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ABSTRACT. In this paper we consider deformations of an algebroid
stack on an etale groupoid. We construct a differential graded Lie
algebra (DGLA) which controls this deformation theory. In the
case when the algebroid is a twisted form of functions we show
that this DGLA is quasiisomorphic to the twist of the DGLA of
Hochschild cochains on the algebra of functions on the groupoid
by the characteristic class of the corresponding gerbe.
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1. INTRODUCTION

The two main results of the paper are

(1) classification of deformations of an algebroid stack on an etale
groupoid by Maurer-Cartan elements of a differential graded Lie
algebra (DGLA) canonically associated to the algebroid stack,
see Theorem 5.22;

(2) in the particular case, when the algebroid is a twisted form of
the structure sheaf (i.e. is associated to a gerbe on the groupoid)
a construction of a quasiisomorphism of the DGLA alluded to
above with a twist (by the class of the gerbe) of the DGLA of
Hochschild cochains on the algebra of functions on the groupoid,
see Theorems 5.25 and 5.26

In the case when the étale groupoid is a manifold these results were
established in [6]. The principal example motivating the present work
is as follows.

Let X be a coisotropic submanifold of a symplectic manifold M.
The holonomy groupoid of the characteristic foliation on . is an étale
groupoid with a symplectic structure. The canonical deformation quan-
tization of this étale groupoid is an algebroid stack. Similarly, for a
complex manifold with a (holomorphic) symplectic structure the canon-
ical deformation quantization is an algebroid stack. The first obstruc-
tion for this algebroid stack to be (equivalent to) a sheaf of algebras is
the first Rozansky-Witten invariant.

The canonical deformation quantization of the symplectic étale groupoid
associated to a coisotropic submanifold naturally arises in the study of
the following question motivated by problems in microlocal analysis.
For a coisotropic submanifold ¥ of a symplectic manifold M consider
the graph A of the characteristic foliation which is a Lagrangian sub-
manifold of the product M x M°. When M = T*X for a manifold X,
and X is conic, the Lagrangian A is conic as well, hence determines a
class of Fourier integral operators given by kernels whose wave fronts
are contained in A. These operators form an algebra under composition
since the composition Ao A coincides with A. An asymptotic version of
the operator product gives rise to a deformation of the foliation algebra
which we will discuss in a subsequent work. The canonical deformation
quantization of the holonomy groupoid is, in a suitable sense, Morita
equivalent to this algebra.

The DGLA whose Maurer-Cartan elements classify deformations of
an algebroid stack is constructed as follows. From an algebroid stack
on Hausdorff etale groupoid one passes to a cosimplicial matrix algebra
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on the nerve of the groupoid. If the groupoid is non-Hausdorff one has
to replace the groupoid by its embedding category, cf. [25].

For a cosimplicial matrix algebra we form the Hochschild cochain
complex which happens to be a cosimplicial sheaf of DGLAs not on
the nerve itself, but on its first subdivision. From this we pass to a
cosimplicial DGLA and to its totalization which is an ordinary DGLA.

For a gerbe on an etale groupoid this DGLA can be replaced by
another of a more familiar geometric nature, leading to the Theorems
5.25 and 5.26.

This paper is organized as follows. In the section 2 we give overview
of the preliminaries from the category theory and the theory of (co)simplicial
spaces. We also describe I. Moerdijk construction of embedding cate-
gory and stacks on etale categories.

In the section 3 we review relation between the deformation and
differential graded Lie algebras as well as discuss in this context defor-
mations of matrix Azumaya algebras.

In the section 4 we introduce the notion of cosimplicial matrix alge-
bra and construct a DGLA governing deformations of matrix algebras
(cf. Theorem 4.5). We then specialize to the case of cosimplicial matrix
Azumaya algebras. In this case using the differential geometry of the
infinite jet bundle we are able to show that the deformation theory of a
cosimplicial matrix Azumaya algebra A is controlled by DGLA of jets
of Hochschild cochains twisted by the cohomology class of the gerbe
associated with A.

Finally in the section 5 we apply the results of the previous section to
study the deformation theory of stacks on etale groupoids. We also use
these methods to study the deformation theory of a twisted convolution
algebra of etale groupoid.

The paper was written during the first author’s stay at the Institute
for Advanced Study and Max-Planck-Institute fiir Mathematik.

2. PRELIMINARIES
2.1. Categorical preliminaries.
2.1.1. The simplicial category. Forn =0,1,2,... we denote by [n]
the category with objects 0, ..., n freely generated by the graph
0—=1—---—n.

For 0 <i < j <n we denote by (ij) the unique arrow ¢ — j in [n]. We
denote by A the full subcategory of Cat with objects the categories
[n] forn=0,1,2,....
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For a category C we refer to a functor \: [n] — C as a(n n-)simplex
in C. For a morphism f: [m] — [n] in A and a simplex A: [n] — C we
denote by f*(\) the simplex Ao f.

Suppose that f: [m] — [n] is a morphism in A and A: [n] — C is a
simplex. Let p = f*(X) for short. The morphism (0n) in [n] factors
uniquely into the composition 0 — f(0) — f(m) — n which, under A,
gives the factorization of A(On): A(0) — A(n) in C into the composition

(2.1.1) A0) & 1(0) = p(m) = A(n) ,

where b = u((0m)).

For 0 <i < n+ 1 we denote by 9; = 9": [n] — [n + 1] the i*® face
map, i.e. the unique injective map whose image does not contain the
object i € [n + 1].

For 0 < i < n — 1 we denote by s; = s?: [n] — [n — 1] the i'h
degeneracy map, i.e. the unique surjective map such that s;(i) = s;(i +

1).

2.1.2. Subdivision. For \: [n] — A define Ay by A(k) = [\], k =
0,1,...,n. Let sd*: [n] — A(n) be a morphism in A defined by
) =

(2.1.2) sd (k) = M(kn)(\g).

For a morphism f: [m] — [n] in A let sd(f)* = ¢ in the notations of
(2.1.1). Then, the diagram

1s commutative.

2.1.3. (Co)simplicial objets. A simplicial object in a category C is
a functor A°? — C. For a simplicial object X we denote X ([n]) by X,,.
A cosimplicial object in a category C is a functor A — C. For a
cosimplicial object Y we denote Y ([n]) by Y.
Simplicial (respectively, cosimplicial) objects in C form a category in
the standard way.

2.1.4. Nerve. For n = 0,1,2,... let N,C: = Hom([n|,C). The as-

signment n — N,,C, ([m] =N [n]) — NC(f): = (A~ Ao f) defines the
simplicial set NC called the nerve of C.



DEFORMATIONS OF ALGEBROID STACKS 5

The effect of the face map O (respectively, the degeneracy map s7)
will be denoted by d' = d!, (respectively, ¢; = ¢I").

2.1.5. Subdivision of (co)simplicial objects. Assume that coprod-
ucts in C are represented. Let X € CA™.

For A: [n] — Alet | X1 = Xow), |X[,: =11 poa Xy

For a morphism f: [m] — [n] in A let | X|(f): |X], — |X],, denote
the map whose restriction to | X|, is the map X (sd(f)*).

The assignment [n] — |X]|,, f — |X|(f) defines the simplicial object
| X| called the subdivision of X.

Let sd(X),: | X]|,, — X, denote the map whose restriction to | X]|, is
the map X (sd*). The assignment [n] — sd(X), defines the canonical
morphism of simplicial objects

sd(X): | X| — X.

Suppose that C has products. For V € C2, A: [n] — A let |V|)‘ =
VAR VT = ] ;A’VP' For a morphism f: [m] — [n] in A

let |VI|(f): |V],, — |V|, denote the map such that pr, o |V|(f) =
V(sd(f)*) O PTyu(y)- The assignment [n] — [V, f — [V|(f) defines
the cosimplicial object |V| called the subdivision of V.

Let sd(V)™: V™ — |V|" denote the map such that pr, o sd(V)" =
V (sd*). The assignment [n] — sd(V),, defines the canonical morphism
of simplicial objects

sd(V): V — |V|.

2.1.6. Totalization of cosimplicial vector spaces. Next, we recall
the definition of the functor Tot which assigns to a cosimplicial vector
space a complex of vector spaces.

Forn =0,1,2,... let €, denote the polynomial de Rham complex of
the n-dimensional simplex. In other words, 2, is the DGCA generated
by tg,...,t, of degree zero and dty,...,dt, of degree one subject to
the relations ty 4+ --- + ¢, = 1 and dty + - - - + dt,, = 0; the differential
da is determined by the Leibniz rule and ¢; — dt;. The assignment
A 3 [n] — Q, extends in a natural way to a simplicial DGCA.

Suppose that V' is a cosimplicial vector space. For each morphism
f:[p] — lg] in A we have the morphisms V(f): V? — VZ%and Q(f): Q, —
Q,. Let Tot(V)* C J], Q2F @ V™ denote the subspace which consists of
those a = (a,,) which satisfy the conditions (Id® V (f))(a,) = ((f) ®
1d)(a,) for all f: [p] — [¢]. The de Rham differential da: QF — QFF!
induces the differential in Tot(V'). It is clear that the assignment
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V +— Tot(V) is a functor on the category of cosimplicial vectors spaces
with values in the category of complexes of vector spaces.

2.1.7. Cohomology of cosimplicial vector spaces. For a cosimpli-
cial vector space V' we denote by C(V) (respectively, N(V)), the asso-
ciated complex (respectively, normalized complex). These are given by
C'(V) = NYV) =0 for i < 0 and, otherwise, by

Cr(V)=V",  N™(V)=[ker(s;: V" — V")

In either case the differential 9 = dy is given by 9" = 3_,(—1)'9". The
natural inclusion N (V') — C(V) is a quasiisomorphism (see e.g. [13]).
Let H*(V): = H*(N(V)) = H*(C(V)).

We will also need the following result, see e.g.[29]:

Lemma 2.1. Suppose that V' is a cosimplicial vector space. The map
H*(sd(V)): H*(V) — H*(|V]) is an isomorphism.

2.1.8. There is a natural quasiisomorphism

/  Tot (V) — N(V)
\%

(see e.g. [12]) such that the composition

1®Id

HOW) 2254 1or(v) 2% N(v)
coincides with the inclusion H°(V) < N(V).

Suppose that (V,d) is a cosimplicial complex of vector spaces. Then,
for i € Z, we have the cosimplicial vector space V*': [n] — (V")%
Applying Tot( ), N( ) and C( ) componentwise we obtain double com-
plexes whose associated total complexes will be denoted, respectively,
by Tot(V), N(V) and C(V). The maps

HY(V*") — Tot(V*")
give rise to the map of complexes
(2.1.3) ker(V? = V') — Tot(V)
Lemma 2.2. Suppose that V is a cosimplicial complex of vector spaces
such that

(1) there exists M € 7Z such that, for all i < M, n = 0,1,...,
V™t =0 (i.e. the complezes V" are bounded below uniformly in

n)
(2) for alli € Z and j # 0, H(V*") = 0.

Then, the map (2.1.3) is a quasiisomorphism.
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Proof. Tt suffices to show that the composition

ker(V° = V1) — Tot (V) 25 N(V)

is a quasiisomorphism. Note that, for + € Z, the acyclicity assumption
implies that the composition

ker(V% = V) = HO (V') — Tot(V*") — N(V*))

is a quasiisomorphism. Since the second map is a quasiisomorphism so
is the first one. Since, by assumption, V' is uniformly bounded below
the claim follows. O

2.2. Cosimplicial sheaves and stacks. We will denote by Shg(X)
the category of sheaves of R-modules on X.

2.2.1. Cosimplicial sheaves. Suppose that X is a simplicial space.
A cosimplicial sheaf of vector spaces (or, more generally, a cosimpli-
cial complex of sheaves) F on X is given by the following data:

(1) for each p=0,1,2,... a sheaf 7? on X, and
(2) for each morphism f: [p] — [q] in A a morphism f,: X(f)"'F? —
F1.
These are subject to the condition: for each pair of composable arrows
] EN [g] 2 [r] the diagram map (gof),: X (gof) 'FP — F isequal to

the composition X (go f)7'FP = X (g) ' X(f)7! X (@)~ X(g)'F1
Fr.

Definition 2.3. A cosimplicial sheaf F is special if the structure mor-
phisms f,: X(f)"'F? — F¢ are isomorphisms for all f.

2.2.2. Cohomology of cosimplicial sheaves. For a cosimplicial
sheaf of vector spaces F on X let I'(X; F)" = I'(X,,; F"). For a mor-
phism f: [p] — [¢] in A let f, = T(X; F)(f): T(X; F)P — T'(X;F)1
denote the composition

D(Xy3 %) 05 T(Xys X ()7 F7) 250 T (X5 )

The assignments [p| — T'(X;F)P, f — f. define a cosimplicial vector
space denoted I'(X; F).

The functor F — H°(T'(X; F)) from the (abelian) category of cosim-
plicial sheaves of vector spaces on X to the category of vector spaces is
left exact. Let R['(X; F)) = RHY(I'(X; F), H(X; F) = RT(X; F)).

Assume that F satisfies H*(X;; F7) = 0 for i # 0. For complexes of
sheaves the assumption on F7 is that the canonical morphism in the
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derived category I'(X;; F7/) — RI'(X;; F7) is an isomorphism. Under
the acyclicity assumption on F we have

HI(X; F) = B (T (X: 7))

2.2.3. Sheaves on the subdivision. For a cosimplicial sheaf F on
X let
| F|: =sd(X) ' F.
Thus, |F| is a cosimplicial sheaf on |X| and
POX| A" =T(X],:1FL) = [ TG P = DX F),
A [n]—A
i.e. the canonical isomorphism of cosimplicial vector spaces
L(X] 7)) = DX 7))

Lemma 2.4. The map sd(X)*: H*(X;F) — H*(|X|;|F]) is an iso-
morphism.

Proof. Follows from Lemma 2.1 O

2.2.4. We proceed with the notations introduced above. Suppose that
F is a special cosimplicial sheaf on X. Then, |F| admits an equivalent
description better suited for our purposes.

Let |F|™ denote the sheaf on |X|, whose restriction to |X|, is given
by [Fly: = X(A(0n))"LFNO. For a morphism of simplices f: u — A
the corresponding (component of the) structure map f, is defined as
the unique map making the diagram

X (o)X (u((0m)) 1 74O Ly X (A(0n))—1FAO
X(C)‘lu((Om))*l l/\(On)*
X(C)_l Fr(m) N FAn)

commutative. Note that f! exists and is unique since the vertical maps
are isomorphisms as F is special.

It is clear that |F|"is a cosimplicial sheaf on |X|; moreover there is
a canonical isomorphism |F|" — |F| whose restriction to | X|, is given
by the structure map A(0n)..

2.2.5. Stacks. We refer the reader to [1] and [31] for basic definitions.
We will use the notion of fibered category interchangeably with that
of a pseudo-functor. A prestack C on a space Y is a category fibered
over the category of open subsets of Y, equivalently, a pseudo-functor
U — C(U), satisfying the following additional requirement. For an
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open subset U of Y and two objects A, B € C(U) we have the presheaf
Hom,(A, B) on U defined by U 2 V — Home(Alv,B|g). The
fibered category C is a prestack if for any U, A, B € C(U), the presheaf
Hom (A, B) is a sheaf. A prestack is a stack if, in addition, it satisfies
the condition of effective descent for objects. For a prestack C we
denote the associated stack by C.

A stack in groupoids G is a gerbe if it is locally nonempty and locally
connected, i.e.it satisfies

(1) any point y € Y has a neighborhood U such that G(U) is
nonempty;

(2) forany U C Y,y € U, A, B € G(U) there exists a neighborhood
V C U of y and an isomorphism Al = Bly.

2.2.6. Cosimplicial stacks. Suppose that X is an étale simplicial
space.
A cosimplicial stack C on X is given by the following data:

(1) for each [p] € A as stack C? on X, ;
(2) for each morphism f: [p] — [¢] in A a l-morphism of stacks
Cr: X(f)7ICP — €1
(3) for any pair of morphisms [p] ERN [q] % [r] a 2-morphism C;,: C,0
X(9)"(Cr) = Cooy
These are subject to the associativity condition: for a triple of com-

posable arrows [p] 7, lq] 2 [r] LN [s] the equality of 2-morphisms
Coorn © (X(h)™'Crg ® Idc,) = Cphog © (Tdx(hog)-1¢; ® Coun)

holds. Here and below we use ® to denote the horizontal composition
of 2-morphisms.
Suppose that C and D are cosimplicial stacks on X. A l-morphism
¢: C — D is given by the following data:
(1) for each [p] € A a 1-morphism ¢?: C? — DP
(2) for each morphism f: [p] — [¢] in A a 2-isomorphism ¢¢: ¢ o
Cr = Dy o X(f)"(¢")

which, for every pair of morphisms [p] EN [q] & [r] satisfy
(Drg @ Tdx(gp)-(r) © (X(9)"(¢r) ® Idp,) © (Tdx(g)-(cs) © Py)
= ¢goy © (Idgr @ Cy)

Suppose that ¢ and ¢ are 1-morphisms of cosimplicial stacks C —
D. A 2-morphism b: ¢ — 1 is given by a collection of 2-morphisms
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bP: ¢? — P p=0,1,2,..., which satisfy

vy o (b @ Ide,) = (Idp, ® X(f)*(0")) o &5
for all f: [p] — [¢] in A.

2.2.7. Cosimplicial gerbes. Suppose that A is an abelian cosimpli-
cial sheaf on X. A cosimplicial A-gerbe G on X is a cosimplicial stack
on X such that

(1) for each [p| € A, GP is a AP-gerbe on X,,.
(2) For each morphism f: [p] — [g] in A the 1-morphism

Gp: X(f)7'GP — G
of stacks compatible with the map A;: X(f)"'A? — A%

2.3. Sheaves and stacks on étale categories.

2.3.1. Etale categories. In what follows (C*°-)manifolds are not as-
sumed to be Hausdorff. Note, however, that, by the very definition a
manifold is a locally Hausdorff space. An étale map of manifolds is a
local diffeomorphism.

An étale category £ is a category in manifolds with the manifold
of objects No&, the manifold of morphisms N;& and étale structure
maps. Forgetting the manifold structures on the sets of objects and
morphisms one obtains the underlying category.

If the underlying category of an étale category G is a groupoid and
the inversion map NG — N;G is C™ one says that G is an étale
groupotid.

We will identify a manifold X with the category with the space of
objects X and only the identity morphisms. In particular, for any étale
category G there is a canonical embedding NyG — G which is identity
on objects.

2.3.2. Notation. We will make extensive use of the following nota-
tional scheme. Suppose that X is a simplicial space (such as the nerve
of a topological category) and f: [p] — [g] is a morphism in A. The
latter induced the map X (f): X, — X, of spaces. Note that f is de-
termined by the number ¢ and the sequence f = (f(0),..., f(p — 1)).
For an object A associated to (or, rather, “on”) X, (such as a function,
a sheaf, a stack) for which the inverse image under X (f) is define we

will denote the resulting object on X, by A;i]).
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2.3.3. Sheaves on étale categories. Suppose that £ is an étale
category. A sheaf (of sets) on £ is a pair F' = (F, Fy;), where

e [ is a sheaf on the space of objects Ny& and
o Fy: Fl(l) — Fo(l) is an isomorphisms of sheaves on the space of
morphisms N;G

which is multiplicative, i.e. satisfies the “cocycle” condition
2 2 2
FO(Z) = F()(l) © F1(2)7
(on No() and unit preserving, i.e.
FY = 1dp.

We denote by Sh(G) the category of sheaves on G.
A morphism f: F — F’ of sheaves on £ is a morphism of sheaves
f: F — F’" on No& which satisfies the “equivariance” condition

fél) o Fyp = Fpi 0 f.(l)

A morphism of étale categories ¢: G — G’ induces the functor of
inverse image (or pull-back)

¢~': Sh(G') — Sh(G).

For F = (F, Fy) € Sh(G’), the sheaf on NyG underlying ¢ ' F is given
by (No¢) ' F. The image of Fy; under the map

(N1¢)*: Hom(F", FY)
— Hom((N1¢) ' FY (Ny) L FV)
=~ Hom(((Noo) ' F)\, (Nog) " F))

The category Sh(G) has a final object which we will denote by .
For F € Sh(G) let I'(G; F): = Homgn)(*, ). The set I'(G; F) is
easily identified with the subset of G-invariant sections of I'(NyG; F').

A sheaf F' on G gives rise to a cosimplicial sheaf on NG which we
denote F',. The latter is defined as follows. For n = 0,1,2,... let
R = Fo(n) € Sh(N,G). For f:[p] — [¢] in A the corresponding
structure map f, is defined as

F(‘I)
_ (0)
NG(f)™F4 = Fyy = By = F4,.
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2.3.4. Stacks on étale categories.

Definition 2.5. A stack on G is a triple C = (C, Coy1,Co12) which con-
sists of

(1) a stack C on NG
(2) an equivalence Coy : Cfl) — Cél)
(3) an isomorphism Coia: Cé?) o Cg) — cé? of 1-morphisms C§2) —
cs?.
which satisfy
3 3 3 3
i C(gz; © (C(()l)Q ®1d) = C((n?% o (Id® C§2?3>
o C\Y) =14
Suppose that C and D are stacks on G.
Definition 2.6. A I-morphism ¢: C — D is a pair ¢ = (¢, ¢o1) which
consists of
(1) a 1-morphism ¢,: C — D of stacks on NyG
(2) a 2-isomorphism ¢y : qzﬁ[(]l) 0Cyi — Dy o ¢§1) of 1-morphisms
c® _, p
1 0
which satisfy
o (Do12®Id ()0(Id 5 ®¢'))o (62 @TId ) = B{F o(1d 2 @Cor2)
¢2 DOI c12 (’b()
o ) =1d
Suppose that ¢ and ¥ are 1-morphisms C — D.
Definition 2.7. A 2-morphism b: ¢ — ¢ is a 2-morphism b: ¢o — o
which satisfies 101 o (b ® Ide,,) = (Idpy, ® b{") 0 ¢o1

Suppose that ¢; G — G’ is a morphism of étale categories and C =
(C,Co1,Co12) is a stack on G’. The inverse image ¢~'C is the stack on
G given by the triple (D, Doy, Do12) with D = (No¢)~'C, Do; equal to
the image of Cy; under the map

(Ni¢)*: Hom(c{",cs")
— Hom((Nig)~'c”, (N,¢) "'V
~ Hom(D{", Dg")

and Dy;o induced by Cpio in a similar fashion.
A stack C on G gives rise to a cosimplicial stack on NG which we
denote C,. The latter is defined as follows. Forn =0,1,2,... let CA =
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Cén). For f: [p] — [¢] in A the corresponding structure 1-morphism
Cay 1s defined as

C(‘Z)
NG(f)™'Ch = Cifyy = &7 = Ch.
For a pair of morphisms [p] RN q] ERN 7] let QAf’g = Cog(0)g(£(0))-

2.3.5. Gerbes on étale categories. Suppose that G is an étale cat-
egory, A is an abelian sheaf on G.
An A-gerbe G on G is a stack on G such that
(1) G is an A%-gerbe on NyG ;
(2) the 1-morphism Cy; is compatible with the morphism Ag;.
If G is an A-gerbe G, then G, is a cosimplicial Ax-gerbe on NG.

2.3.6. The category of embeddings. Below we recall the basics of
the “category of G-embeddings” associated with an étale category G
and a basis of the topology on the space of objects of GG, which was
introduced by I. Moerdijk in [25].

For an étale category GG and a basis B for the topology on NyG we
denote by Eg(G) or, simply by &, the following category.

The space of objects is given by No& = [[ .5 U, the disjoint union
of the elements of B. Thus, the space of morphism decomposes as

N & = H (ME) vy,
(U,V)EBXB
where (N1€)w,v) is defined by the pull-back square
(ME)wy) — NE

| |

UxV —_— N()g X Nog
(the bottom arrow being the inclusion). Now, (N:€)w,v) C (N1G)w,v)
(the latter defined in the same manner as the former replacing &g (G)
by G) is given by (N:€)wvy = 11, o(U), where o: U — (N1G)v,v) is
a section of the “source” projection df: (N1G)w,v) — U such that the

0
composition U % o(U) %,V is an embedding.

With the structure (source, target, composition, “identity”) maps
induced from those of G, E(G) is an étale category equipped with the
canonical functor
Note that the maps N;Ag(G): N;Ex(G) — N;G are étale surjections.
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The canonical map 7: NgG — G induces the map of the respective
embedding categories Eg(i): Ep(NoG) — Ep(G) and the diagram

E(NoG) 2 g(G)
(2.3.1) )\]B(NOG)l PB(G)
e

N()G ;)

1s commutative.

2.3.7. First consider the particular case when G = X is a space and B
is a basis for the topology on X. For an open subset V' C X let BNV C
B = {U € B|U C V}. There is an obvious embedding &gy (V) —
Ep(X).

For F = (F, Fy) € Sh(&(X)), V € X let A\ F denote the presheaf
on X defined by

Vi N(Ev (Vi E) = lim F(U),
UeBNV
where B NV is partially ordered by inclusion. The presheaf \\F is in
fact a sheaf. It is characterized by the following property: M\ F|y = F|y
for any U € B.
Let A\™'\\F' = (H, Hy;). For V an open subset of NoE(X) we have

H(V) = (WE)(V) = lm F(U) = F(V)
UeBNV
naturally in V. We leave it to the reader to check that this extends to
an isomorphism A™'NF = F natural in F, i.e. to an isomorphism of
functors A7\, = Id.
On the other hand, for H € Sh(X), V an open subset of X, put
AYH = (F, Fy); we have

QAT (V) = lm F(U) = lim H(U) = H(V)
UeBNV UeBNV
naturally in V. We leave it to the reader to check that this extends to

an isomorphism H = MA~!H natural in H, i.e. to an isomorphism of
functors Id = M\ ~1.

2.3.8. We now consider the general case. To simplify notations we
put £: = E(G), &': = E(NoG), A1 = Ag(G), N = A\g(NyG). Let
= (F, FOI) € Sh(g) and let El = (F,, Fél)I = SB(i)_IE.

Applying the construction of 2.3.7 to F we obtain the sheaf A\[F” on
NoG. Note that (NgA)"*N[F' = F. The properties of the map N;\
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imply that the pull-back map

(N1 V)*: Hom((NE)T, (NE')”)
= I(MG; Hom((NE)”, (NE)y)
— D(NE (VA Hom((NE)T, (ME')G)
is injective. Combining the latter with the canonical isomorphisms
(N ) Hom((NE), (NE)Y) = Hom((NMA) ' NE), (V) NE))GY)
= Hom((NoA) ' NMENT, (NoX) ' NE')”)
= Hom(F{", ")
we obtain the injective map
(232)  Hom(E), (ME)Y) — Hom(F", F{V).

We leave it to the reader to verify that the map Fj; lies in the image of

(2.3.2); let (A[F")o; denote the corresponding element of Hom (¢! N[ F', s\ F”)).
The pair (A\EF, (A F)o1) is easily seen to determine a sheaf on G hence-

forth denoted A\F. The assignment F' — \F extends to a functor,

denoted

Ar: Sh(€) — Sh(G).
quasi-inverse to the inverse image functor A=*. Hence, A~!(*) = * and,
for F € Sh(G) the map I'(G;F) — T(E;A7'F) is an isomorphism.
Similarly, Ai(%) = x and, for H € Sh(€) the map I'(€; H) — I'(G; MH)

is an isomorphism.

2.3.9. The functors A~! and ), restrict to mutually quasi-inverse exact
equivalences of abelian categories

A" ShAB(G) = ShAb(E): A

The morphism \*: RI'(G; F) — RI'(E; A1 F) is an isomorphism in the
derived category.

Suppose that F' € ShAb(G) is B-acyclic, i.e., for any U € B, i # 0,
H(U; F) = 0. Then, the composition C(T(NE ;A 'E)) — RI(E;NF) =
RI'(G; F) is an isomorphism in the derived category.

2.3.10. Suppose given G, B as in 2.3.6; we proceed in the notations
introduced in 2.3.8. The functor of inverse image under \ establishes
an equivalence of (2-)categories of stack on G and those on £. Below
we sketch the construction of the quasi-inverse along the lines of 2.3.7
and 2.3.8.
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First consider the case G = X a space. Let C be a stack on £. For
an open subset V C X let

AC(V): = lim C(U),
UEBNV
where the latter is described in [18], Definition 19.1.6. Briefly, an object
of AC(V) is a pair (A, ) which consists of a function A: BNV 3 U
Ay € C(U) and a function ¢: (U C U') — (ppu: Ally — Ay); the
latter is required to satisfy a kind of a cocycle condition with respect
to compositions of inclusions of basic open sets. For (A, ), (A, ¢)
as above the assignment BNV > U — Hom¢(Ay, A};) extends to a
presheaf on B. By definition,

Homklc(v)((A, 90)7 (A/> 90/)) = m HomC(AUv A/U)
UeBnV

The assignment V' +— \C(V') extends to a stack on X denoted \C. We
have natural equivalences

AMIAD 2D, aNIC=C.

Continuing with the general case, let C be a stack on £. The stack
A C on G is given by the triple (D, Dy, Do12) with D = X &g(i)~'C. The
morphisms Dy and Dyi5 are induced, respectively, by Cy; and Cyi2. We
omit the details.

2.4. Jet bundle. Letpr,: X xX — X, ¢ = 1,2, denote the projection
on the i*" factor. The restriction of the canonical map
pr;: pri_IOX — Oxux

to the subsheaf Oy takes values in the subsheaf Ox x, hence induces
the map

pr;: Ox — (pr;)«Oxxx.

Let Ax: X — X x X denote the diagonal embedding. It follows

from the Leibniz rule that the restriction of the canonical map

A}I Oxxx — (AX)*OX
to the subsheaf Ox«x takes values in the subsheaf (Ax).Ox. Let

IX: = ker(A}) N OX><X-

The sheaf Zx plays the role of the defining ideal of the “diagonal em-
bedding X — X x X7: there is a short exact sequence of sheaves on
X xX

0—=Zx — Oxxx — (AX)*OX — 0
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For a locally-free Ox-module of finite rank & let

TEE) = = 1) (Oxox /T @ppio, PT5'E)
Jx = Jx(0x).
It is clear from the above definition that J% is, in a natural way, a

commutative algebra and Jg(€) is a Jg-module.
Let

1) Ox — j)'}

denote the composition

Ox =5 (pr,)«Oxxx — Jx

In what follows, unless stated explicitly otherwise, we regard J%(&) as
a Ox-module via the map 1),
Let

i* € — TEE)

denote the composition

E % (prl)*OXXX ®c & — ‘_7)]?(5)

The map j* is not Ox-linear unless k = 0.

For 0 < k <[ the inclusion Ié(* R Iffl induces the surjective map

T JL(E) = TE(E). The sheaves JE(E), k = 0,1, ... together with
the maps m;, k <[ form an inverse system. Let Jx(€) = J(€): =
limJ¥(E). Thus, Jx(€) carries a natural topology.
The maps 1% (respectively, j*), k = 0,1,2,... are compatible with
the projections 7y, i.e. my o 10 = 1) (vespectively, m 4 o j' = j*).
Let 1: =1im1® j°: =limj*.

Let

di: Oxux ®piioy pr, '€ —
— pry Qy Dprtox Oxxx Opzto pr, '€
denote the exterior derivative along the first factor. It satisfies
dl(ﬂ?“ Qprsloy pry '€) C
pri 0L Bpr=10x 5 Bprs 10y pry '€
for each k and, therefore, induces the map

A" THE) — Q% ®o, THE)
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The maps dgk) for different values of k are compatible with the maps
. giving rise to the canonical flat connection

Ve Ix(€) — Qx ®oy Ix(E) .

Let
Ix(E) = Ox®oyx Ix(€)
JIx = JIx(Ox)
Ix = Jx/1(0x)
JIxo = ker(Jx(Ox)— Ox)

Here and below by abuse of notation we write (.) ®p, Jx(&) for
lim(.) Sy TH(E)
The canonical flat connection extends to the flat connection

VE": Ix(€) = Qx ®oy, Ix(€).

2.4.1. De Rham complexes. Suppose that F is an Ox-module and
V:F — Q% ®p, F is a flat connection. The flat connection V extends
uniquely to a differential V on Q% ®p, F subject to the Leibniz rule
with respect to the (2%-module structure. We will make use of the
following notation :

(s ®oy F): = ker(Qy ®oy F - O @0y F)

Suppose that (F*,d) is a complex of Ox-modules with a flat con-
nection V = (V%);cz, i.e. for each i € Z, V' is a flat connection on F*
and [d, V] = 0. Then, (2% ®o, F*,V,1d®d) is a double complex. We
denote by DR(F) the associated simple complex.

2.5. Characteristic classes of cosimplicial O*-gerbes. In this
section we consider an étale simplicial manifold X, i.e. a simplicial
manifold X : [p] — X, such that

(2.5.1) for each morphism f: [p] — [¢] in A,
the induced map X (f): X, — X, is étale

As a consequence, the collection of sheaves Ox, (respectively, Jx,, etc.)
form a special (see Definition 2.3) cosimplicial sheaf on X which will
be denoted Oy (respectively, Jx, etc.)

The goal of this section is to associate to a cosimplicial O*-gerbe
S on X a cohomology class [S] € H*(|X|;DR(J|x|)), where |X]| is the
subdivision of X (see 2.1.5).
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2.5.1. Gerbes on manifolds. Suppose that Y is a manifold. We
begin by sketching a construction which associated to an Og-gerbe S
on Y a characteristic class in H?(Y;DR(Jy/Oy)) which lifts the more
familiar de Rham characteristic class [S]qr € Haz(Y).

The map 1: Oy — Jy of sheaves of rings induces the map of sheaves
of abelian groups 1: OF — J*. Let (.): jx(,x) — jYX)/Og/X) denote
the projection.

Suppose that S is an Oy -gerbe. The composition

% vean log

Oy 5 JF — (% @ Jy)”
gives rise to the Qy ® Jy-gerbe V" log1S. Let
d: (W @ Jy)1] — V" 1log 1S

be a trivialization of the latter.

Since V" o Ve = 0, the (03 @ Jy)%-gerbe V"V« log 18 is
canonically trivialized. Therefore, the trivialization V"0 of V" log 1S
induced by @ may (and will) be considered as a (Q2 ® Jy )“-torsor. Let

B: (95 ® Jy)! — VD

be a trivialization of the V0.

Since V" logol = 1 o dlog, it follows that the (Q) ® Jy)%gerbe
Vearnlog 1S is canonically trivialized. Therefore, its trivialization 9
may (and will) be considered as a (2} ® Jy)“-torsor. Moreover, since
vemnyer = () the (Q2 ® Jy)%torsor Veng = Veng is canonically
trivialized, the trivialization induced by B is a section B of (Q? ®Jy ),
i.e. B is a cocycle in I'(X;DR(Jy)).

One can show that the class of B in H?(X;DR(Jy))

(1) depends only on S and not on the auxiliary choices of & and B
made
(2) coincides with the image of the class of S under the map H*(Y; Oy) —
H?(X;DR(Jy)) induced by the composition
ox Y ox /e 22 0y 25 Dr(Ty)

On the other hand, H = V"B is a trivialization of the canonically
trivialized (by V¢ o V" = () (93 ® Jy)%-torsor V"V"d, hence
a section of (3 ® Jy )¢ which, clearly, satisfies H = 0, i.e. is a closed
3-form. Moreover, as is clear from the construction, the class of H
in H3,(Y) is the image of the class of B under the boundary map
H? (X DR(Ty)) — HinlY).

Below we present a generalization of the above construction to étale
simplicial manifolds.
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2.5.2. Suppose that G is a cosimplicial (2} ® Jx)“-gerbe on X. An
example of such is V" log 1(S), where S is an Ox-gerbe.
Consider the (2% ® Jx)“-gerbe V"G. Since the composition

(%, ® Tx,)" = Q, ® Tx, —— (%, © Tx,)"

is equal to zero, V"GP is canonically trivialized for all p =0,1,2,.. ..

Therefore, for a morphism f: [p] — [g], V**"G;, being a morphism of

trivialized gerbes, may (and will) be regarded as a (2%, ® J. x,)"'-torsor.
Assume given, for each p =0,1,2,...

(i) a choice of trivialization
0" (R, ® Tx,)" — G ;
it induces the trivialization
v (0%, © T, )U[1] — VUG

Since V"GP is canonically trivialized, V"d” may (and will)
be regarded as a (% ® Jx,)"-torsor.

(ii) a choice of trivialization

BP- (Q?Xp ® Jx,)" — Ve

For a morphism f: [p] — [¢] in A the trivialization 0” induces the
trivialization

X)) (Q, ® Tx,)! = X())7H(Q, ® Tx,)" — X(f)7'G";
thus, G is a morphism of trivialized gerbes, i.e. a (qu ® Jx,)"-torsor.

Assume given for each morphism f: [p] — [q]

(iii) a choice of trivialization f;: (U, ® Ix,)" — Gy.

For a pair of composable arrows [p] EN [q] % [r] the discrepancy

gﬁg: = (ﬁg + X<g)716f> - ﬁQOf

is global section of (2% ® Jx,)”. Since the map Jx, o v, (Q%, ®

Jx, )% is an isomorphism there is a unique section Btq of Jx, o such
that

(2.5.2) Ve Brg=Gryg -

Lemma 2.8. For any triple of composable arrows [p] EN lq] = [r] = [s]
the relation h.B¢ g4 = Bgn — Bgf.h + Bfng holds.
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Proof. A direct calculation shows that
hiGrg=Ggn — Ggrh+ Grng -
Therefore ((2.5.2)),

Ve (hiBrg — (Bgh — Bgpn + Brag)) =0

The map Jx, o AARN (Q%, ® Jx, )" is an isomorphism, hence the claim
follows. O

2.5.3. We proceed in the notations introduced above. Let
pry: A?x X, — X,
denote the projection. Let
(253) prjg(: pr;(l (Q.%(p ®0Xp jXp) - Q.l)(pXAq ®pr)_(1(9xp pr)_(ljxp

denote the canonical map. For a (2% ®o, Jx,)-gerbe G, let

priG = (prk).(pry'G)
Let B
Ve = pri Ve = dy ® Id + Id ® V" .
Since Y ! _,t; = 1 the composition

1 ~1
prxm ®pr;(1OXp pry Jx, —
1 —1 X (p+1)
(QprAq ®pr)_(l(’)xp pPry jXp) -
1 ~1
QprAq ®pr)_(1(9xp pry Jx,

of the diagonal map with (ag,...,a,) — D7 & - o; is the identity

map, it follows that the composition

1
Pry

(25.4) pry‘(Q, ®oy Jx,)

1 -1 1 -1 X (p+1)
Qx,xaa Oprytox, PIx Tx, = (Qx,xna Oprytox, PIx Ix,)

- Q%(;,XA‘I ®PI)_(10XP pr;(ljxp
is equal to the map prh. Since, by definition, the (U aa Bprlox
p
pry Jx,)-gerbe > 7_ ;-pr’G? is obtained from pry'GP via the “change
of structure group” along the composition (2.5.4), it is canonically
equivalent to priG».
Consider a simplex A: [n] — A. Let

o = Z t;- pr}gwn)(X(/\(m))_%)‘(i));
i=0
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thus 9 is a trivialization of pri,G*™. Since A(in),0*" = 3™ — G, (i
5 = pri 0 =3t pri Gy
Therefore, i
veargh Zt priA(in), Veerar® Zn: dt; N pryGagin)-

Let B denote the trivialization of Ve given by

(2.5.5) B Zt priA(in), BA® Zdt A PTx Bagin)
=0 =0
%can ( Z (tldtj - tjdtl) A\ pr}ﬁ)\m)
0<i<j<n

where By = Ba((i)) A(Gn)-

2.5.4. Suppose that p: [m] — A is another simplex and a morphism
¢: [m] — [n] such that 4 = Ao ¢, i.e. ¢ is a morphism of simplices
w— A Let f: pu(m) — A(n) denote the map A(¢(m) — n). The map
f induces the maps

Idx X (f) f><Id

A™ x Xu(m) —= A™ x X)\(n) A" % X/\( )

Proposition 2.9. In the notations introduced above

(1) (1d x X ()"0 = (¢ x 1a)D*
(2) (1a x X())*B* = (¢ x 1d)* B>

Proof. For ¢: [m] — [n] the induced map ¢*: QX — Q% is given by
9" (t;) = Z¢(i)=]t
(Id x X(f))"o" =
(Ia x X(f Zt DT, () (( ((im)), 0" =

Zti DT fott((im)). 3D =

Zzt PTi (7)) = (6 x 1)°0"

J=0 ¢(3)
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Therefore, (Id x X (f))*Ved# = (¢ x 1d)* Ve,

By Lemma 2.10, it suffices to verify the second claim for ¢: [1] — [n].
Let k= A(¢(0)), I = A(¢(1)), p = A(n). With these notations f = (Ip)
and the left hand side reduces to

to - pr;(k‘p)*BlC + 1t - pr;(lp)*Bl + dty N\ pr;(lp)*ﬁ(kl)
while the right hand side reads

to - pr;(kp)*Bk + 1 -pr;(lp)*Bl—i—
dtg N\ pr;ﬁ(kp) +dt; A Pr;ﬁ(lp)"i‘
(trdto — todtr) NPTy, ()
Using t1dty — todt; = dty = —dt; and the definition of a(u) i) one sees

that the two expressions are indeed equal. O

Lemma 2.10. The map
o' — I ™
Homa ([1],[n])
induced by the maps A((ij))*: Q' — Qy, i < j, is injective on the

subspace of form with coefficients of degree at most one.

Proof. Left to the reader. O

2.5.5. Suppose that F is a cosimplicial Q;Cl—gerbe on X.
The composition

Ox =R Ix AN Q& ® JIx
is a derivation, hence factors canonically through the map denoted

which maps closed forms to closed forms.
Put G = 1(F) in 2.5.2. Since the composition

0 — (Q, ® Ix,)" — (Q, ® Tx,)”
is equal to the zero map, the (Q}(p ® 7Xp)d—gerbe GP is canonically
trivialized for each p. Therefore, 3 may (and will) be regarded as a
(Q, ® J x,)%-torsor. The (%, ® J x,)-torsor VP is canonically
trivialized, therefore, B may (and will) be regarded as a section of
(9%, ® Tx,)".
Since, for a morphism f: [p] — [q], G; = 1(F}), it follows that G,

is canonically trivialized, hence 5y may (and will) be regarded as a
section of (Qx ® Tx,).
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It follows that, for a simplex A: [n] — A, the formula (2.5.5) gives
rise to a section B of QXn, x, o ® pr}jxk(n) which clearly satisfies

VearBA = 0.
Proposition 2.11. In the notations of 2.5.5

(1) the assignment B: \ B defines a cycle in the complex
Tot(I'(|X[; DR(T x1)) _

(2) The class of B in H*(Tot(I'(|X|;DR(J |x|))) coincides with the
image of the class [F] € H*(X; Q%) of the gerbe F under the

composition

H2(X: 04) — H2(X[;1Q4) — H(Tot(D(| X |: DR(T x.)
where the first map is the canonical isomorphism (see 2.2.3) and
the second map is induced by the map Qigd = O0x/C =, Tx.

In particular, the class of B does not depend on the choices
made.

2.5.6. In the rest of the section we will assume that S is a cosimplicial
O%-gerbe on X such that the gerbes S are trivial for all p, i.e. SP =
O%[1]. Our present goal is to obtain simplified expressions for B and
B in this case.

Since a morphism of trivial O*-gerbes is an O*-torsor (equivalently,
a locally free O-module of rank one), a cosimplicial gerbe S as above
is given by the following collection of data:

(1) for each morphism f: [p] — [¢] in A a line bundle Sy on X,
(2) for each pair of morphisms [p] 7, lq] - [r] an isomorphism
Strg: Sy @ X(9)*(Sy) — Syoy of line bundles on X,
These are subject to the associativity condition: for a triple of com-

posable arrows [p] 7, lq] = [r] LN [s]

Sgorn ® X (h) ' Spg = Sphog ® Sy
In order to calculate the characteristic class of S we will follow the
method (and notations) of 2.5.2 and 2.5.5 with F = dlog(S) and the
following choices:
(1) @7 is the canonical isomorphism Qy ®Jx, (1] = V" log 1(Ox )[1],
i.e. is given by the trivial torsor Qy ® Jx, = V" log 1(0y,);
(2) BP is the canonical isomorphism Q% ® Jx, = V*"(Qx ®Tx,)-
Then, G; = V" log 1(Sy) = 1dlog(Sy) and By is equal to the canoni-
cal trivialization of V"G, = V"V log 1(Sy) (stemming from V"o
Ve = 0).
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For each f: [p] — [q] we choose

(3) a Jx,-linear isomorphism oy: Sy ® Jx, — Jx,(Sy) which re-
duced to the identity modulo Jx, o

(4) a trivialization of dlog(Sy), i.e. a connection V¢ on the line
bundle Sy

Let By = 0;1 o V" ooy; thus, By is a trivialization of Gy. The choice
of V; determines another trivialization of Gy, namely 1(Vy) = V; ®
Id + Id ® V&,

Let Fy: = 3y —1(Vy) € (X Q, ® Jx,). Flatness of VE" implies
that F} satisfies V" F;+1(c(V;)) = 0 which implies that V@ F; = 0.

For a pair of composable arrows [p] EN lq] 2 [r] we have
(2.5.6) VB, =Fg+X(9)'F — Fooy .

With these notations, for A: [n] — A, we have:

B == "dt; A (1(Vin)) + Fanm)—

6can ( Z (tz’dtj — tjdtfi) A prﬁ(ﬁ)\;zj>

0<i<j<n

and

(25.7) B =~ dt; A Fim—

ean ( Z (tidt; — t;dt;) A pﬂﬁmj) .

0<i<j<n
Proposition 2.12. In the notations of 2.5.6

(1) the assignment_gz A= B defines a cycle in the complex
Tot(I'(|X[; DR(JT |x1)) B

(2) The class of B in H*(Tot(I'(|X|;DR(J|x))) coincides with the
image of the class [S] € H*(X;0%) of the gerbe S under the
composition

H*(X;0%) — H*(|X[;|O%[) — H*(Tot(I'(|X];DR(J |x))))

where the first map is the canonical isomorphism (see 2.2.3)
and the second map is induced by the map Oy — Oy /C* 28,

Ox/C £l Jx. In particular, the class of B does not depend
on the choices made.
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3. DEFORMATIONS AND DGLA

3.1. Deligne 2-groupoid.

3.1.1. Deligne 2-groupoid. In this subsection we review the con-
struction of Deligne 2-groupoid of a nilpotent differential graded alge-
bra (DGLA). We follow [16, 15] and the references therein.

Suppose that g is a nilpotent DGLA such that g* = 0 for ¢ < —1.

A Maurer-Cartan element of g is an element v € g' satisfying

1
(3.1.1) dy + 5[7,7] =0.

We denote by MC?(g), the set of Maurer-Cartan elements of g.
The unipotent group exp g’ acts on the set of Maurer-Cartan ele-
ments of g by gauge equivalences. This action is given by the formula

(e 9]

(epr)w:v—Z (adX)

(i+1)

(dX + [y, X])

If exp X is a gauge equivalence between two Maurer-Cartan elements
7 and 75 = (exp X) - 71 then

(3.1.2) d+ady, = Adexp X (d+ad ).

We denote by MC?(g)1(71,72) the set of gauge equivalences between
Y1, Y2. The composition

MC?(g)1(72,73) X MC?(g)1(71,72) — MC?(@)1 (71, 73)

is given by the product in the group exp g°.
If v € MC?(g)o we can define a Lie bracket [, -], on g=* by

(3.1.3) la, b, = [a, db+ |y, b]].

With this bracket g=! becomes a nilpotent Lie algebra. We denote by
exp,, g~ ! the corresponding unipotent group, and by exp,, the corre-
sponding exponential map g~ — exp, g L If v1, 72 are two Maurer-
Cartan elements, then the group exp, g~ ! acts on MC?(g)1(71,72). Let
exp,t € exp, g~ ' and let exp X € MC?(g)1(71,72). Then

(exp,t) - (exp X) = exp(dt + [7,t]) expX € expg’

Such an element exp, t is called a 2-morphism between exp X and
(expt) - (exp X). We denote by MC?(g)s(exp X,expY) the set of 2-
morphisms between exp X and expY. This set is endowed with a

vertical composition given by the product in the group exp, g L
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Let 71,72, 73 € MC?(g)o. Let exp X2, exp Y12 € MC?(g)1(71,72) and
exp Xo3, exp Yas € MC?(g)1(72,73). Then one defines the horizontal
composition

®: MC2(9)2(GXP Xog, exp Ya3) X MC2(g)2(exp Xi2,expYio) —
MCQ(Q)Z(QXP Xoz exp Xio, exp Xog €xp Y12)

as follows. Let exp., t15 € MC?(g)a(exp X1a, exp Yi2) and let exp,, tas €
MC?(g)2(exp Xas, exp Ya3). Then

exp,, tog @ exp., t1p = exp,_ t3 evag(eadX"""’ (t12))

To summarize, the data described above forms a 2-groupoid which
we denote by MC?(g) as follows:

(1) the set of objects is MC?(g)o
(2) the groupoid of morphisms MC?(g)(71,72), v € MC?(g)o con-
sists of:
e objectsi.e. 1-morphisms in MC?(g) are given by MC?(g)1(71,72)
— the gauge transformations between v; and vs.
e morphisms between exp X, expY € MC?(g)i(y1,72) are
given by MC?(g)s(exp X, expY).
A morphism of nilpotent DGLA ¢: g — b induces a functor ¢: MC?(g) —
MC?(g).
We have the following important result ([17], [16] and references
therein).

Theorem 3.1. Suppose that ¢: g — b is a quasi-isomorphism of
DGLA and let m be a nilpotent commutative ring. Then the induced
map ¢: MC?*(g ®m) — MC?*(h ® m) is an equivalence of 2-groupoids.

Suppose now that &: [n] — " is a cosimplicial DGLA. We assume
that each &" is a nilpotent DGLA. We denote its component of degree
i by ™ and assume that ¢ = 0 for i < —1. Then the morphism of
complexes

(3.1.4) ker(6° = &') — Tot(®)
(cf. (2.1.3)) is a morphism of DGLA.
Proposition 3.2. Assume that & satisfies the following condition:
(3.1.5) for alli € Z, H?(&*") = 0 for p # 0.
Then the morphism of 2-groupoids
MC?(ker(8° = &')) — MC?(Tot(®))

induced by (3.1.4) is an equivalence.
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Proof. Follows from Lemma 2.2 and Theorem 3.1 0
3.2. Deformations and the Deligne 2-groupoid.

3.2.1. Pseudo-tensor categories. In order to give a unified treat-
ment of the deformation complex we will employ the formalism of
pseudo-tensor categories. We refer the reader to [3] for details.

Let X be a topological space. The category Shy(X) has a canonical
structure of a pseudo-tensor Shy(X)-category. In particular, for any
finite set I, an I-family of {L;};cs of sheaves and a sheaf L we have the
sheaf

PIShk(X)<{Li}’ L) = Hom, (®;erLi, L)

of I-operations.
In what follows we consider not necessarily full pseudo-tensor Shy (X)-
subcategories W of Shy(X). Given such a category W, with the nota-

tions as above, we have the subsheaf P ({L;}, L) of PISh’“(X)({Li}, L).
We shall always assume that the pseudo-tensor category W under
consideration satisfies the following additional assumptions:

(1) For any object L of ¥ and any finite dimensional k-vector space
V the sheaf L ®; V is in V;

(2) for any k-linear map of finite dimensional vector spaces f: V —
W the map Id ® f belongs to ['(X; P ((L @ V), L @ W)).

3.2.2. Examples of pseudo-tensor categories.

DIFF Suppose that X is a manifold. Let DIFF denote the following
pseudo-tensor category. The objects of DIFF are locally free
modules of finite rank over Ox. In the notations introduced
above, PPTFF({L;}, L) is defined to be the sheaf of multidiffer-
ential operators ), ; L; — L (the tensor product is over C).

JET For X as in the previous example, let JET denote the pseudo-
tensor category whose objects are locally free modules of finite
rank over Jx. In the notations introduced above, P{¥T({L;}, L)
is defined to be the sheaf of continuous Ox-(multi)linear maps
&),c; Li — L (the tensor product is over Ox).

—~—

DEF For ¥ as in 3.2.1 and an Artin k-algebra R let W(R) denote the

—_——

following pseudo-tensor category. An object of W(R) is an R-
module in ¥ (i.e. an object M of ¥ together with a morphism
of k-algebras R — T'(X; Py (M*, M))) which locally on X is R-
linearly isomorphic in ¥ to an object of the form L®; R, where L
is an object in W. In the notations introduced above, the sheaf
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P’ (R)({Mi},M ) of I-operations is defined as the subsheaf of
R-multilinear maps in P ({M;}, M).

Let W(R) denote the full subcategory of W(R) whose objects
are isomorphic to objects of the form L ®; R, L in V.

Note that a morphism R — S of Artin k-algebras induces the

—~—

functor (.) ®r S: V(R) — W(S) which restricts to the functor
(.)®rS: V(R) — ¥(S). It is clear that the assignment R —

—

U(R) (respectively, R — W(R)) defines a functor on ArtAlg,

—~—

and the inclusion W(R)(.) — ¥(.) is a morphism thereof.

3.2.3. Hochschild cochains. Forn = 1,2, ... we denote by n the set
{1,2,...,n}. For an object A of ¥ we denote by A™ the n-collection
of objects of ¥ each of which is equal to A and set

C"(A) = By (A™ A)

and C°(A): = A. The sheaf C"(A) is called the sheaf of Hochschild
cochains on A of degree n.

The graded sheaf of vector spaces g(A): = C*(A)[1] has a canoni-
cal structure of a graded Lie algebra under the Gerstenhaber bracket
denoted by [, ] below. Namely, C*(A)[1] is canonically isomorphic to
the (graded) Lie algebra of derivations of the free associative co-algebra
generated by A[1].

For an operationm € T'(X; Py (A%, A)) = ['(X; C?(A)) = T'(X;g(A))
the associativity of m is equivalent to the condition [m,m] = 0.

Suppose that A is an associative algebra with the product m as
above. Let 0 = [m,.]. Thus, J is a derivation of the graded Lie algebra
g(A) of degree one. The associativity of m implies that d 0 6 = 0, i.e.
d defines a differential on g(.A) called the Hochschild differential.

The algebra is called wunital if it is endowed with a global section
1 € T'(X;.A) with the usual properties with respect to the product m.
For a unital algebra the subsheaf of normalized cochains (of degree
n) C"(A) of C"(A) is defined as the subsheaf of Hochschild cochains
which vanish whenever evaluated on 1 as one the arguments for n > 0;
by definition, GO(A) =CA).

The graded subsheaf C" (A)[1] is closed under the Gerstenhaber bracket
and the action of the Hochschild differential, and the inclusion

CH A = C (]

is a quasi-isomorphism of DGLA.
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Suppose in addition that R is a commutative Artin k-algebra with
the (nilpotent) maximal ideal mp. Then, I'(X; g(A) ®; mg) is a nilpo-
tent DGLA concentrated in degree greater than or equal to —1. There-
fore, the Deligne 2-groupoid MC?(g(A) ®; mg) is defined. Moreover, it
is clear that the assignment

R— MC*(D(X; g(A) ®) mp)

extends to a functor on the category of commutative Artin algebras.

3.2.4. DIFF and JET. Unless otherwise stated, from now on a locally
free module over Ox (respectively, Jx) of finite rank is understood
as an object of the pseudo-tensor category DIFF (respectively, JET)
defined in 3.2.2.

Suppose that A is an Ox-Azumaya algebra, i.e. a sheaf of (central)
Ox-algebras locally isomorphic to Mat, (Ox). The canonical flat con-
nection V4™ on Jx (A) induces the flat connection, still denoted V¢,
on C"(JIx(A)).

The flat connection V4™ acts by derivation of the Gerstenhaber
bracket which commute with the Hochschild differential 6. Hence, we
have the DGLA Q% ®o, C*(Jx(A))[1] with the differential VE™ + 6.

Lemma 3.3. The de Rham complex DR(C™(Tx(A))): = (Q% oy
C"(JIx(A)), VL") satisfies
(1) HDR(CH(Tx(A)) = 0 for i #0
(2) The map j*: C*"(A) — C™"(Jx(A)) is an isomorphism onto
H°DR(C™(Tx(A))).

Corollary 3.4. The map
77 CH(A)1] = Q% ®oy C*(Tx(A))[1]
is a quasi-isomorphism of DGLA.

3.2.5. Star products. Suppose that A is an object of ¥ with an
associative multiplication m and the unit 1 as above.

We denote by ArtAlg, the category of (finitely generated, commuta-
tive, unital) Artin k-algebras. Recall that an Artin k-algebra is a local
k-algebra R with the maximal ideal mg which is nilpotent, i.e. there
exists a positive integer N such that m% = 0; in particular, an Artin
k-algebra is a finite dimensional k-vector space. There is a canonical
isomorphism R/mpg = k. A morphism of Artin algebras ¢: R — S'is a
k-algebra homomorphism which satisfies ¢p(mg) C mg.

Definition 3.5. For R € ArtAlg, an R-star product on A is an R-
bilinear operation m’ € I'(X; Py (A%, A®y R)) which is associative and
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whose image in T'(X; Py (A2, A)) (under composition with the canoni-
cal map A ®; R — A) coincides with m.

An R-star product m’ as in 3.5 determines an R-bilinear operation
m' € PY((A® R)?, A®;, R) which endows A ®; R with a structure
of a unital associative R-algebra.

The 2-category of R-star products on A, denoted Def(A)(R), is de-
fined as follows:

e objects are the R-star products on A,

e a l-morphism ¢: m; — msg between the R-star products m;
is an operation ¢ € PJY(A!, A ®; R) whose image in ¢ €
PY (A, A) (under the composition with the canonical map A®,
R — A) is equal to the identity, and whose R-linear extension
¢ € PY(AY, A®;, R) is a morphism of R-algebras.

e a 2-morphism b: ¢ — 1, where ¢,9: m; — my are two 1-
morphisms, are elements b € 1Q1+T'(X; A®ymg) C I'(X; AR
R) such that may(¢(a),b) = ma(b,1(a)) for all a € A ®y, R.

It follows easily from the above definition and the nilpotency of mg
that Def(A)(R) is a 2-groupoid.

Note that Def(.A)(R) is non-empty: it contains the trivial deforma-
tion, i.e. the star product, still denoted m, which is the R-bilinear
extension of the product on A.

It is clear that the assignment R — Def(A)(R) extends to a functor
on ArtAlg,.

3.2.6. Star products and the Deligne 2-groupoid. We continue
in notations introduced above. In particular, we are considering a sheaf
of associative k-algebras A with the product m € I'(X;C?(A)). The
product m determines the element, still denoted m in T'(X; g'(A) @1 R)
for any commutative Artin k-algebra R, hence, the Hochschild differ-
ential §: = [m, ] in g(A) ®; R.

Suppose that m’ is an R-star product on A. Since pu(m'): =m’ —
m =0 mod mg we have u(m’) € g'(A) ®, mg. Moreover, the associa-
tivity of m’ implies that pu(m’) satisfies the Maurer-Cartan equation,
ie. p(m') € MC*(T'(X; g(A) @) mg))o.

It is easy to see that the assignment m’ — u(m’) extends to a functor

(3.2.1) Def (A)(R) — MC*(I'(X; g(A) @ mpz)) .

The following proposition is well-known (cf. [14, 16, 15]).
Proposition 3.6. The functor (3.2.1) is an isomorphism of 2-groupoids.
3.3. Matrix Azumaya algebras.
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3.3.1. Azumaya algebras. Suppose that K is a sheaf of commuta-
tive C-algebras.

An Azumaya K-algebra on X is a sheaf of central K-algebras which
is a twisted form of (i.e. locally isomorphic to) Mat,,(K') for suitable n.
In our applications the algebra K will be either Ox of Jx.

There is a central extension of Lie algebras

(3.3.1) 0K —>AD Derg(A) — 0

where the map 9§ is given by d(a): b — |a, b].

For an O x-Azumaya algebra we denote by C(A) the Q% ®p, Derp, (A)-
torsor of (locally defined) connections V on A which satisfy the Leibniz
rule V(ab) = V(a)b+ aV(b).

For the sake of brevity we will refer to Azumaya Ox-algebras simply
as Azumaya algebras (on X).

3.3.2. Splittings. Suppose that A is an Azumaya algebra.

Definition 3.7. A splitting of A is a pair (£, ¢) consisting of a vector
bundle £ and an isomorphism ¢: A — End,, (&).

A morphism f: (&1, ¢1) — (&, P2) of splittings is an isomorphism
f: & — & such that Ad(f) o ¢g = ¢y.

Let S(A) denote the stack such that, for U C X, S(A)(U) is the
category of splittings of Aly.

The sheaf of automorphisms of any object is canonically isomorphic
Ox (the subgroup of central units). As is easy to see, S(A) is an
O%-gerbe.

Suppose that A and B are Azumaya algebras on X and F' is an
Ox-linear equivalence of respective categories of modules.

Lemma 3.8. If (£,¢) is a splitting of A, then the B-module F(E, @)
s a splitting of B.

Corollary 3.9. The induced functor S(F): S(A) — S(B) is an equiv-
alence.

In fact, it is clear that S(.) extends to functor from the 2-category
of Azumaya algebras on X to the 2-category of O%-gerbes.

3.3.3. Matrix algebras. Until further notice we work in a fixed

pseudo-tensor subcategory ¥ of Shy(X) as in 3.2.1. In particular, all

algebraic structures are understood to be given by operations in W.
Suppose that K is a sheaf of commutative algebras on X.
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Definition 3.10. A matriz K-algebra is a sheaf of associative K-
algebras A (on X) together with a decomposition A =} 7._;.A;; into
a direct sum of K-submodules which satisfies
(1) for 0 <i,j,k < p the product on A restricts to a map A;; @
.Ajk — Azk in F(X; P\p({AU, Ajk}, Azkz))
(2) for 0 < i,7 < p the left (respectively, right) action of A; (re-
spectively, A;;) on A;; given by the restriction of the product
is unital.

Note that, for 0 < ¢ < p, the composition K LA A (together
with the restriction of the product) endows the sheaf A;; with a struc-
ture of an associative algebra. The second condition in Definition 3.10
says that Aj; is a unital Aj-module (respectively, A%¥-module).

For a matrix algebra as above we denote by 0(.A) the subalgebra of
“diagonal” matrices, i.e. 9(A) = > 7 A

Suppose that A = Z?,j:o A;j and B = f,j:() B;; are two matrix
K-algebras (of the same size).

Definition 3.11. A l-morphism F': A — B of matrix algebras is a
morphism of sheaves of K-algebras in I'(X; PY({A},B)) such that
F(Ai;) € Bij;.

Suppose that Fy, Fy: A — B are 1-morphisms of matrix algebras.

Definition 3.12. A 2-morphism b: F} — Fyisasectionb € I'(X;0(B))
such that b- Fy = F5 - b.

In what follows we will assume that a matrix algebra satisfies the
following condition:

for 0 < 4,5 < p the sheaf A;; is a locally free module of rank one
over Aj;; and over A7

3.3.4. Combinatorial restriction for matrix algebras. Suppose
that A = >77._(Aj; is a matrix K-algebra and f: [p] — [g] is a mor-
phism in A.

Definition 3.13. The the combinatorial restriction f*A (of A along
f) is the matrix algebra with the underlying sheaf

p
FA= (A (FFA)G = Asag) -
i,j=0
The product on f*A is induced by the product on A.

Suppose that F': A — B is a 1-morphism of matrix algebras. The
combinatorial restriction f*F: ff*A — f*B is defined in an obvious
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manner. For a 2-morphism b: F; — F5 the combinatorial restriction
fubi fﬁFl — fﬁFQ is given by (fﬁb)” = bf(z)f(z)
For 0 <i<¢q,0<j<plet (Ay); = Aig). Let

Af = @ @(Af)ij

i=0 j=0

The sheaf A; is endowed with a structure of a A ®@x (f*.A4)P-module
given by

q p
(3.3.2) (abe)y = Z Z a;jbjkCrl

k=0 j=0
where a = 371 ja; € A, b =371 3" by € Ap, e =370 ey €
f*A and abc € Ay.
The ff*A ®x A-module A]TI is defined in a similar fashion, with
(A7D)i = Asa;; 0<i<p,0< 5 <q.
Let o ¢: Ap Qjig A;l — A be defined by

p
(3.3.3) alb@c)ij =Y binck;
k=0

Where b = ;-1:0 ?:0 bij € .Af, c = zP:O Z?:O Cij € .A;l Simi-
larly one constructs an isomorphism ‘@ ;: A;l @4 A; — fRA of fIA

bimodules.

Lemma 3.14. The bimodules Ay and AJIl together with the maps
and Uf implement a Morita equivalence between f*A and A.

3.3.5. Matrix Azumaya algebras.

Definition 3.15. A matriz Azumaya K-algebra on X is a matrix K-
algebra A = ZZ i A;; which satisfies the additional condition A;; = K.

A matrix Azumaya K-algebra is, in particular, an Azumaya K-
algebra. Let Derx (A)!¢ denote the sheaf of K-linear derivations which
preserve the decomposition. Note that Dery (A)"¢ is a sheaf of abelian
Lie algebras. The short exact sequence (3.3.1) restricts to the short
exact sequence

0— K — 2(A) S Derg(A) — 0

For an Ox matrix Azumaya algebra we denote by C(A)"¢ the sub-
sheaf of C(A) whose sections are the connections which preserve the
decomposition. The sheaf C(A)"¢ is an Q% ®¢, Derp, (A)~torsor.
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If A is a matrix Azumaya algebra, then both A®p, Jx and Jx(A)
are matrix Azumaya Jx-algebras. Let Isomy(A ®o, Jx, Jx(A))"°
denote the sheaf of Jx-matrix algebra isomorphisms A ®op, Jx —
Jx (A) making the following diagram commutative:

A®o, Ix JIx(A)
Id®pi \LPA
A = A
where p4 is the canonical projection and p: = po,.

Let Aut,(A®o0, Jx)¢ denote the sheaf of Jx-matrix algebra auto-
morphisms of A ®p, Jx making the following diagram commutative:

A®oy Tx A R0y Ix
Id®pi lld@p
A A A

The sheaf Isom,(A ®0, Jx,Ix(A)) is a torsor under Auty(A ®o,
Jx )¢ and the latter is soft.

Note that Auty(A ®o, Jx)" is a sheaf of pro-unipotent Abelian
groups and the map

(3.3.4) exp: Dero, (A) ®oy Jx.o0 — Auty(A @0, Jx)*

is an isomoprhism of sheaves of groups.

3.4. DGLA of local cochains.

3.4.1. Local cochains on matrix algebras. Suppose that B =
:Z i=0 B;; is a sheaf of matrix k-algebras. Under these circumstances
one can associate to B a DGLA of local cochains defined as follows.
Let C°(B)l¢ = 9(B). For n > 1 let C"(B)!¢ denote the subsheaf of
C™(B) of multilinear maps D such that for any collection of s;, ;, € B, ;,
(1) D(siyj, ®- -+ ®5i,5,) = 0 unless ji =i forall bk =1,... ,n—1
(2) D(Sigiy @ Siriz @+ ® Si_yin) € Bigi,

For I = (ig,...,i,) € [p]*™"" let
C'(B)'e: = C™(B)* (| Homy (®7=) By, Bigi.) -

The restriction maps along the embeddings ®;‘:—(}B — B®" induce
an isomorphism C™(B)"¢ — @cppxn+1CT(B)"".
The sheaf C*(B)"¢[1] is a subDGLA of C*(B)[1] and the inclusion

map is a quasi-isomorphism.

ZAVE
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3.4.2. Combinatorial restriction of local cochains. As in 3.4.1,
B =@;,_,Bij is a sheaf of matrix K-algebras.

The DGLA C*(B)"¢[1] has additional variance not exhibited by C*(B)[1].
Namely, for f: [p] — [¢] there is a natural map of DGLA

(3.4.1) fr et B 1] — Co(f*B) (1]

defined as follows. Let f;j : (f*B);; — B 7()f(j) denote the tautological
isomorphism. For each collection I = (i, ...,i,) € [p]*™*Y let

I 1 giii _
f]i = ®?:0 g]l]-‘-l: ®?:(} (fﬁB)’L ZJ+1 - ®Z OBf ZJ+1) :

Let fi': = @repxeenfi. The map (3.4.1) is defined as restriction
along f}".

Lemma 3.16. The map (3.4.1) is a morphism of DGLA
frootB) ] — Cco(ffB) ] .

3.4.3. Deformations of matrix algebras. For a matrix algebra B
on X we denote by Def(B)“¢(R) the subgroupoid of Def(B)(R) with
objects R-star products which respect the decomposition given by (B®y
R);; = B;j ®; R and 1- and 2-morphisms defined accordingly. The
composition

Def(B)"¢(R) — Def(B)(R) — MC3(I'(X; C*(B)[1]) ®, mp)

takes values in MC?(I'(X; C*(B)"[1])®;mg) and establishes an isomor-
phism of 2-groupoids Def(B)"¢(R) = MC*(I'(X; C*(B)"°[1]) ®x mp).

4. DEFORMATIONS OF COSIMPLICIAL MATRIX AZUMAYA ALGEBRAS

4.1. Cosimplicial matrix algebras. Suppose that X is a simpli-
cial space. We assume given a cosimplicial pseudo-tensor category
U: [p] — PP p = 0,1,2,..., where U? is a pseudo-tensor subcate-
gory Shy(X,) (see 3.2.1) so that for any morphism f: [p] — [¢] in A
the corresponding functor X (f)™': Shy(X,) — Shy(X,) restricts to a
functor X (f)~1: WP — W4, If X is an étale simplicial manifold, then
both DIFF and JET are examples of such. In what follows all algebraic
structures are understood to be given by operations in W.

Suppose that K is a special cosimplicial sheaf (see Definition 2.3) of
commutative algebras on X.

Definition 4.1. A cosimplicial matrixz K-algebra A on X is given by
the following data:

(1) for each p=0,1,2,... a matrix KP-algebra AP = AL

2]0
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(2) for each morphism f: [p] — [¢] in A an isomorphism of matrix
Ki-algebras f,: X(f) LAP — ffA4
These are subject to the associativity condition: for any pair of com-

posable arrows [p] EN lq] < [r]

(g © f)* = fﬁ(g*> © X<g)71<f*)

Remark 4.2. As is clear from the above definition, a cosimplicial matrix
algebra is not a cosimplicial sheaf of algebras in the usual sense.

Suppose that A and B are two cosimplicial matrix algebras on X. A
1-morphism of cosimplicial matriz algebras F': A — B is given by the
collection of morphisms

FP: AP — BP
of matrix KP-algebras subject to the compatibility condition: for any
morphism f: [p] — [¢] in A the diagram

X(f)—lAp L) fﬁAq
X(f)*Fpl lfﬁF‘Z
X(f)'Br P FiB

commutes. The composition of 1-morphisms is given by the composi-
tion of their respective components.
The identity 1-morphism Ids: A — A is given by Id = Id.
Suppose that Fj, F5: A — B are two 1-morphisms. A 2-morphism
b: Fy — Fy is given by a collection of 2-morphisms b: F¥ — FJ satis-
fying

F(X(F)07) = fobe
for any morphism f: [p] — [¢] in A. The compositions of 2-morphisms
are again componentwise.
Let CMA % (X) denote the category of cosimplicial matrix K-algebras
with 1- and 2-morphisms defined as above. In the case when ¥ =
Sh(X), i.e. no restrictions are imposed, we will simply write CMA g (X).

4.2. Deformations of cosimplicial matrix algebras.

4.2.1. DGLA from cosimplicial matrix algebras. Suppose that
X is a simplicial space and K is a special cosimplicial sheaf of commu-
tative k-algebras on X. To A € CMAY.(X) we associate a cosimplicial
sheaf of DGLA g(.A) on | X]| (see 2.1.5).

Let g"(.A) denote the sheaf on | X|,, whose restriction to |X|, is equal
to X (A(0n))~tC*(ANO))lee[1].
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For a morphism f: [m] — [n] in A let

for IXI(£) g™ (A) — g"(A)

denote the map whose restriction to |X|, is equal to the composition

X(C(HN X (A (0m) 1O (AT WO)eef1] =

X(T(F)* o £ (N(0m)) 'O (A" OOy orpr] L
X(A(0n))~HO(F2AN) e 1) =
X(A(0n)) 7' C* (AN o]

in the notations of 2.1.2.

We leave it to the reader to check that the assignment [n] — g"(.A),
f — f«is a cosimplicial sheaf of DGLA on |X]|.

We will denote by 9(A) the cosimplicial subDGLA [n] — X (A(0n)) " o(ANY),

For each i = 0,1, ... we have the cosimplicial vector space of degree
i local cochains T'(| X|; g**(A)), [n] — T(|X|,;g™"(A)). The following
theorem was proved in [7] in the special case when X is the nerve of

an open cover of a manifold. The proof of Theorem 5.2 in [7] extends
verbatim to give the following result.

Theorem 4.3. For each i, j € Z, j # 0, HI(T'(|X|; g% (A4))) = 0.
Let
(4.2.1) &(A) = Tot(T(| X|; g(A))).

As will be shown in Theorem 4.5, the DGLA &(.A) plays the role of a
deformation complex of A.

4.2.2. The deformation functor. Suppose that X is a simplicial
space, V¥ is as in 4.1 subject to the additional condition as in 3.2.5. For
A € CMA} (X) we define the deformation functor Def(A) on ArtAlg,
(see 3.2.5 for Artin algebras).

Definition 4.4. An R-deformation Br of A is a cosimplicial matrix
R-algebra structure on Ap: = A ®; R with the following properties:
(1) Bg € CMAR(X)
(2) for all f: [p] — [q] the structure map fB: X(f)"'B? — f*B?is
equal to the map fA® Idg: X(f)'A? @ R — ffA?®, R.
(3) the identification BR@rk = A is compatible with the respective
cosimplicial matrix algebra structures.

A 1-morphism of R-deformations of A is a 1-morphism of cosimpli-
cial matrix R-algebras which reduces to the identity 1-morphism Idy4
modulo the maximal ideal.
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A 2-morphism between 1-morphisms of deformations is a 2-morphism
which reduces to the identity endomorphism of Id4 modulo the maxi-
mal.

We denote by Def(.A)(R) the 2-category with objects R-deformations
of A, 1I-morphisms and 2-morphisms as above. It is clear that the
assignment R — Def(A)(R) is natural in R.

4.2.3. Suppose given an R-deformation B of A as above. Then, for
each p = 0,1,2,... we have the Maurer-Cartan (MC) element ~* €
[(X,; C*(AP)?[1]) ®; mg which corresponds to the R-deformation B?
of the matrix algebra A? on X,,. This collection defines a MC ele-
ment v € I'(|X],,g°(A)). It is clear from the definition that v €
ker(I'(] X1y, g°(A)) = I'(|X]|,, 9" (A))) ®; mg. This correspondence in-
duces a bijection between the objects of Def(X;.A)(R) and those of
MC?(ker(I'(|X|,, g°(A)) = T'(]X|,, 8" (A))) ® mg), which can clearly
be extended to an isomorphism of 2-groupoids. Recall that we have a
morphism of DGLA

(4.2.2) ker(I'(|1X |y, g°(A)) = T(|X];, 87 (A))) — &(A)
where &(A) = Tot(I'(| X[; g(A))).

This morphism induces a morphism of the corresponding Deligne
2-groupoids. Therefore we obtain a morphism of 2-groupoids

(4.2.3) Def(A)(R) — MC?*(&(A) @ mg)
Theorem 4.5. The map (4.2.3) is an equivalence of 2-groupoids.

Proof. Theorem 4.3 shows that the condition (3.1.5) of the Proposition
3.2 is satisfied. The statement of the Theorem then follows from the
conclusion of the Proposition 3.2. O

4.3. Deformations of cosimplicial matrix Azumaya algebras.
Suppose that X is a Hausdorff étale simplicial manifold.

4.3.1. Cosimplicial matrix Azumaya algebras.

Definition 4.6. A cosimplicial matriz Azumaya K-algebra A on X
is a cosimplicial matrix K-algebra on X (see 4.1) such that for every
p=0,1,2,... the matrix algebra AP is a matrix Azumaya K-algebra
on X, (see Definition 3.15).

Suppose that A is a cosimplicial matrix O x-Azumaya algebra. Recall
that, by convention we treat such as objects of DIFF (see 3.2.2).

Then, Jx(A) is a cosimplicial matrix Jx-Azumaya algebra, which
we view as an object of JET, (see 3.2.2) equipped with the canoni-
cal flat connection V4{". Therefore, we have the cosimplicial DGLA
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with flat connection g(Jx(A)) on |X]|, hence the cosimplicial DGLA
DR(g(Jx(A)). Let

Gpr(Jx (A)) = Tot(I'(|X|;DR(g(Tx (A)))))

The inclusion of the subsheaf of horizontal sections is a quasi-isomorphism
of DGLA g(.A) — DR(g(Jx(A))) which induces the quasi-isomorphism
of DGLA

4.3.2. Cosimplicial splitting. Suppose that A is a cosimplicial ma-
trix Ox-Azumaya algebra.

According to 3.3.2, for each p = 0,1,2,... we have the gerbe S(AP)
on X,. Moreover, for each morphism f: [p] — [¢] in A we have the
morphism f,: X(f)"1S(A?) — S(A9) defined as the composition

-1 P\ o~ -1 gp) o~ 1 qa S(A7) q
X(f)7S(A7) = S(X(f) A7) = S(fFA7) — S(A)

It is clear that the assignment [p] — S(AP), f — f. is a cosimplicial
gerbe on X.

Let 71 = @}_j A}y There is a natural isomorphism A? = End(&?),
the action given by the isomorphism A;; ® Ajp — Ajp. In other
words, EP is a splitting of the Azumaya algebra AP, i.e. a morphism
Er: OX 1] — S(AP).

We are going to extend the assignment p — O% [1] to a cosimplicial

gerbe S4 on X so that £ is a morphism of cosimplicial gerbes S4 —
S(A). To this end, for f: [p] — [q] let (Sa)y = AGsq- For a pair

of composable arrows [p] EN lq % [r ] let (Sa)sg be defined by the
isomorphism X ()™ (Af 0)) ® Ajy0) = Aby(r(0)-

Since f AL, = Aq 1) = A o ® Agf (o) for every i we obtain a
canonical chain of 1somorphlsms

q q
(4.3.2) A?c R a0 [LEF = @Agf(o) = @Ago ® A of o) = =&® 'AOf(O
=0 =0

Let & be the 2-morphism induced by the isomorphism (4.3.2). We
than have the following:

Lemma 4.7. (€7, &) is a morphism of cosimplicial gerbes Sq — S(A).

4.3.3. Twisted DGLA of jets.

Definition 4.8. For a DGLA (t,d) and a Maurer-Cartan element
v € Der(t) we define the y-twist of v, denoted t,, to be the DGLA
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whose underlying graded Lie algebra coincides with that of v and whose
differential is equal to d + 7.

In 4.3.2 we associated with A a cosimplicial gerbe S4 on X. The
construction of 2.5.6 associates to Sy the characteristic class [S4] €
H%(]X|; |IDR(TJ x)|) represented by a 2-cocycle B € Tot(I'(|X|; |[DR(J x)]))
dependent on appropriate choices.

Recall that under the standing assumption that X is a Hausdorff
étale simplicial manifold, the cosimplicial sheaves Ox, Jx, Q% are
special.

We have special cosimplicial sheaves of DGLA C* (Ox)[1] and DR(C” (Tx)[1]).
The inclusion of the subsheaf of horizontal sections is a quasi-isomorphism
of DGLA C°(Ox)[1] — DR(C"(Jx))[1]. Let

S (Jx) = Tot(I'(|X]; PR (Tx)[1))]))

(see 2.2.4 for |e]").

The canonical isomorphism |DR(J x )| = [DR(J x )| (see 2.2.4) induces
the isomorphism of complexes Tot (I(|X|; [DR(7 x)|)) = Tot(D(|X|; [DR(T x)[ ).
Thus, we may (and will) consider B as a 2-cocycle in the latter complex.

The adjoint action of the abelian DGLA Jx[1] on C" (Jx)[1] induced
an action of Jx[1] on C"(Jx)[1]. The latter action gives rise to an
action of the DGLA Tot(I'(|X|; [DR(7 x[1])|')) on the DGLA &p(JTx)

by derivations. Since the cocycle B is a Maurer-Cartan element in
Der(®pp(Jx)), the DGLA &pg(Jx )5 is defined.

| /

4.4. Construction. Let A be a cosimplicial matrix O x-Azumaya al-
gebra on X. This section is devoted to the construction and uniqueness
properties of the isomorphism (4.4.22).

To simplify the notations we will denote Ox (respectively, Ox,, Jx,
Jx,) by O (respectively OF, J, JP).

4.4.1. Construction: step one. We have the cosimplicial matrix
J-Azumaya algebra A® J, hence the cosimplicial graded Lie algebras
g9(A® J) and Qfy ® g(A® J). Let § denote the graded Lie algebra

Tot(T'(| X|; QFX‘ RgART))).
We begin by constructing an isomorphism of graded Lie algebras.

(4.4.1) 519 — Gm(T(A)
For each p =0,1,2,... we choose
oP € Isomg (AP ®@ JP, T (AP))le .

Consider a simplex A: [n] — A.
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For 0 <7 < n the composition
X(A(0n) "t AN —
X@0)) X (A07)) 1AM 205 33 n)) I (07)5AND
defines an isomorphism
(4.4.2) X(A0n)TANO — X (A(in))TIA(04)F AN
The composition of the map X (A(in))*A(0i)* with the isomorphism
(4.4.2) defines the following maps, all of which we denote by 75 ;:
e Tsomg (A @ JAD | 7 (ANDYyloe
Isomg (X (A(0n)) " 2ANO @ 72| 7(X (A(0n)) 1 ANO))loe

it %, © C*(AMDYlee @ 7AD
D,y @ C2((XAOR) A0 @ X

etc. Define o} = 75,07,

Recall that pr,: X, x A" — X, denotes the projection Let 0* be an
element in Isomg(pry' (X (A(0n)) " LANO@7*O) pr! 7 (X (A(0n)) 1 AMNO))loe
defined as follows. For each morphism f: [p] — [¢] in A there is a
unique

I(f) € T(Xg;Deroy (X ()7 A" ® J)

such that the composition

exp(9(f)) X(f)~lo®
_ _—

X(H A e T

is equal to the composition

X(f) A T X(f)rT(AP)
X(f) A 0 T L e g0 SO,

FT(An) B X () g (an).
Let

(4.4.3) o = (prio)) o exp(— Zt M08 9(A(in))).

In this formula and below we use the isomorphism (4.4.2) to view
AM09)*9(A(in)) as an element of I'(X(n); Derpawm (X (A(0n)) "L AMO)leeg)
jk(n))_
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The isomorphism of algebras o induces the isomorphism of graded
Lie algebras

()

0%,y xar @Pry' (EHA® JT)) ——
%,y xan @ PrY (83(T (A)))

Lemma 4.9. The map o induces an isomorphism
° n (O')\)* L] n
Qn ®c U, @INAB® T) —— U ®c U, ,, @ Gr(T(A))

Proof. 1t is sufficient to check that exp(— > i ;- A(07)*J(A(in))) maps
g (ARJT) into Q,2ca} (ART). Since the Lie algebra Derpq (X (f) ~LAP)°
is commutative, this is a consequence of the following general state-
ment: if A is an Azumaya algebra on X, D € C*(A ® J)[1] and
¥ € I'(X;Derp, (A) ® Jxp), then (exp(tadd))*D is polynomial in t.
But this is so because ¢ is inner and D is section of a sheaf of jets of
multidifferential operators. O

It is clear that the collection of maps (6*)* is a morphism of cosim-
plicial graded Lie algebras; the desired isomorphism ¥ (4.4.1) is, by
definition the induced isomorphism of graded Lie algebras. We now
describe the differential on $ induced by the differential on &pg( 7 (A))
via the isomorphism (4.4.1).

Recall that the differential in & (7 (A)) is given by & + V. It is
easy to see that § ~induces the Hochschild differential 6 on §). The canon-
ical connection V" induces the differential whose component corre-
sponding to the simplex ) is the connection (¢*) 1o X (A\(0n))*Voo?.

To get a more explicit description of this connection choose for each
p = 0,1,2,... a connection V¥ € C(AP)"(X,); it gives rise to the
connection V? ® Id 4+ Id @ V" on A? @ JP. Let

PP = (o) o V™ oo? — (VP ®Id+ Id ® V") |

PP € [(X,; QO @ Derps(AP)'° @ JP) C T'(X,; Qx @ CH (AP ® JP)').
Let

VA=Yt VO @ 1d+ 1d® Ve
i=0
be the induced derivation of Q, ®c I'(Xyy; X (A(0n))LAND). Tt is
easy to see that the collection V* induces a derivation on $) which we
denote by V.
Let

P — (O_)\)—l OX(/\(OH))*%C{W L v2 ,
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O € Q, ®T(Xany; U, @Derorm (X (A(0n)) "1 AND)ee @ FAM). Us-
ing the formula (4.4.3) we obtain:

4.4.4 = t, - 7.D —N "dt; AN0DPI(N(in)) .
At
1=0 1=0

It is easy to see that the collection ®* defines an element total degree
one in 9. The differential induced on $) via the isomorphism (4.4.1)
can therefore be written as

(4.4.5) §+V+add

4.4.2. Now we construct an automorphism of the graded Lie algebra
$) which conjugates the differential given by the formula (4.4.5) into a
simpler one. This is achieved by constructing I € Tot(I'(|X]; 7y ®

(0(A) ® J))) C $ with components F* such that ®* = —§F*. This
construction requires the following choices:

(1) for each p we chose
FPeT (X, 0%, @ (A7) @ J))

such that ®? = —JFP, and
(2) for each morphism f: [p] — [¢] in A we chose

D(f) € T(Xg X(f)0(A") ® T)
such that 9(f) = dD(f).
The unit map
(4.4.6) J — X(go ) TAPRT"

gives the canonical identification of the former with the center of the
latter.

Lemma 4.10. For a pair of composable arrows [p] =R lq] & [r] the
section X (9)*D(f) + f*D(g) — D(go f) € T'(X,; X(go f)1A? @ J)
is the image of a unique section

B(f,9) € T(Xe; T5)

under the map (4.4.6).(Here we regard f*D(g) as an element of I'(X,; X (go
f)TTAP @ J7) using (4.4.2).)

Proof. Follows from the identity X (¢)*d9(f)+ f*9(g) —9(go f) =0. O
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Let

Y=Y "t FAO = dty AX0§) D(A(in))+
=0

=0

D (tdty — tydt;) A B(A(if), A(jn)) |

0<i<j<n
where we regard A(0i)* D(A(in)) as an element of I'(X(); X (A(0n)) "1o(AM))®
J ™)) so that
F* € Q, @ T(Xam); 0%, ,, @ (X(A(0n))(AN) @ 7)) |
Lemma 4.11.

(1) The collection {F*} defines an element F € )
(2) & = —6F

Proof. Direct calculation using Lemma 2.10. U
As before, F' denotes the image of F in Tot(| X |; Qry (AT |x|)).
The unit map @ — A (inclusion of the center) induces the embed-

ding

(44.7) Tot(D(IX]; Qy @ T1x)) =

Tot(I'(|X[; Qy; ® (0(A) ® T x1))

Lemma 4.12. The element

—VF € Tot(I'(|X|; Qx ® (0(A) ® T x))))
1s the 1tmage of a unique closed form
w € Tot(D(IX|; Q) ® T)x))

under the inclusion (4.3.1). The cohomology class of w is independent
of the choices made in its construction.

Proof. Using ® = —0F (Lemma 4.11) and the fact that (4.4.5) is a
differential, one obtains by direct calculation the identity §(VEF)+V? =
0. Note that V? = 66 for some 6 € Tot(I'(|X]; 2Py @ 9(A))). Hence
VE+0 is a central element of Tot(I'(|.X[; 2y ® (3(A) ® J))), and the
first statement follows. O

Following longstanding traditions we denote by ¢ the adjoint action
of G € Tot(I'(|X[; 2y @ (0(A) ® J))) C H.

Proposition 4.13.
(4.4.8) exp(tp) o (0 +V 4+ P)oexp(—tp) =0+ V — typ.
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Proof. Analogous to the proof of Lemma 16 of [5]. Details are left to
the reader. ]

4.4.3. 1t follows from (4.4.8) that the map
(4.4.9) exp(—tr): H— 9H

is an isomorphism of DGLA where the differential in the left hand side
is given by 0 + V — tyr and the differential in the right hand side is
given by 6 + V + @, as in(4.4.5).

Consider the map

(4.4.10) cotr: C"(JP)[1] — C* (AP @ JP)[1]
defined as follows:
(4.4.11) cotr(D)(a1 @ j1,. .. 0, @ Jn) = ag - .. anD(J1, ..., Jn)-

The map (4.4.10) is a quasiisomorphism of DGLAs (cf. [21], section
1.5.6; see also [5] Proposition 14).
The maps (4.4.10) induce the map of graded Lie algebras

(4.4.12) cotr: Gpp(J) — 9

Lemma 4.14. The map (4.4.12) is a quasiisomorphism of DGLA,
where the source and the target are equipped with the differentials 6 +
Ve 4 and 8+ V — iy respectively, i.e. (4.4.12) is a morphism of
DGLA

cotr: Bpr(J)w — 9

4.4.4. Recall that in the section 4.3.2 we introduced the bundles 7 =
o Ajjy over X,,. For f: [p] — [g] there is a canonical isomorphism
X(f)~lep = figa ®.Agf(0) which we use to identify the former with the
latter.
We make the following choices of additional structure:

(1) for each p = 0,1,2,... an isomorphism oz: E# @ J* — J(EP)
such that og (A, ® JP) C J(A})

(2) for each p=0,1,2,... a connection V% on &P
(3) for every f:[p] — [g] an isomorphism of: Af;(, ® J? —
T (Ass(0)

q
0£(0)

Let of € Isomy(A? @ JP, J(AP))" denote the isomorphism induced
by ok. Let VP € C(AP)"*(X,) denote the connection induced by V%.

(4) for every f: [p] — [q] a connection Vs on A
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Let
F? = (60) ' oVH ool — (VE®Id+ Id® V")
Fy o= (og) " oVGl ooy —(Vy@Id+1de V™)

FP e T(X,; Qf @ (AP®JP)). We define D(f) € T'(X,; X(f) '0(AP)®
J9) by the equation

X(f) ot oexp(D(f)) = frog @ oy

In 4.3.2 we constructed the cosimplicial gerbe S4 on X such that S
is trivialized. Starting with the choices of o¢, V; as above we calculate
the representative B of the characteristic class of Sy using 2.5.6. By
Lemma 4.7 the collection of bundles £P establishes an equivalence be-
tween S and the cosimplicial gerbe S(A) (of splittings of .A). Hence,
B is a representative of the characteristic class of S4.

In the notations of 2.5, for f: [p] — [g], we have

gf = Isomo(Agf(O) & jl]? j(Agf(0)>>

and, under this identification, (3; = 0;1 oV ooy,
Then, ((f,g) is uniquely determined by the equation

(09 @ X(9)"0f) = 0oy 0 exp B(f, 9)

which implies
(4.4.13)

can -1 can —1 can -1 can
\% ﬁ(f?g)_o-g OVSAgOUg+Uf OVSAfOUf UgofovSAgofoagof'

Equations (4.4.13) and (2.5.6) show that ((f,g) coincides with [y,
defined by (2.5.2).

Lemma 4.15. The form B of 2.5.6 coincides with the form w of
Lemma 4.12

Proof. For f: [p] — [q] in A the following identities hold:

(4.4.14) (VP ®1Id+I1d® V) F =0
(4.4.15) VA F =0
(4.4.16) VerD(f) + X(f) F' = f'F" + F;
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Using these identities we compute :

VAF/\ = Z t; - T)"\"i(vA(i) ®Id+Id® vcan)ﬁ)‘(i)_i_

=0
S dt A F 13T dt A N00 VN (D(A(in)))+
=0 =0

Ve Y (tadty = tidti) A BN, AGm))) =
Sty A MO (BN i) + X (i) T )+
%c‘m( Z (tidt; — tydt;) A B(A(if), A(jn))) =

0<i<j<n

Z dt; A X0 \(in) F + Fin))+
i=0

Ve Y (tdty — tdt) A BA(E), Alin))) =

0<i<j<n
(O~ dti) AXNOR)TF" + ) dti A Fxgny+
1=0 =0

%C'm( Z (tidt; — t;dt;) A B(A(i5))) =

0<i<j<n

> dt; APy + V(Y (tidty — tidt;) A B(A(if)))

i=0 0<i<j<n

The result is identical to the formula (2.5.7). O

4.4.5. In what follows we will denote a choice of auxiliary data as in
4.4.4 by w. B
Given a choice of auxiliary data @ we denote by B, the correspond-
ing characteristic form, by >, the corresponding map (4.4.1), etc., and
by
T ®DR(~7)§W — Gr(J(A))

the quasiisomorphism of DGLA defined as the composition

Gon(JT)p. 25 5 2=, 6 22, G (T(A))

To finish the construction, we will “integrate” the “function” w — T,
over the “space” of choices of auxiliary data in order to produce
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e the DGLA QjDR(j)[S(.A)]
e for each choice of auxiliary data w a quasiisomorphism

Pre: Gon(J)isa) — Gmm(J) 5.
e the morphism in the derived category of DGLA

T: Gpr(J)isa)) — Gor(T(A))

such that the morphism in the derived category given by the composi-
tion

Gor(J )5, fre), Gon (T )s(a) — Gor(T(A))
coincides with T .

4.4.6. Integration. To this end, for a cosimplicial matrix Azumaya
algebra A on X (respectively, a cosimplicial O%-gerbe S as in 2.2.7) let
AD(A) (respectively, AD(S)) denote the category with objects choices of
auxiliary data (1) — (4) as in 4.4.4 (respectively, (1)—(iii) as in 2.5.2
with G = V" log 1(S)) and one-element morphism sets. Thus, AD(.A)
(respectively, AD(S)) is a groupoid such that every object is both initial
and final.
For a cosimplicial matrix Azumaya algebra A we have the functor

(4.4.17) 7: AD(A) — AD(S(A))

which associates to @w € AD(A) (in the notations of 4.4.5) the auxiliary
data as in 2.5.6, items (1)—(3). Here we use the equivalence of Lemma
4.7.

For a category C we denote by Sing(C) denote the category, whose ob-
jects are “singular simplices” p: [m] — C. For p: [m] — C, v: [n] — C,
a morphism f: p — v is an injective (on objects) morphism f: [m] —
[n] such that pn = v o f. The functor (4.4.17) induces the functor

7: Sing(AD(.A)) — Sing(AD(S(A)))

For u: [m] — AD(A) (respectively, u: [m] — AD(S)) , 0 < i < m, the
choice of auxiliary data (i) consists of op(u(7)), Va(u(i)), or(p(i)),
V5(u(i)) (respectively, FP(u(i)), B (u(i)), By(u(1))) for all objects [
and morphisms f in A.

In either case, let X (u): = A™ x X. Then, X (u) is an étale simpli-
cial manifold. Let A(u) = pri A (respectively, S(u) = prS). Then,
A(pe) is a cosimplicial matrix Oy ,)-Azumaya algebra on X (u) (respec-
tively, a cosimplicial (’))X((#)—gerbe).

For yi: [m] — AD(A) let ob(p) (vespectively, V&, op(u), V(u)) de-
note the convex combination of pri; o (u(i)) (respectively, pri V& (u(i)),
prios(u(i)), priVe(u(i))), i = 0,...,m. The collection consisting of
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ob, V%, or(p), V(u) for all objects [p] and morphisms f in A consti-
tutes a choice of auxiliary data, denoted ji.

Similarly, for p: [m] — AD(S) one defines i as the collection of aux-
iliary data 0P (u) (respectively, BP(u), B¢(1)) consisting of convex com-
binations of 07(yu(¢)) (respectively, BP(u(7)), B¢(u(4))), i = 0,...,m.
The construction of 2.5 apply with X: = X(u), Ve: = pri Ve,
S: = S(p) yielding the cocycle By € T'(| X (u)]; DR(T |x(u))- A mor-
phism f: u — v in Sing(AD(S)) induces a quasiisomorphism of com-
plexes

S DX () DR(T 1xw)))) — T(IX (1) ; DR(T 1 x10)1)) -

Moreover, we have f*(By) = Bj.

Hence, as explained in 4.3.3, for p: [m] — AD(S), we have the DGLA
Gor(Jx (u)5,- Moreover, a morphism f: 4 — v in Sing(AD(S)) induces
a quasiisomorphism of DGLA

f7 Gm(Ixw)m, — Gor(Tx ()5, -
Let
(4.4.18) Gor(Jx )i = Lim Gor(Tx ()5,
n

pa—

where the limit is taken over the category Sing(AD(S)).

For p: [m] — AD(A) the constructions of 4.4.1 — 4.4.3 apply with
X =X(u), J: = Ix, V" = pri Ve, A: = A(p) and the
choice of auxiliary data j yielding the quasiisomorphism of DGLA

Ty QSDR(jX(“))Ew@) — Gpa(Tx () (A1)

For a morphism f: u — v in Sing(AD(.A)), the diagram

Gor(Tx ()5, s Bun(Tx) (AV))

v

a |

Son(Tx ()5 —— Gon(Tx (A1)

(1)

is commutative. Thus, we have two functors, Sing(AD(.A))? — DGLA,
namely,

p— @DR(jX(u))EWm

and

o= ®DR(jX(u)(~A(:u)))v
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and a morphism of such, namely, o — Y. Since the first functor fac-
tors through Sing(AD(S(A))) there is a canonical morphism of DGLA

(4.4.19) lim Gon(Tx ()5 — Gon(Tx) s
m
On the other hand, T induces the morphism
(4.4.20) lim T lim 6DR(~7X(M)§7@> — lim Gor(Tx () (A1)
u p p
Lemma 4.16. The morphisms (4.4.19) and (4.4.20) are quasiisomor-
phisms.

For each p € Sing(AD(.A)) we have the map

Pry (1) : Gor(Tx(A)) — Goa(Tx () (A(1)))-
Moreover, for any morphism f: 1 — v in Sing(AD(A)), the diagram

pri (v)

Gpr(Tx(A)) — Gpa(Tx) (A1)

o |

pri(

Gon(Tx (A)) T B (T (A1)

is commutative. Therefore, we have the map
(14.21) Pr: Gl T (A)) — lim Bon(Tic o (A1)
m

Note that, for v: [0] — AD(A), we have &pr(Tx ) (A(V))) = Gpr(Tx(A)),

and the composition

Gon (T (A)) 25 1im Gpn (T (A1) — Gon(Tx ) (AW)))

L
is equal to the identity.

Lemma 4.17. For each v: [0] — AD the morphism in the derived cat-
egory induced by the canonical map

lim Gpa(Tx ) (A1) = Gor(Tx ) (A1)

m

is 1nverse to pry.
Corollary 4.18. The morphism
liLn@DR(jX(u)(A(M))) - @DR(jX(u) (A(V))) = Q5DR(~7X(~A))

In

in derived category does not depend on v: [0] — AD.
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Let
(4.4.22) T: Gor(T)isa) — Gor(Tx(A))
denote the morphism in the derived category represented by

(4.4.19) (4.4.20)

Gor (T )isa) — m Gow(Tx(w)p . —
i
lim Gpp (Tx () (A1) = Gpr(Tx () (A(¥))) = Gpa(Tx(A))

I

for any v: [0] — AD.

5. APPLICATIONS TO ETALE GROUPOIDS

5.1. Algebroid stacks. In this section we review the notions of al-
gebroid stack and twisted form. We also define the notion of descent
datum and relate it with algebroid stacks.

5.1.1. Algebroids. For a category C we denote by iC the subcategory
of isomorphisms in C; equivalently, iC is the maximal subgroupoid in

C.

Suppose that R is a commutative k-algebra.

Definition 5.1. An R-algebroid is a nonempty R-linear category C
such that the groupoid iC is connected

Let Algd, denote the 2-category of R-algebroids (full 2-subcategory
of the 2-category of R-linear categories).

Suppose that A is an R-algebra. The R-linear category with one
object and morphisms A is an R-algebroid denoted A*.

Suppose that C is an R-algebroid and L is an object of C. Let
A = End¢(L). The functor A" — C which sends the unique object of
AT to L is an equivalence.

Let ALG% denote the 2-category of with

e objects R-algebras

e l-morphisms homomorphism of R-algebras

e 2-morphisms ¢ — v, where ¢,19: A — B are two 1-morphisms
are elements b € B such that b- ¢(a) = ¢(a) - b for all a € A.

It is clear that the 1- and the 2- morphisms in ALG?% as defined above
induce 1- and 2-morphisms of the corresponding algebroids under the
assignment A +— A*. The structure of a 2-category on ALG% (i.e.
composition of 1- and 2- morphisms) is determined by the requirement
that the assignment A — A% extends to an embedding (.)*: ALG% —
Algdp.
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Suppose that R — S is a morphism of commutative k-algebras. The
assignment A — A®prS extends to a functor (.)®@pS: ALG% — ALG%.

5.1.2. Algebroid stacks.

Definition 5.2. A stack in R-linear categories C on a space Y is an
R-algebroid stack if it is locally nonempty and locally connected by
isomorphisms, i.e. the stack iC is a gerbe.

Example 5.3. Suppose that A is a sheaf of R-algebras on Y. The
assignment X D U — A(U)" extends in an obvious way to a prestack
in R-algebroids denoted A*. The associated stack At s canonically
equivalent to the stack of locally free A”-modules of rank one. The
canonical morphism A" — A% sends the unique object of A™ to the
free module of rank one.

1l-morphisms and 2-morphisms of R-algebroid stacks are those of
stacks in R-linear categories. We denote the 2-category of R-algebroid
stacks by AlgStacky(Y).

Suppose that G is an étale category.

Definition 5.4. An R-algebroid stack on G is a stack C = (C, Co1, Co12)
on G such that C € AlgStack,(NoG), Coy is a 1-morphism in AlgStackz (N, G)
and Cpi2 is a 2-morphism in AlgStacky(N2G).

Definition 5.5. A I-morphism ¢ = (¢o, ¢01): C — D of R-algebroid
stacks on G is a morphism of stacks on G such that ¢q is a I-morphism
in AlgStackz(NoG) and ¢g; is a 2-morphism in AlgStack(N;G).

Definition 5.6. A 2-morphism b: ¢ — ¢ between 1-morphisms ¢,¢: C —
D is a 2-morphism b: ¢y — g in AlgStackz(NoG).

We denote the 2-category of R-algebroid stacks on G by AlgStack(G).

5.2. Base change for algebroid stacks. For an R-linear category
C and homomorphism of commutative k-algebras R — S we denote by
C ®g S the category with the same objects as C and morphisms defined
by Homeg (A, B) = Home (A, B) ®r S.

For an R-algebra A the categories (A ®z S)* and AT ®p S are
canonically isomorphic.

For a prestack C in R-linear categories we denote by C ®zr S the
prestack associated to the fibered category U +— C(U) ®g S.

For U C X, A,B € C(U), there is an isomorphism of sheaves
Homg . s(A, B) = Hom.(A, B) ®g S.

The proof of the following lemma can be found in [7] (Lemma 4.13
of loc. cit.)
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Lemma 5.7. Suppose that A is a sheaf of R-algebras on a space Y
and C € AlgStacky(Y) is an R-algebroid stack.

(1) (A* @r S)™ is an algebroid stack equivalent to (A ®@p S)* .
(2) C®g S is an algebroid stack.

The assignment C — C ®pr S extends to a functor denoted
()®rS: AlgStack,(Y) — AlgStackg(Y)
and, hence, for an étale category G, to a functor
()®rS: AlgStacky(G) — AlgStackg(G)

There is a canonical R-linear morphism C — C®pS (where the target
is considered as a stack in R-linear categories by restriction of scalars)
which is characterized by an evident universal property.

5.3. The category of trivializations. Let Trivg(G) denote the 2-
category with
e objects the pairs (C, L), where C is an R-algebroid stack on G
such that C(NoG) # 0, and L € C(NoG)
e l-morphism (C,L) — (D, M) the pairs (¢, ¢.), where ¢: C —
D is a morphism in AlgStacky(G) and ¢,: ¢o(L) — M is an
isomorphism in D(NyG).
e 2-morphisms (¢, ¢,) — (1,1,) are the 2-morphisms ¢ — ).
The composition of 1-morphisms is defined by (¢, ¢,) o (¥, 1,) =

(? © %7 ¢T © ¢0(¢‘r))
The assignment (C, L) — C, (¢, ¢-) — ¢, b b extends to a functor

(5.3.1) Trivg(G) — AlgStacky(G)

For a homomorphism of algebras R — S and (C, L) € Trivg(G) we
denote by (C, L)®gS the pair which consists of C®rS € AlgStackg(G)
and the image of L, denoted L ®5 S, in CRRS.

It is clear that the forgetful functors (5.3.1) commute with the base
change functors.

5.3.1. Algebroid stacks from cosimplicial matrix algebras. Sup-
pose that G is an étale category and A is a cosimplicial matrix R-
algebra on NG.

Let

(5.3.2) C = (Avr)+ .

In other words, C is the stack of locally free A-modules of rank one.

—_—

There is a canonical isomorphism Ci(l) = (A;-Op ).



DEFORMATIONS OF ALGEBROID STACKS 55
Let
(5.3.3) Cor = Aby @, (): €Y — V.

The multiplication pairing A31 ® A2, — Agz and the isomorphisms
Az = (A(ln)g-) determine the morphism

(5.34) Corz: C5Y 0 CY) = A2 @2 A2y @ () — A2 @2, (1) = C8)
Let C = (C, Co1,Co12)-

Lemma 5.8. The triple C defined by (5.3.2), (5.3.3), (5.3.4) is an
algebroid stack on G.

We denote by st(A) the algebroid stack C associated to the cosim-
plicial matrix algebra A by the above construction.

Suppose that A and B are cosimplicial matrix R-algebras on NG
and F: A — B is a l-morphism of such. Let C = st(A), D = st(B).
The map F°: A% — B° of sheaves of R-algebras on NyG induces the
morphism ¢q: C — D of R-algebroid stacks on NyGG. Namely, we have

(5.3.5) ¢ =B @40 ()
The map F': A' — B! restricts to the map F;: A}; — B, which
induces the map
B(l)o @ a1, Aél - B(l)l = 851 @p1, Bil
of By ® (Ai;)°P-modules, hence the 2-morphism
(5.3.6) dor: 5 0 Cor — Doy 0 ¢y
Let ¢ = (¢o, Po1)-

Lemma 5.9. The pair ¢ defined by (5.3.5), (5.3.6) is a 1-morphism in
AlgStackyz(G).

For a 1-morphism of cosimplicial matrix R-algebras F': A — B on
NG we denote by st(F): st(A) — st(B) the I-morphism in AlgStack(G)
given by the above construction.

Suppose that Fy, Fy: A — B are 1-morphisms of cosimplicial matrix
R-algebras on NG and b: F; — F5 is a 2-morphism of such. The 2-

morphism 8°: FY — FY induces the 2-morphism of functors (A%P)+ —

—~—

(BOop)-i-‘

Lemma 5.10. The 2-morphism b° is a 2-morphism in AlgStacky(G).
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For a 2-morphism b: I} — F, we denote by st(b): st(F}) — st(F3)
the corresponding 2-morphism in AlgStack,(G) given by the above
construction.

We denote the canonical trivialization of the algebroid stack st(.A)
by 1 4. Let triv(A) denote the object of Trivg(G) given by the pair
(st(A), La).

If F: A — Bisal-morphism in CMAg(NG), then st(F)(14) = 1.
Let st(F), denote this identification; let triv(F') = (st(F), st(F),).

For a 2-morphism b in CMAR(G) let triv(b) = st(b).

Proposition 5.11.

(1) The assignments A +— st(A), F +— st(F), b — st(b) define a
functor

st: CMAR(NG) — AlgStackz(G) .

(2) The assignments A — triv(A), F — triv(F), b — triv(b)
define a functor

triv: CMAR(NG) — Trivg(G) .

which lifts the functor st.

5.3.2. Base change for st and triv. A morphism f: R — S of
commutative k-algebras induces the R-linear morphism Id ® f: A —
A ®p S in CMAR(NG), hence, the morphism st(Id ® f): st(A) —
st(A®g S) in AlgStack,(G). By the universal property of the base
change morphism, the latter factors canonically through a unique mor-
phism st(A)®rS — st(A®zS) such that 14 ®r S — 1 4g,s and the
induced map A®pS = End ;(45,s(La®rS) — Endgue,5) (Laggs) =
A®pg S is the identity map. In particular, it is an equivalence. The in-
verse equivalence st(A®zS) — st(A)®xS is induced by the canonical
morphism (A ®p S)" = End ;e ,5) (Lacgs)™ — st(A)®pS. Thus,
we have the canonical mutually inverse equivalences triv(A)®zS &
triv(A®g 9).
A morphism F': A — B in CMAR(G) gives rise to the diagram

trivFQpS
_—

triv(A)®pS triv(A)®@pS
triv(A ®g S) riv(ons) triv(A®g S)

which is commutative up to a unique 2-morphism.
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5.3.3. Cosimplicial matrix algebras from algebroid stacks. We
fix (C, L) € Trivg(G) and set, for the time being, A° = End.(L)°?. The
assignment L' — Hom,(L,L’) defines an equivalence C — (A%r)*.

The inverse equivalence is determines by the assignment 1 4 — L.
Forn>1,0<1475<nlet

(n) ~(n)r(n) TR

(5'3'7> Al = HO_mCEn) (L(Zn) ’ Czj ) (LJ (na) ! Z‘ B j
Y HO_mCJ(_n) (C(L), L") it j <

where Cz(zn ) — Id,m. Then, the sheaf A7, has a canonical structure of a

(Ao)z(n) ® (Ao)g-n)()p—module. Let

=D 4

1,j=0

The definition of the multiplication of matrix entries comprises sev-
eral cases. Suppose that ¢+ < 7 < k. We have the map

(n)

n n n Cij
(5.3.8) = Hom (L, ey

n n n n ci]
m_mcgmc;)@; D€ o CRNLYY)) =
Hom,» (C-(’?) (L
The multiplication of matrix entries is given by

(5 3 9) An 2 n 1d®(5.3.8)

Homcgn)(Lgn),C,(.)(Lg ) ® Hom, o (L), ¢l (rimy)

v

= Hom o (L, C (L)) = Aj
Suppose that j <i < k. We have the map

(n)

(5.3.10) Afj, = Homn (L LM, ci (L)) =

n n n n n C]('?)
Home (€7 (L), (€57 o C) (14)) =

1

Hom, (G5 (L"), €5 (L")
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The multiplication of matrix entries is given by

(5.3.11) A} ® AT, =

Hom» (i), L) & Hom, (L, C (L)) =
" n n (5.3.10)7 ! n
MY, CE(LM)) = A,

% %

HO_mCJw) (Cj(?) (L

We leave the remaining cases and the verification of the associativity
of multiplication on A" to the reader.

Lemma 5.12. The collection of matriz algebras A™, n = 0,1,2,...,
has a canonical structure of a cosimplicial matriz R-algebra.

We denote by cma(C, L) the cosimplicial matrix algebra associated
to (C, L) by the above construction.

Suppose that (¢, ¢,): (C, L) — (D, M) is a 1-morphism in Trivg(G).
Let A = cma(C, L), B = cma(D, M).

Let F°: A — B° denote the composition

A® = Endo (L) * Endp(é0(L))” > Endp(M)” = 5°
Forn >1,0<i<j<nlet Fjj: A, — B (see (5.3.7)) denote the

composition

n o
Hom, (L, el (L))

Homy o (6" (L"), (6" o ) (L{")) “2
" n n n n ¢S_")
Hom, o (60" (1{"), (D 0 6{”) (L)) “—
Hotnyon (M, DY (ML),

? J

The construction of FZ’; in the case j < 7 is similar and is left to the
reader. Let F" = @F"™: A" — B".

Lemma 5.13. The collection of maps F": A" — B" is a 1-morphism
of cosimplicial matriz R-algebras.

We denote by cma(¢, ¢,): cma(C, L) — cma(D, M) the 1-morphism
of cosimplicial matrixalgebras associated to the 1-morphism (¢, ¢,) in
Triv(G) by the above construction. a

Suppose that (¢, ¢,), (¢¥,¥,): (C,L) — (D, M) are l-morphisms in
Triv(G) and b: (?_,QZST) —7(@, ;) is a 2-morphism.



DEFORMATIONS OF ALGEBROID STACKS 59

Let cma(b)’: cma(¢, ¢,)° — cma(1),1,)? denote the composition
M ¢(L)
(i.e. cma(b)? € T'(NoG; Endp(M)).)

Lemma 5.14. The section cma(b)? € T'(NoG; End(M)) is a 2-morphism
cma(¢, ¢;)" — cma(y, 1-)°.

Proof. For f € End,(L) we have
cma(b)’ o cma(¢, ¢,)°(f) = sz ob(L

(¢-)" b(B)
—_— —

Y(L) ¥ M

) o (¢:)7 0 pr 0 d(f) o (¢r)7
= ( )oo(f)o(dr)!
= U(f)ob(L)o (ér)7"
= U(f) o (7)™ ot 0b(L) 0 (¢7) 7"
= Cma( W, ¥:)°(f) o cma(b)°
0

For n > 1 let cma(b)" = (cma(b)j;) € I'(N,G;cma(D, M)") denote

the “diagonal” matrix with cma(b)? = (cma(b)’ )fn)

Lemma 5.15. The collection cma(b) of sections cma(b)”, n =0,1,2,...
is a 2-morphism cma(@, ¢,) — cma(y), ;).
Proposition 5.16.

(1) The assignments (C, L) — cma(C, L), (¢, ¢-) > cma(®, ¢.), b —
cma(b) define a functor
cma: Trivg(G) — CMAR(NG)

(2) The functors cma commute with the base change functors.

For A € CMA(NG) we have
cma(triv(A))’ = End —— (14)? = A"

A00p)+
For 0 <17 < j < n there is a canonical isomorphism

Hom(Amp) (]l(n) triv(A)(n)( )) Al

For 0 < 5 <i < n we have
Hom oo, (triv(A) (1), 1]") = Hom 4, (AT, A7) = A}

(ATP)+ ji jio ij
where the last isomorphism comes from the (multiplication) pairing
A% @ Al — A7 These isomorphisms give rise to the canonical iso-
morphism of CMA

cma(triv(A)) = A
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On the other hand, given (C, L) € Triv(G), we have the canonical

equivalence (End,(L)°?)* — C determined by ﬂ(mp)+ — L.
To summarize, we have the following proposition.

Proposition 5.17. The functors triv and cma are mutually quasi-
inverse equivalences of categories.

5.3.4. V-algebroid stacks. Suppose that X is a space and ¥ is a
pseudo-tensor subcategory of Shi(X) as in 3.2.1.

An algebroid stack C € AlgStack, (X) is called a W-algebroid stack
if for any open subset U C X and any three objects Ly, Ly, L3 € C(U)
the composition map

Hom, (L, Ly) ® Home (Lo, L) — Home(Ly, Lo)

isin W.

Suppose that C and D are W-algebroid stacks. A 1-morphism ¢: C —
D is called a W-1-morphism if for any open subset U C X and any two
objects Ly, Ly € C(U) the map

¢: Home(Ly, Ly) — Homp(¢(L1), ¢(L2))

isin V.

Suppose that ¢,¢: C — D are W-l-morphisms. A 2-morphism
b: ¢ — 1 is called a V-2-morphism if for any open subset U C X
and any two objects L, Ly € C(U) the map

b: Homp(¢(Ln), ¢(L2)) — Homp((Ly), 1 (L2))

is in W.

We denote by AlgStack;’ (X) the subcategory of AlgStack, (X) whose
objects, 1I-morphisms and 2-morphisms are, respectively, the W-algebroid
stacks, the W-1- and the WU-2-morphisms.

Suppose that G is an étale category and let W: p — WP be a cosim-
plicial pseudo-tensor subcategory of Shy(NG) as in 4.1. An algebroid
stack C = (C, Co1,Co12) € AlgStack,(G) is called a W-algebroid stack if
C is a W-algebroid stack on NyG, Cp; is a W-1-morphism and Cy;s is a W-
2-morphism. Similarly, one defines W-1-morphism and W-2-morphism
of W-algebroid stacks on G the details are left to the reader. We denote
the resulting subcategory of AlgStack, (G) by AlgStack, (G).

The subcategory Trivy (G) of Trivi(G) has objects pairs (C, L) with
C € AlgStack) (G), and 1-morphisms and 2-morphisms restricted ac-
cordingly.
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5.3.5. Deformations of W-algebroid stacks. Recall (3.2.2, Exam-
ple DEF) that, for R € ArtAlg, we have the pseudo-tensor category
U(R).

Suppose that G is an étale category and C is a W-algebroid stack on
G.

We denote by Def(C)(R) the following category:

e an object of BE%(Q)(R) is a pair (D,7) where D is a \i(\ﬁ)—
algebroid stack on G and 7: D®grk — C is an equivalence of
W-algebroid stacks,

e a l-morphism (D, ) — (D', ') of ¥(R)-deformations of C is a
pair (¢, 3), where ¢:D — D' is a 1-morphism of \i(\}?)—algebroid
stacks and 0: 7 — 7’ o @65 rk) is 2-isomorphism,

e a 2-morphism b: (¢, 51) — (&,, 52) is a 2-morphism b: ¢, — ¢,
such that 5y = (Id ® b) o 34

Suppose that (¢, 3): (D, ) — (D', x') and (¢',3'): (D', 1) — (D", 1")
are 1-morphisms of R-deformations of C. We have the composition

/ _
A @Tdyg .

(5.3.12) 72 7 o (9@ k) —= 7 o (§Drk) o ($Brk)

Then, the pair (¢’ o ¢,(5.3.12)) is a l-morphism of R-deformations
(D,z) — (D", x") defined to be the composition (¢', 5") o (¢, 3).
Vertical and horizontal compositions of 2-morphisms of deformation

are those of 2-morphisms of underlying algebroid stacks.
Lemma 5.18. The 2-category I/)\e/f(Q)(R) is a 2-groupoid.

We denote by Def(C)(R) the full subcategory of W(R)-algebroid
stacks.
For (C, L) € Triv¥(G) we define the 2-category Def(C, L)(R) as fol-

lows:

e the objects are quadruples (D, «r, 7., M) such that

(D, 7) € Def(C)(F),

(D, M) € Triv¥®(q),

(z,m): (D, M)®rk — (C, L) is a 1-morphism in Triv" (G);
e a l-morphism (D, 7, 7., M) — (D', =, ., M') is a triple (¢, ¢., 3)

where

(¢,8): (D,m) — (D', x') is a 1-morphisms in Def(C)(R),

(¢,0,): (D, M) — (D', M") is a 1-morphism in Triv¥®(G),
e a 2-morphism (¢, ¢, 3) — (¢', ¢., 3') is a 2-morphisms ¢ — ¢'.
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5.3.6. triv for deformations. Let A € CMA} (NG), R € ArtAlg,.
The functors st and triv were defined in 5.3.1 (see Proposition 5.11).
Lemma 5.19.

(1) The functor st restricts to the functor st: Def(A)(R) — AlgStack”®(@G).
(2) The functor triv restricts to the functor triv: Def(A)(R) —
Triv?®(@).

For B € Def(A)(R) the identification B ®p k = A induces the
equivalence g : triv(B)®rk = triv(B ®g k) = triv(A). Let

triv(B): = (st(B), 7B, Id,1p) .

A morphism F': B — B’ in Def(A)(R) induces the morphism triv(F): triv(B) —
triv(B’). The diagram

triv(F)®grk
_

tI‘iV(B)éRk’ triv(B’)éRk‘
triv(A) f—— triv(.A)

commutes up to a unique 2-morphism, hence, triv(F’) gives rise in a
canonical way to a morphism in Def(triv(A))(R).

Let F;: B — B, i = 1,2 be two 1-morphisms in Def(A)(R). A 2-
morphism b: F; — F in Def(A)(R) induces the 2-morphism triv(b): triv(F;) —
triv(Fy) in Trivg(G) which is easily seen to be a 2-morphism in Def(triv(A))(R).

Lemma 5.20. The assignment B — triv(B) extends to a functor
(5.3.13) triv: Def(A)(R) — Def(triv(A))(R)

naturally in R € ArtAlg,.

Theorem 5.21. The functor (5.3.13) is an equivalence.

Proof. First, we show that, for B, B’ € Def(.A)(R) the functor
(5.3.14)

HomDef(A)(R) (B, B/) — HomDef(triv(A))(R) ('tI‘iV(B)7 tI‘iV(B/))

induced by the functor triv is an equivalence.
For 1-morphism (¢, ¢,,3) € Hompet(sriv(a))(r) (triv(B), triv(B’))
consider the composition

(5.3.15) B = cma(triv(B)) =, cma(triv(B’)) 2 B’

It is easy to see that 3 induces an isomorphism (5.3.15) ®g k = Id4.
Thus, the functor (5.3.14) is essentially surjective.
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Let F;: B — B’, i = 1,2 be two 1-morphisms in Def(A)(R). It is
easy to see that the isomorphism

Hom(triv(F}), triv(F)) —
Hom(cma(triv(F})), cma(triv(Fy))) = Hom(Fy, Fy)

induced by the functor cma restricts to an isomorphism of respec-
tive space of morphisms in Hompet(sriva))(r) (EEI(B),E\E(B’ )) and
Homper(4)() (B, BY).

It remains to show that the functor (5.3.13) is essentially surjective.
Consider (D, 7, 7, M) € Def(triv(A))(R). Let B = cma(D, M). The
morphism (r, 7)) induces the isomorphism cma(w, 7, ): B®gk = A.

We choose isomorphisms in ¥(R) B® & A" @, R, B), = A}, @
R and Bj, = A}, ®; R which induce respective restrictions of the
isomorphism cma(m, 7). The above choices give rise in a canonical
way to isomorphisms Bj; & A% @ R forn =0,1,2,...,0 < 4,5 < n.
Let B denote the cosimplicial matrix algebra structure on A ®; R
induce by that on B via the above isomorphisms. It is easy to see
that B € Def(.A)(R). The isomorphism of cosimplicial matrix algebras

B = B induces the equivalence (D, 7,7, M) = triv(B). O

Theorem 5.22. Let (C,L) € Triv'(G). Then we have a canonical
equivalence of 2-groupoids

Def(C, L) = MC?*(&(cma(C, L)) @ mg)

Proof. This is a direct consequence of the Proposition 5.17, Theorem
5.21 and Theorem 4.5. U

5.3.7. Deformation theory of twisted forms of O. Let G be an
étale groupoid. We now apply the results of the preceding sections with
the W = DIFF (see 3.2.2) and omit it from notations.

Suppose that S = (S, Sp1, Sp12) is a twisted form of Og, i.e. and an

—_~—

algebroid stack § on G such that § is locally equivalent to (’)]J(,OG.

Let B be a basis of the topology on NoyG. Let £: = Ep(G) denote the
corresponding étale category of embeddings, A\: & — G the canonical
map (see 2.3.6).

The functors A™! and A (see 2.3.4, 2.3.10) restrict to mutually quasi-
inverse equivalences of 2-categories

Ag't AlgStacky(G) 2 AlgStacky(€): A

natural in R. The explicit construction of 2.3.7, 2.3.8 shows that the
equivalence of respective categories of sheaves on G and £ induces an
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equivalence of respective DIFF(R) categories (which, however, do not
preserve the respective DIFF(R) subcategories).

In particular, for (D, ) € Def(S)(R), A"'D is a DI/F}(/R)—algebroid
stack on &, there is a natural equivalence A'DRrk = A\~ (D®zC),
hence 7 induces the equivalence \*(x): A 'D®rC — A7'S. The as-
signment

(D,m) = A (D,m): = (A'D, X ()
extends to a functor
(5.3.16) AL Def(S) = Def(A1S).
Lemma 5.23. The functor (5.3.16) is an equivalence of 2-groupoids.
Proof. Follows from the properties of ;. O

Theorem 5.24. Suppose that B is a basis of NoG which consists of
Hausdorff contractible open sets. Let R € ArtAlg.

(1) AN'S(No&g) is nonempty and connected by isomorphisms.
(2) Let L € N"'\S(No&g) be a trivialization. The functor
(5.3.17) Z: Def(A 'S, L)(R) — Def(A\'S)(R)

defined by Z(D, m, 7., M) = (D, ), Z(¢, ¢+, 8) = (¢, 8), E(b) =
b is an equivalence.

(3) The functor Def(A\"'S)(R) — [f)\e/f()\_lﬁ)(R) is an equivalence.

Proof. Since H'(No&g; O}, ¢,) is trivial for [ # 0 the first statement
follows.
Consider (D,x,m,, M),(D', 7', 7., M’') € Def(A\"'S,L)(R), and 1-

morphisms (?7 ¢T7 /8)7 (g? /I7Z)7_7 ’7) : (2’ E? 7T7—7 M) - (2/7 E/7 /n-;'? M/)'
It is clear from the definition of = that the induced map

= HOH’I((?, ¢7‘7ﬁ)7 (% w777)) - HOIH((?? 5)7 (%7 7))

is an isomorphism, i.e. the functor
(5.3.18)

Z: Hompera-15,0)(r) (@5 &7, B), (¥, %7, 7)) — Homperr-1s)(r) (9, B), (¢,7))

is fully faithful.
Consider a 1-morphism

(?7 ﬁ) : 5(27 T, Ty M) - (27 E) - (2,7 El) = 5(2/7£/7 7T;_, Ml)
in Def(A™'S). We have the isomorphism
EIZ HOIHQ’@];C((? ®R (C)(M ®R (C), M/ ®R C) —
Hom,-15(7'(¢ ®r C)(M @5 C), 7' (M’ @z C))
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Let @w: (¢ ®r C)(M ®r C) — M’ ®g C denote the map such that
m'(w) = (7/)" o, o 1. Note that @ is an isomorphism. Since the
map

HomQ’(¢(M)a M/) - Homg'@mc((? KR (C)(M Xpr (C), M’ Rr (C)

is surjective there exists @w: ¢(M) — M’ which lifts w. Since the latter
is an isomorphism and mg is nilpotent, the map @ is an isomorphism.
The triple (¢,,3) is a l-morphism (D, w,7,, M) — (D', x’, 7., M’)
such that Z(¢, @, 5) = (¢, ). This shows that the functor (5.3.18) is
essentially surjective, hence an equivalence.

It remains to show that (5.3.17) is essentially surjective. It suffices to
show that, for any deformation (D,7) € Def((NoA)~'S, L)(R), there
exists an object M € D(NyEp) and an isomorphism M @z C = L.
This is implied by the following fact: if X is a Hausdorff manifold,
any deformation of OF is a star-product. In other words, for any open

covering U of X, denoting the corresponding étale groupoid by U and
by €: U — X the canonical map, the functor

(5.3.19) MC2(D(X; g(Ox)) ®c mg) — Def(OF, 1)(R)

is an equivalence. Let Ax: = cma(@i), Ay = cma(O}, 1). We have
the commutative diagram

D(X;9(0x)) — 6(0x) ——— &(Oy)

cotrl lcotr

B(Ay) ——— &(Ay).

After the identifications Def (O}, 1)(R) = Def(A)(R) & MC*(&(A)®c
mpg) the functor (5.3.19) is induced by the composition I'(X; g(Ox)) —
& (Ay) (of morphisms in the above diagram), hence it is sufficient to
show that the latter is a quasi-isomorphism. The cotrace (vertical)
maps are quasi-isomorphisms by [21] ; the top horizontal composition is
the canonical map I'(X; F) — ['(|NU|; |e* F|) (with F = g(Ox)) which
is a quasi-isomorphism for any bounded below complex of sheaves F
which satisfies H'(X; F7) = 0 for all i # 0 and all j. This finishes the
proof of the second claim.

Suppose given (D,x) € Def(A\'S)(R), i.e., in particular, D is a
DIFF(R)-stack. In order to establish the last claim we need to show
that, in fact, D is a DIFF(R)-stack. Suppose that L; and Ly are two
(locally defined) objects in D; let F: = Homp (L1, La), Fo: = F®zC.
By assumption, F is locally isomorphic to Fy ®c R in DIFF by a map
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which induces the identification Fy = (Fy @c R) @z C. We need to
establish the existence of a global such an isomorphism F = Fy Q¢ R.
Let Isom,(Fo ®@c R, F) denote the sheaf of locally defined R-linear
morphisms Fy ®c R — F in DIFF which reduce to the identity modulo
mpg. Let Aut,(Fo®c R) denote the similarly defined sheaf of groups of
locally defined automorphisms of Fy ®c R. Then, Isom,(Fy ®c R, F)
is a torsor under Aut,(Fo ®c R).

Arguing as in Lemma 6 and Corollary 7 of [5] using the exponential
map Diff(Fy, Fo) @c mr — Auty(Fo ®c R) one shows that the sheaf of
groups Aut,(Fy ®c R) is soft, hence the torsor Isomy(Fy ®c R, F) is
trivial, i.e. admits a global section. U

5.3.8. Here we obtain the main results of this paper — classification of
the deformation groupoid of twisted form of O¢ in terms of the twisted
DGLA of jets (cf. (4.4.18)).

Theorem 5.25. Let G be an etale groupoid and S - a twisted form
of Og. Suppose that B is a basis of NoG which consists of Hausdorff
contractible open sets, and let € = E(G) be the corresponding embed-
ding category. Let R € ArtAlg.. Then there exists an equivalence of
2-groupoids

Def(S)(R) 2 MC?(Ga(Tne)p15) @ Mp).
Proof. Note that we have the following equivalences:
Def(S)(R) = Def(A\"'S)(R) = Def(A\"'S)(R)

Here the first equivalence is the result of Lemma (5.23) and the
second is a part of the Theorem 5.24. By the Theorem 5.24 A\™'S(Ny&g)
is nonempty. Let L € A™'S(No&p) be a trivialization. Then the functor
(5.3.20) Z: Def(A\'S, L)(R) — Def(\"'S)(R)
is an equivalence. By the Theorem 5.22

Def(A\™'S, L)(R) = MC*(&(A) ® mp)
where A = cma(A'S, L). Finally, we have equivalences
MC?(Spp(A)@mp) = MC*(Spp(Tne(A))@mp) = MC*(Bpp(Tne) s @ME)

induced by the quasiisomorphisms (4.4.7) and (4.4.22) respectively
(with X = NE). Recall the morphism of cosimplicial O*-gerbes
Sa — S(A) defined in 4.3.2. The proof the theorem will be finished if
we construct a morphism of cosimplicial gerbes S4 — (A71S)a.

For each n = 0,1,2,... we have L{” € (A\718){" = (A~18)7, ie. a
morphism L} : Oy [1] — (A'S)k. For f: [p] — [q] in A, we have
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canonical isomorphisms Las: (A'8)ay = 'Aézf)(o)' It is easy to see that
(L'k, Lay) defines a morphism Sy — (A7'S)a.
O

In certain cases we can describe a solution to the deformation prob-
lem in terms of the nerve of the groupoid without passing to the em-
bedding category.

Theorem 5.26. Let G be an etale Hausdorft groupoid and S - a twisted
form of Og. Then we have a canonical equivalence of 2-groupoids

Def (S) = MC?(Gpr(TnG)isa] @ MR)-

Proof. Suppose that B is a basis of NyG which consists of contractible
open sets, and let £ = E(G) be the corresponding embedding category.
The map of simplicial spaces \: Né — NG induces the map of subdivi-
sions [A|: |[NE| — |NG|. It induces amap Tot(|A|"): Tot(I'(| X |; DR(T |ng|)) —
Tot(I'(| X |; DR(J|ne|)) Let B € Tot(I'(|NG|;DR(T|n¢y)) be a cycle de-
fined in Proposition 2.11 and representing the lift of the class of S in
H?(Tot(T(ING|;DR(J |ng)))). This form depends on choices of several
pieces of data described in 2.5.2. Then Tot(|A|")B € Tot(I'(|NG|;DR(J n¢|))
would be the form representing the class of A™1S constructed using pull-
backs of the data used to construct B. We therefore obtain a morphism
of DGLA [A[": 8m(InG)E — Goa(TINe)ror(ayy5- 1t is enough to show
that this morphism is a quasiisomorphism. To see this filter both com-
plexes by the (total) degree of differential forms. The map |A| respects
this filtration and therefore induces a morphism of the correspond-
ing spectral sequences. The FE; terms of these spectral sequences are
Tot(D(ING]: [DR(H H*(Je)[1])[")) and Tot (T NE|; [DR(HH* (e )[1])))
respectively, and the second differential in these spectral sequences is
given by V. Here HH®(.) is the cohomology of the complex C"(.)
Since both NG and N& are Hausdorff, the complexes DR(H H*(Jn¢))
DR(H H*(Jn¢)) are resolutions of the soft sheaves HH®*(Ong), HH*(One)
respectively.

By the results of 2.3.9

A" C(T(NG; HH® (One)[1])) — C(D(NE; HH* (One)[1]))
is a quasiisomorphism. Hence
IA[": C(D(ING|; [HH*(One)[1]') — C(D(INEJ; [HH®(One)[1]]))

is a quasiisomorphism, by the Lemma 2.1. From this one concludes
that

Tot(|A["): Tot(D(ING; |[HH*(One)[1]|')) — Tot(T(INE[; [HH*(One)[1]['))
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is a quasiisomorphism. Hence
Tot(|A["): Tot(T(ING|; [DR(HH*(Inc)[1))|')) — Tot(D(INE|; [DR(H H*(Twe)[1])]'))

is a quasiisomorphism. Hence Tot(|A]") induces a quasiisomorphism of
the F; terms of the spectral sequence, and therefore is a quasiisomor-
phism itself. O

5.4. Deformations of convolution algebras. Assume that G is an
etale groupoid with NyG Hausdorff. In the following we will treat NoG
as a subset of N;G.

With an object (C, L) € Trivg(G) one can canonically associate the
nonunital algebra conv(C, L), called the convolution algebra, cf. [30].
Let A = cma(C, L), see 5.3.3. The underlying vector space of this
algebra is I'.(N1G; A};). Here we use the definition of the compactly
supported sections as in [9]. The product is defined by the composition

(5.4.1) T(NG;AL) @TANG; AL — To(NoGs A2 @ A2) —
FC<N2G§ Agz) = FC(N1G7 (d%)!A(z)Q) - FC(NlG>A%)1)'

Here the first arrow maps f ® g to f& ® gi,, the second is induced by
the map (5.3.9). Finally the last arrow is induced by the “summation
along the fibers” morphism (d}).A32, — A};.

Recall that a multiplier for a nonunital R-algebra A is a pair (I, )
of R-linear maps A — A satisfying

l(ab) = l(a)b, r(ab) = ar(b), r(a)b = al(b) for a,b,c € A

Multipliers of a given algebra A form an algebra denoted M (A) with
the operations given by - (I,7) + o' - (I',r") = (ad + ', ar + a'1'), a,
o € Rand (I,r)-(I',r") = (I'ol,ror’"). The identity is given by (Id, Id).
For x = (I,r) € M(A) we denote [(a), r(a) by xa, ax respectively.

Similarly to the 2-category ALG% (see 5.1.1) we introduce the 2-
category (ALG%)’ with

e objects — nonunital R-algebras
e l-morphisms — homomorphism of R-algebras

e 2-morphisms ¢ — 1, where ¢,9: A — B are two l-morphisms
— elements b € M (B) such that b- ¢(a) = ¥(a)-b for all a € A.

Suppose that (¢, ¢,): (C, L) — (D, M) is a 1I-morphism in Trivg(G).
Let F = cma(¢, ¢, ), see 5.3.3. Let conv(¢, ¢,): conv(C, L) — conv(D, M)
be the morphism induced by F . Suppose that b: (¢, 07) — (¥,9:)is a
2 — morphism, where (¢, ¢.), (¥, ¢-): (C,L) — (D, M). Then cma(b)°
defines a 2-morphism in (ALG?%)’ between conv(¢, ¢,) and conv (1), ;).
We denote this 2-morphism by conv(b). B B
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Lemma 5.27.

(1) The assignments (C, L) — conv(C, L), (¢, ¢;) — conv(¢, ¢;),
b — conv(b) define a functor

conv: Trivg(G) — (ALGE)
(2) The functors conv commute with the base change functors.

Assume that (S, L) € Trive(G) where S is a twisted form of Og.
Let R be a Artin C-algebra. An R-deformation of conv(S, L) is an
associative R-algebra structure x on the R-module B = conv(S, L)®c R
with the following properties:

(1) The product induced on B®rC = conv(S, L) is the convolution
product defined above.

(2) Supp(f *g) C di((dy)~" Supp(f) N (d3)~" Supp(g)).
A 1-morphism between two such deformations By and B, is an R-
algebra homomorphism F': B; — Bj such that
(1) The morphism F ®g C: conv(S, L) — conv(S, L) is equal to
Id.

(2) Supp(F(f)) C Supp(f) for any f € By.

Given two deformations By and By and two 1-morphisms F}, Fy: By —
By a 2 morphism between them is given by a 2-morphism b = (I,r) in
(ALG%)" such that
(1) The 2-morphism b ®zr C: F; ® g C —: F; @ C is equal to Id.
(2) Supp(I(f)) < Supp(f), Supp(r(f)) C Supp(f).
Thus, given (S, L) € Trive(G), we obtain a two-subgroupoid Def(conv(S, L))(R) C
(ALG%)" of deformations of conv(S, L).
Let A = cma(S, L) and let B € Def(A)(R). Notice that for any
B € Def(conv(S, L))(R) we have a canonical isomorphism of vector
spaces

(5.4.2) i: B— T.(N,G;By,)

Lemma 5.28. Suppose that B € Def(conv(S, L))(R). There exists a
unique up to unique isomorphism B € Def(A)(R) such that the iso-
morphism (5.4.2) is an isomorphism of algebras.

Proof. Let U C N,G be a Hausdorff open subset such that d}|y, i = 0,
1, 2 is a diffeomorphism. Define an R-bilinear map

my: Te(U; AY @ R) @ To(U; A}, ® R) — Te(U; Ajy @ R)
by
mu(f,9) = (dilv)" (([doler) )" f * ((dalo)~")"9)-
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Here, we view ((dj|y)™1)*f, ((di|v)™!)*g as elements of B. Tt follows
from the locality property of the product x that Supp(my(f,g)) C
Supp(f) N Supp(g). Peetre’s theorem [26] implies that my is a bi-
differential operator. If V' C NyG is another Hausdorff open subset,
then clearly (my)|yay = (mu)|uny. Therefore, there exists a unique
element m € Homp((A3 ® R) ®g (A%, ® R), (A%, ® R)) given by a
bidifferential operator, such that m|y = my for every Hausdorff open
subset of U C N,G. Note that m @ C is the map A3, ®c A%, — AZ,.

Now define for i < j B}, = A, ®@cR. Fori <j <k Bl,@rB}, — Bj;

J
(n

is given by m 12 In particular this endows B}, 7 < j, with the structure

ij
of Bj; — B, bimodule. The map mE:) induces an isomorphism of B}, -
bimodules BY; ®g» B}, — Bj,. For i > j set Bf; = Homg, (B};, Bj).
We then have a canonical isomorphism Bj; ®p» BY; — B. Therefore
we have a canonical isomorphism

i jio

With this definition we extend the pairing B}; ®g B}, — B} to all
values of 7,7, k. For example for ¢ > j < k this pairing is defined as
the inverse of the isomorphism

n o __ n n n = n n
B = Bij ®B;'j sz’ XBn B — Bij ®B;?j Bjk'

We leave the definition of this pairing in the remaining cases to the
reader. Choice of an R-linear differential isomorphism B}, = A, ®c R
induces isomorphisms B}; = Al @c R for all n and ¢ > j. We thus
obtain an object B € Def(A)(R). It is clear from the construction that
the map (5.4.2) is an isomorphism of algebras. We leave the proof of

the uniqueness to the reader.
O

We denote the cosimplicial matrix algebra B constructed in Lemma
5.28 by mat(B). By similar arguments using Peetre’s theorem one
obtains the following two lemmas.

Lemma 5.29. Let By, € Def(conv(S, L))(R), k = 1, 2, and let i), be
the corresponding isomorphisms defined in (5.4.2). Let F': By — By be

a 1-morphism. Then, there exists a unique 1-morphism ¢: mat(B;) —
mat(Bsy) such that ¢' oiy =is0 F.

We will denote the 1-morphism ¢ constructed in Lemma 5.29 by
mat(F).

Lemma 5.30. Let By, € Def(conv(S, L))(R), k =1, 2, and let iy, be the
corresponding isomorphisms defined in (5.4.2). Let Fy, Fy: By — By be
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two 1-morphisms. Let b: Fy — Fy be a 2-morphism. Then, there exists
a unique 2-morphism (3: mat(Fy) — mat(Fy) such that b-a = (3, -is(a),
a-b=1iy(a)- By for every a € B.

We will denote the 2-morphism 3 constructed in Lemma 5.30 by

mat(bh).
Lemma 5.31.
(1) The assignments B — mat(B), F' — mat(F'), b — mat(b) define
a functor
(5.4.3) mat: Def(conv(S, L))(R) — Def(cma(S, L))(R)

(2) The functors mat commute with the base change functors.

Proposition 5.32. The functor (5.4.3) induces an equivalence
Def(conv(S, L))(R) = Def(cma(S, L))(R).

Theorem 5.33. Assume that G is a Hausdorff etale groupoid. Then,
there exists a canonical equivalence of categories

Def(conv(S, L))(R) = MC2(®DR(&7NG)[SA] ®mp)

Proof. Let A = cma(S, L). Then, Def(conv(S, L))(R) = MC*(&(A) ®
mpg) by Proposition 5.32 and Theorem 5.22. Then, as in the proof of
Theorem 5.25, we have the equivalences

MC2(®(A)®mR) = MC2(®(JN5(A))®mR) = MCQ(QSDR(jNE)[SA]@mR)
induced by the quasiisomorphisms (4.4.7) and (4.4.22) respectively. [
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