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Abstract. It is well-known that a nonsingular minimal cubic sur-
face is birationally rigid, a group of its birational selfmaps is gen-
erated by biregular selfmaps and birational involutions such that
all relations between the latter are implied by standard relations
between reflections on an elliptic curve. It is also known that a
factorial nodal quartic threefold is birationally rigid and its group
of birational selfmaps is generated by biregular ones and certain
birational involutions. We prove that all relations between these
involutions are implied by standard relations on elliptic curves,
complete a proof of birational rigidity over a non-closed field and
describe the situations when some of the birational involutions in
question become regular (and, in particular, complete the proof of
the initial theorem on birational rigidity, since some details were
not established in the original paper of M. Mella).

1. Introduction

One of the popular problems of birational geometry is to find all
Mori fibrations birational to a given Mori fibration X → T , and to
compute the group of birational automorphisms Bir(X ) of a variety X .
The cases when there are few structures of Mori fibrations on X , for
example, when there is only one — up to a natural equivalence —
structure of Mori fibration, are of special interest; such varieties are
called birationally rigid (see section 3 for a definition).

The first example of a birationally rigid variety is a minimal cubic
surface. Recall that an Eckardt point on a cubic surface S defined over
a field k is a point contained in three lines lying on S

k
.

Theorem 1.1 (see [25, Chapter V, Theorems 1.5 and 1.6]). Let S be
a nonsingular minimal cubic surface over a perfect field k. Then

1. S is birationally rigid,
2. Bir(S) is generated by its subgroup Aut(S), birational involutions

tP centered in non-Eckardt points (Geiser involutions) and birational

The work was partially supported by RFFI grants No. 05-01-00353 and No. 08-
01-00395-a and grant N.Sh.-1987.2008.1.
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involutions tPQ centered in pairs of conjugate points such that the cor-
responding line does not intersect any line contained in S

k
(Bertini

involutions),
3. All relations between these generators are implied by the following

ones:

t2P = t2PQ = id,

wtPw
−1 = tw(P ) for w ∈ Aut(S),

wtPQw
−1 = tw(P )w(Q) for w ∈ Aut(S),

(tP1 ◦ tP2 ◦ tP3)
2 = id for collinear points P1, P2, P3.

Fano threefolds of low degree give examples of birationally rigid va-
rieties with relatively simple groups of birational selfmaps. Birational
superrigidity (see section 3 for a definition) of a smooth quartic was
proved in [20]; a proof of birational superrigidity of a smooth double
cover of P3 branched over a sextic and birational rigidity of a smooth
double cover of a quadric branched over a divisor of degree 4 (together
with the calculation of its group of birational automorphisms) can be
found in [19] and in [21].

The same questions may be posed (and sometimes solved) for va-
rieties with mild singularities (for example, some nodal varieties, see
[28], [8], [17] and [27]).

Theorem 1.2 (see [27, Theorem 2 or Theorem 7]). Let X be a factorial
nodal quartic threefold. Then

1. X is birationally rigid,
2. Bir(X) is generated by its subgroup Aut(X), birational involu-

tions τP centered in singular points P ∈ SingX, and birational invo-
lutions τL centered in lines1 L containing one or two singular points
of X.

Remark 1.3. Note that conditions of Theorem 1.2 are indeed necessary.
If one allows more complicated singularities, the statement may fail to
hold: for example, a general quartic hypersurface with a single singular-
ity analytically isomorphic to a hypersurface singularity xy+z3+t3 = 0
is factorial but not birationally rigid (see [11]). On the other hand, if
one releases the factoriality assumption, X may be even rational, like
a general determinantal quartic (see [27]). In general factoriality is
a global property that depends on the configuration of singular points
on X, but there are sufficient conditions for X to be factorial depending
only on the number of singular points (see [3, Theorems 1.2 and 1.3],

1Description will follow in section 5.
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[30, Theorem 1.3]). For a treatment of geometry of non-factorial nodal
quartics see [23] (and also [3] and [5]).

Recall that involutions tP ∈ Bir(S) (resp., tPQ ∈ Bir(S)) are also
defined for “bad” points (resp., pairs of points), i. e. Eckardt points P
(resp., such pairs {P,Q} that the corresponding line intersects some
line contained in S

k
), but such involutions are regular on S.

Motivated by the analogy with a cubic surface, we give the following
definitions for a (nodal factorial) quartic threefold X defined over a
field k.

Definition 1.4 (cf., for example, [25, 8.8.3] and [6, Definition 2.3]).
Let P be a singular point on X. We call P an Eckardt point if P is a
vertex of some (two-dimensional) cone contained in X

k
.

Definition 1.5. Let L ⊂ X be a line. We call L an Eckardt line if
there are infinitely many lines intersecting L on X

k
.

We prove the following result that describes regularizations on a
quartic threefold.

Proposition 1.6. Let X be a factorial nodal quartic threefold. Then
an involution τP is regular on X if and only if P is an Eckardt point,
and an involution τL is regular on X if and only if L is an Eckardt
line.

Remark 1.7. Actually, Theorem 1.2 is not exactly what is proved in [27].
To derive Theorem 1.2 from the results of [27] one needs to prove that
Eckardt points and Eckardt lines cannot be non-canonical centers on X
(see Remark 7.12). Still it is not hard to do; it is done in Remark 7.12.

As in Theorem 1.1, one can observe that the involutions τP and
τL may be not independent in Bir(X) because of relations arising
from standard ones for reflections on elliptic curves (see Examples 5.7
and 5.9).

The main goal of this paper is to prove the following result, that may
be considered a generalization of the third part of Theorem 1.1.

Theorem 1.8. In the settings of Theorem 1.2 all relations between the
generators of Bir(X) are implied by the following ones:

τ 2
P = τ 2

L = id,

wτPw
−1 = τw(P ) for w ∈ Aut(S),

wτLw
−1 = τw(L) for w ∈ Aut(S),

(τP1τP2τP3)
2 = id for collinear points P1, P2, P3,

(τP1 ◦ τP2 ◦ τL)2 = id for P1, P2 ∈ L.
3



Note that one of possible generalizations of a quartic threefold is a
threefold Fano hypersurface of index 1 with terminal singularities in a
weighted projective space. There are 95 families of such hypersurfaces.
Their birational rigidity is known under some generality assumptions
(see [12, Theorem 1.3]), as well as the fact that the groups of their
birational automorphisms is generated by involutions centered in points
and lines (also known as Geiser and Bertini involutions or quadratic
and elliptic involutions, see [12, Remark 1.4]). The relations between
these generators are also known and are analogous to those listed in
Theorem 1.8 (see [9, Theorem 1.1]). Note that we establish the same
results for a quartic without any generality assumptions.

The paper is organized as follows. In section 2 we recall some stan-
dard definitions and fix notations that we are going to use throughout
the paper. In section 3 we recall standard definitions and constructions
related to the method of maximal singularities. Section 4 contains some
auxiliary results. Section 5 contains explicit description of involutions
τP and τL and apparent relations between them, and section 6 gathers
information about the action of these involutions. Section 7 contains a
proof of Proposition 1.6 and a small improvement of the proof of The-
orem 1.2 (see Remark 7.12). In section 8 we prove Proposition 8.2 that
is a technical counterpart of Theorem 1.8; actually, the method that re-
duces Theorem 1.8 to Proposition 8.2 is standard (see [25, Chapter V,
§7.8] or [21, 3.2.4], so we omit this step. Finally, section 9 contains
an improvement of the proof of [27, Theorem 5] (which states that
Theorem 1.2 holds over algebraically non-closed fields as well).

I am grateful to I. Cheltsov for numerous explanations, to
Yu. G. Prokhorov and A. Kuznetsov for useful discussions and to
S. Galkin, I. Karzhemanov, V. Przhijalkowsky and D. Stepanov for com-
ments. Part of this work was completed when I was staying in Max-
Plank-Institute für Mathematik in October–November 2007. I am
grateful to the staff of MPIM for hospitality.

2. Notation and conventions

All varieties throughout the paper are assumed to be defined over a
field of complex numbers C, except for section 9 where everything is
defined over an arbitrary field k of characteristic char(k) = 0. On the

4



other hand, all other results hold over k as well, with apparent changes
in statements.2

Let Y be an n-dimensional variety. A singular point y ∈ Y is called
an ordinary double point (or a node) if its neighborhood is analytically
isomorphic to a neighborhood of a vertex of a cone over a nonsingular
quadric of dimension n − 1. If Y is a hypersurface in Pn+1 given by
an equation f = 0 in an affine neighborhood of y then this property
is equivalent to non-degeneracy of the Hessian matrix H(f) at y. A
variety that has only nodes as singularities is called nodal.

A variety Y is called factorial if any Weil divisor on Y is a Cartier
divisor, and Q-factorial if an appropriate multiple of any Weil divisor
is a Cartier divisor. Factorial varieties enjoy some properties typical
for non-singular ones, for example, Lefschetz theorem (see Lemma 4.1).
Note that for nodal varieties being factorial is equivalent to being Q-
factorial. In the sequel by “divisor” we usually mean “Q-divisor”.

We use the following standard notation throughout the paper. If D
is a divisor and D is a linear system on Y , then suppD denotes the
support of D, and BsD — the base locus of D. If Z is a cycle, multZD
denotes the multiplicity of D at Z. In fact we’ll use this notion only
for the cases when Z is either an ordinary double point or a cycle not
contained in the singular locus Sing Y of Y ; under these assumptions
multZD may be defined using the equation

π∗D = π−1D + (multZD)E,

where π : Ỹ → Y is a blow-up of Z and E is the (unique) exceptional
divisor. The multiplicity multZD is defined as that of a general divisor
D ∈ D.

The symbol ≡ denotes the numerical equivalence (of Cartier or Q-
Cartier divisors). If S is a surface, we write NS1

Q(S) for a Q-vector space
generated by the Cartier divisors on S modulo numerical equivalence;
this space is endowed with a bilinear symmetric intersection form.

If C ⊂ P2 is a (nonsingular) cubic curve, group law on C means a
standard group law on the elliptic curve with an inflection point of C
(any of these) as a zero element. Given such a curve C and a point
P ∈ C, reflection with respect to P means a reflection RP : C → C
with respect to the group law (i. e. a map x 7→ 2P − x; recall that RP

depends only on the class of P modulo 2-torsion and does not depend
on the choice of a zero element). Since a projection from P defines a

2These are easy but not completely automatic. For example, in Remark 5.5 the
points P1, P2 and P3 are not necessarily defined over k and one should assume only
that they are contained in a line L ⊂ X

k
, in Lemma 8.4 the line L is not necessarily

defined over k etc.
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double cover of P1, one can also associate to P a Galois involution τP ,
i. e. the natural involution of this double cover; note that τP = R−P

2
.

If Y1, . . . , Yk are subsets of Pn, we denote by 〈Y1, . . . , Yk〉 the linear
span of Y1 ∪ . . . ∪ Yk.

We’ll reserve the symbol X to denote a three-dimensional factorial
nodal quartic hypersurface throughout the paper.

3. Preliminaries on the method of maximal singularities

We briefly recall the main constructions of the method of maximal
singularities and introduce the necessary notation and terminology
(see [29] or [10] for details). The basic notions and facts concerning
Minimal Model Program and in particular necessary classes of singu-
larities can be found in [26].

Let V be a (three-dimensional) Q-factorial Fano variety with termi-
nal singularities and Picard number ρ(V ) = 1 (one may assume that
V is a Mori fibration over an arbitrary base S as well, but we don’t
need this level of generality). The variety V is called birationally rigid
if any birational map χ : V 99K V ′ to a Mori fibration V ′ → S ′ is an
isomorphism, and birationally superrigid if Bir(X) = Aut(X) (see [29]
or [10] for the definitions in a general case).

Let V ′ → S ′ be a Mori fibration. Assume that there is a birational
map χ : V 99K V ′. There is an algorithm to obtain a decomposition
of χ into elementary maps (links) of four types, known as Sarkisov
program (see, for example, [10] or [26]). Choose a very ample divisor
M ′ on V ′ and let M = χ−1

∗ |M ′| (note that M is mobile, i. e. has no
base components, but in general has base points and is not complete).
Let µ be a (rational) number such that M⊂ |− µKV |. The Nöether–
Fano inequality (see [19], [10], [26] or [29]) implies that if χ is not
an isomorphism, then the pair (V, 1

µ
M) is not canonical. One can

show that there is an extremal contraction (in the sense of a usual

Minimal Model Program) g : Ṽ → V , such that the discrepancy of the
exceptional divisor of g with respect to the pair (V, 1

µ
M) is negative.

Furthermore, there exists a link χ1 of type II or III (a definition can be
found, for example, in [10] or [26]) starting with this contraction and
decreasing an appropriately defined “degree” of the map χ (i. e. the
“degree” of χ ◦ χ−1

1 is less then that of χ). The only fact about this
“degree” that we will use is the following: it decreases if the degree µ
of the linear system M does (see [10] or [26] for details).

The previous statements imply the following: to prove that V cannot
be transformed to another Mori fibration (i. e. is birationally rigid) it
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suffices to check that there are no non-canonical centers3 on V except
those that are associated with links that give rise to birational auto-
morphisms of V , and to describe all birational selfmaps χ : V 99K V
it is sufficient to classify all non-canonical centers and to find an “un-
twisting” selfmap for each of them (i. e. a selfmap χZ such that the
degree µ of M decreases after one applies χZ provided that Z was a
non-canonical center).

4. Auxiliary statements

We’ll refer to the following lemma as Lefschetz theorem, since it is a
straightforward analog for factorial Fano varieties.

Lemma 4.1. Let Y ⊂ Pn, n > 4, be a factorial Fano hypersurface with
log-terminal singularities. Then any (effective) Weil divisor D ⊂ Y is

cut out by a hypersurface D̃ ⊂ Pn. In particular, degD is divisible by
deg Y .

Proof. A standard argument (see, for example, [14, Theorem 7.7])
shows that a natural map H2(Pn,Z) → H2(Y,Z) is an isomorphism.
On the other hand, since H1(Y,OY ) = H2(Y,OY ) = 0 by General Ko-
daira Vanishing (see [24, Theorem 2.17]), one has Pic (Y ) = H2(Y,Z).
Since Y is factorial, any Weil divisor D is Cartier, and the statement
follows. �

The following results will be used in section 8.

Theorem 4.2 (see [2, Theorem 1.7.20]). Let V be a variety of di-
mension dimV > 3, x ∈ V — an ordinary double point, D — an
effective divisor, such that the pair (V,D) is not canonical at x. Then
multxD > 1.

Lemma 4.3 (cf. [7, Lemma 0.2.8]). Let S — be a nonsingular surface,
∆ — an effective divisor on S, such that

∆ ≡
r∑
i=1

ciCi,

where ci > 0, and the support of ∆ does not contain any of
the curves Ci. Assume that the intersection form on the subspace
W ⊂ NS1

Q(S), generated by the curves Ci, is negative semidefinite.
Then ∆2 = 0.

3To be more accurate, one should speak about non-canonical centers with respect
to 1

µM. Still we’ll avoid mentioning M since all arguments would go with a fixed
linear system.
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Proof. The argument is identical to that of Lemma 0.2.8 in [7]. Let

∆ =
∑k

j=1 bjBj, bi > 0. Then

0 > (
r∑
i=1

ciCi)
2 = (

k∑
j=1

bjBj)(
r∑
i=1

ciCi) > 0,

that is

0 = (
r∑
i=1

ciCi)
2 = ∆2.

�

Lemma 4.4. Let a nodal quartic Y ⊂ P4 contain a line L. Then the
following conditions are equivalent:

(i) there is a hyperplane H tangent to Y along L,
(ii) there are infinitely many planes Π such that Y |Π = 2L + Q for

some (possibly reducible) conic Q,
(iii) L contains three singular points of Y .
Moreover, if one of these conditions holds, then multLH = 2, and

any plane Π as in (ii) is contained in H.

Proof. Easy. �

The following lemmas describe the singularities of general hyperplane
sections of a threefold nodal hypersurface.

Lemma 4.5. Let Y ⊂ P4 be a nodal hypersurface, P — a singular
point of Y , Π0 3 P — a two-dimensional plane. Assume that

Y |Π0
=
∑

miCi +
∑

m′jC
′
j,

where P 6∈ C ′j, P ∈ Ci, the curves Ci are nonsingular at P , and mi, m
′
j

are integers. Let k =
∑
mi. Take a general hyperplane section H ⊂ Y

passing through Π0. Then the singularity P ∈ H is Du Val of type Ak′

with k′ 6 k − 1.

Proof. Choose an affine neighborhood U of P with coordinates x, y, z, t
so that the hypersurface Y is given by an equation F (x, y, z, t) = 0,
where

F (x, y, z, t) = xz + yt+ F>3(x, y, z, t),

and ord0F>3 > 3. If the restriction of the polynomial xz + yt to Π0

is not identically zero, then H has an ordinary double point (that is a
Du Val singularity of type A1) at P . Hence we may assume that Π0

is given by the equation z = t = 0, and H is cut out by a hyperplane
t = αz. Then H is given by the equation

(x+ αy)z + F̃>3(x+ αy, y, z) = 0,
8



where ord0F̃>3 > 3, and hence H has a Du Val singularity of type Ak′

at P (see, for example, [1, Chapter II, 11.1]).
Assume that k′ > 2. The projectivization of the plane Π0 gives a line

l contained in a nonsingular quadric Q = (xz + yt = 0) ⊂ P(V ) ' P3,
and the projectivization of the hyperplane t = αz gives a plane in P(V ),
intersecting Q by a pair of lines l ∪ l′. Let f : Y → Y be a blow-up

of the point P with an exceptional divisor E, and H = f
−1
H. Let fH

be a restriction of f to H. Then f is a blow-up of H at the point P ,
and the exceptional locus of fH is identified with E ∩H = l ∪ l′. The
surface H has a Du Val singularity of type Ak′−2 at the point P ′ = l∩ l′
and is nonsingular at the points (l ∪ l′) \ {P ′}. The proper transforms

f
−1

H Ci of the curves Ci intersect the line l and do not pass through P ′.
Consider a resolution of singularities f : H ′ → H that is obtained

from H by a sequence of blow-ups. Let l1, . . . , lk′ be exceptional curves
of the resolution f that are contracted to P , labelled so that lili+1 = 1
for 1 6 i 6 k′−1. According to the above observation, all proper trans-
forms f−1Ci intersect one and the same exceptional curve, which cor-
responds to one of the ends of the chain of exceptional curves (say, lk′).

Let us compute the multiplicities of the exceptional curves lt in the
pull-back of the curve Ci. Let

f ∗Ci = f−1Ci +
k′∑
t=1

ai,tlt.

¿From the system of equations

0 = ltf
∗Ci =


ai,2 − 2ai,1 for t = 1,

ai,t+1 − 2ai,t + ai,t−1 for 1 < t < k′,

1− 2ai,k′ + ai,k′−1 for t = k′;

we obtain

ai,t =
t

k′ + 1
.

In particular, for all Ci we have

ai,1 =
1

k′ + 1
.

Since D =
∑
miCi+

∑
m′jC

′
j is a Cartier divisor and hence the divisor

f ∗D is integral, one has k
k′+1
∈ Z and hence k > k′ + 1. �

Lemma 4.6. Let Y ⊂ P4 be a nodal hypersurface of degree deg Y = d,
L ⊂ Y — a line, containing exactly n singular points of Y , n > 0.
Let Π0 be a two-dimensional plane such that Y |Π0

= kL + C, where
9



C > 0 and L 6⊂ suppC. Assume that k > 2. Take a general hyperplane
section H ⊂ Y passing through Π0. Let

P = (L ∩ SingH) \ (L ∩ Sing Y ).

Then

(1) H has isolated singularities, and for any point P0 ∈ L \ Sing Y
one can chose H so that H is nonsingular at P0;

(2) P contains at most d− n− 1 points;
(3) any point P ∈ P is a Du Val singularity of type Ak−1 on H.

Proof. The first assertion is obvious: it suffices to choose H so that the
three-dimensional subspace 〈H〉 ' P3 does not coincide with a tangent
subspace TP0Y ' P3 at P0 ∈ L \ Sing Y .

Now choose homogeneous coordinates x0, . . . , x4 in P4 such that the
subspace 〈H〉 is given by equation x4 = 0, the plane Π0 — by equations
x3 = x4 = 0, and the line L — by equations x2 = x3 = x4 = 0. Then
Y is given by an equation of the form

xk2F (x0, x1, x2) + x3G3(x0, . . . , x3) + x4G4(x0, . . . , x4) = 0,

where degF = d − k, degG3 = degG4 = d − 1. The equation of the
surface H in 〈H〉 ' P3 with homogeneous coordinates x0, . . . , x3 is

(4.7) xk2F (x0, x1, x2) + x3G3(x0, . . . , x3) = 0.

Note that partial derivatives of the left hand side of 4.7 with respect
to x0, x1 and x2 vanish on the line L, hence the set L∩SingH is just a
zero locus of the restriction of the polynomial G3 to L. Moreover, G3

does not vanish identically on L since otherwise H would be singular
along L. This implies the second assertion of the Lemma.

To prove the third assertion consider a point P ∈ P . We may assume
that P = (1 : 0 : 0 : 0 : 0). By the first assertion of the Lemma for any
point P ′ ∈ L \ Sing Y there is a hyperplane section nonsingular at P ′;
since H is general, we may assume that the surface H is nonsingular
at all the points P ′ ∈ (L ∩ C) \ Sing Y , i. e. P is not contained in
L∩C and hence F is not of the form F = x1F1 + x2F2. Since G3 does
not vanish identically on L, it is not of the form G3 = x2G32 + x3G33.
Choose an affine neighborhood U of P ; let x, y, z be coordinates in U
corresponding to (homogeneous) coordinates x1, x2, x3. The surface H
in the neighborhood of P is given by

(4.8) yk(1 + F̃ (x, y)) + z(cxx+ cyy + czz + G̃3(x, y, z)),

where ord0F̃ > 1, ord0G̃3 > 2, cx, cy and cz are constants such that
cx 6= 0. It is easy to see that the equation 4.8 defines a Du Val singu-
larity of type Ak−1. �
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5. Generators and relations

¿From now on we denote by X a nodal factorial quartic threefold.
In this section we recall constructions of birational involutions that
(together with Aut(X)) generate Bir(X), and list apparent relations
between them. Note that the generators of Bir(X) are constructed
in the same way as in a very standard way (see, for example, [25,
Introduction and Chapter V, 1.4], [21, 3.1.2 and 3.1.4], [21, 5.1.2 and
5.1.3], [12, 2.6], [30, Example 4.4] etc).

Example 5.1. Let P be a singular point of X. Projection from P
defines a (rational) double cover φ : X 99K P3; the Galois involution of
φ gives rise to a birational involution τP of X.

Example 5.2. Let P be a singular point of X, and L ⊂ X — a line
containing P and no other singular points of X. Projection from L
defines an elliptic fibration ψ : X 99K P2, and a fiberwise reflection4

in a section of φ arising from the point P gives rise to a birational
involution τL of X.

Example 5.3. Let P1 and P2 be singular points of X, and L ⊂ X —
a line passing through P1 and P2 but no other singular points of X.
As in Example 5.2, define an elliptic fibration ψ, denote by E1 and E2

the sections of its regularization corresponding to the points P2 and P2,
and take a reflection (with respect to the group law on a general fiber)
in the section5 E1+E2

2
; one can also define this involution as a fiberwise

Galois involution with respect to the section −(E1 + E2), i. e. the
section arising from L. We’ll also denote the corresponding birational
involution by τL.

Remark 5.4. Note that the involution ϕL2 defined in [27] in the settings
of Example 5.3 is different from the involution τL defined in Exam-
ple 5.3 (in [27] it corresponds to a reflection in E1). It does not matter
if one is interested only in the structure of the group Bir(X) since
τL = τP1 ◦ τP2 ◦ ϕL2 , but our definition is a little bit more natural from
the point of view of Sarkisov program, since it is exactly the untwisting
involution for L in this case (see Lemma 6.3).

4To be more precise one should define the reflection on a general fiber of (a reg-
ularization of) ψ and then extend it to an involution of the whole variety.

5 Actually, since an elliptic curve contains 2-torsion points, E1+E2
2 is not cor-

rectly defined as a section of the elliptic fibration, but the corresponding fiberwise
reflection is correctly defined since it does not depend on 2-torsion, so from here on
we’ll afford such abuse of notation.
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Remark 5.5. A quartic with isolated singularities cannot have more
than three collinear singular points. The situation of three singular
points P1, P2 and P3 contained in some line L ⊂ X is possible, but such
lines do not contribute to Bir(X) since they cannot be non-canonical
centers (see [27] or use Lemma 4.4). Moreover, if one defines an invo-
lution τL in this situation as in Example 5.3 with respect to the points
P1 and P2, it will coincide with the involution τP3 .

Remark 5.6. Note that an involution τP also acts as a fiberwise reflec-
tion on any elliptic fibration associated with a line L ⊂ X contain-
ing P (one should reflect in the section −EP

2
, where EP is a section

corresponding to P ).

One of the main results of [27] states (see Theorem 1.2) that the
involutions listed in Examples 5.1, 5.2 and 5.3 together with Aut(X)
generate the group Bir(X). On the other hand, it is easy to see that
there may appear relations between these generators.

Example 5.7. Let P1, P2, P3 ∈ SingX be collinear. Then the line
L = 〈P1, P2, P3〉 is contained in X, and all the involutions τPi

act
fiberwise on the corresponding elliptic fibration. Hence one has

(5.8) (τP1 ◦ τP2 ◦ τP3)
2 = id

by the well-known relation between three reflections on an elliptic curve
(see, for example, [25, Chapter I, 2.3]).

Example 5.9. Let P1, P2 ∈ SingX; let L ⊂ X be a line containing P1

and P2 but no other singular points of X. Then all three involutions
τL, τP1 and τP2 act fiberwise on the elliptic fibration associated to L,
so that

(5.10) (τP1 ◦ τP2 ◦ τL)2 = id.

Remark 5.11. Note that there are other relations that differ from 5.8
and 5.10 by a permutation of indices, but they are equivalent to 5.8
and 5.10 (modulo trivial relations τ 2

Pi
= τ 2

L = id).

One of the main goals of this paper is to show that relations 5.8
and 5.10 imply all relations in Bir(X) (up to trivial ones, see Theo-
rem 1.8). This will be proved in section 8.

6. Action of birational involutions

In this section we gather information about the action of birational
involutions τP and τL, i. e. describe the way the degrees and multiplic-
ities change under the action of these involutions.

12



We fix the following notations. Let χ : X 99K X be a birational
map, and M =M(χ) be a linear system of degree µ(χ) defined as in
section 3. For a subvariety Z ⊂ X we put νZ(χ) = multZM(χ).

Remark 6.1. Assume that a line L ⊂ X is not an Eckardt line, con-
tains a singular point P and at most one more singular point of X.
Then there is only a finite number of conics and lines in the fibers of a
projection ψ from L: if a fiber is reducible, then it either contains lines
intersecting L and different from L (by assumption there is only a finite
number of fibers of this type), or contains L, i. e. the corresponding
plane section has multiplicity at least 2 along L, which is possible for
an infinite number of plane sections only if L contains three singular
points of X by Lemma 4.4. Moreover, only a finite number of irre-
ducible residual cubic curves in plane sections passing through L has a
singular point at P , and in the case of two singular points of X lying
on L none of these irreducible cubic curves has a singular point on L
outside the singular points on X. Hence birational involutions τ̃P and

τ̃L (corresponding to τP , τL ∈ Bir(X)) of a variety X̃, obtained as a
blow-up of X at singular points lying on L and then a strict transform
of L, are regular up to codimension 2 since both a reflection and a
Galois involution are well defined in a smooth point of an irreducible
plane cubic.

Lemma 6.2. Let a line L ⊂ X contain the only singular point P of X.
Assume that L is not an Eckardt line. Then

µ(χ ◦ τL) = 11µ(χ)− 10νL(χ),

νL(χ ◦ τL) = 12µ(χ)− 11νL(χ),

νP (χ ◦ τL) = 6µ(χ)− 6νL(χ) + νP (χ).

Proof. The proof is reduced to the calculation of the action of a bira-
tional involution τ̃L corresponding to τL on a Picard group of a variety

X̃ obtained as a blow-up of P and then a strict transform of L. Note
that τ̃L is regular on X up to codimension 2 by Remark 6.1. The rest
of the calculation coincides with that of [21, Lemma 5.1.3]. �

Lemma 6.3. Let a line L ⊂ X contain exactly two singular points of
X, say, P1 and P2. Assume that L is not an Eckardt line. Then

µ(χ ◦ τL) = 5µ(χ)− 4νL(χ),

νL(χ ◦ τL) = 6µ(χ)− 5νL(χ),

νP1(χ ◦ τL) = 3µ(χ)− 3νL(χ) + νP2(χ),

νP2(χ ◦ τL) = 3µ(χ)− 3νL(χ) + νP1(χ).

13



Proof. Analogous to that of Lemma 6.2. �

Lemma 6.4. Let a line L ⊂ X contain the only singular point P of X.
Assume that L is not an Eckardt line. Then

µ(χ ◦ τP ) = 3µ(χ)− 2νP (χ),

νP (χ ◦ τP ) = 4µ(χ)− 3νP (χ),

νL(χ ◦ τP ) = µ(χ)− νP (χ) + νL(χ).

Proof. Note that τP preserves an elliptic fibration associated with L.
The rest is analogous to Lemma 6.2. �

Lemma 6.5. Let a line L ⊂ X contain exactly two singular points of
X, say, P and P1. Assume that L is not an Eckardt line. Then

µ(χ ◦ τP ) = 3µ(χ)− 2νP (χ),

νP (χ ◦ τP ) = 4µ(χ)− 3νP (χ),

νP1(χ ◦ τP ) = µ(χ)− νP (χ) + νL(χ),

νL(χ ◦ τP ) = µ(χ)− νP (χ) + νP1(χ).

Proof. Analogous to that of Lemma 6.4. �

Lemma 6.6. Let a line L ⊂ X contain three singular points of X,
say, P , P1 and P2. Assume that P , P1 and P2 are not Eckardt points.
Then

µ(χ ◦ τP ) = 3µ(χ)− 2νP (χ),

νP (χ ◦ τP ) = 4µ(χ)− 3νP (χ),

νP1(χ ◦ τP ) = µ(χ)− νP (χ) + νP2(χ),

νP2(χ ◦ τP ) = µ(χ)− νP (χ) + νP1(χ),

νL(χ ◦ τP ) = 2µ(χ)− 2νP (χ) + νL(χ).

Proof. Analogous to that of Lemma 6.4. We give a sketch to mention
some minor differences.

Let X̃ be a variety obtained as a blow-up of X in P , P1, P2 and
then a strict transform of L, and τ̃P — a corresponding (birational)

involution of X̃ (note that τ̃P is regular up to codimension 2 by 6.1).
Let h denote the class of a pull-back of a hyperplane section of X in

Pic (X̃), and let e, e1, e2 and eL denote the classes of (the preimages

of) exceptional divisors. Note that X̃ has a structure of an elliptic

fibration ψ : X̃ → P2. Let C be a general fiber of ψ, and S — a
preimage of a general line in P2. Then a kernel K of a restriction

map Pic (X̃) → Pic (C) is generated by h − e − e1 − e2 − eL and eL:
indeed, K is generated by a preimage of a general line in P2 (that is

14



h− e− e1− e2− eL) and divisors swept by the components of reducible
fibers; one of the latter is eL, and another is swept by conics and is
equivalent to h− 2e− e1− e2− eL since a general conic is contained in
a hyperplane section H ⊂ X tangent to X along L and multLH = 2
by Lemma 4.4. The remaining computations are analogous to those
of [21, Lemma 5.1.3]. Restricting to C, one gets

τ̃P
∗h = 3(e1 + e2)− h+m1(h− e− e1 − e2 − eL) +m2eL,

τ̃P
∗e = e1 + e2 − e+ n1(h− e− e1 − e2 − eL) + n2eL,

τ̃P
∗eL = eL + k1(h− e− e1 − e2 − eL) + k2eL,

τ̃P
∗e1 = e2 + l1(h− e− e1 − e2 − eL) + l2eL,

τ̃P
∗e2 = e1 + l1(h− e− e1 − e2 − eL) + l2eL.

Computing intersection numbers on S, one obtains that l1 = l2 = 0,
n2 = 0, n1 = 2, k1 = k2 = 0, m1 = 4, m2 = 2, and the statement
follows. �

7. Regularization

In this section we describe the cases when the birational involutions
of X become regular. These effects are analogous to regularization of
birational involutions of minimal cubic surfaces arising from Eckardt
points.

The following example shows that birational involutions of both
types may regularize on X.

Example 7.1 (cf. [12, 7.4.2]). Let X ⊂ P4 be given by equation

(7.2) w2q2(x, y, z, t) + q4(x, y, z, t) = 0,

where (x : y : z : t : w) are homogeneous coordinates in P4 and qi is a
form of degree i. Let P = (0 : 0 : 0 : 0 : 1); note that P is a singular
point on X, and X contains a cone q2 = q4 = 0 with a vertex at P .

Let L ⊂ X be a line passing through P such that L contains no
singular points of X except P . It is easy to see that the involution τP
is regular and acts as

ι : (x : y : z : t : w) 7→ (x : y : z : t : −w).

Moreover, let Π be a general plane passing through L, so that X|Π =
L∪C; then C is a nonsingular plane cubic, and P ∈ C is an inflection
point, so the involutions τL and τP coincide on C (and hence on X),
and so τL is also regular on X.

If q4 is general enough, P is a node and, moreover, the only singular
point on X. The latter implies that X is factorial by [3, Theorem 1.2]
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(in particular, X is birationally superrigid by Theorem 1.2 and the
previous argument).

If X is given by equation

w2(xy + zt)− (x3y + y4 + z4 + t4),

then X is singular exactly in three collinear (ordinary double) points:
P ′ = (1 : 0 : 0 : 0 : 1), P ′′ = (−1 : 0 : 0 : 0 : 1) and P . In particular,
X is factorial by [3, Theorem 1.2] (and hence birationally rigid by
Theorem 1.2).

Example 7.3. Let L ⊂ X be a line such that there are infinitely many
lines contained in X that intersect L in smooth points of X. Then the
involution τL is regular (provided that it is defined, i. e. L contains
one or two singular points of X). Indeed, assume that τL is not regu-
lar on X. Then there is a mobile linear system M ⊂ | − µKX | such
that L is a non-canonical center with respect to 1

µ
M (one can take

M = (τL)−1
∗ |O(1)|), i. e. multLM > µ. In particular, multPM > µ,

and hence all lines passing through P are contained in BsM, a con-
tradiction.

Next example shows that there are factorial nodal quartics contain-
ing lines of the type described in Example 7.3.

Example 7.4. Let X ⊂ P4 be given by equation

w3x+ wx(xy + zt) + (x4 + y4 + z4 + tz3) = 0.

Then P = (0 : 0 : 0 : 0 : 1) is a vertex of a two-dimensional cone
contained in X, and a node in P ′ = (0 : 0 : 0 : 1 : 0) is the only
singular point of X (in particular, X is factorial by [3, Theorem 1.2]).
The line L = 〈P, P ′〉 is contained in X and fits into the settings of
Example 7.3.

Remark 7.5. If P ∈ SingX is a point such that there are infinitely many
lines contained in X and passing through P , one could also argue as
in Example 7.3 using Theorem 4.2 to show that P cannot be a non-
canonical center and hence τP is regular.

We’ll see below that Examples 7.1 and 7.3 describe (at least to some
extent) the general situation.

Lemma 7.6. Let X have a singular Eckardt point (say, P ). Then X
is given by equation of type 7.2; moreover, any line L ⊂ X passing
through P contains either one or three singular points of X.
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Proof. Let (x : y : z : t : w) be homogeneous coordinates in P4 such
that P = (0 : 0 : 0 : 0 : 1). Then X is given by equation

(7.7) w2q2(x, y, z, t) + wq3(x, y, z, t) + q4(x, y, z, t) = 0,

where qi is a form of degree i.
Assume that q3 is not divisible by q2. The equation q2 = 0 defines a

nonsingular quadric surface in P = (w = 0) ' P3. By assumption the
curves cut out on this quadric by the equations q3 = 0 and q4 = 0 have
a common (irreducible) component F (so that K is a cone over F ).
By Lefschetz theorem degK must be divisible by 4; since degK =
degF 6 6, the only possible case is degF = 4, i. e. F is an irreducible
curve of type (2, 2). In the latter caseK is cut out onX by a hyperplane
(again by Lefschetz theorem), and hence F ⊂ P is contained in a plane,
a contradiction.

So q3 = q2 · l for some linear form l, and replacing w by w + l
2

we
may assume that q3 = 0 and K is given by equations q2 = q4 = 0.

Now assume that a line L ⊂ X passing through P contains a point
P ′ ∈ SingX different from P . Let P ′ = (x′ : y′ : z′ : t′ : w′). If w′ = 0,
then we may assume that P ′ = (1 : 0 : 0 : 0 : 0), so that y, z, t and
w are local coordinates in an affine neighborhood of P ′. Note that all
second partial derivatives of the left hand side of 7.2 with respect to w
and some other coordinate of y, z, t, w vanish at P ′ (since so does q2),
so P ′ cannot be an ordinary double point of X. Hence w′ 6= 0, and the
point

P ′′ = τP (P ′) = (x′ : y′ : z′ : t′ : −w′)
is different from P and P ′, lies on L and is singular on X. �

Now we’ll analyze the cases when the involutions τP and τL are reg-
ular.

Lemma 7.8. Let L ⊂ X be a line passing through one or two singular
points of X. Assume that L is not an Eckardt line. Then the involution
τL is not regular.

Proof. It follows from Lemma 6.2 in the case of one singular point on
L and from Lemma 6.3 in the case of two singular points. �

Lemma 7.9. Let P ∈ SingX. Then the involution τP is regular if and
only if P is an Eckardt point on X.

Proof. If P is an Eckardt point, τP is regular by Lemma 7.6 and Exam-
ple 7.1. Now assume that P is not an Eckardt point. Then a general
line L ⊂ P4 such that multP (X|L) > 3 is not contained in X and
multP (X|L) = 3. So there is a single intersection point PL ∈ X ∩ L
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different from P , and hence τP is not regular in P (equivalently, one
can see that the divisor D swept by such points PL maps to P under
the involution τP ). �

Remark 7.10. If P is a point such that there is a non-Eckardt line
L ⊂ X passing through P , then one can use Lemmas 6.4, 6.5 and 6.6
to derive that τP is non-regular. Still the direct proof of Lemma 7.9
seems more convenient to avoid looking for such line passing through P .

Combining the previous results we get the following.

Corollary 7.11. An involution τL is regular if and only if L is an
Eckardt line.

Proof. If L is an Eckardt line, then either L contains a singular Eckardt
point, or there are infinitely many lines contained in X that intersect L
in smooth points of X. In the former case τL is regular by Remark 7.5
or by Lemma 7.6 and Example 7.1. In the latter case τL is regular by
Example 7.3.

If L is not an Eckardt line, then τL is not regular by Lemma 7.8. �

Corollary 7.11 and Lemma 7.9 prove Proposition 1.6.

Remark 7.12. In [27] it was proved that a non-canonical center on X is
either a singular point or a line containing one or two singular points.
As we have seen in this section, the involutions τP and τL are untwisting
involutions for a point P and a line L, respectively, only if P is not an
Eckardt point and L is not an Eckardt line. It means that to derive
Theorem 1.2 from the results of [27] one should check that Eckardt
points and lines cannot be non-canonical centers. This is done below.

An Eckardt point cannot be a maximal center by Remark 7.5. Let L
be an Eckardt line. Then either L contains a singular Eckardt point P ,
or there are infinitely many lines contained in X that intersect L in
smooth points of X. Assume that L is a non-canonical center with re-
spect to a normalized mobile linear system 1

µ
M. In the former case take

a general plane section containing L and some line passing through P .
Then a residual conic Q (that is possibly reducible but does not con-
tain L as a component) intersects L in two smooth points of X (since L
cannot contain exactly two singular points by Lemma 7.6) and hence is
contained in BsM, that is a contradiction. In the latter case a general
line intersecting L is contained in BsM, that is also a contradiction.

18



8. Non-canonical centers

¿From now on we denote byM the linear system obtained as in sec-
tion 3. Recall that by a non-canonical center we mean a non-canonical
center of 1

µ
M.

Part of the results of [27] can be stated as follows.

Theorem 8.1 (see [27, Theorem 17]). A non-canonical center on X
is either a singular point or a line passing through one or two singular
points.

One of the purposes of this section is to prove the following.

Proposition 8.2. Assume that there are at least two non-canonical
centers appearing simultaneously on X. Then there are exactly two
of them, and these are either two singular points connected by a line
contained in X, or a singular point and a line containing exactly one
more singular point.

Remark 8.3. An ordinary double point P is a non-canonical center
with respect to 1

µ
M if and only if multPM > µ by Theorem 4.2. The

same holds for a line L ⊂ X (or, more generally, for any curve not
contained in a singular locus of an ambient variety), since the only
extremal contraction with center in L is isomorphic to a blow-up of X
in L in a neighborhood of a general point of L.

Lemma 8.4. If the points P1 and P2 are non-canonical centers, then
a line L = 〈P1, P2〉 is contained in X.

Proof. Assume that L 6⊂ X. Let H ′ be a general member of the
linear system |H − P1 − P2|. Then H ′ does not contain the base
curves of M and for general D1, D2 ∈ M the local intersection in-
dex (D1D2H

′)Pi
> 2µ2 by Theorem 4.2. Hence

4µ2 = D1D2H
′ > (D1D1H

′)P1 + (D1D2H
′)P2 > 2µ2 + 2µ2 = 4µ2,

a contradiction. �

Lemma 8.5. If the points P1, P2 and P3 are non-canonical centers
then they are not collinear.

Proof. Assume that they are. By Lemma 8.4 the line L = 〈P1, P2, P3〉
is contained in X. Let Π be a general two-dimensional plane passing
through L, and X|Π = L ∪ C. Since C 6⊂ BsM, by Theorem 4.2 for a
general D ∈M

3µ = CD >
∑3

i=1
multPi

M >
∑3

i=1
µ = 3µ,

a contradiction. �
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Lemma 8.6. If the points P1 and P2 are non-canonical centers, then
the line L = 〈P1, P2〉 is not a non-canonical center.

Proof. Similar to that of Lemma 8.5. �

Lemma 8.7. If a point P and a line L 3 P are non-canonical centers,
then L contains exactly one more singular point.

Proof. Similar to that of Lemma 8.5 (except for “exactly” that is im-
plied by Theorem 8.1). �

Lemma 8.8. Two skew lines cannot be non-canonical centers.

Proof. Assume that there exist skew lines L1 and L2 that are non-
canonical centers. Let Π be a general plane passing through L1, and
X|Π = L1∪C. Let C∩L1 = {P1, P2, P3}, C∩L2 = P . By Theorem 8.1
at least one of the points P1, P2, P3 is a nonsingular point of X. Since
P is also nonsingular and C 6⊂ BsM, for a general D ∈M we have

3µ = CD > multPM+
∑3

i=1
multPi

M > µ+ µ+
µ

2
+
µ

2
= 3µ,

a contradiction. �

Lemma 8.9. Let the points P1 and P2 be non-canonical centers. As-
sume that a line L = 〈P1, P2〉 does not pass through other singular
points of X. Then L is not an Eckardt line.

Proof. Assume that it is (note that L ⊂ X by Lemma 8.4). Let L′ ⊂ X
be a general line intersecting L, Π = 〈L,L′〉 and let Π|X = L+L′+Q,
where L 6⊂ Q by Lemma 4.4. Then Q is a (possibly reducible) conic
passing through P1 and P2, so by Theorem 4.2 it is contained in BsM,
a contradiction. �

Lemma 8.10. Let the points P1 and P2 be non-canonical centers. As-
sume that a line L = 〈P1, P2〉 contains a third singular point P3. Then
P3 is not an Eckardt point.

Proof. Analogous to that of Lemma 8.9. Note that in this case a gen-
eral residual conic Q does not contain L because the cone of lines
passing through an Eckardt point is not contained in a hyperplane by
Lemma 7.6. �

The following statement will be one of the main tools to exclude con-
figurations of non-canonical centers. To state it we’ll use the following
notations.

Let the lines C1, . . . , Ck ⊂ X, 0 6 k 6 4, and the points P1, . . . , Pl ∈
SingX, l > 0, be contained in a plane Π0. Let

X|Π0
= d1C1 + . . .+ dkCk + . . .+ dmCm
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for some m 6 4, and

Π0 ∩ SingX = {P1, . . . , Pl, Pl+1, . . . , Pn}.

Let H be a general hyperplane section passing through Π0, so that

SingH = {P1, . . . , Pn, Pn+1, . . . , Pr},

where r > n (note that the inequality r > n can hold only if the
intersection X ∩Π0 has components with multiplicities greater than 1

by Lemma 4.6). Let π : X̃ → X be a sequence of blow-ups with
centers lying over the points P1, . . . , Pr such that the restriction π of

the morphism π to a strict transform H̃ of H is a minimal resolution
of H. Let Et

i be exceptional divisors of π such that π(Et
i ) = Pi for

1 6 i 6 r, 1 6 t 6 Ti; let Et
i , 1 6 i 6 r, 1 6 t 6 Ti, be components

of restrictions of divisors Et
i to H̃ (so that Et

i are prime exceptional
divisors of π with π(Et

i ) = Pi; note that Ti may be different from Ti);

finally, let C̃j be proper transforms of the curves Cj, 1 6 j 6 m.

Lemma 8.11. Let (·, ·) be the intersection form on NSQ(H̃). Let G be

a set that consists of all curves Et
i , l+1 6 i 6 r, and C̃j, k+1 6 j 6 m,

and G′ — a set of all curves Et
i , 1 6 i 6 l, and C̃j, 1 6 j 6 k. Assume

that the following condition holds:
(∗) the set G splits into a disjoint union G = G1 ∪ . . . ∪ Gp so that

for all 1 6 s 6 p the intersection form (·, ·) is negative semi-definite on
the subspace Ws generated by Gs, negative definite on each subspace of
Ws generated by all elements of Gp except one, and subspaces Ws are
pairwise orthogonal with respect to (·, ·).

Then all curves from G′ cannot appear simultaneously as non-
canonical centers on X.

Proof. Assume that they can. Let multCj
M = γj. Let H ′ be a general

hyperplane section passing through Π0; then H ′|H = C1 + . . . + Cm.
Since the singularities of H are Du Val of type A (see Lemmas 4.5
and 4.6), we have

π∗(H ′|H) = π−1(H ′|H) +
r∑
i=1

Ti∑
t=1

Et
i .

Let M = π−1M. Define νti to satisfy

M = π∗M−
r∑
i=1

Ti∑
t=1

νtiE
t
i .
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Note that since H has only Du Val singularities of type A, all divisors

Et
i

∣∣∣ eH are reduced, and hence Ti∑
t=1

Et
i

∣∣∣∣∣∣ eH
=

Ti∑
t=1

Et
i .

Let

M
∣∣ eH = F +

m∑
j=1

γjC̃j,

where F is a mobile divisor. Then

(8.12) F +
m∑
j=1

γjC̃j = M
∣∣ eH =

π∗M− r∑
i=1

Ti∑
t=1

νtiE
t
i

∣∣∣∣∣∣ eH
≡

≡ (π∗(µH ′))| eH −
r∑
i=1

Ti∑
t=1

νti E
t
i

∣∣∣ eH =

= π∗(µ H ′|H)−
r∑
i=1

Ti∑
t=1

νtiE
t
i =

= µπ−1(H ′|H) + µ
r∑
i=1

Ti∑
t=1

Et
i −

r∑
i=1

Ti∑
t=1

νtiE
t
i =

= µ
m∑
j=1

C̃j +
r∑
i=1

Ti∑
t=1

(µ− νti )Et
i .

Rewrite the equality 8.12 as

(8.13) F +
∑
i,t

κt
iE

t
i +
∑
j

θjC̃j ≡
∑
i′,t′

κt′

i′E
t′

i′ +
∑
j′

θj′C̃j′ ,

where all the coefficients κt
i , κt′

i′ , θj and θj′ are positive, and the sets
of summation indices of the right hand side and the left hand side are
disjoint. By assumption multPi

M > µ for 1 6 i 6 l; in particular,
νti > µ for 1 6 i 6 l. By assumption we also have γj > µ for 1 6 j 6 k.
(We don’t assume a priori that the inequalities νti 6 µ for l+ 1 6 i 6 r
and γj 6 µ for k + 1 6 j 6 m hold.) We do not exclude a possibility
that some summations in 8.13 are performed with respect to empty sets
of indices, but in any case the set of indices i′ (resp., j′) that appear on
the right hand side of 8.13 is contained in the set {l + 1, . . . , r} (resp.,
{k + 1, . . . ,m}) by the assumption on multiplicities. Condition (∗)
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implies that the intersection form is negative semi-definite on the space
W =

⊕
sWs, so by Lemma 4.3

(8.14) (F +
∑

κt
iE

t
i +
∑

θjC̃j)(
∑

κt′

i′E
t′

i′ +
∑

θj′C̃j′) = 0.

The right hand side of the equality 8.13 is non-zero since an effective
divisor cannot be numerically trivial. By 8.14 self-intersection of the
right hand side of 8.13 is zero, so condition (∗) for any 1 6 s 6 p
either all curves from Gs appear on the right hand side of 8.13 with
non-zero coefficients, or no curve from Gs appears there at all. The

union
⋃
i,tE

t
i ∪
⋃
j C̃j is connected, and by condition (∗) any two curves

D1 ∈ Gs1 , D2 ∈ Gs2 are disjoint for s1 6= s2. Hence for any 1 6 s 6 p
there are curves D ∈ Gs and D′ ∈ G′ such that D intersects D′. Since
all the curves D′ ∈ G′ appear on the left hand side of 8.13 with non-zero
coefficients, the intersection of the left hand side and the right hand
side of 8.13 is strictly positive, hence a contradiction with 8.14. �

Remark 8.15. Lemma 8.11 will be applied to normal crossing config-
urations of nonsingular rational curves on K3-surfaces. Such curve is
a (−2)-curve, so the properties of the corresponding intersection form
depend only on the structure of a dual graph (and the condition of
Lemma 8.11 is equivalent to the requirement that all connected com-
ponents of a dual graph are subgraphs of affine Dynkine diagrams).
To describe such graphs we’ll use the standard notation for usual and
affine Dynkine diagrams (see, for example, [22]).

Corollary 8.16. Three points cannot appear simultaneously as non-
canonical centers on X.

Proof. Assume that the points P1, P2 and P3 are non-canonical centers.
By Lemma 8.5 they are not collinear, and by Lemma 8.4 the lines
Lij = 〈Pi, Pj〉 are contained in X. Let Π0 = 〈P1, P2, P3〉. Then X|Π0

=
L12 + L23 + L13 + L, where L is a line (possibly coinciding with one of

the lines Lij). Let π : H̃ → H be a minimal resolution of singularities
of a general hyperplane section H passing through Π0. Let a collection
G consist of proper transforms of L and Lij, and of all exceptional
curves of π except those that lie over the points Pi. Let Γ be a dual
graph of G.

If L coincides with one of the lines Lij, say, with L12, then by Lem-
mas 4.5 and 4.6 the surface H has at worst A2 singularities at P1 and
P2 and A1 singularities at P3 and possibly at one more point P ∈ L12.
One easily checks that the only non single-point component of Γ is of
type A2.
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If L coincides with none of the lines Lij but passes through one of
their intersection points Pi, say, through P1, then by Lemma 4.5 the
surface H has at worst A2 singularity at P1, singularities of type A1 at
the points P2 and P3 and possibly one more A1 singularity at a point
P = L∩L23 (if X itself is singular at P ). So Γ is a union of two single-
point graphs with a graph of type A3 or A2, depending on whether X
is singular at P or not.

If L passes through none of the points Pi, then by Lemma 4.5 all
singularities of H are of type A1, and Γ is a subgraph of a graph of

type E
(1)
6 .

In any case the intersection form on the subspace W ⊂ NS1
Q(H̃),

generated by G, satisfies the conditions of Lemma 8.11, hence P1, P2

and P3 do not appear simultaneously as non-canonical centers. �

Corollary 8.17. Two lines cannot appear simultaneously as non-
canonical centers on X.

Proof. Assume that the lines L1 and L2 are non-canonical centers. By
lemma 8.8 they are coplanar. Let Π0 = 〈L1, L2〉. Then X|Π0

= L1 +

L2 + Q, where Q is a (possibly reducible) conic. Let π : H̃ → H be
a minimal resolution of singularities of a general hyperplane section H
passing through Π0. Let a collection G consist of proper transforms of
the components of Q and all exceptional curves of π. Let Γ be a dual
graph.

If the conic Q is irreducible, then the only non single-point compo-
nent of Γ (such a component exists if Q contains singularities of X)

is a subgraph of a graph of type D5 or D
(1)
4 , depending on whether

Q passes through the point P = L1 ∩ L2 or not (in the former case
by Lemma 4.5 there are at most two singularities of type A1 and one
of type A2 on Q ⊂ H, and in the latter case there are at most four
singularities of type A1).

If Q = L3 +L4, L3 6= L4, L3 63 P , L4 63 P and the point P ′ = L3∩L4

lies neither on L1 nor on L2, then by Lemma 4.5 the surface H has
only A1 singularities, and the only non single-point component of Γ is

a subgraph of a graph of type D
(1)
6 or D

(1)
5 depending on whether the

point P ′ = L3 ∩ L4 is singular on X or not.
If Q = L3 +L4, L3 6= L4, L3 63 P , L4 63 P and the point P ′ = L3∩L4

lies on L1, then by Lemma 4.5 the surface H has only A1 singularities
except for a possible A2 singularity at P ′, and the only non single-point
component of Γ is a subgraph of a graph of type E6.

If Q = L3 + L4, L3 6= L1, L3 6= L2, L3 3 P , L4 63 P , then by
Lemma 4.5 the surface H has only A1 singularities except for a possible
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singularity of type A2 at the point P , and the only non single-point
component of Γ is a subgraph of a graph of type D7.

If Q = L3 + L4, the lines Li are pairwise distinct for 1 6 i 6 4, and
L3, L4 3 P , then by Lemma 4.5 the surface H has the only singularity
at the point P and this singularity is at most A3, so the only non
single-point component of Γ is a subgraph of a graph of type D5.

If Q = 2L, L 63 P , then by Lemmas 4.5 and 4.6 the surface H has
at most A2 singularities at the points L ∩ Li and possibly one more
singularity of type A1 at some point P ′ ∈ L; the only non single-point
component of Γ is a subgraph of a graph of type E6.

If Q = 2L, L 6= Li, L 3 P , then by Lemmas 4.5 and 4.6 the surface
H has at most A3 singularity at the point P and at most two singular-
ities of type A1 at some points P ′, P ′′ ∈ L; the only non single-point
component of Γ is a subgraph of a graph of type D6.

If Q = L1 +L, L 63 P , then by Lemmas 4.5 and 4.6 the surface H has
at most A2 singularities at the points P and P ′ = L ∩ L1 and possibly
one more singularity of type A1 at some point P ′′ ∈ L1; the graph Γ
has at most two non single-point components, one of them of type A2

and the other of type Ak with k 6 4.
Finally, if Q = L1 + L, L 3 P (L may coincide with L1 or L2), then

by Lemmas 4.5 and 4.6 the surface H has at most A3 singularity at the
point P (and at most A2 singularities on multiple lines, the case of A2

arising only if L = L1), and all non single-point components of Γ are
of type Ak with k 6 4.

In any case the intersection form on the subspace W ⊂ NS1
Q(H̃),

generated by G, satisfies the conditions of Lemma 8.11, hence L1 and
L2 do not appear simultaneously as non-canonical centers. �

Corollary 8.18. A line and a point outside it cannot appear simulta-
neously as non-canonical centers on X.

Proof. Assume that a line L and a point P 6∈ L are non-canonical

centers. Let Π0 = 〈L, P 〉, X|Π0
= L + C. Let π : H̃ → H be a

minimal resolution of singularities of a general hyperplane section H
passing through Π0. Let a collection G consist of proper transforms of
components of C and all exceptional curves of π except those that lie
over P . Let Γ be a dual graph.

If C is an irreducible cubic6 (singular at P ), then H has singularities
of type A1, and Γ is a subgraph of a graph of type D4.

6In this case one can also argue as follows, avoiding the use of Lemma 8.11: if
L and P are non-canonical centers, after an involution τP the curve C becomes a
non-canonical center that is impossible by Theorem 8.1.
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If C = Q + L1, where Q is an irreducible conic, then L1 3 P (in
particular, L1 6= L), and the only non single-point component of Γ (if
any) is a subgraph of a graph of type D6.

If C = L1 + L2 + L3 and the lines L, L1, L2 and L3 are pairwise
distinct and the latter three lines pass through the point P , then by
Lemma 4.5 the surface H has only singularities of type A1 outside P ,
and Γ has at most three non single-point components, each of them of
type A2.

If C = L1 +L2 +L3, the lines L, L1, L2 and L3 are pairwise distinct,
L1 and L2 pass through P , while L3 passes through the intersection
point P1 = L ∩ L1, then by Lemma 4.5 the surface H has only A1

singularities except for a possible A2 singularity at the point P1, and
the only non single-point component of Γ is a subgraph of a graph of
type D7.

If C = L1 + L2 + L3, the lines L, L1, L2 are L3 pairwise distinct,
L1 and L2 pass through P , and L3 passes neither through P , nor
through the intersection points of the lines L and L1 or L and L2, then
by Lemma 4.5 the surface H has only A1 singularities, and the only

non single-point component of Γ is a subgraph of a graph of type E
(1)
7 .

If C = 2L1 +L2, P 6∈ L2 and L2 6= L, then the surface H has only A1

singularities except for possible A2 singularities at P and P1 = L∩L1,
and the only component of Γ is a subgraph of a graph of type E7.

If C = 2L + L1, P ∈ L2, L2 6= L, then Γ has at most two non
single-point components, each of them of type Ak with k 6 4.

If C = 2L1 +L, then the only non single-point component of Γ is of
type Ak with k 6 5.

If C = 3L1, then the only non single-point component of Γ is of type
Ak with k 6 6.

In any case the intersection form on the subspace W ⊂ NS1
Q(H̃),

generated by G, satisfies the conditions of Lemma 8.11, hence L and
P do not appear simultaneously as non-canonical centers. �

Proof of Proposition 8.2. By Theorem 8.1 all non-canonical centers are
either lines or singular points. If one of the centers is a line L, then
by Corollary 8.17 all other non-canonical centers are points, and by
Corollary 8.18 these points lie on L; finally, by Lemma 8.6 there can be
at most one such point, and by Lemma 8.7 the line L contains exactly
two singular points. If all non-canonical centers are points, then by
Corollary 8.16 there are only two of them, and by Lemma 8.4 they lie
on a line contained in X. �

Remark 8.19. The statement of Proposition 8.2 (as well as all previous
statements) remains true if instead of two non-canonical centers one
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considers a center of non-canonical singularities and a center of strictly
canonical singularities of M.

Proposition 8.2 (or rather Remark 8.19) implies Theorem 1.8 using
the calculations of Lemmas 6.3, 6.5 and 6.6 in a standard way (see [25,
Chapter V, §7] or [21, 3.2.4] for a very detailed proof). Note that
Lemmas 8.9 and 8.10 ensure that the calculations of the former Lemmas
are applicable, i. e. that for two points P1 and P2 that are non-canonical
centers the line L = 〈P1, P2〉 is not an Eckardt line if L does not
contain a third singular point, and that the third singular point is not
an Eckardt point if it does.

9. Algebraically non-closed fields

One of the results of [27] (namely, [27, Theorem 5]) states that the
main theorems of [27] (birational rigidity of X and description of gener-
ators of Bir(X)) hold over algebraically non-closed field k of character-
istic 0 as well as over C. Unfortunately, there is a gap in the proof (the
fact that three conjugate points cannot form a non-canonical center is
derived from the statement that even two points cannot, and this is
not true, see Example 9.2 below). The aim of this section is to provide
a patch to the proof.

Example 9.1 (cf. [25, Chapter V, 1.4]). Let P1, P2 ∈ SingX
k

be two
points contained in a line L ⊂ X

k
. Let E be a section of the associated

elliptic fibration arising from the line L. Take a fiberwise reflection in
the section E, and denote the corresponding birational involution of
X

k
by τP1P2 . If P1 and P2 are both non-canonical centers, then τP1P2

untwists both of them (see Lemma 8.9 and Lemma 9.4 below). On the
other hand, starting with a linear system |O(1)| and taking a strict
transform with respect to τP1P2 : X

k
99K X

k
, one obtains a mobile

linear system M such that P1 and P2 are non-canonical centers with
respect to 1

µ
M, provided that τP1P2 is not regular. If X is general

enough so that L is not an Eckardt line, Lemma 9.4 implies that the
involution τP1P2 is indeed non-regular.

Example 9.2. Assume that singular point P1 and P2 are conjugate
(i. e. {P1, P2} is a k-point ofX of degree 2), so that the line L = 〈P1, P2〉
is defined over k. Then the involution τP1P2 is also defined over k. In
particular, {P1, P2} can be a non-canonical center on X (provided that
X is general enough).

Remark 9.3. In the settings of Example 9.2 the line L is defined over k,
and so is the involution τL. One has

τP1P2 = τP1 ◦ τL ◦ τP2 .
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Lemma 9.4. Let a line L ⊂ X contain exactly two singular points P1

and P2 of X
k
. Assume that L is not an Eckardt line. Then

µ(χ ◦ τP1P2) = 13µ(χ)− 6νP1(χ)− 6νP2(χ),

νP1(χ ◦ τP1P2) = 14µ(χ)− 7νP1(χ)− 6νP2(χ),

νP2(χ ◦ τP1P2) = 14µ(χ)− 6νP1(χ)− 7νP2(χ),

νL(χ ◦ τP1P2L) = 8µ(χ)− 4νP1(χ)− 4νP2(χ) + νL(χ).

Proof. Analogous to that of Lemma 6.2. Note that Remark 6.1 is also
applicable in this case. �

Lemma 9.4 implies that a point {P1, P2} of degree 2 is a non-
canonical center with respect to some normalized mobile linear system
provided that the corresponding line L is contained in X and L is not
an Eckardt line. In this case the involution τP1P2 is an untwisting in-
volution for this center (again by Lemma 9.4). On the other hand,
{P1, P2} cannot be a maximal center if L is not contained in X by
Lemma 8.4, and also if L is an Eckardt line by Lemma 8.9. Finally,
Corollary 8.16 applied to X

k
implies the following.

Corollary 9.5. A k-point of degree d > 3 cannot be a non-canonical
center.

So the main statements of [27] (i. e. Theorem 1.2) really hold over k.
Moreover, the involutions τP1P2 described in Example 9.2 are needed
only in the proof, while one does not need to add them to the set of gen-
erators since they are expressible in terms of the involutions centered
in lines and points by Remark 9.3.
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