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Cayley Surfaces in Affine Differential Goometry

by Katsumi Nomizu and Ulrich Pinkall

A Cayley surface in affine.space R3 is given as the graph of a cubic

polynomial, say, z = xy + y3/6». This ruled surface is an Improper affine
sphere which is also one of the homogeneous nondegenerate affine
surfaces (see [1], p.243, also [2], Chapter 12).

- One of the further properties of the surface is that its (nonzero) cubic
form is paraliel.relative to the induced affine connection. The purpose of
this paper is to show that this property alone characterizes the Cayley

surface up to an equiaffine transformation in RS, Namoly, we prove the
following

Theorem. Lot M2 m_nongoqmmmmmﬂ R3 . Let v bethe
Induced affine connection and et h be the fundamental form (affine

metric). If 92h=0but vh= 0, thenM? is congruent to (an open subset
of) the Cavlev surface by an equiaffine transformation of R®.

We shall follow the terminology and notation 1n.[3] and (4], which
provide a modern introduction to affine differential geometry. A quick
review of the basic notions and facts is provided in Section |. In Section
2, we study the behavior of the cubic form for dimension 2. In Section 3

we show that the assumption vZh =0 but Vh= 0 Implies that the induced
connection is flat and, consequently, the surface s the graph of a certain
function z =F(x,y) such that the Hessian determinant is + !. In Section
4 we discuss the reduction of the Hessian matrix to a simple form by an’
equiaffine change of the‘coordinates system x,y. This argument Ar'nakos'
use of an inner product of signature (-,+.+) in the space of symmetric

2 x 2 matrices. Once we obtain the function F from the reduced Hessian
matrix, our surface s shown to be equiaffinely congruent to the standard
Cayley surface,



1. Affine surfaces. .

Let f be an immersion of an n-dimensional differentiable manifold M"
into an (n+1 )-dimensional affiné space RN with a fixed parallel volume
sloment w. Choose any transversal vector field £ on M. For vector
fields X and Y, we may write ' ‘

Dy fx(Y) = fu(VxY) + h(X,Y)E

DyE = - fe(SX) + 7(X)E, _ '
where ¢ is the induced affine connection on M™, the bilinear symmetric
tensor h the fundamental form, the (1,1) tensor S the shape operator,
and T the transversal connection form. We also introduce a volume
element 6 on M" by setting |

9()(1,... X )= w (X,,...,Xn,ﬁ)
for any tangent vectors X, yoeer Xp,

Whether h is degenerate or nondegenerate is independent of the choice
- of £. When h is nondegensrate, we say that the hypersurface M7 is
nondegenerate, It is a fundamental fact in classical affine differential
geometry that if MM is nondegenerate, then we cah choose £ uniquely such
that

1) = =0, which 1mplies that & is paralle] relative to %

2) the volume element for h coincides with e.

The uniquely determined £ is called the affine normal and the '
corresponding h the affine metric. The induced connection ¢ and the
volume element 8 together define an equiaffine structure on MM,

The covariant differential € = 9h s called the cubic form of MP, It is
related to the difference tensor K between the induced connection -9 and
the Levi-Civita connection ¥ for the affine metric. If KyY = 9yY - UyY,
then we have

h(KyY,2) = - % C('X,Y,--Z) for any tangent vectors X,Y,Z.

Thus C =0'if and only if v and ¥ coincide.

Because of condition 2) above, we have apolarity: trace Ky = 0.

If we express h and C by their components relative to any basis in the
tangent space or any local coordinate system, apolarity can be expressed
by o



}ZhUCUk=0,vwhere‘ [h”]=[h1j]-l. o

It is a classical theorem due to Pick and Berwald that a nondegenerate
hypersurface with vanishing cubic form is a quadric. This result has been
extended. See [S] for the proof including the classical case.

2. Cubic form on an affine surface.

We now consider exclvusively nondegenerate affine surfaces M in R3.
We wish to study the behavior of the cublc form in more detail. Some of.
the information given below appears in [6]. '

Let V be a 2-dimensional real vector space with a nondegenerate inner
product h. Let C be a nonzero cubic form, namely, a 3-linear symmetric
function V x V x ¥, which satisfies the apollar1ty condition relative to h. By
a nult direction of C, we mean a direction of a vector X = 0 such that
C(X,X,X) =0. ' . o S

Lemma 1. If his elliptic (that is, positive-definite), then C has three
distinct null directions, ‘
~ Proof. Take a basis {e1, ep} suchthat hyy=hpp =1, hyp=hp; =0,
By apolarity we have Ci11*Co21=0 and Cyyp+Crrp=0. Setting a =
Ciyp-and b=Cyy, we have for x=x'e; + x2e,

C(x,%,x) =a (x1)3+3b (x1)2 xZ - 32 x1(x2)2 - b (x2)3:

Case where b=0. Then

C(x,x,x) =ax! [(x1)2 -3 (x2)2]
so that (0,1), (V3 ,1), and (V3 , -1) give three distinct nulh) directions.

Case where b= 0. Writing t = x2/x1. and ¢ = a/b, solving the equation

C({x,x,x) =0 is reduced to solving -

f(t) mt3+ 3ct? - 3t - ¢ =0.
One can show that this equation has three distinct roots by checking the
vatues of f at two critical points:

f-c - (Ze )E)>0 and f( -c+ (24 F) <o, .

Lemma 2. lihis_nxp_e.cb_ojj_c_(ﬂm._m.d.e.ﬁﬂm_)_._tn.e.n. _then C has either
_ ) one null directiop of multiplicity | and € can be written in the form



'C(x X,x) = n(x) g(x,x), where u Isa | -form and g s a definite inner
product-on V, each unique up to a scalari or

b) anull direction of muyltiplicity 3, in which case there is a nonzero x
inV such that h(x,x) =0 and C(x,y,z) =0 foralty,z inV. Ihe direction
of X 1s uniauely determined. '

We have-case b) if and only if Pick’s invariant h(C,C) is 0.

Proof. We use a null basis {es,ep} sothat hj; =hy, =0and hyp =

From apolarity we get Cyy» =Cy22=0. Thus
CClx,%,x) = Cppp (x1)3+ Cppp (x2)3, |
casea). If Cyyy=0and Cypp=0, let a and  be their real cubic
roots. Then .
Clx,%,%) = (ax1+ p x2) (o€ (x1)2 - ap xIx2 + pZ(x2)2).

‘We may define a 1-form u by u(x) = ax! + px2 and an inner product g by
g(x,y) = af x1yl - Jap (xly2 + x2y1)+ pZx2y2 Clearly, g is positlv;
definite and C has only one nuli direction. The uniqueness assertion is
also obvious. A :

caseb). If Cyyy =0, thenX=(1,0) is a null direction of multiplicity

3. Since C(X,ei,ej) =Cqy5=0foralli,f, we see that X is in the kernel of
C. Obviously, h(X,X) =0. If Cyp> =0, then X =(0,1) is the vector. The
unigueness is easy to see.

The additional statement in Lemma 2 follows from
n(C,C) =5 hP A RKP Cy Coar =2Cyy1Co22
interms of the same null basis {ey ,ez] . D
Remark. Each of the two cases in Lemma 2 is actually possible at a
point of an affine surface. For example, for the graph of
z=xy+ (x3+y3)/6 at the point (0,0,0) the vector 3/dx-3/dy gives
the onty null direction of the cubic form. On the other hand, for the

Cayley surface, namely, for the gréph of z2=xy+ y3/6, the cubic form
has a nuli direction of multiplicity 3 at every point.

3. Consequence of VC =0, C=0.

We prove



- Lemma3. Let™M be anondegenerate surface in RS such that the cubic
form is parailel but not 0. Then ¢ is flat and M j.s_mﬁ_g.tap.h_o_f_a_f.un.c_u.o.n
“z=F(Xx,y) ﬁg_f_lng_d_oiz_a_c_main_dgmmnbg_f_m_&(x y)- p_la.nﬁ_a.nn_m_e
Hessian determinant of F is + 1.

Proof. First assume that his elliptic. Let 'p‘be a point of M and
consider the three distinct null directions at p that exist by Lemma 1. We
may-assume that they are given by two linearly independent tangent
vectors ey, ep and the vector e + 92 Since C is parallel, parallel

displacement of these tangent vectors alonq any'curve'from p gives rise
‘tothree distinct null directions at each point. This means that each linear
transformation ¢ belonging to the linear holbnomy group of ¢ based at p
leaves the directions of ey, e5, and ey + e, invariant. Thus ¢ must be a
scalar multipte of the identity transformation. But since there is a

- parallsl volume element'e, the determinant of ¢ is t, which means that %’
is the fdentity. This shows that the holonomy group consists of the
identity transformation and Vv is flat, that is, the curvature’tenso_r Ris 0.

Now for an affine surface (or hypersurface), it is known that R =0

implies that the shape operator Sis 0. Indeed, this follows easily from
the Gauss equation: R(X,Y)Z = h(Y,Z)SX - h(X,Z)8Y, see [S]. From the

second basic equation in Section 1 the affine normal & is parallet in R3. 1t
follows that M is affinely equivalent to the graph of a certain function z =
’F'(x.y) on a domain D of the (x,y)-plane. Since the affine normatl t is
thus identified with the vector (0,0,1) inthe (X,y,z)-space, the Hessian
matrix of F expresSes the fundamental form h relative to 3/0x,9/0y . The
condition that 8 coincides with the volume element of h is equivalent to
the fact that the Hessian determinant has absolute value 1. (For the
detail, see the remark following (7) in [3]).) The components of C =vVh

“are the third partial derivatives of F and those of 9C = vZh are the fourth

partial derivatives of F. Hence vC = vZh = 0 means that each second
partial derivative of F is an affine function of the form ax + by +c¢.
Now consider the case where h is hyperbolic. Again, we show that v is =
flat and hence M is the graph tn the manner stated just above.
Since C is parallel, the behavior of C as Lemma 2 remains the same
for all points. Namely, we have either case a) at every points or case b)



at every point. Inthe first case, we have a positive definite inner product

g at each point. Since Cis parallel, tﬁe holdnomy grbup of ¥ at a point p

leaves gy, Invarfant up to a scalar. Since gach element ¢ has determinant

1, it must leave 9p invariant, that is, it is a rotation. Onthe other hand,
¢ leaves the only.null direction fnvariant and cannot be a proper rotation.
‘Thus the hotonomy group consists of the 1dent1ty transformation and h is
flat.

We now deal with the second case so we have.at each point a vector X,
unique up to a scalar, such that h(X,X) =0 and C(X,U,V) =0 for all Uand
V. We may choose locally two vector fields X and Y such that

1) h{X,X) =035 2) h(X,Y)=1 3) n(Y,Y)=0;

4) C(X, U,¥) =0 for all vectors U, V;

5) c(Yy,Y,Y)=1. ‘

In the foltowing we use the fact that (Vxh)(U V) =C(X,U,V) =0 for all U
and V and (Vyh)(X,U) = C(Y,X,U) =0 for all U. Now.taking 9y of 1) we
obtain h(vyX,X) =0, wh!ch implies VyX = AX'for some function x. From
5) we get C(VvyY,Y,Y) =0, which tmplies that va =V X (We shall see
ina moment that x=v =0.) _

From 2) we get h(VyX,Y) + h(X,VyY) = 0. Since h(VyX,Y) =x and
h{X,7yY) =h(X,vX) =0, we.get x=0. From 3) we get h(va,Y) =0
which implies v = 0. We have thus far'shown 9yX =0 and 9yY =0.

From 1) we get h(9yX,X) = 0, which impties VyX =pu X for some
function . From 5) we get C(9yY,Y,Y) =0, which implies 7yY = =X.

From 2) we get h(vYX,Y) + h(X,VyY) = 0, which implies p = 0, that
is, VyX=0. Finally, from 3) we get (9yh)(Y,Y) +.2 h(9yY,Y) =0. By
5) and h(WyY,Y) =h(tX,Y) =7, we find 7 = - 1},. namely, VyY = - X,

To summarize: 9yX = UyY = VyX =0 and 9yY = - 3X. We get [X,Y] =
0. Also we have R(X,Y)Y =R(X,Y)X =0, that is, R=0. Again, we have M
as the graph of a function z = F(x,y) as before, : s

4. -Reduction of the Hessian matrix.
We consider a differentiable function x3 = F(x1,x2) defined on a domain



D of the (x!;x2)-plane. We may assume that D contains (0,0). Denote the
Hessian matrix by H = [F]J] where Fi] = sz/axiaxJ

We assume that

(I} det [FU] =4+ | at all points; .

(II) each Fy; is an affine function of xl and x2. Not all Fij are
constant functions (correspondtng to the condition C=0).

We shall show that actually det [F,j] = 1 at 211 points and find an.

equiaffine change of the coordinates (x1, x2) to (x y) which reduces the
Hessian matrix to the form - ‘

0o 1 ] L
1 By , [?:-e 0.
© We begin by st‘ating without proof
Lemma 4. Consider a coordinate change of'the form

x1=plyxi+ plzx2

‘;2_[,2 X2+ p2, 2

and think of the function F(x1,x2) asafunction F (X', X2). Ihenthe
Hessian matrix F=[Fy], where Fy =2°F /0% 12X/, is related to the
original Hessian matrix H=[Fy} by H='P F P, where P isthe matrix
whose (1,j )-component is pj,
Next, we consider, in the vector space g1(2,R), the inner product
with signature (-,-,+.+) givenby .
| CA,A>=-ad - a'd+ be +b'c.

-The corresponding quadratic form is simply <A,A>= - det-A, Let 8(2)
denote the subspace of all symmetric matrices in gI(Z,R); The
restriction of the inner product to s{2) has signature (-.+,+), that is, it
Is a Lorentzian inner product.

Now for any P €SL(2,R), the mapping
Xes(2) —» P XPes(2)
preserves the inner product and hence is a linear isometry. We may
easily verify that SL(Z,R)/ {z I} s isomorphic to the rotation group of -
s(2). Inother words, for any linear isometry of s(2) there is a suitable




p whfch induces it in the manner above.
We now consider the affine mapping given by the Hesslan matrix
“(x1,x@) = H(x',x%) e8(2),
~ which we may write in the form
H(x',x¢)= x! A+x2B+C, with constant A,B,C ins(2).
If we set ‘x‘ =0, the determinant of x2B +C must be + 1. Thus
- det (XZB +C) = <xZB +C, 2B +C> = <B,B>(x€)2 + 2 <B,C>xZ + <C,C> = ¢1.
.So we must have <B,B>=<B,C>=0 and <C,C$ =x1. Now we can eliminate
the case <C,C>= -1, because then the restriction of the'inner product to
{X € 8(2); <X, O = 0} is positive definite and cannot contain a.null.vector
B, unless B=0. IfB=0, consideration of the line x'A+ C will 1ead to
<A,A>=<A,(>=0and thus A =0 by the same argument. Thus <C,C> = -1
leads to constancy of H(x xz) contrary to the assumption. Hence <C, C>
=1,

Since A and B are two null vectors in{X€s(2); <X,C> =0} whose
dimension is 2, they are linearly dependent, say, A-=kB. Thus H(x!,xZ)
= (kx'+ x2) B+ C. Now since <B,B> =<B,C>=0 and <C,C>=1, we can find

“an isometry X — P X P of §(2), with P €SL(2,R) which takes B Into By
and C into Cy where

B|=[0 O]and >C|=0 11
0 1 11 0

By u_sing'this matrix P, we consider an equiaffine change of the coordinate

system from (x! ,$<2) to, say, (x,y). By Lemma 4 we see that the
Hessian of F relative to (x,y) is of the form (ax + py)By +Cy, i.e.

{o 1
1 ax+py

So the original function as a function of X,y is such that '

Fxx?-o, ny = Fyx =1, FVY = ax+Py. ‘
Then Fyyy =a. Onthe other hand, F,., =0. Hence a=0 and F,, =
By. We have thus proved the assertion in the beginning of this section.

Incidentally, we should remark that the affine metric of our surface turns
out to be hyperbolic.



From the Hessian matrix in our hand we find
F(x,v)=ﬁy3/6fxy+ ax + by + ¢, |
where a,b,c are certain constants. By changing the coordinates from
(x,vy,2) to (X,Y,Z), where X=X, Y=y, 2=2 - (ax+by+c), we can
assume F(x,y) = py3/6 + xy. Now change (x,y) to (p1/3x, y/p1/3) . we
finally get the form z =xy + y3/6. Thus our surface is equiaffinely
~congruent to the graph of this function.

1
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Figure. Cayley surface
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