1}{2}}\right)=C x_{0} \bmod n \cdot \mathbb{Z}\left[x_{0}, \ldots \ldots, x_{\frac{m-1}{2}}\right]
$$

The expression in brackets of Lemma 4.4 remains at least integral if we replace the $c_{n, 0}(x)$ by the $\cdot c_{n, j}(x)$, so that from F_{n} being a linear form we get

$$
\left.\left.+\left(1-\mathrm{u}^{2(\mathrm{k}-\mathrm{m})}\right) \cdot\left(\mathrm{c}_{n p^{2 r}} 2 \mathrm{x}_{0}\right)-\mathrm{p}^{\mathrm{m}-1} \mathrm{c}_{n \mathrm{c}^{2}} 2 \mathrm{r}-2^{\left(x_{0}\right)}\right)\right]
$$

$$
\begin{aligned}
& \text { C. } C_{0}^{-1}\left[p^{k / 2-1} \Sigma \bar{x}(y) \cdot\left(1-\bar{x}(u)^{2} u^{2(k-m)}\right) G(x) c_{x}^{-(k-1-m)} c_{n p} 2 r-1(x)\right. \\
& x \neq x_{0} \\
& m_{x} \leq r
\end{aligned}
$$

$$
\begin{aligned}
& m_{x} \leq r
\end{aligned}
$$

$+\left(1-u^{2(k-m)}\right) \cdot\left(c_{n p^{2 r}, 0}^{\left.\left(x_{0}\right)-p^{m-1} \cdot c_{n p^{2 r-2}, 0}\left(x_{0}\right)\right) \bmod n p^{2 r-2}, ~}\right.$
so Lemma 4.4 yields the desired congruence for $r \geq 2$, which proves Lemma 4 for some constant C.

Now we can finish the proof of Theorem 4 by showing that for some $C(m) \in \mathbb{Q}^{*}$ and with
$M_{r}:=\sum_{x \neq x_{0}} \bar{x}(y) \cdot\left(1-x(u)^{2} u^{2(k-m)}\right)\left(\frac{p^{m-1}}{\alpha_{p}^{2}}\right)^{m} x \frac{G(\bar{x})}{\pi^{m}\langle\gamma, \gamma\rangle} D_{\infty}\left(\sigma_{0}, x, m\right)$ $m_{x} \leq r$
$+\left(1-u^{2(k-m)}\right) \cdot\left(1-\frac{p^{m-1}}{\alpha_{p}^{2}}\right) \frac{1}{\pi^{m}\langle 6,6\rangle} \cdot D_{\infty}\left(6_{0}, m\right)$
the product $C(m) \cdot M_{r}$ is divisible by p^{r} for any $r \in \mathbb{I}$. As we saw earlier we have
$D_{\infty}\left(\sigma_{0}, x, m\right)=(4 \pi)^{-m / 2} F(m / 2)<\sigma_{0}(z), h(z, \bar{x}, m)>_{N_{X}}$ for $\quad x \neq x_{0}$
and

$$
D_{\infty}\left(\sigma_{0}, m\right)=(4 \pi)^{-m / 2} \Gamma(m / 2)<\sigma_{0}(z), h\left(z, x_{0}, m\right)>_{N p},
$$

where we can replace h by $\left(h^{*}\right)_{0}$. For $x \neq \chi_{0}$ apply the
trace $\operatorname{tr}=\operatorname{Tr}_{\Gamma_{0}}\left(N_{x}\right) \backslash \Gamma_{0}(N p)$ to the modular form $\left(h^{*}\right)_{0}^{*}$ without really affecting the inner product
$\left.D_{\infty}\left(\sigma_{0}, x, m\right)=(4 \pi)^{-m / 2} \quad \Gamma(m / 2)<\sigma_{0}, \operatorname{tr}\left(\left(h^{*}\right)_{0}^{*}\right)\right\rangle_{N p}$.
Since $\quad F_{0}\left(N_{X}\right) \backslash \Gamma_{0}(N p)$ is represented by the matrices $\left(\begin{array}{cc}1 & 0 \\ N p i & 1\end{array}\right)$ for $i \bmod p \quad X \quad$ one easily sees for
$\operatorname{tr}\left(\left(h^{*}\right)_{0}^{*}\right)=\sum_{i \bmod }^{\sum} \quad 2 m_{x}-\left.1\left(h^{*}\right)_{0}^{*}\right|_{k}\left(\begin{array}{ll}1 & 0 \\ \mathrm{Npi} & 1\end{array}\right)$
that
$\operatorname{tr}\left(\left.\left(h^{*}\right)_{0}^{*}\right|_{k}\left(\begin{array}{cc}0 & -1 \\ N p & 0\end{array}\right)=\left.\underset{i}{\sum_{i}}\left(h^{*}\right)_{0}\right|_{k}\left(\begin{array}{ll}1 & -i \\ 0 & p^{2 m_{x}}\end{array}\right]\right)$
$\left.=p^{-\left(2 m_{x}-1\right)\left(\frac{k}{2}-1\right)} \quad\left(h^{*}\right)_{0} \right\rvert\, T(p)^{2 m^{-1}}$.
Therefore we get with $W_{N p}:=\left(\begin{array}{lr}0 & -1 \\ N p & 0\end{array}\right)$:

Since $W_{N p}$ normalizes $\Gamma_{1}(N p)$ and

$$
W_{\mathrm{Np}}^{-1}\left(\begin{array}{cc}
1 & 0 \\
0 & \mathrm{p}
\end{array}\right) \mathrm{W}_{\mathrm{Np}}=\left(\begin{array}{cc}
\mathrm{P} & 0 \\
0 & 1
\end{array}\right)
$$

we see that the adjoint $T(p)$ * of $T(p)$ on the level Np is given as

$$
T(p)^{*}=W_{N P}^{-1} \circ T(p) \circ W_{N p}
$$

which for any $r \geq m_{x}$ via $\sigma_{0} \mid T(p)=\alpha_{p} \cdot \sigma_{0}$ implies:
 Similar we get with $h^{*}=\left.h\left(z, x_{0}, m\right)\right|_{k} W_{N p}$

$$
\begin{gathered}
\left.\alpha_{p}^{2 r}\left(1-\frac{p^{m-1}}{\alpha_{p}^{2}}\right)<\delta_{0}, h\left(z, x_{0}, m\right)\right\rangle_{N p} \\
\left.=<\left.\gamma_{0}\right|_{k} W_{N p}{ }^{\prime}\left(h^{*}\right)_{0}\left|T(p)^{2 r}-p^{m-1} \cdot\left(h^{*}\right)_{0}\right| T(p)^{2 r-2}\right\rangle_{N p} .
\end{gathered}
$$

So if we define the modular forms

$$
\begin{aligned}
& F_{r, y}(z):=\sum_{x \neq x_{0}} x(y) \cdot\left(1-\bar{x}(u)^{2} u^{2(k-m)} \cdot p^{(m-1) m_{x}-\left(2 m_{x}-1\right) \cdot\left(\frac{k}{2}-1\right)} \frac{G(x)}{\pi^{m}<6,6>}\right. \\
& \left(h^{*}\right)_{0}(z, \bar{x}, m) \mid T(p)^{2 r-1} \\
& +\left(1-u^{2(k-m)}\right) \frac{1}{\pi^{m}<6,6>}\left({\left(h^{*}\right)}_{0}\left(z, x_{0}, m\right) \mid T(p)^{2 r}\right. \\
& \left.-p^{m-1} \cdot\left(h^{*}\right)_{0}\left(z, x_{0}, m\right) \mid T(p)^{2 r-2}\right)
\end{aligned}
$$

$$
M_{r}=(4 \pi)^{-m / 2} \cdot F(m / 2)<\left.\sigma_{0}\right|_{k} W_{N p}, F_{r, y}(z)>_{N p} .
$$

Since the effect of $T(p)$ on Fourier coefficients is given by

$$
T(p):\left(h^{*}\right)_{0}=\sum_{n=0}^{\infty} c_{n} q^{n} \longrightarrow \sum_{n=0}^{\infty} c_{n p} q^{n}
$$

we conclude from Lemma 4.5 and the Aut($\mathbb{C})$-equivariance of $z_{0}(6, x, m)$

Lemma 4.6: The modular forms $\left.F^{\prime}{ }_{r, y}:=C \cdot p^{-r} \cdot F_{r, Y}(z) \cdot \pi^{m}<\gamma, \gamma\right\rangle$ have p-integral Fourier coefficients going to \mathbb{Z}_{p} under $i_{p}: \overline{\mathbb{Q}} \longrightarrow \overline{\mathbb{Q}}_{\mathrm{p}}$.

The space $M_{k}(N p)$ of weight k modular forms of level Np having a \mathbb{Q}-structure, we also know that the forms $F^{\prime} r, y$ all lie in a finite dimensional $\overline{\mathbb{Q}}$-vector space, hence by Lemma 4.6 in a z_{p}-lattice. Therefore the values of the linear form

$$
L_{m}: M_{k}(N p) \longrightarrow \mathbb{C}, F \longrightarrow(4 \pi)^{-m / 2} \cdot \Gamma(m / 2)<\left.\sigma_{0}\right|_{k} W_{N p}, F>_{N p}
$$

$$
\text { restricted to the } \operatorname{set}\left\{F^{\prime}{ }_{r, Y} ; y, r \in \mathbb{I}, y \equiv 1(p)\right\} \text { must also }
$$

lie in a X_{p}-lattice, hence they have in particular bounded p-adic absolut value, which proves that Pančiskin's distributions $\mu_{u, m}$ are in fact measures (i.e. bounded).

Remark 4.7: a) If the assumption $2(k-m) \neq 0(p-1)$ of Theorem 3
is not fulfilled we still may define an element

$$
G_{m}(T) \in \text { Quot }\left(X_{p}[[T]]\right)
$$

such that for all but finitely many characters X we have
 so that we get in any case a p-adic L-function by putting

$$
D_{p, m}(f, s):=G_{m}\left((1+p)^{1-s}-1\right) \text { for } s \in z_{p}
$$

b) By avoiding those x where one of the "missing Euler factors" of the imprimitive symmetric square vanishes one also finds (by p-adic interpolation of these factors) an element

$$
\tilde{G}_{\mathrm{m}}(\mathrm{~T}) \in \operatorname{Quot}\left(\overline{\mathrm{X}}_{\mathrm{p}}[[T]]\right)
$$

such that we get p-adic interpolation of the special values of the primitive symmetric square by

$$
i_{p}^{-1}\left(\tilde{G}_{m}\left(i_{\infty}^{-1}(x(1+p)-1)\right)\right)=i_{\infty}^{-1}\left(C(m)\left(\frac{p^{m-1}}{\alpha_{p}^{2}}\right) \quad \operatorname{ord}_{p} c^{2} \times \frac{G(x)}{\pi^{m}<6,6>} D_{\infty}(6, \bar{x}, m)\right)
$$

for all but finitely many x. I would expect that in fact \tilde{G}_{m} is a power series in $z_{p}[[T]]$ and that this equality holds for all X with the appropriate change of the right
hand side for $x=x_{0}$.

We define the associated L-function as

$$
D_{p, m}(f, s):=\tilde{G}_{m}\left((1+p)^{1-s}-1\right)
$$

It is clear that by the functional equation satisfied by D_{∞} we also get a measure on Γ describing the p-adic interpolation of the special values in the right half of the critical strip $m=k, \ldots ., 2 k-2$. We define

$$
\tilde{G}_{m}(T):=\tilde{G}_{2 k-1-m}\left(\frac{-T}{1+T}\right) \quad \text { for } \quad m=k, \ldots, 2 k-2 \text {. }
$$

Proposition 4.8: For any even $m=k, \ldots ., 2 k-2$ there is a constant $\mathcal{C}=C(m, b) \in \mathbb{Q}^{*}$ such that for all but finitely many x :

$$
\left.i_{p}^{-1} \tilde{G}_{m}\left(i_{\infty}^{-1}(x(1+p)-1)\right)\right)=i_{\infty}^{-1}\left(C_{x}\left(\frac{B_{\nu}^{2}}{C_{v}}\right)\left(\frac{p^{2 m-k-1}}{\alpha_{p}^{2}}\right)^{m} G(x)^{2} \nu_{\ddot{\infty}}(f, \bar{x}, m)\right)
$$

where B denotes the integer which appears in the functional equation in Theorem 1.

The proof just consists of applying the functional equation for D_{∞} relating the values at m and $2 k-1-m$, using the fact that for p / a_{p} we have $\nu(p)=1$, and to follow the definition of \tilde{G}_{m} for $\mathrm{m}=\mathrm{k}, \ldots \ldots, 2 \mathrm{k}-2$. As an immediate consequence of the definition we see that the corresponding

4.23

functional equation of the p-adic L-functions reads:

$$
D_{p, m}(f, s)=D_{p, 2 k-1-m}(6,2-s) .
$$

1. Arnaud, B.: Interpolation p-adic d'un produit de Rankin, Thèse Orsay (1984).
2. Atkin,A., Li, W.: Twists of newforms and pseudo-eigenvalues of W-operators, Invent. Math. 48, 221-243 (1978).
3. Coates, J., Schmidt, C.-G.: The main-conjecture for the p-adic L-function of the symmetric square of a modular elliptic curve, (to appear).
4. Lang, S.: Cyclotomic fields. Berlin-Heidelberg-New-York: Springer 1978.
5. Li, W.: L-series of Rankin type and their functional equations, Math. Ann. 244, 135-166 (1979).
6. Pančiskin, A.: Le prolongement p-adic analytic des fonctions L de Rankin, C.R. Acad. Sci. Paris I, 295, 51-53 and 227-230 (1982).
7. Shimura, G.: On modular forms of half integral weight, Ann. of. Math. 97, 440-481 (1973).
8. Shimura, G.: On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31, 79-89 (1975).
9. Shimura, G.: The special values of the zeta functions associated with cusp forms, Com. Pure Appl. Math. 29, 783-804 (1976).
10. Sturm, J.: Special values of zeta functions and Eisenstein series of half integral weight, Amer. J. Math. 102, 219-240 (1980).
11. Zagier, D.: Modular forms whose Fourier coefficients involve zeta functions of quadratic fields, Lecture Notes in Math. 627, 105-169.
