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Abstract

We calculate explicitly the equivariant holomorphic Ray-Singer
torsion for all equivariant Hermitian vector bundles over Hermitian
symmetrie spaces G/]{ of the compact type with respect to any isom­
etry 9 E G. In particular, we obtain the value of the usual non­
equivariant torsion. The result is shown to p'rovide very strong support
for Bismut's conjecture of an equivariant arithmetic Grothendicck·
Riemann-Roch theorem.
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1 Introduction

The Ray-Singer analytic torsion is a positive real number associated to thc
spectrum of the Kodaira-Laplacian on I-Iernlitian vector bundles over COln­
pact Her111itian manifolds [R873]. It was shown by Quillen, Bisillut, Gillet
and Soule that the torsion provides a Inetric with very beautiful propertics
on the detcrnlinant line bundle of dircct ilnages in [(-thcory over Kähler
Illanifolds. This way thc torsion can be regarclecl as apart of a direct ilnage
of Hermitian vcctor bunclles.

The lllain application of this construction is related to arithlnctic geolllc­
try. Extending ideas of Arakelov, Gillet and Soule constructed for arithluetic
varieties X (i.e. Rat regular quasi-projective schemes over Spec Z with projec­
tiv fibre "YQ over the generic point) a Chow intersection ring and a J{-theory
by using differential geolnetric objects on the Kähler nlanifold X := X '-9 C
[SABK92]. In particular, the [{-theory consists of arith Inetic vector bundles
on X with Henllitian metric over X anel certain classes of differential [onns.
Using the torsion as part of a (~irect iIllage, Bislnut, Lebeau, Gillet anel Soule
were ahle to prove an arithmetic Grothenclieck-RieInann-Roch theorell1 relat­
ing the deternlinant of thc dircct illlage in thc !(-theory to the clirect illlage
in the arithInetic Chow ring. One of the lnost c1ifficult steps was to show
the cOITIpatibility of the conjectured theorelll with imInersions. For a gener­
alization of these concepts to I~igher degrees, see Bislllut-Köhler [BK92] anel
Faltings [FaI92].

Another inlportant step in the proof o[ thc theoreill was its explicit ver­
ification for the canonical projection of the projective spaces to Spec Z by
Gillet, Soule and Zagier [G891]. In particular, the Giltet-Soule R-genus, a
rather COll1plicated characteristic dass occllring in the theorenl was deter­
nüned this way. The discovery of the saIne genus in a cOlllpletely different
calculation of secondary charact.eristic c1asses associatcd to short exact se­
quences by BiSlTIut gave furthel' evidence for the theorcIll.

In [Köh93], an equivariant version of the analytic torsion was introduced
and calculated for fixed point free rotations of cOInplex projective spaces. The
result was remarkable for two reasons: First, it contained in any dimension
(already for pl C) a function Rrot with lots of functional properties, which
reselllbles the power series defining the Gillet-Soule R-genus found by far
Inore extensive calculations. Second, it had the form of a Lefschetz fixed
point fonTIula where Rrot appcared as a factor in the contributions at the
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fixed points.
1'his second observation led Bismut to conjecture an equivariant arith­

Inetie Grothendieck-RiCinann-Roch fonnula [Bis92]. Reeloing his caJculations
coneerning short exact sequences, he founel an equivariant eharacteristie dass
R whieh equals the Gillet-Soule R-genus in the non-equivariant case anel the
function Rrot in the case of isolateel fixcd points. He cOlljeeturcd that this
dass should replaee the Gillet-Soule R-genus in an equivariant fon11ula. In
[Bis93], he was able to show the cOlnpatibility of his conjecture with inllller­
sions. Nevertheless, therc is still no definition o[ equivariant arithtnetic Chow
rings or J< -theories.

In this paper, we calculate the equivariant torsion for all compact Hernli­
tian sYI11111etric spaces GI/J( wi th respect to the action of any 9 E GI (1'heorel11
9). In seetion 9, we show that the result fits perfectly well wi th BiSIl1ut '5 con­
jecture. In partieular, one gets for any dinlension of the fixed point set the
1110St significant part of the Bisll1ut R-genus. For isolated fixed points, one
reobtains the function Rrot. In the first sections we only consider the trivial
line bundle on GIIJ< because of the relative silnplicity of the result in this
ease. In the last section, we calculate thc torsion for any equivariant vectot'
bunelle. The result is of interest also in the non-equivariant case: The torsion
was known only for very few mallifolels; thc projective spaces, the curves and
the tori of dimension> 2 (for which it is zero for elementary reasons). Also,
\Virsching [\Vir92] found a cOlnplicateel algorithlll for the deteflnination of
the torsion of cOlllplex Grassnlannians G(p, n), which allowed hiIn to calcu­
late it for G(2,4), G(2,5) anel (;(2,6). Thus, our results extend largely the
known exalnples for the torsion. In a forthcoming paper, we shall determine
the real analytic torsion o[ odd-dil11ensional sYlllllletric spaces. Also, we shall
consider the non-colnpact case.

2 Definition of the torsion

We repeat here the definition of an equivariant torsion which we gavc in
[Köh93]. Let 1\1 be a cOlnpact n-dilllcnsional Kähler Illanifold with Kä,hler
form w. Consider a hernlitian holonlorphic vector bundle E on 1\1 and let

(1)
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be thc Dolbeault operator. As in [GS91], we equip r(AQT*0,lA10E) with a
hernlitian metric by setting

(2)

Let Fr be the adjoint of Drelative Lo this metric and let DQ := (D+ ß*)2 be the
Kodaira-Laplacian acting on f(AqT*O,l Al 0 E). We denote by Eig,dD '1 ) the
eigenspace of 0'1 corresponding to an eigenvalue A. Consider a holoI110rphic
iSOlnetry 9 of !vI which ineIuces a holo1110rphic isometry g* of E. Then the
equivariant analytic torsion is ,definecl via the zeta function

Zg( s) := L (-1)'1 q L A-$ Tl' 9tEig.\(Oq)
'1>0 .\ESp<lcClq

.\'jl!O

(3)

for 9te s ~ O. Classically, this zeta function has a 111eromorphic continuatioll
to the complex plane which is hololllorphic at zero.

Definition 1 The equivariant analylic lorsion is defined as

(4)

(5)

This gives [or 9 = leIM the ordinary analytic torsion T of Ray and Singer
[RS73]. Ray showed in [Ray70, Ch. 2] the following lemma:

Len1n1a 1 Lei r be a finite group acling on Al by holom01'phic fixed point
free isometries. Assu1ne that this action lifts hol01nol'phica/ly 10 is01netries
01 E. Then the ana/ytic torsion of Elf over the quotient space Mir is given
by

1
log T(iVf/f, Elf) = -# L log Tg(M, E).

f gEr

Let EI ----* !vIIl E2 ----i' lvf2 be two holol11orphic hennitian vector bundles over
cOlllpact Kähler l11anifolds. Let 9 be a hololl1orphic isolnetry o[ 1111, M 2

whose action lifts to EI, E2 . Let for v = 1,2

Lg(A1vl Ev ) := L(-l)q Tl' gtHO,q(MIJ,EIJ )
'1>0

(6)

denote the holOlnorphic Lefschetz nUI11ber of g. The following Lenl1na follows
by an inlmediate generalization or the proof of [RS73, Th. 3.3]
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Lenlnla 2 The equival'iant torsion of the pl'oduct b7.lndle EI X E 2 over 1\11 X

M2 is given by

Lg (M1 , Ed log Tg (M2 , E2 )

+Lg (M2 , E2 ) log Tg ( MI, .E1 ). (7)

3 Complex homogeneous spaces

Let G be a connectcel cOlllpact Lie group anel let [( be a connecteel subgroup
of lnaximal rank. Asslllne that (G', J() is a cOlllplex hOlnogeneous pair of
the cOlnpact type. According to [ßH5S, 10.1] we I11ay aSSlllne G to be selni­
SiITIpie anel silnply eonneeted. Let T ~ J( denote a fixed Inaxilnal torus. \Ve
denote the Lie algebras of G', J(, T by g, r, t. Let e be a systeI11 of positive
roots of ]( (with respect to some ordering) and let W denote thc set of roots
of an invariant complex structure in the sense of [BH58]. Then 8 U \l1 =: ~+
is a system of positive fOOtS orG for a sllitable ordering, which we fix [BI-I5S,
13.7]. The holoITIOrphic tangent spaee at the dass of {l} E G in the eoset
space Cil!{ 11lay be identified with (g/t 0 C)I,D. The canonical action of !(
on GI!{ induces a, representation Ad~~/{ of !{ on (g/t 0 C)l,O which is ca.lled
the isotropy representation. lts wcights a.re given by w. The negative Killing
form induces a 11letric on GI!( which is known to be Kä,hler.

The space of fonns f( 1\ qT*o,lGI!() is an infinite diIllensional G-reprcsen­
tation which contains the space of its irrcducible subrepresentations (Vif l 1r)
as a L 2-dense subspace. ThllS,

f(A qT*O,IC;I!() d':)se EB HOlnc (\l
lf

, f(1\ QT*O,IGIJ{)) 0 \111" (S)
11'

In this imbedding, thc tensor product HOll1c (Vlf , r(AqT*O,lGI !()) 0 Vlf is the
direct SUHl of dinl HOHlc (Vlf , f( AqT*O,1 GIJ()) copies of the representations
(Vlf , 1r). By a. Peter- \Veyl theorenl due to Bott [Bot65], there is a. canonical
isolll0rphisIn

(Note that (g/~ 0 CrD
,1 ~ (g/~ 0 C)l,O via. the nletric). In particular, the

occuring representations (V:ll" 1r) a.re finite dimensional.
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4 The zeta function

Let (Xl, ... , X N ) be an orthononnal basis of 9 with respect to the negativ
Killing fonn. The Casinlir operator of 9 is defined as the following element
of the universal enveloping algebra of 9

(10)

Ikeda and Tanigllchi proved the following beautiful result [lT78]:

Theorenl 3 (Ikeda, Taniguchi) Assu'me that G/!{ I:S a hernütian syrn­
rnei1'ic space equipped with the melric l:nd1lced by lhe I{illing for"m. Then the
Laplacian Dq aets on fhe V1f '8 as -~Cas with respect fo the in~bedding (8).

The Casilnir is known to act by nlultiplication with a constant on irredllcible
representations. Thus, the eigenspaces of the Laplacian correspond to the
irreducible representations 1r with lnultiplicity dirn HOlllK (Vll" 1\qAdci~K)'

Let Pe := ~ LaECi+ 0' be the half sum of the positive roots of G and let
liVe be its Vveyl group. Let (".) and 11·11 denote the lnetric anel the norm on
t* induced by the Killing fonn. \-\Te denote the sign of an elelnent w E liVe
by (_l)w. As usual, we define

2(0:, pe)
(0', pa):= 110'11 2

(11 )

for any weight 0'. For an irreducible represelltation 1r we denote by b1t the
sum of its highest weight anel Pa. Then, classically, the action of the Casin1ir
is given by

To abbreviate we set

Altc{b}:= L (_1)W e21tiwb.
wEl'I'G

(12)

(13)

Then the Weyl character rorn1l1Ia for thc character Xb
lT

of the representation
evaluated at t E T lnay be wri t ten as

(14)
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This fonuula provides the defini tion of the so-called virtuaJ (01' fonnal) char­
acter Xb for general b = PG+any weight. This extencls to all of G by setting
Xb to be invariant nneler t.he aeljoint action. Thc corresponding virtual rep­
resentation shall be elenoteel by Vb. Occasionally we shall use the notation
xf, Xt:, 'tbc, \I/'( to distinguish G- anel }{-representations. From now on we
shall consider the syn1metric space GI J{ to be equipped with any G-invariant
Illetric (', .)o' These l11etrics are classified as folIows:

Classically, a hennitian sYlnmetric space GI!( decoInposes as a finite
product of irreducible hermitian spaces [HeI78]

GI!( = G\I J(1 x ... x Gml J(m. (15)

On each GLlI!(LI every Gv-invariant Inetric is a multiple of the lnetric induced
by the Killing fonn [Bes87, Th. 7.44]. Thus, the metric on G/!( is induced
by the direct sutn of S0111C (negative) factors titnes the Killing forms of the Cv .

vVe shall denote the dual Iuetric anel 1101'111 on t* by (',' )0' 11 . 110, tao. Thcse
are given by the direct SUln of the Killing fonns divided by the corresponding
factars. In particular, with respect to (-, ')0 the Laplacian 0 acts on V7r as

(16)

(1.8)

by theorelu 3. Thus, we may write the equivariant zeta function Z(s) for
Ci/!( hermitian sY111n1etric as

n ( ') )8
Z( S) = :;(-1 )'q~ clim HomK(V~, AqAcld~K) IIb"II~': IIPGII~ Xb." (17)

Presumably, the expression diIU Hon1}\" (V7r , AqAdd;}\") is very difficult to eval­

uate. One had to cIecOlnpose V7r anel AqAcId;f( in their irrcducible !<-repre­
sentations and to COlnpare the occuring representations. It is possible to do
this explicitly for the pnc [11'78], because in this case AqAd~;K turns out
to be irreducible itself. Nevertheless, this is not the case in general (see e.g.
[Wir92] for the case 8U(4)/8(U(2) x U(2))). For this reason, we do not try
to detennine all of the eigenspaces anel eigenvalues but to calculate the sum

Tl

L (-l)fl Cf diln HOll1/{( \i7r , AqAcI~~ /()
q::::l

which will turn out to be sOlnething relatively sitnple. 1n the next section,
we shall prove the rollowing Lenlma
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Len1111a 4 F01' any irreducible represenlalion 1r) the su'm

n

L (-l)qq dirn Bonl/{ (V1T , AqAeI~/J\ )Xb1f

q;;;;l

(19)

1:8 non zero only if brr lies in lhe vVe-orbit 0/ sonze Pe + ka, k E N, Q' E W.
fn tlZl:S case, il equal8 -Xpc+ko '

As a corollary of LeInnla 4 anel theorenl 3 we obtain

Theorenl 5 Assunw that. G/1{ is synZ1netric. Then t.he zeta funetioTL Z l·S

given by
Z(S) = _2 8 L (J.~a, k:a +2pa)-;3xpc+ko'

oE"
"'>0

(20)

5 Determination of the occuring represen­
tations

In this section we elo not assUI11e that G/ j( is sYlnnletric. Let PK :=

~ LoE8 0', vV/{ anel Alt/{ be defined analogonsly to Pe, vVe anel Alt/{. Let X
elenote the virtual character gi ven by

n

XK := 2:(-l)qQX (AqAd~/K)
q=l

(21)

where X (AqAd~/J\) is the character of the j(-representation AqAd~/K' Then
one knows

n 10 1 ;,-_
L(-l)qqdill1 HOIllK(Vrr , AqAdc/rJ = -# XK . X1TdvoIK.

HfL • Kq;;;;1 n

Using the \\Teyl integral fonnula, this transfonlls ta

lr Altl\'{PK }Alt/{{PK }X/{ . X1T dvolT

(22)

(23)

(Here we identify T with the quotient of t by the integral lattice). This inte­
gral ITIay seenl complicated at a first sight, hut notice that for each integral
forn1 ß

9

if ß = 0

if ß I: O.
(24)



(25)Altc{PC}IT = TI (eJrio
- e- Jrio

)

oE8U'1'

By classical representation theory, the restrietion of Alta{PG}, AltJ( {PI\"} to
T is given by

and
Al LJ( {PK } IT = TI (e JriO

- e-Jrio
) •

oE8
(26)

By definition,

8 . 10= -8 det(l - sAdc//\)
51,,=1

= det(l - Ad~~[{ )Tr (-Ad~~K(l - Ad~~K )-1)
= det(l - Ad~~K )Tr(l - (Ad~~K )-1 )-1.

(27)

(28)

(29)

Heuce we find für the restrictiün to the nlaxiIl1al Torus

xK IT = TI (1 - e- 2Jrio
) • L (1 - e21fio

) -1 (30)
oE'1' oE'1'

= e2Jri (PK-PG) Alt~{PG.} E (1 _ e2Jfio ) -1 . (31)
Alt/\ {PhJ QE'1'

Thus we get by the fOfITIulas (23), (31) and by the \Neyl character fonnula

E(-1)qq cl i111 HOIl1K (VJr , Aq.Ad~~K )

q>O

(32)

(34)

(35)
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\,Ve observe t.hat any 10 E ~VJ{ ~ vVe acts on thc set '1' as a pernnltation, just
bccause Adci~K is a j{-representation. Thus for any 10 E H1K

L e-21f'iko: = L e-21fikw(o)

oE~ oE~

k>O k>O

and

Thus the fight hand siele in (35) becOlllcs

The integral is non-zero if anel only if

w(b1f') = Pe + ka

(36)

(37)

(38)

(39)

for an appropriate 10 E l,Va anel for such a brr it is equal to (-l)W#Hlr;.
Notice that in general Pe + ka does not He in thc positive Weyl chan1ber.
Anyhow, the expression

-1 i A1ta{b}

#
1.; AltJ({PG + h~Q}Altc{b}dvol1" Al { }
vI K T tc pa

1S invariant under the action of Hla on b, thus Lenllna 4 is proven.

6 Remarks on zeta functions

Define Zo for 0' E '1' as

Zo:(s) := - L k- S (k + (a,pa))-" X~G+ko
k>O

for 9le s > 2. Thus Z e1ecolnposes at

( 2 )"Z(s) = ~ Ilall~ Zo(s)

11

(40)

D

(41)
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and its derivative Z' at zero is given by

(43)

(44)

Now we shall prove a fllndalnental sYITIlnetry property of the zeta function
Z:

Lenlnla 6 For al/ Q' E W} k E N and /.-:' := k+(a, pe), the Jollowing equation
holds

(ka, ka + 2PG)-~X~G+kO' = -(k'a, k'O' - 2pe)-8x~G_kI0"

FOT 0 < k < (0', Pe), the cha1'acter X~G-kO' is eq'llallo zero.

Proof: Let SO' denote the reflection of the weights by the hyperplane
orthogonal to a. Thcn Sape = Pe - (a, Pe )a, SO'a = -a and

AltG{PG - (k + (a, PG)) a} = AltG{Sa(pe + ka)} = -Alte{PG + ka}, (45)

because SO' has sign -1. The weights pe-A~a aresingula.r for 0 < k < (a,PG)
bccause thcy are contained in thc convex huH of WG . Pe (see Fig. 1). 0

In pa,rticular, the derivatives of the Zn 's are given by

Z~(s) = (46)

(47)

Now we give a general fornllI1a for values at zero of zeta functions of this
kind. Let for 4> E R anel So > 2

(48)

denote the Lerch zeta functian. Let P : Z -t C be a. function of the fann

m

P( k) = L Cj h~njeik4>j
j=O

12
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Figure 1: The lines Pe + ka in the case 50(5)/50(3) X 50(2)

with rn E No, 1l.j E No, Cj E C, <Pj E R for all j. Set for ]J E Rand
9les > (maxj{nj} +1) /2

(50)

anel

(51)

- -
Then ( anel D( have llleroIllorphic extensions to the c0I11plex plane. To
express their va.Iues at zero, we definc analogously to [GS91, 2.3.4-]

m

CP := L Cj(L( -nj,<pj),
j=O

(52)
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m

Clp .- L Cj(~( -nj, cPj),
j=o

m pnJ +l

Res P(p) .- L c'
j=O

)2(12j+l)
tJ>j=O mod2rr

111 pHj+l Hj 1
anel p.(p) L Cj 2:-.-

j=o 4{n j +1) l= 1 e
<PjEO mod2rr

(53)

(54)

(55)

Let [p] E Z denote the greatest integer less 01' equal than p. \Ve deHne a SUI11

L:: with 12 > 111. to be zero.

Lelnma 7 ( is holon~orphic a"t zero and its value the1'e is given by

[P]

(p,p(O) = (P + Res P(p) - L P(k)
k=l

For s -t 0, D( has the Laurent expansion at zero

(56)

Res P(p) [P]
D(p,p(O) = - ? + (IP + P*{p) + L P(k) log k + O{s). (57)

~s k=l

Proof: It suffices to prove the lell1tna only for P( k) = kne iktjl
1 12 E No,

4> E R. We get by a Taylor expansion of (1 + p/ I.~)-!J (for 1.; > Ipl) for
9le s > (IllaXj {12j} + 1) /2

14



The Lerch zeta function (L(-, 1J) is hololll0rphic for 1J ~ 0 luod 27r. For <p = 0
it equals thc Rieillann zeta fUllctioll which has a unique pole at 8 = I,

Thus for S --+ 0

1
(L(S + 1,0) = - + 0(1).

S
(61)

[-p] ( [Ipl] )
D((s) = - (; kneik~ log k + CU -n, r/» + {; kneik~ log k

+ ( -s )(_p)n+l(~(2S+1l<P)+0(S) (62)
n+1

[p]

(~( -11" 1J) +L kn e1k
lj> log k

k=l

+ ( -8 ) (_p)n+l { - 4~2 if <p ~ 0 + O(s). (63)
11. + 1 0 otherwlse

Using the fact that

(-8) = (_1)n+l S (s+1): .. (s+n) = (_I)n+l s (1+st~) +0(8)
11.+1 (n+1)! n+1 1 e

~ (64)
for s --+ 0, equation (57) is proven. The identity for ( is deduced the salne
way.

o
Now we specialize a bit lllore to our situation. We denotc the functioll

k ~ P( -k) by P-. Set podd := (P - P-)J2.

Lemnla 8 A8S'll7ne that p E No and that P verifies the sy'mmet.ry condition

P(p - k) = -JJ(k).

Then the values at zero oJ ( and its dc'rivalive a7'e givcn by

((0) = (podd + P(0)J2 = ((podd - P(O))

and

(65)

(66)

[Pf2]

('(0) = 2('podd + 2p·(p) - P(O)logp - L P(k)log(E. -1).· (67)
k=l k

15



Proof: Differentiating ( leads to

Applying Lernrna 4 gives for 8 -? 0

('(8) = -~Res P(p) + C'P - C'P- +2P*(p)
8

p

+L: P(k) log h; +0(8).
k;::l

But we know that ( is holo1l10rphic at zero, thus

Res P(p) = -Res P-( -p)' = 0

in this case. In particular, the expression for ((0) in Lernlna 4 beconles

p

((0) = CP - L P(k).
k;;:;:l

On the other hand,

(72)

(73)

(74)

by i), hence LelTIJl1a 4 gives

((0) = -CP-

01'
p

((0) = Cpodd - L: P(k)/2
k;;:;:l

16
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by adding (74),(76). The LCluma follows fronl the equations (72),(77) by
applying (65) to the last tenns. ~ _ 0

In particular, the functions D(p,p anel D(p- ,_p are hololllorphic at zero
in this case. Now we shall apply LClnma 8 to the zeta functions Za. First
we have to prove that the character map k ~ APG-ka is indeed a function of
the type (49). Set for Xo E t

(78)

Choose )( E t so that eXo+~X = 0 for E sl11al1. Then the (virtual) character
XPG-ka, a E \lJ, cvaluatcd at eXo i8 dctennined by

XPG_ka(e
xO ) . TI 2i sin 7rß(Xo)

ßE~+\exo

I
. Alt{PG - ka }(~\'o + EX)
11U ------:.---~-------:.-

(""'0 TIßE9 xo 21: sin 7rß(Xo + EX)
" (_1)W e2Iriw(pG+ko )(Xo)e211"i(w(pG+ka)(X)= r _t-_~.....;VG=--- ~ _

(~ (21riE )#B xo TIßEexo ß(~\')

= L(_l)W 2~iw(pa+ko)(Xo) (W(PG + ka)(X))#8 X o

W
G

e #8xo !TIßE8xo ß(X) .

(79)

(80)

(81 )

Hence one obtains a function of the type (49). Using XPG

LeIulua 6 anel Lelulua 8

Z (0) = ~vodd + 1/2a ~ApG-'a

anel

1, we get by

(82)

Z~(O) = 2<'X~~~.a + 2X;_.a ((a,pe)) -Iog(a,pe). (83)

Here the application of t;, t;' etc. to characters depending on k is lueant in
the sense that one fixes first. an elelnent. 9 E G acting on Ci /!(, then one
evaluates the characters at 9 and then one applies the operators t; etc. By
fornlula (43) anel by the lineal'ity of t;, t;', we geL the following theorenl

Theoren1 9 The logarith,n of the equivariant torsion of a synnnet1'l:c space
G/ J( is given by

17



11 II( ) 1~ (1 (odd ) 1 11001l~ (+2" og llr O',PG +2~ 2"- XPG+.o ogT 84)

(' L X~~~.o - L X;O-.O ((a, pe))
w w

1 II( ) 1~ (1 Odd) 110'11~ ( )+ 2" log w 0', pe 0 - 2"~ "2 + (XPG+.Cl' log -2-' 85

\\Te shall prove in section 9 that the polyn0I11iaJ clegree in /..~ of LlJ' XpC+.Cl' (g)
for 9 E C,' is at luost the dilnension of the fixed point set of the action of 9
on Gf!{. In particular, it is less 01' equal #\IJ.
Ren1arks: Note that the tenn ITw (a, Pa)~l equals the volulue volo(GfK)
by [BGV91, Cor. 7.27]:

vol(GfK) = vol(GfT) = ITe(O',PI<) = II(a PC)-l (86)
vol(KfT) ITL\+ (a, pe) w '

because of (0', pa - PK) = 0 for a E 8. This ternl woulcl cancel with tbe
L2-nonn if we consiclered equivariant Quillcn luetrics as dcfined by Bislnut
in [Bis93] instead of the analytic torsion.

Assull1e that, for each v, all cOlllplell1entary roots of the space Gvf ](v in
the decolllposition (15) have thc same length (this is the case iff the deconl­
position eloes not contain one of the spaces SO(p+2)fSO(p) X SO(2) (p 2:: 3)
01' Sp(n)/U(n) (n 2:: 2), see [He178]). Then one may choose thc 11letric (', ')0
in such a way that

log llall~ = 0
2

(87)

for all Q: E W. Thus the corresponeling term in theorem 9 vanishes. On the
cOlnplex Grassrnannians G(p, q), this luetric is j ust the usual Fubini-Study
11letric.

7 The case of isolated fixed points

Assurne that X E t acts on G/ J{ with isolated fixed points, i.e. the set 8 x
is empty. Then one lnay calculate the values XPG-ka (eX) using the \'Veyl
character fonnula. One verifies easily that the fixed point set is given by
thc quotient of the Weyl groups ~V(G,]() .- ~VeflIVK' Set Jirot.(r/» :=

18



((~(O, 1» - (~(O, -1>)) /2i for 0 < 1> < 21r. The real valued function Rrot.
was al ready introduced and investigated in [Köh93]. In particular, it was
shown to be given by the fonl1ula

R cot ( 1» = C + log 1> _ i L ('(-t) (i~)t
4> (>1 e.

(odd

anel for 1> = 21r e, p,q E N, 0 <]1 < q it is givcn by
q

(88)

Rcot
( rP) = - ~ log q . cot ~ +~ log r (i) .si n j 4> (89 )

~ 2 (;1 q

where C denotes the Euler constant anel r is the ganlilla function. We shall
prove the following fixed point fornllI1a

Theoren1 10 Let X E t uet with iso/ated fixed points. Then the /ogarith1n
0/ the equival'iant t01'sion wilh respect t.o eX is given by

L LnEl1' i.Rfot (21rwo:(X))

( I n E
'l. (1 - e-21l'iwa(X»)

w EH'(G,K) 0' 'i'

1 LO'E~ (1 - e-27riwa(X)) -I log "~It;

+ 2 L n (1 e-27riwa(X»)
[w]EW(G,K) O'E~-

1
+Q'logI1(a,pG)' (90)

... . oEIJI

Application of [w] E W( G, J<) to weights Ineans here that the entire expres­
sion does not depend on thc choice of w.
Relnark: The tenn naEl1' (1 - exp (-2iTiwo:(X)))-1 is exactly equal to thc
factar fronl the fixed point [w] in the Atiyah- Bott fixed point fonnula. This
sirnilarity will be explained in the next two chapters.
Proof: Using the Weyl character fonnula., one obtains

= L
[w]EW(G,l\)

19
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(91 )
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e 27ri (PG-Pl..-} "\"' I (_l)WI
e27riwwlpK .L ~w E~ilK L 2nkwo

(wJEW(G,l{) ( -l)w TIoEß+ 2i sin 7f0' oElP e

(because each 10' E ~VK pennutes the set \l1) (93)

e21Ti (po-PK) TI e 2i sin 7fWO: .
= L oE L e21TJkwCt (94)

[wJEW(G,K) TIoEß+ 2i sin 7f1OQ' aElJ'

= L TI (1 - e-21TiO ) -1 L e21Tikwo. (95)
[wJEW(G,K) oE~ oE~

The salne procedure applies to thc last tenn in equation (84). Using the
equatiolls (L(O,q))-(L(O,-q)) = 'icot~ (see [Köh93]) anel 1/2-1:/2 cot </>/2 =
(1 - e-it/J)-l, one obtains thc theorenl by applying theorem 9.

D

8 Application of equivariant K-theory

In this section, we shall recall S0l11e concepts of equivariant K-theory anel ap­
ply them to theorem 9. vVe shall give short proofs to illust1'ate the silnilarity
with section 5. For 11101'e in[orn1ation see Bott's article [Bot57] anel [AS68a].
Let 1T" : J< ~ G be the inclusion of a. cOlnpact subg1'oup of D1aximal rank aud
assulne GIJ( to be a c0111plex hon10gencous space. Let ,R(G), R(J<) denote
the l'epresentation rings of G and J<. \~re deHne the Inap 1T"! as the restrietion
of representations. For any J< -repl'esentation V K let

(96)

denote the associated hololllorphic hOlllogeneous vector bundle on GflJ<.

Definition 2 The direct i7nage 1nap 1T"t : R(J{) ---+ R(G) is defined as

1T"! VA" := L( -l)flHO'fl( GI1<, EVK).
q'20

(97)

\Ve shall use the following properties of 1T"!:

Theorenl 11 (Bott) The inlage untier 1T"! 01 an irred7Lcibie J{ -rep1'esentalion
V/~~+,\ 01 highest weight A is given by

(98)
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Fo'l' ar/,y J{ -representaf.ion V K with character x( \lr:)) lhe characler of 1f!V K

is given by
K X(VK)ow

X( 1fr\f ) = "'"" . ./. L...J TI (1 -21l'Iwa)[w]EW(a,K) aE1JI - e

fj J< = T then ?T! is a left. inve1'se of?T!:

f01' any G-representation \fa.

(99)

(100)

Renlark: ?T! and 1f! Illay be regardeel as the elirect inlage anel the pullback
in equivariant K-theory, which are Inaps between J<a( GIJ{) ~ R(I() anel
J<a(point) ~ R(Ci). Bott showed the above theo1'elll for nl0re general lnap­
pings.
Proof: As the Euler ch80racteristic of a complex is equal to the Euler ch801'­
acteristic of the hOIll0logy of thc cOlllplex, we get by the equations (8) and
(9) (i.e. their analogues for nontrivial coefficients)

?T!Vp~~+,\ = L(-I)q L dirn HonlK(Vll',AqAd~/K0 Vp~~+,\)V1f. (101)
q~O ll'irr.

Sinlilar to (29), thc character of thc J{-rcpresentation L q(-1)qAqAd~1K 0

\lp~~+>. is given by det( 1 - Ad~/I( )x;;(+,\. By the sanle reasoning as in section
5 one finds

_1_ rAltK{PK}e2Jii(PG-PK)Xh"_+,\Altc{bll'}dvolT (102)
#VVK JT p]\

#
1; rAlth"{pa+ A}Altc {b1r }dvoIT. (103)
1'1!( JT

Equation (98) follows the sa,Ille way 80S theoreITI 5 follows by equation (38).
Tü prüve the relation (99), we aSSllIl1e VI{ to be irreducible, VI{ = V/~+'\'

Then, similar to the prüof of theorCll1 10,

Altc{pa + A}
X~G+'\ = Alta {pa} .

21
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L (_1)W e21ri(PG-PK) Alt.J(.{w(PG+A)} (105)
(wJEW{G,l.;') ITaEIV 21. SIn 1r0' . AltK{PK}

L AltK{W(PG + A)} II (1 - e-21riwa)-1. (106)
(wJEW{G,l{) Alt/{{WPb.:} aE1V

Equation (100) is obtained by applyillg fonnula (99) to the character x( 7r17r!Vp~+,\)

of 7r!1r!Vp~+", thus

(107)

and using the \'Veyl character fOflnula for X~G+'\' o

Definition 3 For any Lie g'r01lp G t.he Ada·ms Ope1Ytto'1' 'lj;k : R(GI) ~ R(G)
0/ order 1..; E Z is definerl as

(108)

J01' a virt'llal rep1'esentalion p and 9 E G.

The Adams operators provide thc following fonnula for the ('-ternl in theo­
renl 9:

LenUlla 12 For any 1..; E ZJ

ffi \/G _ "I,k Adl,o
'\I7 po+ka - 7r!o/ GI J('
oEW

(109)

Proof: Let ih and ?Tl denote t~le direct illlage Inaps

R(T) ~ R(J{) ~ R(G) (110)

and let ir! be the restrietion lnap

ir' : R(J() -4 R(T). (111 )

(112)

(113)

(114)

1r!ir r EB Vk~ = 1r!7i']'Ij;k EB \I;
'1' IV

1r!'Ij; k ir! EB Vo:T = 7r!7jJk7Tl1T!Adci~K
\lI

= ..... ,,1,kAcI1,o
"!lf" GII\'

Then one gets by theoreln 11

EB Vp~+kcr
o:E1V
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o
In particular, equation (95) Illay be reproven using LeI1lIna 12 and equa­

tion (99). Geometrically, the Inaps ih and 7l"! corrcspond to the direct iInagcs
associated to the double fibration

G/T ~ G/!{ ~ point ~ GIG.

9 Fixed point formulas

(115)

In this section, we shall cOlnbine Lenlllla 12 and theoreIll 9 with the equivari­
ant index theOretll of Atiyah-Segal-Singer [AS68a],[AS68b]. V.,Tc shall employ
this theorem only for the case of cOlnplex hOlllogeneous spaces. In this case,
it has already been shown by Borel anel Hirzebruch [BH59]. \,Ve shall COD1­
pare the result with BisIllUt'S conjccture of an equivariant Rielllann-Roch
[ornlula.

Let 9 be a holoIllorphic isollletry of a cOInpact I<ähler Inanifold M with
holOIllorphic tangent bundle T Iv} anel let Nfg denote thc fixed point set. Let
E be a hennitian holotll0rphic vector bundle over Iv! acted on by g. Let N be
the normal bundle of the iJnbcdeling 1\;lg t.......+ lvI. Let ll~ (resp. fl~) denote thc
isometry of lVlx (resp. Elx) which is thc infinitesilllal action of 9 at x E !vIg.
Let n™, n™9, nN and nE denote the CUl'\'atures of the corresponding
bunelles with respect to the hermitian holomorphic connection. Define the
function Td on square l11atrices A as

A
Td(A) := det 1 _ e-A ' (116)

Definition 4 Lel Tclg (TA1) and chg(TM) denot,e the Jollowing diffe1'ential
fonns on 1\;19 :

and

(117)

(118)

Then the Atiyah-Segal-Singer index fonnula states in this case
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Theoren1 13 (Atiyah-Segal-Singer) The holo'mo'1'phic LeJsehetz nU'11l,be'1'
0/ 9 equals

L(-1 )qTrgj"HQ,q(M,E) = ( 'rdg(TAf)chg(J~). (119)
q JA1g

This theorem, cOlnbilled with Lenl1na 12, gives thc fonnula

Bence the first term on the right hand side in theorenl 9 is given by

In particular olle gets the following corollary of equation (120) and theorenl
13

Corollar 14 Thc polyno'mial deg'l'ee l:n k 0/ LaEIV X~G+ka (g) is /ess than 0"1'

equal to di-ln (C;I J{)g.

This fact nlay be deduccd also by Lerllrna 12 alld equation (99). Define for
P as in (49) the complex nurnber (P as

(122)

In [Bis92), Bislnut introduccd the following characteristic dass called thc
equivariant R-genus:

(123)

Using this genus we I11ay refOl'IlHtlate theorenl 9 as follows:

Theorem 15 The logaritlun oJ the torsion is given by {he eq'llation

2logTg(GIK) - log volo ( G/K) +L (~ +'X~~~.a(g)) log II~II~
Jl1

= j Tdg(T(GI J{) ).Rg(T(GIJ()) (124)
(G/K)g

-(LX~~~.a(g)- 2LXPG-·a(gr ((a,PG))'
\JI Jl1
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Using the R-genus, ßiSl11l1t fonnulated a conjectural equivariant arithnlctic
Grothendieck-Rielnann-Roch theorem (Bis92]. \~le sha.ll show now that this
conjecture fits perfectly weU with theorem 15. For any details of the following
discussion, see [SABK92] 01' [GS92]. Suppose that M is given by M ® C for
a flat regular scheine 1r : M -t Spec Z and that J!J steIns fron1 an algebraic
vector bundle E ovel' )\-1. Let L::( -1)q Rq iT.E elenote the elirect iinage of E
under 1r. \·Ve equip the associated cOinplex vector space with a hennitia,n
metric induced by (2) via Hodge theol'y. ßislnut 's conjecture ill1plies that
the equivariant torsion verifies the equation

2 log 7g(1\1, E) + c~ (2:( -l)q Rq1r.E) = 1r. (Tdg(TM)cl;g(E)) (1)

q>O

+ ;; Teig (T( GIJ() )Rg(T(G/ J{) )ch(E) (125)
(G/J()y

(\Ve identify the first arithinetic Chow group CHI (Spec Z) with R). Here

c;, Tdg allel cl;g denote certain cquivariant arithn1etic chal'acterisLic classes
which are only defined in a non-equivariant situation up to now. In [Bis93]
Bismut has proven that fOfll1ula (125) is con1patible with the behaviour of the
equival'iant torsion undel' inllnersions anel changes of the occuring n1etrics.
In the non-equivariant case, equation (125) has been conjectured by Gillet
anel Soule in [GS91] anel it has becn proven by GiUet, Soule, BiSlllllt anel
Lebeau [GS92]. An irnportant step in this prove was the calculation of the
non-equivariant torsion for the pnc.

In our case, thc cohon10logy of thc triviallinc bundle 0 over G/ J( is gi yen
by

if Ci = 0
otherwise

(126)

anel thc action of 9 E G on JfO(GIJ{) is trivial. Thus the c~ tern1 in (125)
should be independent of g. By the definition of Cl, it shoulcl equaiininus thc
logari thm of the nOfln of the eieinent 1 E Jfo (G/ J(), thus - log volo ( GI K).
Hence, theoren1 15 fits very weil with Bisillut's conjecture. 1f onc assun1es the
characteristic classes in (125) to be defined, theoren1 15 anel the conjecture
imply for a model M of GIJ( e.g. in thc case (87)

(127)
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Note the very interesting fact that this 1S a rational ntunber in the non­
equivariant case.

10 The non-equivariant case

Vve consider now the case 9 = 0, i.e. thc action of the identity lllap. For
this action, the equivariant torsion equa.ls the original Ray-Singer torsion.
Thc valucs of the characters XPG+ko at zero are given by thc \-\Teyl diInension
fornuda

XPG+ko(O) = dirn \/pG+ko = rr (1 + I.: (:'0:\) . (128)
ßEf1+ ,Pa

In particular, the first ternl in equation (84) is given by C' applied to the odd
part of thc polynonlial

LXpo+ko(O)=L TI (1+1.:(:,0:\). (129)
oE\l1 aElIr ßEf1+ , Pe

At a first sight, this looks like a polynomial of degree #/1+, but we know
by corolla,ry 14 that it has in fact degree ~ #\J!, thus all lligher degree
tenns cancel. By cOlnbining theoreIl1 15 with the arithIl1etic Rienlann-Roch
theorenl of Gillct and Soule (i.c. cquation (125) for 9 = 0), we get thc
following fonnula:

Theorenl 16 The (Hrect i1nage 01 lhe a'dtJnnetic Todd dass is given by

(
..- ) (1) '" 1 . odd 110'11

2

Jr. Td(T ."--1) = LJ (- +,( dun \/PG+ea) ) log __0 (130)
~ 2 2

+ '( L (dl:'m \/PG+ea t dd +2L (dim \/PG+ear ((0', PG)) .
~ ~

11 Nontrivial coefficients

In this section we calculate the torsion of a hOlll0geneous vector hundle E
over the hermitian synunetric space G/ J(. Let \/p~+A be an irreducible ](­
representation and let EPJ.;+A denote thc associated G-invariant holOl110rphic
vector bundle on G/J( as in (96). The lnetric (-, ')0 on ginduces a hermi­
tian lnetric 011 E pK+A• By jusi the sanle proof as in [0067], one shows thc
following generalization of theOrCl11 3:
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Lenlnla 17 The Laplacian Oq with coefficients in EPJ.:+A aets on a finde
dirnensional (,f-representation \/JI" c r(AqT*O,lGf/J{ ® E pK+A ) as

(131 )

An analogue of LeIntna 4- follows by thc observation

L( -1 )qq dilll HOlTIK( VJI"' Aq Ad~/l\' ® \/:~+A)
q>O

= _1_, r AltV{PK}X _+Ae2J1"l(P]\-PG)" _e-2J1"l~ AltG'{b }dvolr
# 1'V

1
" J1' \ I P1\ L 1 _ e-2J1"1O' 1f
\ oE~

= #-1 L r AltK{PC + A + kü} Altc{ bJl" }dvolT' (132)
vV/{ aE~ JT

k>O

Hence, the associated zeta function ZPK+A is given by

ZPK+A(S) = -2& L (h;Ü, h;Ü + 2pc +2A);&XPG+A+ko" (133)
aE~

k>O

By Lernma 8 Olle gcts th.e l'esült

Theorenl 18 The /ogarithln 01 the equivariant torsion 01 E pK+A on a sy'm­
17wtric space C; / J{ is given by

('LX~~~A+.O - LX;G+A-.~ ((ü,pc + A))
lJr 'Ir

1 (o,pa+ A )

+? L XPG+A-ko log k
o.J k;l

1" Ilüll~ (1 odd )+ 2"~ log 2" 2" - (XPG+A+ea (134)

The Atiyah-Segal-Singer index fOflllula iluplies again
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r' '"'"' odd ()~ L...J Xpc+A+ea 9
'I'

Hcnce one finds for thc first ternl in theorenl 18

1 Tdg(T(Ci / J{) )Rg(T(G/ J{) )chg(EpK+A )
(GI J\-)g

- "'L X~~~A+eQ (g) (136)
IV

which fits again with BisnHlt's conjecture (125). Using the fact that the log­
aritlull of thc torsion behaves additively under direct surTI of vector bundles,
one obtains silnilar resliits for '~tny hOlnogencous vector bundlc.

Acknowledgement / would like Lo Lhank kfichael Sehr'öder- and G'erald Höhn
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