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ON THE COEFFICIENTS OF DRINFELD MODULAR FORMS

ERNST-ULRICH GEKELER

Introduction

Let E
k

be the Eisenstein series of weight k , defined on the

complex upper half-plane H . The coefficients of Ek in its

q-expansion (q = exp(2niz)) are given by constant tirnes

0k-1 (n) , where 0k is the arithmetic function defined by

0k(n) = E dk , d running through the set of divisors of n.

Many interesting properties of 0k (and of related arithmetic

functions like Ramanujan's,function T(n) , or the partition

function p(n) ) may be derived from function theoretie and

algebra-geometrie properties of E
k

(or of other modular forms).

These results, which inelude integrality and congruence praperties,

orders of magnitude, as weIl as various "unexpected" identities,

justify to state that the coeffieients of modular forms Iike E
k

,

or the discriminant function 6, contain a good portion of the

arithmetic of Z .

Let now A =F [T] be the polynomial ring over a finite
q

field F in an indeterminate T , and replace ~ by A as ourq

object of basic interest. There is a deep analogy between A

and Z
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A is an euclidean ring;

A is discretely embedded in K ,the completion of
co

K = Quot(A) =F (T) at the infinite place;q

similar to Kronecker's theorem, (abelian) class field theory of

K may explicitely be described by "cyclotomic" polynomials;

etc ..

Arnongst the reasons for investigating A or similar rings, let us

just mention Langlands's program to develop non-abelian class field

theory, or the applications in coding theory.

In 1973, ~aking an attempt to extend the analogy to include modular

forms theory, Drinfeld introduced the notion of " e lliptic module",

nowadays called Drinfeld module. Roughly, the idea is as foliows:

Classical modular forms may be considered as hornogeneous functions on

the set of lattices (+ some extra structure) A c ~ • The set of

similarity classes of lattices is canonically parametrized by

r\H ,where r is the modular group SL(2,~) , or some congruence

subgroup. Now r\H is the set of complex points of an affine

algebraic curve Xr which is defined over an abelian number field,

and modular forms correspond to certainmult~differentialson Xr .

Thus, Drinfeld was led to study discrete rank two lattices Ace,
1\

where now C = Km = completion of an algebraic 910sure K
co

of

Koo replaces the field ~. By means of the lattice function e
A

(which is similar to a Weierstraß p'-function), the Itanalytical"
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object A may be " a l gebraically" interpreted as some sort of

diophantine object, namely a rank two Drinfeld module over C .

(By the ~ay, there is no reason to restrict to rank two A~lattices

A: The rank r of A may be any natural number, leading to rank

r Drinfeld modules. Secondly, A may be an arbitrary function

ring A = O(X) , where X = X,{oo} is the complement of one closed

-point in a 'smooth projective curve X over

classical case, the set of classes of such

lF .) As in the
q

A i5 in bijection with

f\rl , where now n = C\K
00

i5 the IIDrinfeld upper half-plane 11

acted upon by r = GL(2,A)

Now n i5 a rigid analytic space of dimension one over C , and the

function theoretic apparatu5 applies.

There are two different translations of clas5ical modular forms

theory into our context (perhaps converging some' day) :

(i) Representation theoretic point of view. The algebraic

description of Drinfeld modules irnplies the existence of a modular

scheme (a certain A-scherne of relative dimension one) whose

C-points will agree with f\n. Considering Galois actions on (the

cohornology of) that scheme yields l-ad~c repre~entations of

Gal(K:K) . The rnainoresult is Drinfeld's reciprocity law Thm. 2 in

[2] which states a 1-1 correspondence between (certain) Galois

representations of K and (certain) cuspidal automorphic

representations of GL(2,A) , where A is the Adele ring of K.
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As a corollary, a variant of Taniyama/Weil's conjecture is true,'

i.e. each elliptic curve over K having a prescribed reduction

behavior at 00 may be parametrized by some Drinfeld modular curve!

(ii) Function theoretic point of view. Letting A vary with

zEn , the coefficients of the corresponding Drinfeld module

become modular forms, i.e. holomorphic functions n ~ C that

satisfy the usual transformation rule with respect to y E rand

some holomorphy conditions at "CUSpSll. There is a canonical

uniformizer t "at infinityll which replaces q = exp(2niz) and

the t-expansion of a modular form f is defined. Thus we may

study the coefficients of f. The main results known in this case

include product expansions of certain distinguished modular forms

which imply rationality, integrality, and congruence properties

for the coefficients, dimensions of spaces of modular forms, and

sorne statements on the geometry of the algebraic curve associated

wi th r \ n , see [7]. .

The results mentioned in (i) and (li) are of a general nature and

do not make use of ',A =F [Tl, i.e. are valid for A = O(X)q

arbitrary. The aim·of this paper is to get a better understanding of

the expansion coefficients, now restricting to the special case

A =F [T] as defined above, and considering modular forms for the
q

full group r only. In that case, there are two distinguished

modular forms 9 and 6 that have integer (i.e. in A)

coefficients, and the C-algebra MO of modular forms of type zero
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is the polynomial ring C[g,6] generated by 9 and 6. (This

result has first been obtained by D. Goss [11].) Hence we are

forced to investigate 9 and 6 . In [5], we proved a product

expansion for 6 which is entirely analogous with Jacobi's

formula for the discriminant function of elliptic curves. From

this formula, one derives the existence of a (q-1)-th root h

of -6 as a function on n. Its transformation law involves the

deterrninant character det: r ~~* . This leads to an extension
'q

of the definition of modular form (compared to that given in [11]

or [7]) which is necessary even for a full understanding of 9

and 6.

We will systematically use.the series Gk,A(X) of Goss poly­

nomials of a (finite or infinite) ~ -lattice Ac C • Remember the
q

occurrence of 0k(n) in the q-expansion of classical modular forms

comes from the formula

( ... ) E
nf.~

-k(z+n)
(-2TTi)k= (k-1) ! E

n2: 1

k-1
n

nq

which is valid for k 2: 2 . Now, as Goss observed, if A is a

-kdiscrete ~q-submodule of C, the surn 8 k ,A = E (z+a) (a

running through A) is a polynomial Gk,A of degree k in the

merornorphic function 8 1 ,A. This already gives first results on

the expansions of Eisenstein series E(k) , and on the Hecke

eigenvalues of 6 [11]. As we shall see, the Gk,A are a good

substitute for (*). But note there is no number theoretic counter-

part of Gk,A if A is finite since ~ has no finite subgroups.
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Specifying the generating function k
G = E Gk(X) U , we are able

to compute Gk which yields a particularly simple formula in the

most interesting case where k is of the form qi_ 1 • The

resulting coefficients of E(k) are slightly more complicated

than 0k(n) . They involve arithmetic functions like

i
[i] = T

q T = product of monic primes of degree dividing i, or

D. = product of all monics of degree i
1.

They are further related with the "cyclotomic" polynomials f (X)
a

(a E A) which are true analogues of 1 - Xa (a E~) • Using the

that correspond to certain finite ~ -lattices (groups of
q

torsion points cf the Carlitz module), we are able to describe the

effect of Hecke operators on the t-expansions (which was unknown

befare). As should be remarked, aur Hecke operators behave rather

differently fram the number field case. For example:

9 (cf weight q-1) and (of weight 2q -1 ). possess the same

eigenvaluesi

there is no Euler product for the coefficients of eigenforms,

due tc the fact that the set cf positive divisors of A does

not agree wi th :IN •
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In order to relate additive and multiplicative expansions of

modular forms, we introduce the differential operator a on the

ring M = e[g,h] of modular forms (any weight and type) whose

definition relies heavily on the product for 6 . We are giving

three different characterizations of the form h :

(a certain Poincare series) i(ii) h = Pq+1 ,1

h = ag , and sketch a fourth one related to modular forms

h = q-1.;=-E.(i)

( iii)

for congruence subgroups. Besides giving an' identity of two a

priori entirely different expansions, this solves the problem of

determining the expansion of Pq+ 1 ,1 which had been defined in

[ 8] •

Let now p be a fixed prime ideal of A of degree d I and let

M the ring of modular forms having expansion coefficients in Kp

with denominator prime to p. Let further

M = {! E AI p ( (t) ) I 3 f E M s . t . f mod p e f} be thep

Alp-algebra of modular forms mod p. In [18], Swinnerton-Dyer has

determined the structure of the number theoretic counterpart of

M , involving a prime number p > 3 • His result is in short:

(*) E 1 a 1 (reduction mod p of the Eisenstein series ofp-

weight p-1 , and (*) is the only relation, i.e. each congruence

mod p is implied by (*). In our case, we first define the Hasse

invariant H lIin characteristic pli. H is a modular form mod p

that measures the group of p-torsion points of a Drinfeld module.

Dur results concerning Mare:
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(A) gd ~ 1 mod p ,where gd is the normalized Eisenstein

series of weight qd_1

(B) H 8 gd mod p

(C) if Bd(X,Z) is the A-~olynomial such that Bd(g,h) = gd ,

and ~ denotes reduction mod p ,

(Alp) [X,Z]/(Bd-1) ~ M ,where X resp. Z maps to 9

resp. h mod p •

Note the differences with [18]: a result corresponding to (C)

is first proved for H , then we use (A) and (B) to get (C).

Further, there are no special primes like p = 2,3 in number

theory. Going deeper into the modular theory of Drinfeld modules,

"a geometrie description of Spec M might be given. Suffice to

say for the moment that M is normal, i.e. a Dedekind ring.

The plan of the article is as follows: in the first two sections,

we fix notations and give the necessary background of Drinfeld

modules and lattice functions. Next, the notion of Goss polynomial

for a lattice is defined which will be our basic technical tool

in various situations. After having introduced the Carlitz module

and the relevant arithmetic functions (i.e. the one-dimensional

theory), some important exarnples of modular forms are given, and

the ring of modular forms is described. In section 6, we derive

the t-expansion of Eisenstein series and draw some conclusions.

By means of the coefficient description of Hecke operators given
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in section 7, we easily determine the eigenvalues on ß (first

obtained by D. Goss) and on h. Next, we introduce the "false

Eisenstein series" E and use it to define the differential

operator a by which we relate g and h . Section 10 presents

computations of the t-expansions of the product function U and

of the functions E,g,h,g2 and ß to the (roughly) 3, up q -th

(or 4
q -th) term, the bound depending on the function in question.

These computations are valid independently of q . Finally, in the

last two sections, modular forms mod p are investigated, and the

assertions (A), (B), (C) are proved.

The congruence results may (possibly) be generalized into two

directions:

(i) consider congruence subgraups r l of r

"with levellI;

i.e. modular forms

(ii) replace A by a more general function ring O(X) as

indicated above; i.e. take the point of view of [7J.

Whereas (i) should cause no serious problems, still same work will

have to be done fo~ (ii). In order to define the expansion of an

algebraic modular form, one has to consider a farnily of Tate­

-Drinfeld modules TD(a) ,where a runs through the ideal class

group of A. But TD(a) , which will have its coefficients in the

normalizing field of A (notations as in [7]) , will not be

defined canonically. Thus, one arrives at a problem of
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- l

normalizing TD(a) .(as weIl as the Hasse invariant) that still

has to be solved.

Occasionally, our methods involve some easy analysis in C like

convergence of infinite sums, interchanging summation orders etc ..

The philosophy is not to worry about such questions, nearly

everything being clear from the non-archimedean property of C .

Let me finally confess that I regard as a non-trivial problem to

find adequate terminology for the theory presented here. Good

notation should be a) consistent; b) simple; c) reflect the

classical notation, whenever possible, and d) be in accordance

with some basic articles like [2], [7], or [12]. Unfortunately,

these conditions seem to conflict, and I had to make a compromise

which, perhaps, may appear unsatisfactory. For compensation" I

added an extensive index for symbols with a global meaning.
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1. Notations

Let ~ be the finite field with q elements. Throughout the
q

paper, A =Fq[T] and K =~q(T) denote the ring of polynomials

and the field of rational functions in an indeterminate T ,

respectively. On K , we consider the degree valuation deg:

K -->- 2tU{-oo} x ~ deg x associated with the infinite place " 00 "

of K. The corresponding absolute value' 111 I" is normalized by

ITI = q . Completing K with respect to I, we obtain the field

K = ~ «T- 1 ) ) of formal Laurent series in T- 1 ,. The absolute
00 q

value I I has a unique extension, also denoted. by I, to an

algebraic closure K
00

of Koo • The completion C of K
00

is an

algebraically closed complet~ valued field of positive character­

istic, determined up to isomorphism by its value group qW cm,

and its residue class field ~ = alg.
q closure of

For a ring Rand r ER, R* , (r) , R/r denote the

multiplicative group, the principal ideal generated by r, the

factor ring R/(r) respectively. Further, (r, s) is the g.c.d.

of r and s , and rJs means r divides s . If f is apower

series in t , f = o (tk ) says f is div:i:sible by t
k
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2. Review of Drinfeld modules and lattices

By an ~ -lattice (resp. A-lattice) in C, we understand anq

F -submodule (resp. A-subrnodule) 1\ of C having finite inter­
q

section with each ball B c C of finite radius. For such A,

we define the lattice function

( 2 • 1 ) zTT '= (1-z/:\)
:\EA

,

I

where as usual, n (resp. LI)" denotes the product (resp. sum)

over the non-zero elements of a lattice. The product converges,

locally uniformlyon bounded sets in C, and defines a function

eA: C~ C whose essential properties are surnmarized as follows:

(2.2) (i) e A is entire (in the rigid analytic sense) and

surjective;

(ii) e A is lF -linear and A-periodic;q

(iii) e A has simple zeroes at the points of A , and no

further zeroes;

(iv) if A,A' = cA (c E C*) are similar lattices, their

functions are related by ceA(z) = e~ (cz)

deA
dz = eh = 1 , so we have the identity of rnero-

morphic functions

1/el\(z) = eA(z)/el\.(z) = L 1/(z-:\) (:\ E A) •
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All of this is easily seen by first assuming A to be finite,

then choosing an e~hausting sequence A. c 'A consisting of
1.

finite sublattices and going over to the limit. Let now A be an

A-lattice of rank r, and 0 * a E A • In the diagram

(2.3)
e

O~A~e~e~O

a

v

O~A~e~e~O,

the map ~ = ~A is uniquely determined by cornmutativity. In fact,
a a

~ is an additive polynomial, and $A: a ~ ~A defines a ring
a a

homomorphism of A into the ring Ende (Ga) of additive poly-

nomials over e. Ende (Ga) is the non-cornmutative ring of poly­

i
nomials of the form E a. xP (p =: char (lF )) , where " multiplication lt

1 q

is defined by substitution. Let T = xq and C{T} C Ende(Ga )

the subalgebra generated by T , i.e. the non-commutative poly­

nomial ring in T with the commutator rule ZqT = TZ (Z E C)

Then ~A takes values in C{T} , and for a E A of degree d, we

have

(2 • 4) i
~ = E ~.T

a O:;;ji:;;jrd J.

where (i) i O = a and (ii) i rd * 0 .
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(2.5) For an arbitrary field Lover A (e.g. L = K , or

L = Alp , where P is a maximal ideal of A), a ring homomorphism

$ A~ L{T} satisfying (2.4) is called a Drinfeld module of

rank r over L. By means of ~ , the additive group scheme G
a

over L gets a new structure as an A-module. An element x in

some extension field of L which is annihilated-by rt- is called't'a

an a-division point of $. The a-division points constitute a

finite A-submodule scheme of- G
a

of degree

(2.6) Now the above association A~ ~A is a bijection of the

set of A-lattices of rank r in C with the set of Drinfeld

modules of rank r over C , i.e. one may reconstruct A by

means of ~ = $A First observe the power series expansion

re~ulting from the Fq-linearity of eA. By eh = 1 , there

exists a composition inverse

i
lo9A(z) = E ßiz

q

which has a positive radius of convergence. Let d = deg a > 0

and

i
~ (z) = E 2. zq

a . i:;;rd J.
2. = ~. (a,A)

J. J.
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Applying logA on both sides of eA(az) = ~a(eA(z)) , we

obtain

a log A(z) = logA( 4> a (z)) ,

i.e. for k ~ 0

(2.7)

which, in view of ~O = a, gives a recursive procedure for

camputing the fram 4> • Finally,a
AI is determined as the

set af zeroes of e A = cornpositian inverse of

i
E ß.zq

1.

(2.8) We still need another type of lattice invariants.

Write z/eA(z)
i= .E y.Z . Now

1.

z/e/\ (z) = z E 1/(z - A)

= E 1/(1-A/Z)

(A E /\)

= 1 - EI (z/A)/(1 - Z/A)
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where E (k) (1\) = E'. A-k is the Eisenstein series of weight k
XE/\

for 1\. An easy induetion shows:

(2.9) For k i
j = q - q , we have

i\
y. = Sqk .

J -~

Put ting E ( 0 ) (1\) =-1 and using (2.7) , we obtain the important

relation, valid for k ~ 0

(2.10)
k

a.E(q -1) =
i i

E E(q -1},.Q.,~

i+j=k J

all the terms involved depending on A •

3. Goss polynornials

For eonvenienee, we first reeall the weIl known Newton formulae

for power sums of the zeroes of a polynomial. Let

a 1x+a-n- n

be a monie polynomial over an arbitrary field, and let Sk be

the sum of k-th powers of the zeroes of f (multiplieities

eounted). Then the following relations hold for k E m :

(3 • 1 ) (k :;; n)

+a S +aS =0k-n+1 k-n+1 k k-n (k ~ n) •
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be a fixed F -lattice in C which we first assurne. q

to be finite, of dimension m over. JF • Putq

(3 .2)

and

e(z)
1

= z n (1 - Z/A) =
AEA

i
L a, zq

'C' ~;L..,m

t(z) = tJ\(z) = L 1/(z-;\)
-1= e A (z)

The polynomial e(X-z) = e(X) -e(z) over C(z) has

{z + A I A E A} as i ts set of zeroes , whereas { 1 / (z + A) I A E A}

appears as the set of zeroes of the "inverse polynomial ll

m
t(X) = e(x- 1 - z)Xq

E C(z) [xl. From a. = 1 results the leadingo
coeffieient - e (z) of 1 (x) , so

m
f(X) =-e- 1 (z).e(x- 1 -z)xq

m m i
= xq L ta . xq - q

OSiSm ~

is monie, and we may cornpute sk = Sk, A = E (Z + A) -k via Newton.

Putting So = 0 , we obtain for k ~ 2

(3 .3)

where the SUfi involves those 0., with
~

i
k - q ~ 0 only. Note

this includes both cases of (3.1). If A i5 no longer finite,
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we still define Sk· by the same forrnula. The surn is easily seen

to converge outside of A , defining a rneromorphic function on

e with poles at most at A.

3.4. Proposition ([12], eh. VI): Let A be a not necessarily

finite ~q-Iattice in e. There exists a polynomial Gk = Gk,A

with the following properties:

( i) Sk = Gk (t) , where t = t
A

= S 1 , A i

( ii) ik - q ;;; 0

(iii) Gk is monie of degree k

(iv) Gk (0) = 0

(V) k :s q .. G = xk
k

(vi) Gpk = (G ) P , P = char (~ ) ik q

(vii) X
2

G ' (X) = kGk + 1 .k

Proof: Assume first A to be finite. The existence of G
k

and

(i) - (v) then follow from (3.3). We further have

For (vii) , we cornpute
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d
dz Sk,A'(z) = - kSk+1 ,11. (z) = - kGk +1 (t)

the other hand, dt d -1 -2 2 thusOn dz = dz. e A (z) =-e (z) = - t
/I.

d
Sk,A(Z) Gk(t) dt = _ t 2G' (t) Let 11. be infinite,

dz = . nowdz k

a sequence of finite sublattices with U A. = 11. ,
1.

and let e., t., Sk ., G
k

. the objects corresponding to A.•
1. 1. ,1. ,1. 1.

Elernentary estirnates show

a) e i ~ eil. locally uniformly as functions on C

b) Sk,i ~ Sk uniformlyon closed balls which are disjoint

from A.

This in turn implies the coefficientwise convergence of

against a polynomial Gk having the propertie~ stated.

Gk .
,1.

(3.5) For each lattice A , we call Gk,A(X) the k-th

Goss polynomial of 11. (k ~ 1 ) . We further put GO = 0 . Now fix

11. and consider the generating function.

G(U,X) = E Gk(X)Uk

k,=O

(3.4 ii) translates to

·G(U,X) - XU = XU 'G(U,X) + Cl
1

XUQG(U,X) + ... ,



i.e. G (U I X,) =

-.20 -

XU
2

1 - XU - Cl XU
q - Cl XU

q
-

1 2

(3 • 6)

3.7. Example:

xu= 1 - Xe A (U) •

Let A = JF • A be one-dimensional, so
q

, Cl
1-q= - A , .and

G(U,X) = xu E (u + ~uq) j xj

j~O

= xu L E (1) uj-iaiuiQxj
j~O i~O

= XU E E (k-i (Q-1) ) a i xk- i (q-1)Uk

k~O 'i '= 0

Thus G (X) = L (k-~(q-1)) a i xk - i (q-1)+1 .
k+1 OSiSk/q 1

Proceeding similarly, we get for an arbitrary lattice A with
i

e A = E uiz
q

(3 .8)

Here i = (i O' ••• ,i) runs over the set of (s + 1)-tuples
- 5

( 5
, ".

arbitrary) satisfying i O +, • • • + i = j. s and
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denotes the multinomial coefficient j!/(iO! ... i s l) •

3.9. Corollary: Let A be of finite dimension m over :lF
q

is divisible by Xn where -mn = [kq ] + 1 •

It seems difficult to evaluate the sums occurihg in (3.8) .

in general. However for special k, we can say more.

-function (see(2.6))

k = qj - 1 , we have

3.10. Proposition: Let A be a~ lF -lattice in
q .

1

logA(Z) = E ßizq • If k

C with log-

is of the form

Proof: We put

we have to show

P(X) = G (X- 1 )Xk + 1 and
k

P(X) = Q(X) . Now both

Q(X) =
P (X)

i
E ß.Xq
.. ~

~<J

and Q(X)

, so

are

polynornials of degree < qj , and it will suffice to see that

P(e(z)) and Q(e(z)) agree as power series in z up to the term

of order qj - 1 (e = e 1\ the lattice function of A) . But

P(e(z) ) -1 qj (z)= G (e (z))ek

j
= e q (z) L

AEA

1-qj
(z - A)

q j 1-qj 1-qj
= e (z) (z + EI (z - A) )

The sum E' contains no terms -iz with negative exponents, and

j j j
e q (z) = (z+ ••• )q = zq + ••• , so

j
P(e(z)) = z+o(zq) .
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On the other hand, Q(e(z)) = E
i<j

Q is the partial SUffi of logA .

. . i
ß. (e(z))q

1.

j
= z + 0 (zq ) for

.
3.11. Corollary: Let s * 0 be fixed. Then

E
cE JF

q

1-qj
(z - es) =

i j i
E s1-q t(z)q -q

OSi<j

where t (z) = 1/ (z - s 1-q z q) •

Proof: This is the case A =W ·s , noting thatq

and logl\(z) = E
i~O

i i'1-q q
s z •

4. The Carlitz module

( 4 • 1 ) The most important Drinfeld module for -A =F [T]
q

is

Carlitz's module p of rank one, defined by

It has been studied by several authors, e. g. [1], [1 3], [9]. Under the

bijection of (2.6), P corresponds to a certain one-dimensional

-A-lattice L = TT A where the " period ll
TT is well-defined up to

an element of Aut (A) = F* , i. e . a ( q - 1) - th root of unity. We
q

choose one such TI· and fix it once for all. In the sequel,

e ( z ) = e
L

( Z ) ,
-1 - - -1 -1t(z) = e L (TTZ) = TI eA (z) and will
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always denote the functions associated with L . Then t(z)

will play the role of the exponential function exp (2n i z )

in the classical context. In order to describe these functions,

we have to introduce some A-valued arithmetic functions. For

i E:IN' , put

i
(4.2) [ i ] = Tq -T

1-1
D. = [i][i-1]q ... [ 1 ] q
~

Li = [i][i-1] ... [1] ,

and 0 0 = L O = 1 . Then Ei] equals the product of all monie

primes whose degree divides i, D. the product of all monies of
~

degree i , and L.
~

the R..c.m. of all monics of degree i .

As is easily verified from (2.7) ,

i
(4 • 3) e(z) = l: -1 q

andD. Z

i;;;O 1

(-1) i~L -:-1 zq
i

logL(z) = L
i;;;O ~

Note the difference in sign with [9], due to the modified de-

finition of the Carlitz module. Let now a be an arbitrary

non-zero element of A, and i
p = l: R.. (a)T . Froma ~
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9..';1 1 - 9... 11.- 1.-

[ i ]
(i ~ 1)

results. Prorn 9.. 0 = a , we see for O~i$d

"

(4.5) deg R..
1.

. d i= (d- i)q1. $ (q - q )/(q- 1) •

Define the a~th eyelotomie polynomial f (X) E A[X]
a by

(4. 6)

eonsidering Pa as a polynomial in X, i.e. replaeing T by

xq . Then f (X) has degree lai - 1 , leading eoeffieient a,a

and fa(O) ~ leading eoeffieient of a. Aetually, f a is a

Xq-1polynornial in . For example, f
1

(X) ~ 1 ,

2 2
fT(X) ~ TXq - 1 + 1 , f 2(X) ~ T2Xq -1 + (Tq + T)Xq -q + 1 .

T
In the following fQrmulae, let a,b E A , a monie,

dl ~ deg b < deg a·= d.

(ii)

(iii)

d d l

f = f
a

+ Xq -q f
ba+b

k = (qd+ 1 - 1) (q - 1)

k = qd (q - 1) •

Here, (i) is obvious, (ii) follows from (i), and (iii) from
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The reason for investigating P comes from the next theorem.

4.8. Theorem [13]:

(i) The-roots A of Pa generate an abelian extension

K(a) of K with Galois group (A/a)*.

(ii) If ob corresponds to the residue class of b mod a

then ob ( A) = Pb ( A) •

(iii) The fixed fie1d K (a) of W* ~ (A/a)* (a assumed
+ q

non-constant) is the ray class field of a, i.e. the

maximal abelian extension of K that sp1its completely

at 00 and whose conductor divides a.

Note that K(a) = splitting field of f a (resp. K+(a) = splitti?g

field of t a ' where f a (X
q

-
1

) = fa(X», and K(a) : .K+(a) is

unramified at finite places and totally ramified above 00

Although we do not need all of them, we will write down same

-formulae for the period TI of p:

(4. 9) - q-1 = [ 1 ] E(q-1)(A) = (Tq - T) E I
1-q

TI a i
aEA

(4.10) - q-1 [ 1 ] n q-1
TI =- (1 - [i]/[1 + 1])

i~1

(4.11) - q-1 =- T
q 1im n (a/Tdeg a q-1

TI ) .
N-+oo O*aEA

deg a~N
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Formula (4.9) is an easy consequence of (2.8) and is analogous

2 -2with Euler's formula (21Ti) =-12 E' n . A proof of (4.10)
nEZ

may be found in [9], whereas "Wallis's formula" (4.11) 1s proved

in .[7]. Further, an old result of Wade, considerably generalized

by Yu [19], asserts the transcendence of 1T over K.

5. Modular forms for GL(2,A)

(5.1) Let us now consider the rank two case. A rank two Drinfeld

module ~ is given by

o 2
~T = TT + g1' + 6.1'

where 9 and ß * 0 are elements of C. It corresponds to a rank

two A-lattice Y = Aw ~ AW 2 in C .
w1 ,.w2 1

Define j = j(~) = gq+1/ ß •

Replacing Y by·some similar lattice A·Y (A E C*) will change
2

(g, ß) to (A 1- q g, A1- q 6) but will leave j invariant. Thus,

considering g ,6 , and j as functions of (w 1 ' w2 ) , we may

restriet to pairs (w
1

' w
2

) = (z,1) . The discreteness condition

on Y translates to the condition "{W
1

, w
2

} Koo-linearly

independent 11 , i.e. z = w1 /w 2 lies in n = lP 1 (C)~lP1 (Koo ) = C~Koo

On the "upper half-planell n, the group GL(2, K) acts by
00

fractional linear transformations (~~) (z) = (az + b) / (cz + d)
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Let Y = Az ffi A the lattiee eorresponding to zEn Twoz

elements z, Zl define similar lattiees (i.e. isomorphie Drinfeld

modules) if and only if they are equivalent by f = GL (2 ,.'A) •

Therefore,

(5.2) f\n = set of isomorphism elasses of

rank two Drinfeld modules over C

-
--+ C

Next, we introduee the "imaginary part"

z ~ j (z) •

jz[. of z E C •
1.

Put Iz li = inf Iz - x I (x E K
co

) , and for c in the value group

q~ of C, nc = {z E nj Izl i ~ c} . Then Izl. = 0 is equivalent
1.

with z E K , and an easy computation shows
co

(5.3) Iy z 1i = Idet y 11 ez + d 1-2 I z I i

for y = (~ ~) E GL(2, Km) • We still have to say a few words

about the analytie strueture on n .

5~4. Proposition:

(i) n has the strueture of a conneeted admissible open sub-

space of the rigid analytic spaee lP
1

(C) •

(ii) n is an open admissible subspace of n .
c
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GL(2, K) acts as a group of analytic automorpisrns on
00

n . (In fact, PGL(2, K )
00

is the full group of auto-

morphisrns of n.)

For a proof, see [8], IV, sect. 1, [3], or [1 7], eh. I.

Intuitively, IzI
1

rneasures the distance "to infinitytl. We

can make th1s precise.

5.5. Lemma: There exists areal constant Co > 1 such that

for 1z I. > 1 , we have 1z I· :;; - log It (z) I s Co 1z I· ·
~ ~ q . ~

Pr~of: t- 1
(z) = eLen z) = TI e

A
(Z) , so let us cornpute leA(z) I •

This latter being ~-invariant, we rnay assurne Izi = Izli > 1 .

Let Izl = qd-c, 0 ~ c < 1 , dEm. Then

Iz I TI I (1 - z/a) 1= 1z 1
O*aEA

laj$lzl

TI
lal<lzl

Iz/al
d

= Iz[q / TI Jal
. deg a<d

Counting the number of a with a given degree and noting

10gqlTil = q/(q-1) gives -logq[t(Z) I = qd(q/(q-1)-c) . Now

-c -c
always q :;;; q/ (q - 1) -c :;;; co· q for sui table cO' thus the

result.

From (5.5) we derive
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5.6. Corollary: Für c > 1 , tinduces an isomorphism of

A,n
c

with some pointed ball B .... { O} •
r

Thus, we may use t(z) as a uniformizing parameter "at infinity",

similar to the use of q(z) = exp (2niz) in the classical case. We

are now ready to define modular forms .

. -. 5. 7-.- Defini tion: A function f: n --?o- Cis called a modular

form of weight k and type m (where k ~ 0 is an integer and

maclass in 'EI (q - 1» , if the following conditions are ·satisfied:

(i) if y = (~ ~) E r = GL(2, A) , then

f(yz) -rn k= (det y) (cz + d) f(z)

(ii) f is holomorphic;

( iii) f i5 holomorphic at infinity.

Let us explain the last condition. By (i), f(z + b) = f(z) for

b E A • Now (iii) says: f has an expansion f(z) = 1(t(z»

with respect to t , where 1 i
(X) = E a.X

~
is apower series with

a positive radius of convergence. The zero order of f at infinity

is defined to be that of 1. Let be the C-vector space of

modular forms of weight

hence M = (f)
k,m

and

rn • Obviously,

are graded C-algebras.

5.8 Remarks:

(i) M~ * 0 implies k E 2m rnod (q - 1) • In particular, if q
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is odd, k always will be even.

(ii) Each modular form of zero weight is a constant, aS,results

from the geometry of n as a "Stein domain ll [8].

(iii) The expansion f(z) i:::: L a.t (z)
1

will in general not

converge on all of n but only for lt(z) I small, i.e.

lzl. large. Nevertheless, n being connected in the rigid
1

By abuse of language, we often write

analytic sense, the coefficients a.
1

fully determine

f :::: L a.t i
1

f .

(iv) Due to the occurrence of non-trivial types, the definition of

order at infinity is different from that in [7].

5.9. Example [10]: Let E(k) (z) :::: E(k) (Y ) ::::
Z

-kL I (az + b)
a,bEA

be the Eisenstein series of weight k. Then (i)· (with m = 0 ) and

(ii) are easily verified, and (ii1) will follow from (6.3). Hence

E(k) E M~ •

5.10. Example: Expressing 9 and 6 through.Eisenstein series

(see (2. 1 0» shows 9 (resp. 6) to 11e in M~', where k = q - ,

(resp. 2q - 1) • Therefore, (5.2) actually comes from an isomorphism

of analytic spaces. The same argument works for the forms .R... (a, z)
1

where a E A and

ik = q -, •

iep = L .e.. (a, z) T • Thus
a 1

.e. i E M~ , where

5.". Example [8J: We are obliged to present an example where

{( *o *,)}m * O.Let H be the subgroup of r, and
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y = (~ ~) Er. Observe:

(i) -rn ka(y,z) = (det y) (ez+d) is a faetor of automorphy,

i.e. a(yo,z) = a(y,oz)a(o,z)

(ii) H\f ~ {(e,d)je,d E A, (e,d) = 1}

y ~ (e,d)

(iii)
-1 Ina (y,z)t (yz) depends only on the elass of y in H\f •

Thus the Poineare series

Pk (z) =,m
-1 mE a (y,z)t (yz)

yEH\f

i5 holamorphie of weight k and type m mod (q - 1) , provided

the surn con~erges and behaves weIl at infinity. For k > 0 , this

is easily shown using (5.5). Further, P is non-zero if k > ° ,k,rn

k 2 2m mod (q - 1) , and m $ k / (q + 1) .

The next theorems completely describe the structure of MO

M as C-algebras.

resp.

5.12. Theorem [11]: MO is the polynomial ring generated by g

and 6..

5. 13 . Theorem: Let h be the Poincare series Pq +1 ,1. Then M

is the polynomial ring C[g,h] .
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Let us roughly sketch a proof cf (5.12) and (5.13) . The stabilizer

group r z of zEn in r is of order q2 - 1 if z is

r-conjugate to an element of ]Fq:2 ce, and of order q- 1 if not.

Such a point is called an elliptic point of r. For non-zero

f E M~ , the following formula holds:

(5.14) z* v (f) + vO(f)/(q + 1) + voo(f)/(q- 1) = k/(q2 - 1) ,
zEf\S1 z

where on the left, we are surnming over the non-elliptic equivalence

classes of zEn, and vz(resp. v O' resp. V oo is the order of

f at z '(resp. at the elliptic points, resp. at 00) • This may

be proved either by a rigid analytic analogue of contour integration

(see [8], p. 302), or by employing the relationship between modular

forms and differentials on the modular curve f\n u {oo} ~ pro-

jective j-line [7].·

We have

(5.15)

(i) vO(g) = 1 , V z (g) = 0 , non-elliptici

(ii) v (h) = 1 , v (h) = 0 z * 00
00 z

(iii) v (~) =.q-1,' v (~) = 0 z * 00 .
00 z

Statement (i) is clear from (5.14) as 9 has to vanish at elliptic

points. Further , h being of type m = 1 , v 00 (h) B 1 mod (q - 1)
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which shows v (h) ~. 1 if q * 2 , so (ii) comes out. (In case .
co

q = 2 , the argument is a little bit more involved, see e.g. (9.1).)

(iii) follows from v (l\) = 0z (z E rn Now (5.12) and (5.13) are

easy consequences of (5.14) and (5.15).

5 • 1 6. Corollary: 6 = constant times q-1h •

Itwill be one of our objectives to determirie that factor. Let us

finally note another consequence of (5.14):

5.17. Corollary: Any non-zero f E M~ is determined by its first

n coefficients, where n = [k/ (q + 1 ) J + 1 • (Here, [ J = greatest

integer function.)

6. t-expansions

Let us first mention the product formula, proved in [5J, of the

"diseriminant funetion ll I::. introdueed in the last seetion.

2 2
6.1. Theorem: TI 1-q 6 (z) =- t q - 1 n f (t) (q -1) (q-1)

a .
aEA monie

the product eonverging normally for Izl. suffieiently large.
1.

Next, we derive the expansions of Eisenstein series with

respect to t. For non-zero a E A , let

t (z) = t (az)a

An easy computation shows

-1 -= e
L

(naz)
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t = tlnl/f (t)
a a

as apower series in t with eoeffieients in A. For

k 4; 0 mod (q - 1) , E (k) vanishes. Thus let k - 0 mod (q - 1)

Then

E (k) (z) = E I (az + b) - k
a,bEA

= L' b -k - L E
bEA a monie bEA

-k(az + b)

= TI k E (k) (L) - :rr k E E (TI az + TIb) - k

By (2.8) and the definition of L = 7TA E (k) (L) E K . Further,

E - - -k G
k

(t (z) ) hence(nz + 7Tb) =
bEA

(6.3) :rr-kE(~) (z) = E (k) (L) E Gk(ta )
a manie

6.4. Examples:

k Expansion of - -k (k)
lT E

q - 1 [ 1 ]-1 -E q-1t
a

j (q - 1) ,j ;:;; q (-1)j+1[1]-j -L: G.( 1)(t)] q- a

2 -1 2 2
q - 1 -L -E (tq ~1_[1]-1tq -q)

2 a a

3 -1 3 3 3 2
q - 1 L) -E (tq -1 _ L- 1t q -q + L-1tq -q )a 1 a 2 a
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The sums on the right are over the set of monics in A , and

G
j

(q_1) is the Goss polynomial associated with L. In our case,

it is

Gj (q-1 ) (X) -

The constant terms in the table are easily computed using (2.8) .

Note that in both (6.1) and (6.3), for each fixed exponent

i of t, only a finite number of a contribute. Therefore, ß

and the E(k) get rational (i.e. in K) t-expansion coefficients

-if divided by TI to their weight.

From now on, we adopt a different notation for 9 and fi , narnely

gnew = - 1-q
1f gold

- 1-q2
ß = 1f ßnew eId

Let M(A) (resp. MO(A)) be the A-algebra of modular forms having

q-1i ts coefficients in A. Then by g = 1 + ••• , lJ. =- t + ••• ,

the next corollary results.

6.5. Corollary [11l: MO(A) = A[g,lJ.]

6 . 6 Remark: Aceordinate change T ~ T + C (c ElF) in A, q

does not affect 9 and lJ.. Therefore, the coefficients of 9
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and ß (i.e. of all. the elements of MO (A)) have to be in-

variant under T~ T + c . The ring of invariants is easily seen

to be the polynomial ring JF [Tq - T] in [ 1] = Tq - T
q

We next collect some facts on the coefficients of g,ß, and the

product function U = r-Tfa(t) (a monic) which is related with ß .

As only powers of t divisible by q - 1

Let BO be the set of power series

occur, put q -1s = t .

(* ) f = E m.s j
, where ffi· E A

J J
and deg rn j S j

BO is closed under addition and rnultiplication, and

f = 1 + ••• E BO irnplies 1/ f E BO Let

B = {f E A[[s]] If = af ' for sorne a E A,f' E Ba} be the A­

-algebra generated by BO .

6.7. Proposition:

(i) The power series U,/)./s, and (g- 1)/[1] lie in Ba •

Proof:

(i) By (4.5), the cyclotornic polynomials f satisfy
·a

(* )

and this property is inherited by U and ß/s . Further,

(g-1)/[1] = L t~-1 = L slal/ f~-1 E B
O

for 1/f
a

E B
O

.
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(ii) By (i), g and 6 E B . Now apply (6.5).

Define for k 2: 0

(6.8)
k k

(-1 ) k +1 - 1-q (q -1)
g = TI LkEk

either as a modular form or as a formal series in t.

6.9. Proposition:

(i) gk = 1 + ...

(ii) gk has coefficients in A ;

(iii) go = 1 , g1 = g ,

k-2 k-1
gk =- [k-1]g i1

q q
. k-2 + gk-1 g (k 2: 2) •

Proof:

(_1)k+1/L which is derived fromk

(3.10), Lk is a denominator for

k - 1 thus (ii), Finally, (iii)q .the coefficients of Gi ' i =

is the translation of (2.10) applied to a = T and
2

<PT = TT
O + TT

q - 1 gT + nq -1 L1T 2

k
(i) comes·from E(q -1)(L) =

(2.9) and (4.3). Further, by

6.10. Proposition (compare [11]): Let iL a.s be the expansion
1.

of one of the forms with respect to s =



- 38 -

Then a. * 0 implies i = 0 or 1 mod q
~

Proof: Let (#) denote the stated congruence property. Now:

(i) f a considered as apower series in 5, satisfies (#).

Let k
j = q - 1 k 2: 1 •

(ii) t j satisfies (#).

(lii)

(iv)

k. -q
Let a E A be non-constant. Then t j = (slaIJ/(q-1)f ) f

a a a

satisfies (#) since the first factor is a q-th power.

G. (t) satisfies (#) by (ii), (iii) and (3.10).
] a

Thus (# ) results for and, in view of (6.9 iii), for ß .

Finally, we investigate congruences module ideals of A.

For power series fand f' E A[[t]] and an ideal a of A,

f ~ f' mod a means the congruence mod a of all the coefficients.

6.11. Proposition: Let p be a prime ideal of A of degree d.
d

Then gk+d(t) e gk(t
q

) mod p •

6.12. Corollary: gd ~ 1 mod [d] .

Proof (of (6. 11 ) ): The coefficients of the (gd -- 1) - th Goss

polynomial are ± L~ 1 where i < d . Thus by (6.3) and (6.8),
~

gd e 1 mod Ld /Ld - 1 ,i.e. mod [d] . In particular,
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d
gd a go B 1 mod p • Further, mod p we have Tq

a T , so

[k + d] !! [k] . By induction, using (6.9 iii),

d
Modulo p, the latter equals gk(tq ) .

7. Hecke operators

For f E M~ and a prime ideal p = (p) , where p is monie of

degree d, let

(7 • 1 ) T f (z)
P

k= P f (pz) + L f ( (z + b) jp)
b€A

deg b<d

Tp
is called the p - th Hecke operator. As expected,

T f E~ , and is cuspidal (i. e. vanishes at infinity) if f is.p

(We could define Hecke operators for all the ideals a. of A ,

as one usually does. But unlike the elassical case, Ta.b = TaT b

[7], so we may restrict to prime ideals.)

7.2. Proposition: TpE(k) = pkE(k) .

This follows by direct computation, see [10] or [7]. Next, we

consider the effect of T p on t-expansions. Let Gk,p be the

k - th Goss polynomial wi th respect to the IF -latticeq,

A = ker p of di~ension d.
P P

Für i ~ 1 , we compute
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E t i (.z + b) = E (e (TI Z / p) + e (TI b / p) ) - i
deg b<d

= E (e (rrw) + A) - i
"AEA·

P

where Z = pw

= G. (E (e (Trw) + "A) - 1 )
~,p

= G. (p/p (e(TIw»)
~,p p

= G. (p/e(TIz»1.,p

= G. p(pt) •
~ ,

For i = 0 , o
L t ( .•• ) = 0 = GO, P (pt) . Hence

(7 • 3)
iT ( l: a.t )p 1

k i
= P l: a. t + l: a. G . (pt),

1 P 1 1,p

t (z)
p

= t (pz) = t1pl/f (t)
p

Note that by (3.9), for j fixed, only a finite number of terms

of the right hand side contribute to the coefficient of t j .

7 . 4. Example: Let p be of degree one. Then t = t q / (1 + ptq-1 )
P

and Gi . i5 given by ( 3 • 7) • If f E i and T f E 'ti= ait = a.,p p 1.

are of weight k , we derive

ka! = p
1.

- u v i-1 i-v
E ( ') p a + E ( )pa. + ( 1 )

u,v~O v u O~v<i v 1. v q-
uq+v(q-1)=i
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We refrain from writing down the general forrnula that follows

from (3.8) and (7.3).

7.5. Corollary (first obtained by D. Goss [11]): T t:. = pq-1/).
P

Preof: As the space of cusp ferms ef weight k = q2 - 1 , type

ze~o is one-dimensional, we just have to determine the coefficient

a l of t q- 1 in
q-1

not contribute, so

q-1
X - term if

T /)" . Obviously, the first sum in (7.3) doesp

it is enough te see a.G. (X) has no
J. J.,p

i * q - 1 . Let the i - th coefficient a. ef D.
J.

be non-zero, so i 5 0 mod (q-1) and i 5 0 or -1 mod q ,

and suppose i > q - 1 . If i a 0 mod q then G.J.,p has no

Xq - 1 - term by (3.4 vi), whereas for i + 1 = rq , we use

X2G' = - G . = - (G ) q
i,p rq,p r,p

X - term which implies G.
J.

. Now

has no

r > 1 , so

Xq - 1 - term.

Gr,p has no

Note ß has the same eigenvalues as gwhich is completely

different fram the number theoretic case. I do not know whether

"Hecke eigenvalues plus weight lt suffices to determine an eigenforrn.

7.6. Corollary: T h = p·h .
P

Proof: The same reasoning as in (7.5), noting Gi(X) = O(X
2

)

for i '= 2 .

7.7. Problem: Compute the action of Hecke'on powers cf ß
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8. Derivations

Let dL be the logarithmie derivative operator

dL f(z) ~ Tf-- 1 d f( )/f( )
~ dz z z.

Obviously, dL(f
1
·f

2
) = dL(f

1
) + dL(f

2
) • From

d d -1 - - -2 - - 2
dz t(z) = dz e (Tfz) = - Tfe (nz) = - Tft (z) and

d f (X) = - aX I al -2 (a E A non-eonstant), we have
dX a

( 8 • 1 ) ata (a non-eonstant)

and

Let u (z) =

= 0

dL (t) = - t

11 f (t(z»
a münie a

(a constant)

be the product funetion. Using

(6.1), we have for E = dL(ö)

(8.2) E = (q - 1 ) dL (t) + (q2 - 1) (q - 1) dL (U)

= t + L at
1

. a
::I:a mon1.C

= L at
a monie a

E is a conditionally eonvergent two-dimensional lattiee SUffi
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- -1 '" (= TI L.

a manie
L a/ (az + b) )

bEA

and should be considered as an analogue of the "false Eisenstein

series of weight 2" in the elassieal theory. Let now

Applying (det y) -1 (cz + d) 2d / dz to both sides of the equation

f(yz) = (det y)-m(cz + d)kf(z) , where y = (~ ~) Er, we obtain

(8.3) f I (yz) = (det y) - ~m+1) (ez + d) k+2fl (z) + ke (det y) - (m+1) (ez + d) k+1 f (z)

Putting f = 6 and dividing (8.3) by n6(yz) , the funetional

equation

(8.4) E (yz) =. (det y) -1 (ez + d) 2E (z) - CTI -1 (det y) -1 (ez + d)

results.

(8.5) We define e = TI -1 d/dz

M~ • Then (8.3) and (8.4) imply

and d
k

= e + kE as operators on

dk(f) E Mm+1 . Directk+2

eomputation shows: If f.
1.

is of weight k. (i = 1,2)
1.

and

i.e. q may be considered as a differential operator of weight

two on the graded algebra M. We further observe: e = - t
2d/dt

and d have coefficients in A if expressed with respect to the
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t - expansion. Let us now collect some results on the > values of

a • From (6.10) we see

(8 .6)

2 .
e ß = 0 ,thus

2
GE = - E •

vanishes identically.

8.7. Corollary: The power series E abt t b in t
b . aa* mon~c

Proof: It is the expansion of 2
E - GE •

derive

2
E = t+o(tq -2q+2)From

2
9 = 1 - [1] t q - 1 + 0 (tq - 1) and

2
ag = - t + 0 (tq - 2q+ 2) * 0 , so

,we

ag has to be proportional

2
with h . Further a,2 g = o(tq -2q+1) vanishes identically by

(5.17).

8.8. Proposition: We have aß = 0 and a2 f = 0 for each of the

functions f(z) = gk (z) , t k (a,z) , or u k (z) = u k (Az + A) (see

section 2).

Proof: The assertion on aß is immediate from the definition.

Those concerning the functions f are proved using the relations

(2.6) - (2.10), the fact a is a differential operator, and

a2g = 0 = aß •

8.9. Corollary: Let F(X,Z) E C[x,Z] be such that F(g,h) = f

where f is as in (8.8). Then (~x)2F(X'Z) = 0 .
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Proof: 0 = a 2 f = const x (~X)2F(g,hl .h
2

since ag = const x h

and ah = 0

9. Comparing ag and h

In this section, we prove

9.1. Theorem: ag = h •

We thus have at least three different eharacterizations of that

form, namely

( a)

(b)

(c)

h = Pq + 1 ,1 the Polncare series of weight q+ 1 , type 1

(which we have used as adefinition of h);

h = ag ;

q -1
h =- 6 •

9.2. Corollary: We have the identity of power series in t

E at + [1] E at t q - 1

a manie a a*b monie a b

2
= - t n fa q -1 (t)

a'monic

Proof: g = 1 - [1] E t q-1
a monie a

eomputation gives the result.

and o(t )
a

2
= - at , so an easya

(9.3) Let us shortly'mention still another interpretation. For

u running through a set of representatives of (T- 1A/A)2 = V ,
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-1
Eu(Z).:::::I E Z(az + b) ,

(a , b) l!! U mod A

which is a modular form of weight one for the congruence subgroup

r (T) = {y E r I y a 1 mod T} • Choose a non-degenerate al ternating

form < , > on the two-dirnensional

f = E E~ Ev
u,vEV

<u,v>=1

lF - vector space
q

v , and put

It is easy to verify f to be of weight q + 1 .. , type 1, so

f = const x h . Using the expansions for Eu given in [6], one

may actually cornpute the constant which happens to be non-zero.

This gives a quite general "algebraic" method to construct

modular forms of weight qd + 1 and type 1.

Let us now turn to the proof of (9.1). Consider the surn defining

h = Pq+ 1 ,1

(9 .4) h ( ) /
q + 1z = E t(yc dez)) (cz+d)

c,dEA '
(e,d)=1

. We are going to isolate the( ae db)where Ye,d = E SL(Z,A)

contributions of the different c E A to the linear coefficient

of h. Let us define for c fixed

h
c = E

dEA
(e,d)=1

and, for e,d fixed he,d = E
d'EA

d I Bd mod c
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E hc d
d mod c '
(d,c) =1

and h = E h
cEA c

In view of the matrix equation (~~) (~ n= (~: ~: ~~)

he,d is the sum over the double elass of (~~) in

(~ ~) \ rj (~ ~) , so in partieular is A-invariant and has a

t-expansion. Now for the proof of (9.1) it is enough to show the

following three facts:

(9.5) hO
- 2

=-t+o(t)

(9 • 6) h = o(t2
) if deg c = 0c

(9 .7) h = o(t 2 ) if deg c > 0 .c,d

The first one is clear: c = 0 implies d E: JF* , so
q

E t(z) /dq- 1 = - t(z)
d EJF*

Proof of (9.6): Without lass of generality, c = 1 and

Ye,d = (~ -1) · Then

-h
1

= E t(1/(z+d»/(z+d)Q+1
dEA

- -1 Q n/(z + d)= TI "E (z + d)'":'

d e(1T(z+d»

For I z li sufficie"ntly large, w = n/ (z + d) satisfies

Iwl ~ ]nl/lzl· < 1 , and for such arguments w, the series
~



w/e(w)

- 48 -

eonverges uniformly. Thus

- h - -1 L (z + d) -q - k
::;: Tf L Yk (Tf I (z + d) )1 d k;;;:O .

- -1 E - q+2k E (il(z + d) )-k-q::;: TI Y TI
k2:0 k d

- q-1 - 2k
::;: TI E YkTI Gk (t)

ki::O +q

whieh has no linear term in t.

The proof of (9.7) is slightly more eomplieated. For (e,d) given,

choose y = (~ ~) E SL(2,A). Note: A = e(na/c) and ~ = e(nd/c)

are non-zero e-division points of the Carlitz module P. The

expression of t(z + ale) with respeet to t is given by

(9.8) t (z + al e) ::;: 1/ e (rr (z + a/e)) ::;: 1/ (e (il z) + A)

= t/(1 + At) 2::;: t - At + . .. ,

similarly for a replaeed by d. The geometrie series eonverges

for Itl < lAI whieh is satisfied for Izli large enough, see

(5.5). Let now 0 = (6 ~) . An easy cornputation yields

e(rryoz) ::;: A- e(w) , where w::;: w(z,r) = iT/e(ez + d + er) . The

seeond term is small for [zl. large:
1.

Ie (w) I ,::;: liT/e(ez + d+ er) I ::i 1:rr[le[-2Izl~1
1.
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uniformly in z and r, as long as Izl1 is large enough. In

partieular,

•

t (y Cl z ) = (A - e (w) ) -1 = E A- k -1 e k (w) and
k,=O

h
e,d = E (ez + d + er)-l-q

rEA

As above, we may interehange the order of summation. It then

suffices to see

h =c,d,k
k q+1

E e (w ( z , r) ) / (e z + d + er)
rEA

has no t-terms of order ~ 1 . Let ke (w) = iE ek.w • Then
,1.

h = E (cz + d + cr)-1-q E e
k

. (rr/c(ez + d+ er»i
e,d,k . ,1.r 1.

= E (nie) q+1 +2iek . E (rr (z + die -+ r» -q-1-i
. , J:
1. r

(again the change of summation order is justified, the

decreasing very rapidly)

= E (rr/c)q+1+2iek . G 1 . (t(z + die»
i ,1. q+ +1.

e k .
,1.

Now eaeh of the polynomials G
Q

+1+i (X) is divisible at least

by x2 . Hence by '(9.8), hc,d,k has no term of order zero

er one in t , and (9.7) is established.
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10. Some special forms

Here, we are computing the first coefficients of

f E {E,g,h,g2,ß,U} up to a certain bound which will depend on

f . Let us first treat the produet function

U'(t) = n
a monie

expansions of

fa(t) . From U , we will easily deduee the

E, h , and l1.

As in section 6, we put s = t q - 1 . In what follows, a will

always denote a monie element of A of degree d. As is obvious

from the definition of f , the i - th eoeffieient of U (with
a

respect to s) ma~'only contributed by those a satisfying

d-1 :s i This estimate be sharpened. Letq . may

Ud = n f Then Ud +1 = n f* , where wea a
a monic, deg a=d a manie, deg a=d

have put ad hoc

(4.7), we find

*f a = n' f aT +e . Expanding
eE:1F

q

f* by means ofa

(10.1)
d+1 1 2 d+1 d+1 d

f* = 1-sq . - + (R,q +Tq)sq - (R,q +T)sq +q-1
a d-1 d-1

2 d+1 d d+1 d d-1
+ (~q + Tq R.q ) s q +q - (~q + T) sq +q +g -1

d-2 d-1 d-2

d+l d d-1 d+l d-1 d-2
+ Tq 9.,Q sq + q + q - TR. sq +q +q -1

d-2 d-2

+ terms involving s ,

where the R.. = t. (a) are defined by (4.4).
1. 1.
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Suppose for the moment

those a of the form

d ~ 3 . If we first take the product over

d d-1a :::: T + a d - 1T + ... where a d - 1 and

d :::: 2 , (10.1) becomes an exact formula.

a d - 2
EIF are fixed (so

q

n f* k
see :::: 1+0(s)a

a as above

k
d+1 d d-1 For:::: q + q + q .

, thus

and i
d

- 2 are fixed too), we

k
Ud +1 :::: 1 + o(s.) with

f* in a convenient order shows (by a lengthy
a 4
we omit ) u3 :::: 1 + 0 ( s q ) . Thu s ,

MUltiplying the

computation which
4

U :::: U 1 · U 2 + 0 (sq ) . As above, we omit the details of computing

U1 and U2 (which is straightforward from (10.1)) and give just

the result.

10.2. Theorem: The first
4

q coefficients U.
1.

of U with

respect to q-1s :::: t are given by the following table where an

index missing indicates the coriesponding coefficient to be zero.

i u. i u.
1. 1.

0 1
3 (1) ([2)q- [2])q +q

q-1 -1
3 2

-1q +q -q-1

[ 1 ] 3 2q q +q -1 [2]+[1]q
3 2

-1 3 2q -q q +q (1)[2]
3 2 3 2q -1 g +q +q-1 [2][1]q
3 [2]+[1] 3 2

[2] [1 ]q+1q q +q +q

3 -([2]q- [2]) 4 0q +q-1 q -1

More shortly, we have
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323 3
U = U - s q -q + 2 s q -1 + 0 ( S q )

1

where U
1

= 1-sq-1+[1]sq = n f a
a monie, deg a=1

10.3. Corollary

Expanding out the power series

(6 i = coefficient of is in

u~-q , we get the table

t:. ):

i 6. i °i~

1 -1
2 - [ 1 ] qq +q

1
2 [ 1 ] q+ 1q q +q+1

q+1 - [ 1 ] 2 -12q -2q+1

2 -1
2

1q -q+1 2q -q

2 1
2 2[1]q- [1]q 2q -q+1

2 [1]q- [1] 2q2 -2[1J qq +1

3 2
3

Proof: t:. = - s Uq .U/uq.uq . up to terms of order q in s ,
3 2 3 2

U
q

!:! 1 , Uq
ä 1 - ·sq -q and uq

;::; U
q . Putting together these
1

congruences gives the result.

1 0 • 4. Corollary:
3 2 323

hit = - U- 1 + sq -q u- 1 - sq -q u-
1

2 + 2sq -1
1 1

3
+ 0 (sq ) . In particular,

-1 3 2
hit =-U

1
+o(sq -q) ·
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This follows the same way as (10.3).

10.5. Corollary:

Proof: E = 86/6 = 8s/s+8U/U . But 8 = -t
2
d/dt , so

1 3 1 3
8s = t q = ts, (8U)/t = sq- - 2sq - + o(sq) and the assertion

comes from eomputing module terms of order ~ q3 in s.
,

Next, we investigat.e the form g = 1 - [1] I> t q - 1 . As usual, leta

d deg a monie, L t.T i Then= a , Pa = .
J.

d d-1 q-1 d d d-1
t q / ( 1

q
) hence sq +o(sq +q )t a = + 9.. d - 1 s + , t = ,

a

and the eontribution of all the a of degree d cancels up te

d d-1
o(sq +q ). We are going to sharpen this beund. Let

L t q- 1
a

a monie, deg a=d

we use

(10.6)

as apower series in 5 • Te eompute

(i) L (X + cY) -1 = _ yq-1 (Xq _ XyQ-1) -1
e EJFq

(ii) L (X + cY) 1-Q = ( L (X + Cy)-1) q-1
cEJF

q

and

where (i) comes from the logarithmic derivative of
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xCJ - X =n (X-c) and (11) 18 a special case of (3.4). Gf course,

Co = t q- 1
= s . Next, for a = T+c, fa(t) = 1 + (T+C)tq- 1 ,

thus L (1 + (T + c) s) 1-q
cEJF

q

=
(ii)

. q -1 q-1
S ( L (1 + Ts + cs) )

= sq( - sq-1/ (1 + Tqsq - (1 + Ts) sq-1)) q-1
(i)

U
1

as in (10.2) •

Let now d ~ 2 and d ia = T + La. T . Then
i<d J.

f =a L a.w.
O~i~d J. ).

d i
w. = s(q -q )/(q-1)f

). Ti

Note the following facts:

(10.7)

(i) i > j ~ ord (w.) < erd (w.) , where erd denotes the order
). J

of apower series in s i

( ii) f = X o·+ aOY O
, where X o =a

with i > 0 , and Yo = Wo

( iii) X o = 1 + higher terms in s

Let us compute

E a,w
i

depends enly on a
ii>O l.

is independent of a i

k
Y o = s + higher terms.

d
t-q L t

a
a manie,

= E
deg a=d a d - 1
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First consider the innermost surn

E 1 / f = E 1 / (X 0 + a 0Y0 ) = - Yq-1 / (Xq - X y"q - 1 )
a 0 0 0 0a O

Next put for 1 ~ i < d

Xq X yq-1 =. 1 - . 1 . 11.- 1.- 1.-
X. + a.Y.

1. 1. 1.

X.
1.

and

depending at most on a i + 1 ••• a d - 1 ' Y i independent of a,

X. , Yi satisfying (10.7 iii). üf course, X. and Y. are
1. 1. " 1.

uniquely deterrnined. Let us have a closer look of this last

equation. The left hand side can be written in the form

E a.w..
j~i J ~,J

with polynomials w..
1.,J

in s that da not depend on

a and satisfy (10.7 i) with respect to the secend index. Für

the Wi,j , we have (putting WO,j = wj )

W ••
1.,J

= wq W wq - 1
'1'-'1"1 '1·1.-,J 1.-,J 1.- ,1.-

(w. 1 .) · In particular,
1.- , ]

i d i
erd (w 0 , i) = q (q - q ) / (q - 1) . By

( 10 . 6 i), we get

Hence, erd (w. .) = q. erd
1.,J

erd (Y.) = erd (w .. ) = qi
1. 1.,1.

repeated application ef

(10.8) E
a.

1.

1/f = (_ 1)i+1 (Y
a 0

y . )q-1 / (xCJ - X. y9- 1)
1. "1. 1. 1.

and finally
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(10.9) L 1/ f
a

= (- 1 )dsk + higher terms, where

a monie, deg a=d

k = i d i
l: q (q - q ) I (q - 1)

O:;;;i<d

Taken together,

(10.10) l: t q - 1
a

a monie, deg a=d

sk + higher terms,

whe re now k = (q 2d + 1 + 1) I (q + 1) .

10.11. Corollary:

use Goss polynomials to deteet the contribution of a

From (6.4),

2
q -q =l: t
a
q2_ 1

l: t a ' we

It is easy to obtain similar results for the form 92 ' say.
2 2

g2 = 1 - [2] l: t q -q + L l: t q -1 • The term
a 2 a

L t q - 1 )q is evaluated as above, whereas for
a

fixed degree d.

2 d 2 2
E t q -1 = t q (q -1) l: f1-q =

a a
a monie,deg:a=d

(1+TS+-cs)-1
a

is a certain d-dimensional W -module. We will make thisq

d = 1 • In that case, E f- 1 =a

A

E
cEWq

the corresponding lattiee is W ·s . Using (3.11), we find
q

explit for

where

i.e.
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2
~ f1-q -1
t.. = G( L f )

a a
a manie, deg a=1

2 2
G (X) = Xq -1 + s 1-q xq -q , whieh gives the value

2
(q-1) (q -1) l-q

s U1

322q -2q +1 q-q
+ s U

1
• A similar argumentwhieh

will not be given in detail shows the eontribution of those a

of degree 2: 2

Summing up:

to be ko (s ) 5k = q(q + 1)/(q+ 1)

322
10. 12. Corollary: 9 2 = 1 - [2] sq + L

2
sq+ 1 - [2] sq -q +qui-q

L
q3_q2+q+1 q_q2 q3+ 1 1_q 2 k

+ 2 s U1 + L 2 s U 1 + 0 (s ) , where

k = q(qS + 1)/(q +-1) .

(10.13) Heekeoperators yield non-trivial relations between these

eoeffieients. For eheeking on the s-expansion, let us note the

i 0
translation of (7.4) into the s-notation: If f = Lais E Mk

p = (p) a prime of degree one and then

a~ = pk+i E (-.(Q-1)U) p-uq a + p(q-1)i E (\(q-1)i-1) p-Vai +
V1 u:Si/q 1-Uq, U v«q-1)i v

11. Hasse invariants

In the whole seetion, p:::: (p)', p monie , will be a pr ime of

degree d . The reduction homomorphism A ---+- JF :::: A/ p
P

and
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everything derived from it will be denoted by a tilde a ~ a . We

consider rank two'Drinfeld modules ~ defined over a field extension

F of W . Like Drinfeld modules over C
p

I'V 0 2
~T = TT + gT + 6T

~ is defined by

where now 9 and I::. * 0 are in lF • I f lF i s algebraically

closed, j(~) = gq+1/ 6 characterizes ~ up to isomorphism. It 1s

a general fact that ~p is of the form

(11.1)

i.e. the coefficients ~O ••. i d - 1 of ~p have to vanish. Thus

the group scheme ker ~p is not reduced, and the abstract group

(ker cf> ) ( JF )p
-over.the algebraic closure F of JF is at most

one-dimensional as an ~ -module. We call H(ep) = i thep d

Hasse invariant of ~. Similar to elliptic curves in positive

characteristic, we have the equivalence of the following assertions:

(11.2)

,(i) H(ep) = 0

(iii) the endomorphisrn ring of ~ is non-comrnutative.

The Drinfeld module ~ (resp. its j-invariant j(~)) is called
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supersingular if these conditions are satisfied. If ~ is

supersingular, j(~) is of degree at most two over ~ '. Thep

number of supersingular j is given by q (qd-1 - 1) / (q2 - '1 ) if

d is odd, and (qd - 1) / (q2 - 1) if d is even. For all these

facts, see [4]. H rnay be considered as an algebraic modular

form of weight qd_1 [10], and we will determine its t-expansion.

(11.3) Let A((t)) resp. K((t)) be the ring of formal Laurent

series in t with coefficients in A resp. K . Consider the rank

two Drinfeld module TD over K((t)) defined by

o " 2= T'T + 9 ( t) 'T + 6 (t) 'T ,

where for the coefficients g(t) and ß(t) , we insert the

t-expan8ions of g and ß given in section 6. "TD-:.· i8 called the

Tate-Drinfeld module. Having its coefficients in A((t)) , TD

may be reduced mod p , thereby defining the rank two module TD
over Fp((t)) . By definition, H(TD) will be the t-expansion of

H .

11.4. Lemma: Mod p , we have d( - 1) p/L
d

8 1 •

Proof: Clearly, p

makes sense. Writing

divides Ld exactly once, so the assertion

d d·(- 1) p/L
d

= (- 1) p/D
d

• (Dd/L
d

) , we show

a) p/D
d

a - 1 and b)
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= n (x - p) 9 n X = - 1 , thus a).
O*x E:IF

P

d d d-1
For b), note Dd = (Tq - T) (T

q
- Tq )

d
(T

q - T)

d d-1
and L

d
= (T

q - T) (T
q - T) ••• (T

q - T) •

In Dd/Ld, the first factors cancel, and, working mod p , we

d
we may replace Tq by T , thus Dd/Ld e (- 1)d-1 .

11.5. Theorem: H(TD) 8 1 mod p , i.e. the t-expansion of H is

constant with value 1.

Proof: We have to show the corresponding congruence for the

icoefficients of TD = E t.T
P OSi::i2d ~

the g. are related by
1

~. E A [ [ t]] . The R. and
1 i

i
E (- 1)i+1 (g./L.)R,q

i+j=k 1 ~ j

which follows from (2.10) and the definition of g .• For
~

k = d ,

i+1 qi
E (- 1) (g . /L. ) t

d
. •

1~i::id ~ ~ -~

As noted in (11.1), t. 8 0 mod p if i < d . Thus, if
1

1 ~ i < d , since L.
1

is ,not divisible by p.
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Also, if i ::::: d then
i

9.,
Q
d . /L.
-1 1

d
::::: pq /L

d

,
d

i::i 0 mod p (q - 1)

Thus d n
9.,d e (-:- 1) (p / L d) gd mod p

d '
n ::: inf (q - 1 ,q)

E gd mod p

9 1 mod p

by (11. 4)

by (6 • 1 2) •

Let now F. (X,Y) E A[X,Y]
~

be the uniquely determined pelynomial

such that

F. (g, fi) ::: 9... ::: i - th coefficient of TD
1 1 P

11 • 6 • Lemma:

(i) We have Fa::::: p, F ::: (pq-p)/[1].X , and for i ~ 2
1

(ii) Considered as a polynomial in X, F
d

has degree

(qd _ 1) / (q - 1) and leading coefficient 1.

( iii)
2d 2

F ::: y(q -1)/(q ·-1)
2d . and F2d+ 1 ::::: 0 .

Proof: (i) fellows from the commutator relation
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TDpTDT = TDTTDp . (ii) results from (i): By induction on i , one

ishows: For i;S; d, F . has degree (q - 1) / (q - 1) in' X , and the
1

leading coefficient satisfies the recursion for the coefficients of

Pp given in (4.4). Finally, (iii) is a direct consequence of the

definition.

Now consider the reduced polynomials
,

and (11.6 i), we see F. = 0
~

if

F. (X, Y) • From
~

i < d . Thus, again from the re-

cursion and [1] * 0 (d < i < 2d) , we derive: Fd divides F i if

d ;S; i < 2d .

11.7. Proposition: Fd(X,y) is square-free.

Proof:' Let f (X) = F2d-1 (X, 1) . From (11. 6 i) applied to

i = 2d + 1 , we see f I (X) ::: 1 . Now F2d-1 being an isobaric

polynomial in X and Y , this implies F2d- 1 ' thus Fd , to have

at most a monomial in Y as a multiple divisor. Putting t = 0 ,

the Tate-Drinfeld module TD reduces to the Carlitz module, in

particular R.d = 1 : 0 (t) as weIl as 1'd = 1 + 0 (t) . But if Y

divided Fd then l d = o(t) .

12. Modular forms mod p

We keep the notations of the last section. Let further

M = ED M
m be the ring of modular forms (any weight or type)p p,k

having coefficients in K with denominators prime to p , and

M = Cl E JFp[[t]] I 3 f E M s.t. f mod p = t'} the ring ofp

modular forms mod p . We are going to determine the structure of
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as an lF p - algebra. M
p

containing the prominent members

6 , we have the ring homomorphism

e: lF [X,Y] ~ lF [[t]] ,
P P

9

where 9 resp. X

Accordingly, putting

are the expansions mod p of

q -1
Z =- Y , we may consider

9 resp.

e: I lF [X,Z] ----7 lF [[t]] •
p p

(X,Z) ~ (g ,n)

By (11.5), F
d

(X,Y) - 1 lies in ker E •

12. 1. Theorem : Pd (X, Y) - 1 generates ker E •

Proof: Apriori, ker E is a non-maximal prime ideal. Therefore,

by dimension reasons, we only have to show Fd(X,y) - 1 is

irreducible. This follows fram (11.7) as in [18]: Suppose

Pd(X,y) - 1 = R·S is a non-trivial factorization. Writing

R = L R. , S = L S. as a surn of its isobaric cornponents (of
i~rn 1 j~n ]

course, the weight af X resp. Y 1s q - 1 resp. q2 - 1), we have

RrnS n = Pd · Since rn and n are > 0 'and Pd 1s square-free,

(Rm,Sn) = 1 · From RmSn- 1 + Rm- 1Sn = 0 we derive ~n-1 = 0 = Rm- 1
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and, exploiting the vanishing of the intermediate terms,

R
i

= Sj = 0 for i < m, j < n whieh eontradiets RoSa = - 1 •

Let now Ak € A[X,Y] (resp. Bk € A[X,Z]) the polynomial

defined by A
k

(g,6) = g (resp. Bk(g,h) = 9 ) . Then
k k

Bk(X,Z)
q-1 and from (6.9) , we deduee= A (X, - Z ) ,

k

(12.2)

Thus, eonsidered as a polynomial in X, Ak is monie of degree

(qk_ 1)/(q- 1) •

12.3. Corollary:

Proof: A
d

- 1 E ker E: i5 a multiple of Fd - 1 • Comparing

leading coefficients in X , (11.6 ii) shows they are equal.

12 . 4. Corollary: ker E:' = (Bd - 1) .

Proof: (12.3) and the argument in (11.7) shows B
d

to be

square-free whieh,· as we know, implies the assertion.

The next corollary follows as in [16], p. 168.

f 1 3 f 2 ~ 0 rnod p • Then

12.5.

suppose

Corollary: Let f. E M
1. P

be of weight k. (1 = 1,2)
1.

k
1

!:! k
2

mod (qd - 1) •

, and
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has a natural grading by 'll/n , n = d
q - 1

r:l = m M.
1.

i E Z/n

Let further
.......0

(B
....... 0

M = M.
1.

....... 0
M.

1.

Mi = ( E Mm
) .......

k,mEZ p,k
ksi mod n

= ( E MO )
kEZ p,k
kai mod n

M ;:; :IFp [X, Z ] / (13d (X, Z) - 1)

B
1

(X,Z) = X and

12.6. Theorem: M is normal (i.e. integrally closed in its

quotient field).

Proof: We are going to show: The affine curve defined by

Bd (X,Z) - 1 = 0 is non-singular. As

this will prove the assertion. We have

B2 (X,Z) = [1 ]zq-1 + xq + 1 which shows the non-singularity of

Bk = 1 for k = 1,2 as weIl as that of Bk = 1 . Consider now

the case k ~ 3 • Prom (12.2), we derive

is equivalent with the system of equations

(**) a
Bk- 2

a
Bk- 1

k-2
ax ax [k - 1 ] zq (q- 1)

a a k-1 = 0 .
äZ Bk- 2 äZ Bk- 1 Xq
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Using Lemma 12. 7, the determinant of the 2)( 2 - matrix 1s a

monomial in Z . Thus, (*) implies at least Z = 0 • Now we

apply induction to the assertion

11 (*) imp 11e s X = Z = 0 11

which is satisfied for k = 3 • Let k > 3 , and assume (*) By

a k-1 a k-1
(**) a'x Bk _ 1xq = 0 = äZ Bk - 1 x,q , and either X = 0 or

a aax Bk - 1 = 0 = az Bk - 1 which in turn, by induction hypothesis,

implies X = 0 . Thus in any case, (*) implies X = Z = 0 . Since

(0,0) does not lie on Bk(X,Z) = 1 , this curve is non-singular.

If 2 ~ k ~ d, [k - 1] + 0 mod p , and the above argument works mod p ,

thereby proving the non-singularity of Bk(X,Z) = 1 •

12 . 7 • Lemma:

Then = - , and for k ~ 3

Proof:

k-2
[k- 1]zq (q-1)v

k

(12.2) and an easy inductian.

12.8. Remark:

M results, e.g.

Frorn (12.6), the normality of various subrings of

....... 0....... .......0
M, MO' and MO are normal. The corresponding

coverings of affine algebraic curves over F p rnay be geornetr1­

cally described in terms cf modular curves. Far example,
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{ superslngular valuesminusaffine j-line over W
p

This is analogous with results in the number theoretic

...... 0
Spec MO =
of j}

case, e.g. [14] or [15].

12.9. Examples:

(1 ) Let d = deg p = 1 • Then

~ = JF [11] •p

...... 0 "-J

g = 1, M = lF [b.]p and

(ii) Let d = 2. From

ß = (g'J+1 - 1) /['1]

[ 1 ] n<l-1 + :gq+ 1, = 1

B (x,Z) = [1 ]zq-1 + x q + 1 we see
2

MO = lF ['g] , and M = lF ['g,h]
p p

, where

2
(li1) Let d = 3. We have B

3
(X,Z) = [2]XZq (q-1) + [1]Xq zq-1 +

2
Xq +q+1 ~, thus the full set of relations between g, n,

and ?;.
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4.2 [i], D. , L.
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P
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