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Abstract. A characterization of the Prym varieties associated with the morphisms of
algebraic curves of an arbitrary degree r with a ramification point of index r - 1 is
established in terms of a generalization of the KP system. This dass of the Prym
varieties contains the dassical cases associated with the degree 2 ramified coverings, and
even all the Jacobian varieties as a subclass. Corresponding to this fact, the results of
this paper reproduce the characterization of Jacobian varieties in terms of the original
KP system as its special case as weil as the characterization of the classical Prym varieties
using the BKP system when r =2.

o. Introduction.

The purpose of this paper is to establish a characterization of the Prym varieties
associated with more general dass of ramified coverings of algebraic curves than what
have been dealt with in the dassical settings, in particular, induding coverings of
an arbitrary degree, using a generalization of the KP system defined on the infinite
dimensional Grassmannians.

**Research supported in part by NSF Grant DMS 91-03239.



Classically, the Prym varieties associated with the degree 2 coverings of algebraic
curves were introduced in the Schottky-Jung approach to the Schottky problem [8J].
Recently, the Prym varieties of higher-degree coverings have been used by Beauville
Narasimhan-Ramanan [BNR] in their study of the generalized theta divisors on the
moduli spaces of stable vector bundles over an algebraic curve. They have obtained
a formula about the dimension of the linear system of the generalized theta divisors,
which provides a mathematical proof of a special case of the mysterious formula due to
Verlinde [B], which has an origin in conformal field theory. In the context of integrable
systems, it has been discovered by Novikov and his collaborators that some Prym
varieties appear in the deformation theory of two-dimensional Schrödinger operators
[N], [NV].

Since an arbitrary Jacobian variety is a Prym variety of a higher degree covering, a
characterization of the larger dass of Prym varieties should reproduce the characteri
zation of Jacobians as its special case. Noting that the general Prym variety is defined
as a subvariety of a Jacobian variety, we propose in this paper certain subsystems of
the KP equations, which we call the r-reduced KP ,sy,stem, as the most natural and the
right notion of the generalization of the I{P system in this context of characterization,
rather than using the other series of integrable systems. It is interesting to note that
the B-type I{P system of [DJKM] happens to give the same result of our 2-reduced
KP system in considering the Prym varieties associated with the degree 2 branched
coverings. However, if we want to deal with higher degree coverings, then of course
the BKP system has nothing to do with them.

In order to explain our ideas, let us start with reviewing the characterization of the
Jacobian varieties in terms of the KP system of [AD], [MI] and [M2]. The KP system
is an infinite set of completely integrable nonlinear partial differential equations which
governs the universal family of isospectral deformations of arbitrary linear ordinary
differential operators. Its deep geometrie meaning is discovered by Sato [5] wmch says
that the KP system is in fact a system of infinitely many commuting vector fields
defined on an infinite-dimensional Grassmannian. This Grassmannian is identified
with the space of all solutions of the KP system, and the infinitesimal time evolution
of the KP system is interpreted as the set of vector fields on the Grassmannian.

The Grassmannian that Sato discovered is the set of aH vector subspaces W of the
infinite-dimensional vector space V = k(z)) of formal Laurent series such that the
natural projection W ---. V/ k[[ z]]z is a Fredholm map of index O. Let us denote this
Grassmanman by Gr(O). Certainly, every z-n E k[Z-l] for n = 1, 2, 3, ... acts on
V by the left-multiplication, and hence it acts on Gr(O) infinitesimally. Now the KP
system is defined as the system of equations

(0.1) 8W = z-n . W
8tn

imposed on the points of the Grassmannian W E Gr(O), where in is a parameter for
the oue-parameter subgroup of the vector field on Gr(O) defined by the infinitesimal
action of z-n.

Before the discovery of Sato, I{richever [K] had shown that every algebraic curve
gjves rise to an exact solution of the whole KP system. In the language of the Grass-
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mannian, one ean understand the Kriehever's theorem as a map of eertain algebro
geometrie data into the Grassmannian. Aetually, this map was formulated by Segal
and Wilson [SW], whieh is now well-known as the Kriehever map. This map assigns
a unique point of the Grassmannian Gr(O) to a set of data (Z, q, z, .c, 4» eonsist
ing of a smooth algebraic eurve Z of an arbitrary genus, say 9, a point q on it, a
Ioeal eoordinate z of Z around q, a line bundle .c on Z of degree 9 - 1, and a loeal
isomorphism

4>: .clu
4
~ Ou

4
(-1)

of .c defined on a neighborhood Uq of q.
The key idea of the theory of [MI] and [M2] is that a point of the Grassmannian

belongs to the image of the Kriehever map (the Kriehever loeus) if and only if the
KP system (0.1) produees finite-dimensional orbits starting at that point. It was also
proved that if W E Gr(O) eorresponds to the above geometrie data, then the orbit
of the KP systelu starting from W is eanonieally isomorphie to the J aeobian variety
J(Z) of the eurve Z. Sinee no other Abelian varieties appear as an orbit in this way,
a eharaeterization theorem of the J aeobian varieties immediately follows from this
theory.

It is thus quite natural to seek for a similar type of eharaeterization for the Prym
varieties, in particular, by using some kind of integrable systems defined on some
infinite-dimensional variety. The pioneering work in this direetion was done by Shiota
[Sh]. He utilized the BI(P system for this purpose. Sinee it had been observed in the
influential paper [DJKM] that every Riemann theta funetion defined on the Prym
variety assoeiated with a branehed double eovering of an algebraie eurve gives rise
to an exact solution of the BKP system, it seems to be reasonable to use the BI{P
system in this eontext. Indeed, Shiota proved in [Sh] that an Abelian variety is a
Prym variety of this type if and only if it ean be a finite-dimensional orbit of the BKP
system defined on the Grassmannian. The BI{P system is closely related with the
KdV system. In faet, if the algebraie eurve is realized as a branehed double eovering
over the projective !ine pI, then the Prym variety associated with this eovering is
nothing but the hyperelliptic Jaeobian. From this point of view, Shiota's result is a
natural generalization of the charaeterization of the hyperelliptie Jaeobians using the
KdV system due to Mumford.

But the Prym varieties are more general notion than what are appearing in the
BKP theory. For example, Olle can define a Prym variety assoeiated with an arbitrary
eovering of an algebraie eurve. Let 1r : Z --4 Y be an r-sheeted eovering of smooth
algebraie eurves. One ean push-down every degree 0 divisor of Z to a degree 0 divisor
of Y. It defines a homomorphism

known as the norm homomorphi~m. The Prym variety associated with the eovering ~,

is by definition the connected eomponent of the identity of the kernel of this homomor
phism. If 7l' is a 2-sheeted eovering, then the component of Ker(Nm) is the classical
Prym variety. One ean also observe here that every Jaeobian variety is a Prym variety
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in this sense, beeause every algebraie curve has a nontrivial morphism onto pI, and
the norm homomorphism corresponding to this covering is the trivial map.

Therefore, if one wants to establish a eharaeterization of the Prym varieties in this
more general eontext, then one should make the eharaeterization containing all the
Jacobian varieties as a special subclass. But of course, it is impossible to deal with
an arbitrary covering 7f in the eurrently available framework of the integrable systems
and the Kriehever-type construetion, beeause the theory of Grassmannians eannot be
applied to arbitrary eoverings. Then what would be a natural dass of the eoverings that
can be handled in the eontext of the Grassmannian, and how does the characterization
theorem of the Jaeobians extend to the Prym varieties?

These are the questions the authors asked in the beginning. Sinee the Prym variety
is defined as a subvariety of a Jaeobian variety, and sinee the KP system produees
these Jaeobians, we need a "ub"y3tem to produce the Prym varieties as its orbit. Then
what kind of subsystem should we take, and how is it related with the BKP system for
the degree 2 cases? There is a more fundamental question. The I<richever map gives
a point of the Grassmannian to the geometrie data of an algebraie curve and a line
bundle on it. Then what would be a counterpart of this map when we have a covering
7f : Z ~ Y of two curves, not just a single eurve? And how can we characterize the
image of the new map on the Grassmannian, and how can we recover the geometry
of the covering morphism from the data given on the Grassmannian? We will give an
answer to all of these questions in this paper.

First of all, let us consider another I(P system

(0.2)
aw .
-=y-J·W
ßt·

1

defined on the same Grassmannian, but with a different set of vector fields defined by

We will show in Section 3 that a point W of the Grassmannian corresponds to an r
sheeted covering 7f : Z ~ Y with a ramification point q E Z of index r - 1 ij and anly

ij both of the KP systems (0.1) and (0.2) produce finite-dimensional. orbits starting
from W. And if this is the case, then the orbit of (0.2) is eanonically isomorphie to
the Jacobian variety J(Y) of Y, while the orbit of (0.1) gives J(Z), which contains
J(Y) as a subvariety (Theorem 3.6). This is our generalization of the Grassmannian
characterization of the Krichever locus to the case of covering morphisms of algebraic
eurves. In order to obtain an algebraie curve, we apply the I{P flows (0.1) on the
Grassmannian. If it produces a finite-dimensional orbit at W E Gr(O), then it cor
responds to the I{richever data (Z, q, z, L., 4». Now we let the second KP system
(0.2) act on Gr(O) in order to detect if the eurve Z has a morphism onto another
curve Y. The finite-dimensionality test determines the existence of such amorphism.
Therefore, by using the two different I<P systems, we can see a much finer structure
of the Jaeobian variety through the eovering morphisms. In the proof of this theorem,
we use the notion of the Krichever functor discovered in {M3].
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The Prym variety associated with this covering 7r appears in the transversal direction
of J(Y) in J(Z). Thus the subsystem we need in order to generate the Prym variety
is the complement of (0.2) in (0.1), which is our r-reduced KP system. Now we can
state our main classification theorem (Theorem 3.10):

MAIN THEOREM. The r-reduced KP system characterizes all the Prym varieties BS

sociated with tbe r-sheeted coverings baving a rami1ication point of index r -1. More
precisely, a complete algebraic variety is a Prym variety of the above type jf and only
if it can be realized as a finite-dimensional orbit oE the r-reduced KP system.

Since the BKP system becomes equivalent to our 2-reduced system associated with
y = z2 when it is restrieted on certain points of the Grassmannian (see 4.3), the
main theorem generalizes the characterization of the Prym varieties associated with
the branched double eoverings of eurves in terms of the BKP system. Moreover, if
(0.2) produces a zero-dimensional orbit, then the r-redueed system and the original
I(P system (0.1) determine the same orbit. This corresponds to the fact that every
Jacobian is a special Prym variety. Therefore, our theorem includes aU the Jaeobians
as a trivial exampIe. The restriction of the KP system (0.1) on the points of the
Grassmannian on which the other system (0.2) with respeet to y = zr aets trivially is
known as the mod r reduction of the I(P system. For example, the well-known KdV
equations are tbe nlod 2 reduction of the KP system. But of course, our r-redueed KP
system is not equivalent with the mod r reduetion in general, and hence our system
has a lot of non-Jacobian orbits.

Unfortunately, tbe coverings we can deal with in our theory is not the most general
class of coverings. In particular, we cannot consider the unramified coverings. How
ever, the Prym varieties we diseuss in this paper are interesting objects by themselves
and form a very natural class, because of the following reasons: Firstly, it eontains
all the Prym varieties appearing in the study of integrable systems [DJKM], [NV],
[Sh]. Aetually, this dass is the largest one which ean be handled in the Grassman
nian framework. Secondly, our Prym varieties eontain all the Jacobian varieties as a
special case. It is a natural generalization of the fact that the classieal Prym varieties
contain all the hyperelliptic J acobians as a special subclass. And thirdly, our class has
abundantly many nonclassical examples.

This paper is organized as follows: we review some standard results on the Prym
varieties in Section 1. We also determine the largest class of coverings of curves which
can be dealt with in tbe Grassmannian language. In Section 2, we review the KP
theory on the Grassmannian and the I<richever functor. Section 3 is devoted to the
proof of our main classification theorem. In order to prove that the r-redueed KP
system produces the Prym varieties, we have to show that the orbit of this system
coincides with the kernel of the norm homomorphism. For this purpose, we use an
alternative definition of the norm map in terms of the determinant of the direct image
sheaf, and calculate the determinant. We will see in Section 4 how the special cases of
Prym varieties appear in our more general context of characterization.

The authors would like to express their hearty gratitudes to S. P. Novikov and
H. Tamanoi for many fruitful discussions, and to the Max-Planck-Institut für Mathe-
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matik for its generous support and hospitality.

1. Prym varieties and the cyclic coverings.

In this section, we start with reviewing several standard results about the Prym
varieties. Then we introduce the notion of the cyclic covering~ of algebraic curves,
and prove that there are abundantly many cydic coverings for any given algebraic
curve. The Prym varieties we will discuss in this paper are the ones associated with
these cyclic coverings.

1.1. DEFINITION. Let 1T : Y -+ X be a morphism oE degree r between smooth
algebraic curves Y and X, and let Nm : J(Y) -+ J(X) be the norm homomorphism
from the Jacobian variety J(Y) oE Y to the Jacobian J(X) oE X, which assigns to
an element L:q n q • q E J(Y) its image L:q n q • 1T(q) E J(X). This is a surjective
homomorphism, and hellce the kerne] f(er(Nm) is an abelian subscheme oE J(Y) oE
dimension g(Y) - g(X), where g(C) denotes the genus oE the curve C. We ca1l the
connected component oE Ker( Nm) containing the origin the Prym variety associated
with the covering 1T, and denote it by P rr •

1.2. REMARK: Any two connected components of I(er(Nm) are translations of each
other in J(Y). On the other hand, if the pull-back homomorphism 1T. : J(X) ---+ J(Y)
is injective, then the norm homomorphism can be identified with the transpose of 1T.,
and hence its kernel is connected.

1.3. REMARK: Let ~ C Y be the ramification divisor of the morphism 1T of (1.1)
and (?Y(ß) the locally free sheaf associated with ß. Then it can be shown that for
any line bundle .c on Y, we have N m( t:.) = det(1T. t:.) ® det( 7r. Oy (ß)). Thus up to
a translation, the norm homomorphism can be identified with the lnap assigning the
determinant of the direct image to the line bundle on Y. Therefore, one can talk about
the Prym vaneties in Picd(y) for an arbitrary d, not just in J(Y) = Pico(y).

1.4. REMARK: According to our definition (1.1), the Jacobian variety of an arbitrary
algebraic curve X cau be viewed as a Prym variety. Indeed, let us take a nontrivial
morphism of X onto PI. Then the induced norm homomorphism is the zero-map.
Obviously there are infinitely many ways to realize J(X) as a Prym variety in this
manner. Thus the class of Prym varieties contains Jacobians as a subclass.

Let us consider thc polarization of the Prym varieties. Let Gy and Gx be the
Riemann theta divisors on J(Y) and J(X), respectively. Then the restrietion of 8y
to P1r gives an ample divisor H on P1r • However, this is never a principal polarization.
In fact, the eigenvalues of its Riemann form are (1, "', 1, r, ... , r), where the entry
r is repeated g(X)-times. There is a natural homomorphism 1j; : J(X) X P1f ---+ J(Y)
which sends (t:., M) to t:. ® 1T·(M). This is an isogeny, and the puH-back of Gy under
this isogeny is giyen by
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1.5. D EFI NITI0 N. A degree r morpmsm 7r : Y -+ X of algebraic curves is called a
cyclic covering if there is a point p E X such that 7r"'(p) = r . q for sorne q E Y. We
ca11 the Prym variety associated with a cyclic covering of degree r the Prym variety
of r-cyclic type.

1.6. PROPOSITION. Every smooth projective curve X has infinitely many cyclic cov
erings oE an arbitrary degree.

PROOF: We use the theory of spectral curves to prove this statement. For a detailed
account of spectral eurves, we refer to [BNR] and [H].

Let us take a line bundle (, of sufficiently large degree. For such .c we can choose
sections Si E HO(X, .ci), i = 1, 2, .. " r, satisfying the following conditions:

(1) All Si'S have a common zero point, say p E X;
(2) Sr rt HO(X, .cr

( -2p)).

Now eonsider the sheaf 'R of symmetrie (9x-algebras generated by .c-1 . As an 0 x
module this algebra can be written as

00

'R = EB.c- i
.

i=O

In order to construet a cyclic eovering curve X s of X, we consider the ideal I of the
algebra R. generated by the image of the surn of the homomorphisms

Si : .c-r ~ .c- r +i .

We define X s = Spee(R/I), where S = (SI, S2,'" ,sr)' Then X s is a spectral curve
and the natural projection gives a degree r covering of X. For sufficiently general
sections Si with properties (1) and (2), we may also assume that (see [BNR])

(3) The spectral eurve X a defined by the line bundle .c and the sections s/s is
integral, Le. reduced and irredueible.

We claim here that X s is smooth in a neighborhood of the inverse image of p. In fact,
let us take a loeal parameter Z of X around p and a local coordinate x in the fiber
direction of the total space of the line bundle.c. Then the loeal Jacobian eriterion for
smoothness in a neighborhood of 7r-

1(p) states that the following system

{

xr + SI (z)x r- l + ... + Sr(Z) = 0

rx r
- l + Sl(z)(r - 1)xr - 2 + + Sr-1(Z) = 0

SI(Z)'X
r

-
l + S2(Z)'X

r
- 2 + +Sr(Z)' = 0

of equations in (x, z) has no solutions. But this is clearly the case in our situation
because of the conditions (1), (2) and (3). Thus we have verified the claim. It is also
clear that 7r"'(p) = r· q, where q is the point of X s defined by x r = 0 and z = O. Then
by taking the normalization of X a we obtain a smooth cyclic covering of X. This
completes the proof.
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1.7. PROPOSITION. Let 71'" : Y --+ X be a cyclic coverillg oE degree r. Then the induced
homomorphism

71'"* : J(X)~ J(Y)

oE Jacobians is injective. In particular, the kernel Ker{Nm) oE the norm homomor
pbism Nm : J(Y) -+ J(X) is connected.

PROOF: Let us suppose in contrary that .c 1E- Ox and 7I'"*.c "V Oy for some .c E J(X).
Then by the projection formula we have 1r*Oy ~ .e @1r.Oy. This implies that .e is an
r-torsion point in J(X), i.e. .er :: 0 x. Let n be the smallest positive integer satisfying
that .en:::: 0 x. Let us consider the spectral curve

Z = Spec(Ox EB .e-1 ffi ... EB .e- n+1
)

given by the line bundle .e and seetions

n

CD 0 i
8 = (Sh 82,'" ,Sn-}, 8 n ) = (0,0,'" ,0,1) E 'CD H (X,.e ) .

i=l

Obviously, Z is an unramified covering of X of degree n.
Now we claim that the morphism 1r : Y -? X factors through Z, hut this leads to

a contradiction to our assumption. The construction of such a morphism amounts to
defining an 0 x-algebra homomorphism

(1.8)

In order to give (1.8), it is sufficient to define an 0 X-Illodule homomorphism .e-1
-?

1r*Oy. This is in turn equivalent to gjving a nontrivial section of .e ({) 7r .. Gy. But such
a section exists because of the isomorphism L ({) 1T .. Oy .-v 1r.Oy! This completes the
proof.

2. The Krichever functor and the KP system.

There is a natural correspondence between algebraic geometry of curves and their
vector bundles and geometry of certain infinite-dimensional Grassmannians. The KP
system is a commuting set of vector fields defined on these Grassmannians, and the
vector fields correspond to the deformations of vector bundles on curves. In this
section, we first review the correspondence (called the Knchever Functor) of [M3J,
and then define the I(P system in the coordinate-free setting following [M4J.

Let V = k((z)) be the field of formal Laurent series in one variable z with coefficients
in an algebraically closed field k of characteristic zero. The space V has a natural adic
topology determined by the (pole- )order of the elements. Here we define ord zn = -no
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The Gras.5mannian 01 index Il, which is denoted by Gr(Il), is the set of all vector
subspaces W c V such that the natural map

(2.1) ,w :W -+ V/k[[z]]z

is Fredholm of index /-L. This space has a structure of a pro-algebraic variety (see for
example, [KUS]). The tangent space of the Grassmannian at a point W E Gr(ll) is
given by the space of continuous homomorphisms of W into V/W:

(2.2) TwGr(/-L) = Homcont (W, V/W) .

Every element v of V defines the left-multiplication map v : V ---+ V, and hence a
continuous homomorphism

(2.3)
vX

W <.....+ V --. V ---+ V/W .

This homomorphism then determines a tangent vector ~w(v) E TwGr(ll) by (2.2).
Therefore, v E V gives a vector field

ep(v) : Gr(ll) 3 W f---t epw(v) E TwGr(ll)

on the Grassmannian.

2.4. DEFINITION. A pair (A, W) of subsets of V is said to be a Schur pair of index I"
and rank r if

(1) W E Gr(Il);
(2) A is a k-subalgebra of V such that k c A and A \ k ~ eP;
(3) A stabilizes 111, i.e.

A·WCW;

(4) r is equal to the greatest common divisor of { ord a I a E A}.

Because of (2.3), we have epw(a) = 0 for all a E A if (A, W) is a Schur pair. We also
note that W is a torsion-free module over A of rank r.

One can define a category of Schur pairs by supplying a morphism between (A2 , W2 )

and (Ab W I ) to be a pair of inclusions Q' : A2 <.....+ Al and L : W2 <.....+ W I • It has been
established in [M3] that there is a natural fully-faithful eontravariant functor called
the Krichever functor between the category of Schur pairs and a category of geometrie
quintets (Y, p, 11'", F, 4». Here, Y is a reduced eomplete irreducible algebraic curve over
k, pis a smooth point of Y, and F is a sheaf of torsion-free Oy-modules on Y of rank
r. Let Up be the formal completion of Y at the point p and Uo the formal completion
of the affine Hne Al (k) at the origin o. The above 1T is an r-sheeted covering map

9



(2.6)

of the formal sehemes ramified at p E Up , and 4> is an OUp -module isomorphism

where Fup is the formal eornpletion of F at p.
The inverse of the Kriehever funetor is essentially the eohomology funetor:

{
A = 1r"'(HO(y \ p, Oy)) C HO(Uo \ 0, Ou )

(2.5) 0

W = 4> (HO (Y \ p, :F)) c HO (Up \ p, 1r'" Ou0 ( -1)) = 1(0 (U0 \ 0, Ou0 ( -1)) ,

where we identify HO(Uo \ 0, OUo ) = k((z)) and HO(Uo \ 0, OuJ( -1) = k((z)z. When
r = 1, the Kriehever funetor is known as the Krichever constraction (01' the Krichever
map) of Segal-Wilson {SW]. For general T, the construetio~ is rather eomplicated.
Basically, Y is a one-point eompletion of Spee(A), p is the point added, and :F is the
extension of the torsion-free sheaf W ..... on Spec(A) to the conipletion Y.

For our future convenience, let us set the following notati'ons here. First, let us
ehoose a monie element Uo E A of the Iowest positive order. It is unique up to the
constant addition ao + c. Now we define

A p = {baön I b E A, n ~ 0, ord(baön
) ::; O}

Wp = {waön Iw E W, n:::: 0, ord(waön
)::; r1} .

Ifwe ehoose an element y = baon E A p of order -r, then we ean ~dentify the compietion
A~ of A p in k((z) with k[{y]]. The completion W;o of W p in k~(z» is equal to k([z]]z.
The curve Y is defined by patching Spec(A) and Spec(Ap ) together, and the sheaf:F is
defined by gluing W ..... and Wp..... near p. The formal sehenIe morpliism 1r is determi~ed by
the indusion k{[y]] <--? k{[z ]], and the sheaf isomorphism 4> comes\from the identification
W;o = k[[z]]z. The parameter y is a coordinate on Y defining the morphism 1r.

Through the Krich~ver funetor, we have the following natural ikomorphisms:

{
HO(Y,:F) /"V Ker(,w)

H 1(Y, :F) ~ Coker(1'w ) .

The Riernann-Roch formula gives us

J.l = dirn HO (Y, :F) - dirn H 1 (Y, F) = d - r(g(Y) - 1) ,

where d is the degree of the torsion-free sheaf Fand g(Y) is the (arithmetie) genus of
Y.

A generie point of the Grassmannian has only the trivial s abilizer, narnely, the
maximal commutative stabilizer

M = Mw = {v E V I v . W c W}

is equal to k. Since the I<richever functor does not apply to these points, they do not
correspond to any geometrie objects directly. But they do have j rather different and
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more elaborate geometrie information related with the topology of the moduli spaees
of Riemann surfaees through the matrix model and the two-dimensional quantum
gravity. In this paper, we deal with only those points of the Grassmanninan having
nontrivial stabilizers.

Not all the veetor fields in <p(V) given by V are interesting. From the point of view
of algebraic geometry, the veetor field <p(v) for v E k[[z]]z should be considered trivial
because it aets only on ifJ in the quintet and leaves the other geometrie data unchanged.
This motivates us to define a new veetor field <p+ (v) associated with v E V by

where we decompose v = v+ +v- aceording to the canonicaf direct sum decomposition

k((z)) = k[Z-l] EB k[[z]]z

with v+ E k[Z-l] and v- E k[[z]]z.

2.7. DEFINITION. We ca1i tbe system

of commuting vector neids defined on the Grassmannian Gr(ll) the KP system.

Our main subject of this paper is to study the finer structure of the finite-dimensional
orbits of the KP system.

2.8. DEFINITION. Let V' be a vector subspace of V. A finite-dimensional smooth
subvariety X of Gr(J.L) is sald to be a finite-dimensional orbit of tbe :B.ows defined by
{tI>+(v) I v E V'} ifTwX and {tI>~(v) I v E V'} are equal as a subspace ofTwGr(J.L)
for every point W EX.

Let us consider a finite-dimensional orbit of the KP system. Because of the Fredholm
condition imposed on our Grassmannian, the I(P orbit X containing W is of finite
dimensional if and only if (M) W) is a Schur pair of rank one, where M = Mw is
the maximal stabilizer of W. Let (Z, q, id, L, ifJ) be the quintet corresponding to the
maximal Schur pair (M, W). In the rank-one case, we ean choose the eoordinate z on
Uo so that the morphism 1t" becomes the identity. Since tI>+(M) and <p+(k[[z]]z) act
on W trivially, we have

T X = tI>+(V) = k((z)) ~ H 1(Z 0 )
w M + k[[z]] , z .

Note that every element of the above set is written aß a polynomial

t -1 + t -2 t -3
1 Z 2Z + 3 Z +"',
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and the eorresponding dynamieal motion of the KP system at W is given by the system
of linear equations

(2.9)
aw .
-- = z-J· W.
at·J

Formal integration of the above equation is given by

but of course this is not an element of our Grassmannian. One ean ehoose a basis
for V and write down the action of the exponential funetion as an infinite-size matrix
multiplieation. Then one can realize the solution W(t) as a point of the Grassmannian
defined over the ring k[[t]] = k[[tt, t2, ta, ... ]] (see [8]). For our purpose, it is easier to
understand the equation (2.9) in terms of the quintet. Obviously, the solution W(t)
has always the Satne lnaximal stabilizer M. Thus the data (Z, q, id) in the quintet do
not change. If we denote by h the transition function of the line bundle L on Uq \ q,
then the line bundle eorresponding to W (t) has the transition function

Let .c(t) be the degree 0 line bundle on Z defined by the transition funetion exp(t 1 z-1 +
t2z-2 + taz-3 + ... ). Then the orbit of the fuH I(P system starting at W eoincides
with .

{ (Z, P, 7r, .c(t) 0 1:, 4J (t )) I .c(t) E Pico(Z )} ,

which is isomorphie to the Jacobian variety J(Z) of the curve Z (see [M2], [M3]).

3. The subsystems of the KP system alld the Prym varieties.

In this section, we define the subsystems of the KP system we need, and prove the
main theorem. First of aH, we have to determine points of the Grassmannian which
eorrespond to the geometrie data of r-cyclic coverings. These points are characterized
by the finite-dimensionality of orbits of the two different dynamieal systems defined
on the Grassmannian, the fuH KP system and the r-KP sy~tem. We will show that
the r-KP system produces the Jacohian variety of the curve downstairs as the orbit,
while the fuH KP system gives the Jacobian of the curve upstairs. Then the r-reduced
KP sy~tem produces an orbit which is transversal to the smaller Jacobian inside the
larger Jacobian. We will show that this transversal orbit is indeed the Prym variety
associated with an r-cyclic eovering by calculating the determinant of the direct image
sheaf of line bundles on the top curve.

The fuH KP system gives the Jacobian variety as we have seen in the previous
section. We can see much finer structure of this Jaeobian through the r-KP system
and the redueed systems.
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Let us start with defining the r-I<':P systems. Let Vr C V be a subfield such that
V is a cyclic extension of Vr of degree r. If we choose an arbitrary element y E Vr of
order -r, say

(3.1)

then we have a natural identification k( (y)) = Vr as a subfield of k((z)).

3.2. DEFINITION. We ca11 tbe commuting system ofvector neids given by {<p+(v) I v E
Vr } tbe r-KP JYJtem associated witb Vr .

The r-KP system is not a subset of the equations among the KP system. It should be
viewed rather as another fuH KP system written in the different coordinate y. These
two different systems are mutually related on the Grassmannian through (3.1).

3.3. DEFINITION. Witb tbe above choice of the coordinate, we denne the r-reduced
KP system to be tbe system of vector neids given by {<1>+ (v) I v E II r }, wbere

IIr = EB k . yi / r .

i~O mod r

3.4 REMARK: Dur r-reduced I<.:P system is different from the mod r reduction of the
KP system. The latter is defined as the entire KP system restricted on the points
of the Grassmannian on which the r-I<':P system associated with Vr = k((zr)) acts
trivially. Of course on these points, all the three systems, the fuH I<.:P system, our
r-reduced system associated with y = zr, and the mod r reduction agree.

We note here that the I<.:P system on the Grassmannian is a coordinate-free notion, but
the systems we have defined in the above really depend on the choice of the coordinate
y. It is natural because we are looking for dynamical systems which can detect the
geometry of covering morphisms 7r : Z ---+ Y. Indeed, the coordinate y is nothing but
the morphism 7r, and heuce it should appear anyway.

Now let us study the orbits of the r-KP systems. So let Vr = k((y)) as above. Like
the case of the fuH KP system, we have a natural isomorphism

+ ) r-v k((y))
<I>w(Vr = (Mw n k((y))) + k[[y]]

Therefore, the r-KP system produces a finite-dimensional orbit starting from a point
W of the Grassmannian if and only if the above set has finite dimension over k.

3.5. EXAMPLE: Let W = k[p(z), p'(z)]z E Gr(O), where p(z) is the Weierstrass elliptic
function. Obviously the maximal stabilizer of W is given by M = Mw = k[p(z), p'(z)].
Now consider the 3-I<':P system defined by V3 = k((Z3)). Since M n V3 = k, the orbit
of the 3-KP system starting at W has an infinite dimension! Of course the fuH KP
system applied to W produces a oue-dimensional orbit which is nothing but the elliptic
curve associated with p(z).

13



The above example shows that even though the fuH KP system gives a finite
dimensional orbit starting at a point W of the Grassmannian, the r-I<P system may
produce an infinite-dimensional orbit starting at W. This is the reason why we have
to think these two systems different ones which are inter-related only by (3.1). The
r-I<P system associated with Vr gives a finite-dimensional orbit at W if and only if
(A, W) is a Schur pair of rank r, where A = Mw nVr . We are interested in the points
of the Grassmannian where both the fuH KP system and the r-I<P system associated
with Vr = k((y)) produce finite-dimensional orbits.

3.6 THEOREM. A point of tbe Grassmannian W E Gr(/-,) eorresponds to an r-eyelie
eovering 11" : Z ~ Y iE and only if both the Full KP system and some r-KP system
starting at W generate finite-dimensional orbits. Moreover, tbe orbit oE tbe r-KP
system is eanoniea11y isomorphie to tbe Jacobian variety J(Y) oE tbe eurve Y, wbile
tbe orbit oE the full KP system is isomorphie to J(Z).

PROOF: Let W be a point at which the fuH KP system and the r-KP system associated
with same Vr produce finite-dimensional orbits. Let M be the maximal stabilizer of
W, and set A = Mn Vr . Then (A, W) is a Schur pair of rank r. Let (Z, q, id, L, rP)
be the quintet corresponding to (M, W), and (Y, p, 1r, :F, 4>') to (A, M). Note that
we have a natural inclusion A t......+ M, which then corresponds to a morphism (11'", ß) of
quintets. Here,

7r:Z--+Y

is the globalization of the morphism 1t" : Uq -+ Up of the formal schemes, and ß is an
isomorphism

ß::F~7r*L.

The morphism 7r : Z ~ Y is an r-cyclic covering of (1.5) because 7r*(p) = rq.
Conversely, let 7r : Z -t Y be an r-cyclic covering of smooth algebraic curves such

that 1t"* (p) = rq for some points p E Y and q E Z. We choose a local coordinate z
of Z defined on a neighborhood of q so that it defines an identity map id : Uo .::t Uq

between the formal schemes, where Uq is the formal completion of Z at q as before.
As an abuse of notation, we use 7r also for the formal covering map 7r : Uo = Uq ~ Up

outo the formal completion Up of Y at p. Let us choose an arbitrary line bundle L on
Z. For example, we can choose the line bundle detennined by the divisor q C Z. Let
d = deg(L:), and set J-l = d - g(Z) +1. Finally, we choose an isomorphism

where LUq is the fonnal completion of L at q. Thus we have defined a geometrie
quintet (Z, q, id, L, rP). It automatically determines another quintet (Y, p, 7r, 7r*L,
7r(4»), where n( rP) is the isomorphism

given by 4>. The cohomology functor of (2.5) gives us two Schur pairs, (M, W) of rank
1 and index /-' associated with (Z, q, i d, L, 4», and (A, W) of rank rand the same
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index assoeiated with (Y, p, ?T, ?T. 12, ?T( 4> ) ). Sinee M is a normal ring of rank 1, it is
automatically the maximal stabilizer Mw of W (see [M5]). Therefore, the orbit of the
fun KP system starting from W is of finite-dimensional and eanonieally isomorphie to
the Jaeobian variety J(Z) of Z.

Let y = iT(z) be the IDeal eoordinate on Y defining the divisor p. As an element of
k«z)), y has order -r. Define Vr = k«y)) and eonsider the r-KP system associated
with Vr . Sinee A c k«y)) and rank(A) = r, the orbit of the r-KP system starting
at W has a finite dimension. The same argument we gave in Seetion 2 shows that
the r-KP orbit is eanonieally isomorphie to the Jacobian variety J(Y) of the eurve Y.
This eompletes the proof of the theorem.

Let us denote by J(Z) the fuU KP orbit starting at W and by J(Y) the orbit of the
r-KP systems starting at W. We have a natural inclusion map

(3.7)
1 ~ k«y)) k«z)) ~ 1

H (Y, Oy) - A + k[[y]] ---t M + k[[z]] - H (Z, Oz) ,

beeause A +k[[y]] = (M + k [[z]]) n k((y)). This is the infinitesimal version of the fact,
whieh was proved in Proposition 1.7, that J(Y) sits inside J(Z) aB a subvariety. Now
let us apply the r-redueed KP system to our situation.

3.8. LEMMA. Let W be a point of the GrassInanman satisfying the eondition of The
orem 3.6. Then the orbit of the r-redueed KP system starting from W is eanonieally
isomorphie to tbe Prym variety associated witb the eovering?T.

PROOF: Let X be the orbit of the r-reduced I(P system starting at W. The dimension
of X at W is the dimension of

whieh is finite beeause we have k[[z]] = k[[yl/r]] and k«z)) = k«yl/r)). Moreover, it
can be easily seen from (3.7) that

dirn X = dirn J(Z) - dirn J(Y) .

Since k«z)) = k«yl/r)), one can write the fuU I(P system as

aw -j/r W-=y ..&t.
1

As before, the orbit of the fuU KP system is spanned by the deformations of the line
bundle:

00

h 1----4 exp ( L t j Y- j / r) . h .
j=l
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Let us denote the line bundle of the right-hand side by [.(t). Then all what we need is
to show that det 7r• .c(t) is a constant for all t. For this purpose, we have to determine
the action of y - i / r on the vector bundle 7r• .c.

~ -00 ~

We define Ap to be the field of fractions of A~ and W p the A p -module generated
by W:, (see (2.6)). They are in fact equal to k((y)) and k((z)), respectively. We also

define M p , M;o and Me; sirnilarly. Then we have natural isomorphisms

-00
EndMo:J W p

H1(Z, End(.c)) ~ E cl W Ecl W
n M + n M;o poo

and

Since A C M, we have

where all arrows are natural inclusion maps. This incluces a natural homomorphism

We have to determine the image of the infinitesimal deformation

under this map p. Note that we can identify w;o = k((yl/r)). Then yl/r E EndMo:JW;
p

maps to an r X r lnatirx

0 1
0 1

0 1
p(yl/r) = =-;00

0
E EndAo:J W pp

0 1
y 0 0

with respect to the basis {I yl/r y2/r ... y(r-l)/r} for the free A -module W
OO

, , , , PP'

Therefore, the diagonal entries of p(yi/ r ) is 0 for all j ~ 0 mod r. Thus we have

clet (exp p (. L tiy- i /
r
)) = exp (trace p (. L tiy-

j
/

r
)) = 1 ,

)~o mod r )~o mod r
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where j runs over positive integers. This irnplies that det(1I".. .c(t)) = det(7r.. .c) for all
t. Therefore, our orbit X is a subvariety of the Prym variety Ptr associated with the
cyclic covering 11" : Z ---+ Y. But since dirn X = dirn P tr = g(Z) - g(Y), we conclude
that X is indeed equal to the Prym variety Ptr • This completes the proof of the lemma.

In order to show the converse, namely, that every Prym variety of r-cyelic type ean
be obtained as an orbit of the r-reduced KP system, we have to determine a point of
the Grassmannian eorresponding to the given geometrie setting. So let 11" : Z -t Y
be an r-eyelie eovering. As we have done in the proof of Theorem 3.6, we can ehoose
a maximal Schur pair (M, W) and a rank r Schur pair (A, W) out of our geometrie
setting. (Of course, such ehoice is not unique.)

In Seetion 1, we defined the Prym variety Ptr associated with the covering morphism
11" to be a connected component of the subset

(3.9)

which has dimension g(Z) - g(Y). In our ease, since 7r is a cyclic covering, (3.9) is itself
conneeted by Proposition 1.7. Now, we know that the orbit X of the r-redueed KP
system starting at W lies in the same subset (3.9) and having the same dimension, as
we have observed in the proof of Lemma 3.8. Therefore, X must be equal to the entire
(3.9)1 This proves that the Prym variety Ptr is realized as an orbit of the r-reduced
KP system. Thus we have established our main theorem:

3.10. THEOREM. Let W E Gr(p,) be a point ofthe Grassmanman such that both the
full KP system and a certain r-KP system produce finite-dimensional orbits. Then
the orbit oE tbe r-reduced KP system starting at W is eanonieally isomorphie to the
Prym variety associated with an r-cyc1ic covering oE algebraic curves.

Conversely, every Prym variety ofr-cyc1ic type can be obtained as a finite-dimensional
orbit oE tbe r-reduced KP system.

4. Examples.

4.1. EXAMPLE: The simplest example of our theory is the hyperelliptic Jacobians. A
hyperelliptic curve Z has a unique degree 2 cyclic covering map 7r onto PI. Thus J(Z)
is the Prym variety associated with 7r : Z ---+ pI.

Let W E Gr(p,) be a point of the Grassmannian satisfying that

Z-2. W C W.

If the maximal stabilizer M = Mw of W has rank one, then it has to be of the form

M = k[Z-2, b(z)]

with a monie element b(z) E k((z)) of order 2g + 1. In this case, (M, W) corresponds
to a hyperelliptic curve Z of genus g and a line bundle of degree J-1 + 9 - 1. Let us
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define A = k[Z-2] and V2 = k((z2)), and consider the 2-KP system associated with V2.
Since Mn V2= A = k[z-2], the space

has dimension O. Therefore, the orbit of the 2-KP system starting at W is the point
W itself. In particular, the orbit of the fuH KP system is the same as the orbit of the
2-reduced KP system starting at W. As we have noted in (3.4), the 2-reduced KP
system appearing here is by definition the KdV system! Therefore, our characterization
theorem reeovers the eharaeterization of the hyperelliptie Jaeobians by the KdV system
due to Mumford.

4.2. EXAMPLE: More generally, let Z be an arbitrary smooth algebraie eurve and
q its (rational) point. If we ehoose a sufficiently large r > 0, then there exists a
nontrivial element a E HO(Z, Oz(rq)) whieh defines an r-cyclic covering 7r : Z -+ pI.
Let us choose a loeal eoordinate Z of Z around q, and let y = l/a E k[[z]] , whieh is
an order -r element. As in Theorem 3.6, we have a point W of the Grassmannian
eorresponding to our geometrie situation. Since

the r-KP system associated with Vr = k((y)) is trivial at W. Therefore, the fuH I(P
system and the r-reduced I(P system produee the same orbit starting at W, whieh is
the J aeobian variety of Z, and simultaneously, the Prym variety assoeiated with the
covering 7r. Thus our main theorem contains the characterization of all the Jaeobian
varieties in terms of the I(P system as a special ease.

4.3 EXAMPLE: Let Z --40 Y be a branched double covering of smooth algebraic eurves.
Let us pick U p one of the ramifieation points, say q E Z, and let p = 7r(q). We can
ehoose a loeal eoordinate z of Z around q and y of Y around p such that the morphism
7r is loeally given by the equation y = z2. By supplying a generic line bundle l.. on
Z of degree g(Z) - 1 and its loeal trivialization suitably, we have a maximal Schur
pair (M, W) of rank 1 and index 0 eorresponding to Z, and another pair (A, W) of
rank 2 and index 0 corresponding to Y, as in Seetion 3. Here we mean by generie
that HO(Z, l..) = H 1(Z, l..) = O. Thus the point W belongs to the big-cell of Gr(O),
where ,w of (2.1) is an isomorphism. Then our theorem shows that the orbit of the
2-redueed KP system starting at W is the Prym variety assoeiated with 7r.

Now, let us consider the r-funetion of Hirota-Sato. (A r-funetion of the KP system
is the eanomeal section of the determinant line bundle on the Grassmannian Gr(O)
cut along on an orbit, or equivalently, the bO$onization of the semi-infinite wedge
product eorresponding to the point of the Grassmannian. For more detail, we refer to
[KNTY].) Sinee the 2-redueed I(P system here does not contain the variables t2n for
all n, the r-function of the fuH I(P system restrieted on the orbit of the 2-reduced I(P
system is simply given by

18



But of course (see [DJKMD, the square root of the r-function r(t}, 0, t 3 , 0, t s, 0,' .. )1/2
satisfies the Hirota bilinear differential equations associated with the BKP system!
Note here that since our W belongs to the big-cell of the index 0 Grassmannian,
we have r(O, 0,' .. ) = 1. Therefore, we can define the square root of the r-function
uniquely as a formal power series in t}, t 3 , ts , . ". In this way, our theory contains all
the Prym varieties appearing in the BKP theory.

4.4. EXAMPLE: Finally, we give an example of the three dimensional Prym variety
associated with a degree 3 overing over an elliptic curve. Let us consider the following
three elements of k((z)):

The parameters 92 and 93 are chosen generically so that the hyperelliptic curve Z of
genus 4 defined by

w 2(z) = u9(z) + 92 U3 (Z) + 93

and the elliptic curve Y defined by

are both nonsingular. We have a cyclic covering 7T" : Z ---+ Y of degree 3 defined by

which is ramified at the point at infinity. Let

W = k[u, w] . z4 E Gr(O) .

As far as the curve Z is nonsingular, the maximal stabilizer of W is given by M =
k[u, w]. Let us define A = k[u3 , w], which is the coordinate ring of Y. Note that
A = Mnk((z3). Now both the Jacobians of Z and Y, and the Prym variety associated
with 7r appear as an orbit of the three different systems applied to the point W:

J(Z) = exp(t1z-1 + t3z-3 + tsz- s + t7z-7) . W

J(Y) = exp( t3 z- 3
) . W

P1r = exp(t1Z-l +tsz-s + t7Z-7) . W .
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