On representation of large integers by

integral temary positive definite
quadratic forms

B.Z. MOROZ

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Federal Republic of Germany

Résumé. Recently W. Duke has obtained new estimates for the coefficients of cusp-forms of weight $3 / 2$. This allows, via the work of R. Schulze-Pillot, to obtain an asymptotic formula for the number of representations of a large integer by a positive quadratic form. We give a brief survey of this topic and, in particular, confirm a conjecture of R. Heath-Brown's to the exten that every large integer congruent to 7 modulo 8 can be represented in the form $\mathrm{x}^{2}+\mathrm{y}^{2}+125 \mathrm{z}^{2}$.

On representation of large integers by integral ternary positive definite quadratic forms

B.Z. MOROZ

A few years after the famous work of C.L. Siegel's, [14], on representation of integers by a genus of quadratic forms had appeared Yu. V. Linnik, [7], initiated a study of representation of integers by an individual ternary quadratic form. Due to the efforts of many authors (cf., for instance, [8], [9], [1], [12], [16], [6], [3] and references therein), we may now claim a success. Let $f(x)=\frac{1}{2} \sum_{j} a_{i j} x_{1} x_{j}$ be a positive definite quadratic form with integral rational coefficients, so that $a_{i j}=a_{j i}, a_{i j} \in Z, 2 \mid a_{i i}$ for $1 \leq i, j \leq 3$, and let $r_{f}(n)=\operatorname{card}\left\{u \mid u \in Z^{3}, f(u)=n\right\}$ be the representation number of n by f; let $D=\operatorname{det}\left(a_{i j}\right)$.

Theorem 1. Suppose that $n \in Z, n \geq 1$ and g.c.d. $(n, 2 D)=1$. Then $r_{f}(n)=r(n, \operatorname{gen} f)+O\left(n^{1 / 2-\gamma}\right)$ for $\gamma>1 / 28$, where $r(n$, gen $f)$ denotes the number of representations of n by the genus of f averaged in accordance with siegel's prescription, [14]. Moreover, if n is primitively represented by f over the ring of p-adic integers for each rational prime p then $r(n, g e n f) \underset{f, \epsilon}{\gg} n^{1 / 2-\epsilon}$ for $\epsilon>0$.

Rroof. Let N be a positive integer such that $2 \mathrm{D} \mid \mathrm{N}$ and $8 \mid \mathrm{N}$, and let $\varphi \in S_{0}(3 / 2, N, x)$ with $x(d)=\left[\frac{2 D}{d}\right]$, suppose furthermore that $\varphi \in q^{\perp}$, in notations of [12]. Thus φ is a "good" cusp-form of weight 3/2 (and character x) which does not come from a θ-series. Therefore an argument due to H. Iwaniec, [6], and W. Duke, [3], supplemented by the considerations going back to G. Shimura, [13], and B.A. Cipra, [2], leads to an estimate for the Fourier coefficients of φ (cf. also [4]), and on writing $\varphi(z)=\sum_{n=1}^{\infty} a(n) e^{2 \pi i n z} \quad$ we obtain: $a(n) \ll n^{1 / 2-\gamma}$ as soon as $(n, 2 D)=1$ and $\gamma<\frac{1}{28}$. By [12, Korollar
3], it follows then that $r_{f}(n)=r(n, \operatorname{spn} f)+O\left(n^{1 / 2-\gamma}\right)$ for $(n, 2 D)=1$ and $y<\frac{1}{28}$, where $r(n, \operatorname{spn} f)$ denotes the representation
number of n averaged over the spinor genus containing f (cf. [12]). On the other hand, by [12, Korollar 2], if ($\mathrm{n}, 2 \mathrm{D}$) $\boldsymbol{a} 1$ then $r(n, \operatorname{spn} f)=r(n$, gen $f)$. Finally the estimate $r(n, g e n f)>n^{1 / 2-\epsilon}$ for $\epsilon>0$ is a consequence of Siegel's work, [14], [15] (cf. also [11, Satz (3.1)]), as soon as n is primitively representable by f over the p-adic integers. This completes the proof.

Remark 1. The condition ($n, 2 D$) $=1$ has been used in the proof twice, to insure the estimate $a(n) \ll n^{1 / 2-r}$ and to deduce the identity $r(n, \operatorname{spn} f)=r(n, \operatorname{gen} f)$. The former use of this condition is due to the fact that $\varphi \in S(3 / 2, N, x)$ with $x=\left[\frac{2 D}{d}\right]$ (see [10] for the details). It is an interesting question to what extent one can weaken the condition $(n, 2 D)=1$ in the theorem 1. The work of R. SchulzePillot, [12] (cf. also [16] and references therein), is pertinent to this question.

Theorem 2. Let q be a rational prime congruent to 5 modulo 8 and let $f(x)=x_{1}^{2}+x_{2}^{2}+q^{3} x_{3}^{2}$. Then $\left.r_{f}(n) \underset{q}{ }\right\rangle_{, \epsilon} n^{1 / 2-\epsilon}$ for $\epsilon>0$ and $\mathrm{n}=7(\bmod 8)$.

Proof. Let $n=q^{0} n_{1}, q \nmid n_{1}$ and suppose that $n=7$ (mod 8). Consider the quadratic form $g(x)=x_{1}^{2}+x_{2}^{2}+q^{m} x_{3}^{2}$, where $m=3-Q$ when $\ell \leq 3$ and $m=0$ when $\ell 23$; let $n_{2}=n q^{m-3}$. Since $n_{2}=3(\bmod 8)$ if $\ell 23$ and $n_{2} \neq 0(q)$ when $\ell<3$ it follows from theorem 1 that $r_{g}\left(n_{2}\right) \gg n_{2}^{1 / 2-\epsilon}$ for $\epsilon>0$. On writing $x_{1}^{2}+x_{2}^{2}=q^{3-m}\left(n_{2}-q^{m} y_{3}^{2}\right)$ one notes that to each solution of equations: $n_{2}=g(y)$ with $y \in z^{3}, q^{3-m}=z_{1}^{2}+z_{2}^{2}$ with $z_{1} \in \mathbb{Z}, z_{2} \in \mathbb{Z}$ there corresponds a unique solution of the equation $n=f(x)$ with $x \in \mathbb{Z}^{3}$. Since $q=1(\bmod 4)$, it follows, in particular, that $r_{f}(n) \gg n^{1 / 2-\epsilon}$ for $\epsilon>0$. This completes the proof.

Remark 2. Theorem 2 confirms a conjecture of D.R. Heath-Brown's, [5,p. 137-138], that every large integer congruent to 7 modulo 8 is represented by the form $x_{1}^{2}+x_{2}^{2}+q^{3} x_{3}^{2}$ when $q=5(\bmod 8)$ and q is a rational prime.

Definition. Let $n \in \mathbb{Z}$. We say that n is square-full if $n>0$ and $p\left|n \Rightarrow p^{2}\right| n$ for each rational prime p.

Corollary, Every sufficiently large positive integer is a sum of at most three square-full numbers.

Proof. By a classical theorem of Gaup's, each positive integer n is either a sum of three squares or it is of the shape $n=4^{l}(8 k+7)$ with $\& \in Z, k \in Z$. In the latter case, however, theorem 2 shows that the integer n is represented, for instance, by the form $x_{1}^{2}+x_{2}^{2}+125 x_{3}^{2}$ if k is sufficiently large. Other possibilities are also easily eliminated since the form $x^{2}+y^{2}+2 z^{2}$ is easily seen to represent n as soon $n=4$ (mod 8), cf. [5, p. 137]. This completes the proof.

Remark 3. This corollary has been first proved by D.R. Heath-Brown, [5], by a different method; according to [5, p. 137], it answers a question posed by P. Erdös and A. Ivic.

Acknowledgement. It is my pleasant duty to thank Professor W. Duke for a few useful conversations during the conference, relating to his work [3].

Literature cited

[1] W.S. Cassels, Rationale quadratische Formen, Jahresbericht der Deutschen Mathematiker-Vereinigung, 82 (1980), p. 81-93.
[2] B.A. Cipra, on the Niwa-Shintani theta-kernel lifting of modular forms, Nagoya Mathematical Journal, 21 (1983), p. 49-117.
[3] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Inventiones Mathematicae, 24 (1988), p. 73-90.
[4] O.M. Fomenko and E.P. Golubeva, Asymptotic distribution of integral points on a two-dimensional sphere, Zapiski LOMI, 160 (1987), p. 54-71.
[5] D.R. Heath-Brown, Ternary quadratic forms and sums of three square-full numbers, Séminaire de Théorie des Nombres, Paris 1986/87 (edited by C. Goldstein), Birkhäuser, 1988, p. 137-163.
[6] H. Iwaniec, Fourier coefficients of modular forms of halfintegral weight, Inventiones Mathematicae, 87 (1987), p. 385-401.
[7] Yu. V. Linnik, On representation of large integers by positive definite quadratic forms, Izvestia Akademij Nauk SSSR (seria matematicheskaya), 4 (1940), p. 363-402.
[8] Yu. V. Linnik, Ergodic properties of algebraic fields, SpringerVerlag, 1968.
[9] A.V. Malyshev, Yu. V. Linnik's ergodic method in number theory, Acta Arithmetica, 27 (1975), 555-598.
[10] B.z. Moroz, Recent progress in analytic arithmetic of positive definite quadratic forms, Max-Planck-Institut fur Mathematik, Preprint, 1989.
[11] M. Peters, Darstellungen durch definite ternïre quadratische Formen, Acta Arithmetica, 34 (1977), p. 57-80.
[12] R. Schulze-Pillot, Thetareihen positiv definiter quadratischer Formen, Inventiones Mathematicae, 75 (1984), p. 283-299.
[13] G. Shimura, on modular forms of half-integral weight, Annals of Mathematics, 27 (1973), p. 440-481.
[14] C.L. Siegel, Uber die analytische Theorie der quadratischen Formen, Gesammelte Abhandlungen, Bd. I, Springer-Verlag, 1966, p. 326-405.
[15] C.L. Siegel, Uber die Klassenzahl quadratischer Zahlkörper, loc. cit., p. 406-409.
[16] Yu. G. Teterin, Representations of integers by spinor genera of translated lattices, Zapiski LOMI, 151 (1986), p. 135-140.
B.2. Moroz

Max-Planck-Institut fur Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3, Allemagne

Postscript.

This note contains the text of my lecture at the 16 至 Journées Arithmétiques (Marseilles, July 1989). Since then a new important paper by W. Duke and R. Schulze-Pillot, [17], has appeared, which allows, in particular, to weaken the condition ($\mathrm{n}, 2 \mathrm{D}$) $=1$ in the Theorem 1 of this note (cf . also Remark 1). Unfortunately, the auhtors suppress the details of the proof of their crucial Lemma 2, [17, p. 50-51]; following [4], where incidentally the proof of the corresponding assertion is also omitted, we are content with a weaker statement, [10, p. 17-19], that leads to the results described above. Finally we cite here two articles, [18], [19], throwing further light on our subject.

References

[17] W. Duke, R. Schulze-Pillot, Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids, Inventiones mathematicae, 99 (1990), 49-57.
[18] W. Duke, Lattice points on ellipsoids, Séminaire de Théorie de Nombres de Bordeaux le 20 mai 1988, Année 1987-88, Exposé $n^{\circ} 37$.
[19] O.M. Fomenko, Estimates of the norms of cusp-forms and arithmetic applications, Zapiski LOMI, 168 (1988), p. 158-179.

A list of corrections to [10].
p. 3, line 6 :
read "stay" instead of "start"
p. 5 , line 2 from below and p. 26 , last line:
read $|s-3-1 / 24|$ instead of $s-3-1 / 24$
p. 20 line 13:
read x_{3}^{2} instead of x_{3}

Postscript.

This note contains the text of my lecture at the 16 th Journées Arithmétiques (Marseilles, July 1989). Since then a new important paper by W. Duke and R. Schulze-Pillot, [17], has appeared, which allows, in particular, to weaken the condition ($\mathrm{n}, 2 \mathrm{D}$) $=1$ in the Theorem 1 of this note (cf. also Remark 1). Unfortunately, the auhtors suppress the details of the proof of their crucial Lemma 2, [17, p. 50-51]; following [4], where incidentally the proof of the corresponding assertion is also omitted, we are content with a weaker statement, [10, p. 17-19], that leads to the results described above. Finally we cite here two articles, [18], [19], throwing further light on our subject.

References

[17] W. Duke, R. Schulze-Pillot, Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids, Inventiones mathematicae, 99 (1990), 49-57.
[18] W. Duke, Lattice points on ellipsoids, Séminaire de Théorie de Nombres de Bordeaux le 20 mai 1988, Année 1987-88, Exposé $n^{\circ} 37$.
[19] O.M. Fomenko, Estimates of the norms of cusp-forms and arithmetic applications, Zapiski LOMI, 168 (1988), p. 158-179.

A list of corrections to [10].
p. 3, line 6: read "stay" instead of "start"
p. 5, line 2 from below and p. 26, last line:
read $|s-3-1 / 24|$ instead of $s-3-1 / 24$
p. 20 line 13 : read x_{3}^{2} instead of x_{3}

