PLURI-CANONICAL DIVISORS ON KÄHLER MANIFOLDS II

MARC LEVINE 83 34

2046

Max-Planck-Institut

Für Mathematik

Gottfried-Claren Straße 26

5300 Bonn 3

SFB/MPI 83-34

INTRODUCTION

In our paper [L] we proved the following theorem:

Theorem. Let $p:X\to D$ be a smooth and proper map of a complex manifold X to a disk D, with connected fibers. Fix a positive interger m. Suppose that the fiber $X_0 = p^{-1}(0)$ is in the class C of Fujiki. Suppose further that the general element s of $H^0(X_0, \partial_{X_0}^*(mK))$ has smooth divisor. Then the m-genus $P_m(p^{-1}(t))$ is constant over a neighborhood of 0 in D.

Here we will prove an extension of the above theorem to the casein which the general m-canonical divisor has "mild" singularities. More precisely, let s be a general element of $H^0(X_0, {\choose X_0}(mK))$, let Y be the m-fold covering of X_0 , contained in the canonical line bundle, and branched over (s). Let $f: Y^* \rightarrow Y$ be a resolution of singularities of Y such that the exceptional locus E is a divisor with normal crossing. Let $\mathcal O$ be the dualizing sheaf on Y. Then Y has "mild" singularities if

- 1) Y is smooth in codimension one (i.e. (s) is reduced)
- 2) $f^*(\mathcal{O})$ is contained in the sheaf of forms with log poles $\int_{Y^*}^{r} \langle E \rangle$, $r = \dim(Y)$

For example, if (s) is reduced with normal crossing, then Y has "mild" singularities.

We prove here the following theorem:

Theorem. Let $p:X\to D$ be a smooth and proper map of a complex manifold X to a disk D, with connected fibers. Fix a positive integer m. Suppose that X_0 is in C, and suppose further that for a general element s of $H^0(X_0, \overset{\circ}{U}_X (mK))$, the m-fold covering Y of X_0 branched along (s) has "mild" singularities. Then the m-genus $P_m(p^{-1}(t))$ is constant over a neighborhood of 0 in D.

Let $p:Z \to D$ be a smooth map of a complex manifold Z to a disk D, and let t be a parameter on D. We denote by Z_n the reduction of Z mod t^{n+1} ,

$$\hat{\mathcal{O}}_{\mathbf{Z}_{\mathbf{n}}} = \hat{\mathcal{O}}_{\mathbf{Z}}/(\mathbf{t}^{\mathbf{n}+1}) \qquad .$$

We define the sheaf of relative C^{00} functions on Z_n , $C_{Z_n}^{(0,0)}$, by

$$C_{Z_n}^{(0,0)} = C_{Z}^{(0)}/(t^{n+1}, \bar{t})$$

If U is a coordinate patch on Z, with coordinates (z,t), $z=(z_1,\ldots,z_d)$, and x is a point of U_0 , then by Taylor's theorem, every element f of $C_{Z_n,x}^{(0,0)}$ can be written uniquely as

$$f = \sum_{i=0}^{n} f_i(z, \overline{z}) t^{i}$$

where the f_i are germs of C^{∞} functions at x. We define the sheaf of relative C^{∞} forms of type (p,q) on Z_n , $C_{Z_n}^{(p,q)}$, by

$$c_{z_{p}}^{(p,q)} = c_{z/p}^{(p,q)} / (t^{n+1}, \bar{t}) c_{z/p}^{(p,q)}$$
.

If Y_n is a closed subscheme of Z_n , flat over Spec($C[t]/t^{n+1}$), defined by a sheaf of ideals I, then we set

$$c_{Y_{n}}^{(0,0)} = c_{Z_{n}}^{(0,0)} / I + \overline{I}$$

$$c_{Y_{n}}^{(1,0)} = c_{Z_{n}}^{(1,0)} / (I + \overline{I}) c_{Z_{n}}^{(1,0)} + dI$$

$$c_{Y_{n}}^{(0,1)} = c_{Z_{n}}^{(0,1)} / (I + \overline{I}) c_{Z_{n}}^{(0,1)} + d\overline{I}$$

$$c_{Y_{n}}^{(p,q)} = \Lambda^{p} c_{Y_{n}}^{(1,0)} = \Lambda^{q} c_{Y_{n}}^{(0,1)}$$

and

The operators ∂ and ∂ on $\partial C_Z^{(p,q)}$ descend to operators ∂ and ∂ on $\partial C_{Y_n}^{(p,q)}$, and at each smooth point of Y_0 , the sheaf sequence

$$0\rightarrow \mathfrak{D}_{p}^{X^{n}/D} \rightarrow C_{(p,0)}^{X^{n}} \xrightarrow{\widehat{g}} C_{(p,1)}^{X^{n}} \xrightarrow{\widehat{g}} C_{(p,r)}^{X^{n}} \xrightarrow{g} 0$$

 $(r=dim(Y_0))$ is exact. In addition, the sheaves $C_{Y_n}^{(p,q)}$ are fine sheaves, hence, if Y_0 is smooth, we have

$$H^{q}(Y_{n}, \Omega_{p}^{Y_{n}/D}) = H^{0}(Y_{n}, C_{n}^{Y_{n}}, C_{n}^{Y_{n}}) / \frac{1}{2} H^{0}(Y_{n}, C_{n}^{Y_{n}}, C_{n}^{Y_{n}})$$
.

We also define the sheaf of C^{∞} forms of degree m on Y_n , $C^m_{Y_n}$, to be the direct sum $C^{(p,q)}_{Y_n}$, and we let d be the operator O+O on $C^m_{Y_n}$.

In general, let U_0 be the smooth locus of Y_0 , and let U_n be the respective open subscheme of Y_n . We define the respective sheaves for U_n to be the restriction of the above sheaves defined for Y_n . Let Y be a (singular) cycle on U_0 , of real dimension r+q. We define a $\mathbb{C}[t]/(t^{n+1})$ linear map

$$\begin{cases} : H^{q}(U_{n}, \Omega_{U_{n}/D}^{r}) \rightarrow \mathfrak{c}[t]/(t^{n+1}) \end{cases}$$

as follows:

Since V is compact, and contained in the smooth locus U_0 , and since $H^1(U_0, (U_0 = C_{U_0}^{0})) = 0$, there is a neighborhood V of in U_0 , and isomorphisms

$$a_m: C_{V_n}^m \to C_{V_0}^m \text{ acc} [t]/(t^{n+1})$$
,

commuting with d. Since $r=\dim(U_0)$, the operator $\partial: C_{U_n}^{(r,q)} \to C_{U_n}^{(r,q+1)}$ is the restriction of the operator $d: C_{U_n}^m \to C_{U_n}^{m+1}$ where m=r+q. If w is an element of $H^0(U_n, C_{U_n}^{(r,q)})$, we can write $a_m(w|_U)$ as

$$a_{m}(w)_{v} = \sum_{i=0}^{n} w_{i}t^{i}$$
, $w_{i} \text{ in } H^{0}(v_{0}, c_{v_{0}}^{m})$.

If w and w' are two elements of $H^0(U_n, C_{Y_n}^{(r,q)})$ representing an element z of $H^q(U_n, \iint_{D_n/D} r)$, then w and w' differ by $\partial u = du$, for

some u in $H^0(U_n, C_{U_n}^{(r,q-1)})$, hence

$$a_{m}(w-w^{i}) = d(a_{m-1}(u))$$

$$= \sum_{i=0}^{n} du_{i}t^{i}$$

Thus $\sum_{i=0}^{n} \left(\int_{\gamma} w_{i} \right) t^{i}$ is independent of the choice of w representing

z, so we can define
$$\int_{\chi} z$$
 as
$$\int_{\chi} z = \sum_{i=0}^{n} (\int_{\chi} w_i) t^i$$

Note: We do not check that $\begin{cases} z \text{ is independent of the isomorphisms} \\ a_m \end{cases}$.

Since the a_m commute with d, we have

Lemma 1. If p is an element of $H^q(U_n, \Omega_{U_n/D}^{r-1})$ then $\int_{U_n}^{d\mu} = 0$ for every cycle γ of dimension q+r on U_0 .

Proof. We can represent μ by an element u^* of $H^0(U_n, C_{U_n}^{(q,r-1)})$. Then $d\mu$ is represented by $\partial u^* = du^*$, whence the lemma.

q.e.d.

Proposition 2. Let Z_n , Y_n , U_n be as above. Suppose that Y_0 is a hypersurface in Z_n , smooth in codimension one, and in the class of Fujiki(Y_0 is dominated by a compact Kähler manifold). Let $f:Y^*\to Y_0$ be a resolution of singularities of Y_0 such that the exceptional locus E of f is a divisor with normal crossing. Suppose further that $f^*(\omega_{Y_0})$ is contained in the sheaf of differentials with logarithmic poles, $\Omega^r \subset Y_0$, where W_{Y_0} is the dualizing sheaf on Y_0 . Then the map

$$d:H^{1}(Y_{n},\Omega_{Y_{n}/D}^{r-1}) \rightarrow H^{1}(Y_{n},\omega_{Y_{n}})$$

is the zero map.

<u>Proof.</u> We consider U_0 as an open subset of Y*, with complement E. The following diagram commutes:

where i and j are the relevant inclusions. Let μ be an element of $H^1(Y_n, \prod_{n \neq 0}^{r-1})$. By induction, we may assume that $d\mu = t^n w$ for some element w of $H^1(Y_n, \omega)$.

for some element w of $H^1(Y_0, \omega_{Y_0})$. Thus

$$0 = \left\{ d\mu = t^n \right\}_{v}^{w}$$

for every r+1 cycle \bigvee on U_0 . On the other hand, by Deligne (Hodge II), the map $H^1(Y^*, \bigwedge_{Y^*} \stackrel{r}{\swarrow} E) \longrightarrow H^{r+1}(U_0, \mathbb{C})$ is injective. If $f^*(w)$ is not zero, then by duality there is a cycle \bigvee on U_0 with $\bigvee_{Y} \psi \neq 0$, contradicting the above equation. Thus $f^*(w) = 0$. Finally, since the complement of U_0 in Y_0 is of codimension at least two, a local cohomology argument shows that the map i^* is injective, hence f^* is also injective, and w = 0 as desired.

q.e.d.

Let now p:X \rightarrow D be a smooth , proper map of a complex manifold X to D, with connected fibers of dimension r, with X in the class $\mathfrak C$. Let Z_n be the relative canonical line bundle over X_n . Fix a positive integer m, and let s be a section in $H^0(X_n, \mathcal O_{X_n}(mK))$. We then let Y(s) denote the m-fold covering of X_n , contained in Z_n , branched over the divisor (s). Let $g: Z_n \rightarrow X_n$ denote the projection.

Corollary 3. Let X, Z_n be as above. Suppose that for a general s_0 in $H^0(X_0, \overset{\circ}{O}_{X_0}(mR))$, the variety $Y(s_0)$ satisfies the conditions of lemma 2(e.g. s_0 is a reduced divisor with normal crossing, or more generally, $Y(s_0)$ has only quotient singularities). Then the m-genus $P_m(p^{-1}(t))$ is constant over a neighborhood of 0 in D.

<u>Proof.</u> We let s_n denote a general section of $H^0(X_n, \mathcal{O}_{X_n}^{\bullet}(mK))$, and \overline{s}_n its reduction mod t. From $\{L\}$ the obstruction to lifting \overline{s}_n to an element s_{n+1} of $H^0(X_{n+1}, \mathcal{O}_{X_{n+1}}^{\bullet}(mK))$ is given by

$$\operatorname{Tr}_{Y(s_n)/X_n}(w^{m-1}d\mu)$$

where w is the restriction to $Y(s_n)$ of the canonical section of $g^*(K)$ over K ($K = Z_n$), and μ is a certain element of $H^1(Y(s_n), \bigcap_{Y(s_n)/D}^{r-1})$. By induction, we may suppose that \bar{s}_n is a general section in $H^0(X_0, \bigcap_{X_0}^{r}(mK))$, and so, by proposition2, $d\mu = 0$. Thus the obstruction vanishes, and we may continue the induction. The result then follows from the formal function theorem for coherent sheaves (Grauert)

q.e.d.

REFERENCES

- P. Deligne, Theorie de Hodge II, III, Publ. IHES No. 40(1971) and 44(1974).
- [G] H. Grauert, Ein Theorem der Analyticher Garbentheorie und die Modulräume Komplexer Structure, Publ. IHES No. 5(1960).
- [L] M. Levine, Pluri-canonical divisors on Kähler manifolds, to appear, Inv. Math.