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Abstract: In this paper we give a proof for the Weyl character and super-character

formulae for all irreducible highest weight integrable modules of finite dimensional

and affine Lie superalgebras with non-degenerate supersymmetric, invariant bilinear

forms, except for modules of level 0 of affine Lie superalgebras with zero dual Coxeter

number. We deduce a denominator and super-denominator formulae for these Lie

superalgebras except for affine Lie superalgebras with zero dual Coxeter number.

1 Finite dimensional Lie superalgebras

1.1 Introduction

Unless otherwise stated, a Lie superalgebra will mean a simple fi-
nite dimensional with symmetrizable Cartan matrix. A finite di-
mensional Lie superalgebra is of this type if and only if it is either
a simple Lie algebra or one of the following ones:

A(m,n), B(m, n), C(n), D(m,n), F4, G3, D(2, 1; α).

The study of their representations was started in [K3]. More pre-
cisely a character formula was computed for what the author called
their typical representations. An irreducible representation of high-
est weight Λ with respect to a base Π is typical if and only if there
are no isotropic odd roots α such that (Λ + ρ, α) = 0, where ρ is
the Weyl vector with respect to the base Π. In this case, its char-
acter formula is of the same form as the one in the context of finite
dimensional simple Lie algebras. The problem in the arbitrary case
is the existence of both positive and negative non-diagonal entries
in the Cartan matrix or in other words the existence of real roots
both of positive and negative norms. Indeed this makes it impossi-
ble to apply the standard proof of the character formula used in the
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Borcherds-Kac-Moody setup [B, K4] as it relies heavily on inequali-
ties. The level of complications depends on the maximal possible di-
mension of an isotropic subspace of the set of roots, otherwise known
as the defect (as defined in [KW1]). In particular, if a Lie superalge-
bra has defect 0, or equivalently has no isotropic odd simple roots,
which is the case when the odd part of the Lie superalgebra is trivial
or G is of type B(0, n), there are no problems. When the defect is
equal to 1 – i.e. for the exceptional Lie superalgebras of type F4,
G3, D(2, 1; α), and those of type A(0, n), A(m, 0), B(1, n), B(m, 1),
C(n), D(m, 1) –, the character formula for all irreducible integrable
highest weight representations was computed in [KW1]. When the
defect is equal to or less than 2, there is a base Π with respect to
which the Cartan matrix is of Borcherds-Kac-Moody type, i.e. its
non-diagonal entries are all non-positive and hence the proof of the
character formula given in [Ray] for irreducible integrable highest
weight modules for which (Λ, αi) ≥ 0 for all simple roots αi ∈ Π of
Borcherds-Kac-Moody superalgebras applies. In particular, it gives
the denominator formula for the Lie superalgebras of defect at most
2.

There have been several attempts to derive the (super)-
character formula for atypical modules. Apart from the papers cited
above the following is a far from exhaustive list of articles dealing
with several special cases: [BL], [F], [J], [JHKT-M], [S1] and [S2]. In
[KW1], the authors conjectured a denominator formula for all finite
dimensional cases. This was proved recently using combinatorial
methods recently in [G].

In this second part, we give a proof of the character formula
for all the irreducible integrable highest weight modules, equiva-
lently finite dimensional irreducible. From the (super)-character
formula, we deduce a (super)-denominator formula. Our proof is
not combinatorial and applies to all the finite dimensional Lie super-
algebras with symmetrizable Cartan matrix. The main idea behind
the proof is independent of special features of the different types of
finite dimensional Lie superalgebras and is heavily dependent on the
concept of odd reflections constructed by V. Serganova in [LSS].

1.2 Notation and some fundamental properties

In this section, we fix the notation that will be used throughout the
first part of this paper and give basic properties of the Lie superal-
gebras in question.

1. Z+ will stand for the set of all non-negative integers and N for
the set of positive integers.
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2. Let G be a finite dimensional Lie superalgebra with a non de-
generate, super-symmetric, invariant bilinear form (., .).

3. Let H be a Cartan subalgebra of G and ∆ ≤ H∗, ∆0 ≤ H∗,
∆1 ≤ H∗ be respectively the set of roots, even root, and odd
roots with respect to the Cartan subalgebra H. Set ∆̆0 = {α ∈
∆0 : 1

2
α 6∈ ∆}.

4. Let Π = {α1, · · · , αN} be a base of the root system ∆. Let
E = RΠ be the real vector space spanned by the base Π. The
base Π is a basis of the dual space H∗.

Convention used in this paper: By Cartan matrix we mean the
matrix of the restriction of the bilinear form to the Cartan sub-
algebra H. In the usual sense, a Cartan matrix has a different
meaning: its diagonal entries are equal to 2 or 0 only. It may be
symmetrizable but not necessarily symmetric. When it is sym-
metrizable, its symmetric version (i.e. its product with an ap-
propriate diagonal matrix) can have entries both non-positive
and non-negative and not always equal to ±2 is what we call
Cartan matrix in this paper. However, the Killing form may
be trivial and hence the usual Cartan matrix trivial, but there
may be other non-degenerate bilinear supersymmetric invariant
forms as is the case for A(n, n).

Let hi ∈ H, 1 ≤ i ≤ N , be such that (hi, hj) = (αi, αj).

Let ∆+ be the set of positive roots with respect to the base Π.
Set

∆+
0 = ∆+ ∩∆0, ∆+

1 = ∆+ ∩∆1;

and Π0 to be the base of the Lie algebra with positive root sys-
tem ∆+

0 . For Lie algebras or Lie superalgebras of type A(m,n),
C(n), B(0, n), α ∈ Π0 if and only if α ∈ Π or 1

2
α ∈ Π.

For Lie superalgebras of type B(m,n), m > 0, D(m,n) or ex-
ceptional, we define θ to be the positive root with the following
property:

θ ∈ Π0, θ,
1

2
θ 6∈ Π.

Indeed in these cases, α ∈ Π0 if and only if α ∈ Π or 1
2
α ∈ Π

or α = θ.

5. Let
Gα = {x ∈ G : [h, x] = α(h)x, h ∈ H}.

As dim G < ∞, dim Gα = 1 for all α ∈ ∆.
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Set ei ∈ Gαi
, fi ∈ G−αi

to be the generators of the superalgebra
G, where [ei, fi] = hi and [h, ei] = (h, hi)ei, [h, fi] = −(h, hi)fi

for all h ∈ H. Note that our generators are multiples of the
usual generators taken when the Cartan matrix is assumed to
be symmetrizable but not necessarily symmetric.

6. For a root α ∈ ∆, write supp(α) for the support of α. By abuse
of language we use this terminology for both the simple roots
and their indices.

7. As in [KW1],

e(λ) : E = R∆ → R
µ 7→ e(λ,µ)

is an exponential function and the expressions
∑

λ∈H∗ aλe(λ)∑
λ∈H∗ bλe(λ)

are

rational exponential functions, namely the numerator and de-
nominator are finite linear combinations of exponentials e(λ).
Set

R =

∏
α∈∆+

0
(1− e(−α))∏

α∈∆+
1
(1 + e(−α))

and

R̆ =

∏
α∈∆+

0
(1− e(−α))∏

α∈∆+
1
(1− e(−α))

to be respectively the Weyl denominator and superdenominator
with respect to the base Π.

8. Let ρ be the Weyl vector with respect to the base Π, i.e.

(ρ, αi) =
1

2
(αi, αi) ∀ 1 ≤ i ≤ N.

Let ρ0 be the Weyl vector of the Lie algebra G0 with respect
to the base Π0. Set ρ1 = ρ0 − ρ. As dim G < ∞,

ρ0 =
1

2

∑

α∈∆+
0

α, ρ1 =
1

2

∑

α∈∆+
1

α.

Because the bilinear form on G is non-degenerate, there is a
unique Weyl vector in E.

9. Let V = V (Λ) be the finite dimensional G-module of highest
weight Λ ∈ H∗ with respect to the base Π, i.e. for all

α ∈ ∆+ such that |α|2 6= 0,
2(Λ, α)

(α, α)
∈ Z+.
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The vector vΛ ∈ V will denote a highest weight vector of the G-
module V (Λ). Set P (Λ) to be the set of weights of the module
V (Λ). For µ ∈ H∗, we write Vµ = {v ∈ V : h.v = µ(h)v, ∀h ∈
H}. Then, dim Vµ < ∞ for all µ ∈ H∗ and following [K4]

ch V =
∑
µ≤Λ

(dim Vµ)e(µ) ∈ E ,

where E is the algebra over C of formal series of the form
∑

µ∈H∗
cµe(µ)

where cµ ∈ C and cµ = 0 for µ outside the union of a finite
number of sets of the type D(λ) = {µ ∈ H∗ : µ ≤ λ}.

10. Let W be the Weyl group of the Lie superalgebra G. For
w ∈ W , let l(w) be the number of simple reflections needed

to write w as a word and l̆(w) the number of simple reflections

corresponding to the set ∆̆+
0 needed to write w. Set

ε(w) = (−1)l(w) and ε̆(w) = (−1)l̆(w).

We define the following subgroups of the Weyl group:

W+ = 〈rα : |α|2 > 0〉
W− = 〈rα : |α|2 < 0〉,

i.e.
W = W− ×W+.

11. G0 = (G0)+ ⊕ (G0)−, where (G0)+ = 〈Gα : α ∈ ∆0, |α|>0〉
and (G0)− = 〈Gα : α ∈ ∆0, |α|<0〉. To express the (super)-
denominator formula in a simple manner, we need to choose
one of these summands. We do this as follows (see [KW1]).
Setting θ′ to be the maximal root in ∆+, define the dual Coxeter
number

h∨ =
1

2
(θ′, θ′ + 2ρ)

to be the half of the eigenvalue of the action of the Casimir
operator on the Lie superalgebra G. h∨ = 0 if and only if G is
of type A(n, n), D(n + 1, n), or D(2, 1; a) (see [KW1]). Set

∆]
0 =





{α ∈ ∆+
0 : |α|2h∨ > 0} if h∨ 6= 0

{α ∈ ∆+
0 : |α|2 > 0} if G is of type A(n, n)

{α ∈ ∆+
0 : |α|2|θ|2 < 0} if G is of type D(n + 1, n) or D(2, 1; a)
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and
W ] = 〈rα : α ∈ ∆]〉.

12. In the appendix of [LSS], V. Serganova introduced the concept
of odd reflections for finite dimensional simple Lie superalge-
bras with Cartan matrix. As the proof is heavily based on the
use of these reflections, we remind the reader of their definition.
For 1 ≤ i ≤ N , if |αi|2 = 0, the linear map sαi

on H∗ given by

sαi
(αj) =





αj if j 6= i and (αj, αi) = 0

αj + αi if (αj, αi) 6= 0

−αi if j = i.

is the corresponding odd reflection.

Write Πi := sαi
(Π). This is another base of the set of roots ∆

whose simple roots are:

βi
j =





αj if i 6= j and (αi, αj) = 0

αi + αj if (αi, αj) 6= 0

−αi if i = j.

Define
∆+

i0 := ∆0 ∩ Z+Πi, ∆+
i1 := ∆1 ∩ Z+Πi.

The notation
λ ≤j µ

will mean µ− λ ∈ Z+Πj. More generally if Π′ is a base then

λ ≤′ µ
will mean µ − λ ∈ Z+Π′. From now on Π′ will denote a base
obtainable from the base Π by successive applications of odd
reflections. A consequence of the definition of odd reflections
is the following:

Corollary 1. Let αi ∈ Π be such that |αi|2 = 0. Then the set
of positive even (resp. odd) roots with respect to the base Πi is

∆+
0 (resp. (∆+

1 − {αi}) ∪ {−αi})
and

ρ + αi

is a Weyl vector with respect to the base Πi.
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Proof. Let

α =
n∑

i=1

kiαi ∈ ∆+.

Suppose that α 6= αi. We show that α remains a positive root
with respect to the base Πi. We know from Proposition 1 that
α is a root and hence we only need to check positivity.

Suppose first that there is an index j ∈ supp(α) such that j 6= i
and (αi, αj) = 0. As αj ∈ Πi and kj > 0, it then follows that
α ∈ Z+Πi).

Hence we can suppose that for all j ∈ supp(α) such that j 6= i,
(αi, αj) 6= 0. Then, for j 6= i,

αj = (αi + αj) + (−αi).

Since αi +αj,−αi ∈ Πi, αj ∈ Z+(Πi). Hence as kj > 0 it again
follows that α ∈ Z+(Πi). The first two statements follow.

It remains to check that ρi = ρ + αi is the Weyl vector with
respect to the base Πi. Now

(ρ + αi, αj) = (ρ, αj)

for all (αi, αj) = 0. In particular,

(ρ + αi,−αi) = 0.

If (αi, αj) 6= 0, then

(ρ + αi, αi + αj) =
1

2
(αj, αj) + (αi, αj)

=
1

2
(αi + αj, αi + αj)

Therefore ρ + αi is a Weyl vector with respect to the base
Πi.

Set
ρi = ρ + αi.

We will write Λi for the highest weight of the finite dimensional
simple G-module V with respect to the base Πi. More generally,
for the base Π′, we will write ρ′ and Λ′.
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1.3 (Super)-character and (super)-denominator formulae

1.3.1 Statement of main results

Let V = V (Λ) be an integrable highest-weight irreducible G-module
with highest weight Λ with respect to the base Π. Set SΛ+ρ to
be a maximal subset of ∆+ consisting of isotropic roots, mutually
orthogonal and orthogonal to the weight Λ + ρ. The cardinality of
the set SΛ+ρ is called the degree of atypicality of the module V . It
is independent of the base. The cardinality of the maximal isotropic
subset of the set of roots is the defect of the Lie superalgebra and
clearly the atypicality of a module is at most equal to the defect of
the Lie superalgebra. If SΛ+ρ = ∅, then the module V is typical. In
this case, the character formula was proved in [K3]. Our proof for
the general case includes the typical case and is different from the
one in [K3]. Based on the notation in [KW1], for a subset U of the
Weyl group W , set

TΛ+ρ = ∪T≤SΛ+ρ
{
∑
α∈T

α}

to be the subset of H∗ of all possible sums of roots in SΛ+ρ and

SΛ+ρ = SΛ+ρ ∪ {β ∈ TΛ+ρ : β 6∈ SΛ+ρ, β =
∑

γ∈∆+
1 ,γ 6∈SΛ+ρ

γ}

to be the subset of TΛ+ρ consisting of roots in SΛ+ρ and of sums of
at least two roots in SΛ+ρ that can be written as sums of odd roots
not in SΛ+ρ

Proposition 1. 1. If the atypicality of the Lie superalgebra G is
equal to 1, then SΛ+ρ = SΛ+ρ;

2. if the base Π contains a unique isotropic root then SΛ+ρ = TΛ+ρ;

3. if SΛ+ρ ≤ Π, then SΛ+ρ = SΛ+ρ.

ΓΛ,SΛ+ρ,Π,U =
∑
w∈U

ε(w)w(
e(Λ + ρ)∏

α∈SΛ+ρ
(1 + e(−α))

)

and

Γ̆Λ,SΛ+ρ,Π,U =
∑
w∈U

ε̆(w)w(
e(Λ + ρ)∏

α∈SΛ+ρ
(1− e(−α))

Define
jΛ,SΛ+ρ,Π,U
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(resp.

j̆Λ,SΛ+ρ,Π,U)

to be the the cardinality of the set

{w ∈ W :
e(w(Λ + ρ))∏

α∈SΛ+ρ
(1 + e(−w(α)))

=
e(Λ + ρ)∏

α∈SΛ+ρ
(1 + e(−α))

}

(resp.

{w ∈ W :
e(w(Λ + ρ))∏

α∈SΛ+ρ
(1− e(−w(α)))

=
e(Λ + ρ)∏

α∈SΛ+ρ
(1− e(−α))

})

Define
ch Λ,SΛ+ρ,Π,U = j−1

Λ,SΛ+ρ,Πe(−ρ)R−1ΓΛ,SΛ+ρ,Π,U

and
sch Λ,SΛ+ρ,Π,U = j−1

Λ,SΛ+ρ,Πe(−ρ)R̆−1Γ̆Λ,SΛ+ρ,Π,U

We generalize the notion of a tame module given in [KW1]:

Definition 1. The G-module V = V (Λ) is said to be generalized
tame (with respect to the base Π) if

ch V = ch Λ,SΛ+ρ,Π,W .

When the degree of atypicality of the module V is at most 1, the
G-module V is said to be tame.

We need to distinguish between two types of isotropic roots.

Definition 2. The isotropic root α ∈ ∆+ is said to be of the first
kind if there is a base Π′ = sp · · · s1(Π), where the si are odd reflec-
tions, such that α ∈ Π′. Otherwise the isotropic root α is said to be
of the second kind.

Proposition 2. When the Lie algebra G is of type A(m,n), C(n)
or is exceptional, all isotropic roots are of the first kind. This is
not the case when the Lie algebra G is of type B(m,n), m > 0, or
D(m,n).

Theorem 1. Let G is either a Lie algebra or a Lie superalgebra of
type A(m,n), C(n), or B(0, n). Then all finite dimensional irre-
ducible G-modules are generalized tame with respect to all bases.

When the Lie superalgebra G is of type B(m,n), m > 0,
D(m,n) or is exceptional, set

W̃ = 〈rα : α ∈ Π0 − {θ}〉
and

W ′ = 〈rθ, rα : α ∈ Π0 : |α||θ| < 0〉.

9



Theorem 2. Let the Lie superalgebra G be of type B(m,n), m > 0,
or D(m,n). Set α to be the maximal isotropic root of the second
kind such that i ∈ supp(α) implies that |αi||θ| ≤ 0.

1. If
2(rθ(Λ + ρ)− ρ, θ)

(θ, θ)
≤ 0

(equivalently the G-module with highest weight rθ(Λ + ρ)− ρ is
infinite dimensional), then the G-module V is tame and

SΛ+ρ = {α} or ∅;

2. if the G-module with highest weight rθ(Λ + ρ) − ρ is finite di-
mensional then the module V is not generalized tame and

ch V =

{
ch Λ,SΛ+ρ,Π,W̃ if 2(Λ+ρ,θ)

(θ,θ)
≤ 0

ch Λ,SΛ+ρ,Π,W − ch rθ(Λ+ρ)−ρ,SΛ+ρ,Π,W ′ otherwise

Moreover, if 2(Λ+ρ,θ)
(θ,θ)

≤ 0, then all isotropic roots in the set SΛ+ρ

are of the first kind and otherwise SΛ+ρ = {α}.
Theorem 3. Let G be an exceptional Lie superalgebra. Then,

W = 〈rθ, rα : |α||θ| < 0}.
1. If

2(rθ(Λ + ρ)− ρ, θ)

(θ, θ)
≤ 0

(equivalently the G-module with highest weight rθ(Λ + ρ)− ρ is
infinite dimensional), then the G-module V is tame;

2. if the G-module with highest weight rθ(Λ + ρ) − ρ is finite di-
mensional then it not generalized tame and

ch V =

{
ch Λ,SΛ+ρ,Π,W̃ if 2(Λ+ρ,θ)

(θ,θ)
≤ 0

ch Λ,SΛ+ρ,Π,W − ch rθ(Λ+ρ)−ρ,SΛ+ρ,Π,W otherwise

As a consequence, the denominator formula can be nicely
expressed with respect to a base with special properties.

Theorem 4. Let G be a finite dimensional Lie superalgebra with a
symmetrizable Cartan matrix. Let Π be a base containing a maximal
isotropic subset S of the set of roots ∆. Then the denominator
formula is:

e(ρ)R = Γ0,S,Π,W ] .
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In particular, when the Lie superalgebra is of type A(m,n) or C(n)
or B(0, n), the trivial module is generalized tame and when the Lie
superalgebra is of type B(m,n), m > 0, D(m, n) or is exceptional,
it is not generalized tame.

Theorem 5. For a Lie superalgebra G with symmetrizable Cartan
matrix, replacing ch with sch and Γ with Γ̆ in Theorems 1, 2, 3
and 4 gives the super-character for the module V and the super-
denominator formula.

1.3.2 Proof: Part I

In the rest of this section we prove these theorems. As mentioned
in section 2, we fix an arbitrary base Π. The arguments in [K3] or
[K4] lead to the next equality:

e(ρ)
∏

α∈∆+
0

(1− e(−α))ch V

=
∑

λ≤Λ, |λ+ρ|2=|Λ+ρ|2
cλe(λ + ρ)

∏

α∈∆+
1

(1 + e(−α)), (1)

where cΛ = 1, cλ ∈ Z.
In the first part, we aim to prove the following result:

Proposition 3. Let Π be a base containing at most one isotropic
simple root and all of whose non-isotropic roots are even. Let λ ∈ H∗

be such that cλ 6= 0.

1. When G is a Lie superalgebra of type A(m,n) or C(n),

λ + ρ = w(Λ + ρ)−
∑

α∈Sw(Λ+ρ)

kαα

where w ∈ W , for all α, kα ∈ Z+ and kα 6= 0 implies that the
root α is a positive isotropic root. Moreover, when kβ, kα 6= 0,
(α, β) = 0.

2. Suppose that G is a Lie superalgebra of type B(m,n), m > 0
or D(m,n).

(a) If rθ(Λ + ρ) 6≤ Λ + ρ, then SΛ+ρ 6= ∅ and

λ + ρ = w(Λ + ρ)−
∑

α∈Sw(Λ+ρ)

kαα

for some w ∈ W̃ , k ∈ N and mutually orthogonal isotropic
roots α of the first kind;
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(b) otherwise either SΛ+ρ = ∅ in which case

λ + ρ = w(Λ + ρ)

or SΛ+ρ = {α}, where α is the maximal isotropic positive
root of the second kind containing only simple roots of non-
negative norm in its support and

λ + ρ = w(Λ + ρ− kα).

3. When G is an exceptional Lie superalgebra, SΛ+ρ = ∅, in which
case

λ + ρ = w(Λ + ρ)

or SΛ+ρ = {α}, where α is an isotropic root of the first kind
and

λ + ρ = w(Λ + ρ)− kw(α)

for some w ∈ W̃+ if (Λ + ρ, θ) > 0 and for some w ∈ W
otherwise.

We do not as yet restrict ourselves to a base with the prop-
erties described in Proposition 2. We assume that G is not a Lie
algebra or of type B(0, n) as in these cases there are no isotropic
roots and hence the usual proof of the character formula applies.
This will avoid mentioning these cases throughout the proof.

Note that cλ 6= 0 implies that λ ≤ Λ. The point is that there
may be other sums for which this is not the case. In other words,
with respect to a base Π′ = {β1, · · · , βN} with positive even (resp.
odd) root set ∆′

0 (resp. ∆′
1), we may have:

e(ρ)
∏

α∈∆′0
+

(1− e(−α))ch V

=
∑

|λ+ρ|2=|Λ+ρ|2
dλe(λ + ρ)

∏

α∈∆′1
+

(1 + e(−α)), (2)

with some weight λ ∈ H∗ such that dλ 6= 0 but λ 6≤′ Λ.
Suppose that 1 ≤ j ≤ n, αj ∈ ∆1 and |αj|2 = 0. We show

that this situation arises when we consider equality (1) with respect
to the base Πj. Corollary 1 tells us that equality (1) can be rewritten
as follows:

12



e(ρj − αj)
∏

α∈∆+
j0

(1− e(−α))ch V

=
∑

λ≤Λ, |λ+ρ|2=|Λ+ρ|2
cje(λ + ρ)e(−αj)

∏

α∈∆+
j1

(1 + e(−α)) (3)

Let us find the highest weight Λj of the G-module V with
respect to the base Πj.

Lemma 1. With respect to the base Πj, the highest root of the G-
module V is

Λj =

{
Λ− αj if (Λ, αj) 6= 0

Λ if (Λ, αj) = 0
.

Proof. fjvΛ = 0 if and only if (Λ, αj) = 0 and hence the result
follows since f 2

j vΛ = 0, the simple root αj being isotropic.

As a result:

Corollary 2. |Λ + ρ|2 = |Λj + ρj|2.
Proof. This is a direct consequence of Lemma 1 when (Λ, αj) 6= 0
and it follows when (Λ, αj) = 0 since (ρ, αj) = 0.

Simplifying equality (3), from Lemma 1 and Corollary 2, we
get:

e(ρj)
∏

α∈∆+
j0

(1− e(−α))ch V

=
∑

λ≤Λ, |λ+ρ|2=|Λj+ρj |2
cλe(λ + ρ)

∏

α∈∆+
j1

(1 + e(−α)) (4)

We will say that equality (4) is equality (1) with respect to
the base Πj. Note that this is not the same as substituting the base
Πj for the base Π in equality (1): indeed, λ + ρ = (λ−αj) + ρj and
cλ 6= 0 implies λ−αj ≤ Λ−αj ≤ Λj but λ−αj ≤j Λj may not hold.
More generally we will use the phrase ”equality (1) with respect to
the base Π′” for bases Π′ obtainable from the base Π by successive
applications of odd reflections. Writing

λ = Λ−
∑

i

kiαi ∈ H∗,
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λ + ρ ={
Λj + ρj −

∑
i 6=j kiβ

j
i − (

∑
i,(αi,αj)6=0 ki − kj)β

j
j if (αj, Λ) 6= 0

Λj + ρj −
∑

i 6=j kiβ
j
i − (

∑
i,(αi,αj)6=0 ki − kj − 1)βj

j otherwise

(5)

In other words, with respect to the base Πj, the coefficient

of the base element βj
j may be positive. The proof of the theorems

is based on the observation that with respect to the base Πj, for
each weight λ appearing on the right hand side of equality (4), i.e.
with cλ 6= 0, at most one summand, namely that corresponding to
the simple root βj

j , may be positive.

Lemma 2. Let

λ = Λ−
∑

i 6=j

kiβi + kjβj ∈ H∗

be a weight for which dλ 6= 0 in equality (2) and such that for all i,
ki ∈ Z+ and kj > 0 for some index 1 ≤ j ≤ n. Set

µ = Λ−
∑

i6=j

kiβi.

Then
|βj| = 0

and for all integers s ≥ 1,

dµ+sβj
= (−1)s−1dµ+βj

.

In particular, dµ+βj
6= 0,

(λ, βj) = 0 = (µ, βj)

and for all integers s ≥ 0,

|µ + sβj + ρ|2 = |Λ + ρ|2.
Moreover if the term e(µ + ρ) does not appear on the left hand side
of equality (2), then dµ 6= 0 and in particular, dµ+sβj

= (−1)sdµ for
all s ∈ N.

Proof. Let the weight λ = Λ−∑
i6=j kiβi +kjβj be such that dλ 6= 0,

ki ≥ 0 for all 1 ≤ i ≤ N and kj > 0. Since no terms on the L.H.S.
of equality (2) equals e(λ),

dλ +
∑

γ

dλ+γ = 0,

14



where the sum is taken over sums γ of distinct odd roots. We prove
the result by induction on k =

∑
i6=j ki. Let k be minimal. Then,

dλ+βj
6= 0 and dλ+γ = 0 for all γ 6= βj. So

dλ + dλ+βj
= 0.

Next replacing λ by λ + βj we get

dλ+βj
+ dλ+2βj

= 0.

More generally, for all integers s ≥ 0,

dλ+sβj
= (−1)sdλ.

In particular

(λ + ρ + sβj, λ + ρ + sβj) = (λ + ρ, λ + ρ)

for all integers s ≥ 0 and so

(βj, βj) = 0

and
(λ, βj) = 0

since (ρ, βj) = 0.
Suppose that kj > 1. If dλ−βj

= 0, then as βj ∈ ∆+
1 , there

is a term on the right hand side of equality (2) equal to e(λ − βj).
However this is false if kj−1 > 0. In this case, the above arguments
imply that dλ−βj

= −dλ. Continuing in this manner we can deduce
that if

µ = Λ−
∑

i6=j

kiβi,

then for all integers s ≥ 1,

dµ+sβj
= (−1)s−1dµ+βj

.

Moreover if the term e(µ + ρ) does not appear on the left hand side
of equality (2), then dµ 6= 0 and in particular, dµ+sβj

= (−1)sdµ for
all s ∈ N.

Now

dµ+βj
(
∑
s≥0

(−1)se(sβj))
∏

α∈∆′1

(1 + e(−α))

= dµ+βj
(1 + e(bj))

−1
∏

α∈∆′1

(1 + e(−α))

= dµ+βj
e(−βj)

∏

α∈∆′1−{βj}
(1 + e(−α))

Therefore the result follows by induction on k.
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As we have seen previously, we can apply Lemma 2 to equal-
ity (4) with respect to the base Πj. Since βj

j = −αj, this gives:

Corollary 3. Suppose that 1 ≤ j ≤ r with |αj|2 = 0. Let λ ∈ H∗

be such that cλ 6= 0 and

λ + ρ = Λj + ρj −
n∑

i=1

liβ
j
i .

Suppose that lj < 0. Set µ = λ − (lj + 1)αj. Then for all integers
s ≥ 1,

cµ−sαj
= (−1)scµ

and
(µ, αj) = 0.

In particular, cλ = (−1)(lj+1)cµ and cµ 6= 0. In particular, µ ≤ Λ
and µ ≤j Lj. Furthermore, the term e(µ + ρ) appears in the left
hand side of equality (1) or cµ+αj

6= −cµ.

Proof. We only prove the last inequality and statement. µ + ρ =
(µ+βj

j )+ρj and µ+βj
j ≤j Λj. In particular, µ ≤j Λj. From Lemma

2 we know that either the term e(µ+αj +ρ) appears in the left hand
side of equality (4) or cµ+αj

= −cµ. Since ρj = ρ + αj, the former
case is equivalent to the term e(µ + ρ) appearing of the left hand
side of equality (1).

Since at each base change by an odd permutation, precisely
one base vector changes sign, the following is a consequence of the
fact that e(µ + ρ) appears in the left hand side of equality (1).

Lemma 3. Let λ, µ ∈ H∗ and the simple root αj be as described in
Corollary 4. Suppose that the term e(µ+ ρ) appears in the left hand
side of equality (1). Let βj

k be an isotropic simple root of the base
Πj and Πj,k = sk(Πj). Then, writing µ + ρ as a linear combination

of the basis vectors in Πj,k, the coefficient of sk(β
j
k) is at most 1.

Note that there are two types of isotropic roots. Let α ∈ ∆+
1

be such that |α|2 = 0. Then, either there is a base Π′ (as described
in section 1, obtainable from Π after successive applications of odd
reflections) such that α ∈ Π′ or for any such base Π′, α 6∈ Π′. We
will say that the root ±α is either of the first or second kind. If
there are isotropic roots, then all of them are of the first kind if and
only if the Lie superalgebra G is of type A(m, n) or C(n).

As a consequence of Lemmas 2, 3 and Corollary 3, applying
successive odd reflections, the following can be deduced:

16



Corollary 4. Let λ ∈ H∗ be such that cλ 6= 0. Then there is a
weight µ ∈ H∗ for which the height Λ − µ is such that cµ 6= 0 such
that

λ + ρ = µ + ρ−
∑

α∈∆+
1

kαα,

where kα ∈ Z+

1. kα 6= 0 implies that α ∈ ∆+
1 , (α, µ) = 0 = (α, β) if kβ 6= 0; in

particular the root α is isotropic of the first kind; and

2. either µ + ρ ≤′ Λ′ + ρ′ for all bases Π′ and µ + ρ + α 6 Λ′ + ρ′,
for bases Π′ with respect to which the root α is simple; or the
term e(µ+ρ) appears in the left hand side of equality (1). If the
latter holds then there is a base Π′ = {β1, · · · , βN} of the above
described type and an isotropic simple root βk ∈ Π′ such that
µ + ρ = Λ′ + ρ′ + βk −

∑
i 6=k liβi, where for all i 6= k, li ∈ Z+.

Furthermore if βk for k 6= i is an isotropic simple root, then
writing µ+ρ as a linear combination of simple roots in sβk

(Π′),
the coefficient corresponding to sβk

(βk) is at most 1.

For reasons of simplicity which will become obvious later,
from now on we assume that the base Π contains one isotropic simple
root and all other simple roots are even. This is always possible (see
[K1]):

A(m,n):

α1 αm+1 αm+n+1

»Â¼Á½À¾¿ »Â¼Á½À¾¿ ×»Â¼Á½À¾¿ »Â¼Á½À¾¿ »Â¼Á½À¾¿

B(m,n) (m 6= 0):

α1 αn αm+n

»Â¼Á½À¾¿ »Â¼Á½À¾¿ ×»Â¼Á½À¾¿ »Â¼Á½À¾¿ »Â¼Á½À¾¿ +3 »Â¼Á½À¾¿

C(n):

α1 αn

×»Â¼Á½À¾¿ »Â¼Á½À¾¿ »Â¼Á½À¾¿ »Â¼Á½À¾¿ ks »Â¼Á½À¾¿

D(m,n):

»Â¼Á½À¾¿ αm+n−1

α1 αn

»Â¼Á½À¾¿ »Â¼Á½À¾¿ ×»Â¼Á½À¾¿ »Â¼Á½À¾¿ »Â¼Á½À¾¿
¦¦¦¦¦

AAA
A

»Â¼Á½À¾¿ αm+n

17



D(2, 1; a): α1 α2 α3

»Â¼Á½À¾¿ ×»Â¼Á½À¾¿ a
»Â¼Á½À¾¿

F (4): α1 α2 α3 α4

×»Â¼Á½À¾¿ »Â¼Á½À¾¿ ks »Â¼Á½À¾¿ »Â¼Á½À¾¿

G(3): α1 α2 α3

×»Â¼Á½À¾¿ »Â¼Á½À¾¿ _jt »Â¼Á½À¾¿
We set αl ∈ Π to be the unique simple isotropic root. Define

W̃ to be the following subgroup of the Weyl group W :

W̃ = 〈ri : |αi|2 6= 0〉.
Without loss of generality, we assume that when W̃ 6= W , |θ|2 < 0.

We make the following observations which can be easily
checked:

Lemma 4. If G is a Lie algebra or a Lie superalgebra of type
A(m,n) or C(n), then W̃ = W . Otherwise W = 〈W̃ , rθ〉. When
the Lie superalgebra G has defect 1, the root θ is the unique even
positive root of negative norm. When the Lie superalgebra G is of
type B(m,n) or D(m,n) with m > 0, if α, β ∈ ∆+

0 such that rα ∈ W̃
and rβ 6∈ W̃ , then |α|2 6= |β|2.

We next study the action of the group W̃ on the weights
λ ∈ H∗ such that cλ 6= 0.

Lemma 5. For all weights λ ∈ H∗ such that cλ 6= 0,

w(λ + ρ) ≤ Λ + ρ

for all w ∈ W̃ .

Proof. Since W̃ is the Weyl group of the Lie algebra with simple
root system {αi ∈ Π} ∪ {2αi : αi ∈ Π}, it suffices to prove the
result for w = rαi

, where |αi|2 6= 0 (see [K4], 3.12). Without loss of
generality, we may assume that |αi|2 > 0. Applying the reflection ri

to both sides of equality (1) we get:

− e(ρ)
∏

α∈∆0
+

(1− e(−α))ch V

=
∑

λ≤Λ, |λ+ρ|2=|Λ+ρ|2
cλe(ri(λ + ρ))

∏

α∈∆1
+

(1 + e(−α)) (6)
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If λ ∈ H∗ is such that cλ 6= 0, then

λ + ρ = Λ + ρ−
n∑

i=1

kiαi,

where ki ∈ Z+ for all 1 ≤ i ≤ N . Set

τ = ri(λ + ρ)− ρ.

Then,

τ + ρ = Λ + ρ−
n∑

i=1

aiαi,

where the coefficients ai ∈ Z are integers but are not necessarily
non-negative. For all j 6= i, aj = kj ≥ 0. If ai < 0, applying
Lemma 2 leads to a contradiction since |αi|2 6= 0. Therefore for all
1 ≤ j ≤ n, aj ≥ 0 and so

τ + ρ ≤ Λ + ρ.

Given the definition of the group W̃ , the result now follows.

A consequence of Lemma 5 is the following:

Lemma 6. Let λ ∈ H∗ be a weight such that cλ 6= 0. Then for all
w ∈ W̃ , cw(λ+ρ)−ρ = ε(w)cλ.

Proof. Suppose first that w = ri for some simple root αi ∈ Π such
that |αi|2 6= 0. By Lemma 5, for any λ ∈ H∗ such that cλ 6= 0,
there is a weight µ ∈ H∗ such that λ + ρ = ri(µ + ρ), µ ≤ Λ and∣∣µ + ρ

∣∣ =
∣∣Λ + ρ

∣∣. Hence, we may write
∑

λ≤Λ,

∣∣λ+ρ

∣∣2=

∣∣Λ+ρ

∣∣2
dλe(λ + ρ) =

∑

λ≤Λ,

∣∣λ+ρ

∣∣2=

∣∣Λ+ρ

∣∣2
cλe(ri(λ + ρ)).

On the other hand, applying ri to to equality (1), we can
deduce that

∑

λ≤Λ,

∣∣λ+ρ

∣∣2=

∣∣Λ+ρ

∣∣2
(dλ + cλ)e(λ + ρ)

∏

α∈∆+
1

(1 + e(−α)) = 0. (i)

Suppose there exists a weight λ ∈ T for which dλ + cλ 6= 0. We
may take λ to be such that the height Λ − λ is minimal with this
property. Then, equation (i) gives

dλ + cλ +
∑

µ

dλ+µ + cλ+µ = 0,
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the sum being taken over all distinct sums µ of positive odd roots.
This proves the result for w = ri.

The result for arbitrary w ∈ W̃ follows by induction on the
number of generating reflections of the above type needed in any
given expression for w.

Lemmas 5 and 6 and Corollary 5 immediately imply the next
result.

Corollary 5. Let G be a Lie superalgebra of type A(m,n) or C(n).
Then for all weights λ ∈ H∗ such that cλ 6= 0,

w(λ + ρ) ≤ Λ + ρ

and
cw(λ+ρ)−ρ = ε(w)cλ

for all w ∈ W .

We first concentrate on the Lie superalgebras G for which
W̃ = W . Let us consider the vector space V as a G0-module.
The G0-module is the direct sum of finitely many finite dimensional
irreducible G0-modules V 1, · · · , V m of highest weight Γi.

If λ + ρ0 is a weight such that the term e(λ + ρ0) appears in
the left hand side of

e(ρ0)
∏

α∈∆+
0

(1− e(−α))ch V

=
∑

λ≤Λ, |λ+ρ|2=|Λ+ρ|2
cλe(λ + ρ0)

∏

α∈∆+
1

(1 + e(−α)), (8)

then it appears in the expression

e(ρ0)Πα∈∆+
0
(1− e(−α))

m∑
i=1

ch V i =
m∑

i=1

∑
w∈W

(−1)we(w(Γi + ρ0))

Lemma 7. For all 1 ≤ i ≤ m, if Λ 6= Γi, then Λ− Γi is the sum of
distinct odd positive roots.

Proof. Since
V = U(N−

0 )U(N−
1 )vΛ,

v = v1 + v2,

where

v1 ∈ U(N−
1 )vΛ and v2 ∈ U(N−

0 )N−
0 U(N−

1 )vΛ.

Then v1 6= 0 as v is a highest vector. We can therefore deduce that
Λ−λ is a sum of odd positive roots. Since v1 ∈ U(N−

1 )vΛ, there are
no repeats in this sum.
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Lemma 8. Let µ be a weight satisfying the conditions of Corollary
4. Then, for all w ∈ W̃ , w(µ + ρ) ≤′ Λ + ρ for all bases Π′.

Proof. We first prove the result for w = 1. Suppose first that µ+ρ ≤′
Λ′+ρ′. From Corollary 1 and Lemma 1 it follows that Λ′+ρ′ ≤′ Λ+ρ.
Hence the result follows in this case. Remember from Corollary 1
that the set ∆+

0 remains the set of positive even roots with respect
to the base Π′, and so ρ′0 = ρ0. Otherwise, by definition of µ and
from above discussion, there is an irreducible G0-submodule Ṽ of V
of highest weight Γ (with respect to the base Π′) such that for some
w ∈ W ,

µ + ρ = w(Γ + ρ0)− ρ′1.

Hence
µ + ρ = Γ + ρ0 − β − ρ′1,

where 0 ≤′ β. Equivalently,

µ = Γ− β + ρ′ − ρ.

Now, Γ ≤′ Λ′. Corollary 1 tells us that ρ′ − ρ is a sum of positive
(with respect to the base Π′) isotropic roots and by induction of the
number of odd reflections needed to arrive at the base Π′ from the
base Π, Lemma 1 that this is not only also the case of Λ′ − Λ but
that Λ′ − Λ ≤ ρ′ − ρ. Therefore, µ ≤′ Λ.

We next consider the more general case τ + ρ = w(µ + ρ),
where w ∈ W̃ . For w ∈ W̃ , Lemma 6 tells us that cw(µ+ρ)−ρ 6= 0.
Moreover for any isotropic positive root of the first kind α, w(α) > 0.
Hence it follows from Corollary 2 that the weight τ satisfies the same
conditions (stated in Corollary 4) of the root µ. Hence the above
arguments applied to the weight τ instead of the weight µ imply
that τ ≤′ Λ.

For each base Π′, set

WΠ′

to be the subgroup of the group W generated by reflections rα such
that α ∈ Π′ or its support (with respect to the base Π′) contains
two distinct isotropic roots and set

W̃Π′ := WΠ′ ∩ W̃ .

So W̃ = W̃Π.

Lemma 9. Let µ ∈ H∗ be a weight satisfying the conditions ex-

pressed in Corollary 4 such that (µ+ρ,αi)
(αi,αi)

> 0 for αi ∈ Π such that
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|αi|2 6= 0. Then, for all w ∈ W̃Π′,

w(µ) ≤′ w(Λ)

for all bases Π′. In particular when G is either a Lie algebra or of
type A(m,n) or C(n), for all w ∈ W ,

w(τ) ≤′ w(Λ)

for all bases Π′.

Proof. We first prove the result for simple reflections and start by
considering the base Π. Set r ∈ W̃ .

Case 1: r = rαi
, where |αi|2 6= 0

Case (a): the term e(r(µ + ρ)) appears in the left hand side of
equality (1).

Since the reflection r multiplies equality (1) by −1, and
hence the term e(µ + ρ) appears in the left hand side of equality
(1) Then,

µ + ρ = w(Γ + ρ0)− ρ1

for some w ∈ W and some highest weight Γ of a G0-submodule of
V . Hence,

µ + ρ0 = w(Γ + ρ0).

Since (µ+ρ,αi)
(αi,αi)

≥ 0 for all non-isotropic root αi; this also holds for

µ + ρ0. Therefore, (w(Γ+ρ0),α)
(α,α)

≥ 0 for all positive roots α ∈ 〈αi :

|αi|2 6= 0〉. Note that as α is an even root it is positive with respect
to any base Π′. As a consequence if W̃ = W , then w = 1. Otherwise
by assumption the root θ has negative norm and hence as W =
W− × W+, either w = 1 or w = rθw1, where w1 is a product of
reflections rαi

, where |αi|2 < 0 and of the reflection rθ. Now from
the above, w1 = rαi

w2 for some root αi of negative norm for which
(θ, αi) > 0. There are no such roots and so w = 1 or w = rθ. In all
cases

µ = Γ− tθ,

where t is a non-negative integer. Then

µ = Λ′ − tθ − γ,

where γ is sum of distinct odd positive (with respect to the base Π′)
roots. Now Λ′ = Λ or Λ + ρ− ρ′. Since βi is a sum of positive (with
respect to the base Π) roots all of the same norm, r(ρ) = ρ − sβi,
where s ≥ 1. As βi ∈ Π′, r(ρ′) = ρ′ − βi. As a consequence,

r(µ) ≤′ r(Λ)
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since the root θ being non-isotropic remains positive with respect to
all bases Π′.
Case (b): The term e(r(µ + ρ)) does not appear on the left hand
side of equality (1).

We apply the reflection r to both sides of equality (1). Since
the term e(r(µ+ρ)) does not appear in the left hand side of equality
(1), if

r(µ + ρ) = r(Λ + ρ) + sαi −
∑

j 6=i

kjαj

with s ∈ N and kj ∈ Z+, then the arguments of Lemma 2 imply
that |αi|2 = 0, contradicting assumptions.

This proves the result for simple reflections and the base Π.

Next consider a set Π′ = {β1, · · · , βN}.
Case 2: r = rβi

, where |βi|2 6= 0

rβi
(µ) 6≤′ rβi

(Λ). (i)

Since |βi|2 6= 0, βi ∈ ∆+
0 and in particular is positive with respect

to all bases Π′. Hence βi is a positive sum of the simple roots in Π0,
the base of the positive root system ∆+

0 . Since βi must be even (by
definition of the base Π), this forces βi to be a simple root in the
base Π. Therefore, by Case 1, rβi

(µ) ≤ rβi
(µ). As a consequence,

assumption (i) implies that

r(µ) = r(Λ)−
∑

j 6=i

ajβj + sβi,

where s ∈ N and aj ∈ Z+. However by Lemma 8,

µ = Λ−
n∑

j=1

kjβj,

where kj ∈ Z+. Hence applying the reflection r to both sides of this
equality contradicts the fact that s > 0.

Therefore, the result holds for all reflections r with respect
to any base Π′.

Case 3: Suppose r = rα ∈ W̃ is such that the support of the root α
contains two distinct simple (with respect to the base Π′) isotropic
roots.

Let the root α ∈ ∆+
0 be such that its support with respect

to the base Π′ contains two distinct isotropic roots. Then,

α = βj1 + · · ·+ βjs ,

23



where |βj1|2 = 0 = |βjs|2; for 1 < i, k < s, |βji
|2 = |βjk

|2 6= 0 and
|α|2|βjk

|2 < 0. Since the reflection rα is a product of reflections rαi
,

it follows that the bases Π′
j1

and Π′
js

are obtainable from the base
Π by successive applications of odd reflections in such a way that at
each stage the isotropic simple root chosen is positive with respect
to the base Π. Moreover with respect to these bases, the height of
the root α is strictly smaller to its height with respect to the base
Π′. Therefore by Case 1 and induction,

rα(τ) ≤′,j1 rα(Λ)

and
rα(τ) ≤′,js rα(Λ).

This forces
rα(τ) ≤′ rα(Λ).

Next suppose that the result holds for all element w ∈ W̃
of length less than l (as a product of reflections of the above types)
and consider the element rαw, where α ∈ Π′ or is as in Case 2.

Then (w(µ),α)
(α,α)

< 0 implies that the length of rαw is strictly less than

that of w (see 3.11 in [K4]) and hence the result holds by induction.
Otherwise we can apply the above arguments to the weight w(µ+ρ)
(when this is equal to w′(Γ + ρ0) − ρ1, the element w′ is such that
w′(Γ + ρ0) = Γ + ρ0− γ, where rα(γ) > 0) and the result follows for
rαw. Hence the result holds for all w ∈ W̃ .

We are now ready to prove the main result about weight
µ for the Lie superalgebras G for which W = W̃ . Note that if µ
satisfies the conditions of Corollary 4, then so do w(µ + ρ) − ρ for
all w ∈ W̃ .

Corollary 6. Let G be a Lie superalgebra of type A(m,n) or C(n).
Let µ ∈ H∗ be a weight as described in Corollary 4 such that for all

simple non-isotropic roots αi ∈ Π, (µ+ρ,αi)
(αi,αi)

≥ 0. Then,

µ = Λ.

Proof. Since W = W̃ , by Lemma 9, w(µ) ≤′ w(Λ) for all w ∈ W
and all bases Π′. We show that µ = Λ. To do this we choose a base
Π′ = {β1, · · · , βN} such that for all 1 ≤ i ≤ r, |βi|2 = 0 and for
i > r, |βi|2 > 0.

Case 1. r = 2p + 1.
Set µ = Λ − ∑N

i=1 kiβi. Since µ ≤′,1 Λ, k2 ≥ k1. Then,
consider r = rβ2+···+βN

. Since r(µ) ≤′ Λ, considering the coefficient
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of βN in r(µ − Λ), we get k1 ≥ k2. Therefore, setting γ1 = β1 + β2

and considering the Lie superalgebra with base γ1, β3, · · · , βN , we
get

k1 = k2 = k3.

Therefore by induction,

k1 = · · · = kN .

Therefore
µ = Λ− k1(β1 + · · ·+ βN).

Applying successive odd reflections to the base Π′, we get a base

Π̃ = sβr+···+βN
· · · sβr+βr+1sβr · · · sβ3sβ1Π

′

and
µ = Λ− k1γi

for some γi ∈ Π̃. Then, applying Lemma 8 to the base Π̃ and sγi
(Π̃),

we have µ ≤,̃i Λ. Therefore, k1 = 0 and so

µ = Λ.

Case 2. r = 2p
Consider the reflection r = rβ1+···+βN

. Then,

r(µ− Λ) = k1βN + kNβ1 −
∑

j 6=1,N

ljβj,

where lj ≥ 0 for all 1 < j < N . Therefore,

k1 = 0 = kN .

Hence the support of the weight µ−Λ generates a Lie superalgebra
with base β2, · · · , βN−1 of the type of Π′ but with r − 1 isotropic
roots. Therefore applying Case 1 we once again get

µ = Λ.

We next consider the cases when W 6= W̃ . Note that the
exceptional Lie superalgebras do not have isotropic roots of the sec-
ond kind. Remember that we have assumed |θ|2 < 0. We first show
a technical property which will be useful both now and later on.
For the proof the assumption that the base Π contains a unique odd
root and which moreover is isotropic is needed. Hence our taking Π
to be such a base.
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Lemma 10. Let G be a Lie superalgebra of type B(m,n), m > 0,
D(m,n) or exceptional. If Γi 6= Λ, then |Γi + ρ|2 6= |Λ + ρ|2
Proof. Suppose that for some Γ = Γi 6= Λ,

|Γi + ρ|2 = |Λ + ρ|2 (i).

Let v be a highest weight vector of the G0-submodule of V
of highest weight Γ. Then

eαi
v = 0 ∀1 ≤ i ≤ N such that |αi|2 6= 0. (ii)

Hence, applying the Casimir operator on the vector v we can deduce
that ∑

µ∈∆+
1

fµeµv = 0, (iii)

where (eµ, fµ) = 1. By assumption there is a unique simple isotropic
root in Π′, say βj. Therefore µ ∈ ∆1 implies that

µ = αj + µ+ + µ−, (iv)

where µ± ∈ ∆+
0 or µ± = 0, |µ+|2 > 0 and |µ−|2 < 0; or

µ + αj ∈ ∆+
0 . (v)

Note that if the odd root µ is of type (iv) then it is not of type (v)
and conversely. When µ± 6= 0, let eµ± ∈ Gµ± be such that

eαj+µ± = [eαj
, eµ± ].

When µ + αj ∈ ∆+
0 , set fµ+αj

∈ Gµ+αj
to be such that

fµ = [fµ+αj
, eαj

].

Next, apply the operator eαj
to both sides of equality (iii). If µ +

αj ∈ ∆, then
[eαj

, fµ] = 0,

[eαj
, eµ] 6= 0,

and
([eαj

, eµ], fµ+αj
) = (eµ, fµ) = 1

If µ + αj 6∈ ∆, then
[eαj

, eµ] = 0,

[eαj
, fµ] = 0,

unless µ− = 0 or µ+ = 0, and

(eµ± , [eαj
, fαj+µ± ]) = ([eαj

, eµ± ], fαj+µ±) = 1.
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Therefore, using condition (ii), we get

(Γ, αj)ejv +
∑

γ∈∆+

fγeγejv = 0.

Writing Ω for the Casimir operator, this is equivalent to

(Γ, αj)ejv + Ω(ejv)− |Γ + αj + ρ|2ejv = 0.

Since the G-module V is highest weight of highest weight Λ,

Ω(ejv) = |Λ + ρ|2ejv

(see [K2], [K4] or [Ray]). If ejv = 0 then v is a highest weight vector
of the G-module V and so Γ = Λ. Hence as Γ 6= Λ,

(Γ, αj)− |Γ + αj + ρ|2 = −|Λ + ρ|2.
This together with assumption (i) forces

(Γ, αj) = 0

since |αj|2 = 0.
Since (Γ, γ)(γ, γ) ≥ 0 for all non-isotropic positive roots

γ, this implies that (Γ, αi) = 0 for all αi ∈ Π of positive norm.
Therefore by Lemma 7 and considering the action of G on the vector
v, it follows that

Λ = γ + Γ,

where γ is an isotropic positive root such that

S(γ) = {αj, αi : αi ∈ Π, |αi|2 < 0}.
Hence

(Λ, θ) = 0

and
(Λ, αj) > 0.

Considering the support of the root θ, it follows that there is a
simple root αi such that |αi|2 > 0 but (Λ, αi) < 0, contradicting the
integrability of the module V . This proves that Γ = Λ.

We are now ready to prove our main result about weights µ
satisfying Corollary 4 in the case when W 6= W̃ . We do this in two
parts.

Lemma 11. Let G be a Lie superalgebra of type B(m,n), m >
0, D(m,n), or exceptional and µ ∈ H∗ a weight as described in
Corollary 4 such that for all simple non-isotropic roots αi ∈ Π,
(µ+ρ,αi)
(αi,αi)

≥ 0. Then, either
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1. (Λ + ρ, α) = 0 for some isotropic root α of the first kind; in
which case µ = Λ and rθ(Λ + ρ) 6≤ Λ + ρ; or

2. (Λ + ρ, α) 6= 0 for all isotropic root α of the first kind; in this
case w(µ + ρ) ≤ Λ + ρ and w(Λ + ρ) ≤ Λ + ρ for all w ∈ W .

Proof. Let αl ∈ Π be the unique isotropic simple root in the base
Π and Π0 be the base of the positive even root system ∆+

0 . Then,
Π0 = {αi : i 6= l} ∪ {θ}. We deal with two cases.

Case 1: (Λ + ρ, α) 6= 0 for all isotropic root α of the first kind

By 3.12 in [K4] and Lemma 5, it suffices to prove properties
(2) for w = rθ. Let µ ∈ H∗ be a weight as described above.

There is a base Π′ with respect to which the root θ is simple.
We choose Π′ so that the number p of odd reflections s1,..., sp such

that Π′ = s1 · · · sp(Π) is minimal. Consider first the base Π̃ = s1(Π
′).

We write Π′ = {γ1, · · · , γn} and Π̃ = {β1, · · · , βN}. We use the
notation ≤̃ for the order relation, Λ̃ and ρ̃ for the highest weight of
V and the Weyl vector with respect to the base Π̃.

w′(µ + ρ)≤̃µ + ρ

for all w′ ∈ W̃ since (µ+ρ,α)
(α,α)

≥ 0 for all α ∈ 〈αi : i 6= l〉 and the

set of positive even roots with respect to any base obtainable from
the base Π by applications of odd reflections remains invariant. We
show that

rθ(µ + ρ)≤̃Λ + ρ. (i)

Hence suppose that this inequality does not hold. Let βl ∈ Π̃ be the
isotropic simple root such that the odd reflection s1 = sβl

. Set

µ + ρ = Λ̃ + ρ̃−
∑

i

kiβi

and
rθ(µ + ρ) = Λ + ρ−

∑
i

aiβi. (ii)

If i 6= l then (θ, βi) ≥ 0.

Claim: (Λ̃ + ρ̃, θ) ≤ 0.

(Λ′ + ρ′, θ) ≤ 0 since the module V is integrable and by
definition of the Weyl vector (ρ′, θ) = 1

2
(θ, θ). The assumption of

Case 1 and Lemma 1 imply that

Λ′ + ρ′ = Λ̃ + ρ̃, (iii)

and hence our claim follows.
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Let Πj = sj · · · sp(Π) and Λj, ρj the highest weight of the
module V and the Weyl vector with respect to this base and ≤j is
the associated order relation.

Our assumption implies that Λ + ρ = Λj + ρj for all j and hence by
Lemma 8,

µ + ρ ≤j Λj + ρj

for all j = 1, · · · , p.
Let γq be the isotropic root in the base Π′ which belongs to

the support of the root θ. Moreover, if µ + ρ + βl 6≤ Λ′ + ρ′, then
clearly rθ(µ + ρ)≤̃L̃ + ρ̃ and hence rθ(µ + ρ) ≤′ Λ′ + ρ′.

Applying the reflection rθ to equality (1) with respect to the
base Π′, since θ ∈ Π′, as in Lemmas 5 and 10, rθ(µ + ρ) ≤′ Λ′ + ρ′.
Therefore equality (iii) and above claim imply that in expression
(ii), for all i 6= l, bi ∈ Z+ and bq ∈ Z−. Applying rθ to equality (1)

with respect to the base Π̃ we get

−e(ρ̃)
∏

α∈∆+
0

(1− e(−α))ch V =
∑

λ

cλe(rθ(λ + ρ))
∏

α∈∆̃+
1

(1 + e(−α)).

Indeed, as θ ∈ Π0, the only positive root α ∈ ∆+
0 such that rθ(α) < 0

is β, whereas α ∈ ∆+
1 and rθ(α) < 0 if and only if α = βi + γ for a

root of positive norm γ such that γ ≤ θ.
In consequence, by Lemma 2,

rθ(µ + ρ) = Λ + ρ−
∑

i 6=l

aiβi + βq

and
(rθ(µ + ρ), βq) = 0.

Equivalently,
(µ + ρ, α) = 0, (iv)

where α = −rθ(βl) is the highest isotropic root whose support does
not contain negative norm simple roots. However α = 1

2
θ+γ, where

γ ∈ ∆+
0 is a root of positive norm. By assumption (µ + ρ, θ) > 0.

Therefore, property (iv) cannot hold. This proves the result in this
case for the base Π̃.

We next consider the base s2(Π̃). The above argument now
applies to this base and thus tells us that µ + ρ− rβ(µ+ ρ) is a sum
of positive roots with respect to this base. Hence by induction on
the number of reflections p, the result follows for the weight µ.

Case 2: (Λ + ρ, α) = 0 for some isotropic root α of the first kind.
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We keep the notation of Case 1.

Case (a): there is a maximal index j such that µ + ρ ≤j Λj + ρj.

By abuse of notation, for simplicity’s sake, write

Πj = {α1, · · · , αN}.
Let αp be the isotropic simple root such that αp ∈ supp(θ) (with
respect to this base). This means the odd reflection sj−1 = sαp .
Therefore from Lemma 2 we know that (µ + ρ, αp) = 0. The defini-
tion of the index j forces

(Λj + ρj, αp) = 0.

Set µ + ρ = Λ + ρ−∑N
i=1 kiαi. By definition of the weight

τ and by Lemmas 8 and 9, whether the simple root α1 is isotropic
or not, k1 ≤ k2. Next consider the simple root α2, we get k2 ≤ k3.
Continuing in this manner, we get k1 ≤ k2 ≤ · · · ≤ kN in the
B(m,n) and exceptional cases. Therefore,

µ+ρ = Λ+ρ−l1(α1+· · ·+αN)−l2(α2+· · ·+αN)−· · ·−lNαN , (v)

However, this contradicts the fact that µ + ρ 6≤ Λj+1 + ρj+1. In the
D(m,n) case, k1 ≤ k2 ≤ · · · ≤ kN−2 ≤ kN−1 + kN . Hence in this
case,

µ+ρ = l1(α1+· · ·+αN−1)−· · ·−lN−1αN−1−lN(α1+· · ·+αN−2+αN)
(vi)

So the previous arguments once again imply a contradiction. Hence
in all cases, ki = 0 for all i and

µ = Λ.

Case (b): µ + ρ ≤j Λj + ρj for all j
The assumption of Case 2 implies that (Λ + ρ, θ) > 0.

Considering equalities (v) and (vi) with respect to the base Π, let
θ′ = 2(αi + · · · + αl−1) + θ, where i is minimal such that ki 6= 0. It
follows that

rθ′(µ + ρ) 6≤ Λ + ρ.

As the set Π0 = {αi, θ : i 6= l}, this forces

rθ(µ + ρ) 6≤ Λ + ρ.

Hence
rθ(µ + ρ) 6 ≤̃Λ̃ + ρ̃.
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As θ is a simple root in the base Π1 and the reflections rαi

for i ≤ l − 1 belong to WΠ′ , the arguments of Case 1

rθ(µ + ρ) = Λ̃ + ρ̃−
∑

i6=q

biβi + βq

with respect to the base Π̃. If the term e(rθ(µ + ρ)− βq) appears in
the left hand side of equality (iv) then by the discussion preceding
Lemma 7,

rθ(µ + ρ)− βq = w(Γ + ρ̃0)− ρ̃1

for some highest weight Γ of a G0-submodule of the module V and
some element w ∈ W . As the expression Λ̃+ ρ̃− rθ(µ+ ρ)−βq does
not contain the simple isotropic root in the support of the root θ,
w ∈ W̃ and so Lemma 10 tells us that

rθ(µ + ρ)− βq = w(Λ + ρ).

Equivalently,
µ + ρ = rθw(Λ + ρ)− β,

where β = −rθ(βq) is the highest isotropic roots whose support does
not contain any simple roots of negative norm. However, consider-
ing the coefficient of βq in the expression Λ + ρ − rθw(Λ + ρ), the
assumption of Case 2 and the fact that µ ≤ Λ, forces

rθw(Λ + ρ) ≤ w(Λ + ρ) +
1

2
θ.

Since (µ+ρ, γ) > 0 and (−β, γ) ≤ 0 for all positive roots of positive
norm, it follows that

w ∈ W− ∩ W̃ .

As a result, since µ + ρ≤̃Λ̃ + ρ̃,

µ + ρ = w(Λ̃ + ρ̃).

Hence by assumption on µ, w = 1. So,

µ = Λ̃ + ρ̃− ρ.

Let j be the maximal index satisfying Λ̃ + ρ̃ = Λj + ρj. If j 6= p,
then Λj = Λj−1. Therefore,

µ = Λj−1 + ρj−1 − γ − ρ,

where γ ∈ Πj−1 is the simple root in the support of the root θ.
As there is a unique isotropic root γ of the first kind such that
(Λ + ρ, γ) = 0, it follows that Λj−1 + ρj−1 = Λ + ρ. As a result,
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µ = Λ − γ. However since γ = αl + · · · + αk, where k < n, this
contradicts (v) or (vi). Therefore j = 1 and so

µ = Λ.

The arguments of Lemma 2 applied to equality (iv) tell us that

cµ+ρ+β 6= 0.

If
µ + ρ + β 6≤ Λj + ρj (vii)

for some index 1 ≤ j ≤ p, then Case (a) tells us that

µ + ρ + β = w(Λ + ρ)

for some w ∈ W̃ . Equivalently,

µ + ρ = w(Λ + ρ− w−1(β)),

where w−1(β) > 0 since wW̃ and w−1(β) is an isotropic root of the
first kind as the weight Λ+ρ cannot be orthogonal to isotropic roots
of the first and of the second kind. Moreover, considering equality
(iv) and (v), calculations contradict condition (vii). Therefore,

µ + ρ + β ≤ Λj + ρj

for all indices 1 ≤ j ≤ p. So the weight µ+β satisfies the conditions
of Corollary 4. Hence from what precedes, we can deduce that there
is an element w ∈ W̃ such that

w(µ + ρ) + β ≤ Λj + ρj

for all indices 1 ≤ j ≤ p. Since w(β) > 0, this forces

µ + ρ +
∑

α ≤ Λ + ρ,

where α is as a big a sum as we wish of positive roots. This is clearly
false. Hence Case (b) does not occur and this proves the result.

Remark It is important to note that for any arbitrary element
r ∈ W − W̃ , it is not always necessarily true that cr(λ+ρ)−ρ 6= 0
for a weight λ ∈ H∗ such that cλ 6= 0 and w(λ + ρ) ≤ Λ + ρ for all
w ∈ W . This is why not all finite dimensional irreducible G-modules
are tame when the Lie superalgebra G is of type B(m,n), m > 0,
D(m,n), or exceptional. We will prove this later.

Let µ be a weight satisfying the conditions of Corollary 4
and set

τ1 + ρ = w(µ + ρ)
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be such that the height Λ + ρ− w(µ + ρ) is minimal. Set

τ =

{
τ1 if W = W̃ or (τ1 + ρ, θ) ≤ 0 when |θ|2 < 0

rθ(τ + ρ)− ρ otherwise

In the first case, the height of Λ + ρ − (τ + ρ) is clearly minimal
among the elements of the set {Λ + ρ− w(τ + ρ) : w ∈ W}. In the
latter case, this remains true because rαi

rθ(τ1 + ρ) ≤ rθ(τ1 + ρ) for
all |αi|2 6= 0. Moreover, applying the reflection rθ to both sides of
equality (1), we get

e(ρ)
∏

α∈∆+
0

(1− e(−α))ch V =
∑

λ

cλe(rθ(λ + ρ)
∏

α∈∆+
1

(1 + e(−α)).

Since cλ+ρ+krθ(α) = 0 for k >> 0 (otherwise, λ+ρ+krθ(α) ≤ Λ+ρ), it
follows that the weight rθ(τ1+ρ) satisfies the conditions of Corollary
4. In summary,

1. cτ1 6= 0 (note that we do not know cτ 6= 0 in the second case);
and

2. (τ,α)
(α,α)

≥ 0 for all non-isotropic roots α ∈ ∆+
0 conjugate under

the action of the group W̃ to a simple root in Π; and

3. τ ≤′ Λ′ for all bases Π′ obtainable from the base Π by successive
applications of odd reflections; and

4. τ + ρ ≤′ Λ′ + ρ′ for all bases Π′, or the term τ + ρ appears in
the left hand side of equality (1) with respect to the base Π′.

5. for all w ∈ W , w(τ +ρ) ≤ Λ+ρ and for all w ∈ W̃ , cw(τ+ρ)−ρ =
ε(w)c(τ); and

6. w(τ) ≤′ w(Λ) for all w ∈ WΠ′ .

When the base Π′ is such that its maximal root has negative
norm, WΠ′ = W̃ and the last property is simply Lemma 11. Oth-
erwise there is a base Π̃ obtainable from the base by applications
of odd reflections with respect to which W− ≤ WΠ̃ and the sub-
group WΠ′ is generated by simple root reflections. Therefore when
the maximal root of a base Π′ has negative norm the arguments of
Lemma 11 apply.

Corollary 7. Suppose that (Λ + ρ, α) 6= 0 for all isotropic roots of
the first kind.
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1. When G is a Lie superalgebra of type B(m,n), m > 0 or
D(m,n), let α be the isotropic positive root of the second kind
of maximal height whose support only contains roots of non-
negative norm. Then,

τ = Λ− kα,

for some integer k ≥ 0;

2. When the Lie superalgebra G is exceptional, τ = Λ.

Proof. In each case there is a non-isotropic root containing one dis-
tinct isotropic simple root in its support. If Π′ is a base with respect
to which the root θ still contains only one distinct simple root in
its support, then W̃Π′ = W̃ . Let Π̃ be a base with this property for
which there exists some odd reflection s such that with respect to the
base s(Π̃), the root θ is either simple or only contains non-isotropic
simple roots in its support. Set Π′ = s(Π̃).

Case 1: the Lie superalgebra G is exceptional or of type B(m, n).

Part of the Dynkin diagram corresponding to the base Π̃ in
the B(m,n) case is as follows:

· · · ⊗
=⇒ h

For simplicity of notation, we keep the notation α1, · · · , αN

for the simple roots in Π̃ and the the notation Λ, ρ for the highest
weight of the module V and the Weyl vector with respect to the
base Π̃. So the odd reflection is: s = sN−1, where αN−1 ∈ supp(θ)
(with respect to the base Π̃) and |αN−1|2 = 0.

From the proof of Lemma 11 we know that

τ = Λ−
N∑

i=1

n∑
i=1

li(αi + · · ·+ αN), (i)

where for each i, li ∈ Z+. Hence with respect to the base Π′,

τ = Λ−
N∑

i=1

n−2∑
i=1

li(β1 + · · ·+ βN)− l2βN − l1(βN−1 + βN). (ii)

We consider in turn the roots βi + · · ·+ βN . Depending on whether
they have positive or negative norm we use equality 1 or 2 and apply
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property 6 (stated before the Lemma) satisfied by the weight τ and
the reflection rβi+···+βN

. This gives

l1 = · · · = lN−2 = 0.

Next considering the reflections rβN
and rαN

we get lN = lN−1 and
so

τ = Λ− lNα, (ii)

where the isotropic root α is as described in the Lemma in the
B(m,n) and D(m,n) cases. In the exceptional cases, lN = 0 = lN−1

by definition of the weight τ as all isotropic roots are of the first
kind.

Case 2: the Lie superalgebra G is of type D(m,n).
In this case, the root θ is the sum of two distinct simple

isotropic roots (with respect to the base s(Π̃). There are two odd
reflection sj1 6= sj2 such that β ∈ sji

s(Π̃) for i = 1, 2 and we set

Π′i = sji
s(Π̃). Set

Π′ = s(Π̃) = {β1, · · · , βN}.
Part of the Dynkin diagram corresponding to the base Π̃ is as follows:

· · · ⊗
h

h

Therefore once again, using equality (vi) from the proof of
Lemma 11 and similar arguments to the previous case, we get

τ = Λ− lα, (ii)

for some integer l ≥ 0, where the isotropic root α is as described in
the Lemma.

For any weight λ ∈ H∗, fix a maximal isotropic set Sλ ≤ Π
of roots orthogonal to λ, i.e.

Sλ = {α ∈ Π : (λ, α) = 0 = (α, β)∀β ∈ Sλ}
and Sλ is maximal with this property. Proposition 2 is now an
immediate consequence of the definition of the weight τ , Corollary
4 and Lemmas 9 and 11.
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1.3.3 Proof: part II

Now that we know what conditions the weight λ ∈ H∗ must satisfy
if cλ 6= 0 in equality (1), we need to prove the converse or more
precisely compute the coefficients cλ. We first need to observe the
following:

Lemma 12. Suppose that |SΛ+ρ| > 1. Then the set SΛ+ρ contains
only isotropic roots of the first kind and the Lie superalgebra G has
defect at least 2. Moreover, for any subset S ≤ SΛ+ρ of cardinality
at least 2, there is a unique set S ′ of positive odd roots satisfying the
following:

1. S ′ ∩ SΛ+ρ = ∅; and

2.
∑

γ∈S γ =
∑

β∈S′ β; and

3. for any proper subsets T < S, T ′ < S ′,
∑

γ∈T γ 6= ∑
β∈T ′ β.

Proof. As shown in [K1] the atypicality of the module is equal at
most to the defect of the Lie superalgebra. Hence the first part fol-
lows. If there is a root of the second kind in SΛ+ρ then by Lemma
11, |SΛ+ρ| = 1. Hence for the second part, without loss of generality,
we may assume that G = A(m,n). Note that there are two possi-
bilities: either there is a root α ∈ SΛ+ρ such that all simple roots in
supp(α) apart from that of norm 0 have norms of the same sign and
there is a simple root of non-zero norm; or there is no such root in
the set SΛ+ρ. We first assume that the latter holds. Then, keeping
the notation used in the statement of the Lemma, for S ≤ SΛ+ρ, if
j is maximal such that j ∈ supp(α), α ∈ S, then αl + · · ·+ αj ∈ S ′

(where αl is the unique isotropic simple root in Π). S ′ ∩ SΛ+ρ = ∅
for otherwise (Λ + ρ, αi) = 0 for some i 6= l, which cannot happen

since the module V being integrable, (Λ,αi)
(αi,αi)

≥ 0 and (ρ,αi)
(αi,αi)

> 0. The

other case follows by symmetry.

Lemma 12 proves statement 2 of Proposition 1. We set

TΛ+ρ = SΛ+ρ

if the atypicality of the module V is 1 and

TΛ+ρ = SΛ+ρ ∪ (∪S≤SΛ+ρ;|S|>1{
∑
γ∈S

γ}).
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Lemma 13.
∑

kα,α∈SΛ+ρ

(cΛ+ρ−∑
α∈SΛ+ρ

kαα)e(Λ + ρ−
∑

α∈SΛ+ρ

kαα) =

e(Λ + ρ)∏
α∈TΛ+ρ

(1 + e(−α))

unless the Lie superalgebra G is exceptional or of type B(m,n), or
D(m,n), SΛ+ρ = {α}, where α is a root of the second kind, and
2(rθ(Λ+ρ)−ρ,θ)

(θ,θ)
≥ 0. In this case

cΛ = 1 and cΛ−kα = 0 ∀k ≥ 1.

Proof. Let

λ + ρ = Λ + ρ−
∑

α∈SΛ+ρ

kαα,

where kα ∈ Z+. Considering equality (1) and since cλ 6= 0 implies
that λ ≤ Λ,

cΛ+ρ = 1.

From Corollary 8 there are two cases to consider.

Case 1: All roots in the set SΛ+ρ are of the first kind

Let α ∈ SΛ+ρ and Π′ be a base for which α ∈ Π′ such that
the number of odd reflections needed to arrive at the base Π′ from
the base Π is minimal. Then, Λ + ρ = Λ′ + ρ′. Consider equality
(1) with respect to the base Πp (namely equality (4)). The terms
e(Λ + ρ − kα) for k > 0 do not appear on the left hand side of
equality (4). Also, w(Λ + ρ) − γ 6= Λ + ρ − kα, where 1 6= w ∈ W̃
such that w(Λ + ρ) ≤ Λ + ρ and γ is a sum of distinct positive odd
roots. Therefore, as the root α is simple with respect to the base
Π′, we must have cΛ+ρ−kα 6= 0. Hence from Lemma 2 it follows that

cΛ+ρ−kα = (−1)k.

Now,
∑

k≥0

(−1)ke(Λ+ρ−kα)
∏

β∈∆+
1

(1+e(−β)) = e(Λ+ρ)
∏

β∈∆+
1 {α}

(1+e(−β)).

(i)
Let α′ ∈ SΛ+ρ − {α} be the of minimal height. So choosing α to
be of minimal height in SΛ+ρ we set Π1 = Π′. Replace the base Π
by the base Π1. Consider the base Π2 for which α′ ∈ Π2 such that
the number of odd reflections needed to arrive at the base Π2 from
the base Π1 is minimal. Considering equality (1) with respect to
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the base Π2 and taking account of equality (i), it follows that the
terms e(Λ + ρ − kα − k′α) do not appear on the left hand side of
this equality for k + k′ > 0. Note that

Λ + ρ− kα− k′α′ = Λ + ρ− (k − l)α− (k′ − l)α′ − l(α + α′).

Considering Lemma 12, we get by induction on k + k′ that

cΛ+ρ−kα−k′α′

= −cΛ+ρ−(k−1)α−k′α′ − cΛ+ρ−kα−(k′−1)α′ − cΛ+ρ−(k−1)α−(k′−1)α′

=

min(k,k′)∑

l=0

(−1)k+k′+l.

Therefore in this case the result follows by induction on the number
of roots in SΛ+ρ or equivalently the degree of atypicality .

Case 2: α ∈ SΛ+ρ is of the second kind

Claim: for all k ≥ 1, the terms e(Λ + ρ− kα) do not appear on the
left hand side of equality (1)

Suppose that the term e(Λ+ρ−kα) appears in the left hand
side of equality (1). Then, from the discussion preceding Lemma 7,

Λ + ρ0 − kα = w(Γ + ρ0)

for some w ∈ W and some highest weight Γ of an irreducible com-
ponent of the G0-module V . Suppose that k >> 0 so that

(Λ + ρ0 − kα, θ) > 0. (ii)

Therefore, by 3.11 in [K4], w = rθw1 for some w1 ∈ W such that
l(w1) < l(w). This in turn gives rθ(Λ + ρ0) + kαl, where αl is the
unique isotropic root in the base Π. Since (Λ + ρ0, θ) > 0, the
same type of arguments imply that w1 = rγ, where rγ ∈ W+ and
rγ(αl) = α. As a consequence

rγrθ(Λ + ρ0) + kα = Γ + ρ0.

Since Γ ≤ Λ, 2(Λ+ρ0)
(θ,θ)

≥ k. However this contradicts assumption (ii).

Therefore, if (ii) holds then the term e(Λ+ ρ−kα) does not appear
on the left hand side of equality (1). Next suppose that

(Λ + ρ0 − kα, θ) ≤ 0.

Similar arguments as before lead to

Λ + ρ0 − kα = w(Γ + ρ0),
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for some w ∈ W+ ≤ W̃ . This gives

Λ + ρ− kα = w(Γ + ρ),

and so by Lemma 10, Γ = Λ. Considering the coefficient of αl in
the expression w(Λ + ρ) + kα, we get a contradiction. This proves
our Claim.

As a consequence for all k ≥ 1, since kα is not the sum of
odd roots distinct from the root α,

cΛ+ρ−kα = (−1)k

unless there is some 1 6= w ∈ W̃ and a positive sum of distinct odd
roots γ such that w(Λ+ρ)−γ = Λ+ρ−α. This happens if and only
if (rθ(Λ+ρ)−ρ, θ) ≤ 0. In this case, cΛ+ρ−α = 0 and so cΛ+ρ−kα = 0
for all k ≥ 1. This proves the result in Case 2.

By assumption on the base Π, W̃ is generated by simple
roots. Hence for any isotropic root α ∈ ∆+, w(α) > 0 for all
w ∈ W̃ . Therefore

w(Λ + ρ)−
∑

α∈Sw(Λ+ρ)

kαα = w(Λ + ρ−
∑

w−1(α)∈SΛ+ρ

kαw−1(α)).

In particular, setting λ+ρ = Λ+ρ−∑
α∈SΛ+ρ

kαα, since λ+ρ ≤ Λ+ρ,

by Corollary 4 and Lemmas 6 and 13, for all w ∈ W̃ ,

cw(λ+ρ)−ρ = ε(w)cλ.

Note that in the case of the base Π,

jΛ,Π = 1

since the Weyl W is generated by reflections corresponding to roots
containing at most one isotropic simple root in their support.

Case I: The Lie superalgebra G is of type A(m,n) or C(n)

Since W̃ = W , Theorem 1 follows with respect to the base
Π in these cases, namely all the modules V are generalized tame.

Case II: The Lie superalgebra G is of type B(m,n) or D(m,n)

Case 1: all the roots in the set SΛ+ρ are of the first kind

Then Corollary 8 and Lemma 13 tell us that the module is
not generalized tame. More precisely, the character is as stated in
Theorem 2.

Case 2: SΛ+ρ = {α}, where α is a root of the second kind.
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We know from Corollary 8 that it is the highest isotropic root
all of whose support consists of non-negative norm simple roots and
that (Λ + ρ, θ) ≤ 0.

Case (a): (rθ(Λ + ρ)− ρ, θ) > 0
As a consequence, from Corollary 5, letting w1, · · · , ws be a

set of representatives of right cosets of the subgroup W̃ in the Weyl
group W , equality (1) becomes

e(ρ)
∏

α∈∆+
0

(1− e(−α))ch V

=
∑

w∈W̃

(
∑

wi:wi(α)>0

ε(w)cwi(Λ+ρ)e(wwi(Λ + ρ))
∏

α∈Π−{wwi(α)}
(1− e(−α))

+
∑

wi:wi(α)<0

ε(w)cwi(Λ+ρ)e(wwi(Λ + ρ− α))
∏

α∈Π−{wwi(α)}
(1− e(−α))

(i)

We know that Π0 = {αi, θ : i 6= l} and that for w = rβ, β ∈ Π,

ε(w)e(ρ)
∏

α∈∆+
0

(1− e(−α))ch V =
∑

λ

cλe(w(Λ + ρ))
∏

α∈∆+
1

(1 + e(−α))

(for β = θ, see proof of Lemma 11). Therefore for all w ∈ W ,

ε(w)e(w(ρ))
∏

α∈∆+
0

(1−e(−w(α)))ch V =
∑

λ

cλe(Λ+ρ)
∏

α∈∆+
1

(1+e(−w(α)))

(ii)
We set w1 = 1, w2 = rθ and without loss of generality, we may
assume that for all i, wi ∈ {rj, rθ : |αj| < 0}. Moreover, by 3.12 in

[K4], for each i, there is an element ui ∈ W̃ such that

(uiwi(Λ + ρ), αj)

(αj, αj)
> 0

for all j 6= l. Without loss of generality, we consider wi to the
coset representative for which these inequalities hold. Note that the
elements rγi,j

, where

γi,j = αi + · · ·+ αj−1 + 2(αj + · · ·+ αm) + θ, i > 0

γ0,0 = θ, γ0,j = 2(αj + · · ·+ αm) + θ,

together with the identity element are a set of right coset repre-
sentatives. We order the elements wi so that if wirγi1,j1

∈ W̃ , and
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wkrγi2,j2
∈ W̃ , then i > k if the ht(γi1,j1) > ht(γi1,j1). From equal-

ities (i) and (ii), it follows that for wi cwi(Λ+ρ) = ε(wi) if for all wj

such that j < i,

rwj(Λ + ρ)− γ 6= w(Λ + ρ)

for all r ∈ W̃ and all sums γ of positive distinct odd roots.
So we start with r = rθ. Suppose that

rθ(Λ + ρ) = w(Λ + ρ)− γ, (iii)

where w ∈ W̃ and γ is a sum of distinct positive odd roots. From
(i) it follows that none of the odd roots appearing in the sum are

equal to w(α). Let t = 2(Λ+ρ,θ)
(θ,θ)

. Then,

Λ + ρ− tθ = w(Λ + ρ)− γ.

Hence, considering the support of θ, w ∈ W+ and all simple roots
in the support of γ have non-negative norm.

Suppose that w(Λ + ρ, αi) < 0 for some |αi|2 > 0. Then
(γ, αi) < 0. However there is a unique odd root µ with only non-
negative norm simple roots in its support such that (µ, αi) < 0
(namely αl + · · · + αi). Considering the left hand side of equality
(iii), we get (Λ + ρ, αi) = 0 which cannot hold. So w = 1. In other
words,

rθ(Λ + ρ) = Λ + ρ− γ. (iv)

Now the sum of all positive odd roots is 2ρ1 = pθ+µ, where (µ, θ) =
0. Since (w(α), θ) = (α, w−1(θ)) = (α, θ) > 0, it follows that

t ≤ p− 1

Moreover, 2(ρ1,θ)
(θ,θ)

= p, ρ1 = ρ0 − ρ and (ρ0, θ) = 1
2
(θ, θ) since θ ∈ Π0.

Therefore our assumption implies that

crθ(Λ+ρ) = −1.

As a consequence in equality (i),

∑

w∈W̃

∑

k≥0

ε(w)cwrθ(Λ+ρ−α)e(wrθ(Λ + ρ− kα))
∏

α∈∆+
1

(1 + e(−α))

=
∑

w∈W̃

ε(w)e(wrθ(Λ + ρ− α))
∏

α∈∆+
1 −{w(αl)}

(1 + e(−α))

More generally we next consider wi. Suppose that

wi(Λ + ρ) = w(Λ + ρ)− γ, (v)
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where w ∈ W and w is not in the same coset as wi. Therefore,

w−1wi(Λ + ρ) = Λ + ρ− w−1(γ).

So w−1wi = rwj for some r ∈ W̃ . Since (θ, αj) ≥ 0 and (Λ+ρ, αj) ≤
0 for all j ≤ m, it follows from the conditions satisfied by the element
wj that if k is the minimal index in the support of a reflection
appearing in a minimal product for wj then

w−1
j (θ) = r2(αk+···+αm)+θ(θ).

As a consequence, from our assumption

2(wj(Λ + ρ)− ρ, θ)

(θ, θ)
< 0.

Therefore equality (v) cannot hold. In conclusion in Case (a), the
module V is tame and part of Theorem 2 with respect to the base
Π follows.

Case (b): 2(rθ(Λ+ρ)−ρ,θ)
(θ,θ)

≥ 0

Then, Lemma 13 implies that

e(ρ)
∏

α∈∆+
0

(1− e(−α))ch V =

∑

w∈W̃

e(w(Λ + ρ))
∏

α∈∆+
1

(1 + e(−α))

+
∑

w 6∈W̃

cw(Λ+ρ−kα)e(w(Λ + ρ− kα))
∏

α∈∆+
1

(1 + e(−α))

The assumption of case (b) implies that the term e(rθ(Λ + ρ)) does
not appear on the left hand side of this equality for otherwise, rθ(Λ+
ρ) = Γ + ρ for some highest weight Γ of a G0-component of the
module V , contradicting Lemma 10. However the above shows that
there is a sum γ of positive distinct odd roots such that rθ(Λ+ ρ) =
Λ + ρ− γ. Hence as c(Λ) = 1, we must have

crθ(Λ+ρ) = −1.

Similarly the terms e(rθ(Λ+ ρ− kα) for k ≥ 1 do not appear on the
left hand side of equality (1), but neither do they cancel out on the
right hand side and so

crθ(Λ+ρ−kα) = 0 ∀ k ≥ 1.
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In this case, calculations show that we always have

(r2αj+···+θ(Λ + ρ)− ρ, θ)

(θ, θ)
< 0.

As a result, with similar arguments as above for all

w ∈ W = 〈rθ, ri : |αi|2 > 0〉,
cw(Λ+ρ−kα) = (−1)kε(w).

This proves Theorem 2 with respect to the base Π.

Case III: The Lie superalgebra G is exceptional

There is a unique positive root of negative norm θ and W̃ =
W+. Hence the previous case simplifies and we get: (Λ + ρ, θ) > 0,
then

ch V = R−1ch Λ,SΛ+ρ,Π,W+ .

If (Λ + ρ, θ) ≤ 0 and the assumption of Case II.2.(a) holds then the
module V is tame. If (Λ+ ρ, θ) ≤ 0 and assumption of Case II.2.(b)
holds then the character is as given in Theorem 3.

1.3.4 Proof: Part III

We now consider an arbitrary base.

Case 1: (Λ, αl) 6= 0

As Λ + ρ = Λl + ρl, from equalities (1) and (4), the results
follow with respect to the base Πm when SΛ+ρ only consists of roots
of the first kind. Otherwise, this is clearly true for tame modules.
So suppose that (Λ + ρ, α) = 0 where α is an isotropic root of
the second kind and that the module V is not tame. If Π′ is the
base obtainable from the base Π by applications of odd reflections
containing a unique isotropic root and such that W− is generated
by simple root reflections, then calculations show that

(ch Λ,Π,W − ch Λ,Π,〈W+,rθ〉)
∏

α∈∆+
1

(1− e(−α)) =

(ch Λ′,Π′,W − (ch Λ,Π′,〈W−,rθ′ 〉)
∏

α∈(∆′1)+

(1− e(−α))

Therefore the result follows for all bases obtainable from the base Π
by applications of odd reflections in this case.

Case 2: (Λ, αl) = 0.
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Corollary 8 tells us that in this case all the roots in the set
SΛ+ρ are of the first type. Then,

e(−αl)

(1 + e(−αl))
=

1

(1 + e(αl))

and −αl ∈ Πl. All other isotropic roots in the set SΛ+ρ positive with
respect to the base Π remain positive with respect to the base Πl.
Moreover, note that in this case the set

SΛl+ρl
= (SΛ+ρ − {αl}) ∪ {βl}

is a maximal isotropic set orthogonal to the weight Λl +ρl in the set
∆+

l , the set of positive roots generated by the base Πl. Therefore
the results again holds with respect to the base Πl = {β1, · · · , βN}
for the set SΛl+ρl

. If SΛ+ρ = {αl}, then we are done. Suppose that
|SΛ+ρ| > 1. Then SΛl+ρl

may not be the unique maximal isotropic
subset orthogonal to the weight Λl + ρl in ∆+

l . Indeed, we know
from the above that in this case, there is a root α ∈ SΛ+ρ of the
type

α = αi + · · ·+ αl + · · ·+ αj,

where without loss of generality |αi|2 = · · · = |αl−1|2 = −2 and
|αl+1|2 = · · · = |αj|2 = 2. With respect to the base Πl this becomes

α = βi + · · ·+ βl + · · ·+ βj.

Therefore

(Λl + ρl, βi + · · ·+ βl−1 + βl+1 + · · ·+ βj) = 0.

However as |βl−1|2 = 0 = |βl+1|2 and |βi|2 6= 0 for i < l − 1 and
i > l + 1, the roots βi + · · ·+ βl−1 and βl+1 + · · ·+ βj have norm 0
(whereas the roots αi + · · ·+αl−1 and αl+1 + · · ·+αj do not). Hence
we may have

(Λl + ρl, βi + · · ·+ βl−1) = 0,

in which case we also have

(Λl + ρl, βl+1 + · · ·+ βj) = 0.

This is equivalent to

(Λ + ρ, αi + · · ·+ αl−1) = −1 and (Λ + ρ, αl+1 + · · ·+ αj) = 1.

Therefore this may hold only if j = l + 1 and i = l− 1. In this case
the set

S ′Λl+ρl
= {βl−1, βl+1} ∪ (SΛ+ρ − {αl−1, α})
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together with the set SΛl+ρl
are the two possible maximal isotropic

subsets orthogonal to the weight Λl + ρl in ∆+
l . Therefore we need

to show that the result holds for the set S ′Λl+ρl
. Without loss of

generality, we need only consider the case A(1, 1) and the trivial
module V with highest weight Λ = 0. Simple calculations then
show that

ch 0,Sρ2 ,Π2,W =

e(ρ)(
1

(1 + e(−β2))(1 + e(−β1 − β2 − β3))(1 + e(−β1 − 2β2 − β3))

− 1

(1 + e(−β1))(1 + e(β3))(1 + e(−β1 − β3))

− 1

(1 + e(β1))(1 + e(−β3))(1 + e(−β1 − β3))

+
1

(1 + e(β1 + β2 + β3))(1 + e(β2))(1 + e(−β1 − β3))
)

= e(ρl)(
1

(1 + e(−β1))(1 + e(−β3))

− 1

(1 + e(β2))(1 + e(−β1 − β2 − β3))

=
1

2
ch 0,Sρ2 ,Π2,W = ch 0,{β1,β3},Π2,W+

As this calculations shows there may be bases Π′ for which
there exists more than one set SΛ′+ρ′ . We need to consider this
possibility. Indeed in the case at hand, (Λl + ρl, βl−1) = 0, in which
case (Λl + ρl, βl+1) = 0 and conversely. Therefore by induction it
follows that statement 3 of Proposition 1 and Theorems 1 and 2
hold for all bases obtainable from the base Π by applications of
odd reflections. It follows that by induction on the number of odd
reflections needed to arrive at the base Π′ from the base Π the result
holds for all bases Π′. Since clearly the Theorems hold for the base
w(Π) for all w ∈ W , it follows that they hold for all bases.

1.3.5 Proof: Part IV

We next consider the denominator formula. Its clearest expression
is with respect to a base containing a maximal isotropic subset of
∆. To see this, we first need a technical result about sets. When the
Lie superalgebra G if of type B(m,n) or D(m,n) we choose a base
with respect to which W ] is generated by simple root reflections.
For simplicity of notation, we rename this base Π = {α1, · · · , αN}
if necessary.
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Lemma 14. Let S and T be maximal isotropic subsets of ∆. Then,
there is a unique element w ∈ W ] such that for all α ∈ T , w+(α) ∈ S
or −w+(α) ∈ S.

Proof. Without loss of generality, we may assume that S, T ≤ ∆+.
Without loss of generality, assume that W ] = W+ (note that this
assumption may not be consistent with our assumption above that
|θ|2 < 0 when rθ 6∈ W̃ , but this does not matter since this latter fact
will not be used in this proof). Let αl ∈ Π be the isotropic simple
root.

Case 1: |S| = 1

We may in this case assume without loss of generality that
S = {αl}. Then, W̃ = W ]. Then for all i, |αi|2 ≥ 0. Let α be an
isotropic root in ∆+. For all w ∈ W ], w(α) > 0. Let w ∈ W̃ be
such that ht(w(α)) is minimal. For simplicity of notation, we may
without loss of generality write w = 1. Hence,

(α, αi) ≤ 0 and (αl, αi) ≤ 0

for all i 6= l. Since |α|2 = 0,

αl ∈ supp(α).

So
(α, αl) ≤ 0.

Let
α =

∑
i

kiαi.

Then,

0 = (α, α) =
∑

i

ki(α, αi)

forces ki = 0 for all i such that (α, αi) 6= 0. Therefore,

0 = (α, αl) =
∑

i

ki(αi, αl),

which in turn gives ki = 0 for all i for which (αi, αl) 6= 0. It follows
that (αi, αl) = 0 for all i ∈ supp(α). As the support of the root α
cannot be disconnected, we get α = αl, proving the result in this
case.

Case 2: |S| > 1

In this case all the roots in S are of the first kind (as can be
easily seen from the structure of the Lie superalgebras B(m,n) and
D(m,n)) and we may take

S = {αl, αl−1 + αl + αl+2, αl−2 + · · ·+ αl+2, · · · }.
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It is not hard to see that for all ri ∈ W̃−, there are roots α, β ∈
S such that ri(α) = α − αi and ri(β) = β + αi. Moreover as
(ri(α), ri(β)) = 0, these two roots are unique. Conversely, given
any root α ∈ S, there is a unique reflection ri ∈ W̃− (respectively,
rj ∈ W̃−) such that ri(α) = α − αi (respectively, rj(α) = α + αj)
unless α = αl (respectively, α = α1 + · · · + α2l+1), in which case
there are none. Therefore, for all w ∈ W̃−

w(
∑
α∈S

α) =
∑
α∈S

α.

Now, let w ∈ W̃ be such that w(T ) ∩ S is maximal. Suppose that
w(T ) 6= S. We may then also assume that among all such w, the
height of

∑
α∈w(T )−(w(T )∩S) α is minimal. Without loss of generality,

we write w = 1. Suppose that α ∈ T − S such that α + αi ∈ ∆ for
some simple root αi of negative norm. From the above, there is a
unique root β ∈ ∆+ such that β − αi ∈ ∆. If β ∈ S then the above
implies that α ∈ S, contradicting the definition of the root α. A
similar argument holds if α − αi ∈ ∆. Therefore for all α ∈ T − S,
if ri ∈ W̃− and ri(α) 6= α, then ri(β) 6= β forces β 6∈ S. In other
words, for all γ ∈ T ∩S, (γ, αi) = 0. By the above assumption for all
α ∈ T−S, it follows that for all α ∈ T−S, α−αi 6∈ T−S. If α 6= αl,
then this forces |ri(T )∩S| > |T ∩S|. Hence, T = (ri(T )∩S)∪{αl}.
However αl ∈ S, which gives a contradiction. Hence T = S. As
w−(S) = S for all w− ∈ W̃− and for all w+ ∈ W̃+, w−w+ = w+w−,
the result follows in this case.

Considering the set S described in the proof of Lemma 15
and the calculations preceding Lemma 15, it follows that there is a
base containing a maximal isotropic subset (though it may not be
the set S). Lemma 15 also tells us that for all w ∈ W̃−, w(T ) = T for
all maximal isotropic subsets in ∆ and more particularly that if α ∈
T such that ri(α) 6= α, then there is a root β ∈ T such that ri(β) 6= β
and ri(α) < α if and only if ri(β) > β. Let Π̃ = {β1, · · · , βN} be any
base containing a maximal isotropic subset S. Suppose that βi ∈ S.
What precedes implies that there is a reflection rγ ∈ W̃− such that
rγ(βi) < 0. So

γ = βi + · · ·+ βj,

where |βi|2 = 0 = |βj|2 and if k ∈ supp(β)−{i, j} (here the support

is taken with respect to the base Π̃), then |βk|2 > 0. Moreover the
above also show that βj ∈ S. Also the roots βk are short roots in ∆

and so rβk
∈ W̃ . Set w = rγrγ−βi−βj

. Note that |γ|2|γ−βi−βj|2 < 0.
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As a consequence,

e(w(ρ))

(1 + e(−w(βi))(1 + e(−w(βj))

=
e(ρ + βi + βj)

(1 + e(βi))(1 + e(βj))

=
e(ρ)

(1 + e(−βi))(1 + e(−βj))

Hence by induction on |S|, for the trivial irreducible module V we
get

ch V = R−1ch 0,S,Π̃,W ] .

Note that the trivial module for the Lie superalgebras of type B(m, n),
m > 0, D(m,n) and exceptional is never tame since (ρ, θ) > 0 in
these cases.

1.3.6 Proof: Part V

The super-character and super-denominator formulae follow in ex-
actly similar fashion. We only need to notice the following changes.
This time equality (1) is replaced by:

e(ρ)
∏

α∈∆+
0

(1− e(−α))sch (V ) =

∑

λ≤Λ∣∣λ+ρ

∣∣2=

∣∣Λ+ρ

∣∣2
c̆λe(λ + ρ)

∏

α∈∆+
1

(1− e(−α))

Note that ε̆(w) = ε(w) for all w ∈ W̃ for the base Π since the non-
isotropic simple roots in this base are all even. Moreover if the Lie
superalgebra G is not of type B(m,n), then ∆̆0 = ∆0 since the only
odd roots are isotropic. Hence in these cases, ε̆(w) = ε(w) for all
w ∈ W . We have to be careful that c̆Λ−kα = 1 for all k ≥ 0 and
α ∈ SΛ+ρ since the product on the right hand side of the above
equation contains minus signs and not plus signs as is the case for
Weyl denominator. Moreover ε̆(w) is needed rather than ε(w) for
Lie superalgebras of type B(m,n). Indeed if we apply the reflection
rθ to the above equality, letting β be the highest isotropic root with
only non-negative norm simple roots in its support, and as |αl|=0,
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we then get:

e(ρ +
1

2
θ)(1 + e(θ))

∏

α∈(∆+
0 −{θ})

(1− e(−α))sch (V ) =

∑

λ≤Λ∣∣λ+ρ

∣∣2=

∣∣Λ+ρ

∣∣2
c̆λe(rθ(λ + ρ))(1− e(αl))(1− e(β))(1− e(

1

2
θ))

×
∏

α∈∆+
1 −{β,αl,

1
2
θ}

(1− e(−α))

Equivalently,

e(ρ)
∏

α∈∆+
0

(1− e(−α))sch (V ) =

∑

λ≤Λ∣∣λ+ρ

∣∣2=

∣∣Λ+ρ

∣∣2
c̆λe(rθ(λ + ρ))

∏

α∈∆+
1

(1− e(−α))

In other words, contrary to the case of equality (1), which gets
multiplied by −1, this equality does not.

2 Affine Lie superalgebras

2.1 Introduction

Unless otherwise stated, in this second part we will simply say a Lie
superalgebra for an affine one with non degenerate, supersymmetric,
invariant bilinear form. By this we mean an affinization of any of
the following finite dimensional simple Lie superalgebras:

A(m,n), B(m, n), C(n), D(m,n), F4, G3, D(2, 1; α),

as classified in [Y], hence including both twisted and untwisted ones.
Affine Kac-Moody superalegbras, namely the restricted subclass of
affine Lie superalgebras without isotropic simple roots, were studied
and a character formula computed for all their irreducible integrable
highest weight modules in [K2]. The technical problems arising in
the calculation of the character formula in the affine case is the same
as in the finite dimensional one. This is the reason why standard
methods do not work.

There have been some attempts to derive this formula in
particular cases. In [KW1], the authors consider the A(1, 2)(1) case
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and conjecture a denominator formula for untwisted affine cases.
This is studied in greater detail in [KW2]. Based on her compu-
tations in the finite dimensional context in [G1], the author gives
a proof of the denominator formula for the affine Lie superalgebras
with non-zero dual Coxeter number in [G2]. The zero Coxeter case
has recently been proved in [GR].

In this second part, we give a proof of the (super)-character
formula for all the irreducible partially integrable highest weight
modules except when the Lie superalgebra is affine with dual Cox-
eter number equal to zero and the module is of level 0. The meaning
of integrability needs to be clarified. When G is a finite dimensional
Lie superalgebra, integrability means the module is finite dimen-
sional. Equivalently all the subalgebras of G isomorphic to sl(2)
generated by non-isotropic roots act (locally) finitely. However as
was pointed out in [KW1] and [Rao], if we restrict ourselves to this
condition for affine Lie superalgebras, then for several of them only
the trivial module satisfies this condition. Hence in the affine case,
we will take the definition given in [KW1] (see section 2). This in
effect amounts to partial integrability (as defined in [DP])or weak
integrability (as defined in [RF]) rather than full integrability. Our
proof of the character formula relies heavily on the proof of the char-
acter formula in the finite dimensional case given in the first part.
We deduce a denominator formula for affine Lie superalgebras with
non-trivial dual Coxeter number; in this case, there is a technical
problem in our method, which we do not address in this paper. The
main idea behind the proof is independent of special features of the
different types of affine Lie superalgebras with symmetrizable Car-
tan matrix, though final calculations have to take these into account.

2.2 Notation and some fundamental properties

In this section, we fix the notation that will be used throughout the
second part and give basic properties of the Lie superalgebras in
question. We do not restate any notation, results or explanations
already given in Part 1.

1. Let Ĝ be an affine Lie superalgebra with a non degenerate,
supersymmetric, invariant bilinear form (., .).. If Ĝ is an un-

twisted affine Lie superalgebra, then set Ĝ = G(1). If Ĝ is
twisted then set Ĝ = L(i), where L is a finite dimensional sim-
ple Lie superalgebra. So there is a diagram automorphism of
L of order i ≥ 2 and we set the finite dimensional Lie superal-
gebra G to be the 1-eigenspace of this autormorphism.
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2. Let H be a Cartan subalgebra of G and ∆ ≤ H∗, ∆0 ≤ H∗,
∆1 ≤ H∗ be respectively the set of roots, even root, and odd
roots with respect to the Cartan subalgebra H. Set

∆̂0 = {α ∈ ∆0 :
1

2
α 6∈ ∆}.

3. Let Π̂ = {α0, α1, · · · , αN} be a base of the root system ∆. Let

Ê = RΠ̂ be the real vector space spanned by the base Π̂.

Let hi ∈ H, 0 ≤ i ≤ n, be such that (hi, hj) = (αi, αj).

Let ∆̂+ be the set of positive roots with respect to the base Π̂.
Set

∆̂+
0 = ∆̂+ ∩ ∆̂0, ∆̂+

1 = ∆̂+ ∩ ∆̂1;

Π̂0 to be the base of the Lie algebra with positive root system
∆̂+

0 ; Set

δ =
n∑

i=1

aiαi

to be the isotropic imaginary root in ∆̂+ such that all imaginary
roots are integral multiples mδ with m ∈ Z − {0}. As finite
dimensional Lie algebras do not contain imaginary roots, ai > 0
for all 0 ≤ i ≤ n. Moreover, (δ, α) = 0 for all α ∈ ∆̂ (see
[KW1]). Define the weight Φ0 ∈ H∗ as follows:

(Φ0, αi) = 0 if i 6= 0 and (Φ0, δ) = a−1
0

Then, Π̂ ∪ {Φ0} is a basis of the dual space Ĥ∗.

4. Let
Ĝα = {x ∈ Ĝ : [h, x] = α(h)x, h ∈ Ĥ}

and
mult(α) = dim Ĝα.

Then, mult(α) = 1 if α ∈ ∆̂− {nδ : ±n ∈ N} and

mult(nδ) = mult(δ)

for all n ∈ N.

Set ei ∈ Gαi
, fi ∈ G−αi

to be the generators of the derived sub-

superalgebra [Ĝ, Ĝ], where [ei, fi] = hi and [h, ei] = (h, hi)ei,

[h, fi] = −(h, hi)fi for all h ∈ Ĥ.
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5. As in [KW1], let Y = {µ ∈ Ĥ∗ : Re(δ, µ) > 0}. The expressions∑
λ∈H∗ aλe(λ)∑
λ∈H∗ bλe(λ)

are meromorphic functions on the domain Y . Set

R̂ =

∏
α∈∆+

0
(1− e(−α))mult(α)

∏
α∈∆+

1
(1 + e(−α))mult(α)

and

ˆ̆
R =

∏
α∈∆+

0
(1− e(−α))mult(α)

∏
α∈∆+

1
(1− e(−α))mult(α)

are respectively the Weyl denominator and super-denominator
with respect to the base Π.

6. Let ρ̂ be the Weyl vector with respect to the base Π̂, i.e.

(ρ̂, αi) =
1

2
(αi, αi) ∀ 0 ≤ i ≤ n,

ρ̂0 be the Weyl vector of the Lie algebra Ĝ0 with respect to a
base Π̂0. Set ρ̂1 = ρ̂0 − ρ̂.

By the definition of the weight Φ0,

ρ̂ = ρ + a0(
1

2
|α0|2 − (ρ, α0))Φ0

As in supp6.4 in [K4], θ′ = ρ−a0α0 is the maximal root in ∆+.
Hence

(ρ̂, δ) = (ρ, θ′) +
1

2
a−1

0 |θ′|2.
If a0 = 1 then (ρ, δ) is the dual Coxeter number h∨.

Because the bilinear form is of corank 1 on the space E, the
Weyl vector is only unique modulo Rδ.

7. In [Y], H. Yamane extended the concept of odd reflections to
affine Lie superalgebras. The action of these linear maps on
the space Ê is the natural extension of the definition given in
section 1.2. For |αi|2 = 0, write Π̂i := sαi

(Π̂) and define

∆̂+
i0 := ∆̂0 ∩ Z+Πi, ∆̂+

i1 := ∆̂1 ∩ Z+Π̂i.

The notation
λ ≤j µ

will mean µ−λ ∈ Z+Π̂j. More generally if Π̂′ is a base obtain-
able from the base Π by successive applications of odd reflec-
tions, then

λ ≤′ µ
will mean µ− λ ∈ Z+Π̂′. As a consequence of the definition,
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Corollary 8. Let 1 ≤ i ≤ N be such that αi ∈ ∆̂1 and
|αi|2 = 0. Then, with respect to the base Π̂i, the root δ remains

the positive imaginary root such that if α ∈ ∆̂ is a positive
imaginary root with respect to the base Π̂i, then α = lδ for
some integer l > 0.

Proof. Let δi be the positive imaginary root such that if α ∈ ∆
is a positive imaginary root with respect to the base Πi, then
α = sδ for some integer s > 0. Since δ is an imaginary root,
δ = lδi for some integer l and symmetrically, δi = liδ for some
integer li. Therefore, δ = ±δi. If |Π̂| = 1 then G is a Lie
algebra and there is nothing to prove. Otherwise, there is an
index j ∈ supp(δ) such that j 6= i and so δ remains positive

with respect to the base Π̂i. Equivalently, δ = δi.

For the proof of the following result, see Corollary 1.

Corollary 9. Let αi ∈ Π̂ be such that |αi|2 = 0. Then the set

of positive even (resp. odd) roots with respect to the base Π̂i is

∆̂+
0 (resp. (∆̂+

1 − {αi}) ∪ {−αi})
and

ρ̂ + αi

is a Weyl vector with respect to the base Πi.

Set
ρ̂i = ρ̂ + αi.

Note also that (ρ̂, δ) is invariant of the base chosen. Indeed
this is clear if we consider the base w(Π), where w ∈ W . By
Corollaries 1 and 2, (ρ̂ + αi, δ) = (ρ̂, δ) since (δ, αi) = 0 (as
(δ, α) = 0 for all α ∈ ∆).

As a consequence:

Lemma 15. If a0 6= 1, then

(ρ̂, δ)h∨ ≥ 0

and (ρ̂, δ) 6= 0.

Proof. By assumption, a0 > 1.

Claim: (ρ, θ′)((ρ, θ′) + 1
2
|θ′|2) ≥ 0 Since all expressions are in-

dependent of the base chosen, without loss of generality we as-
sume the base Π to contain at most one isotropic simple root.
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Hence if the finite dimensional Lie superalgebra G is of type
A(m,n) or C(n) then |θ′|2 = 0 so that our claim holds. If G
is of type B(0, n) then we may assume all simple roots to have
positive norm and hence our claim holds. When G is of type
B(m,n), m > 0 or D(m, n) or is exceptional, without loss of
generality, assume that |θ′|2 < 0. If (ρ, θ′) < 0, then our claim
again holds. So suppose that (ρ, θ′) > 0. In this case, θ′ = θ
and a case by case study shows that our claim holds unless
G is of type B(1, 1). However from p.19 in [Y] we know that
B(1, 1) only has untwisted affinizations, in which case a0 = 1,
contradicting assumption.

Without loss of generality, assume that (ρ, θ′) > 0. If (θ′, θ′) ≥
0. Then the result follows immediately. Otherwise, (ρ̂, δ) > 0
also follows from the above claim and the fact that a−1

0 < 1.

8. A highest weight Ĝ-module V = V (Λ) of highest weight Λ ∈ Ĥ∗

with respect to the base Π, is integrable if for all

α ∈ ∆+ such that |α|2 6= 0,
2(Λ, α)

(α, α)
∈ Z+. (int)

Few representations satisfy condition (int). Indeed suppose
that the level of the irreducible highest weight representation
is non-trivial, i.e. (Λ, δ) 6= 0. Without loss of generality, assume
that

(Λ, δ) > 0.

Now, Ĝ0 = (Ĝ0)+⊕(Ĝ0)−, where (Ĝ0)+ = 〈Ĝα : α ∈ ∆̂0, |α|>0〉
and (Ĝ0)− = 〈Ĝα : α ∈ ∆̂0, |α|<0〉. If Ĝ−

0 6= 0, let α ∈ ∆+
0 be a

root of negative norm. Then, for all n ∈ Z+, α + nδ ∈ ∆̂+ is a
root of negative norm. However, for n >> 0,

(Λ, nδ + α)

(α, α)
< 0.

Let V = V (Λ) be an irreducible highest weight G-module with

highest weight Λ ∈ Ĥ∗ and let vΛ be a highest weight vector of
V . For reasons of simplicity, by abuse of notation, we will also
write Λ for its restriction to H.

We need to choose one of the components of Ĝ0. We do this
as follows. From Lemma 1, we know that if (ρ̂, δ) = 0 then
the Lie superlagebra G is untwisted. From [KW1] it therefore
follows that (ρ̂, δ) = 0 if and only if the finite dimensional Lie
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superalgebra G is of type A(n, n), D(n+1, n), or D(2, 1; a) and
the affine Lie superalgebra G is untwisted. Set

(∆̂)]
0 =





{α ∈ (∆̂+
0 : |α|2(ρ̂, δ) > 0} if (ρ̂, δ) 6= 0

{α ∈ (∆̂)+
0 : |α|2 > 0} if G is of type A(n, n)

{α ∈ (∆̂)+
0 : |α|2|θ|2 < 0} if G is of type D(n + 1, n) or D(2, 1; a).

Definition 3. The highest module G-V = V (Λ) of highest
weight Λ is said to be partially integrable if the following hold:

(a) the G-module generated by the highest weight vector vΛ is
finite dimensional; and

(b) for all roots α ∈ ∆̂]
0, the elements x ∈ G±α act locally

finitely on the module V .

In other words, if a module is partially integrable, it satisfies
condition (int) for at least one component of the even part of
the Lie superalgebra. Note that in [KW1] these modules are
called integrable.

From now on the G-module V = V (Λ) will denote a module
satisfying Definition 1. Set P (Λ) to be the set of weights of the

module V (Λ). For µ ∈ Ĥ∗, we write

Vµ = {v ∈ V : h.v = µ(h)v, ∀h ∈ Ĥ}.
Then, dim Vµ < ∞ for all µ ∈ Ĥ∗ and following [K4]

ch V =
∑
µ≤Λ

(dim Vµ)e(µ) ∈ E ,

where E is now the algebra over C of formal series of the form
∑

µ∈Ĥ∗

cµe(µ)

where cµ ∈ C and cµ = 0 for µ outside the union of a finite

number of sets of the type D(λ) = {µ ∈ Ĥ∗ : µ ≤ λ}.
We assume that if the dual Coxeter number is zero then the
G-module V has non-trivial level, i.e. (Λ, δ) 6= 0.

9. Let Ŵ be the Weyl group of the Lie superalgebra G. For
w ∈ Ŵ , let l(w) be the number of simple reflections needed

to write w as a word and l̂(w) the number of simple reflections

corresponding to the set ∆̂+
0 needed to write w. Set

ε(w) = (−1)l(w) and ε̂(w) = (−1)l̂(w).
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We define the following subgroups of the Weyl group:

Ŵ+ = 〈rα : |α|2 > 0〉
Ŵ− = 〈rα : |α|2 < 0〉,

i.e.
Ŵ = Ŵ− × Ŵ+.

Set
Ŵ ] = 〈W, rα : α ∈ ∆̂]〉.

Equivalently,
Ŵ ] = T ] nW,

where T ] is the group of translations [K4] induced by the lattice

Z∆̂]
0.

2.3 (Super)-character and (super)-denominator formulae

2.3.1 Statement of main results

Let V = V (Λ) be a partially integrable highest-weight irreducible

Ĝ-module with highest weight Λ with respect to the base Π. The
reason why the character formula of partially integrable modules of
level 0 of affine Lie superalgebras for which (ρ, δ) = 0 does not follow
from the method used and would need extra arguments is given in
the following result.

Proposition 4. Suppose that (Λ, δ) 6= 0 or (ρ, δ) 6= 0. Then,
|SΛ+ρ| < ∞.

Proof. Suppose that the proposition is false. Since |∆f | < ∞, in this
case there is a root α ∈ ∆+

f such that for infinitely many integers n,
(Λ+ρ, α+nδ) = 0. Therefore, (Λ+ρ, δ) = 0. However by definition
of a partially integrable module, this forces (Λ, δ) = 0 = (ρ, δ),
contradicting assumption.

We restate here the list of affine Lie superalgebras for which
(ρ, δ) = 0 (see section 2.1 for the proof).

Proposition 5. For the affine Lie superalgebra G, (ρ, δ) = 0 if and
only G is untwisted of type A(n, n)(1), D(n + 1, n)(1) or D(2, 1; a).
In particular, (ρ, δ) is then the dual Coxeter number.

We generalize the notion of a tame module of an affine Lie
superalgebra given in [KW1]:
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Definition 4. The Ĝ-module V = V (Λ) is said to be generalized
tame (with respect to the base Π) if

ch V = ch Λ,SΛ+ρ,Π,W ] .

When |SΛ+ρ| = 1, the Ĝ-module V is said to be tame.

We need to distinguish between two types of isotropic roots.

Definition 5. The isotropic root α ∈ ∆+ is said to be of the first
kind if there is a base Π′ = sp · · · s1(Π), where the si are odd reflec-
tions, such that α ∈ Π′. Otherwise the isotropic root α is said to be
of the second kind.

Theorem 6. Let G be either a finite dimensional Lie algebra or a
Lie superalgebra of type A(m, n), C(n), or B(0, n). Assume that if

Lie superalgebra Ĝ is of type A(n, n)(1), then the module V is not of

level 0, i.e. (Λ, ρ) 6= 0. Then the Ĝ-module V is generalized tame
with respect to all bases.

Theorem 7. Let the Lie superalgebra G be of type B(m,n), m >
0, or D(m,n). Assume that the Lie superalgebra G is not of type
D(m,n)(2) or A(m, m+2n−1)(4) and when it is of type D(n+1, n)(1),
assume that the module V is not of level 0. Set α to be the maximal
isotropic root of the second kind in ∆+

f such that if i ∈ supp(α),
then |αi||θ| ≤ 0.

1. If the G-module with highest weight rθ(Λ + ρ) − ρ is infinite

dimensional, then the Ĝ-module V is generalized tame.

2. if the G-module with highest weight rθ(Λ + ρ) − ρ is finite di-

mensional then the Ĝ-module V is not generalized tame and

ch V =

{
ch Λ,SΛ+ρ,Π,T ]nW̃ if 2(Λ+ρ,θ)

(θ,θ)
≤ 0

ch Λ,SΛ+ρ,Π,T ]nW − ch rθ(Λ+ρ)−ρ,SΛ+ρ,Π,T ]nW ′ otherwise
.

Moreover, if 2(Λ+ρ,θ)
(θ,θ)

≤ 0, then SΛ+ρ ≤ ∆+ contains only

isotropic roots of the first kind and otherwise SΛ+ρ = {nδ±α}.
Theorem 8. Let the Lie superalgebra G be exceptional. When it is
of type D(2, 1; a)(1), assume that the module V is not of level 0.

1. If the G-module with highest weight rθ(Λ + ρ) − ρ is infinite

dimensional, then the Ĝ-module V is tame;
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2. if the G-module with highest weight rθ(Λ + ρ) − ρ is finite di-
mensional then the module V is not generalized tame and

ch V =

{
ch Λ,SΛ+ρ,Π,T ]nW̃f

if 2(Λ+ρ,θ)
(θ,θ)

≤ 0

ch Λ,SΛ+ρ,Π,T ]nWf
− ch rθ(Λ+ρ)−ρ,SΛ+ρ,Π,T ]nWf

otherwise.

Let the Lie superalgebra Ĝ be of type D(m,n)(2) or A(m,m+
2n−1)(4). Then G is of type B(m,n−1). Let M be the finite dimen-
sional Lie superalgebra with base ΠM = {α0, · · · , αN−1} and root
system ∆M . Let (ΠM)0 be the base of (∆M)∩∆+

0 . Let θL ∈ (ΠM)0 be
the root such that θL, 1

2
θL 6∈ ΠM . Consider the subgroup of trans-

lations T̃ ≤ T ] induced by the lattice generated by simple roots
whose norm is of the same sign as the (ρ, δ) when Ĝ is not of type

D(2, 1; a)(1) and by simple roots of positive norm when Ĝ is of type
D(2, 1; a)(1) (in which case as mentioned earlier, (ρ, δ) = 0).

Theorem 9. Let the Lie superalgebra Ĝ be of type D(m,n)(2) or
A(m,m + 2n− 1)(4). The module V is never generalized tame and

ch V =

{
ch Λ,SΛ+ρ,Π,T̃nW̃ if 2(Λ+ρ,θ)

(θ,θ)
≤ 0

ch Λ,SΛ+ρ,Π,T̃nW − ch rθ(Λ+ρ)−ρ,SΛ+ρ,Π,T̃nW ′ otherwise
.

As a consequence, the denominator formula can be nicely
expressed with respect to a base with special properties.

Theorem 10. Assume that the Lie superalgebra Ĝ is not of type
A(n, n)(1), D(n + 1, n)(1) or D(2, 1; α)(1). Let Π be a base contain-
ing a maximal isotropic subset S of the set of roots ∆. Then the
denominator formula is:

e(ρ)R = Γ0,S,Π,T ]nW ]

unless Ĝ is of type D(m,n)(2) or A(m,m+2n−1)(4); in which cases,

e(ρ)R = Γ0,S,Π,T̃nW ]

For the definition of W ′ and W̃ see discussion preceding
Theorem 2 and for W ] see section 1.2.

Theorem 11. Replacing ch with sch in Theorems 1, 2, 3 and 4
gives the super-character for the Ĝ-module V and the super-denominator
formula.

Note that even for the cases A(m, n)(1) in general our re-
sult is not equivalent to the conjecture in [KW1] since the roots in
SΛ+ρ may not be contained in the finite root system ∆ of the finite
dimensional Lie superalgebra A(m,n).
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2.3.2 The proof

In the rest of this section we prove these theorems. The main parts
of the proof of the finite dimensional case given in the first part
apply in its exact form to the affine Lie superalgebra Ĝ. Hence we
do not repeat these arguments. We once again consider the equality
(1):

e(ρ)
∏

α∈∆+
0

(1− e(−α))mult(α)ch V

=
∑

λ≤Λ, |λ+ρ|2=|Λ+ρ|2
cλe(λ + ρ)

∏

α∈∆+
1

(1 + e(−α))mult(α), (1)

Clearly Corollary 4 folds for any base Π̂. We need to note
that as in the finite dimensional case, if we consider the module V as
a G0-module, then from Lemma 9.6 in [K4] that for all weights λ ∈
H∗, there are finitely many submodules U1, · · · , Um and a subset
J ⊂ {1, · · · ,m} such that

0 = U0 ⊂ U1 ⊂ · · · ⊂ Um = V

and if i ∈ J , U i/U i−1 is isomorphic to an irreducible G0-module V i

with highest weight some Λi ≥ λ; if i 6∈ J , then (U i/U i−1)τ = 0 for
every weight τ ≥ λ. As a consequence, if λ+ρ0 is a weight such that
the term e(λ+ρ0) appears in the expression e(ρ0)Πα∈∆+

0
(1−e(−α)),

then there are finitely many irreducible G0-submodules V 1, · · · , V m

of highest weight Γi such that it appears in the expression

e(ρ0)Πα∈∆+
0
(1− e(−α))

m∑
i=1

ch V i

=
m∑

i=1

∑
w∈W+

(−1)we(w(Γi + ρ0))

Without loss of generality, we will assume that (ρ, δ) ≥ 0
and hence

W ] =

{
〈W+,Wf〉 if (ρ, δ) > 0

W otherwise
.

Moreover we assume that either (ρ, δ) 6= 0 or (Λ, δ) 6= 0 or equiva-
lently that

(Λ + ρ, δ) 6= 0.
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We first consider bases Π̂ for which the finite type base Π contains a
unique isotropic root and is such that ∆̂]

0∩∆ is generated by simple
roots in Π. For the Dynkin diagrams, considering the list given in
[Y], we take:

A(m,n)(1)

m + n + 1 = N

¡¡

1

@@´
´

´
´

´
´

´
´́

¡¡

2

@@ . . . Q
Q

Q
Q

Q
Q

Q
QQ

¡¡

N

@@

¡¡

0

@@

D(m,n)(2)

m + n = N + 1

m
0

¡¡
@@ ¡¡

1

@@ . . . ¡¡

N − 1

@@ x
N

¡¡
@@

A(m,n)(4)

m + n = 2N

m
0

¡¡
@@ ¡¡

1

@@ . . . ¡¡

N − 1

@@ m
N

¡¡
@@

B(m,n)(1)

m + n = N

m
0

¡¡
@@ ¡¡

1

@@ . . . ¡¡

N − 1

@@ m
N

¡¡
@@
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A(m,n)(2)

m + n = 2N − 1

m
0

¡¡
@@ ¡¡

1

@@ . . . ¡¡

N − 1

@@ x
N

¡¡
@@

A(m,n)(2)

m + n = 2N − 2

m
0

¡¡
@@ ¡¡

1

@@ . . . ¡¡

N − 1

@@ ¡¡
@@

m
N

C(N)(1)

D(m,n)(1)

m + n = N

m
0

¡¡
@@ ¡¡

1

@@ . . . ¡¡

N − 2

@@ ¡
¡

¡
¡

@
@

@
@

¡¡ N − 1@@

¡¡ N@@

D(2, 1; a)(i) m
0

a + 1

¡¡

1

@@m
¡

¡
¡¡−1

m2

@
@

@@−a

m3

F (4)(i)
0 1 2 3 4
h h h=⇒ h h

G(3)(i)
0 1 2 3
h h× h< h

A case by case study shows that in all cases, except for
D(m,n)(2) and A(m, m + 2n − 1)(4), any root of positive norm has
either no isotropic simple root in its support or has an even num-
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ber of distinct isotropic simple roots in its support. We therefore
separate the proof into two cases.

Case 1: the Lie superalgebra G is neither of type D(m,n)(2) nor of
type A(m,m + 2n− 1)(4)

Hence arguments in Lemma 5 and 9 imply the following

Lemma 16. For all weights λ ∈ H∗ such that cλ 6= 0,

w(λ + ρ) ≤ Λ + ρ

for all w ∈ Ŵ+.

As a consequence, Lemma 6 also holds:

Lemma 17. Let λ ∈ H∗ be a weight such that cλ 6= 0. Then for all
w ∈ W+, cw(λ+ρ)−ρ = ε(w)cλ.

Set
˜̂
WΠ′ to be subgroup of the Weyl group Ŵ generated by

reflections rα ∈ T ] n W̃ such that the support of the root α with
respect to the base Π′ contains either no isotropic simple roots or
an even number of distinct ones. Lemma 8 holds since all previous
results hold:

Lemma 18. Let µ ∈ H∗ be a weight satisfying the conditions ex-

pressed in Corollary 4 such that (µ+ρ,α)
(α,α)

> 0 for α ∈ ∆̂] ∪ 〈αi ∈ Π :

|αi|2 < 0〉. Then, for all w ∈ ˜̂
WΠ′,

w(µ) ≤′ w(Λ)

for all bases Π′. In particular when Gf is either a Lie algebra or of
type A(m,n) or C(n), for all w ∈ W ],

w(τ) ≤′ w(Λ)

for all bases Π′.

Corollary 10. Let µ ∈ H∗ be a weight satisfying the conditions in
Lemma 18. Then, µ = Λ or µ = Λ − kα, where α is an isotropic
root of the second kind in the root system generated by a finite type
sub-base of the base Π.

Proof. Set

µ + ρ = Λ + ρ−
N∑

i=1

kiαi,
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where ki ∈ Z+. This may be written as follows:

µ = Λ− lδ −
∑

i 6=j

liαi,

where l ≤ li ∈ Z+.
Let Gj be the finite dimensional Lie superalgebra with base

Πj = Π − {αj} and consider the irreducible highest weight Gj-
module Uj of highest weight Λ (though it may not be finite dimen-
sional). The same arguments in the proof of Lemmas 9, 11 and 12
force

µ = Λ− lδ −
∑

α

kαα,

where kα 6= 0, kβ 6= 0 implies that the roots α and β are mutually or-
thogonal isotropic positive isotropic in the root system ∆j generated
by the finite type base Πj or

µ + ρ = Λ + ρ− lδ − kα,

where the root α ∈ ∆j has positive norm.
In the latter case, since (Λ + ρ, δ) > 0 and

|µ + ρ|2 = |Λ + ρ|2, (i)

we get
k = l = 0.

In the former case, from Proposition 2, either all the roots α
are of the first kind or the sum contains a unique root α of the second
kind with the properties described in Corollary 7. If all the roots α
are of the first kind, since l ≤ li for all i, by considering adequate
bases Π′, µ ≤′ Λ forces kα = 0 for all α. Since (Λ + ρ, δ) 6= 0,
considering (i) we then get l = 0.

Finally suppose that

µ = Λ− lδ − kα,

where α ∈ ∆j is of the second kind. In this case we know from
Lemmas 11 and 12 that (Λ+ρ,θj)

(θj ,θj)
> 0, where θj is the maximal root

in ∆j. Equality (i) implies that (Λ + ρ, α) ≤ 0 and (Λ + ρ, α) < 0 if
l 6= 0. In the latter case however, what precedes forces |θj|2 < 0 and
so (Λ + ρ, δ) < 0, contradicting assumption, and proving the result.

Lemmas 12 and 13 hold. All positive isotropic roots in ∆+

can be written as nδ+α, where α is a positive isotropic root in some
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finite type sub-system of ∆. Note that, as shown in the previous
proof, (Λ + ρ, kδ + α) = 0, where α is a root of the second kind in
some finite type sub-system of ∆, then k = 0. As a consequence,
Theorems 6, 7, and 8 follow for the base Π̂ as in part 1 because of
Lemma 17.

Case 2: the Lie superalgebra G is either of type D(m,n)(2) or of
type A(m,m + 2n− 1)(4)

Let M be the Lie superalgebra with base α0, · · · , αN−1 and
root system ∆M and the root θM be in ∆M what the root θ is in ∆.
Then |θ|2|θ|2M < 0 and

2(rθ(Λ + ρ)− ρ, θ)

(θ, θ)
≤ 0

if and only if
2(rθM

(Λ + ρ)− ρ, θ)

(θM , θM)
≥ 0.

Without loss of generality, assume that |θ|2 < 0. Then, the argu-
ments used in the Case 1 together with the previous observation
give Theorem 9 for the base Π.

The arguments in the first part give these theorems with
respect to an arbitrary base, as well as the super-character formula
and the (super)-denominator formula. Note that with respect to the

base Π, the coefficients jΛ,SΛ+ρ,Π,U and ĵΛ,SΛ+ρ,Π,U in the formulae is
always 1 and hence as there are only finitely many bases up to
conjugacy by the Weyl group, this coefficient is finite with respect
to an arbitrary base Π.

The problem with the case (Λ+ρ, δ) = 0 comes from Propo-
sition 4. Since (Λ+ρ, δ) = 0 if and only if (Λ, δ) = 0 and (ρ, δ) = 0, it
only corresponds to the (super)-denominator formula for untwisted
affine Lie superalgebras with 0 Coxeter number as for twisted affine
Lie superalgebras, (ρ, δ) 6= 0 as has been shown previously.
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