DOUBLE SHORT EXACT SEQUENCES
AND K, OF AN EXACT CATEGORY

A. NENASHEYV

MPI 95-118

Max-Planck-Institut

filr Mathematik
Gottfried-Claren-Str. 26
53225 Bonn
GERMANY

e-mail: nenashev@mpim-bonn.mpg.de






DOUBLE SHORT EXACT SEQUENCES
AND K, OF AN EXACT CATEGORY

A. NENASHEV

ABSTRACT. We introduce a modification of Bass’ K{#*. Our group is defined in
terms of double short exact sequences instead of automorphisms and gives a better
approximation to Quillen’s K; than K f’“, for any exact category. We establish its
relation to K by dealing with loops in the G-construction.

1. INTRODUCTION

The wish to obtain an algebraic description for K; of any exact category 2
resembling the formula for rings K; (R) = GL(R)/E(R) leads to the Bass universal
determinant functor (see [Bal][Ba2][Ge])

Kiet(A) = Ko(Aut )/ ~

where Aut2 denotes the category of pairs (4,c) with A € A and @ € Aut A and
the equivalence relation is generated by

 (Aaf)~(Ae)+(A48) (11)
There is a natural map (see [Ge|[Shl])
K{* (%) —» K, (%) (1.2)

which proves to be an isomorphism if 2 is semisimple, i.e., if every short exact
sequence in A splits [Sh1][We]. However, in general this map need not be either
surjective or injective (see sect. 5 in [Ge]).

In this paper we introduce a modification of K{**(), an abelian group D(2l) which
admits natural homomorphisms

K'(2) - D(A) = K, (A)

with the properties

(i) the composite map is (1. 2)

(11) the map D(A) — K; () is surjective for any exact category Ql

(iii) both maps are isomorphisms if 2 is semisimple.

While the automorphisms in 2 serve as generators for K d“(Q.l) the generators of
D() are given by the following notion generalizing that of an automorphism.

Key words and phrases. Exact category, K, G-construction, double short exact sequence.
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Definition 1.1. A double short ezact sequence in A (a d.s.e.s. for short) is a pair

of short ezact sequences (s.e.s. for short) A LB % Cand AL B2 Con
the same objects. Given such a d.s.e.s., we will write

N g
l=(A3 B3 C). (1.3)
fa g2
If (A, a) € Aut 2, we put
1
lla)=(0=3 A3 4), (1.4)
o

which enables us to regard an automorphism as a particular case of a d.s.e.s.

In section 3, we associate a loop in the G-construction of 2 to any d.s.e.s. Pro-
ceeding then to the classes of those loops in m (G.2) =& K;(2), we establish the
following relations: ‘

(i) if fi = fo and g1 = g2 in (1.3), then the corresponding element of Kj(2)
vanishes; )

(ii) for any diagram of d.s.e.s’s of the form

AI :t A :t AH
U i} U
BI :‘ B :t BII
U 1 i}

Cljcjcfl

where the first (the upper) arrows commute with the first (the left) ones and the
second (the lower) arrows commute with the second (the right) ones, the alternating
sum of the elements of K () associated to the horizontal d.s.e.s’s is equal to the
alternating sum for the vertical d.s.e.s’s in the diagram (section 5).
We then define D(2) to be the abelian group generated by all d.s.e.s’s in U modulo
relations (i) and (ii) posed on those generators rather than on their images in K; (),
thus getting a natural map D() = K; () (section 6).
Double short exact sequences form an exact category DSES(Y), and one shows
that relations (i) and (ii) imply additivity for the generators of D(), i.e., we have
a natural epimorphism

Ko(DSES(2)) — D().

Relation (1.1) rewritten in terms of the elements (1.4) also follows from (i) and (ii),
thus the composite map Kg(Aut) — Ko(DSES(U)) — D(A) factors through
Kdet(a1),

In fact,)we have more than surjectivity of the map D() — K;(2): in section 3 we
sketch out how every element of K, (2l) corresponds to a d.s.e.s. in 2. (Note that in
the semisimple case, every element of K(2) comes from an automorphism in 2).
We refer to [Ne] for the detailed proof which is based on a result of Sherman who
produces all elements of K;(2A) by more complicated data. I would like to thank
Chuck Weibel who told me about this result. Clayton Sherman kindly gave me his
preprint and we had numerous stimulating discussions; I am grateful to him for his
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interest to my work.
Dan Grayson considered the group

Ko(DSES())/Ko(SES()) & Ko(DSES(R))/relation(i)

in connection with weight filtrations. He proved that for any ring R, this group
(associated to 2 = Pg) is isomorphic to K(R) (unpublished). It is his proof of
this fact, based on beautiful matrix tricks that made me believe that the use of
double short exact sequences is a more appropriate instrument for describing K
than automorphisms (cf. Remark 6.4). I would like to thank Dan for attracting
my attention to d.s.e.s’s and for his interest to my work.

I would like to express my distinguished gratitude to Max-Planck-Institut fiir Math-
ematik in Bonn for its hospitality during the preparation of this paper.

2. REVIEW OF THE G-CONSTRUCTION

In [GG] Gillet and Grayson attached a simplicial set G.2 to any exact category A
and proved that |G.2| is homotopy equivalent to 2|Q ™| ~ Q|S5.2|, the equivalence
being natural in 2. Thus one can take the formula

Kn(@)=ma(GA), m2>0,

for a definition of the higher K-groups of .
An n-simplex in G2 is a pair of triangular diagrams in 2 of the form

Pn/n—l Pn/ﬂ—l
I f

Py — ... > Pn,l Pyyy — ... Py

(2.1)

[ [ I [

Px/o — Pz/o = ... = Phgy Pyjg = Pyyg = ... = Py
[ | [ |

Phb— A -5 P = ... P, Pb— Pl — P, — ...—> P,

subject to the conditions:

(1) the quotient index subtriangles in both diagrams coincide;

(i1) all the squares commute;

(iii) all the sequences of the form P; — Py — Pyy;, P} — P — th, and Pj;; —
Prji = Pyyj withi < j <karesessm91

In particular, a vertex in G.2l is a pair of objects (P, P’), and an edge connecting
(Po, Py) to (Py, P{) is a pair of s.e.s’s (Po = Py = Py, P; = P{ = Pyj) with
equal cokernels. We will also write (s, s’) for an edge, where s and s’ denote s.e.s’s
with equa.l cokernels.

The 1- th face of (2.1) amounts to deleting all the objects whose indices contain i.
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For instance, the faces of a generic 2-simplex

- Py Py
I I
t=| - Pl/q —_— P2/0 Pl/o — P2/0 (2.2)
I I [
Py —— P —— P, Py —— Pl —— P}

are given by

d0t=(P1'—>P2—)P2/], P{_>P£—'>P2/1)
dltx(Po—-)Pz—)Pg/o, P(';'—}PQI—)PQ/())
dyt = (Po = PL - Pyjo, Py — P{ = Pyj).
The following push-out procedure is useful for constructing homotopies of loops in
G.2. It is by applying this procedure that Gillet and Grayson obtained in [GG] the

first algebraic description for the elements of K;(21) in terms of loops in G.2 (of a
rather complicated -form). Given two edges

eg=(A=>B->M, A —>5B -5 M)

e2=(A=Co N, A —=C = N) (2.3)

with the same initial vertex (A, A’), and a choice of push-out objects B][C and
A

B'TIC’ in 2, we can construct in G.2 a picture of the form

ar
(B,B’)
e €9 .
(A, A (BLIC, B'TICY) (2.4)
A A
ez é1
(C,C)
which consists of two 2-simplices t; and ¢;. For instance, ¢, is given by
- N N A
t = M — M;LN M — MLN
| 1
A » B ; B]J_[[C A —— 1.1' — B']LC’_

where all the arrows are induced by those in (2.3) in the obvious way. The second
2-simplex tg is given by similar data.



3. ATTACHING LOOPS IN G2 TO DOUBLE SHORT EXACT SEQUENCES

Let 0 denote a distinguished zero object in 2 and let (0,0) be the base point in
G.2A. For A € A, we denote by e(A) the standard edge from (0,0) to (A4, A) given

by 0= A> A4, 043 A)
f 9
Let | = (A 3 B =3 C) be a ds.es., and let e(l) denote the edge from (4, 4) to

fa 92
(B, B) given by . We associate to ! a loop p(!) in G.2 of the form

(A, A) e(!) (B, B)

e(A) Q) e(B) (3.1)

(0,0)
and let m(!) be its class in K;(®™) = m (G.2).

Lemma 3.1. (tm'ui;zl) The loop u(l) bounds a 2-simplez in G2 if and only if
fi = f2 and g1 = g2. In this case, this 2-simplez is uniquely determined and given

by

- o C -

T-" 1,

t(l) = A—1.4B 4 LB
T T
~0 s A—L 4B 0 —s 4 —L 4 B

where we put f = f1 = fo and g=¢1 = 92.

Restricting ourselves to the d.s.e.s’s of the form I(a) for (4,a) € Aut« (cf.
(1.4)), we obtain the map a — m(I(«)). This is one of the various equivalent ways
to attach an element of K; to an automorphism. The loop u(l{a)) is actually a

2-edge loop of the form
00 <>

for the edge e(0) is degenerate. One checks that every 2-edge loop of this form
is homotopic to p({(e)) for some «, thus the elements of K;(2) representable by
automorphisms are precisely those representable by 2-edge loops in G.2l.

It is known that not every element of K;(2) can be represented in general by
an automorphism. Moreover, K;(2) is not generated by such elements for some 2
(Proposition 5.1 in [Ge]). However, we prove that every element of K;(2) can be
represented by a loop of the form (3.1). '



Theorem 3.2. Let U be an arbitrary ezact category. Then for any element z €
K () there ezists a double short ezact sequence | such that ¢ = m(l).

We sketch out how this assertion can be deduced from a result of Sherman. The
reader is referred to [Ne] for details.
Consider data of the form

j=A3x30, B35S D, 6:.40Y0C3X0BoD) (3.2)

where A - X — C and B - Y — D are short exact sequences in 2 and 6 is an
isomorphism. Given such data, we will sometimes denote A Y & C by P and
X ® B® D by @ for short. Sherman associates to 7 a loop v(j) in G.2 of the form

(PX@Y) 6,1) (Q.X®Y)
"1

(61162)

(B,B)

(0,0)

where (#,1) denotes the edge (P KA Q—-0,X0Y HXpY — 0) and the s.e.s’s
yielding the vertical edges are given by

1
0 001
a1=(A(12A@Y@c(°—19)ceY)

a2=(A(12X®Y”E¢’C@Y)

0
1 100
b, = (B QxeaBeaD(‘i})X@D)

bg—_-(B(iPXGBYIﬂEXéD).

Let n(7) denote the corresponding element in K3 (2). The follov;ring assertion was
proved by Sherman in [Shl] for abelian categories and then in [Sh2] for arbitrary
exact categories. '



Theorem 3.3. For any z € K;(%) there ezists 7 of the form (8.2) such that
z =n(7).

We associate to j a pair of short exact sequences

a=(AeB-L Aevyec - CcoD)
s2=(A®@B - XoBeD-LCeD)

where

0 a 0
_ _ (0 0 1 (v 0 0

Replacing A®@Y & C in sy by X & B@® D via 6 we obtain the double short exact
sequence

DO

0d~!

‘ bof P
(j)=(A®@B =3 X8éBeD 3 CoD).
g q

It now suffices to show that the loops u({(7)) and v(j) are freely homotopic since
the group 71 (G.2) = K;(2) is abelian.

Lemma 3.4. (easy) The loop p(l(3)) is freely homotopic to the loop

(e (61 (@Q)

Q (32, 32) (33)

(s1,92)

(A® B,A® B)

Lemma 3.5. (easy) The loop v(j) is freely homotopic to the loop

(PXY) (6,1) (@XoY)

N (2 o) (3.4)

(A® B,A® B)

wheres=(A@B‘£€X€BYﬁ§CEBD).



Lemma 3.6. The loops (8.8) and (3.4) are freely homotopic.
Sketch of the proof. Let e denote the edge

lags
=405 %) 46560 P b, A0B4F 40y 9 p)

We construct the following configuration of six 2-simplices

(P& D,R) (08 1p,1) (Q® D, R)

(3.5)

(AGB®D,ABY)

It consists of three push-outs of the form (2.4) and yields a free homotopy between
the loop (3.3) and the outer loop (we can call (3.5) the push-out of the loop (3.3)
along the edge €¢). Then we take the push-out of the loop (3.4) along e, but in the

latter case we have to replace the object (X ®Y) [ (AdY) = X (Y]]Y) by
ABB B
X ®Y & D by means of the isomorphism Y[[Y = Y & D in order to obtain the
B

same outer loop. One should take care about this change of objects, because there
are two natural isomorphisms Y][Y = Y @ D that differ by the natural involution

B
of Y[JY. The explicit data of the form (2.2) yielding the required six 2-simplices
B

in the latter homotopy are given in [Ne]. B

4. ADMISSIBLE TRIPLES OF EDGES IN THE G-CONSTRUCTION
Suppose we are given a triple of edges 7 = (ej, eg, e3) that forms a triangular
contour in G.2
€] €2
€3

i.e., these edges are given by data of the form

' ;
@0,1 “1,1/0 1 %o ¢ Tir/0
el=(P0 rP]_ rP]/O,PO rPl /Pllo)
3 ’ -
1,3 2,241 t M2 “2.2/1\
r ? :
Q0,2 a32,2/0, ¢ Yo,2 oy 923/0 oy
63=(P0 rP2 rP2/0,P0 IP2 IPZIO)
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Such a triple 7 is said to be an admaissible triple if
a2 =a1200p; and oy, =a),00Qp; . (4.2)
If 7 is admissible, consider the diagrams

!
ay1,1/0

ag,1 ay,1/0 s
PO_) P] —"—'—)Pl/o P(;‘_) Pl, —-_)PI/O
1 101,2 ®170,2/0 1 ay.g a1/0.2/0
T ’
agp,2 a2,3/0 @g,2 2,270
p 22, p, 22, p Py 22, py 2% p,
J'ﬂz,all a3/0,3/1 aya/1 a%/0,2/1
1 1
0 — PZ/I —_— Pz/] 0 —— P2/1 _— P2/1

where the vertical arrows at the right «;/0,2/0,2/0,2/1 ’a,1/0,2/0 ,and alz/o 2/1 are
uniquely determined by the arrows in (4.1). Then

@1/0,3/0 32/0,2/1
Ur)=(Pijo 3 Pyyo = Pop)
""1/0,2/0 "'2/0.2/1

is said to be the double short ezact sequence associated to the admissible triple .
We will use the same letter T to denote the loop ejeze; lin GAL.

Lemma 4.1. (main lemma about admissible triples) If 7 is an admissible triple,
then the loop T = ejezey 1 is freely homotopic to

(P2, P) @ p(l(7)).

Remark 4.2. Suppose we are given a choice of direct sums A @ B for all pairs of
objects (A, B) in 2. Then given a vertex (4, A’) in G.2, we have the simplicial
shift map -
(ALAY——:GA—-GA

which takes a simplex of the form (2.1) to

Poyin-1 Paj(n-1)
PI/O - ... = Pn/O Pl/O - ... = Pﬂ/o
ABFPy — ABP, — ... = A®P, AP — A'@P] — ... - A'QF,

Any edge connecting (A4, 4’) to (B, B’) yields a simplicial homotopy between the
maps (A, A')@ —— and (B, B')® ——. Thus the homotopy class of such a shift map
depends on the component of the vertex only, and this gives rise to the natural
action of Kop(2) on G.2 up to homotopy. In particular, if (4, A’) is in the base
point component, then (A, A’) @ —— is homotopic to the identity map.



Corollary 4.3. If an admassible triple T lies in the base point component of G2,
then the loop T is freely homotopic to p(l(7)).

Remark 4.4. The admissibility condition (4.2) is necessary for 7 to be the contour
of a (uniquely determined) 2-simplex. In fact, e;, ez, and e3 bound a 2-simplex if
and only if

@1/0,2/0 = 04'1/0,2/0 and Q2/0,2/1 = c‘f'2/0,2/1 (4.3)
i.e., if the two s.e.s’s in [(7) coincide (compare to Lemma 3.1). In this case, if a
loop in G.2 contains an edge (or two edges) of 7 and we replace this edge by the
other two (respectively, by the other one), then we will obtain a homotopic loop.
If (4.3) does not hold, then nevertheless Lemma 4.1 enables us to speak of “homo-
topies of loops modulo elements of the form u({)” induced by admissible triples.

Proof of the lemma. First we apply successively the push-out procedure (2.4) to the
edge e3 along the edges e; and ez, and then to the edge e3 along itself. It follows
from (4.2) that the resulting edges will coincide. Replacing PgHPl and PZHP2

(respectively, P, I_IP’ and P, ]_[P’ ) by P2 @ Pyjo and P; @ Py o (respectxvely, by

Py & Py and P GB P, o) by mea.ns of the natural isomorphisms, we obtain a free
homotopy of the form

(P2® Pyjo, P, ® Pyjo) (P2, Py) @ e(i(7)) (P2 ® Pyjo, Py @ Py o)

(Py, P €2 (Py, P;)
(P2, P;) ® e(Pyjo) Py, P) @ e(Py0)

(P21P2’)

This homotopy connects 7 to (P2, Py) ® p(i{7)) (we depict the two copies of e3 as
different edges in order to make the procedure more visible). It is an easy exercise
to write down explicitly the data of the form (2.2) for the six 2-simplices that form
this homotopy. The lemma is proved. B

5. THE MAIN RELATION FOR THE ELEMENTS m({)

Proposition 5.1. {(main lemma about d.s.e.s’s) Suppose we are given a diagram
of the form

a) T

AI :t A :t All
az 32 .
nll g1 Ul 92 kil ke )
b v i
B = B = B ; (5.1)
b2 y2 .
ul.Ll,u: vxllvn wluwz
(] z1
Cf = C = C
c2 z3
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which consists of siz double short ezact sequences and 1s subject to the condition:
the first arrows commute with the first ones and the second arrows commute with

the second ones, t.e., for1 =12

bifi = giai, yigi = hizi, ciui=vb;, zjv; =wy;.

(5.2)

Letla, lp, and ¢ (respectively, U', [, and ") denote the horizontal (respectively,

the vertical) d.s.e.s’s in (5.1). Then in K,(2) we have

m(la) —m(lg) + m(lc) = m(l") = m(l) + m(I").

Proof. 1t follows from the picture

(4,4 e(la) (4,A4)
e(4") e(4)
e(l") 0,0)  |e(D)
e(B') e(B) ¢
(B',B") ells) . (B,B)

that the loop u(I")u(lp)u(!)~ u(l4)™! is freely homotopic to the outer loop o given
by e(!)e(lg)e(l)~te(la)~". As the group m(G.2A) = K, () is abelian, it suffices
to show that o is freely homotopic to the loop u(lc)u(l”)~!. For i = 1,2, choose

a particular object D; to be the push-out of B’ di A" % A and consider the

push-out diagram
Y . T .

ool

B 2, p, 2 4

c’ C’
Let d; : D; — B denote the map uniquely determined by

diofi=gi and dioda;=b;.
One checks that we have short exact sequences
d; Pi, e ' .
D;—-B—>C (:=1,2)

where
Pi = Wiyi = Zivi.

.These data lead to the following picture

11
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(4',4") e(la) (4, 4)

_—

(B, B') e(lp) (B, B)
where the shaded area is the push-out of e({4) and e(!’) (cf. (2.4)), and the edges
e, e1, and e, are given by
e=(Dy By ¢, D, % B2
er =(B' 2% Dy 2 4", B’ 23 D, I3 47
ea=(A2 D, 20, 45D, B 0.
It follows that the free homotopy class of « is equal to the difference of the classes

of a; = ezee(l)™ and a1 = e1ee(lg)™!. In view of Corollary 4.3, it now suffices
to prove the following ;

Lemma 5.2. (ey, e, e(lp)) and (eq, e, e(l)) are admissible triples, the associated
double short ezact sequences being l" and lc respectively.

Proof. The admissibility condition (4.2) follows in both cases from (5.4). The
computation of the associated d.s.e.s’s amounts to the diagrams

B i, p, E,oan AL p E ¢
T N N
B, p Y, p" AL, p %,
J, Pi l‘"-‘ l lp: lz-‘
0 y C" ——— C 0 — C" —— ¢

By virtue of (5.2-4), we have y;d;d; = yib; = 0 = h; %;a; and y; d.-f; =y g =
hiz; = h;Z; fi. It follows from the universal property of push-outs that y; d; =
h; #;, i.e., the upper right square in the first diagram commutes, and similarly for
the second diagram. Commutativity of the other squares follows easily from (5.4-5).

Lemma 5.2 and Proposition 5.1 are proved. B
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6. THE GrouP D(2)

Definition 8.1. Let 2 be an ezact category. We define D(A) to be the abelian
group with generators (I} for all double short ezact sequences | in U subject to the
relations

(i) (1) =0 if | has the form
f 9 '
l=(A=3B3C(); (6.1)
f g

(ii) for any diagram of the form

A’ =3 A = A"
U U U
B 33 B = B" (6.2)
4 U i

Cf :; C 3 CH
consisting of siz double short ezact sequences
la=(A'3A34"), Ip=(B' 3B=3B"), lc=(C"m3C=3C")

l’=(A':;B’:tC'), l=(A:kB:tC), 1"=(A”:’)BHZEC”),

such that the first arrows commute with the first ones and the second arrows com-
mute with the second ones, we have ;

(la) = () +{lo) = (1) = (O + ().

Theorem 6.2. Let U be an exact category.
1. There 1s a well-defined homomorphism

given on generators by (I) = m(l). This homomorphism is surjective; moreover,
every element of K, () is the image of some generator (I).

2. There i3 a well-defined homomorphism
KiH(”A) — D(A) (6.3)

1
given on generators by (A, o) — (l(a)), where l{a) = (0 =3 A =3 A) for A€ A and

a € Aut A. The composite map
Kit) — D(A) — Ky () (6.4)

13



coincides (up to sign) with the standard map that associates an object of K1 () to
any automorphism in U (cf. [Ge][Sh1]).

3. If the category 2 13 semisimple, then both maps in (6.4) are isomorphisms.

Proof. 1. This follows from Lemma 3.1, Proposition 5.1, and Theorem 3.2.
2. Let DSES(2) denote the category of d.s.e.s’s in ¥, the morphisms being the
diagrams of the form

ai I
Al :; A :; AH
ag T2
ol ]
by ¥
BI :t B —__r B!I
bg Y2

such that b; f = ga; andy; g = hz; fori = 1,2. Ases. in DSES() is a diagram
of the form
Af :r A :; AH

I
B = B I3 B" (6.5)
S I

Cl:CjCII

such that A’ - B' -+ C',A =+ B — C and A" — B" — C" are s.e.s’s in ;
thus DSES() becomes an exact category. The exact inclusion functor Aut % —»
DSES(?) given by a — [(e) yields the map Ko(Aut?) — Ko(DSES()). We
can regard (6.5) as a particular case of (6.2), where the vertical d.s.e.s’s are of the
form (6.1). Thus relations (i) and (ii} in the definition of D(2) imply that

(la) = (IB) +<(lc) =0

whenever [ 4, {g and I denote the rows of .any diagram of the form (6.5). It follows
that there is a natural epimorphism

Ko(DSES(21)) — D(2).

The diag-ram
033 0 =3 O
ik U 1 i}
0 =3 A ? A (6.6)
u 1l 1l s
1
0 3 A = A
Ba

shows that the composite map Ko(Aut) — Ko(DSES()) — D(A) factors
through relation (1.1), i.e., we have a well-defined map KZ¢*(A) — D(2).
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Let [(a) =(A 3 A30) for A € A and a € Aut A. It follows from the diagram
1

0 = 0 = 0
U . H ]
A 3 A = 0
1]l 1 1]l o 1)
A :it A = 0

that (I(a)) = ({(a)) in D(2A), hence m(l{(a)) = m(l(a)). Sherman proves (p.234
of [Shl]) that if ? is semisimple, then « maps to the class of the loop u({()) in
BS~15() (instead of G.2) by the map K */() — K;(2) of [Ge]. It is a boring
but trivial exercise to follow those arguments and replace BS™'S by G2 and Q2
by 5.2 in the general case. We leave this to the reader.

3. The composite map in (6.4) is an isomorphism if 2 is semisimple (Theorem 3.3
of [Shi] or Proposition 1 of [We]). Thus the map K{¢*() — D(2) is injective in
this case. Further, any d.s.e.s. is isomorphic to a d.s.e.s. of the form

I=(A =3 AeC = ). (6.7)

Let (u,v) : A® C — A be a splitting for (i), and put a = (z v). Then
a € Aut(A @ C), and the diagram

0 = 0 = 0
U 1 U U
(0) (0,1)
A = AeC =— C
(%) (= (©8)
11 1] a 11
() 0.1)
A = AC = C
(o) (1

shows that (/) = (I(a)) in D(2). Thus the map K{*(A) — D(A) is surjective.
This completes the proof of the theorem.

Remark 6.8. One can check that in the semisimple case, the assignment o =
(Z ;) to a d.s.e.s. [ of the form (6.7) gives rise to a well-'_deﬁned homomor-
phism D() — KZ(). This map is easily seen to be the inverse isomorphism
for (6.3).We note that this argument does not appeal to the comparison between
Kget and Quillen’s K.
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Remark 6.4. Let SES(?) denote the exact category of s.e.s’s in A. The exact
inclusion functor

f
SES(A) — DSES®), (ALB%C)=»(A3B2C)

i
has two natural splittings that take (4 53 B = C) to (4 2% B %% C) and (4 25
f2 g2

B £ () respectively. Thus we can regard Ko(SES(2)) as a direct summand in
Ko(DSES(2)), and the group Ko(DSES())/Ko(SES(U)) is obviously the same
as the quotient of Ko(DSES(2)) by relation (i) in Definition 6.1. We have therefore
the natural epimorphism

Ko(DSES(2))/Ko(SES(2)) — D). (6.9)

Grayson proves that if R is a ring and 2 = Pgr denotes the category of finitely
generated projective modules over R, then the composite map

Ko(DSES(%))/Ko(SES()) — D(A) — K, (2)

is an isomorphism (unpublished). It then follows from Theorem 6.2 (iii) that the
map (6.9) is also an isomorphism in this case. Grayson’s proof involves more com-
plicated matrix tricks of the type (6.8).

We do not know if (6.9) is an isomorphism for any 2. We do not either know if
the map Ko(Aut) — Ko(DSES())/Ko(SES(2)) factors in general through
K{e*() since the trick like (6.6) is a priori not possible for the latter group.
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1 Introduction

Let F; = (z,y) be the free group of rank 2 with generators z and y. We will denote the
automorphism group Aut(F;) by ®;. There is a well known open problem concerning the
linearity of this group : Is it true that &, has a faithful linear representation? Magnus
and Tretkoff [9] have conjectured that there is no such representation over any field. In
the case of free groups of rank > 3, the automorphism group is not linear [6].

The above conjecture is closely connected with the old problem of linearity of the
braid groups (see [1, 4]). It was proved in [4] that if By, the braid group on four strings,
has a faithful representation of degree m, then ®; has a faithful representation of degree
2m. For a very recent account of representations of braid groups see [2].

We consider a more general problem of describing all representations of ®; of degree
n for small n. Very little is known about this problem : we know only the paper (3]
where it i8 proved that ®; has no faithful 3-dimensional representations over any field of
characteristic 0.

We shall now recall some facts about the structure of ®;. For a € F; let f, be the
inner automorphism of F; defined by a, i.e., (2)f, = a7 'za for all z € F;. (In order to
conform with the usage in [8], we write f, on the right hand side of the element to which
it is applied.) Since F; has trivial center, the homomorphism a — f, is injective, and we
use 1t to identify F; with its image in ®;.

It is well known [8, p. 169] that ®, is generated by the following three elements :

Pizmy, ymrz

Uiz—zy, yrvy,;

a:z»—)z'l, y—y;

and has a presentation consisting of the following relations :

P? =4 = (0P)* = (PoPU)* = (UPs)® =1, (Uo)® = (cU)%. (1)

Let p : 2 — GL(V) be a linear representation, where V is an n-dimensional vector
space over K. We can construct new representations :

P = ep(P), U — ep(U), o — esp(o), ) (2)

where ¢; = 41 and €,63¢3 = 1.

We say that a representation p’ of ®; is weakly equivalent to the representation p if p’
is equivalent to one of the representations (2) or their dual representations.
QOur main result can be stated as follows. -

Theorem. Consider indecomposable representations p of ®, of degree n < 4, over
an algebraically closed field K, such that p(F3) # 1. There are no such representations if
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n < 2. If p(®;) 1s infinite then, up to weak equivalence, there ezist for n = 3 only one
such representation, and for n = 4 two if char K # 2,3, one if char K = 3, and none if
char K = 2. All the representations mentioned above are reducible, and are listed in the
last section. If p(®3) is finite, p factorizes through the natural homomorphism &; — T,
where I'; are some finite groups of small orders defined in Lemma 2.

Corollary. ®; has no faithful representation of degree n < 4 over any field.

If p(F2) = 1, then p factorizes through the natural homomorphism &; — ®;/F; ~
GL(2,Z). It is easy to show that there exist infinitely many nonequivalent idecomposable
4-dimensional representations of GL(2, Z).

From our theorem it follows that for n < 4 there are only finitely many nonequivalent
n-dimensional representations of ®; such that p(F;) # 1, and in all these cases p(F3) is
a solvable group. On the other hand, already for n = 6 there exists a one-parameter
family of irreducible nonequivalent representations of ®,; such that p(F;) contains a free
non-Abelian subgroup. Hence it is impossible to extend our theorem to dimensions n > 6.
This also explains why the proof of our theorem involves a lot of computations.

We indicate briefly how to construct the family mentioned above. For that purpose we
make use of the braid group B4 and the well known 3-dimensional Biirau representation
B: depending on a parameter ¢. This can be modified to obtain a one-parameter family of
3-dimensional representations 3; of By/Z,, where Z, is the center of By. We recall that
there is an embedding B4/Zs — ®; (see [4]) such that the image of B;/Z, in ®; has
index 2. The representations 3; induce 6-dimensional representations of ®, having the
properties stated above. The claim about the existence of free non-Abelian subgroups
follows from [10].

For n > 6 it would be interesting to describe the character variety of n-dimensional rep-
resentations of ®;. For the case of braid group B,, the character variety of 3-dimensional
representations was recently described by Formanek [5].

In the last section of our paper we describe also some new 4-dimensional representa-
tions of B,. Two of them are at the same time indecomposable and reducible. It would
be interesting to find some applications of these representations.

By using our identification of F; with a subgroup of ®;, we have y = (cU)? and
z = PyP. Furthermore we have :

UlzU =2y, Uy=9yU, oy=yo, oczo=z" (3)

The elements U and y generate a free Abelian group of rank 2. We introduce the element
w = Po P, which satisfies :

Wwi=1, ow=wos Wlw=U"? wyw=y" (4)

The subgroup Dy = (P, o) of ®; is a dihedral group of order 8. We shall use some
elementary facts about the representations of D4 over fields of characteristic # 2.

V. P. Platonov is grateful to the Max Planck Institute of Mathematics (Bonn) for the
support and the hospitality during the preparation of this paper.
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2 Some general facts and lemmas

In this section we recall some general facts about ®,; and its representations. We prove
two lemmas concerning some particular factor groups of ®;. The proof of the theorem
proper will begin in the next section.

In our proof we shall use the following simple fact : Any two primitive elements of
F; are conjugate in $;. Recall that a € F; is called primitive if there exists b € F; such
that {a,b} is a free basis of F;. In order to prove the above fact, let @ and b be primitive
elements of F,. Then it is clear that there exists ¢ € ®; such that (a)¢ = b. This implies
that ¢~ o f, 0 ¢ = f,, and, by using our identification, we obtain ¢~'-a-¢ = b. Thus our
claim is proved.

In particular, the elements z and zy are conjugate in ®;. So zy = z~'zz for some
z € ®;. This shows that y is a commutator in ®;, and consequently F; is contained in
the commutator subgroup of ®,.

Given a linear representation p : ®; — GL(V), for the sake of simplicity, we shall refer
to the eigenvalues, trace, determinant, ... of p(y) as the eigenvalues, trace, determinant,
.. of y, and similarly for other elements of ®,. Since F; is contained in the commutator
subgroup of ®,, we have

det(y) = 1. (5)

Now assume that p(F;) # 1, or equivalently, that p(y) # 1. Under this hypothesis we
claim that p(y) is not a scalar operator. Indeed, if p(y) were a scalar, then we would have
p(z) = p(y) and p(zy~!) = 1. This is impossible since y and zy~' are conjugate in B,
and p(y) # 1.

Lemma 1. Denote by I’ the quotient group of ®3 obtained by adding the new defining
relation [U,(Pa)?] = 1 to the presentation (1). Then the image of F; in T’ is trivial.

Proof. Since (Po)? = ow = wo and wlUw = U™!, we have cwlwoU~! = y~'. Hence,
in I' we have y = 1, and consequently also z = 1. [ ]

In the next lemma and its proof we denote by C a cyclic group of order k, by @ the
quaternion group of order 8, by Si the symmetric group of degree k, and by E(2F) an
elementary Abelian group of order 2*,

Lemma 2. By adding new relations to the presentation (1), we obtain some finite
quotient groups as follows :

(i) relation U? = 1, quotient group I'y = C3 X Sy ;

(ii) relation [U,o] =1, quotient group I's ~ C3 x 84 ;

(iii) relations U* = (cU)* = 1, quotient group I'y ~ E(64) x S5 ;

(iv) relations U* = [P, (cU)%] = 1, quotient group ['y ~ (Q#Q) x Sa ;
where # denotes the central product. In particular I'y and I'; have order 48, T's order 384,
and 'y order 768.



Proof. It is straightforward to check that there exist surjective homomorphisms f :
Iy - {£1} x Sy and g : I'; — {£1} x S, given by :

fU) =(-1,(13)), f(P)=(1,(23)), f(o)=(-1,(12)(34));

and
g(U) = (-1,(1234)), g(P)=(1,(23)), g(o)=(-1,(13)(24)).

To prove (i) and (ii) it suffices to show that |T';| < 48 and |3} < 48, respectively. Let T
be the common factor group of I'y and I'; obtained from the presentation of ®; by adding
the relations U? = 1 and oU = Ug. These relations are equivalent to U? = 1, (oU)? = 1,
and so we have I'y /(z,y) T ~ T /(z,y).

In T we have 1 = (UP¢)® = UPUsPoUPo = UPUPUwoPo = (UP)*w. Thus
(UP)® =1, and since w = Pg P, we have o € (U, P). It follows that |T'| < 12.

In I'; we have 2 = U™ %zU? = U™ 'gylU = U 'zUy = zy?, and so y? = 1. It follows
that |{(z,y)] <4, and so |I';] < 48. Thus (i) is proved.

In I'; we have y = (oU)? = U? and y~'zy = U~?2U? = U 'z2Uy = zy?. Hence
yzy = z, and by conjugating by P we obtain zyz = y. So z? = y~2. As zyzr~! =yt
by conjugating the equality z* = y~? by z, we obtain z? = y?, andsoz* = 1. f z? # 1
in [y, then (z,y) = @ is the quaternion group. If (Pc)? # 1, as [ has no elements of
order 4, we have (Pg)?* = z?. Tt follows that (Po)? is central in I';, and Lemma 1 gives a
contradiction. We conclude that z? = 1 in I';, and so |I';| < 48. Hence (ii) holds.

We now prove (iv). Let G = (Q#Q’) x S4 where @' is another copy of . We
have @ = {£1,+i, L3, £k}, where 1,4, 7,k are the quaternionic units, and analogously
Q' = {£1, £, £, £k'}. We now describe the action of S5 on Q#Q’. First of all, both
(@ and Q' are normal in G. The normal 4-group, say V, of Sy acts trivially on ), while
the subgroup S5 acts as follows :

(12): i3, j—oi;
(123): 1> —j, J—ok

The alternating subgroup A4 acts trivially on @’ and the odd permutations interchange
¢" and j'. It is now straightforward to verify that there is a surjective homomorphism
h:T4 — G such that :

hU) = (kj',(1432)), h(P)=(1,(12)), h(o) = (j5’,(13)(24)).

In order to prove (iv), it suffices to show that |[I'y| < 768. In 'y we have z = U™4zU* =
zy*, and so 2z = y* = 1. As y = (oU)? P and y* commute in Ty, and so z? = y?

and |(z,y)| < 8. Let A be the factor group I'y/(z,y). Clearly A ~ GL;(Z)/N, where

N is the normal closure in GL3(Z) of (1 (1]

SL3(Z)/{+1} is the unique normal subgroup of level 4, and so it has index 24. For these

). The image of N in the modular group
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facts we refer the reader to [11, Chapter VIII|. Hence the index of N in SL3(Z) is at most
48, and in GL3(Z) at most 96. It follows that |I'y] < 96 -8 = 768 and (iv) is proved.

We have shown above that A is an isomorphism. Since I's = I'y/P where P is the
normal closure of y* = (¢U)* in T'y, and A(y)? = (—1,1), (iii) follows from (iv). |

This lemma was proved first by using GAP, the symbolic computation package [T7].
Subsequently we have constructed the homomorphisms f, g, h and succeded to eliminate
the reliance on GAP in our proof.

3 Representations of degree 2 and 3

For n = 1 the assertion of the theorem is obvious. In this section we prove the assertion
of the theorem when n = 2 or 3 and char K # 2.

Let n = 2. Since p(F;) # 1, Lemma 1 implies that p(Po)? # 1, and so the restriction
of p to Dy is faithful. Hence we may assume that

o= (3 2). wn= (2 1)

Since oy = yo and det(y) = 1, we have

ply) = (3 /\(_)1) .

As z = PyP, we have p(zy) = 1. Since y and zy are conjugate, we obtain that A =1, a
contradiction.

Now let n = 3. By Lemma 1, V is a sum of two irreducible Ds-modules : a 2-
dimensional and a 1-dimensional. Up to weak equivalence, we may assume that

-1 0 0 0 10
p(a)z(O 1 0), p(P)——-(l 0 0). (6)

0 01 0 01

ply) = (
From (wy)? = 1, we obtain that ¢(b—e¢) =d(b—¢) =0 and b* = e? = cd + 1.

Ifb#e thenc=d=0,b=—e = +£1. As det(y) = 1, we have a = —1. From
p(y) = diag(—1,b,-b) and p(z) = p(PyP) = diag(b,—1,—b), we obtain that p(zy) =
diag(—b,—b,1). As p(zy) # 1, we must have b = 1. By using the fact that y and U

commute, we have
a 0 g

d 0 €

As oy = yo, we have

o on
A oo
—_ a6 O
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The eqation Uzy = zU implies that « = ¢ = 0. Since y = (ocU)? we must have
B8 = 4* = 1. Hence p(U?) = 1, and so Lemma 2 applies.
If b = e, then det(y) = 1 implies that a = 1. Hence

10 0 b 0 ¢
ply)=|[0 b c], p(z)={0 1 0].
0 d b . \d 0 b

Since zy and y are conjugate, we have tr(zy) = tr(y) = 1 + 2b. This gives 4* = 1, and
so cd = 0. By replacing p by its dual (if necessary) we may assume that d = 0.
If b = —1, then Uy = yU implies that p(c) and p(U) commute, and Lemma 2 applies.
If b = 1, then ¢ # 0 and we may assume that ¢ = 1. Since Uy = yU, we have

100 a 0 f
P(y)=(0 1 1), P(U)=(’Y 6 e)-
00 1 00 ¢

The equation (wU)? = 1 implies that 8 = 0, § = e, and o = 1. The equation Uzy = zU
implies that @ = 1 and v = —1. Since y = (¢U)?, we must have ¢ = 1/2. Thus we obtain

1 0 0
p(U)=(—1 1 1/2). (1)
0 0 1

The equations (6) and (7) define an indecomposable representation of ®;. Obviously this
representation is reducible.

4 Representations of degree 4

In this section we begin the proof of the theorem when n = 4 and char K # 2. This part
of the proof will be completed in the next three sections.
We claim that the eigenvalues of y can be written as

AT (8)

for some A\, u € K*. If all eigenvalues of y are =1, this follows from (5). If y has an
eigenvalue A # +1, then wyw = y~! implies that A~! is also an eigenvalue of y. Since
A~! £ A, (5) implies that the remaining two eigenvalues of y can be written as u, p™1.
This proves our claim.
By replacing p with a weakly equivalent representation, if necessary, we may assume
that
tr(o) =0,2. (9)



We shall denote by V* resp. V'~ the eigenspace of o for eigenvalue +1 resp. —1. Since
w and y commute with o, these subspaces are invariant under w and y. We shall denote
by p(w)* and p(y)* the restrictions of p(w) and p(y) to V*, respectively.

We conclude this section with two lemmas.

Lemma 3. Let p be a 4-dimensional representation of &3 and assume that char K # 2.
If tr (o) = 2, then all eigenvalues of y are £1.

Proof. We shall assume that y has an eigenvalue A # %1 and obtain a contradiction.
As tr (o) =2,dimV*t =3 and dimV~ =1, If e € V™, e4 # 0, then e, is an eigenvector
of y. Say y(es) = pey. Since wyw = y~* and V'~ is w-invariant, we conclude that y = £1.

It follows that p(y)*™ has three distinct eigenvalues A, A1, and p. Let €, and e3 be
eigenvectors of p(y)* belonging to A and p, respectively. Set e3 = w(e;). Then

y(e2) = ywler) = wy™ (e1) = A w(er) = A7y,
and so {e, €3, €3, €4} is a basis of V.

Since p(w)*p(y)tp(w)t = p(y~!)", the subspace Ke; is w-invariant. From PoP = w
we deduce that tr(w) = 2, and so

w(e)) = ez, wlez) = e, wles) = e;, wled) = €4 .

By identifying linear operators with their matrices with respect to this basis, we have

100 0 0100 A0 0 0
| 010 o) o frooot o foxtoo
PR9=1o001 o' loo1o0|"" T [oo 4uo
000 —1 000 1 00 0 u
As U and y commute,
a 0 0 O
0 0 0
) = 0 g U v
0 0 w z
The equality (wU)? = 1 implies that @ = 1 and
wW=22=1-vw, vu+z)=wlu+z)=0. (10)
The equality y = (oU)? implies that a®? = X and
wW =2 =p+vw, vu—-z)=wlu-z)=0. (11)

If p = 1, the above equations imply v = w = 0. Hence p(o) and p(U) commute, and
Lemma 2 implies that p(y)? = 1. This contradicts the assumption that A # +1.
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If 4 = —1, then (10) and (11) imply that « = z = 0 and vw = 1. By conjugating by
the diagonal matrix diag(1,1,1,w), we may assume that v = w = 1. Thus

a 0 0 0
0 a! 0 0
PU=10 0 01
0 0 10

Since PoP = w and P? =1, we must have

S oo
|

R R R
oo a

where
2¢f =1, b(2a+e)=d(2a+¢e)=0, e =4a® =1—2bd.

By conjugating by diag(1,1, f, f), we may assume that ¢ = 1/2 and f = 1.

If b = d = 0, then the (1,4) entries in p(UPo))® =1 give ae(a® —1) = 0. As a® # 1,
we have ae = 0. Since e* = 4a?, we have a = ¢ = 0. As p(P) is nonsingular, we have a
contradiction.

If b# 0 or d # 0, then ¢ = —2a and by comparing the (4,3) entries in p(UPc))® =1,
we obtain that a(a® — 1) = 0, and so a = 0. By comparing (4,4) entries, we obtain a
contradiction. [ |

Lemma 4. Let p be a 4-dimensional representation of ®; and assume that char K # 2.
Then the Jordan canonical form of p(y) contains no Jordan blocks of size 3.

Proof. Assume that p(y)} has a Jordan block of size 3. Then tr (o) # 0, and so by (9)
we have tr (o) = 2. We can choose a basis of V such that

100 0 X100
010 0 0 A 10
P)=1o01 of PW=[0 0 xo0
000 -1 000 u

As wyw = y~}, we have A? = 1. Since det(y) = 1, we have A = p.

Since wo = ow, p(w) = A@® B with A of size 3 and B = (£1). Since wyw = y~ !, we
have A # 1 and tr(w) = tr(o) = 2 implies that B = (1). By using wyw = y~! again, we
conclude that p(w) is upper triangular and that it has the form

1 »v u(u—2A)/2 0
0 =1 A—z 0
PWI=14 ¢ 1 0
0 0 0 1



By conjugating with a suitable matrix which commutes with p(o) and p(y), we may
assume that v = 0.
Since U and y commute, we have

a b ¢ d a b c d
0 a b 0 0 —a Xa-=-b 0
PU)=1¢g 9 a0 | PLU=]4 o a 0
00 e f 6 0 e f

From (wU)? = 1 we obtain that d(a + f) = e(a + f) = 0, and from y = (¢U)? that
dla—f) =e(a— f)=0. Since a+ f or a— f is not zero, it follows that d = e = 0. Hence
p(U) and p(o) commute and, by Lemma 2, p(®.) is finite. As p(y) has infinite order, we
have a contradiction. [ |

We now divide the proof into three cases, which will be treated separately in the next
three sections.

5 Casel: \#pu,p!

Up to weak equivalence, we may assume that tr (o) = 0,2.

Subcase 1: tr(o) = 0. Both V* and V~ have dimension 2. If det p(y)* = 1, then p(o)
is a central element of the centralizer of p(y) in GL(V), and in particular it commutes
with p(U). By Lemma 2, p factors through the homomorphism ®; — I',.

Now let det p(y)* # 1. Then the eigenvalues of p(y)* are, say, A and p, and those of
p(y)~ are A7! and p~!. Since w leaves invariant V* and V'~ and inverts y, it follows that
A = —p = +1 and that p(y) and p(w) commute. By choosing a suitable basis, we may
assume that

10 0 0 r 000
01 0 O 0010
Pe)=lo0 -1 o PP)=|0 100
00 0 -1 0 00 s
where 7,8 = £1. Then p(w) and p(y) have the form
1 00 O a 0 00
0 -1 0 O 0 —a 00
plw) = 0 01 o | ply) = 0 0 b 0 3
0 00 -1 00 0 -b
where a,b = 1. As p(z) # p(y), we have b = a. Hence p(wy) = £1. It follows that
p(U) = p(wylU(wy)™) = p(U)~!. Hence p factors through the homomorphism &, — I';

of Lemma 2.
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Subcase 2 : tr(o) = 2. Now V* has dimension 3 and V™ dimension 1. By Lemma
3, all eigenvalues of y are +1, and so A = —p = £1.

Assume first that p(y) is diagonalizable. Then p(y?) = 1, and p(o), p(w), and p(y)
commute. We can diagonalize them simultaneously. By Lemma 1, p(o) # p(w). Hence
we may assume that

100 0 10 00 6 0 0 0
lo10 o o1 oo 0o & 0 0
P@)=1901 o =00 10| P®W=]¢ ¢ & 0 |°
000 —1 00 01 0 0 0 e

where ¢; = £1, det(y) = 1, and tr(y) = 0.
The equations P? = 1 and PoP = w imply that

b 00

p(P) = Je

oo 0 &
==
=)
o~ o

We may assume that ¢ = 1. Since z = PyP and p(zy) # 1, we must have €; = —¢; and
€4 = —E€3.
If €z = —€), then

0
o= g 1

oo

0
g
1
0

N oo 2

w 0

The equation Uzy = zU implies that ¢ = 0 (and so gh # 0), v = w =0, and ac = be =
bd = 0. Consequently & = ¢ = 0. This is impossible since p is indecomposable.
If €3 = €, then

v 0 v O
|0 f Oy
pU) = w 0 z 0
6 A 0 1
The equation Uzy = zU now implies that z = 0 (and so vw # 0) and ad = be = 0. This

is impossible since ad — be = +1.
Hence p(y) is not diagonalizable. By choosing a suitable basis {e1, ez, €3, €4} of V
and by replacing A with — A, if necessary, we may assume that

100 0 A1 0 0
010 0 00X 0 0
000 -1 00 0 -X
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Since wyw = y~!, the subspaces Ke,, Ke; + Kes, and Ke; are w-invariant. As

y-
tr (w) = tr(o) =2, p(w) must have the form :

-1 500 1 500
0100 0 -1 00
oco10f| 0o o010
0001 0 00 1

By replacing p with its dual representation, we may assume that p(w) is given by the first
of these two matrices. By replacing e; with ez + (s/2)e;, we may assume that s = 0.
As U and y commute, we have

p(U) =

coop
o8 w
o0 oo
oo

From (wU)? = 1, we obtain the equations a® =1, a® = & = 1 — b, and from y = (¢U)?
the equations A = 1, 8 = /2, a? = d* = bc — 1. It follows that a = d = 0 and bc = 1.
By conjugating by diag(1,1,1, ¢), we may assume that b = ¢ = 1. Hence

a af2 00

0 a 00
PU)=|¢g ¢ o1 | =1

0 0 10

Since PoP = w and P? = 1, P must map the eigenspaces of o to the corresponding
eigenspaces of w. It follows that

0 0 0 e
_| 0 f g0
p(P) - 0 h 1 0 )
/e 0 0 0
where
-G
h i/ \0 1/}
The equation (UPo)® = 1 implies that f = &, i = —a, g = 0, and h = a/2e. By
conjugating by diag(1,1, e, ), we may assume that e = 1. We compute p(z) and find that
-1 0 0 0
m=| 0 1 0 0
PEI=10 1 -1 0
0 a 0 1
We obtain indeed an indecomposable representation of ®;. The choices @ = 1 and @ = —1

give weakly equivalent representations.
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6 Case 2: \=u#=+l1

By Lemma 3, tr{o) = 0, and so both V* and V~ have dimension 2. Choose ¢; € V',
e; # 0, such that y(e;) = Ae;. Then the vector e; = w(e;) isin V* and y(e;) = A7le;. We
can choose similarly nonzero vectors e, eq in V™ such that y(es) = Aes, y(eq) = A7'ey,
and w(e3) = eq. With respect to the basis {e,, €3, €3, €4} of V', we have

10 0 0 01
01 0 0 10
p(O') = 0 0 —1 K p(w) = 0 0
0 0 0 -1 0 0

00 A0 0 0
00 0 A1 0 0
o1 [ P®=[0o 0o a o
10 0 0 0 At

Since PoP = w and P? = 1, P must map the eigenspaces of o to the corresponding
eigenspaces of w. It follows that p(P) must have the form :

p(P)

S -
AN o

a 7
[ )
-B 6

From P? = 1it follows thata=c=+1/2, f = —§ = +1/2, a =7, b= —d, and 4ab = 1.
By replacing p with a weakly equivalent representation, we may assume that a = 1/2. By
conjugating with the diagonal matrix diag(1, 1, 2, 2b), we may assume that b = a = 1/2.

Hence
1 1 1
1{ 1 1 -1
P(P) = E 1 -1
1 -1 —e¢

Since U and y commute, we have

v 0
0
PUY=1 L 0
0 o

From y = (¢U)? we obtain the equations:
v(w —z) = w(u—z) =0,

and from (wU)? = 1 the equality

onNOe
e“



Assume first that » # 2. Then v = w = 0, and consequently v/ = w’ = 0. Furthermore,
we have v’ = 1/u, z = —u, and 2’ = —1/u. By using z = PyP and the equation
Uzy = zU, we obtain u? = 1. Hence XA = 1, which is a contradiction.

Hence, we must have u = z, and so ' = 2’. It follows that

u 0 » O
p(U) = ?U ué,\ 3 _t(’]/,\ , A=1u? —vw.
0 —w/A 0 wu/A

If € = 1, by equating the (3,1)-entries of the matrices p(Uzy) and p(zU), we obtain the
equation A?(u-+w) = u—w. Similarly, the (4,2)-entries give the equation A\*(u—w) = u-+w.
Hence A* = 1. As A # 1, we must have A\? = —1. It follows that v = 0 and w = —\/v.
By equating the (1,1)-entries of the above mentioned matrices, we obtain that v = 0,
which is impossible.

So we have ¢ = —1. The equation p(Uzy) = p(zU) now implies that A?> = —1 and
w = —v. The relation (UP¢)® = 1 implies that

dut(u—v) = ABu—v)+ A -1,

4u*(u 4 v) = A(Bu +v).

By taking into account that u?+v? = A, we obtain only one solution : u = v = —(1+A)/2.
In this case we indeed obtain an indecomposable representation of ®;. Since p(U)* =1
and p(y*) = —1, p factorizes through the homomorphism ®; — I’y of Lemma 2.

7 Case 3: \=pu==l1

Recall that D4 has (up to equivalence) only one 2-dimensional irreducible module and four
1-dimensional ones. Assume that V, as a D4-module, is a direct sum of two irreducible
2-dimensional modules. On an irreducible 2-dimensional D4-module the element (Pa)?
acts as minus the identity operator and so p(Pc)? lies in the center of GL(V). By Lemma
1, p(F:) = 1 and we have a contradiction. The same argument applies when V is a sum
of four 1-dimensional D4-modules. Thus we may assume that V is a direct sum of one
2-dimensional irreducible D4-module and two 1-dimensional modules.

Subcase 1: tr(¢) = 0. Up to weak equivalence, we may assume that (with respect
to a suitable basis of V)

plo) =

oo O =
[ B e B S ]
O -0 O
-0 O O

)

~—

"

p—

I
o o O 9
-
[ e T S e
= OO0
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where 7 = +1. As w = PoP and yo = oy, we have

1 00 0 o« B0 0
0 =10 0 '8 00
=g o1 of W= go a B
0 00 -1 0 0 v §

Since all eigenvalues of y are equal A = +1, we have a + § = 2A and ad — 8y = 1. Since
wyw =y~ !, it follows that « = § = A and B = 0. Similarily o/ = ¢’ = X and B’y = 0.

Up to weak equivalence, we have the following four possibilities :

(B #0,7==7=0;

(i) B'#0,7y=B=0,7#0;

(i) B'#0,8#0,v'=7=0;

(V) ' =7 =7=0,840.

In fact, by using some elementary considerations, one can show that (i) and (iv) are
weakly equivalent. Furthermore, by conjugating by a suitable diagonal matrix which
commutes with p(P), we may assume that the nonzero parameters among 3, 8, and «
are all equal to 1. We now consider each of the first three possibilities separately.

(1) We have

A1 0 0 a b ¢ d
0 A 0 0 0 a 0 0
p(y)=00A0,p(U)=Oegh
0 0 0 X 0 f i j

The relation Uzy = zU implies that A = 1, h = 0, g = a, and e = ra. The relation
y = (oU)? implies that a? = 72 =1, di = 0, (a+7)i =0, and {(a — 7) f = air. The relation
(PoPU)? = 1 implies that ¢ = 0, (a — j)i = 0, 2a¢b = 1, and (a + 7)f = air. It follows
that 1 = f = 0. Finally the relation (UPo)® = 1 implies that j = —1,a=r, and d = 0.
Since d = h= f =i =0, p is decomposable, contrary to the hypothesis.

(ii) We have

A1 00 a b e f
o x 00 o a 5 o0
0 0 1 A h 0 d ¢

From p(Uzy) = p(zU), by equating (4,4) and (2,3) entries, we find that ¢(1 —A) =0
and f(1—X) = 0. Ascand f cannot both be 0, we infer that A = 1. From (3, 2) entries we
obtain g = 0. The entries (1,2), (1,3), (4,2), and (4, 3) provide the equations a + f = rh,
c—a=rf,a=c+ h,and f = ¢+ rh, respectively. These equations imply that ¢ = —a,
h = 2a, f = —2ar, and a(4r — 1) = 0. As r = *1, we obtain a = 0, which is impossible
since p(U) is invertible.

15



(i) We have

ply) = p(U) =

OO O >

1
A
0
0

o > oo
P ==
o0 OR
0 e o
oW oo
© ™0 KA

From Uzy = zU we obtain a(1 — A) = ¢ and ¢(1 —A) = 0. As a and e are not both
zero, we must have A = 1. Taking this into account, the same relation implies that e = 0,
g=a,f—a,r=—1,and h = a~b—c. Therelation y = (¢U)? implies that a? = 1 and
a = 2b+c. From (PoPU)? = 1 we obtain that ¢ = 0, and so h = a—b. From (UPs)* =1
we find that ¢ = —1, b = —1/2, and 3d = 1/4. In particular char K # 3. Thus p(U) is
uniquely determined and all the defining relations are satisfied. One can easily check that
this representation of ®; is indeed indecomposable.
Subcase 2 : tr(o) = 2. By choosing a suitable basis of V', we have

[—1 0 0 0\ 0100\
0100 1000
\ 000 1) 000 r)
(1 00 0) A 00 0)
()_0—100 ()_Oabc
POT=10 o010 YT lode 5|
\0o 00 1)/ 0 g h i)

where a, 8, A = +1.

By Lemma 4, p(y) has no Jordan blocks of size 3, and so (p(y) — A)* = 0. From this
equality and p(wy)® = 1 we obtain that p(wyw) = 2X— p(y). Hence we havea =e =1 = A
and f = h = 0. Now the equation (p(y) — A)? = 0 implies that &d = ¢d = bg = cg = 0.
Hence p(y) has one of the forms :

A0 00O A0 00
0 A b ¢ 0 A 00
00 A 0| 0d A0
0 0 0 A 0 g 0 A

By replacing p by its dual, we may assume that p(y) has the form given by the first of
these two matrices. At least one of b and ¢ is not 0. By conjugating by a suitable diagonal
matrix, which commutes with p(P), we may assume that b and ¢ are either 0 or 1. Hence
there are three possibilities to consider :

(i)b=1,¢=0;

() b=0,c=1;
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() b=c=1.

Furthermore, if r = 1in p(P) then, without any loss of generality, it suffices to consider
the possibility (i) only. This can be achieved by conjugation by a matrix which commutes
with p(o) and p(P). We analyze each of these possibilities separately.

(1) Since y and U commute, we have

A0 0 O a 0 b ¢
0 X1 0 d e

s =0 5 3 ol sn=|3 ¢ T 0y,
00 0 A h O i j

where we are now reusing the letters a-j in a different role.

From Uzy = zU we obtain first ¢(1 — A) =0, and so A = 1, and then e = a, d = —a,
and h = 0. From y = (oU)? we find that a® = j2 = 1, ¢(a —7) = 0, i(a + 7) = 0,
gla+3j)+ac =0, and ab+2af + gt = 1. From (PoPU)? = 1 we obtain from (1,4) entries
that c¢(a + j) = 0. Since a # 0, this equation when combined with ¢(a — j) = 0 gives
¢ = 0. From (2,4) entries we obtain g(a — j) = 0. When combined with g{a + j) = 0,
we conclude that ¢ = 0. From (1,3) entries we obtain that & = 0. One of the previous
equations now gives f = 1/2a. Next we exploit the relation (UPs)® = 1. From (1,1)
entries we obtain a® = 1. Since a? = 1, it follows that a = 1. From (4, 3) entries we
obtain i(2r + j) = 0. As j2 = r? = 1, it follows that t =0. Sincec=g=h=1=0, p is
decomposable, and so we have a contradiction.

(ii) We have r = —1 and

A
ply) = 3

[== = =

a 0 b ¢
d e f g
Ao i 4

€

o
[T T e B e
M O = O

)

—

(-

N’

Il

0 0 0

From Uzy = zU we obtain first from (2,2) entries the equation e(1 — X) = 0, and so
A = 1. Next from (3,4) entries we obtain h = 0, from (1,4) entries ¢ = a, and from (2,4)
entries d = a. From (¢U)? = (Uo)? by comparing (1,3) entries we obtain b(a — ¢) = 0.
Next we use the relation (PagPU)? = 1. From diagonal entries we find that a? = 1% = 1.
From (1, 3) entries we obtain b(a +¢) = 0. By combining this equation with b(a —1) = 0,
we conclude that b = 0. From (1,4) entries we find that ¢ = 0. Finally we use the relation
(UP0o)® = 1. From diagonal entries we find that a®> = -1 andi®=1. Asa’ =4 =1, we
have a = —1 and 1+ = 1. Now from (1,4) entries we find that f = 0, and from (3,4) entries
7=0.Sinceb=f=h=3=0, pis decomposable and so we have a contradiction.

(iii) We have » = —1 and

A0 0 O a 0 b c
o a1 1 |l d e f
P(y)_ 0 0 A0 ’ p(U)— h 0 i g ’
0 0 0 A -h 0 e—-1 e—j
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From Uzy = zU we obtain first from (2,2) entries the equation (1 — A) = 0, and so
A = 1. Now the (2,3) entries give e = —d, while (2,4) entries give ¢ = d. We infer that
e = 0, which is a contradiction.

8 Characteristic 2 case

Let n = 2 and assume only that p is nontrivial. Since (wU)?* =1 and w? = 1, it follows that

det(U) = 1. Let A and A~! be the eigenvalues of U. Since (Po)* = 1, p(Ps) is unipotent.

As n = 2, we have p(Po)? = 1. Hence p(P) and p(o) commute, and so p(c) = p(w).
Assume first that A # 1. Since wUw = U™!, we can choose a basis of V such that

p(U)=(3 ,\91), P(a)=p(w)=(2 (1])

Since P? =1, and p(P) commutes with p(¢), we must have

P(P)=(ail ajl)

for some a € K. By examining the equation p(UPc)® = 1, one can show that a = 0 and
M+ A+1=0,ie, Xis a primitive cube root of 1. Hence we have an indecomposable
representations of @, such that p(®;) ~ Ss.

Assume now that A = 1. If p(U) = 1, then also p(P) = p(o) and p(P;) ~ C;. Thus

weE may assume that
@)=(11
PR97=K0 1)

Now let p(U) # 1. If p(o) # 1, we can choose a basis of V' such that

o =(o 1) #P=(5 %) s=(5 1) s#0

because both p(P) and p(U) commute with p(¢). From (UPo)® = 1 we conclude that
a+b = 1. Hence we obtain a 1-parameter family of non-equivalent indecomposable repre-
sentation of ®; with p(®;) ~ C; x C,. If p(¢) = 1, then p(UP)® = 1 implies that either,

say,
o) =o(P)= (5 1)

or p(UP) has order 3, in which case we may assume that

= (%0 ) an=(17)

18



where A is a primitive cube root of 1. Hence we obtain another indecomposable represen-
tation of ®; with p(®;) ~ S3, which is not equivalent to the previous one.

In all of the representaiton mentioned above we have p(y) = p(aU)? = 1, and so
p(Fz) = 1. In particular the assertion of the theorem holds if n = 2.

Now let n = 3 and assume that p is indecomposable and p(F3) # 1. Since wlw = U1,
the eigenvalues of U are A, A\~!, and 1.

If p(y) is diagonalizable, then p(y) # 1 implies that y has three distinct eigenvalues.
As yo = oy, p(o) is diagonalizable. Since p(o) is also unipotent, we obtain p(¢) =1, a
contradiction.

Hence p(y) is not diagonalizable, and so must be unipotent. Since yU = Uy, it follows
that A = 1, i.e., p(U) is unipotent. Consequently p(U)* = 1. Since y = (¢U)? and p(y)
is unipotent, we conclude that p(y)? = 1. Hence p factorizes through the homomorphism
@2 - Pa.

Finally let n = 4. We assume, as in the statement of the theorem, that p is indecom-
posable and that p(F;) # 1. The eigenvalues of y have the form A, A~ i, p~1. We divide
the proof into three subcases.

Subcase 1 : A = g = 1. Since p(y) is unipotent and y = (cU)?, p(oU) is also
unipotent. As n = 4, we conclude that p(y)? = 1. Since z,y, and zy are conjugate in ®,,
we have also p(z)? = p(zy)? = 1. As p(F3) # 1, we conclude that p(F3) is a four-group.
The subspace W C V counsisting of all vectors v such that p(z)(v) = p(y)(v) = v has
dimension 1,2, or 3. Since Fj is normal in ®,, W is ®;-invariant.

We choose a basis of W and extend it to a basis of V. With respect to such a basis we

have
"
P= ( % P" )

where p' (resp. p”) is the representation of &, on W (resp. V/W) induced by p.

If p(U) is unipotent, then p(U*) = 1 and so p factorizes through the homomorphism
®; — T'5. From now, untill the end of this subcase, we shall assume that p(U) is not
unipotent.

If U has an eigenvalue 1, then we may assume that

l «a 0 0
010 O
0 0 0 Bt

with respect to some basis {e1, ez, €3,e4}. Since yU = Uy, p(y)? = 1, and p(y) # 1, we
have

ply) = , 7#0

o N o W S
S O =2
OO O
—-_—o o o
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Hence B - aUa(es) = (oU)*(es) = y(es), i.e., Uo(es) = B~ 'o(es). This implies that
o(es) = aeq for some a € K*. As 0 =1 and oy = yo, we infer that

1480 0
010 O
p(O’) = 000 a—l
0 0 a 0

An easy computation shows that p(cU)? = 1. Asy = (ocU)? and p(y) # 1, we have a
contradiction.

Now assume that U has no eigenvalue 1. This implies that dim(W) = 2 and that
p'(®2) and p"(®2) are both isomorphic to Ss. For these representations we have p'(Po) =
p"(Po) = 1, and consequently p(Pc)? = 1. Now Lemma 1 gives a contradiction.

Subcase 2 : {)\ A7} # {u,p71}. If A u # 1, then yo = oy and o2 = 1 imply that
p(o) = 1, a contradiction. Now let, say, 4 = 1. If p(y) is not diagonalizable, its centralizer
in GL(V) is Abelian. Hence p(¢) and p(U) commute. By Lemma 2, p factorizes through
the homomorphism ®; — I';. We now assume that p(y) is diagonalizable. Since o and y
commute, o leaves invariant the eigenspaces of y. Consequently we can choose a basis of

V such that

A 0 00O 1000

()_0/\‘100 (a)_OIOO

PV =10 o 10 "”Tloo11

0 0 01 0 0 01

Since wyw = y~! and w = Po P, we may also assume that
0100
1000
Pl)=105 01 0
0 001
Since Uy = yU, we have

«a 0 00
0 0 0
p(U) = Ogab
0 0 ¢c d

From y = (cU)? we obtain
=) B=a', c=a+d, ad+bc=1,
and from (wU)? = 1 we obtain that ¢ +d = 0. Consequently ¢ =0, d = a = 1. Thus p(o)

and p(U) commute and we can apply Lemma 2.
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Subcase 3 : A = u # 1. Both eigenspaces of y have the same dimension. If p(y)
is not diagonalizable, then the centralizer of p(y) in GL(V) is Abelian and we can use
Lemma 2 once again. Now let p(y) be diagonalizable. Then both eigenspaces of y have
dimension 2, and w interchanges these eigenspaces. It follows that 1 +w has rank 2. Since
w = PoP, 1+ o also has rank 2. As y and ¢ commute, we can choose a basis of V such
that

A0 O 0 1100
0 A 0 0 0100
0 0 0 At 0 001

Since w inverts y and commutes with ¢, we must have

0 0 o ¥V
!

p(w) = 3, 3, g % , ad =¥, dd=1.
0 ¢ 0 0

By conjugating p(w) by a suitable matrix which commutes with p(y) and p(¢), we may
assume that ¢’ = =1land ¥ =d =0, i.e,

0 010

6 0 01

0100

Since Uy = yU, we have

v o 0 0
Z w 0 0
p(U) = 0 0 » v
0 0 =z w

From y = (¢U)? we obtain the equations
w? + 22+ z(v+w) = w4 z(v +w) = A7,

and so z = u + w and
A7 = v + vw + wu.

The equation (wU)? = 1 gives



and so

Aw Av 0 0
AMu+w) Au 0 0
p(uy = | Mo dw) 00 (14)
0 0 4w w
The matrix

1000
0 010
Fo=11100
0 011

satisfies the equation p(w)Py = Pop(0). Since p(P) satisfies the same equation, the matrix
P;'p(P) commutes with ¢. Consequently p(P) has the form

a b ¢ d a b ¢c d

_ 0 a 0 ¢ a B~ 6

p(P)=Po- a 8 v 4 a a+b ¢ c+d

0 a0 1 a at+f y v+$

Since P? = 1, we have the equations:

glat+c)+alb+d)=1, ala+c)=1, (15)
ala+p+d8)=ay, ala+7)=0, (16)
dat+7)+7(c+d)+6(B+8) =0, dat+)+7" =1 (17)

The second equations of (15),(16), and (17) imply that @ = = 1. The second equation
of (15) and the first equations of (16) and (17) give ¢ = 8 = § = 1 + a. From the first
equation in (15) we now obtain that d =1+ a + b. Thus

a b l1+4a 14a+b
|1 14a 1 l+a
p(P) = a a+b 1+4a b
1 a 1 a
By conjugating by the matrix
1 a 00
0100
0 01 a
0 001
we may assume that
0 ¢t 1 141t
111 1
101 0



where £ = a + b+ a®. Although p(U) will change under this conjugation, it will still have
the form (14). By using this expression for p(P), we find that

A7V 4t rt rt rt
r A+t 0 rt
plz) = rt rt ATl ot
0 rt r A4t
where
r=X+"1

By equating the diagonal entries of the matrices p(zU) and p(Uzy), we obtain the equa-
tions

(v+wt)XP +uth? + (v+w+wt)A+w+ut =0,
(u+wt) A+ (u+ v+ ut)A? + wtd + v + ut = 0,
wtA® + (v + ut)A? + (v + wt)A +u+ v + ut = 0,
(v 4w+ wt)A? + (w + ut)A? 4 (v + wt)A + ut = 0.

By adding the first two equations, we obtain

(A+1):[v+w+ (u+v)A] =0,
and by adding the last two, we obtain

(A+1)-[u+v+(v+w)r? =0
Since A #£ 1, we have

u+v=A"%v+w)= (v +w),

and so v = v = w. By (12) and (14), p(¢) and p(U) commute and so, by Lemma 2,
p(y)? = 1. This gives X = 1, a contradiction.
This completes the proof of the theorem. [ |

9 Some indecomposable representations of &, and By

In this section we list all, up to weak equivalence, indecomposable representations p of
®, of degree < 4 such that p(F;) # 1 and p(®;) is infinite. According to the previous
section, such reperesentations do not exist if char K = 2. We also include an interesting
example of an indecomposable representation of degree 4 with p(®;) finite.

One can use the above mentioned representations p of ®; in order to construct new
representations of By. Recall that the braid group By has the following presentation :

B4 = (0’1,0'2,0'3 : [0‘1,0’3] = 1, 01030 = 020102, 020302 = 0'30'20'3).
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Furthermore there is a homomorphism h : By — ®; given by :
h(oy) = PUP, h(o3) =UcU™'P, h(os) = PoU'oP.

For readers convenience, we have also computed the images of ¢;’s in each case.

Representation 1. The generators o, P, and U of ®, are represented by the matrices

-1 0 0 01 0 1 0 0
plo) = ( 0 1 0) , p(P)= (1 0 O), p(U) = (wl 1 1/2) .
0 01 0 01 0 0 1

It is easy to verify that these matrices satisfy the defining relations (1) of ®,. A simple
computation shows that £ = PyP and y = (cU)? are represented by the matrices

10 1 10 0
p(m)=(0 1 0), p(y)=(0 1 1)-
00 1 001

Hence p(F;) is a free Abelian group of rank 2.
The corresponding representation of By is determined by :

1 -1 1/2 0 -1 0 1 -1 —1/2
aq, — 0 1 0 , O2 — 1 2 0], oa—> 0 1 0 .
0 0 1 0 0 1 0 0 1

Representation 2. The second representation p is defined by :

100 0 10 00 1 000
o110 o | 00 o1 12100
P=to 01 ol PPI=11p 0 10| POD=|0 001
000 -1 01 00 0 010

In this case we find that

1 0 00 10 0 0
0 -1 00 11 0 0
1 0 01 00 0 -1

Now p(F3) is a solvable group which is not nilpotent.
For B4 we have :
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1 0 0 0 1 00 0 1 000
1/2 0 -1 0 0 001 ~1/2 01 0
12 -1 0 0o 7| 12010 7 12 100
/2 0 0 1 0 100 ~1/2 0 0 1

Representation 3. If characteristic of K is not 2 or 3, then we have a representation
p defined by :

10 0 0 100 0 1 1/2 0 1/12
01 0 0 001 O 01 0 0
PO)=1090 1 o P=lg10 o PD=]¢ 1 1 12
00 0 -1 0 00 —1 0 0 0 1
In this case we have
101 0 1100
(z) = 010 -1 (y) = 0100
PP7= 1001 o) A% loo 11
000 1 0 001
In this case p(F;) is a non-Abelian unipotent group.
The corresponding representation of By is given by :
1 0 1/2 -1/12 1 0 0 1/16
o1 — 01 1 -1/2 N 0 0 1 0
! 00 1 0 r 2 0 -12 o0 |’
00 0 1 0 0 0 1
10 -1/2 —-1/12
5 01 1 1/2
73 00 1 0
00 O 1

All three representations above of ®; and By are at the same time indecomposable
and reducible.

Representation 4. This representation p is defined by :

10 0 0 1 1 1 1
01 0 0 1{1 1 -1 21
Pey=t oo 1 ol PPI=3511 1 1 1]
00 0 -1 1 -1 1 -1
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—1 -~ 0 -1z 0

1 0 —14i 0  1—i
P=5] 145 0 —1-i o0 ,
0 —14i 0 —1+43

where i? = —1. One can show that p(®;) ~ (Q#Q) x S, a quotient of the group Iy
defined in Lemma 2. The images of z and y generate one of the two quaternion groups
@. The basic vectors are common eigenvectors of ¢ and y and, up to scalar multiples,
there are no other common eigenvectors. Since P does not preserve these eigenspaces, p
has no 1-dimensional invariant subspace. As p(F3) # 1, p cannot be direct sum of two
2-dimensional representations. Hence p is irreducible.

In this case the representation of By is given by :

-1 i 1 = -1 1 1 -1
RN I B s, -1 11
179l 1 -1 = | P79 1 -1 -1 -1 |
- 1 i -1 1 1 -1 -1
-1 - 1 1

21 -1 : —-1 2
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