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Abstract

The framework of stochastic spectral analysis is explained. The central and initial
magnitude is the transition density function in a Hausdorff space. Free and perturbed
Feller operators are introduced. Spectral theoretical results can be obtained by com-
pactness, continuity in Kato-Feller norms, semiclassical and large coupling estimates. A
collection of results illustrates each possibility.

1 The framework of stochastic spectral analysis
The centre of this theory is a function
p:(0,00) x E x E = [0,00)

(E - second countable Hausdorff space). This function has different names depending on the
field of mathematics which is studied. In stochastic analysis it is a transition density function
of a Markov process, in the theory of partial differential equations it is called fundamental
solution. In operator theory it is an integral kernel of a semigroup. The following scheme
shows that p(f,z,y), t € (0,00),z,y € E, is the main link between operator theory and
stochastic analysis. The consequence is that one can use the theory of stochastic processes
to study the spectral behaviour of large classes of operators. On the other hand it directs the

interest in the theory of Markov processes to spectral analytic properties of their generators.
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Of course the whole theory is only interesting if p(¢, z,y) can not be estimated by the Wiener
density. On the other hand the assumptions on p(t, z,y) have to admit the use of stochastic
analysis. For that we (Demuth, van Casteren, 1989 and 1992) established the following Basic
Assumptions on Stochastic Spectral Analysis, shortly denoted as BASSA:

BASSA
1.Ezistence and Symmetry

Let (E, &) be a second countable locally compact Hausdorff space with Borel field £. A non-
negative Radon measure is assumed on E and denoted by dz. Let p be a continuous function
mapping (0,00) X E x E — [0,00) with

fP(tsz»y)dyS 1,
A

t>0,z€e FLACE and

/Ep(s, z,u)p(t,u,y)du=p(s+t,z,y)

Moreover p i3 assumed to be symmelric, i.e.

p(t’ z,y) = p(ta Y, 3)

for all t>0 and all z, y € E.

£2.Continuity

' Let Co, be the set of continuous functions vanishing at infinity, For any f € C, and any
z €EF we assume

gi_%/f(y)p(t,x,y) dy= f(z)

)

8. Feller property

For any f € C,, we assume that the function

s = [ 70)p(t2,4) dy € CuolE)

* Under these assumptions exists a strong Markov process (Ry,Sy, F, Pr,w(t)) with the
following properties: '

The one-dimensional distribution is

Pe(w(®) € B) = [ plti2,1)dy



t > 0, B Borel subset of E. Its sample paths are Pp-almost surely right continuous and
possess Pp-almost sure left hand limits in E, and they start in w{0) = z. The free Feller
operator Kj is then the L2-generator of the Feller semigroup determined by p(t, z,¥), i.e.

(™5 @) = Exl f(w(®)} = [ 262, )f(0) dy

and the free resolvents are given by

[(Ko+a) ™ f)(@) = [ e Bu{ f(u(a))} ds

where a is strictly positive. The class of free Feller operators contains a variety of opera-
tors: second order elliptic differential operators with variable unbounded coefficients, Laplace
Beltrami operators on locally finite Riemannian manifolds, pseudo-differential operators, rel-
ativistic Hamiltonians of quantum mechanics. Feller operators are free Feller operators to-
gether with a regular or singular perturbation. They can be introduced naturally by studying
the properties of

Eo{e™ Jo VO r0(1))} =i (By(2) ) (a)

where V is a real-valued function on E. Py (¢} is a strongly continuous, quasi-bounded semi-
group on L?(E) with the selfadjoint generator Ko4-V if V is a Kato-Feller potential, i.e. if
V =V} — V_ satisfies

limg sup / ds E{V_(w(s)) + xB(w(s)V4(w(s)))} =

where B is a compact subset of E. Moreover, Py(t) is an integral operator and its kernel has
the explicit representation

(e—t(Ko-i-V)) (.’L’, y) — Eg,t{e— j;: V(w(a)) da}

where E¥*{ } is the conditional Feller expectation. Instead of finite V, one can also include
infinitely high parts of V. Let Vi (z) = 1r(z)8 where I is some closed subset of E; f is a
positive parameter tending to infinity. Let Spr = Sp(w) be the penetration time of w in T,
ie.

Sp = inf{r>0: jo " 1r(w(s) ds > 0}
Then

Ey (e~ Jo V-0l de s 00 S0 s ) f(w(t)))



restricted to L?(X), £ = E\T, is a Feller semigroup. Its generator is denoted by (Ko+V_)g.
Alltogether we have the following integral kernel of regularly and singularly perturbed Feller

semigroups:
(et Kot VIn) (2, y) = EY¢ (e Jo V-0tNd g 5 )
and

s— lim e—i(Ko-i-V-+ﬁlr')f = e-f(KO'i'V—)Ef
B—reo

f € L?(Z). Coming back to our framework p(z,t,y), given by BASSA, determines the free
Feller semigroup, the class of free Feller operators, the corresponding Markov process. The
expectation of the process provides perturbations of K. In all the cases the semigroups
and resolvents are integral operators. Their kernels have explicit representations in terms of

conditional Feller measures.

2 Principle spectral theoretical results

Assume always BASSA,| two Kato-Feller potentials V and W, and the singularity region I' as
described above. Then there are several possibilities to study the spectral data of the Feller

operators determined by the investigation of resolvent or semigroup differences.

Compactness: It is possible to find conditions on p, V, W or T such that the differences

e-—t(Ko + V) _ e—t(Ko + w) ,

(Ko+V + @)™t = (Ko+W +a)7,

Je—tEo+V) _ e"f(Ko-i-V)SJ,

J(Ko+V +a)™! = (Ko+W + a)g'J

(where J is defined by Jf := f 15, & = E\I, I singularity region) are trace class, Hilbert-
Schmidt, or compact operators. The conditions link always the density function p(t,z,y)
with V, W, or I. In order to verify these conditions one needs more information on p.Very

often it is sufficient to have the L!-L® smoothing, i.e.

supp(t,z,y) < oo.
zy



Moreover it is often very useful that the perturbed kernels satisfy

e KotV (z,y) < ce®p2(t,2,y) sup p/A(t,3,y)
z,yER

Examples of results are given in the next section.

Continuity in V: For any Kato-Feller potential the Kato-Feller norm

1
Wik = sup [ do B {V(w(s))}

exists, Then the resolvent difference for regular resolvent values a, a large enough, can be
estimated by this Kato-Feller-norm

1(Ko+V +a)! - (Ko+W +a)7!|| < ¢V - Wkr

For applications it is important that we treat here the operator norm. That can be used
to study also the behaviour of these resolvents in the limiting absorption case. Let ¢ be a
nonvanishing continuous function mapping E into R4 with ¢! < 1. For special real positive
values A it turns out that

sup I~ {(Ko+V = Atie) ™ — (KodW = A+ie) o™ || < el (V- W)ellkr .
€ ’

Again the operator norm (in weighted L?-spaces) is studied. That implies consequences for

any spectral property depending on the resolvents near the real axis.

Semiclassical limits: As explained in section 1 one has explicit representations for the
kernels of the semigroups e~t(Xo+V) That remains true if we introduce a parameter hZ, i.e.
if we study generators of the form 4% K+ V. For certain potentials the behaviour of

et Ko V) _ (A Ko+ W)
for small % can be studied.

Large coupling behaviour: The singularly perturbed semigroup e~*¥o +V-)z was obtained

by limits of semigroups the generators of which have finite potential heights

e—t(KO 'i' V- 4+ IG 1]") .

The operator resolvent norm is
[J(Ko+V- + B1r)™" = ((Ko+V)z +a)7 ' J|| = f(B)

f(B) is mainly determined by
o o (e s
TELD
where Sr is the penetration time of I'. For certain boundaries §I' the last term can be

estimated uniformly in x.



3 Collection of results

In order to illustrate the kind of conditions typical in stochastic spectral analysis we collect
some results concerning the principles mentioned in the preceding section. We always assume
BASSA, Kato-Feller potentials and closed singularity regions I'. Proofs are omitted. They
are given in the articles referred. Hints are not given because it seems to be unmodest to

mention always our names.
Compactness
Proposition 1 : The semigroup difference
e—t(Ko-i-V) _ e—tKo
s a Hilbert-Schmidt-operator if
s:g p(t,z,y) < o0

and if

/:td“/dzjdwv(x)l|V(y)lp(/\,z,y) < o0

Proposition 2 : The resolvent difference
(Ko+V+a)™! — (Ko+a)™*
8 a trace class operalor if

[o o] A
/ A e f dy E¥M e~ Jo Vi dy v ) < oo
1]

Proposition 3 : For singular pertubations the difference

e~ FKolgyr _ o-tKo
is Hilbert-Schmidt if
3;11}’) p(z,t,y) < oo
and if
/ dz [Pr{St < t; w(0) = z}]? < oo
The singular semigroup difference is a trace class operator if
/dz [Pe{Sr < t,w(0) =z}]"/? < =
(see also Stollmann 1992).



Continuity in V

Proposition 4 : Ko+V and Ko+W are selfadjoint operators in L*(E). Let Ey(.), Ew(.)
denote its spectral measures. Let y be a non-vanishing Borel-function (typically
y(z) = (1+]2]%)°, > 0). Let

[(Ko+ a)Hef’)(2) < clo(a)?
for all z € E. For one of the potentials, take V, we assume
sup [l (Ko+V + A4 i0) 197! < 00
A€h

where A = (o, ) is an interval in Ry, a, B no eigenvalues of KotV or Ko+W. Let
(V =W)?||xF be sufficiently small, such that the last estimate holds also for Ko+W. Then
Jor Ao € A we get

» dEV(/\)_dEW(/\)] »
u“’ A o Y

The constant c(x,,q) can be estimated quantitatively.

(V- w)y? “KF

< €(ag,
Ao (Xq.0)

Proposition 5 : Let V and W be Kato-Feller potentials in L'(E). Assume
] dX de™**sup p(), 2, z) < co.
0 oz
Then the wave operators

Qu(KotV, Ko) =8 — lim tFotV)g—itKop (g )

t—too

and Qi(Ko-i-W, Ky) ezist. (Py(Ko)-projection operator onto the absolutely continuous sub-
space of Ko). Define the scattering operator by

SV = Q:_(Ko-l—v, KQ)Q_ (Ko-i-V, I(o)

Both Sy and Sw commutes with Ko, providing that the corresponding scattering matrices
Sv(A), Sw(A) are well defined. Assume that for some Ay

Ve (Kot W — X0 — i0)'p71|| < 1

Let sup, lp(z)V(z)| < oo and sup, |¢(z)W(z)| < co. The operator norm of the scattering
matrices is a norm in the fiber of the spectral resolution of the absolutely continuous subspace
of Ko. This norm can be estimated as

1v (%) = Swll < e(ho) |V - W) .



Semiclassical limits

Proposition 8 : Let B be a compact set in E and (h®Ko + V)p the Feller operator with
Dirichlet boundary conditions on § B. Assume positive V such that

V=Vigr+Vlir

Vip 2 71r

T' C B, i.e. Vislarger than a constanty onT. Let ;2 be the ground state of (h*Ko+V)p,
i.e. '

((h*Ko+ V)B¥we) () = Epathya (2)
Let sup, , p(t,z,y) < 00 and Ep = h2E. Then
|12 (2)] < €F Ep{e T Turle))

where Ty r(w) := meas{s, 8 < t,w(s) € '} is the spending time of the trajectory w in T'. If
we consider ¢ in a subset I' C T with dist(T, B\T') > r, a uniform estimate is possible:

[na(2)| < € Bofe™ ™1 The0)(4))
where B(r) is a ball of radius r with centre in the origin. The right hand side tends to zero
as h = 0. A rate of convergence can be given for special Kj.
Large coupling limits

Proposition 7 : Let V = 0 and compare Kg = Ko + flr with (Ko)g, £ = E\I' for large
parameters 3. Denote again Jf = f tx. Then

[Je~tKe — ¢~HKo)z || < sup Ex{e P Ty > 0}
T€

(T:r is the spending time defined in Proposition 6)
Remark: To estimate the Laplace transform of the spending time (or occupation time) is a

difficult problem. If Ko = —A in L?(R") it is done recently by Demuth, Kirsch, Mc Gillivray
(1993)and explained in another contribution of these proceedings.
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