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ON THE COEFFICIENTS OF DRINFELD MODULAR FORMS

ERNST-ULRICH GEKELER

Introduction

Let Ek be the Eisenstein series of weight k , defined on the

complex upper half-plane H . The coefficients of Ek in its

g-expansion ( g = exp(2miz)) are given by constant times

Oy _q (D) » where o0, is the arithmetic function defined by

Gk(n) = ¥ dk » d running through the set of divisors of n .

Many interesting properties of (and of related arithmetic

%k
functions like Ramanujan's function Tt(n) , or the partition
function ptn) ) may be derived from function theoretic and

algebro-geometric properties of E {or of other modular forms).

k
These results, which include integrality and congruence properties,
orders of magnitude, as well as various "unexpected” identities,
justify to state that the coefficients of modular forms like Ek '
or the discriminant function A , contain a good portion of the

arithmetic of Z

Let now A =:Fq[T] be the polynomial ring over a finite
field ZFq in an indeterminate T , and replace Z by A as our
object of basic interest. There is a deep analogy between A

and Z



- A 1is an euclidean ring;

- A is discretely embedded in K_ , the completion of

K = Quot(Ad) =]Fq(T) at the infinite place;

- similar to Kronecker's theorem, (abelian) class field theory of
K may explicitely be described by "cyclotomic" polynomials;

etc..

Amongst the reasons for investigating A or similar rings, let us
just mention Langlands's program to develop non-abelian class field

theory, or the appiications in coding theory.

In 1973, making an attempt to extend the analogy to include ﬁodular
forms theory, Drinfeld introduced the notion of "elliptic module",
nowadays called Drinfeld module. Roughly, the idea is as follows:
Classical modular forms may be considered as homogeneous functions on
the set of lattices ( + some extra structure) A < € . The set of
similarity classes of lattices is canonically parametrized by

'NH , where T is the modular group SL(2,Z) , or some congruence
subgroup. Now TI'\H is the set of complex points of én affine

algebraic curve X which is defined over an abelian number field,

r
and modular forms correspond to certainmulti-differentials on XF .
Thus, Drinfeld was led to study discrete rank two lattices A c C ,
where now C = %m = completion of an algebraic closure ﬁm of
K, replaces the field € . By means of the lattice function e,

(which is similar to a WeierstralB p-function), the "analytical"



object A may be "algebraically" interpreted as some sort of
diophantine object, namely a rank two Drinfeld module over C

(By the way, there is no reason to restrict to rank two A-lattices
A: The rank r of A may be any natural number, leading to rank
r Drinfeld modules. Secondly, A may be an arbitrary function
ring A = 0(X) , where X = X~{»} is the complement of one closed
point in a smooth projective curve X over IF_ .} As in the
classical case, the set of classes of such A 1is in bijection with
'@ , where now & = C\K_ is the "Drinfeld upper half-plane "

acted upon by T = GL(2,A) .

Now f 1is a rigid analytic space of dimension one over C , and the

function theoretic apparatus applies.

There are two different translations of classical modular forms

theory into our context (perhaps converging some day):

(i) Répresentation theoretic point of view. The algebraic
description of Drinfeld modules implies the existence of a modular
scheme (a certain A-scheme of relative dimension one) whose
C-points will agree with I'\Q . Considering Galois actions on {(the
cohomology of} that scheme yields l-adic representations of
Gal(K:K) . The main-result is Drinfeld's reciprocity law Thm. 2 in
[2] which states a 1-1 correspondence between (certain) Galois
representations of K and (certain) cuspidal automorphic

representations of GL(2,A) , where A is the Adele ring of K



As a corollary, a variant of Taniyama/Weil's conjecture is true,
i.e. each elliptic curve over K having a prescribed reduction

behavior at « may be parametrized by some Drinfeld modular curve!

(ii) Function theoretic point of view. Letting A vary with

z € Q , the coefficients of the correspénding Drinfeld module
become modular forms, i.e. holomorphic functions Q —> C that
satisfy the usual transformation rule with respect to y € T and
some holomorphy conditions at "cusps". There is a canonical
uniformizer t "at infinity" which replaces g =.exp(2ﬂiz) , and
the t-expansion of a modular form £ 1is defined. Thus we may
study the coefficients of f . The main results known in this case
include product expansions of certain distinguished modular forms
which imply rationality, integrality, and congruence properties
for the coefficients, dimensions of spaces of modular forms, and
some statements on the geometry of the algebraic curve associated

with T\@ , see [7].

The results mentioned in (i) and (ii) are of a general nature and

do not make use of " A =IFq[T], i.e. are valid for a = 0(X)
arbitrary. The aim .of this paper is to get a better understanding of
the expansion coeffi;ients, now restricting to the special case

A =2Tq[T] as defined above, and considering modular forms for the
full group T only. In that case, there are two distinguished
modular forms g and A that have integer (i.e. in A )

coefficients, and the C-algebra M°® of modular forms of type zero



is the polynomial ring C[é,A] generated by g and A . (This
result has first been obtained by D. Goss [11].) Hence we are
forced to investigate g and A . In [5], we proved a product
expansion for A which is entirely analogous with Jacobi's
formula for the discriminant function of elliptic curves. From
this formula, one derives the existence of a (g-1)-th root h
of -A as a function on Q . Its transforﬁation law involves the
determinant character det: T ——9£Ea . This leads to an extension
of the definition of modular form (compared to that given in [11]
or [7]) which is necessary even for a full understanding of g
and A

We will systematically use.the series Gk,A(X) of Goss poly-
nomials of a (finite or infinite} ZFq-lattice Ae C . Remember the
occurrence of ok(n) in the g-expansion of classical mocdular forms

comes from the formula

k
-k _ (-27i) k-1 n
() £ (z+n) = k=171 Z n q
necx nzl

which is wvalid for k 2 2 . Now, as Gosé observed, if A 1is a

discrete ZFq—submodule of C, the sum §, , = I (z+a)—k (a
r

running through A ) is a polynomial Gk A of degree k in the
r

meromorphic function S1 A e This already gives first results on
!

g (k)

the expansions of Eisenstein series , and on the Hecke

eigenvalues of A [11]. As we shall see, the G, , are a good
!
substitute for (*x). But note there is no number theoretic counter-

part of Gk A if A is finite since € has no finite subgroups.



Specifying the generating function G = L Gk(x) Uk , we are able

to compute Gk which yields a particularly simple formula in the

most interesting case where k is of the form ql-1 . The
resulting coefficients of E(k) are slightly more complicated
than ok(n) . They involve arithmetic functions like

i
[i]l = ™ -7 = product of monic primes of degree dividing i , or

v
I

product of all monics of degree i .

They are further related with the "cyclotomic" polynomials fa(x)
(a € A) which are true analogues of 1 - x2 (a € 72) . Using the
Gk that correspond to certain finite IFq—lattices (groups of
torsion points of the Carlitz module), we are able to describe the
effect of Hecke operators on the t-expansions (which was unknown
before). As should be remarked, our Hecke operators behave rather
differently from the number field case. For example:

.
’

_ 2 .
T(pE) = (Tp) for a prime p

- g (of weight g=-1) and A (of weight q2—1 ). possess the same

eigenvalues;

- there is no Euler product for the coefficients of eigenforms,
due to the fact that the set of positive divisors of A does

not agree with W



In order to relate additive and multiplicative expansions of
modular forms, we introduce the differential operator 9 on the
ring M = Cl{g,h] of modular forms (any weight and type) whose
definition relies heavily on the product for A . We are giving
three different characterizations of the form h

(i) h = q_1/:E ; (ii) h = {a certain Poincaré series);

Pae1,1

(iii) h dg , and sketch a fourth one related to modular forms

for congruence subgroups. Besides giving an:identity of two a
priori entirely different expansions, this solves the problem of

determining the expansion of PQ+1 1 which had been defined in
[8l.

Let now p be a fixed prime ideal of A of degree d , and let

Mp the ring of modular forms having expansion coefficients in K

with denominator prime to p . Let further

~

M=1{F € a/p(t))|2a £ ¢ M, s.t. fmodp = ¥} be the
A/p-algebra of modular forms mod p. In [18], Swihnerton-Dyer has
determined the structure of the number theoretic counterpart of
M , involving a prime number p > 3 . His resulﬁ is in short:

(%)

Ep—1 !
weight p-1 ) , and (*) is the only relation, i.e. each congruence

2 1 (reduction mod p of the Eisenstein series of

mod p is implied by (*}. In our case, we first define the Hasse
invariant H "in characteristic p". H 1is a modular form mod p
that measures the group of p-torsion points of a Drinfeld module.

Our results concerning M are:



(a) gg = 1 mod p ,}wheré gq 1is the normalized Eisenstein

series of weight qd-1 ;

(B) H = gqmod p ;

(c) if Bd(X,Z) is the A-polynomial such that Bd(g,h) = gg

r

and ~ denotes reduction mod p ,

(A/P)[X,Z]/(ﬁd—1) —> M , where X resp. Z maps to g

resp. h mod p .

Note the differences with [18]: a result corresponding to (C)

is first proved for H , then we use (A) and (B) to get (C).
Further, there are no special primes like p = 2,3 in number
theory. Going deeper into the modular theory of Drinfeld modules,
'a geometric description of Spec M might be given. Suffice to

say for the moment that M is normal, i.e. a Dedekind ring.

The plan of the article is as follows: in the first fwo sections,
we fix notations and give the necessary background of Drinfeld
modules and lattice functions. Next, the notion of Goss polynomial
for a lattice is defined which will be our basic technical tool

in various situations. After having introduced the Carlitz module
and the relevant arithmetic functions (i.e. the one-dimensional
theory), some important examples of modular forms are given, and
the ring of mod;lar forms is described. In section 6, we derive
the t-expansion of Eisenstein series and draw somé conclusions.

By means of the coefficient description of Hecke operators given



in section 7, we easily determine the eigenvalues on & (first
obtained by D. Goss) and on h . Next, we introduce the "false
Eisenstein series" E and use it to define the differential
operator 9 by which we relate g and h . Section 10 presgnts
computations of the t-expansions of the product function U and
of the functions E,g,h,g2 , and A up to the (roughly) q3—th

(or q4—th) term, the bound depending on the function in question.
These computations are valid independently of g . Finally, in the
last two sections, modular forms mod p are investigated, and the

assertions (A), (B), (C) are proved.

The congruence results may {(possibly) be generalized into two

directions:
(i) consider congruence subgroups [' of T ; i.e. modular forms
"with level";

(ii) replace A by a more general function ring 0(X) as

indicated above; i.e. take the point of view of [7].

Whereas (i) should cause no serious problems, still some work will
have to be done for (ii). In order to define the expansion of an
algebraic modular form, one has to consider a family of Tate-

~-Drinfeld modules TD(a) , where a runs through the ideal class

group of A . But TD(a)

, which will have its coefficients in the
normalizing field of A (notations as in [7]) , will not be

defined canonically. Thus, one arrives at a problem of



(a)

normalizing TD .(as well as the Hasse invariant) that still

has to be sclved.

Occasionally, our methods involve some easy analysis in C 1like
convergence of infinite sums, interchanging summation orders etc..
The philosophy is not to worry about such questions, nearly

everything being clear from the non-archimedean property of C .

Let me finally confess that I regard as a non-trivial problem to
find adequate terminology for the theory presented here. Good
notation should be a) consistent; b) simple; c¢) reflect the
classical notation, whenever possible, and d) be in accordance
with some basic articles like [2], [7], or [12]. Unfortunately,
these conditions seem to conflict, and I had to make a compromise
which, perhaps, may appear unsatisfactory. For compensation, I

added an extensive index for symbols with a global meaning.
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1. Notations

Let ]Fq be the finite field with g elements. Throughout the |
paper, A =ITq[T] and K =IEq(T) denote the ring of polynomials
and the field of rational functions in an indeterminate T ,
respectively. On K , we consider the degree valuation deg:

K —> EU{-o} x > deg x associated with the infinite place "»"

0of K . The corresponding absolute value - "| |" is normalized by
|T| = q@ . Completing K with respect to | | , we obtain the field
K_ =B&UT’1)) of formal Laurent series in T | .. The absolute
value | | has a unique extension, also denoted by | | , to an

algebraic closure K_ of K_ . The completion C of K_ is an
algebraically closed complete valued field of positive character-

0

istic, determined up to isomorphism by its value group g W <R

and its residue class field ]@q = alg. closure of JFq .
For a ring R and r € R, R* , (r) , R/r denote the
multiplicative group, the principal ideal generated by r , the
factor ring R/(r) respectively. Further, (r,s) is the g.c.d.
of r and s , and r|s means r divides s . If f 1is a power

series in t , f = o(tk) says f is divisible by tk
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2. Review of Drinfeld modules and lattices

By an ]Fq—lattice (resp. A-lattice) in C , we understand an
Fq—submodule ({resp. A-submodule) A of C having finite inter-
section with each ball B =« C of finite radius. For such A ,

we define the lattice function

]
(2.1) eA(z) =z [ ] (1-2/7) ,
AEA
1

where as usual, | | (resp. L') denotes the product (resp. sum)
over the non-zeroelements of a lattice. The product converges,
locally uniformly on bounded sets in C , and defines a function
e, C —> C whose essential properties are summarized as follows:
(2.2) (i) e, is entire (in the rigid analytic sense) and

surjective;
(ii) e is ZTq-linear and A-periodic;

(iii) e\ has simple zeroes at the points of A , and no

further zeroces;

(iv) if A,A' = chA (¢ € C*) are similar lattices, their
functions are related by ceA(z) = eAn(cz) ;

(v) e |
Iz - eA = 1 , so we have the identity of mero-

morphic functions

T/eﬂ(z) = eA(z)/eA(z) =T 1/(z-XxX) (A € A) .



All of this is easily seen by first assuming A to be finite,
then choosing an exhausting sequence Ai c A consisting of
finite sublattices and going over to the limit. Let now A be an
A-lattice of rank r , and O#%a € A . In the diagram

. e
(2.3) 0 —> A —> C D5 ¢ —> 0

a a a
v

0 —-— A —>C —>C — 0 ,

the map ¢a = ¢A

a is uniquely determined by commutativity. In fact,

¢a is an additive polynomial, and ¢A : ab— ¢g defines a ring
homomorphism of A into the ring EndC(Ga) of additive poly-

nomials over C . EndC(Ga) is the non-commutative ring of poly-

nomials of the form ¥ aiXpl (p = char(iwq)) , where "multiplication"
is defined by substitution. Let 1 = x9 and c{1} Endc(Ga)

the subalgebra generated by 1 , i.e. the non-commutative poly-
nomial ring in T with the commutator rule z91 = 1z (z € C) .

Then ¢A takes values in C{t} , and for a € A of degree d , we

have

(2.4) | b = E Q.Ti ‘
& 0sisrd *

where (i) 2, = a and (ii) L + 0

rd



(2.5) PFor an arbitrary field L over A (e.g. L = K , or
L = A/p , where p is a maximal ideal of A ), a ring homomorphism

¢ : A —> L{t} satisfying (2.4) is called a Drinfeld module of

rank r over L . By means of ¢ , the additive group scheme Ga
over L gets a new structure as an A-mcdule. An element x in
some extension field of L which is annihilated by ¢a is called
an a~division point of ¢ . The a-division points constitute a

finite A-submodule scheme of G, of degree [a[r‘.

(2.6) Now the above association A b— ¢A is a bijection of the
set of A-lattices of rank r in C with the set of Drinfeld
modules of rank r over C , i.e. one may reconstruct A by

A

means of ¢ = ¢ . First observe the power series expansion

. qi
eA(z) = I aiz

resulting from the :Fq-linearity of e, By eA = 1 , there
exists a composition inverse

i
log, (z) = % Bizq

which has a positive radius of convergence. Let d = deg a > 0

and

r g, z9 )
. 1
isrd

¢a(2)< Ri(a,A)
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Applying log, on both sides of e, laz) = o, (ep(z)) , we

obtain
a logA(z) = log, ¢a(2)) '

i.e. for k 2 0

i
(2.7) ag, = I B.8.9 ,
K ieg=x 173
which, in view of 20 = a, gives a recursive procedure for
computing the Bk from ¢a . Finally, A is determined as the

set of zeroces of e, = composition inverse of

qi
z Biz .

(2.8) We still need another type of lattice invariants.

Write z/eA(z) = I Yizi . Now
Z/eA(z) =2z ¥ 1/(z=-2X) (A € M)
= I 1/(1-A/z2)

= 1-ZI' (z/A}/(1-2/})

= 1-1 R (ayX
k21



where E(k)(A) = E'.A—k is the Eisenstein series of weight k
NEA '

for A . An easy induction shows:

. i }
. ki - o4
{2.9) For 3Jj = ¢ g~ , we have Yj Bk-l
Putting E(O)(A) = -1 and using (2.7) , we obtain the important
relation, valid for k 2 0-:
k i i
(2.10) a-g'@-Y . ; gld '11£§
i+j=k

all the terms involved depending on A .

3. Goss polynomials

For convenience, we first recall the well known Newton formulae

for power sums of the zeroes of a polynomial. Let

be a monic polynomial over an arbitrary field, and let § be

k
the sum of k-th powers of the zeroes of £ (multiplicities

counted) . Then the following relations hold for k € NN

(3.1) SptaiSy_q* ... + a S,+ ka, =0 (k = n)

+ a

1°k=1 k-n

s = 0 (k 2 n)
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Let now A be a fixed IE‘q—lattice in C which we first assume

to be finite, ©f dimension m over IF_ . Put

q
, i
(3.2) e(z) = e,(z) =z ] (1-2/A) = I a,z9
A€ ism
and
t(z) = t,(z) = 2 1/(z-\) = e, ' (z)

The polynomial e(X- z) e(X) ~e(z) over C(z) has
{z+X ]| X € A} as its set of zerces, whereas {1/(z+A)| A € A}

appears as the set of zeroes of the "inverse polynomial"

m
T(x) = e(x 1-2)x9 € c(z)[X] . From @y = 1 results the leading
coefficient -e(z) of T(X) , so
-1 -1 "
£(X) =-¢e” ' (2).e(Xx” ' -2)x9
m m_ i
=x9 - g to, x9 d
0giam

is monic, and we may compute Sk = 8 = Iz + A)-k via Newton.

k,A
Putting SO = 0 , we obtain for k 2 2

(3.3) S +a,8 +0,S, 2+ ...) ,

k 1

where the sum involves those oy with k-ql 2 0 only. Note

this includes both cases of (3.1). If A 1is no longer finite,



we still define Sk . by the same formula. The sum is easily seen
to converge outside of A , defining a mercmorphic function on

C with poles at most at A .

3.4. Proposition ([12], Ch. VI): Let A be a not necessarily

finite ZTq—lattice in C . There exists a polynomial Gy = Gk A
. ’

with the following properties:

(1) S, = Gk(t) , where t =t, =8
(ii) G (X) = X(Gk_1+-a1Gk_q-+...-+uiG i+...) , k-g 20 ;

(iii) Gk is monic of degree k ;

(iv) G (0) =0 ;

(v) kSq-»Gk=Xk;
(vi) ka = (Gk)p r P = char(:Fq) ;
(vii) X%G!(X) = kG

k k+1 °

Proof: Assume first A to be finite. The existence of Gk and
(i) - (v) then follow from (3.3). We further have
= _ yy—bPk _ KPP o P
ka(t) L (z-=-2X) = (I (z-2A) M)F = Gk(t)

, 1.e. (vi)

For (vii) , we compute



d . - _ = -
3z Sk, p(2) =-kSp g pl2) =-KkG (1)
dt _d -1 L =2 __ .2 '
On the other hand, 3z = az @ (z) = e, (z) =-t° , thus
ol _ at _ _ .2 .
I Sk,A(z) = Gi(t) I - t Gi(t) . Let now A be infinite,
A1 « Az < ... a sequence of finite sublattices with U Ai = A,

and let ei, ti' Sk,i’ Gk,i the objects corresponding to A

Elementary estimates show

a) e, —> e, locally uniformly as functions on C ;

b) —> Sk uniformly on closed balls which are disjoint

5,1
from A

This in turn implies the coefficientwise convergence of Gy i
I

against a polynomial Gk having the properties stated.

(3.5) For each lattice A , we call G (X) the k-th

k,A ———
Goss polynomial of A (k 2 1) . We further put G, = 0 . Now fix

A  and consider the generating function.

G(U,X) = ¥ G (X)Uk

k20 X

(3.4 ii) translates to

G(U,X) - XU = XU 'G(U,X) + a. XU (U,X) + ... ,

1



-.20 -

i,e. G(U,X) = XU >
1-XU-a. X9 - xu9 - ...
1 2
- XU
(3.6) 1T-Xe, (U) °

3.7. Example: Let A =2Fq-l be one-dimensional, so

eA(Z) = z+azd , O = - A1_q , ‘and
G(U,X) = XU I (U+aud)d xI
520
= XU & & (3) pI i ipiayd
j20 120
= XU I I (k'?(q‘1)) alxkila=1) gk
k20 'iz0 1
Thus Gk+1(X) - 3 (k—i(q-1)) aixk—i(q-1)+1
0sisk/q

Proceeding similarly, we get for an arbitrary lattice A with

i
ey = L aizq
(3.8) G (X) = © = (j) o xI
k+1,A jsk i i
Here i = (io, “o 'is) runs over the set of (s + 1)-tuples
( s arbitrary) satisfying ig*...+i =3 and

O+ i1q+-...+ i g~ = k ., Further, os = Oy .. O , and (?)
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denotes the multinomial coefficient j!/(iO! ee. A1) .

3.9. Corollary: Let A be of finite dimension m over qu .

Then G, ,(X) is divisible by X" where n = [kq "]1+1 .
7

It seems difficult to evaluate the sums occuring in (3.8)

in general. However for special k , we can say more.

3.10. Proposition: Let A be an ]Fq-lattice in C with log-
i
-function (see(2.6)) log,(z) = I Bizq . If k is of the form

k = qj— 7 , we have

j 1
- q--q
Gk,A(X) = .Z.Bix
i<j
i
Proof: We put P(X) = csk(x"1)><k+1 and Q(X) = I Bixq , SO
: i<j

we have to show P{X) = Q(X) . Now both P(X) and Q{(X) are

polynomials of degree <« q:l , and it will suffice to see that
P(e(z)) and Qfe(z)) agree as power series in 2 up to the term

of order gl-1 (e = e, the lattice function of A ) . But

- 3 —qd
e 1(2))ed (&) = ez T (z-n'70

Ple(z)) AEA

i

Gy

J _J _J
eI (2) (27T 43 (z-0)17T

fl

The sum I' contains no terms 2z + with negative exponents, and

J ]
e9(z) = (z+...)9 =294+ ..., so Ple(z)) = z+0(z9")
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: Y | j
On the other hand, Q(e(z)) = £ Bi(e(z))q = z+0(29) for
i<j

Q is the partial sum of logA .

3.11. Corollary: Let s # 0 be fixed. Then

‘ ] _ i j_ i
I (z-cs)1 ° - 3 31 9 t(z}q !
c€ IFq 0si<j

where t(z) = 1/(2_81—qzq)

Proof: This is the case A = J‘E‘q-s , hoting that

i i
e, (z) = 2-5'"99 ang log,(z) = I 5179 L4
A A iz0

4, The Carlitz module

(4.1) The most important Drinfeld module for A = JFq[T] is

Carlitz's module p of rank one, defined by

pT = TT0+T = TX+Xq .

It has been studied by several authors, e.g. [1}, [13], [9]. Under the
bijection of (2.6}, p corresponds to a certain one-dimensional
A-lattice L = TA , where the "period" m 4is well-defined up to

an element of Aut(a) =]F:I , i.e. a(g-1) -th root of unity. We

choose one such 7 -and fix it once for all. In the sequel,

-1 e;(z) and G, = G will

- - =1,z _
e(z) = eL(z) , t(z) = er (mz) =7 K
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always denote the functions associated with L . Then t(z)
will play the role of the exponential function exp(2niz)

in the classical context. In order to describe these functions,
we have to introduce some A-valued arithmetic funct;ons. For

i €N , put

i
(4.2) [(i] = 19 -7
i-1
p, = (ilti-119 ... (119
L =

i (1)0i-1) ... (1],

and D0 = L0 = 1 . Then [i] equals the product of all monic
primes whose degree divides i , Di the product of all monics of
degree 1 , and Li the f.c.m. of all monics of degree i .

As is easily verified from (2.7) ,

1
(4.3) e(z) = I D11zq and
120
i
log; (z) = & (-1t 719

iz0 1

Note the difference in sign with [9], due to the modified de-
finition of the Carlitz module. Let now a be an arbitrary

non-zero element of A , and Py = z Ri(a)Tl . From

Pap = PgPp = PpP, in Endc(Ga) . the recursion formula
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' 9‘2—1 " o
(4.4) L. = (i 2 1)
i .
[i]
results. From 20 = a , we see for 0s8isd
(4.5) deg 2, = (d-1i)g*- s (qd"ql)/(q- 1) .

Define the a=th cyclotomic polynomial £_(X) € AlX] by

-1, ,lal

(4.6) £,00 = p (x x' 2,

considering P, as a polynomial in X , i.e. replacing 1 by

X9 . Then f_(X) has degree |a|-1 , leading coefficient a ,
and fa(O) = leading coefficient of a . Actually, fa is a
polynomial in Xq_1 . For example, f£f.(X) =1 ,

]
-1 2,q%-1 2_

£ (X) = x4 "4, £ ,(X) = 7°x9 + (9 4+ myx9 "9 4

P

In the following formulae, let a,b € A , a monic,

d' = deg b < deg a. = d.

(4.7) g g

(1) faap = E4+ X3 7T £

(1i) T faree - £ =% 0, k= (@@ -1@-n ;
q

(iii) o= 3, k= q%g-n) .

Here, (i) is obvious, (ii) follows from (i), and (iii) from
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The reason for investigating p "comes from the next theorem.

4.8, Theorem [13]:

(i) The.roots XA of Py generate an abelian extension

K(a) of K with Galois group (A/a)* .

(ii) If % corresponds to the residue class of b meod a

then ob(x) = pb(l} .

(1ii) The fixed field K (a) of F} c— (A/a)* (a assumed
non-constant) is the ray class field of a , i.e. the
maximal abelian extension of K that splits completely

at o« and whose conductor divides a .

Note that K(a) = splitting field of fa (resp. K+(a) = splittipg
field of ?a , where ?a(xq“1) = £_(X)), and K(a) : K _(a) is
unramified at finite places and totally ramified above o .
Although we do notrneed all of them, we will write down some

formulae for the period © of p :

4.9y 197V -1 el @) = (9o v 2179,
achA

(4.10) 79T = (1] TT - al/tas It

ig1

=19 1im TT (asp9®9 33~
N+ Q+a€h
deg asN

(4.11) 7971
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Formula (4.9) is an easy consequence of (2.8) and is analogous

with Euler's formula (2mi)2 =-12 I' n~% . A proof of (4.10)

nez ‘
may be found in [9]), whereas "Wallis's formula" (4.11) is proved

in [7]). Further, an old result of Wade, considerably generalized

by Yu [19], asserts the transcendence of T over K .

5. Modular forms for GL(2,A)

(5.1} Let us now consider the rank two case. A rank two Drinfeld

module ¢ 1is given by

il

¢T TT04-gT4-AT2 '

where g and A # 0 are elements of C . It corresponds to a rank

two A-lattice Y
Wy W
1793
Define j = j(¢) = gq+1/ﬁ

Aw1 ® sz in C .

il

Replacing Y by some similar lattice A-Y (A € C*¥) will change
2
(g, 8) to (A" 9, 2179 4) but will leave j invariant. Thus,

considering g , A , and j as functions of (m1, wz) , we may

>

restrict to pairs (w wz) = (z,1) . The discreteness condition

17
on Y translates to the condition "{w1, wz} K_-linearly
independent", i.e. 2z = w1/w2 lies in @ =:P1(Crgm1(Km) = CyK_ .
On the "upper half-plane" Q , the group GL(2, K;) acts by

fractional linear transformations (i 2)(2) = (az +b)/(cz +4d)
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Let Yz = Az ¢ A the lattice corresponding to 2z € Q . Two
elements 2z, z' define similar lattices (i.e. isomorphic Drinfeld
modules) if and only if they are equivalent by I = GL(2,A) .

Therefore,

14

(5.2) T'\Q = set of isomorphism classes of —> C

rank two Drinfeld modules over C
z — j(z) .

Next, we introduce the "imaginary part" ]z|i of z € C,
Put |z|i = inf |z-x](x € K_ ) , and for c¢ in the value group
qQ of C , Qc = {z € Q||z|i 2 ¢} . Then IzIi = 0 1is equivalent

with =z € XK_ , and an easy computation shows

(5.3) lyz[; = |det Y||cz+-d|—2| z |,

for vy = (2 g) € GL(2,K_) . We still have to say a few words
about the analytic structure on @ .

5.4. Proposition:

(i) 2 has the structure of a connected admissible open sub—.

space of the rigid analytic space :@1(0) .

(ii) QC is an open admissible subspace of @
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(iii) GL(2,K_ ) acts as a group of analytic automorpisms on
Q@ . (In fact, PGL(2,K)) is the full group of auto-

morphisms of @ .)
For a proof, see [8], 1V, sect. 1, [3], or [17], Ch. I.

Intuitively, |z|i measures the distance "to infinity". We

can make this precise.

5.5. Lemma: There exists a real constant c0 > 1 such that

> 1, we have |z|, s-1log |t(z)] s ¢.|z], .
i q 0 i

for |z|i

Préof: t ' (z) = eL(ﬁz ) = me, (z) , so let us compute |e,(z)] .

A
This latter being A-invariant, we may assume |[z]| = |z|i > 1,
Let |z| = @€, 0se<1, 4 €N . Then

d
leptz)| =zl TT |(-z/a)| =|z| TT lz/al=|2z[%/ TT la} .
O+acA lal<lzl ~ deg a<d
laj<lzl

Counting the number of a with a given degree and noting
log_|7| = q/{gq-1) gives -logq[t(z)l = qd(q/(q- 1})-€g} . Now

q
always q-e S g/l{g~-1)-e s coocf€ for suitable Cy thus the

result,

From (5.5) we derive
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5.6, Corollary: For ¢ > 1 , t induces an isomorphism of

A\Qc

Thus, we may use t(z)

similar to the use of gl(z)

with some pointed ball

Br\{O}

as a uniformizing parameter "at infinity",

exp (2wmiz} in the classical case. We

- are now ready to define modular forms.

.-.5.7. Definition: A function f: § —> C 1is called a modular
form of weight Xk and type m (where k 2 0 is an integer and
m a class in Z/(g-1)) , if the following conditions are satisfied:
\ . _ [a b-
(i) if vy = . € T = GL(2,2) , then
f(yz) = (det Y)-m(czd-d)kf(z) :
(ii) f is holomorphic;
(iii) £ 1is holomorphic at infinity.

Let us explain the last condition. By (i), £(z+Db) = £(z) for
beaA Now (iii) says: f has an expansion f(z) = T(t(z))
with respect to t , where T(X) = ¢ aixl is a power series with

a positive radius of convergence. The zero order of £ at infinity
is defined to be that of T . Let Mi be the C-vector space of
’ )
modular forms of weight k , type m . Obviously, Mt Mm, c Mm+m:
k k k+k' ,
hence M = ® ME and MO = ® M£ are graded C-algebras.
X,m k '
5.8 Remarks:
(1) MY # 0 implies k & 2m mod (g-1) . In particular, if g

k
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is odd, k always will be even.

(ii) Each modular form of zero weight is a constant, as results

from the geometry of  as a "Stein domain" [8].

(iii) The expansion £f(z) = & aiti(z) will in general not
converge on all of § but only for |t(z)| small, i.e.
lz]i large. Nevertheless, Q being connected in the rigid
analytic sense, the coefficients a, fully determine £ .

By abuse of language, we often wfite f =z a.ltl

(iv) Due to the occurrence of non-trivial types, the definition of
order at infinity is different from that in [7].
k

5.9. Example [10]: Let E(k)(z) = E(k)(Yzf = I (az + b)
a,b€Aa

be the Eisenstein series of weight k . Then (i) (with m = 0 ) and

(ii) are easily verified, and (iii) will follow from (6.3). Hence

0

(k)
E € Mk

5.10., Example: Expressing g and A through Eisenstein series

(see (2.10)) shows g (resp. 4 ) to lie in Mg', where k = g-1

(resp. q2-1) . Therefore, (5.2) actually comes from an isomorphism

of analytic spaces. The same argument works for the forms Ei(a, z) ,

where a € A and ¢a = I Qi(a, z)‘rl . Thus Ei € Mg , where

k = ql- 1 .

5.11. Example [8]: We are obliged to present an'example where

* %
m + 0.Let H be the subgroup {(0 1)} of T , and
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Y = (a b) € ' . Observe:

c d
(1) aly,z) = (det Y)_m(cz-Pd)k is a factor of automorphy,
i.e. a(ys,z) = aly,8z)o(d,z) ;

(ii) H\T —» {{(c,d)|c,d € B, (c,d) = 1} ;

Y s (cld)

(iii) a_1(Y,z)tm(Yz) depends only on the class of y in H\T

Thus the Poincaré series

P (z) = I a_1(Y,Z)tm(YZ)
!
YEHAT
is holomorphic of weight k and type m mod (g-1) , provided
the sum converges and behaves well at infinity. For k > 0 , this
is easily shown using (5.5). Further, P is non-zero if k > 0 ,

k,m
k = 2mmod (g~-1) , and m s k/{(g+ 1)

The next theorems completely describe the structure of M0 resp.

M as C-algebras.

5.12. Theorem [11]: MO is the polynomial ring generated by g

and A

5.13. Theorem: Let h be the Poincaré series . Then M

Paet,1
is the polynomial ring Clg,h]
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Let us roughly sketch a proof of (5.12) and (5.13) . The stabilizer
group Fz of z €Q in T is of order q2-1 if 2z 1is

T-conjugate to an element of .2 = C , and of order g-1 if not.

q

Such a point is called an elliptic point of T . For non-zero

f € Mi , the following formula holds:

2
(5.14) ¥ v (E) + v (£)/(a+ 1) + v (£)/(g=-1) = k/(a" = 1) ,
Z2ET\Q
where on the left, we are summing over the non-elliptic equivalence

classes of z € Q , and vz(resp. Vgs resp. v ) 1is the order of

f at 2z ‘"(resp. at the elliptic points, resp. at « ) . This may
be proved either by a rigid analytic analogue of contour integration
(see (8], p. 302), or by employing the relationship between modular

forms and differentials on the modular curve T\Q U {«} =5 pro-

jective j-line [7].

We have

(5.15)

(i) vo(g) =1, vz(g) = 0 , non-elliptic;
(ii) Ve(h) =1, v (h) =0, z %=

(iii) v _(A) =.g-1 , v _(A) =0, z % o,

Statement (i} is clear from (5.14) as g has to vanish at elliptic

points. Further, h being of type m =1, v_(h) =1 mod (g-1)



- 33 -

which shows v_(h) 2.1 if g % 2 , so (ii) comes out. (In case

g = 2 , the argument is a little bit more involved, see e.g. (9.1).)
(iii) follows from v_(A) = 0 (z € @) . Now (5.12) and (5.13) are
easy consequences of (5.14) and (5.15}.
.

5.16. Corollary: A = constant times

It will be one of our objectives to determine that factor. Let us

finally note another consequence of (5.14):

5.17. Corollary: Any non-zero f € ME is determined by its first

n coefficients, where n = [k/(g+1)]1+1 . (Here, [ ] = greatest

integer function.)

6. t—-expansions

Let us first mention the product formula, proved in [5], of the

"discriminant function" A introduced in the last section.

2 2
6.1. Theorem: 7 9 a(z) =-t971 T7T £_(t) (a”=1) {g-1)
a€A monic

the product converging normally for |z|i sufficiently large.

Next, we derive the expansions of Eisenstein series with

respect to t . For non-zero a € A , let

ta(z) = t(az) = e£1(Eaz)

An easy computation shows
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_ Jlal
(6.2) . t =t /fa(t)

as a power series in t with coefficients in A . For
(k)

k$ 0mod (g-1) , E vanishes. Thus let k ¢ mod (g-1) .

Then

E(k)(z) = It (az-f-b)—k
a,bea
= 1 pk_ g X (az*~b)hk
bea a monic bea
=akgK ) -7K: 5 (Faz+7p) 7K

By (2.8) and the definition of L = 7a , E') (L) € XK . Further,
K

T (mz +7wb) = G, (t(z)) , hence
beEA
(6.3) 7 kB gy s g () - 3 Gy (t,)
a
a monic
6.4. Examples:
k Expansion of E'J{E(k)
- -1 _ q-1
qg-1 [1] z £
Sla-1,3 s q| (13173 -z G, (t_)
jlg=-1) '"a
2 2
2 _ _ 1 _ g =1 -1,9"-qgq
q 1 L, L (ta 7[1] ta )
3 3 3 2
3_ -1 _ g -1_.-1,9"°-q -1,97-gq
q _1 L, Lot Lyt + L, t2 )
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The sums on the right are over the set of monics in A , and

Gj(q—1) is the Goss polynomial associated with L . In our case,
it is

G. x) = 5 (7@t g ymig G le=1)

](Q‘” iSj—1 1

The constant terms in the table are easily computed using (2.8) .

Note that in both (6.1) and (6.3), for each fixed exponent
i of t , only a finite number of a contribute. Therefore, A

5 (%)

and the get rational (i.e. in K) t-expansion coefficients

if divided by ® to their weight.

From now on, we adopt a different notation for g and A , namely

1-g

Jnew = T 9014
- 1.—q2
Anew =T Aold )
Let M(A) (resp. MO(A)) be the A-algebra of modular forms having
its coefficients in A . Then by g = 1+ ... , A =--tq-1 + e g

the next corollary results.

6.5. Corollary [11]: M°(a) = alg,Al .

6.6 Remark: A coordinate change T — T+c¢ (¢ EZTq) in A

does not affect g and A . Therefore, the coefficients of g
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and A (i.e. of all the elements of Mp(A)) have to be in-
variant under T > T+ c¢ . The ring of invariants is easily seen

to be the polynomial ring :Tq[Tq-T] in [1] = 9-1 .,

We next collect some facts on the coefficients of g,A , and the

product function U = [fa(t)(a monic) which is related with A .

As only powers of t divisible by g-1 occur, put s = tq_'1 .

Let B0 be the set of power series

{(*) £ =1 mjs.:J , Where mj € A and deg mj 3.

B0 is closed under addition and multiplication, and
f=1+... €B implies 1/f € B

0 0 -
B = {f € A[{s]]|f = af' for some a € A,f' € By} be the a-

Let

—-algebra generated by B

0
6.7. Proposition:
(i) The power series U,A/s, and (g-1)/[1] lie in B, -
- 0
(ii) M” (A) <> B .
Proof:
(1) By (4.5), the cyclotomic polynomials fa satisfy (*) ,

and this property is inherited by U and A/s . Further,

_ - g-1 _ lal, -q-1
(g-1)/01] z £ I s °Y £ € B for 1/fa € B

0 o -
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(ii) By (i), g and A € B . Now apply (6.5).
Define for k 2 O

k k
(6.8) 9y = (~1)k+1 7174 LkE(q 1)

either as a modular form or as a formal series in t .

6.9. Proposition:

(i) 9y = 1+ ... ;
(ii) Iy has coefficients in A ;
(iii) go =1, 91 =g

g (k 2 2) .

(o]
~
1
|
P
1
-
e}
d
Y]
>
+
Yo
o
t
—
GO

Proof:

k
(i) comes from E(q _1)(L) = (-1)k+1/Lk which is derived from

(2.9) and (4.3). Further, by (3.10), Ly is a denominator for
k

the coefficients of Gi , 1 =g -1, thus (ii) . Finally, (iii)
is the translation of (2.10) applied to a = T and

0. =-qg-1 - 2—1 2
¢T = T+ 73 gr+m AT .

s* be the expansion

= £971

6.10. Proposition (compare [11]): Let I a

i
of one of the forms A,gk with respect to s
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Then a; # 0 implies 1 =0 or 1 mod g

Proof: Let (#) denote the stated congruence property. Now:

(1) fa , considered as a power series in s , satisfies (#).
Let j = qk- 1, k21

(ii) tJ satisfies (#).

(1iii) Let a € A be non-constant. Then t; = (slalj/(q—”fa )fa

satisfies (#) since the first factor is a g-th power.

(iv) Gj(ta) satisfies (#) by (ii), (iii) and (3.10).
Thus (#) results for Iy and, in view of (6.9 iii), for A

Finally, we investigate congruences modulco ideals of A .
For power series f and f' € A[[t]] and an ideal a of A ,

f s f' mod a means the congruence mod a of all the coefficients.

6.11. Proposition: Let p be a prime ideal of A of degree 4 .
da
(t) = gk(tq ) mod p

Then Ir+d

6.12. Corollary: 1 mod [4d]

93 ©

Proof (of (6.11)): The coefficients of the (qd-;1)-th Goss
polynomial are iL;1 where i < d . Thus by (6.3) and (6.8),

i.e. mod [d] . In particular,

gq = 1 mod Ld/Ld—1 '
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a
dq ® 9p ® 1 mod p . Further, mod p we have ™ =T , so
Ko
[k+§] = [k] . By induction, using (6.9 iii), g, . = gE E
d
Modulo p , the latter equals gk(tq ) .
7. Hecke operators
For f € Mi and a prime ideal p = (p) , where p is monic of

degree 4 , let

(7.1) T f(z) = pkf(pZ) + z £((z + b)/p)
P bEA
deg b<d

Tp is called the p-th Hecke operator. As expected,
Tpf € Mﬂ » and is cuspidal (i.e. vanishes at infinity) if £ is.
(We could define Hecke operators for all the ideals a of A ,
as one usually does. But unlike the classical case, Tab = TaTb
[7], so we may restrict to prime ideals.)

7.2. Proposition: TpE(k) = pkE(k) .

This follows by direct computation, see [10] or [7]. Next, we

consider the effect of Tp on t-expansions. Let Gk b be the
f

k-th Goss polynomial with respect to the qu—lattice

Ap = ker pp of dimension 4 .

For 1 2 1 , we compute
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5 t* (z+Db) i

deg b<d

"

I (e(wz/p) +e(Tb/p)) "

5 (e(Tw) + M) Y, where 2z = pw
AEAP

1

Gi,p( X (e(nw)-+A)l )

Gifp(P/Dp(e(ﬂw)))

Gi’p(p/e(ﬁz))

Gi'p(pt) .

=
O
H
=
1}
o
[l
rt.
[}

0 = GO,p(pt) . Hence

i, _ k i
(7.3) Tp( L a;t’) =p I aitp+ ) aiGi,p(pt) p

£,(2) = tlpz) = t'P'/fp(t) .

Note that by (3.9), for 3 fixed, only a finite number of terms

of the right hand side contribute to the coefficient of tJ .

7.4. Example: Let p be of degree one. Then tp = +9/(1 4+ pt97T

. . - i - v 1
and Gi,p' is given by (3.7). If £ z ait and Tpf z ait
are of weight k , we derive

1 u,vz0 Y ogvei V 1+viq

ug+v(g-1) =1
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We refrain from writing down the general formula that follows

from (3.8) and (7.3).

7.5. Corollary (first obtained by D. Goss [11]): TpA = pq-1A .
Proof: As the space of cusp forms of weight k = q2- 1 , type
zero is one-dimensional, we just have to determine the coefficient
agq of £94°1 4n T,A . Obviously, the first sum in (7.3) does
not contribute, so it is enough to see aiGi,p(X) has no
X9 _ term if i # q-1 . Let the i-th coefficient a; of &
be non-zero, so i s 0 mod (gq-1) and i s 0 or -1 mod q ,

and suppose i > g-1 . If i s 0 mod g then Gi p has né

14
Xq_1-term by (3.4 vi), whereas for 1i+1 = rq , we use

2| = — To= o q
X Gi,p = Grq,p (Gr,p) . Now r > 1, so Gr,p has no

X - term which implies G, has no 971 _ term.

Note A has the same eigenvalues as g which is completely
different from the number theoretic case. I do not know whether

"Hecke eigenvalues plus weight" suffices to determine an eigenform.

7.6. Corollary: Tph = p+h .

Proof: The same reasoning as in (7.5), noting Gi(xf = o(xz)

for i 2 2 .

7.7. Problem: Compute the action of Hecke on powers of A !
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B. Derivations

Let dL be the logarithmic derivative operator

d

dL : f(z) —> 71" & £l2)/£(2)

Obviously, dL(f1-f2) = dL(f1)-+dL(f2) . From

&t = & e NF2) =-Te P (F2) --7t2(z) ana
%i £, (X) --ax'2'"2 (4 ¢ A non-constant), we have
(8.1) dL(f ) (t) = at (a non-conétant)
=0 {a constaﬁ;)
and dL(t) = -it .
Let U(z) = T | f£_(t(z)) be the product function. Using

a monic
(6.1), we have for E = dL(A)

(8.2) E = (g- 1)dL(t) + (g%~ 1) (g - 1)dL (V)

"

t+ I at
1+#a monic

= I at
a monic

E 1s a conditionally convergent two-dimensional lattice sum
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E(z) =711 & ( T a/(az+Db))

a monic DbE€A

and should be considered as an analogue of the "false Eisenstein

series of weight 2" in the classical theory. Let now f € Mt

k
Applying (det Y)—1(024-d)2d/dz to both sides of the equation
f(yz) = (det Y)_m(cz+-d)kf(z) , Wwhere vy = (2 g) € ' , we obtain

= (m+1)

(8.3) £'(yz) = (det y) (cz + @) K281 (2) + ke(det v) ™™ (cz v ) K e (2)

Putting f = A and dividing (8.3) by wA(yz) , the functional

equation

(8.4) E(yz) = (det y) '(cz +d)%E(z) -cT ! (et v) ™ (cz + d)

results.

{8.5) We define. 0 = 77! d/dz and ak = 0+ kKE as operators on
m m+1 .

My . Then (8.3) and (8.4) imply Bk(f) € Myp.2 Direct

computation shows: If fi is of weight ki(i = 1,2) and

k = k14-k2 , then

ak(f1-f2) akq(f1)-f2+ f1-ak2(f2) ’
i.e. 3 may be considered as a differential operator of weight
two on the graded algebra M . We further observe: 0 =-t2d/dt

and 9 have coefficients in A if expressed with respect to the
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t - expansion. Let us now collect some results on the-values of

9 . From (6.10) we see O2A = 0 ,thus

(8.6) ©E =-E° .
8.7. Corollary: The power series pX abtatb in t
axb monic
vanishes identically.
2

Proof: It is the expansion of E® -0E .

2—‘I) -2q+2)

A 2
From g = 1-—[1]tq—1+o(tq and E = t+o(t9 ywe

2—2q+2)

derive 9g = - t+o(td # 0 , so 3g has to be proportional

~2g+1

2
with h . Further azg = o(t% ) vanishes identically by

(5.17).

8.8. Proposition: We have 23A = 0 and 32f = 0 for each of the

functions £(z) = gk(z) ’ £k(a,z) , Or ak(z) = ak(Az+-A) (see

section 2).

Proof: The assertion on 94 1is immediate from the definition.

Those concerning the functions £ are proved using the relations

(2.6) - (2.10), the fact 8 1is a differential operator, and

9°g = 0 = 34 .

8.9. Corollary: Let F(X,Z) € C[X,2] be such that F(g,h}) = £

2
where f is as in (8.8). Then (%i)’F(X,Z) =0 .
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2
Proof: 0 = 32f = const =x (%2) F(g,h)-h2 since 09g = const x h

and 3h = 0

9. Comparing dg and h

In this section, we prove

9.1. Theorem: og = h . :

We thus have at least three different characterizations of that

form, namely

(a) h = Pq+1 1 the Poincaré series of weight g+ 1 , type 1
. ;1

(which we have used as a definition of h ):
(b) h = 3g ;

(c) h¥ 1 =a-p

9.2. Corollary: We have the identity of power series in t

-1
- I at_+ [1] I at_t3 et T q°-1
a monic 2 a+b monic 2 b =-t fa (t)
a - monic
Proof: = 1-[1] I tq_1 d 0f(t = 2
sroor: g = o a an (t,) =-at, , so an easy
a monic

computation gives the result.

(9.3} Let us shortly mention still another interpretation. For

u running through a set of representatives of (T-1A/A)2 =V,
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-1
let Eu(z) = b 2(az-'-b) ’

(a,b) =u mod A

which is a modular form of weight one for the congruence subgroup
r(T) = {y €|y =1mod T} . Choose a non-degenerate alternating

form < , > on the two-dimensional ZTq-vector space V , and put

£= 1 E3E;
u,vev uEV
<u,v>=1

It is easy to verify £ +to be of weight g+ 1, type 1, so
£f = const » h . Using the expansions for Eu given in [6], one
may actually compute the constant which happens to be non-zero.

This gives a quite general "algebraic" method to construct

d

modular forms of weight g~ +1 and type 1.

Let us now turn to the proocf of (9.1). Consider the sum defining

]

b= Pt

(9.4) hiz) = I tly, 4(z)) / (cz+a) 9"’
c,den !
{c,d)=1

where Ye,d = (2 g) € SL(2,A) . We are going to isolate the

contributions of the different ¢ € A to the linear coefficient

of h . Let us define for ¢ fixed

h = I .o and, for c¢,d fixed h g - z .o
dEA Cr d'ea
(c,d)=1 d'ed mod c
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Then for ¢ #+ 0, h_ = I h and h = % h_ .
¢ d mod c¢ c.d CEA c
(d,c) =1

_ _ . fa by (1 r\ _(a, b+ar
In view of the matrix equation \c a/\0 1) " \c, d+cr) '’

h is the sum over the double class of ab in
c,d c d

* * *
(0 1)\ I/ (é 1) + SO in particular is A-invariant and has a

t-expansion. Now for the proof of (9.1) it is enough to show the

following three facts:

Il

(9.5) hy =-t+o(t?) ;

(9.6)  h_ o(t?) if degc = 0 ;

_ 2 ,
(9.7) hc,d = oft™) 1if deg c > 0

The first one is clear: c¢

"

0 implies d € F* , so

q
hg = £ tld?z) /a¥ = 5 t(z)/a® - t(2) .
d E€Exr* deIF* '
d
Proof of (9.6): Without loss of generality, ¢ =1 and
_ (0 -1 -
Ye,d = (1 d) . Then
-h, = I t(1/(z+a))/(z+a)¥* = 57 g (z+ga nfilztd)
dEA d =
e(r(z+d))
For ]z|i sufficiently large, w = n/(z+d) satisfies

|w| = ]ﬁ{/|z|i < 1 , and for such arguments w , the series
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1
4

w/e(w) Yy W converges uniformly. Thus

-n, =77z zr@™Y Dy (7 (zran®

d kz0

= a3 Yy T q*2k p (F(z+a)) k9
kz0 d

_ =g-1 =2k

=T L y,m "G (t)
k20 k k+g

which has no linear term in t

The proof of (9.7) is slightly more complicated. For (c,d) given,
choose vy = (2 2) € SL(2,A). Note: X = e(ma/c) and u = e(wd/c)
are non-zero c-division points of the Carlitz module p . The

expression of t(z+ a/c) with respect to t is given by

(9.8) t(z + a/c)

1/e(n(z + a/c)) = 1/(e(nz) + A)

€/{1+2t) = t-Atl+ ...,

similarly for a replaced by d . The geometric series converges
for |t| < |A| which is satisfied for |z]i large enough, see
(5.5). Let now ¢ = (8 7) . An easy computation yields

e(my6z) = A-e(w) , where w = w(z,r) = n/c{cz+d+cr) . The

second term is small for |z|i large:

letw) | = [F/ctcz+drer)| s |7]le| 2]z}
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uniformly in z and r , as long as |z[i is large enough. In

particular,

t(ysz) = (A-e(w)) ) = £ A ¥ X)) , ang
kz0
hc g = Z (cz-l-d-fcr)-1_q z A-k-1ek(w) .
! r€a kz0

As abové, we may interchange the order of summation. It then

suffices to see

hc d,k L ek(w(z,r))/(c2+d+cr)q+1
e reca
has no t-terms of order s 1 . Let ek(w) = I ek iwi . Then
14

joy
1

i(ﬁ/c(cz-rd-rcr))i

ek’

c,d,k = I (cz+d+cr) i

r

E(%/c)q+1+21ek p L (M(z+a/c+r)) 3 171
i S

(again the change of summation order is justified, the e |
7

decreasing very rapidly)

- = g+1+2i
E (m/c) ek’qu+1+i(t(z-+d/c)) .

Now each of the polynomials (X) 1is divisible at least

by X2 . Hence by '(9.8), hc d.k% has no term of order zero
7 r

or one in t , and (9.7) is established.

Gq+1+i
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10. Some special forms

Here, we are computing the first coefficients of

fe {E,g,h,gz,A,U} up to a certain bound which will depend on
f . Let us first treat the product function

u(t) = T ] f_(t) . From U , we will easily deduce the

a monic a
expansions of E, h , and A

As in section 6, we put s = t94"1 | 1In what follows, a will
always denote a monic element of A of degree d . As 1is obvious
from the definition of fa , the i-th coefficient of U (with

respect to s ) may only contributed by those a satisfying
d-1

q S i . This estimate may be sharpened. Let
Ud = | | fa . Then Ud+1 = | f; , where we
a monic, deg a=d a monic, deg a=d
*
have put ad hoc fa = cGIf faT+c . Expanding f; by means of
(4.7), we find - 4

d+1 2 d+1 d+1 d
(10.1) f* = 1-g9 . 1 q dqy .9 _ g@ gt
) fr=1-s (23 4+ T)s (231 + T)s
2 d+1,__d d+1__d _d-1
q q,9 a +g _ 9 a g +q° -1
+ (Rd_2-+T 2d_1)s (ld_24-T)s
d+1 d-1 d+1 _d-1,  d-2
9,9 <9 tq +q - 9 +qg +g 1
+ T zd_zs Tzd_zs
. . . d+1, d -1
+ terms involving 2, 4 which are of order 2 g +q +q in s,

where the Ri = Ei(a) are defined by (4.4).
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Suppose for the moment d 2 3 . If we first take the product over

d Td-1

those a of the form a =T +ag_, + ... where and

qa-1

a3-2 E:Tq are fixed (so %4, 4, and &, , are fixed too), we
see T £f=1+0(s" , thus U ., = 1+0(s) with
a as above
- A+ d,  _d-1 _
k =g +qg +q . For 4 = 2 , {(10.1) becomes an exact formula.

Multiplying the f; in a convenient order shows (by a lengthy

4
computation which we omit) U3 = 1+o0(s9 ) . Thus,
4
U = U1-U2+o(sq ) . As above, we omit the details of computing
U1 and U2 (which is straightforward from (10.1)) and give just

the result.

10.2. Theorem: The first q4 coefficients uy of U with

respect to s = tq—1 are given by the following table where an

index missing indicates the corresponding coefficient to be zero.

i u, i u

i i

0 1 g (130219 - [2])
qg-1 =1 q3+q2—q—1 =1
q [1] q3+q2-1 2]+ (119

3 2 . 3 2
q -qg -1 q +4g [11[2)
q3'1 2 q3+q2*Q‘1 _ [2][1]q

3 3 2
q [21+[1] g +gq +q [2][1]q+1
q3+q-1 -([219- (2] q4—1 0

More shortly, we have
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-1

2
U=u0,-s979 4264 +o(s

where U1 = 1-—sq-11-[1]sq = | fa

a monic, deg a=1

10.3. Corollary :

3 2 3 2 3 3
A ~--sU1_q 59 "I HA 4759 "9 *AHT T, (6T +1)

Expanding out the power series Ul-q , we get the table

i

(6i = coefficient of s in A ):
i 61 i Gi
1 -1 q%+q -119
q 1 q2+q+1 [119*]
g+1 -[1] 2q2—2q+1 -1
q2_q+1 -1 2q2—q 1
q> 1 2q%-q+1 20119 - [1]
g2+ [119- (1) 2q° -2[1]19
3 2 3
Proof: A =-gy9d -U/Uq-Uq . Up to terms of order g in s ,

3 2 3.2
v = 1 ’ vt9 = 1-59 79 , and v = U? . Putting together these

congruences gives the result.

3

_ 3.2 _q 3.2 _y _
10.4. Corollary: h/t =-U, + g2 74 u, - s9 ~9 U, " 254

3 3 2
+o(sq ) In particular, h/t =--U11+o(sq 9
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This follows £he same way as (10.3).

10.5. Corollary:

3 2 3 3
E/t = 1-+sq_1U;1-+sq ! +q_1U12--qu —11-o(sq ) .

Proof: E = QA/A = Os/s+0QU/U . But 0 = —tzd/dt ; SO
3 3
0s = t9 = ts , (BUY/t = Sq-1__25q -14'o(sq ) , and the assertion

.
comes from computing modulo terms of order 2 q3 in s .

Next, we investigate the form g = 1-[1] Z-tg”1 . As usual, let

d = deg a , a monic, Py = X RiTl . Then
d d-1 i d

e q q-1 _ g
ty, = t /(1 + £4-18 *+ ... ) , hence t s* +of(s

1

4 _d-
q +g ),

and the contribution of all the a of degree d cancels up to

d d-1

o(s? *4 ) . We are going to sharpen this bound. Let
Cq = ) t§-1 : as a power series in s . To compute Cj ,

a monic, deg a=d
we use
(10.6)
(i) £ (x+er) ' =-yT T x9- %y 7T ana

celF

q

(1) © (X+cy) 9= (1 (x+ey) 9T

cE:IFq

where (i) comes from the logarithmic derivative of
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x9-x =] T(x=¢) and (1i) is a special case of (3.4). Of course,
CO -9 - g, Next, for a = T+c , £_(t) =1 +(T+c)tq-1 ,
thus €. =s3 5 (1+(T+c)s) ™9 = s¥(z(1+pg+cs) ) I

1 CEF, (ii)

= 53 (=3 (1+ 7%~ (1 +15)s97 1)) a7
(1)

q2— +1 1~
ariy.~4 U, as in (10.2)

=S 1 r Py

Let now d 2 2 and a = Tdi- £ a,T" . Then
i<a *
d i
fa = I a.,w. ¢ Wy = s(q —d )/(q-1)f i
0sisa * * T
Note the following facts:
(10.7)
{i) i > 3j = ord (wi) < ord (wj) , where ord denotes the order
of a power series in s ;
(i1) fa = Xyt ayY, , where X, = ianiwi depends only on a;
with i > 0 , and YO = v, is independent of a ;
(iii) X5 = 1+ higher terms in s , Yg = ski- higher terms.
Let us compute
_.d
£~ 4 It = I ... V/E, .
a meonic, deg a=d ag-1 )
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First consider the innermost sum

_ - _ 9= q_ a-1
i 1/fa = I 1/(x0+ aoyo) = YO /(x0 XOYO )
0

Next put for 1 s 1 < d

x3 -x, v3Tl .

i-1 " %joqYioq T A Ay

X, depending at most on a

i ' Yi independent of a ,

i+1 0 fa-1
and Xi , Yi satisfying (10.7 iii). Of course, Xi and Yi are
uniquely determined. Let us have a closer look of this last
equation. The left hand side can be written in the form

L a,w, . with polynomials w, . in s that do not depend on
j2i J 1.] 1,3 :

a and satisfy (10.7 i) with respect to the second index. For

the wi,j ’ we have {putting wO,j = wj)
W, . = wd - W, w3l .
l,J 1—1,3 1-113 i'1'l_1
Hence, ord (wi,j) = g-ord (wi-1,j) . In particular,
= _ i _ i, a_ i _
ord (Yi) = ord (wi,i) = g~ ord (WO,i) =g (g -q)/{g-1) . By

repeated application of (10.6 i), we get

- _ i+1 g-1 q_ qg-1
(1'0.8) g g 1/fa (- 1) (Yy --. Yi) /‘(xi X, Y2 )

i 0

and finally
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(10.9) pX 1/fa . = (- 1)dsk4- higher terms, where

a monic, deg a=d

d

fl

k=  qq@-qh/(g-1) o -n/@?-n

0si<d

(q

Taken together,

d -1 k
s? (z 1/fa)q = g + higher terms,

_ q-1
(10.10) C4 = Lot

a monic, deg a=d

24+ 1

where now k = (g +1)/(g+ 1)

2 5
10.11. Corollary: g = 1- [1](s + s4 -q+1U1_q)-+o(s(q +1)/(q+j))

It is easy to obtain similar results for the form g, » say.

2 2
= 1= g -q q -1
From (6.4), 9, 1-[2] % ta -+L2 z ta . The term
b2 tg 9 = ( % tg_1)q is evaluated as above, whereas for
2
z tg =1 , we use Goss polynomials to detect the contribution of a

fixed degree d

2 a, 2 2 a
qa-1 _ . .qg(g-1) 19~ _ g (g+1) =1
ot =t Efa = s G, (Zfa).

a monic,deg-a=d q-1,A

where A 1is a certain d-dimensional IF -module. We will make this

explit for d = 1 . In that case, I f;1 = L (1+Ts+cs)”)
a cEIFq

i.e. the corresponding lattice is :Fq-s . Using (3.11), we find

r
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) ‘
5 f;_q = G( I fa1) with the polynomial
a monic, deg a=1
2.0 eaol- ‘
G(x) = x9 +s 99 79 | yhich gives the value

(g-1) (g®=1) ;1- 32241, q-¢°
s\ q U1 q 4 &9 ! U? q . A similar argument which
will not be given in detail shows the contribution of those a

of degree 2 2 to be o(sk) , k= q(q5-+1)/(q-+1)

Summing up:

3 2 2
sq+1--[2]sq ~q *9y9-g

10.12. Corollary: g, = 1-[2]s?+L 3

2
3 2 2 3 2
-+L25q d +q+1U?-q +Lzsq +1U1 q +-o(sk) , where

kK = q(gq°+1)/(g+1) .

(10.13) Heckeoperators yield non-trivial relations between these

coefficients. For checking on the s-expansion, let us note the

translation of (7.4) into the s-notation: If £ = L aisl € Mg ’

p = (p}) a prime of degree one and T £ = ¢ aisi then

P

-(q-1)u) -uq (g-1) 1 /(q-1)i-1) -v
. 2 . P a_+p z P a .
uSi/q( 1-ug he v<(g-1) i v i+v

11. Hasse invariants

In the whole section, p = (p) , p monic , will be a prime of

degree d . The reduction homomorphism A ~—>]Fp = A/p and



- 58 -

everything derived from it will be denoted by a tilde a }— a . We
consider rank two Drinfeld modules ¢ defined over a field extension

F of ZFP . Like Drinfeld modules over C ,- ¢ is defined by
g = T+ gt o+ at?

where now g and A4 # 0 are in IFr . If IF is algebraically
closed, Jj(¢) = gq+1/A characterizes ¢ up to isomorphism. It is
a general fact that ¢p is of the form

_ d 2d
(11.1) . p_ = QdT S RZdT ,

i.e. the coefficients £, ... fq-1 ©of ¢p have to vanish. Thus
the group scheme ker ¢p is not reduced, and the abstract group
(ker ¢p)(1@) over .the algebraic closure F of ¥ is at most
one~dimensional as an ZTp-module. We call H(¢) = Rd the

Hasse invariant of ¢ . Similar to elliptic curves in positive

characteristic, we have the equivalence of the following assertions:

(11.2)

(1) H(¢) = 0 ;
(ii) (ker ¢p)(ZFp) = 0 ;

(iii) the endomorphism ring of ¢ is non-commutative.

The Drinfeld module ¢ (resp. its j-invariant j(¢)) is called



- 59 -

supersingular if these conditions are satisfied. If ¢ |is
supersingular, Jj(¢) 'is of degree at most two over :Tp'. The
number of supersingular j is given by q(qd-1‘~1)/(q2'-1) if
d 1is odd, and (qd— 1)/(q2— 1) 1if d 1is even. For all these
facts, see [4]. H may be considered as an algebraic modular

form of weight qd—1 (10], and we will determine its t-expansion.

(11.3) Let A((t)) resp. K((t)) be the ring of formal Laurent

series in t with coefficients in A resp. K . Consider the rank

two Drinfeld module TD over K((t)) defined by
TD, = TT04'g(t)T4'D(t)T2 '
where for the coefficients g(t) and A(t) , we insert the

t-expansions of g and A given in section 6. 'TD' -is called the

Tate-Drinfeld module. Having its coefficients in A((t)) , TD

may be reduced mod p , thereby defining the rank two module TD

over Fp((t)) . By definition, H(TD) will be the t-expansion of
H
11.4. Lemma: Mod p , we have (- 1)dp/Ld 2 1 .,

Proof: Clearly, p divides Ld exactly once, so the assertion

makes sense. Writing (- 1)dp/Ld = (- 1)dp/Dd-(bd/Ld) + we show

d-1
a) p/Dd s -1 and b) Dd/Ld = (-1) .
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Now D,/p = TTx =TT (x-ps T Tx=-1, thus a).

p*x monic 0#x €TF
deg x = 4d
d d a-1 . a
For b), note Dj = (79 -7y (19 -29 ) ... (19 -7
a a-1
and Ly = (9 -7y (¥ -1 ... (r9-17)

In Dd/Ld , the first factors cancel, and, working mod p , we

d

we may replace 9 by T , thus Dd/Ld e (- 1)6‘-1

11.5. Theorem: H(TD) = 1 mod p , i.e. the t-expansion of H is

constant with value 1.

Proof: We have to show the corresponding congruence for the

coefficients of T0_ = . f&,7- , &, € A[[t]] . The & and
0sisa2d * * i
the g, are related by
k+1 i+1 ql
| i+j=k Y3

which follows from (2.10) and the definition of g; - For k =d

_ 4y dt1 _ _ i+1 qi

As noted in (11.1), Ri 2 Omod p if i < d . Thus, if

: i
1si<d, Rg_i/Li = 0 since Li is not divisible by p
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’

1 d (@@ - 1)
Also, if i =d then 23 ./L; = p% /Ly = 0 moa p'1 y

Thus Lq = (- 1}d(p/Ld)gd mod p"
n = inf (qd-—1,q)‘
= dg mod p by (11.4)
= 1 mod p by (6.12)

Let now Fi(X,Y) € A[X,Y] be the uniquely determined polynomial

such that

Fi(g,A) = Ei = 1 -th coefficient of TDp .

’

11.6. Lemma:

(1) We have Fp =P, F, = (pq-p)/[1]-x , and for i 2 2
i-1 2 i-2
. - vpd  _ yd q° _ .9
[i]lF; = XFZ_, - X Fiq*YF; _ ,-Y Fi_o
(ii) Considered as a polynomial in X , F3 has degree

(qd-1)/(q- 1) and leading coefficient 1.

24 2
113 = ( _1)/( —1) =
(iii) Fog = Y q. d and F,.. . 0

.

Proof: (i) follows from the commutator relation
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T T
shows: For 154, Fi has degree (ql-1)/(q-1) in X , and the

TDPTD = TD TDp . (ii) results from (i): By induction on 1 , one

leading coefficient satisfies the recursion for the coefficients of
pp given in (4.4). Finally, (iii) is a direct consequence of the
definition.

Now consider the reduced polynomials ﬁi(x,Y) . From [T] % 0(0<i<d)
and (11.6 i), we see ﬁi =0 if i < d . Thus, again from the re-
cursion and [I]#0 (d<i<2d) , we derive: F, divides ¥, if
dsi<z2d.

11.7. Proposition: ?d(x,Y) is square-free.

Proof: Let f(X) = (X,1) . From (11.6 i) applied to

Fad-1

i=2d+1, we see f'(X) =1 . Now F,, . Dbeing an isobaric

polynomial in X and Y , this implies ¥ thus Fd , to have

2d-1 '
at most a monomial in Y as a multiple divisor. Putting t = 0 ,

the Tate-Drinfeld module TD reduces to the Carlitz module, in

particular &, = 1+o0(t) as well as Td = 1+o(t) . But if Y

then T. = o(t)

divided Fd a

12, Modular forms mod p

We keep the notations of the last section. Let further

Mp = 6 M?,k be the ring of modular forms (any weight or type)
having coefficients in K with denominators prime to p , and
M= ({F Eiwp[[t]] | 3 £ € Mp s.t. £ mod p = ¥} the ring of

modular forms mod p . We are going to determine the structure of
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M as an :Fp-—algebra. M, containing the prominent members g

and A , we have the ring homomorphism
€ : JFp[X,Y] — IFp[[t]] K
(X,Y) — (g9,%)

where E resp. A are the expansions mod p of g resp. A

Accordingly, putting Zq_1 =-Y , we may consider
€' @ JFP[X,Z] —> JFp[[t]] .
(X,2) b— (alﬁ)
By (11.5), ﬁd(x,Y)— 1 lies in ker £ .

12.1. Theorem: ﬁd(X,Y)- 1 generates ker e .

Proof: A priori, ker € is a non-maximal prime ideal. Therefore,

by dimension reasons, we only have to show Fd(x,Y)- 1 is

irreducible. This follows from (11.7) as in [18]: Suppose

fd(X,Y)-1 = R-S is a non-trivial factorization. Writing

R= I Ri r S = I S. as a sum of its isobaric components (of
ism jsn

course, the weight of X 1resp. ¥ 1is g-1 resp. q2-1),we have

RmSn = Fd . Since m and n are > 0 and Fd is square-free,

{R ,S ) =1.From R_S = 0 we derive S = 0 =R
m’“n m n

—1'FRm-1sn ‘n-1 m-1
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and, exploiting the vanishing of the intermediate terms,

Ri = Sj =0 for i <m, Jj < n which contradicts ROS0 ==-1 .
Let now A, € A[X,Y] (resp. B, € A[X,Z]) the polynomial
defined by Ak(g,A) = 9y (resp. Bk(g,h) = gk) . Then
Bk(x,Z) = Ak(x,-zq_1) ;, and from (6.9), we deduce
qk-z qk-J
(12.2) A, =- U<-1]Ak_2Y +Akf1x .

Thus, considered as a polynomial in X, Ak is monic of degree

(@~ 1)/(qg- 1)

12.3. Corollary: Ad = Fd .

Proof: Xd-1 € ker ¢ is a multiple of Fd-1 . Comparing

leading coefficients in X , (11.6 ii) shows they are equal.

12.4., Coxollary: ker g' = (ﬁd-1)

Proof: (12.3) and the argument in (11.7) shows B, to be

d
square-free which, as we know, implies the assertion.

The next corollary follows as in [16], p. 168.

12.5. Corollary: Let fi € Mp be of weight ki(i =1,2) ,

suppose f, = f, # 0 mod p . Then k, = k, mod (qd-1)

1 1 2

and



- 65 -

Thus M has a natural grading by Z/n , n =g -1 :

— v — m ~
M=o Hi / M, = (k zesz'k)
€Z/n /m
i ksi mod n
Let further H° = @ ﬁg , 70 - (¢ A

+ xez PrK
k2i mod n

~

12.6. Theorem: M is normal (i.e. integrally closed in its

quotient field).

Proof: We are going to show: The affine curve defined by

ﬁd(X,Z)- 1 = 0 is non-singular. As M sin[x,Z]/(ﬁd(x,Z)- 1)
this will prove the assertion. We have B1(X,Z) = X and
BZ(X,Z) = [1]Zq-1+xq+1 which shows the non-singularity of
B, =1 for k = 1,2 as well as that of §k = 1 . Consider now
the case k 2 3 . From (12.2}, we derive
(%) S B (X,2) = 0 = 9 g (X,2)
X Tk 3% "k

is equivalent with the system of equations
(%) 3 d k-2

3% Pk-2 3% Pk-1 (k-1] 29 (a-1

= 0
d 9 k-1
3% Bx-2 37 Bk-1 xd
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Using Lemma 12.7, the determinant of the 2 x 2-matrix is a

monomial in 2 . Thus, (*) implies at least 2 = 0 . Now we

apply induction to the assertion

"(*) implies X =2 = 0"

which is satisfied for k = 3 . Let k > 3 , and assume (%) . By

(%) , TR Bk_1xq = 0 = 3% Pk-1 x4 » and either X = 0 or

9 _ _ 9 . . . .

5% Br-q = 0 = 37 Br-1 which in turn, by induction hypothesis,
implies X = 0 . Thus in any case, (*) implies X = 2 = 0 . Since
(0,0) does not lie on Bk(x,z) = 1 , this curve is non-singular.

If 2 sksd, [k-1] # 0 mod p, and the above argument works modp ,

thereby proving the non-singularity of ﬁk(X,Z) =1 .
12.7. : = 2 2 - 3_ ’
- Lemma: . Let. .Vy = 3% Pk-2 37 Bk-17 3% Pk-1 32 k-2 -

- q-2

Then V3 =-[1]12 , and for k 2 3
k-2
== [k = q (g=-1)
Vk+1 [k 1]2 Vk .

Proof: (12.2) and an easy induction.

12.8. Remark: From (12.6), the normality of various subrings of

M results, e.g. ﬁo, ﬁo , and ﬁg

coverings of affine algebraic curves over :Fp may be geometri-

are normal. The corresponding

cally described in terms of modular curves. For example,
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= affine j-line over ZFp minus { supersingular values

This is analogous with results in the number theoretic

case, e.g. [14] or [15].

12.9. Examples:
(i) Let d =degp=1.Then g =1, ﬁo =]Fp[K] , and
M=mw [h] .
p[ ]
(ii) Let d = 2., From thx,Z) = [‘I]Zq-1+}{q+1 we see

(1ii)

= -1, =¥, (3] , and N =T, (3,K) , where
[1]Hq"'1 +:’é_‘q+1' = 1

2
Let d = 3 . We have B;(X,2) = [21xz9(a-1) | rq11x9 291,

2
x4 *q+] thus the full set of relations between a , b,

and & .
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Index
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2.1 e

A
2.3 ¢, + End.(G)) , T, ci{t}
2.5 Drinfeld module
2.6 log, » oy + By , ai(a,A\
2.7 Y;
2.8 Eisenstein series E(k)(A)
3.4 Gk,A
3.5 Goss polynomial
4.1 Carlitz module p, ©, L, e, t , Gy
4~2 [i] r D. Fi L-

i i .

4.5 a—~th cyclotomic polynomial fa(x)
5.1, g, &, 3, @, T
5.7 modular form, weight, type, Mi , M, Mo
5.11 Poincaré se;ies
6.1 ta
6.4 ma) , m%(a)
6.6 product function U
6.8 I
7.1 Hecke operator Tp
8.2 E
8.5 @G , @
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s = tq_1 ' Ud

Hasse invariant H{(¢)
Tate-Drinfeld module TD
Fi(X,Y)
Mp , M, e, €'
Ak(X,Y) ’ Bk(X,Z)

M0, 0

Mioo M i
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