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Abstract

We calculate explicitly the equivariant holomorphic Ray-Singer
torsion for all equivariant Hermitian vector bundles over Hermitian
symmetric spaces G/ K of the compact type with respect to any isom-
etry ¢ € (. In particular, we obtain the value of the usual non-
equivariant torsion. The result is shown to provide very strong support
D for Bismut’s conjecture of an equivariant arithmetic Grothendieck-

Riemann-Roch theorem.
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1 Introduction

The Ray-Singer analytic torsion is a positive real number associated to the
spectrum of the Kodaira-Laplacian on Hermitian vector bundles over com-
pact Hermitian manifolds [RS73]. It was shown by Quillen, Bismut, Gillet
and Soulé that the torsion provides a metric with very beautiful properties
on the determinant line bundle of direct images in K-theory over Kahler
manifolds. This way the torsion can be regarded as a part of a direct 1mage
of Hermitian vector bundles.

The main application of this construction is related to arithmetic geome-
try. Extending ideas of Arakelov, Gillet and Soulé constructed for arithmetic
varieties X' (i.e. flat regular quasi-projective schemes over Spec Z with projec-
tiv fibre Ag over the generic point) a Chow intersection ring and a K-theory
by using differential geometric objects on the Kahler manifold X := A @ C
[SABK92]. In particular, the K-theory consists of arithmetic vector bundles
on X with Hermitian metric over X and certain classes of differential forms.
Using the torsion as part of a direct image, Bismut, Lebeau, Gillet and Soulée
were able to prove an arithmetic Grothendieck-Riemann-Roch theorem relat-
ing the determinant of the direct image in the K-theory to the direct image
in the arithmetic Chow ring. One of the most difficult steps was to show
the compatibility of the conjectured theorem with immersions. For a gener-
alization of these concepts to higher degrees, see Bismut-I{Shler [BI92] and
Faltings [Fal92].

Another important step in the proof of the theorem was its explicit ver-
ification for the canonical projection of the projective spaces to Spec Z by
Gillet, Soulé and Zagier [GS91]. In particular, the Gillet-Soulé R-genus, a
rather complicated characteristic class occuring in the theorem was deter-
mined this way. The discovery of the same genus in a completely different
calculation of secondary characteristic classes associated to short exact se-
quences by Bismut gave further evidence for the theorem.

In {K6h93], an equivariant version of the analytic torsion was introduced
and calculated for fixed point free rotations of complex projective spaces. The
result was remarkable for two reasons: First, it contained in any dimension
(already for P'C) a function R™' with lots of functional properties, which
resembles the power series defining the Gillet-Soulé R-genus found by far
more extensive calculations. Second, it had the form of a Lefschetz fixed
point formula where R™' appeared as a factor in the contributions at the



fixed points.

This second observation led Bismut to conjecture an equivariant arith-
metic Grothendieck-Riemann-Roch formula [Bis92]. Redoing his calculations
concerning short exact sequences, he found an equivariant characteristic class
R which equals the Gillet-Soulé R-genus in the non-equivariant case and the
function R™' in the case of isolated fixed points. He conjectured that this
class should replace the Gillet-Soulé R-genus in an equivariant formula. In
[Bis93], he was able to show the compatibility of his conjecture with immer-
sions. Nevertheless, there is still no definition of equivariant arithimetic Chow
rings or K -theories.

In this paper, we calculate the equivariant torsion for all compact Hermi-
tian symmetric spaces (/K with respect to the action of any ¢ € G (Theorem
9). In section 9, we show that the result fits perfectly well with Bismut’s con-
jecture. In particular, one gets for any dimension of the fixed point set the
most significant part of the Bismut R-genus. For isolated fixed points, one
reobtains the function R™'. In the first sections we only consider the trivial
line bundle on G/K because of the relative simplicity of the result in this
case. In the last section, we calculate the torsion for any equivariant vector
bundle. The result is of interest also in the non-equivariant case: The torsion
was known only for very few manifolds; the projective spaces, the curves and
the tori of dimension > 2 (for which it is zero for elementary reasons). Also,
Wirsching [Wir92} found a complicated algorithm for the determination of
the torsion of complex Grassmannians G/(p,n), which allowed him to calcu-
late it for G(2,4), G(2,5) and G(2,6). Thus, our results extend largely the
known examples for the torsion. In a forthcoming paper, we shall determine
the real analytic torsion of odd-dimensional symmetric spaces. Also, we shall
consider the non-compact case.

2 Definition of the torsion

We repeat here the definition of an equivariant torsion which we gave in
[Koh93]. Let M be a compact n-dimensional Kahler manifold with Kahler
form w. Consider a hermitian holomorphic vector bundle £ on M and let

3 :T(AYT*'M ® E) — T(A™ "M @ E) (1)



be the Dolbeault operator. As in [GS91], we equip I'AYT*"!M @ E) with a
hermitian metric by setting

w:‘\n

(1) = [ (@) @) ey @)

Let 0" be the adjoint of J relative to this metric and let O, := (94 8*)? be the
Kodaira-Laplacian acting on T(AYT*™M ® F). We denote by Eig,(0,) the
eigenspace of O, corresponding to an eigenvalue A. Consider a holomorphic
isometry g of M which induces a holomorphic isometry ¢g* of E. Then the
equivariant analytic torsion is defined via the zeta function

Zy(s) =2 (1) D A T¥ gjiig, (o) (3)
g>0 AEil::qu

for e s > 0. Classically, this zeta function has a meromorphic continuation
to the complex plane which is holomorphic at zero.

Definition 1 The equivariant analyiic torsion is defined as
Ty 1= e=423(0), (4)

This gives for ¢ = ldas the ordinary analytic torsion 7 of Ray and Singer
[RS73]. Ray showed in [Ray70, Ch. 2] the following lemma:

Lemma 1 Let I' be a finite group acling on M by holomorphic fized point
free isometries. Assume that this action lifts holomorphically to isomelries
of E. Then the analytic torsion of E [T over the quotient space M/T is given
by
1
logr(M/T,E/T) = — ) log7,(M, E). (5)
#I g€r
Let £, — M;, E; — M; be two holomorphic hermitian vector bundles over
compact Kahler manifolds. Let g be a holomorphic isometry ol M,, M,
whose action lifts to £y, Fq. Let for v = 1,2

Ly(My, B,) := 3 (=1) Tt glyoaqar, i) (6)

920

denote the holomorphic Lefschetz number of g. The following Lemma follows
by an immediate generalization ol the proof of [RS73, Th. 3.3]
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Lemma 2 The equivariant torsion of the product bundle Iy x E; over My x
My 15 given by

long(ﬂffl X MQ,E] X Ez) = Lg(Ml,El)log Tg(Mz,Eg)
+L9(M2$E2) log TQ(MH-EI)‘ (7)

3 Complex homogeneous spaces

Let ¢ be a connected compact Lie group and let ' be a connected subgroup
of maximal rank. Assume that (G, K) is a complex homogeneous pair of
the compact type. According to [BH58, 10.1] we may assume G to be semi-
simple and simply connected. Let T C K denote a fixed maximal torus. We
denote the Lie algebras of G, K, T by g, , t. Let © be a system of positive
roots of K (with respect to some ordering) and let ¥ denote the set of roots
of an invariant complex structure in the sense of [BH58]. Then @ U W =: A+
is a system of positive roots of G for a suitable ordering, which we fix [BH58,
13.7]. The holomorphic tangent space at the class of {1} € G in the coset
space /K may be identified with (g/t ® C)""°. The canonical action of K
on G/ K induces a representation A(lé,.‘f,),\.- of K on (g/t ® C)"° which is called
the isotropy representation. lts weights are given by W. The negative Killing
form induces a metric on G/ K which is known to be Kahler.

The space of forms T'(AYT*%1(/K) is an infinite dimensional G-represen-
tation which contains the space of its irreducible subrepresentations (Vz, #)
as a L*-dense subspace. Thus,

F(AthO,IG/I{) d%sc @ HO]TlG (‘/N’ F(l\qT'O'lG/I()) ® ‘/ﬂ- (8)

In this imbedding, the tensor product Homeg (V,, T(AIT9'G/K)) @ V; is the
direct sum of dim Homg (V,, D(A*T*%'G/K)) copies of the representations
(Vr,7). By a Peter-Weyl theorem due to Bott [Bot65], there is a canonical
1somorphism

Homg (Vy, D(A'T**'G/K)) = Homp (Vy, A7AdYS) (9)

(Note that (g/t @ C)™' = (g/¢® C)"° via the metric). In particular, the
occuring representations (Vx, 7) are finite dimensional.

6



4 The zeta function

Let (Xi,...,Xn~) be an orthonormal basis of g with respect to the negativ
Killing form. The Casimir operator of g is defined as the following element
of the universal enveloping algebra of g

Cas:=—> X;.X,. (10)
Ikeda and Taniguchi proved the following beautiful result [[T78]:

Theorem 3 (Ikeda, Taniguchi) Assume that G/K is a hermitian sym-
metric space equipped with the metric induced by the Killing form. Then the
Laplacian O, acts on the V;’s as —%Cas with respect to the imbedding (8).

The Casimir is known to act by multiplication with a constant on irreducible
representations. Thus, the eigenspaces of the Laplacian correspond to the
irreducible representations 7 with multiplicity dim Homg (Va, Aqug?K).
Let pg := 1 e+ @ be the half sum of the positive roots of G' and let
We be its Weyl group. Let (-,-) and || - || denote the metric and the norm on
t* induced by the Killing form. We denote the sign of an element w € Wg

by (=1)*. As usual, we define

(cr, pg) == Q(I%ﬁ’zi) (11)

for any weight a. For an irreducible representation 7 we denote by b, the
sum of its highest weight and pg. Then, classically, the action of the Casimir
is given by

7(Cas) = |lpa|l* — {loxI". (12)

To abbreviate we set
Altg{b} := 3 (—1)ve?. (13)
weWg

Then the Weyl character formula for the character yy, of the representation
evaluated at ¢ € T may be written as

Altg{b-}(2)

Xbr(t) = A]tG{PG}(t)' (14)

7



This formula provides the definition of the so-called virtual (or formal) char-
acter xp for general b = pg+any weight. This extends to all of G by setting
v to be invariant under the adjoint action. The corresponding virtual rep-
resentation shall be denoted by V;. Occasionally we shall use the notation
x§, xF, V€, VR to distinguish G- and K-representations. From now on we
shall consider the symmetric space G/ K to be equipped with any G-invariant
metric (-, },. These metrics are classified as follows:

Classically, a hermitian symmetric space /K decomposes as a finite
product of irreducible hermitian spaces [Hel78§]

G/K =G/Ki x - X Gnl/Kn. (15)

On each G,/ K, every G,-invariant metric is a multiple of the metric induced
by the Killing form [Bes87, Th. 7.44]. Thus, the metric on G/K is induced
by the direct sum of some (negative) factors times the Killing forms of the &,
We shall denote the dual metric and norm on * by (-, -)o, || * ||o, too. These
are given by the direct sum of the Killing forms divided by the corresponding
factors. In particular, with respect to (-, -}, the Laplacian O acts on V; as

1 ‘
5 (lb<[12 = llesll?) (16)

by theorem 3. Thus, we may write the equivariant zeta function Z(s) for
(/K hermitian symmetric as

Z(s)

‘-) 8
e oo (17
)(Hb«H%—IlPaH%) Yoo (1T)

Presumably, the expression dim Hompg (V;, A‘?Adg’?i\-) is very difficult to eval-

E(—l)qq Z dim Homg (Vs AQA(IE?’\'

g=1

uate. One had to decompose V, and A"Adé?h’ in their irreducible K-repre-
sentations and to compare the occuring representations. It is possible to do
this explicitly for the P*C [IT78], because in this case A'?Adé‘?f( turns out
to be irreducible itself. Nevertheless, this is not the case in general (see e.g.
[Wir92] for the case SU(4)/S(U(2) x U(2))). For this reason, we do not try
to determine all of the eigenspaces and eigenvalues but to calculate the sum
n
Y- (—1)*qdim Homg (Vy, A2Adgy) (18)
g=1
which will turn out to be something relatively simple. In the next section,
we shall prove the [ollowing Lemma



Lemma 4 For any irreducible representation 7, the sum

E(—l)"q dim Homp (V,, A"Aclg?,\.),\'b, (19)
g=1
is non zero only if b, lies in the Wg-orbit of some pg + ka, k € N, o € V.
In this case, il equals — X potka-

As a corollary of Lemma 4 and theorem 3 we obtain

Theorem 5 Assume that G/K is symmelric. Then the zela function Z is
given by
Z(s) = =23 (ka,ka +2p6)5° Xpgtha- (20)

agy
k>0

5 Determination of the occuring represen-
tations

[n this section we do not assume that G//K is symmetric. Let pg :=
2T aco @, Wi and Alty be defined analogously to pg, Wg and Alty. Let x
denote the virtual character given by

n

Vi = Z(—l)qq,\' (A"Ale:?K) (21)

7=1

where y (1\"Adg?ﬁ) is the character of the K-representation A"Adé?h._ Then
one knows

i 1 —
> (—1)?¢ dim Homg (V4, A"Ad'G’?K) = Zwn ]h XN - xxdvolg. (22)

g=1

Using the Weyl integral formula, this transforms to
[ AT TprT Al {pic )X - xadvolr (23)

(Here we identify 7" with the quotient of t by the integral lattice). This inte-
gral may seem complicated at a first sight, but notice that {or each integral

form
: 1 ifg=0
2rif3 o —
/ar e dvolr {0 if §#0. 24

9



By classical representation theory, the restriction of Altg{pg}, Altx{pr} to
T is given by

Alte{pc}r= ]I (em - ‘3_”{0) (25)
aEOUY
and _ .
A]L;{{P}(hf{‘ — H (ema _ e—‘rrwr) . (26)
aE®
By definition,
K _ ﬁ det(1 — sAdL2,) (27)
= 5|s=1 > w i
= det(l — AdS, ) Tr (—Add (1 - Adg?h_)—l) (28)
= det(l Achﬂ\)Tr(. — (Adg))™ (29)

Hence we find for the restriction to the maximal Torus
4 —2ria rio) ~?
XFr o= I1(-e) - 3 (1-etme) (30)
aeWl aec¥

(o —sa) Alta{pc} !
e?m(ph PG)__i__ 1 — e?mcx . 31
Altg{pr} T ( ) (31)

Thus we get by the formulas (23), (31) and by the Weyl character formula

> (=1)gdim Homg (V;, A?Adé?h )

g>0 :
_ _lﬁj;mezwi(p;\-—pc)%iEE_—i’ri;—aAltg{br}dVOIT (32)
-2xiNa _ e—?m'a
= #W /Alth{Ph}ezm ph-pG)g o—2mia Altg{bz }dvolr
(for N € N sufficiently large) (33)
- o [ ATl 3 e vl (1)
_ #;K > /mezmtm pc)gpe‘h'm}\ltg{b »jdvolg. (35)

10



We observe that any w € Wi C We; acts on the set ¥ as a permutation, just
because Adg?h- is a K -representation. Thus for any w € Wg

T emomike = e~ 2mikw(a) (36)

ag¥ ae¥
k>0 £>0
and
erilpr—rc) — e2ﬁtW(pK-pG)_ (37)

Thus the right hand side in (35) becomes

-1

—_— Altg {pe + ka}Altg{by }dvoly. 38

e & J, Ao+ RaAlia{b Jdvol (38)
k>0

The integral is non-zero if and only if
w(b,) = pg + ko (39)

for an appropriate w € Wg and for such a b, it is equal to (=1)*#Wy.
Notice that in general pg + ko does not lie in the positive Weyl chamber.
Anyhow, the expression

-1 Alte {b}
Alt{pc + ka}Al v — 4
i [ Maclo + RaJAlig{8)dvoly - 7602 (40)
is invariant under the action of Wg on b, thus Lemma 4 is proven. O
6 Remarks on zeta functions
Define Z, for ¢ € ¥ as
Za(s) = = D k7" (k 4+ (2, 06)) ™" Xpsrha (41)

k>0

for Re s > 2. Thus Z decomposes at

25)= (ﬂ-jT)Z() (42)

=

11



and its derivative Z’ at zero is given by
o) S el
0)= 3 2,00) - ¥ log 1512 2,0). (13)
ael oevw
Now we shall prove a fundamental symmetry property of the zeta function

A

Lemma 6 Foralla € W, k€ N and k' := k+(a, pg), the following equation
holds

(A‘-Ct, ko + EPG)_’X.DGG+A'G = ‘—(A’-’Of, Ka— QPG)_Sxfg—k’n' (44)
For 0 < k < (a, pg), the character X;?G—ka is equal to zero.

Proof: Let S, denote the reflection of the weights by the hyperplane
orthogonal to a. Then Saps = pg — (a, pc)a, Sea = —a and

Altg{pc — (k + (@, pc)) o} = Altg{Sa(pc + ka)} = —Altg{pc + ka}, (45)

because S, has sign —1. The weights pg — ka are singular for 0 < & < (a, pg)
because they are contained in the convex hull of Wg - pg (see Fig. 1). D
In particular, the derivatives of the Z,’s are given by

, log ki + log (k + (0, p6)) g
Z (s) = X o ke 46
6 = L T ey Ve (46)
log & G
= a2 X cox
L Tt (o)) et
log & G
’ . 4
2 B (aypa)) et “

k>(pG)

Now we give a general formula for values at zero of zeta functions of this
kind. Let for § € R and s > 2

) kb
LL(Saé) = Z L* (48)
k>0
denote the Lerch zeta function. Let P : Z — C be a function of the form
P(k) = Ecjk“»"e"k‘bf (49)

12



Figure 1: The lines pg + ko in the case SO(5)/SO(3) x SO(2)

with m € Ng, n; € Ng, ¢; € C, ¢; € R for all 5. Set for p € R and
Res > (max;{n;} +1)/2

; 3) = P(k)
CP.P(") : ‘gl:\]' k’(k _ p)s (50)
and
L - —P(k)logk .
D(P,P(S) = k%:\j k"(k _ p), . (51)

Then f and Dg: have meromorphic extensions to the complex plane. To
express their values at zero, we define analogously to [GS91, 2.3.4)

m

CP = Y cilu(—nj, é5), (52)

=0

13



m

C'P o= > ciln(—ny, 85), (53)
3=0
m pnj-i-l

Res P(P) = j=ZD ij (5‘1)

éjEO mod2sm

L P putl
anc (P) = JZO J4(nJ _|_ 1 &Zl E (55)
quED mod2nm

Let [p] € Z denote the greatest integer less or equal than p. We define a sum
S with n > m to be zero.

Lemma 7 (f 18 holomorphic at zero and its value there s given by
{pp(0) = CP + Res P(p Z P(k (56)

For s — 0, D( has the Laurent expansion al zero

(7]
_Res Do) | ep g prp) 4+ S PR leg k 4+ O(s).  (57)

k=1

DngP(O) =

..,S

Proof: It suffices to prove the lemma only for P(k) = k"e**®, n € Ny,
¢ € R. We get by a Taylor expansion of (1 + p/k)™* (for & > |p|) for
Res > (max;{n;} +1)/2

; 2l fmei®® 1og k e log k

P = = By - k?.'km—-n(l-’i)" 59

[- P]An :qulo 1-

=1 k>|p| €=0
[ -7 kn the logl.

= Z o

=1

© [/ llpll gikg
+y ( ;) (c, (2s—n+68)+ ) kzsifgf) . (60)

14



The Lerch zeta function {1,(-, ¢) is holomorphic for ¢ # 0 mod 27. For ¢ =0

it equals the Riemann zeta {unction which has a unique pole at s = 1,
1
Cu(s+1,0) = ;-}—(9(1). (61)

Thus for s — 0

X (o] el
Di(s) = =S k"e*logk+ (c’L(-n, ¢)+ > k"e*?log k)

k=1 k=1
—S n v N
' ( ) erres + 1)+ 00 (62)
[p] .
= ((-n,¢)+ > k"™ logk
k=1
1 i
=\, ) —i2 ife=0
+ (n + l)( P) {0 otherwise +O(s). (63)

Using the fact that

—s \ _ npr s+ 1) (s+n) (=) =1
(n—f—l)_(_l)+ (n+1)! T on+41 (1+s;€)+0(s)
3 (64)

for s — 0, equation (57) is proven. The identity for ¢ is deduced the same
way.

a
Now we specialize a bit more to our situation. We denote the function

k— P(—k) by P~. Set P°dd .= (P — P7)/2.
Lemma 8 Assume that p € Ny and that P verifies the symmelry condition

P(p—k)=—-P(k). (65)
Then the values at zero of ¢ and ils derivalive are given by
C(0) = CP* 4 P(0)/2 = {(P™ ~ P(0)) (66)
and
. (p/2]
C(0) = 2P +2P"(p) = P(O)logp— Y. P(k)log( =1)- - (6)

15



Proof: Differentiating ¢ leads to
> P(k) (log k + log(k — p))

((s) = — 68
(s) ;% ks (k- p)° (68)
(k) ko Pk log &
k>p 'l's(‘l“ - P) k>0 k (/“ + P)
P(k)log k P(—k)logk
= _— 70
Epr’\“(ﬁ »)* g;) ks (k + p)° (70)
= Dipy(s) = Dip-p(s). (71)
Applying Lemma 4 gives for s — 0
. 1
¢('(s) = —:Res P(p)+ P - P +2P(p)
P
—I—ZP(k)Iog k+ O(s). (72)
k=1
But we know that é is holomorphic at zero, thus
Res P(p) = —Res P~ (—-p) =0 (73)

in this case. In particular, the expression for ((0) in Lemma 4 becomes

- g P(k). (74)

On the other hand,

Q:P,p(‘s) = Z P—(kiz— = _Z ks

= —Cp- _p(s (75)
= ks(A +p P ]»+p P P( )

by i), hence Lemma 4 gives

¢(0) = —¢P~ (76)

¢(0) = ¢Po — Z P(k (77)

16



by adding (74),(76). The Lemma follows from the equations (72),(77) by
applying (65) to the last terms. O

In particular, the functions Dg:p,p and Dfp_,_p are holomorphic at zero
in this case. Now we shall apply Lemma 8 to the zeta functions Z,. First

we have to prove that the character map & — x,;-k 1s indeed a function of
the type (49). Set for Xy € t

Ox, 1= {8 € AT|B(X,) = 0}. (78)

Choose X € t so that Ox,4ex = @ for € small. Then the (virtual) character
»%0 {5 determined by

Xpg—kor, & € U, evaluated at e
ch—ka(exo) . H 21 sin 7 B( Xo)
BEAT\Ox,
Alt{pg — ka}(Xo + €X)

= i

o Mpeoy, 27sin 7B (Xo + €X) (79)
—1)w 2riw(pgtkha)(Xo) 2micw(po+ka)(X)

= lim ZVVG( ) e. #0 ‘ - (80)

NO (2mie)* =% [[peoy, B(X)
. A E#O X,

S (—1)etmintoorio) (g (0RG F k) (X))” 2 (81)

Wa #@XOIH,GGGXG JG(A)

Hence one obtains a function of the type (49). Using x,, = 1, we get by
Lemma 6 and Lemma 8

Za(0) = ¢x30L , +1/2 (82)
and
Z.(0) = 2¢'x53 , + 2x)_o ({@, pc)) — log(av, pi). (83)

Here the application of {, ¢’ etc. to characters depending on & is meant in
the sense that one fixes first an element ¢ € G acting on G/K, then one
evaluates the characters at ¢ and then one applies the operators ¢ etc. By
formula (43) and by the linearity of ¢, ¢’, we get the following theorem

Theorem 9 The logarithm of the equivariant torsion of a symmetric space
G/K is given by

1 *
_52’(0) = C, Z ng-(-ll—on - prg—-a ((05, ﬂG’))
v L'

17



L ! L_ eyt ) llells
+ 2 Og H(O’.’, PG) + 9 Z .2 - /\pG-{-.O( Og D) (84)
¥ -

= C’ ZX(;‘:;ioo - ZX;G—@ ((Cl, PG))

¥ ¥
1 11 ‘ all2

+ 3 log[J(enpe)e — 520 (5 + Cx;‘,;im) log 11 .2“°- (85)
= v v

We shall prove in section 9 that the polynomial degree in k& of "¢ X,atea(9)
for ¢ € G is at most the dimension of the fixed point set of the action of g
on G//K. In particular, it is less or equal #W.

Remarks: Note that the term [[y{e, pg)3' equals the volume vol,(G/K)
by [BGV91, Cor. 7.27]:

YolG/T) _ Mol k) _ () o)~ (86)

vol(G/K) = vol(K/T) = Tas (e, pc)

because of {a,ps — pr) = 0 for @ € ©. This term would cancel with the
L?-norm if we considered equivariant Quillen metrics as defined by Bismut
in [Bis93] instead of the analytic torsion.

Assume that, for each v, all complementary roots of the space G, /K, in
the decomposition (15) have the same length (this is the case iff the decom-
position does not contain one of the spaces SO(p+2)/SO(p) x SO(2) (p 2 3)
or Sp(n)/U(n) (n > 2), see [Hel78]). Then one may choose the metric (-, ),
in such a way that .

112
log !L%lL =0 (87)

for all @ € V. Thus the corresponding term in theorem 9 vanishes. On the
complex Grassmannians G(p,¢), this metric is just the usual Fubini-Study
metric.

7 The case of isolated fixed points

Assume that X € t acts on G/ with isolated fixed points, i.e. the set Ox
is empty. Then one may calculate the values x,.—_ra(eX) using the Weyl

character formula. One verifies easily that the fixed point set is given by
the quotient of the Weyl groups W(G, K) := Wg/Wy. Set R™(¢) :=
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(C£(0,¢) — (1(0,—¢)) /2i for 0 < ¢ < 2m. The real valued function R
was already introduced and investigated in [K6h93]. In particular, it was
shown to be given by the formula

Ctlogd . . ,(i8)

Zodd

Rrot(¢)
and for ¢ = 27rs-, P, € N,0 < p<qitisgiven by

1 ik '
R™(¢) = —5logq.cot§ +ZlogF (%) ~sinj¢ (89)
< =1
where C denotes the Euler constant and I' is the gamma function. We shall

prove the following fixed point formula

Theorem 10 Let X &€ t act with isolated fized points. Then the logarithm
of the equivariant torsion with respect to e* is given by

L ‘ acy LR 2rwa( X
~5Z/(0)(e") = Me%ﬂ) %i”‘; - (e_mwa((x))))
1 ot (1 — 8_2”“”‘*(/\’))_1 log u%[[g
' 2 [wleW(G,K) Moy (1 — e-2miwa(X))
+ % log al;lw(a, pa). (90)

Application of [w] € W(G, K) to weights means here that the entire expres-
sion does not depend on the choice of w.

Remark: The term [ ey (1 — exp (=2miwa(X)))™" is exactly equal to the
factor from the fixed point [w] in the Atiyah-Bott fixed point formula. This
similarity will be explained in the next two chapters.

Proof: Using the Weyl character formula, one obtains

Z Xpothke = 2 aew Zwewa(—l)wehfw(pc+ka) (91)
v o Iaca+ 2isin o
= Z ZGE\[’ ZW'EWK(_“I)w(-—'I)w p2miww'(pg+ha) (92)
[wW]eW(G.K) Moca+ 2isinwa
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L o
_ Z e2milpa—pi} Zw’eﬁ’x(_l)w e2mivw'ax Z -
[w]eW (G, K) (—1)“’ Haem 21 sin wor fop=r

(because each w' € Wi permutes the set ¥) (93)

_ z e?milee=PI) ], o 2i sin Twar Z p2mikwa (94)

[w]eW(G,K) Ho€A+ 21 sin Twa

— E H (l N e-21ri0r)_l Z eerikwa. (95)

{w]eW(G,K)ae¥ ag¥

€Y

The same procedure applies to the last term in equation (84). Using the
equations (1(0,¢)—(L(0,—¢) = ¢ cot 922 (see [K6h93]) and 1/2—7/2cot ¢/2 =
(1 —e7*%)~1, one obtains the theorem by applying theorem 9.

O

8 Application of equivariant K-theory

In this section, we shall recall some concepts of equivariant K-theory and ap-
ply them to theorem 9. We shall give short proofs to illustrate the similarity
with section 5. For more information see Bott’s article [Bot57] and [AS68a].
Let 7 : K — G be the inclusion of a compact subgroup of maximal rank and
assume G/ K to be a complex homogeneous space. Let R(G), R(K) denote
the representation rings of G and K. We define the map ' as the restriction
of representations. For any K-representation V¥ let

Byr =G x VN|K (96)
denote the associated holomorphic homogeneous vector bundle on G/ K.

Definition 2 The direct image map =y : R(K) — R(G) is defined as
mV i = ST(-1)THY(GK, Byx). (97)

g>0
We shall use the following properties of 7

Theorem 11 (Bott) The image under my of an irreducible K -representation

Vp}}“,w\ of highest weight A is given by

TV s = Vp?;+«\- (98)
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For any K -representation V' with character x(V?), the character of mV¥
18 given by )
(V8 ow

Xm) = — (99)
[w]euz(:a,m [Taew(1l — e~2miwe)

If K =T then m is a left inverse of 7'

mVE =V (100)

for any G-representation V.

Remark: 7 and 7' may be regarded as the direct image and the pullback
in equivariant K-theory, which are maps between Kg(G/K) = R(K) and
Ke(point) 2 R(G). Bott showed the above theorem for more general map-
pings.

Proof: As the Euler characteristic of a complex is equal to the Euler char-
acteristic of the homology of the complex, we get by the equations (8) and
(9) (i.e. their analogues for nontrivial coefficients)

mVi o= 2 (=1)7 3 dim Homg (Ve AAdgy, @ Vi Ve (101)
g20 T,
Similar to (29), the character of the K-representation 3 (— )quAdG/h ®

V 4 is given by det(1 — Adé?‘?h-)x;‘;(“. By the same reasoning as in section
5 one finds

g(—l)qdim Homy (V;, A? Adg,, ®VE.)

g>0
= #W /Alth {pi Ye2rilpc=rr) \/ +,\A1tc;{b }dvolr (102)
- #w | RltxToe + A Ali{br Jdvolr. (103)

Equation (98) follows the same way as theorem 5 follows by equation (38).
To prove the relation (99), we assume VX to be irreducible, V¥ = VX .
Then, similar to the proof of theorem 10,

¢ _ Altalps + )

Nog+r = Altg{pc} - (104)



S SR R T o M LU S ik k) YY)
(w]EW (G,K) Haeq, 22sin wox - A]t]({ph'}
= Z Itl‘ {w PG + A } H —27riwa)—1' (106)

(w]eW(G.K) Altl\{wﬂl\} acl

Equatlon (100) is obtained by .':1pplymgD formula (99) to the character x(mn'V.¢ . )
of mz lpG+M thus

G
' Xpg+)
G _ _Xopg 107
x(mm po+'\) weEW e~?mwes Altg{pg} ton

and using the Weyl character formula for x O

ﬁc;+\
Definition 3 For any Lie group G the Adams operator ¢* : R(G) — R(G)
of order k € Z is defined as

¥ p(g) = p(g*) (108)
for a virtual representation p and g € G.

The Adams operators provide the following formula for the ¢’-term in theo-
rem 9:

Lemima 12 For any k € Z,
D VE o = mbFAdgy (109)

o€V

Proof: Let 7 and m denote the direct image maps

R(T) 3 R(K) D R(G) (110)
and let #' be the restriction map
7' R(K) — R(T). (111)
Then one gets by theorem 11
PVE e = mnP VL =min* PV (112)
acV v ¥
= mp* @V = mgpt it Adg)y (113)
¥
= W!d)kAdéf?K- (114)
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In particular, equation {95) may be reproven using Lemma 12 and equa-

tion (99). Geometrically, the maps 7y and 7 correspond to the direct images
associated to the double fibration

G/T LA G/K 5 point 2 G/G. (115)

9 Fixed point formulas

In this section, we shall combine Lemima 12 and theorem 9 with the equivari-
ant index theorem of Atiyah-Segal-Singer [AS68a],[AS68b]. We shall employ
this theorem only for the case of complex homogeneous spaces. In this case,
it has already been shown by Borel and Hirzebruch [BH59]. We shall com-
pare the result with Bismut’s conjecture of an equivariant Riemann-Roch
formula.

Let g be a holomorphic isometry of a compact Kahler manifold M with
holomorphic tangent bundle 7'M and let M, denote the fixed point set. Let
FE be a hermitian holomorphic vector bundle over M acted on by g. Let N be
the normal bundle of the imbedding M, — M. Let ')rl‘;'; (resp. 7&) denote the
isometry of N|; (resp. Ej.) which is the infinitesimal action of g at z € M.
Let QTM QTMs QN and OF denote the curvatures of the corresponding
bundles with respect to the hermitian holomorphic connection. Define the
function T'd on square matrices A as

Td(A) := det (116)

1 —e-4

Definition 4 Let Td (T M) and chy(TM) denote the following differential

forms on M,:

_QTM, A%
Td,(TM) :=Td ( 5 ) det (1 —(v") Vexp %) (117)

and iy
chy(TM) := Tr ¥ exp —-T:d". (118)

Then the Atiyah-Segal-Singer index formula states in this case
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Theorem 13 (Atiyah-Segal-Singer) The holomorphic Lefschetz number
of g equals

S ) Teginaangy = [ Td(TM)chy(B). (119)
. M,
This theorem, combined with Lemma 12, gives the formula
S Xokol9) = [ Td(T(GE))ehy (T (G/K). (120)
agV (G/K)q

Hence the first term on the right hand side in theorem 9 is given by

¢S thale) = [ TA(T(G/ KNG (BTG (121)

[\

In particular one gets the following corollary of equation (120) and theorem
13

Corollar 14 The polynomial degree in k of ¥eq X§G+ka(9) is less than or
equal to dim (G/K),.

This fact may be deduced also by Lemma 12 and equation (99). Define for
P as in (49) the complex number P as
. m % 1
CPi= eiCul=n5 65 ). 5 (122)
=1

i=0

In [Bis92], Bismut introduced the following characteristic class called the
equivariant f-genus:

R (T M) = (2¢' + §)chy(sp*T M)°d. (123)
Using this genus we may reformulate theorem 9 as follows:

Theorem 15 The logarithm of the torsion is given by the equation
Dlog 1,(G/ ) — log volo(G/K) + 3™ (= + ¢x _ () log 12e
2log 7ol s g VOl 4 \)+ 5 (2+CApG+oa(g)) og 9
= r[l 4 Y . i 'l’ Y 12
S, TAoAT(CIRDBL(T(GR)) (124)

_Eg X?iim(g) - 2; X.OG—-a(g)‘ ((a: PG)) :
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Using the R-genus, Bismut formulated a conjectural equivariant arithmetic
Grothendieck-Riemann-Roch theorem [Bis92]. We shall show now that this
conjecture fits perfectly well with theorem 15. For any details of the following
discussion, see [SABK92] or [GS92]. Suppose that M is given by M ® C for
a flat regular scheme = : M — Spec Z and that £ stems from an algebraic
vector bundle £ over M. Let ¥ (—1)9R7.E denote the direct image of &
under 7. We equip the associated complex vector space with a hermitian
metric induced by (2) via Hodge theory. Bismut’s conjecture implies that
the equivariant torsion verifies the equation

2log 7,(M, E) + & (Z(—l)"wa_S) = . (Td, (T M)ch, (£)) "

q>0

+ /(Gmg Td,(T(G/K))Ry(T(G/K))ch(E) (125)

(We identify the first arithmetic Chow group CH' (Spec Z) with R). Here

Td and chg denote certain equivariant arithmetic characteristic classes
wh:ch are only defined in a non-equivariant situation up to now. In [Bis93]
Bismut has proven that formula (125) is compatible with the behaviour of the
equivariant torsion under immersions and changes of the occuring metrics.
In the non-equivariant case, equation (125) has been conjectured by Gillet
and Soulé in [GS91] and it has been proven by Gillet, Soulé, Bismut and
Lebeau [GS92]. An important step in this prove was the calculation of the
non-equivariant torsion for the P*C.

In our case, the cohomology of the trivial line bundle O over G/ K is given
by
Z ifg=0
0 otherwise

HI(G/K,0) = { (126)
and the action of ¢ € G on H(G/K) is trivial. Thus the & term in (125)
should be independent of g. By the definition of &', it should equal minus the
logarithm of the norm of the element 1 € H°(G/K), thus — log vol,(G/K).
Hence, theorem 15 fits very well with Bismut’s conjecture. If one assumes the
characteristic classes in (125) to be defined, theorem 15 and the conjecture
imply for a model M of G/K e.g. in the case (87)

(7. Tdy (T M ) ——CZ atrea8) + 23 Xog—al9) ((ayp6)) . (127)
g .
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Note the very interesting fact that this i1s a rational number in the non-
equivariant case.

10 The non-equivariant case

We consider now the case ¢ = 0, i.e. the action of the identity map. For
this action, the equivariant torsion equals the original Ray-Singer torsion.
The values of the characters x,,+ka at zero are given by the Weyl dimension
formula

| b .
ootas(0) = dim Vigyao = T (1 ridfl)

In particular, the first term in equation (84) is given by {’ applied to the odd
part of the polynomial

o
> xporialt) = T I (144752, (129

aeW aeW¥ geat

At a first sight, this looks like a polynomial of degree #A*, but we know
by corollary 14 that it has in fact degree < #W, thus all higher degree
terms cancel. By combining theorem 15 with the arithmetic Riemann-Roch
theorem of Gillet and Soulé (i.e. equation (125) for ¢ = 0), we get the
following formula:

Theorem 16 The direct z'mage of the arithmetic Todd class is given by

ooy 112
(7r. Td(TJVf))(I) = Z( + ¢ (dim Vpa+.a)°dd ) log ||c;||°

+ Z (dim Vpc+w)0dd +2 Z (dim Vhea)” ({0, p6)) -
v v

(130)

11 Nontrivial coefficients

In this section we calculate the torsion of a homogeneous vector bundle E
over the hermitian symmetric space G/K. Let Vp’}‘;, +4 be an irreducible K-
representation and let £,, 44 denote the associated G-invariant holomorphic
vector bundle on G/K as in (96). The metric (-, ) on g induces a hermi-
tian metric on E, 4a. By just the same proof as in [O067], one shows the
following generalization of theorem 3:
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Lemma 17 The Laplacian O, with coefficients in F, 4a acts on a finite
dimensional G-representation V, C T(A'T*"'G/K @ E,, .4a) as

1
5 (1B=ll? — llo + AIl2) - (131)
An analogue of Lemma 4 follows by the observation

> (=1)?gdim Homg (V;, A* A(l(,/,\ ® Kpl +A)

g>0
1 i —21rm
= #WI’ /vAltl\v—{p;‘-},\/,,,‘,_l_,\ez (prc=p3) z 2mQAltc,-{b,,}dvolT
r:xe!I'
= o Z/Alt;\{pa+A+Lo}AltG{b }dvolr. (132)
ac¥

k>0

Hence, the associated zeta function Z,,. 44 is given by

Zprean(s) = =2° D (ka, ka + 2p6 + 20)7° Xpgt Ak (133)

13 4
k>0

By Lemma 8 one gets the result
Theorem 18 The logarithm of the equivariant torsion of E,, .x on a sym-
metric space G/ K is given by
odd *
QZ;;\-l-A = CI Z \pG-f-A-f-lo - Z XpG+A—-Ot ((Q, PG + A))
v
1 (aspG‘i‘A)

S D NeotA—kalogh

k=1

1 ||C‘f||2 1 odd
+5 +=> log (2 - ,\’pG+A+.a) (134)
2% 2

o

The Atiyah-Segal-Singer index formula implies again

5 XEoinssol0) = [, TG K)ebo TGN i),
" (135)



Hence one finds for the first term in theorem 18

S Xotnseo) = [ (TG KD AL (G K))ehs(Enn)

‘g

-¢ E 321“-:» (136)

which fits again with Bismut’s conjecture (125). Using the fact that the log-
arithm of the torsion behaves additively under direct sum of vector bundles,
one obtains similar results for any homogeneous vector bundle.

Acknowledgement [ would like to thank Michael Schréder and Gerald Héhn
for helpful discussions.
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