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NILPOTENT GELFAND PAIRS
AND SPHERICAL TRANSFORMS OF SCHWARTZ FUNCTIONS

II. TAYLOR EXPANSIONS ON SINGULAR SETS

VÉRONIQUE FISCHER, FULVIO RICCI, OKSANA YAKIMOVA

Abstract. This paper is a continuation of [FRY], in the direction of proving the conjecture
that the spherical transform on a nilpotent Gelfand pair (N,K) establishes an isomorphism
between the space of K-invariant Schwartz functions on N and the space of Schwartz func-
tions restricted to the Gelfand spectrum ΣD, properly embedded in a Euclidean space.

We prove a result, of independent interest for the representation theoretical problems
that are involved, which can be viewed as a generalised Hadamard lemma for K-invariant
functions on N . The context is that of nilpotent Gelfand pairs satisfying Vinberg’s condition.
This means that the Lie algebra n of N (which is step 2) decomposes as v ⊕ [n, n] with v
irreducible under K.
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1. Outline and formulation of the problem

We follow the notation of [7]. We say that (N,K) is a nilpotent Gelfand pair (n.G.p. in
short) if N is a connected, simply connected nilpotent Lie group, K is a compact group of
automorphisms of N , and the convolution algebra L1(N)K of K-invariant integrable func-
tions on N is commutative. This is the same as saying that (K n N,K) is a Gelfand pair
according to the common terminology.
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By D(N)K we denote the left-invariant and K-invariant differential operators on N , and
by

D = (D1, . . . , Dd) ,

a d-tuple of self-adjoint generators of D(N)K . To each bounded K-spherical function ϕ on
N we associate (injectively) the d-tuple ξ(ϕ) =

(
ξ1(ϕ), . . . , ξd(ϕ)

)
of eigenvalues of ϕ as an

eigenfunction of D1, . . . , Dd respectively.
The d-tuples ξ(ϕ) form a closed subset ΣD of Rd which is homeomorphic to the Gelfand

spectrum of L1(N)K [5]. If ϕξ is the spherical function corresponding to ξ ∈ ΣD, the spherical
transform

(1) GfF (ξ) =

∫
N

F (x)ϕξ(x
−1) dx ,

can be viewed as a function on ΣD.

The following conjecture has been formulated in [6].

Conjecture. The spherical transform maps the space S(N)K of K-invariant Schwartz func-
tions on N isomorphically onto

S(ΣD)
def
= S(Rd)/{f : f|ΣD = 0} .

The inclusion G
(
S(N)K

)
⊇ S(ΣD) is known to hold in general [2, 6], so that the conjecture

only concerns the opposite inclusion. Moreover, the validity of the conjecture does not depend
on the choice of D [6].

In a nilpotent Gelfand pair (N,K) the group N is at most step-two. We denote by n its
Lie algebra and by v a K-invariant complement of the derived algebra [n, n]. We consider n
endowed with a K-invariant scalar product.

The conjecture is known to be true when N is abelian or the Heisenberg group [1, 2], and
when the following conditions are satisfied [6, 7]:

(i) the K-orbits in [n, n] are full spheres,
(ii) K acts irreducibly on v.

In this paper we remove condition (i), still keeping condition (ii). The pairs for which (ii)
holds have been classified by E. Vinberg in [14], and for this reason we call (ii) Vinberg’s
condition. Notice that, under Vinberg’s condition, [n, n] = z, the centre of n.

We mention here that the classification of nilpotent Gelfand pairs has been completed in
[16, 17], see also [15, Chapters 13, 15].

Assuming Vinberg’s condition and disregarding the pairs for which the conjecture has
already been proved, the basic list of n.G.p. to look at is that contained in Table 1. The
space z0 which appears in the last column is the unique irreducible component of z on which
K acts non-trivially.

All other nilpotent Gelfand pairs satisfying Vinberg’s condition are obtained from those
in Table 1 by either of the following operations:

(a) normal extensions of K: replace K by a larger group K# of automorphisms of N
with K /K#;
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K v z notes z0 (if 6= z)
1 SOn Rn son n ≥ 4
2 SU2n+1 C2n+1 Λ2C2n+1 n ≥ 2
3 Sp2 × Spn H2 ⊗Hn sp2 n ≥ 2
4 U2n+1 C2n+1 Λ2C2n+1 ⊕ R n ≥ 1 Λ2C2n+1

5 SU2n C2n Λ2C2n ⊕ R n ≥ 2 Λ2C2n

6 Un Cn un n ≥ 2 sun

7 Spn Hn HS2
0Hn ⊕ Im H n ≥ 2 HS2

0Hn

8 U2 × SUn C2 ⊗ Cn u2 n ≥ 2 su2

9 U2 × Spn C2 ⊗Hn u2 n ≥ 2 su2

10 U1 × Spin7 C⊗O Im O⊕ R Im O

Table 1

(b) central reductions: if z has a nontrivial proper K-invariant subspace s, replace n by
n/s.

In [7] we proved that if N,K,K# are as in (a), and the conjecture is true for (N,K),
then it is also true for (N,K#). It will be proved elsewhere that, applying (b) to pairs for
which the conjecture is true, the resulting pair also satisfies the conjecture. We will therefore
concentrate our attention on the pairs in Table 1.

In this paper we do not give a proof of the conjecture for these pairs (this will be done
elsewhere), but we focus on one specific point, the proof of Theorem 1.1 below, which is
crucial in the proof of the conjecture, and which is rather involved in itself. It requires a
detailed analysis of the action of K on the polynomial algebras over v and z and on tensor
products of their irreducible components. In order to formulate Theorem 1.1, we need to
describe some aspects of the structure of ΣD.

In ΣD one can distinguish a relatively open and dense “regular set” from a “singular set”,
and singular points may have different levels of singularity. The highest level of singularity
is reached by those bounded spherical functions which factor to the quotient group N ′ =
N/ expN z0. Call Σ0

D this subset of ΣD.
At this point it is convenient to introduce a preferred system D of generators of D(N)K ,

obtained, via symmetrisation, from the bases of fundamental K-invariants on n listed, case
by case, in Section 7 of [7]. We denote by ρ = (ρ1, . . . , ρd) the d-tuple of these polynomials.

The polynomials ρj have the property of being homogeneous in each of the variables v ∈ v,
z ∈ z0, t ∈ z′ where z′ is the orthogonal complement of z0 in z; notice that K acts trivially
on z′. For each j, we denote by [j] the degree of ρj in the z0-variables.

Notice that [j] > 0 if and only if Dj annihilates all the spherical functions which factor
to N ′. At the same time, the polynomials ρj with [j] = 0 provide a system of fundamental
K-invariants on the Lie algebra of N ′, n′ ∼= v ⊕ z′, where [n′, n′] = z′. Symmetrising ρj on
N ′ produces an operator D′

j ∈ D(N ′)K , which is the push-forward of Dj via the canonical
projection.
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Suppose that the Dj ∈ D have been ordered so that D1, . . . , Dd0 are the operators with
[j] = 0. Then Σ0

D can be realised as the intersection of ΣD with the coordinate subspace

Σ0
D = {ξ ∈ ΣD : ξd0+1 = · · · = ξd = 0} .

What has been said above shows that there is a natural identification of Σ0
D with the

Gelfand spectrum ΣD′ of the pair (N ′, K), with D′ = {D′
1, . . . , D

′
d0
}.

We will decompose the variables of Rd as ξ = (ξ′, ξ′′), with ξ′ = (ξ1, . . . , ξd0), ξ
′′ =

(ξd0+1, . . . , ξd). To have a consistent notation, multi-indices α′′ will have components indexed
from d0 + 1 to d, so that monomials ξα′′ only depend on ξ′′ and, similarly,

Dα′′ = D
αd0+1

d0+1 · · ·Dαd
d .

We set [α′′] =
∑d

j=d0+1[j]αj. Of course, [α′′] equals the order of derivation of Dα′′ in the
z0-variables.

Let us go back to the conjecture. Given a function F ∈ S(N)K we are interested in proving
that its spherical transform (1) extends from ΣD to a Schwartz function on Rd. In [7], one
of the crucial points in the proof was Proposition 5.1, providing a Taylor development of GF
along the singular set; in that situation, there was just one level of singularity.

Recast in our present situation, that result can be phrased as follows: given k ∈ N, there
exist K-invariant Schwartz functions {Fα′′}[α′′]≤k−1 on N , with GFα′′ only depending on ξ′,
and such that

(2) F =
∑

[α′′]≤k−1

Dα′′Fα′′ +
∑
|β|=k

∂β
zRβ ,

with Rβ ∈ S(N) for every β.
It is clear, by induction, that it will be sufficient to show that the remainder term

Φk(v, z, t) =
∑
|β|=k

∂β
zRβ(v, z, t)

can be further expanded as

(3) Φk =
∑

[α′′]=k

Dα′′Fα′′ +
∑

|γ|=k+1

∂γ
zSγ

for some new functions Fα′′ ∈ S(N)K , [α′′] = k, and some new Sγ ∈ S(N).
We sketch, without proof, the basic ideas that allow to reduce the problem to proving

Theorem 1.1 below, skipping many technical details that will be presented elsewhere.
It is convenient to introduce modified versions of the operators Dj, an operation that

corresponds to replacing the group N with the direct product Ñ = N ′ × z0 of N ′ with the
additive group z0. We remark that (Ñ ,K) is also a Gelfand pair (not satisfying Vinberg’s
condition), as it can be checked from the classification in [17] or, through a direct argument,
from the fact that the Lie algebra ñ is a contraction of n.

From the same system of invariants ρj used to generate the differential operators Dj on

N , we produce, by symmetrisation, a system D̃ = {D̃1, . . . , D̃d} of generators of D(Ñ)K . We
also use the same coordinates (v, z, t) ∈ v × z0 × z′ on Ñ , via the exponential map expÑ .
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Taking advantage of this common coordinate system for N and Ñ , we can compare Dj and

D̃j as follows: the left-invariant vector field corresponding to the basis element eν ∈ v is

Xν = ∂vν +
∑

i

bi(v)∂zi
+

∑
`

c`(v)∂t`

on N , and

X̃ν = ∂vν +
∑

`

c`(v)∂t`

on Ñ . Therefore,

Dj − D̃j =
∑

α,β,γ : |β|≥1

aj
α,β,γ(v)∂

α
v ∂

β
z ∂

γ
t ,

where each term contains at least one derivative in the z-variables.
This implies that, if [α′′] = k, then each term in Dα′′ − D̃α′′ contains at least k + 1

derivatives in z. Then it will be sufficient to prove (2) with each Dα′′ replaced by D̃α′′ , since
the difference can be absorbed in the remainder term. Therefore (3) is equivalent to

(4) Φk =
∑

[α′′]=k

D̃α′′Fα′′ +
∑

|γ|=k+1

∂γ
zSγ .

To both sides of (4) we apply Fourier transform in the z-variables, that we denote by “̂”,
e.g.,

F̂α′′(v, ζ, t) =

∫
z0

Fα′′(v, z, t)e
−i〈z,ζ〉 dz ,

where 〈 , 〉 is the given K-invariant scalar product on z0. We obtain:

(5) Φ̂k(v, ζ, t) =
∑

[α′′]=k

D̃α′′

ζ F̂α′′(v, ζ, t) +
∑

|γ|=k+1

(iζ)γŜγ(v, ζ, t) ,

where each D̃j,ζ is obtained from D̃j by replacing each derivative ∂z`
by iζ`.

Modulo error terms that involve higher-order powers of ζ, we are left with proving that

the k-th order term in the Taylor expansion in ζ of Φ̂k(v, ζ, t), i.e.,∑
|γ|=k

ζγ

γ!
∂β

z R̂β(v, 0, t) ,

equals the k-th order term in the Taylor expansion in ζ of (5), i.e.,∑
[α′′]=k

D̃α′′

ζ F̂α′′(v, 0, t) .

This last point is the subject of our main theorem.

Theorem 1.1. Let G be a K-invariant function on Ñ of the form

(6) G(v, ζ, t) =
∑
|γ|=k

ζγGγ(v, t) ,
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with Gγ ∈ S(N ′). Then there are Hα′′ ∈ S(N ′)K, for [α′′] = k, such that

(7) G =
∑

[α′′]=k

D̃α′′

ζ Hα′′ .

More precisely, given a Schwartz norm ‖ ‖(p), the functions Hα′′ can be found so that, for
some q = q(k, p), ‖Hα′′‖(p) ≤ Ck,p

∑
|γ|=k ‖Gγ‖(q), for every α′′, [α′′] = k.

In Section 2, we prove Theorem 1.1 for the pairs in the first block of Table 1. Indeed, in
these cases the group N ′ is reduced to v and is abelian.

The rest of the article will be devoted to the proof of Theorem 1.1 for the other pairs,
where N ′ is a Heisenberg group, with the exception of line 7, where it is a “quaternionic
Heisenberg group” with Lie algebra Hn ⊕ Im H.

In Section 3, we develop a careful analysis of the structure of the K-invariant polynomials
on v⊕ z0, describing the K-invariant irreducible subspaces of the symmetric algebras over v
and z that are involved.

In Section 4, we reduce the proof of Theorem 1.1 to an equivalent problem of representing
vector-valued K-equivariant functions in terms of K-equivariant differential operators ap-
plied to K-invariant scalar functions (Proposition 4.3). Then we analyse the images of these
differential operators in the Bargmann representations of N ′, identifying the K-invariant ir-
reducible subspaces of the Fock space on which they vanish. This analysis reveals interesting
connections between these operators and the natural action of K itself on the Fock space,
once both are realised to be part of the metaplectic representation.

Finally, in Sections 5 and 6, we complete the proof of Theorem 1.1 for the pairs with N ′

nonabelian.

2. Proof of Theorem 1.1 for N ′ abelian

In this section, we consider the pairs in the first block of Table 1, where z0 = z and,
therefore, N ′ = v is abelian. We call (v, K) an abelian pair. In this case, one can prove
that Theorem 1.1 is true with the additional property that the functions Hα can be chosen
independently of p and depending linearly on the Gγ.

Via Fourier transform in v, this statement is equivalent to the Proposition 2.1 below. We
first explain the notation. We split the set ρ of fundamental invariants into the two subsets
ρ′, ρ′′, where ρ′ contains the polynomials depending only on v ∈ v, and ρ′′ those which
contain z ∈ z at a positive power. This notation matches with the splitting of coordinates
(ξ′, ξ′′) on the Gelfand spectrum introduced in Section 1.

Proposition 2.1. Let G ∈ C∞(N)K satisfying

G(v, ζ) =
∑
|γ|=k

ζγGγ(v) ,
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with Gγ ∈ S(v). Then there exist gα′′ ∈ S(Rd0), [α′′] = k, depending linearly and continu-
ously on {Gγ}γ and such that

G(v, ζ) =
∑

[α′′]=k

ρ(v, ζ)α′′gα′′ ◦ ρ′(v) .

The proof is quite simple and relies on two adapted versions of Hadamard’s Lemma on
one side, and of the Schwarz-Mather theorem [12, 13] on the other side. Hadamard’s Lemma
states that if a function of two variables f(x, y) ∈ C∞(Rn × Rm) satisfies f(0, y) = 0 for
every y, then there exist C∞-functions gj(x, y), j = 1, . . . , n, such that

f(x, y) =
n∑

j=1

xjgj(x, y) .

Adapting the proof of Hadamard’s lemma given in Proposition 5.3 in [7], it is easy to show
the following.

Lemma 2.2. Let f(x, y) ∈ C∞(Rn × Rm) and k ∈ N. Then there exist smooth functions
gα(y) ∈ C∞(Rm), |α| ≤ k, and Rα(x, y) ∈ C∞(Rn × Rm), |α| = k + 1, such that

f(x, y) =
∑
|α|≤k

xαgα(y) +
∑

|α|=k+1

xαRα(x, y) .

Furthermore if f(x, y) ∈ C∞(Rn)⊗̂S(Rm) in the sense that, for every L,

sup
|α|, |β|, |x| ≤ L

y ∈ Rn

(1 + |y|)L|∂α
x∂

β
y f(x, y)| <∞ ,

then the functions gα(y), |α| ≤ k, and Rα(x, y), |α| = k + 1, can be chosen in S(Rm) and
C∞(Rn)⊗̂S(Rm) respectively, and depending linearly and continuously on f .

Proof of Proposition 2.1. All the polynomials ρj are homogeneous in v and z and, for j =
1, . . . , d0, they only depend on v. Hence it is easy to adapt the proof of Theorem 6.1 in [2] to

show that there exists a continuous linear operator Ẽ :
(
S(v)⊗̂C∞(z)

)K → S(Rd0)⊗̂C∞(Rd−d0)

such that Ẽ(g) ◦ ρ = g for every g ∈
(
S(v)⊗̂C∞(z)

)K
. So let h = Ẽ(G). Using Lemma 2.2,

we obtain that, for any ξ = (ξ′, ξ”) ∈ Rd,

h(ξ) =
∑
|α′′|≤k

ξα′′gα′′(ξ
′) +

∑
|α′′|=k+1

ξα′′Uα′′(ξ) ,

where each gα′′ depends linearly and continuously on h ∈ S(Rd0)⊗̂C∞(Rd−d0), hence on
{Gγ}γ. Composing with ρ, we get:

G(v, ζ) = h ◦ ρ(v, ζ) =
∑
|α′′|≤k

ρ(v, ζ)α′′gα′′
(
ρ′(v)

)
+

∑
|α′′|=k+1

ρ(v, ζ)α′′Uα′′
(
ρ(v, ζ)

)
.

As G is a polynomial of degree k in ζ, we have:

G(v, ζ) =
∑

[α′′]=k

ρ(v, ζ)α′′gα′′
(
ρ′(v)

)
. �
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3. N ′ nonabelian: structure of K-invariant polynomials on v⊕ z0

From Table 1 we isolate the last two blocks, i.e., the cases where N ′ is not abelian. To
each line we add the list of fundamental K-invariants on v⊕ z0 as it appears in Theorem 7.5
of [7]. We split the set ρ of these invariants into three subsets, ρv, ρz0 , ρv,z0 , containing the
polynomials which depend, respectively, only on v ∈ v, only on z ∈ z0, or on both v and z.
We call the last ones the “mixed invariants”. We convene to use the letters r, q, p to denote,
respectively, elements of ρv, ρz0 , ρv,z0 .

The result is Table 2. Note that expressions like zk refer to the k-th power of a matrix z.
For unexplained notation at lines 9 and 10, we refer to [7].

K v z0 rk(v) qk(z) pk(v, z)

4 U2n+1 C2n+1 Λ2C2n+1 |v|2 tr
(
(z̄z)k

)
(1 ≤ k ≤ n)

v∗(z̄z)kv
(1 ≤ k ≤ n)

5 SU2n C2n Λ2C2n |v|2
tr

(
(z̄z)k

)
(1 ≤ k ≤ n−1)
Pf(z) , Pf(z)

v∗(z̄z)kv
(1 ≤ k ≤ n−1)

6 Un Cn sun |v|2 tr
(
iz)k

)
(2 ≤ k ≤ n)

v∗(iz)kv
(1 ≤ k ≤ n−1)

7 Spn Hn HS2
0Hn |v|2 tr zk

(2 ≤ k ≤ n)
v∗zkv

(1 ≤ k ≤ n−1)

8 U2×SUn C2⊗Cn su2
tr

(
(vv∗)k

)
(k = 1, 2)

|z|2 itr (v∗zv)

9 U2×Spn C2⊗C2n su2

tr
(
(vv∗)k

)
(k = 1, 2)

|x|2|y|2 − ( txy)2
|z|2 itr (v∗zv)

10 U1×Spin7 C⊗O Im O
|v|2

|v1|2|v2|2 −
(
Re (v1v̄2)

)2 |z|2 Re
(
z(v1v̄2)

)
Table 2

If X is a real vector space, we call P(X) the polynomial algebra over X, and Pk(X)
the subspace of homogeneous polynomials of degree k. When X is endowed by a complex
structure, we denote by Pk1,k2(X) the terms in the splitting of P(X) according to bi-degrees;
for example Pk,0 is the space of holomorphic polynomials in Pk.

This applies in particular to v, which always carries a complex structure, and to z0 at lines
4 and 5. At line 7, in fact, v admits a different complex structure for every choice of a unit
quaternion.

The indexing of the elements pk(v, z) of ρv,z0 is assumed to match with the notation of
Table 2 when there is more than one element in the family.

Coherently with the notation used in the previous sections, if pα(v, z) is a monomial in
the pk, we denote by |α| its usual length, and by [α] its degree in z. When z0 is a complex
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space, we denote by [[α]] the bi-degree of pα in z, z̄. The same convention on the use of [ ]
and [[ ]] applies to monomials in the qk.

It follows from [7, Corollary 7.6] that the algebra P(v ⊕ z0)
K is freely generated by ρ =

ρv ∪ ρz0 ∪ ρv,z0 . The pairs in Table 2 are distinguished by the property that we can add
a subspace z′, of dimension one or three, to z0 keeping (K,N) as a nilpotent Gelfand pair
and v⊕z is a Heisenberg Lie algebra or a quaternionic Heisenberg Lie algebra. Another
observation will be of particular importance in the future.

Remark 1. Fix ζ ∈ z0 and let Kζ be its stabiliser in K. Then the pair (N ′, Kζ) is also
a nilpotent Gelfand pair. The result goes back to Carcano’s characterisation of nilpotent
Gelfand pairs in terms of multiplicity free actions [4]. An alternative proof can be found,
e.g., in [14, Ch.2,§4].

The first dividend we get is the following. Evaluating K-invariants at ς, we get Kς-
invariant polynomials on n′, more precisely, on v. These polynomials have the same degree
in v and in v̄ [8, Section 4]. Hence the expressions of the polynomials rk(v) and pk(v, z) must
also have the same degree in v and v̄ (this can be seen directly from Table 2). Therefore we
have the splitting

P(v⊕ z0)
K =

∑
m,k≥0

(
Pm,m(v)⊗ Pk(z0)

)K
.

We want to refine this decomposition, by putting special attention on the mixed invariants.

Any mixed invariant p(v, z) in
(
Pm,m(v)⊗ Pk(z0)

)K
can be expanded as

(8) p =
∑

j

pVj ,Wj
,

where, for each j, Vj and Wj are K-invariant, irreducible subspaces of Pm,m(v) and Pk(z0)
respectively, with V ∼ W equivalent to W as a K-module, and

(9) pVj ,Wj
(v, z) =

∑
h

ah(v)bh(z) ,

with {ah} and {bh} being orthonormal dual bases.
In a rather canonical way, we will now replace the basis of monomials pα(v, z)qβ(z)rγ(v)

by a new basis, obtained by replacing each pα by a new polynomial p̃α which is “irreducible”,
in the sense that it equals pVα,Wα for appropriate irreducible Vα,Wα.

Before going into this construction, we remark some useful aspects of the list of pairs and
invariants in Table 2.

Remark 2.

(a) The first block of Table 2 contains four infinite families, with both dim v and dim z0

increasing with the parameter n. Each pair admits a single invariant in ρv, and
several in ρz0 and ρv,z0 .

(b) Inside the first block, the pairs at lines 4 and 5 have a special feature, in that n0

is a complex Lie algebra and z0 is a complex space. Each pair in these two lines is
“twinned” with a pair in line 6, the one with the same v. The invariants for a pair
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in line 4 or 5 coincide with the lower degrees invariants for the twin pair at line 6
evaluated at (v,−iz̄z) instead of (v, z).

(c) Each line in the second block contains either an “exceptional” isolated pair (line 10),
or an infinite family (lines 8, 9), but with dim z0 fixed. Each pair admits a single
invariant in ρz0 and in ρv,z0 , but several in ρv.

(d) For each pair, the k-th mixed polynomial pk(v, z) is a finite sum

(10) pk(v, z) =

ν1∑
j=1

`j(v)bjk(z) ,

with ν1 = dim z0 and the `j independent of k.
(e) For the pairs at lines 6-10, the polynomials bj1(z) appearing in the expression (10)

of p1 are the coordinate functions on z0. The real span of the polynomials `j(v) is a
K-invariant subspace of P1,1(v) equivalent to z0.

(f) At lines 6, 7 and for k > 1, pk(v, z) (resp. qk(z)) equals, up to a power of i, p1(v, z
k)

(resp. q1(z
k)). Here again zk is the k-th power of a matrix.

At this point we must isolate the two special families of lines 4 and 5, and restrict our
attention to the pairs of lines 6-10.

For given m, k, we look at the structure of
(
Pm,m(v)⊗Pk(z0)

)K
, the space of K-invariant

polynomials on v⊕ z0 of bi-degree (m,m) in v and degree k in z.
Inside Pm,m(v) consider the subspace generated by polynomials which are divisible by

elements of ρv, and let Hm,m(v) its orthogonal complement. More explicitly, if rγ(v) is a
monomial in the rj of bi-degree (δγ, δγ), then

Hm,m(v) =
( ∑

1≤δγ≤m

rγPm−δγ ,m−δγ (v)
)⊥

.

With an abuse of language, we call Hm,m(v) the harmonic subspace of Pm,m(v). By the
K-invariance of each Hm,m(v),(

Pm,m(v)⊗ Pk(z0)
)K

=
∑

0≤δ≤m

⊕∑
δγ=δ

⊕
rγ

(
Hm−δγ ,m−δγ (v)⊗ Pk(z0)

)K
.

Similarly, we set

Hk(z0) =
( ∑

1≤[β]≤k

qβPk−[β](z0)
)⊥

.

For an element p of
(
Pm,m(v)⊗ Pk(z0)

)K
we denote by p̃ its v-harmonic component, i.e.,

its component in
(
Hm,m(v)⊗ Pk(z0)

)K
.

Finally, we denote by Pm(`) ⊂ Pm,m(v) the space generated by the monomials of degree
m in the `j.

Proposition 3.1. Let K, v, z0 be as in Table 2, lines 6-10.

(i) If k < m,
(
Hm,m(v)⊗ Pk(z0)

)K
is trivial.

(ii) For k = m,
(
Hm,m(v)⊗ Pm(z0)

)K
is one-dimensional, and it is generated by p̃m

1 .
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(iii) Let Vm = Hm,m(v)∩Pm(`). Then Vm is absolutely irreducible, i.e., it stays irreducible
as a representation of KC after the complexification Vm⊗R C. We fix an orthonormal

basis a
(m)
j , 1 ≤ j ≤ νm, of Vm. Then

(11) p̃m
1 =

νm∑
j=1

a
(m)
j (v)b

(m)
j (z) ,

with the b
(m)
j non-trivial.

Let Wm denote the linear span of the b
(m)
j , 1 ≤ j ≤ νm. Then Wm ∼ Vm and

Wm ⊂ Hm(z0) .

(iv) If |α| = m, then p̃α 6= 0 and

p̃α =
νm∑
j=1

a
(m)
j (v)b

(α)
j (z) .

(v) For every m and k, the products p̃αqβ with |α| = m and [α] + [β] = k form a basis of(
Hm,m(v)⊗ Pk(z0)

)K
. In particular,(

Hm,m(v)⊗ Pk(z0)
)K

=
(
Vm ⊗ Pk(z0)

)K
.

(vi) The spaces Vm are mutually K-inequivalent.

Proof. (i) is a consequence of the structure of the pj. If k < m, a monomial in the p, q, r
must necessarily contain some r-factor.

(ii) follows from the fact that pm
1 is the only monomial in

(
Pm,m(v)⊗Pm(z0)

)K
which does

not contain r-factors. If we had p̃α = 0, this would establish an algebraic relation among the
fundamental invariants, in contrast with [7, Corollary 7.6]. This last remark also proves (v)
and the first statement in (iv).

The proof of (iii) requires some discussion of Pm(`). First of all, every element of(
Hm,m(v)⊗Pk(z0)

)K
necessarily belongs to the smaller space

((
Hm,m(v)∩Pm(`)

)
⊗Pk(z0)

)K
,

by the structure of the invariants.
The second fact is that the equivariant map of Remark 2 (e), from z0 to the span of the

`j, induces a surjective equivariant map from Pm(z0) to Pm(`).
Consider now Hm,m(v)∩Pm(`). For every irreducible K-invariant subspace V of it, there

must be an equivalent irreducible subspace W in Pm(z0). This gives rise to an invariant

pV,W of (9), belonging to (V ⊗ W )K ⊂
(
Hm,m(v) ⊗ Pm(z0)

)K
. But by (ii), this space is

one-dimensional. Therefore there exists a unique V ⊂ Hm,m(v)∩Pm(`) and a corresponding
unique W ⊂ Pm(z0) equivalent to V . This forces V to be all of Hm,m(v) ∩ Pm(`), and it
must coincide with Vm. The equality dim (V ⊗ V )K = 1 implies also that V is absolutely
irreducible.

Decompose now p̃m
1 as

p̃m
1 = p](v, z) +

∑
[β]>0

qβ(z)p[
β(v, z) ,
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with p] ∈ Vm ⊗Hm(z0) and p[
β ∈ Vm ⊗Hm−[β](z0). Then p] and the p[

β’s are all K-invariant.

It follows from (i) that p[
β = 0 for every β, i.e., p̃m

1 = p] ∈ Vm ⊗Hm(z0).

To complete the proof of (iv), take any element p of
(
Hm,m(v)⊗ Pk(z0)

)K
. By (8),

p =
∑

j

pVj ,Wj
,

with the pVj ,Wj
as in (9). Repeating the same argument used above, each Vj gives rise to an

invariant polynomial in
(
Hm,m(v)⊗ Pm(z0)

)K
. By (iii), Vj = Hm,m(v) ∩ Pm(`) for every j.

We prove (vi) by contradiction. If we had Vm ∼ Vm′ with m < m′, the polynomial∑
j a

(m′)
j (v)b

(m)
j (z) would be a non-zero element of

(
Hm′,m′

(v) ⊗ Pm(z0)
)K

, contradicting

(i). �

Consider now the pairs of lines 4, 5. Introducing bi-degrees for polynomials on z0, we
obtain the following rather obvious variants, on the basis of Remark 2 (b).

Proposition 3.2. Let K, v, z0 be as in Table 2, lines 4, 5.

(i’) If k < m,
(
Hm,m(v)⊗ Pk,k(z0)

)K
is trivial.

(ii’) The polynomials pα, p̃α coincide with those of line 6, evaluated at (v,−iz̄z). In
particular, (ii), (iii), (iv), (v), (vi) of Proposition 3.1 have the same formulation (up

to the obvious notational changes), with the same a
(m)
j and Vm as for the twin pair

of line 6.

(iii’) For k ≥ m,
(
Hm,m(v) ⊗ Pk,k(z0)

)K
= span {p̃αqβ : |α| = m, [[α]] + [[β]] = (k, k)}. In

particular, (
Hm,m(v)⊗ Pk,k(z0)

)K
=

(
Vm ⊗ Pk,k(z0)

)K
.

(iv’) If k1 6= k2,
(
Hm,m(v) ⊗ Pk1,k2(z0)

)K
is trivial, except at line 5, for k1 − k2 = jn,

j ∈ Z. In this case,

(
Hm,m(v)⊗ Pk1,k2(z0)

)K
=

{
(Pf z)j

(
Hm,m(v)⊗ Pk2,k2(z0)

)K
if j > 0 ,

(Pf z)−j
(
Hm,m(v)⊗ Pk1,k1(z0)

)K
if j < 0 .

Notice that Propositions 3.1 and 3.2 show that, for every α,

(12) p̃α = pVm,Wα ,

with m = |α| and Wα ⊂ P [α](z0) (resp. Wα ⊂ P [[α]](z0)) equivalent to Vm.

Corollary 3.3. The polynomials p̃αqβrγ form a basis of P(v⊕ z0)
K.
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4. Fourier analysis of K-equivariant functions on N ′

We start from a function G as in Theorem 1.1,

G(v, ζ, t) =
∑
|γ|=k

ζγGγ(v, t) (lines 6-10) ,

G(v, ζ, t) =
∑

|γ1|+|γ2|=k

ζγ1 ζ̄γ2Gγ(v, t) (lines 4, 5) ,

which is K-invariant, and with Gγ ∈ S(N ′) (we use the variable ζ as a reminder that, in the
course of the argument, we have taken a Fourier transform in z).

The following statement follows from Proposition 2.1 and Corollary 3.3.

Lemma 4.1.

(i) (lines 6-10) A function G ∈
(
S(N ′)⊗ Pk(z0)

)K
can be uniquely decomposed as

(13) G(v, ζ, t) =
∑

[α]+[β]=k

qβ(ζ)p̃α(v, ζ)gαβ(v, t) ,

with gαβ ∈ S(N ′)K depending continuously on G.

(ii) (lines 4, 5) A function G ∈
(
S(N ′)⊗ Pk,k(z0)

)K
can be uniquely decomposed as

(14) G(v, ζ, t) =
∑

[[α]]+[[β]]=(k,k)

qβ(ζ)p̃α(v, ζ)gαβ(v, t) ,

with gαβ ∈ S(N ′)K depending continuously on G.

(iii) For the pair at line 5,
(
S(N ′)⊗Pk+jn,k(z0)

)K
equals (Pf z)j

(
S(N ′)⊗Pk,k(z0)

)K
for

j > 0, (Pf z)−j
(
S(N ′)⊗ Pk,k(z0)

)K
for j < 0.

From the right-hand side of (13), or of (14), we extract the single term

p̃α(v, ζ)g̃αβ(v, t) =
νm∑
j=1

a
(m)
j (v)gαβ(v, t)b

(α)
j (ζ) ,

with m = |α| ≥ 1.
In order to emphasize that the following analysis depends only on m and not on the

specific multi-index α, it is convenient to introduce an abstract representation space Vm of

K, equivalent to Vm, and denote by {e(m)
j }1≤j≤νm an orthonormal basis corresponding to the

basis {a(m)
j } of Vm via an intertwining operator.

We denote by τm the representation of K on Vm.
We replace p̃αgαβ by the Vm-valued function

Gαβ(v, t) = gαβ(v, t)
νm∑
j=1

a
(m)
j (v) e

(m)
j .
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Since the b
(α)
j form an orthonormal basis of the space Wα in (12) and Wα ∼ Vm ∼ Vm, it

follows that Gαβ is K-equivariant, i.e.,

Gαβ(kv, t) = τm(k)Gαβ(v, t) , (k ∈ K) .

In fact, we have the following characterisation of K-equivariant Vm-valued smooth func-
tions.

Lemma 4.2. Let H be a Vm-valued, K-equivariant smooth (resp. Schwartz) function H on
N ′. Then H can be expressed as

H(v, t) = h(v, t)
νm∑
j=1

a
(m)
j (v)e

(m)
j ,

with h smooth and K-invariant (resp. h ∈ S(N ′)K), depending continuously on H.

Proof. Reversing the argument above, from aK-equivariant functionH(v, t) =
∑

j Hj(v, t)e
(m)
j

we can construct the K-invariant scalar-valued function H̃(v, ζ, t) =
∑

j Hj(v, t)b
(m)
j (ζ).

If H is smooth (resp. Schwartz), so is H̃. By Proposition 2.1, H̃ can be expressed as

H̃(v, ζ, t) =
∑

m′≤m

( ∑
[α]+[β]=m
|α|=m′

qβ(ζ)p̃α(v, ζ)hαβ(v, t)
)
,

with each hαβ K-invariant and smooth (resp. Schwartz). Each term in parenthesis can
be turned into a K-equivariant function with values in Vm′ . Since the Vm′ are mutually
inequivalent, the only non-zero term is the one with m′ = m. �

Remark 3. From this point on, we may completely disregard the special cases of lines 4 and
5, because in this abstract setting they are completely absorbed by those of line 6.

We denote by A
(m)
j ∈ D(N ′) the differential operators obtained from the polynomials a

(m)
j

by symmetrisation. Then

(15) Mm =
νm∑
j=1

e
(m)
j A

(m)
j

is a K-equivariant differential operator mapping scalar valued functions on N ′ to Vm-valued
functions.

The following statement is the key step in the proof of Theorem 1.1.

Proposition 4.3. Let G be a Vm-valued, K-equivariant Schwartz function on N ′. Then G
can be expressed as

(16) G(v, t) = Mmh(v, t) ,

with h ∈ S(N ′)K.
More precisely, given a Schwartz norm ‖ ‖(p), the function h can be found so that, for

some q = q(m, p), ‖h‖(p) ≤ Cm,p‖G‖(q).
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The proof requires some representation theoretic considerations that will be developed in
the next subsections.

4.1. The Bargmann representations of N ′.

The proof requires Fourier analysis on N ′. As we mentioned already, N ′ is either a
Heisenberg group or (line 7) its quaternionic analogue, with a 3-dimensional centre. It will
suffice to restrict attention to the infinite-dimensional representations.

When N ′ is a Heisenberg group, i.e., n′ = v⊕R, we see from Table 1 that v is a complex
space (whose dimension we denote by κ), with K acting on it by unitary transformations.
We use the Bargmann-Fock model of its representations, that we briefly describe.

If (v1, . . . , vκ) are linear complex coordinates on v, the 2m left-invariant vector fields

(17) Zj = ∂vj
− i

4
v̄j∂t , Z̄j = ∂v̄j

+
i

4
vj∂t , j = 1, . . . , κ,

generate n′C.
For λ > 0, the Bargmann representation πλ acts on the Fock space Fλ(v), defined as the

space of holomorphic functions ϕ on v such that

‖ϕ‖2
Fλ

= (λ/2π)κ

∫
v

|ϕ(v)|2e−
λ
2
|v|2 dv <∞ ,

and is such that

(18) dπλ(Zj) = ∂vj
, dπλ(Z̄j) = −λ

2
vj .

For λ < 0, πλ acts on F|λ| as πλ(v, t) = π|λ|(v̄,−t), so that the rôles of Zj and Z̄j are
interchanged:

(19) dπλ(Zj) =
λ

2
vj , dπλ(Z̄j) = ∂vj

.

By the Stone-von Neumann theorem, the Bargmann representations πλ, λ 6= 0, cover the

whole dual object N̂ ′ up to a set of Plancherel measure zero.

The case n′ = v⊕Im H, with v = Hn, requires some modifications. For every µ 6= 0 in Im H,
with polar decomposition µ = λς, λ = |µ| > 0, there is an analogous representations πµ = πλ,ς

which factors to the quotient algebra n′ς = vς ⊕ (Im H/ς⊥). This is a Heisenberg algebra,
with vς denoting v endowed with the complex structure induced by the unit quaternion ς.
Then πλ,ς is the Bargmann representation of index λ of n′ς , acting on the Fock space F(vς).

Again, the πµ cover N̂ ′ up to a set of Plancherel measure zero.

For the sake of a unified discussion, we drop the subscripts λ or µ, and simply write π
and F . Only when strictly necessary, we will reintroduce a parameter λ > 0, leaving to the
reader the obvious modifications for the other cases.
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In all cases, the fact that K acts trivially on z′ implies that each representation as above
is stabilised by K. In fact, if σ denotes the representation of Uκ on functions on v given by

(20)
(
σ(k)ϕ

)
(v) = ϕ(k−1v) ,

one has the identity
π(kv, t) = σ(k)π(v, t)σ(k−1) .

The representation π maps functions H ∈ S(N ′)⊗Vm into operators π(H) ∈ L(F)⊗Vm
∼=

L(F ,F ⊗ Vm), depending linearly on H and such that

π(h⊗ w) = π(h)⊗ w , h ∈ S(N ′) .

If H is K-equivariant, then

(21) π(H)σ(k) =
(
σ ⊗ τm

)
(k)π(H) ,

for all k ∈ K. Similarly, the equivariance of Mm implies that, for k ∈ K,

(22) dπ(Mm)σ(k) =
(
σ ⊗ τm

)
(k)dπ(Mm) ,

i.e., π(H) and dπ(Mm) intertwine σ with σ ⊗ τm.
With an abuse of notation, we denote the restriction of σ to K by the same symbol.

Since (N ′, K) is a n.G.p., the representation σ decomposes into irreducibles without mul-
tiplicities. We can write

(23) F =
∑
µ∈X

⊕
V (µ) ,

for some set X of dominant weights µ of K. For each µ, we denote by R(µ) the representation
of K with highest weight µ. Each V (µ) is contained in some Ps,0(v) with s = s(µ), since
these subspaces are obviously invariant under σ.

In particular, V (µ) consists of C∞-vectors for π, so that dπ(Mm) is well defined on V (µ).
Notice that, for the pairs in the first block of Table 2, each Ps,0(v) is itself irreducible.

Only for the pairs in the second block, different V (µ)’s may be contained in the same Ps,0(v).

The following lemma in invariant theory will be important in the next proof.

Lemma 4.4. Let R(µ1), R(µ2), R(µ3) be three irreducible finite dimensional representations
of a complex group G on spaces V1, V2, V3 respectively. Denote by cµi

(µj, µk) the multiplicity
of R(µi) in R(µj)⊗R(µk). Then

cµi
(µj, µk) = dim (V ′

i ⊗ Vj ⊗ Vk)
G = cµ′j(µk, µ

′
i) ,

where µ′ stands for the highest weight of the dual representation and V ′ for the dual vector
space of V . Over R the statement modifies as follows:

dim (Vi ⊗ V ′
i )

Gcµi
(µj, µk) = dim (V ′

i ⊗ Vj ⊗ Vk)
G = cµ′j(µk, µ

′
i)dim (Vj ⊗ V ′

j )
G .

Proposition 4.5. Let Φ be a linear operator, defined on the algebraic sum of the V (µ),
µ ∈ X, with values in F ⊗ Vm, and intertwining σ with σ ⊗ τm. Then

(i) for every µ,
Φ : V (µ) −→ V (µ)⊗ Vm ;
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(ii) Φ|V (µ)
= 0, unless R(µ) ⊂ R(µ)⊗ τm;

(iii) Φ|V (µ)
= 0 if s(µ) < m.

Proof. Let Pµ be the orthogonal projection of F onto V (µ). If µ1 ∈ X, (Pµ1 ⊗ Id)Φ|V (µ)

intertwines R(µ) with R(µ1)⊗ τm. Hence (Pµ1 ⊗ Id)Φ|V (µ)
= 0 unless R(µ) ⊂ R(µ1)⊗ τm.

Take Wm, the linear span of the polynomials b
(m)
j (z) in (11), as a concrete realisation of

τm. Take also V (µ1) as a concrete realisation of R(µ1) and V (µ) as concrete realisation of
the (complex) contragredient representation R(µ)′ of R(µ). By Lemma 4.4,

(24) R(µ) ⊂ R(µ1)⊗ τm ⇐⇒
(
V (µ)⊗V (µ1)⊗Wm

)K 6= {0} .
By Remark 1, for a nonzero element ζ ∈ z0, the pair (N ′, Kζ) is also a nilpotent Gelfand

pair, so that F(v) decomposes without multiplicities under the action of Kζ . Let p(v, z)

be a nonzero element of
(
V (µ)⊗V (µ1)⊗Wm

)K
, and fix ζ ∈ z0 such that p0(v) = p(v, ζ) is

not identically zero. Then p0 is Kζ-invariant and contained in V (µ)⊗V (µ1). Hence V (µ)
and V (µ1) must contain two Kζ-invariant, irreducible, equivalent subspaces. By multiplicity
freeness, this forces that µ = µ1 and we obtain (i).

At this point, (ii) is obvious.
To verify (iii), observe that the subspaces Vm are mutually inequivalent by Proposi-

tions 3.1(vi), 3.2(ii’). Hence Vm does not appear in Ps,s(v) for s < m. �

4.2. Multiplicity of R(µ) in R(µ)⊗ Vm.

We need at this point to obtain, for any m,

(a) a precise description of the “m-admissible” weights µ, i.e., such that R(µ) ⊂ R(µ)⊗
Vm;

(b) that, for such a pair, R(µ) is contained in R(µ)⊗ Vm without multiplicities.

Point (a) above forces us to go into a case by case analysis, from which we will obtain sets
of parameters for the m-admissible weights. This analysis will also give us a positive answer
to point (b).

For a simple complex (or compact) group, we let $i denote its fundamental dominant
weights.

4.2.1. Pairs in the first block of Table 2.

In these cases we know that V (µ) = Ps,0(v) for some s.

Proposition 4.6. Let v = Cn, with K = (S)Un, or v = C2n with K = Spn. Then Ps,0(v) is
contained in Ps,0(v)⊗ Vm if and only if s ≥ m, and in this case with multiplicity one.

Proof. We know from Propositions 3.1 (i) and 3.2 (i’), that Ps,0(v) is not contained in
Ps,0(v) ⊗ Vm if s < m. We suppose now that s ≥ m and apply the equivalence (24). Since
the only fundamental invariant depending only on v is |v|2, there is exactly one invariant

(up to scalars) in Ps,0(v)⊗ P0,s(v)⊗Wm, namely |v|2(s−m)p̃m
1 .

By Lemma 4.4, this gives existence and uniqueness of a subspace of Ps,0(v)⊗Vm equivalent
to Ps,0(v). �
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4.2.2. Pair of line 8.

For convenience we assume that the action of SUn (resp. SLn(C)) on the Cn-factor in v
has the highest weight $n−1. Also let Si denote the representation of SU2 on P i,0(C2) and
by χs the s-th power of the identity character on U1. Then, cf. [9],

σ|Ps,0(v)
=

∑
i+2j=s

R(i$1 + j$2)⊗ Si ⊗ χs .

We call Rs,i (with 0 ≤ i ≤ s, s − i ∈ 2N) the i-th summand above, and Vs,i the corre-
sponding subspace of Ps,0(v).

Proposition 4.7. Rs,i is contained in Vs,i ⊗ Vm if and only if i ≥ m, and in this case with
multiplicity one.

Proof. Notice that both SUn and the centre of U2 act trivially on z0 and that the remaining
factor SU2 of K acts on Wm by S2m. Then we want to find when it is true that Rs,i ⊂
Rs,i ⊗ S2m. We have

(25)
Rs,i ⊗ S2m = R(i$1 + j$2)⊗ (Si ⊗ S2m)⊗ χs

= R(i$1 + j$2)⊗ (Si+2m ⊕ Si+2m−2 ⊕ · · · ⊕ S|2m−i|)⊗ χs .

It is quite clear that we find the summand Si in the sum in parentheses if and only if
i ≥ |2m− i|, i.e., i ≥ m, and in this case it appears once and only once. �

4.2.3. Pair of line 9.

With the same notation of the previous case, we have, cf. [9],

σ|Ps,0(v)
=

∑
i+2j≤s
s−i∈2N

R(i$1 + j$2)⊗ Si ⊗ χs =
∑

i+2j≤s
s−i∈2N

Rs,i,j .

Proposition 4.8. Rs,i,j is contained in Vs,i,j⊗Vm if and only if i ≥ m, and in this case with
multiplicity one.

Proof. As before, we want to find when it is true that Rs,i,j ⊂ Rs,i,j⊗S2m. The same identity
(25) as above holds and we obtain the same conclusion. �

4.2.4. Pair of line 10.

We can identify v with C8, with Spin7 acting via the spin representation and U1 by scalar
multiplication.

The spin representation defines an embedding of Spin7 into SO8. Under the action of
U1 × SO8, Ps,0(C8) decomposes into irreducibles as

Ps,0(C8) =
∑
i≥0

s−i∈2N

n(v)s−iHi =
∑
i≥0

s−i∈2N

Vs,i , n(v)2 = v2
1 + · · ·+ v2

8 .
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Since the compact groups Spin7 and SO8 have the same invariants on C8, this decompo-
sition is also irreducible under Spin7. Therefore

σ|Ps,0(v)
=

∑
i≥0

s−i∈2N

R
(
i$3

)
⊗ χs =

∑
2i≤s

Rs,i .

Proposition 4.9. Rs,i is contained in Vs,i ⊗ Vm if and only if i ≥ m, and in this case with
multiplicity one.

Proof. The group Spin7 acts on z0 via R($1) (and U1 acts trivially). The orthogonal pro-
jection of Wm on the highest component R(m$1) of Pm(z0) must be non-zero, otherwise
Vm ⊂ Pm−2(z0) and we would have an invariant contradicting Proposition 3.1(i). Therefore,
Spin7 acts on Vm via R(m$1).

We follow [11, Example 5.2]: setting k = m − s + i, R(m$1) ⊗ R(k$3) decomposes as a
direct sum

R(m$1)⊗R(k$3) =
∑

a1,a2,a3,a4

R
(
a1$1 + a2$2 + (a3 + a4)$3

)
,

extended over the quadruples (aj)1≤j≤4 of nonnegative integers such that

(26) a1(1, 0) + a2(1, 2) + a3(0, 1) + a4(1, 1) = (m, k) .

We are interested in the solutions of (26) which satisfy the requirement a1 = a2 = 0 and
a3 + a4 = k. It is clear that there is one (and only one) solution if and only if m ≤ k, with
a3 = m, a4 = k −m. �

4.3. Nonvanishing of dπ(Mm) on m-admissible weight spaces.

We have shown that, if µ is m-admissible, there is a unique subspace X(µ,m) ⊂ V (µ)⊗Vm

equivalent to V (µ). Therefore, Proposition 4.5 (i) can be made more precise by saying that
an operator Φ intertwining σ with σ ⊗ τm maps V (µ) into X(µ,m) for any m-admissible µ.
Moreover, Φ|V (µ)

is uniquely determined up to a scalar factor.

Assume that the identity (16) holds. Applying π to both sides, we obtain

π(G) = dπ(Mm)π(h) .

In this identity, π(G) and dπ(Mm) satisfy the assumptions of Proposition 4.5, whereas
π(h) maps each V (µ) into itself by scalar multiplication (this is the special case m = 0 of
Proposition 4.5).

The next proposition, whose proof is postponed to the end of this section, provides a
necessary condition for being able to solve equation (16) in u.

Proposition 4.10. For every m-admissible weight µ, dπ(Mm)|V (µ)
6= 0.

Let C = (cjk) be a κ× κ hermitian matrix (with κ = dim Cv), and

`C(v) =
∑
j,k

cjkvj v̄k
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the associated quadratic form. The symmetrisation process transforms `C into the operator
LC ∈ D(N ′),

LC =
1

2

∑
i,k

cik(ZjZ̄k + Z̄kZj) ,

where the Zj, Z̄j are the vector fields in (17).
The image of LC in the Bargmann representations can be described in terms of the rep-

resentation σ in (20).

Lemma 4.11. Let C = (cik) be a κ× κ hermitian matrix (so that iC ∈ uκ), and let

LC =
1

2

∑
i,k

cik(ZjZ̄k + Z̄kZj) ∈ D(N ′) .

Then, for λ > 0,

dπλ(iLC) =
λ

2
dσ(iC) .

This identity extends by C-linearity to C ∈ slκ, understanding LC as 1
2
LC+C∗ − i

2
Li(C−C∗).

For the proof, that we skip, it suffices to verify the identity for C = Eik + Eki and
C = iEik − iEki. Notice that σ is the restriction to Uκ of the metaplectic representation.

Denote by Lj the symmetrisation on N ′ of the polynomials `j(v) appearing in the ex-
pression (10) of the mixed invariants pk. We want to identify how dπ

(
span {Lj}

)
sits inside

dσ(uκ) and understand the action on V (µ) of the complex algebra generated by the dπ(Lj).
By Proposition 4.12, this is equivalent to identify

c =
{
iC : LC ∈ span {Lj}

}
inside uκ and study the algebra generated by dσ(cC).

Proposition 4.12. As a representation space of K, c ∼ V1 ∼ z0. Moreover,

(i) When z0 = sur (line 6 with r = n, or lines 8, 9 with r = 2), K contains a factor
K0

∼= SUr acting nontrivially on z0. Then c = k0.
(ii) For line 7, c is the Spn-invariant complement of sp2n in su2n.
(iii) For line 10, let ι be the inclusion of Spin7 in SO8 given by the spin representation

R($3). Then c is the 7-dimensional Spin7-invariant complement of dι(so7) in so8.

Proof. The first statement follows from the equivalence span {Lj} ∼ span {`j} ∼ V1.
After Lemma 4.11, (i) is almost tautological: the symmetrisation of p1(·, z) is L−idσ(z). For

(ii), it is basically the same argument.
For (iii), we must recall from [7] that the terms v1, v2 in the expression of p1(v, z) =

Re
(
z(v1v̄2)

)
are octonions representing the two components of v = 1 ⊗ v1 + i ⊗ v2 in the

decomposition of C⊗O as the direct sum of R⊗O and (iR)⊗O.
For fixed z, p1(·, z) is a quadratic form satisfying p1(v̄, z) = −p1(v, z) (here v̄ = 1 ⊗ v1 −

i ⊗ v2). In complex coordinates, it is then expressed by a hermitian matrix Cz with purely
imaginary coefficients. It follows that iCz ∈ so8, and these elements span a Spin7-invariant
7-dimensional subspace. This is necessarily the complement of dι(so7). �
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Notice that either c ⊂ k is already a Lie algebra, or k⊕ c ⊂ uκ is itself a Lie algebra. Set
g := k+c. In two case, lines 7 and 9, g 6= k, when g is either su2n or g = so8⊕R, respectively.
Let G be the corresponding compact group with g = LieG. Also notice that if g 6= k, then,
up to the summand R, k⊕ c is the Cartan decomposition of the symmetric pair (g, k).

Lemma 4.13. The subspaces V (µ) in (23) are also G-invariant.

Proof. The action of K on c is equivalent to the action of K on z0. Therefore for each
iC ∈ c, the action of the stabiliser KiC on F is multiplicity free and iC preserves each of
the irreducible summands. Since KiC ⊂ K, the action of iC also preserves K-invariant
irreducible subspaces in F . �

The statement of Lemma 4.13 can also be verified directly using the fact that K and G have
the same invariants on v.

We can now prove Proposition 4.10.

Proof of Proposition 4.10. First of all, recall that we do not treat lines 4 and 5, because they
are completely covered by line 6.

Fix a complex basis {u1, . . . uν1} of zC
0 with u1 being a lowest weight vector (of weight, say,

−α) and let (z1, . . . zν1) denote coordinates in this basis. Then α is also the highest weight
of cC, zm

1 is a vector of the highest weight, mα, in Pm(z0), and the weights ±mα do not
appear in lower degree polynomials on z0. Hence ±mα are not among the weights of Ps(`)
with s < m. Decomposing p1(v, z) with respect to zj, one gets

p1(v, z) =

ν1∑
j=1

aj(v)zj ,

where am
1 is a lowest weight vector in Pm(`). We must have am

1 ∈ Hm,m(v), since other-
wise, by Corollary 3.3, the weight −mα would also be contained in lower degrees in `. By
Proposition 3.1, the K-invariant space generated by am

1 is Vm. In turn, this implies that zm
1

belongs to the space Wm of Proposition 3.1(iii).
We regard M1 in (15) as

M1 =

ν1∑
j=1

Aj(v)zj ,

identifying z0 with V1. Then

(27) Mm
1 =

∑
|β|=m

Bβz
β ,

where each B
(m)
β is an m-fold composition of the Aj.

Each Bβ is the symmetrisation of a polynomial bβ depending on v and t ∈ z′. The
polynomial

P (v, z, t) =
∑

β

bβ(v, t)zβ

is K-invariant, and its component of highest degree in v is pm
1 . Therefore, p̃m

1 is the highest
weight term in the decomposition (8) of P .
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In particular, Mm
1 and Mm have the same highest weight component. Then

〈Mm, z
m
1 〉 = 〈Mm

1 , z
m
1 〉 = Am

1 .

Let X be the lowest weight element in cC such that A1 = LX . Lemma 4.11 implies that

dπλ(A
m
1 ) = (λ/2)mdσ(X)m .

Therefore it remains to show that under the identification z0 = c, the element dσ(X)m

does not vanish on V (µ).
As an illustration, consider first the example of line 6. Here c = k0 and X is a lowest root

vector in sln. The complex group SLn(C) acts on V (µ) via R(s$1) with s ≥ m. Clearly
dσ(Xm) is non-zero on the highest weight vector of V (µ).

In general, we argue in the following way. The action of X on polynomials on v is
completely determined by the action of X on v itself or by the representations of the group G.
If V (µ) is m-admissible and dσ(Xm) is zero on V (µ), then it is also zero on the contragredient

space V (µ), and, hence, dσ(X2m) vanishes on a copy of Vm sitting inside V (µ)⊗V (µ) ⊂ Ps,s.
Now Vm has the highest weight mα and X is of weight −α. Since X is a weight vector

(with a nonzero weight) of a torus in gC, it is necessary a nilpotent element. Therefore
one can include it into an sl2-triple {X,H, Y } ⊂ gC, where the semisimple element H is
contained in kC. (If k = g this is Jacobson-Morozov theorem, in the two cases with g 6= k the
claim follows from the fact that (g, k) is a symmetric pair, see [10, Prop. 4].)

Then H multiplies a highest weight vector v ∈ Vm by 2m, therefore v gives rise to at least
one irreducible representation of {X,H, Y } of dimension at least (2m+1). By the linear
algebra considerations, dσ(X2m)v 6= 0. A more careful analysis can show that dσ(Y )v = 0
and dσ(X2m)v is a lowest weight vector of Vm. �

5. Proof of Proposition 4.3

First, let us fix some notation. Let T = ∂t be the central derivative of N ′ when N ′ is the
Heisenberg group. For the pair at line 7, where N ′ is the quaternionic Heisenberg group, we
take Tj = ∂tj , j = 1, 2, 3, the derivatives in three orthogonal coordinates on z′.

We can assume thatD′ = (D′
1, . . . , Dd0−1, i

−1T ) andD′ = (D′
1, . . . , D

′
d0−3, i

−1T1, i
−1T2, i

−1T3)
respectively. The first d0− 1 (resp. d0− 3) operators come from symmetrisation of the poly-
nomials ρj ∈ ρv. We convene that D′

1 is the sublaplacian, i.e., the symmetrisation of |v|2.
A point of the spectrum ΣD′ of (N ′, K) can then be written as ξ′ = (ξ̃, λ) with λ in R or
R3, depending on the pair considered. The points of the spectrum with λ 6= 0 form a dense
subset of ΣD′ and they are parametrised by λ and µ ∈ X as ξ′(λ, µ), where ξ′j(λ, µ) is the
scalar such that

(28) dπλ(D
′
j)|V (µ)

= ξj(λ, µ)Id .

Note that ξd0(λ, µ) = λ and, if V (µ) ⊂ Ps,0(v), then ξ′1(λ, µ) = |λ|(2s+ κ), cf., e.g., [1].
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By δj we denote the degree of homogeneity of the polynomial ρj (and hence of D′
j) with

respect to the automorphic dilations

(29) r · (v, t) = (r
1
2v, rt)

of n′ (and of N ′); i.e., δj = 1
2
deg ρj for the first d0 − 1 (resp. d0 − 3) operators, and δj = 1

for the T ’s.
If ϕ(v, t) is a spherical function, then ϕr(v, t) = ϕ(r

1
2v, rt) is also spherical, and ξ′j(ϕr) =

rδjξ′j(ϕ). Then ΣD′ is invariant under the following dilations of Rd0 :

(30) r · (ξ′1, . . . , ξ′d0
) = (rδ1ξ′1, . . . , r

δd0ξ′d0
) .

In terms of the parameters (λ, µ), we have

r · ξ′(λ, µ) = ξ′(r2λ, µ) .

Now we define the following left-invariant, self-adjoint differential operator on N ′:

Um = M∗
mMm =

νm∑
j=1

A
(m)
j

∗
A

(m)
j .

Note that

kerUm =
νm⋂
j=1

kerA
(m)
j .

As a
(m)
j ∈ Pm,m(v), the operators A

(m)
j and Um are homogeneous of degree m and 2m,

respectively, w.r. to the dilation (29). Furthermore as Mm is K-invariant, Um is also K-
invariant. Hence it can be written as Um = um(D′) where um ∈ P(Rd0) is homogeneous of
degree 2m with respect to the dilations (30) of Rd0 .

By (28),
πλ(Um)|V (µ) = um(ξ′(λ, µ))Id .

Let
Sm = {ξ′ ∈ ΣD′ , um(ξ′) = 0} .

Then

(31) kerUm ∩ S(N ′)K = {f : suppGf ⊂ Sm} .
Moreover, Sm is invariant under the dilations (30).
The next lemma shows that polynomials which vanish on Sm can be divided by um.

Lemma 5.1. Assume that p ∈ P(Rd0) vanishes on Sm. Then p is divisible by um.

Proof. We may assume that p is homogeneous with respect to the dilations (30) of Rd0 .
Consider first the pairs in the first block of Table 2.
In this case there is only one invariant in ρv, leading to the sublaplacian on N ′, and then

only one coordinate ξ′1 besides those corresponding to the T ’s. The space V (µ) coincides with
Ps,0(v) and by Proposition 4.6 Ps,0(v) ⊂ Ps,0(v)⊗ Vm if and only if s ≥ m. By Proposition
4.5, π(Mm) vanishes on Ps,0, if s < m. This is also the case of π(Um) = π(Mm)∗π(Mm).
Hence the set Sm contains all the points of the form (|λ|(2s+ κ), λ) for any λ ∈ Rdim z′ and
s = 0, . . . ,m− 1.
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We decompose p into its odd and even part w.r. to ξ′1 as

p(ξ′1, λ) = ξ′1 p1(ξ
′
1
2
, λ) + p2(ξ

′
1
2
, λ) ,

where p1 and p2 are two polynomials with suitable homogeneity.
We claim that p1 and p2 must both vanish on the set of points (|λ|2(2s + κ)2, λ) with

λ ∈ Rdim z′ and s = 0, . . . ,m− 1. If it were not so, we would have the identity

|λ|(2s+ κ) = −
p2

(
|λ|2(2s+ κ)2, λ

)
p1

(
|λ|2(2s+ κ)2, λ

) .

This contrasts with the fact that the right-hand side is a rational function in λ, while the
left-hand side is not. Then p1(η, λ) and p2(η, λ) are both divisible by Πm−1

s=0 (η−(2s+κ)2|λ|2).
Therefore p(ξ′1, λ) is divisible by

∏m−1
s=0 (ξ′1

2−(2s+κ)2|λ|2). This also holds for p = um. Hence

(32) um(ξ′1, λ) = c
m−1∏
s=0

(ξ′1
2 − (2s+ κ)2|λ|2) .

We consider next the pairs in the second block of Table 2.
There are two invariants in ρv for the pairs at lines 8 and 10 and three for the pair at line

9. In the notation of Subsection 4.2.3, the space V (µ) coincides with Vs,i or Vs,i,j respectively,
always with i and s of the same parity. We adopt the notation

ξ′(λ, µ) =

{
ξ′(λ, s, i) (lines 8,10) ,

ξ′(λ, s, i, j) (line 9) .

More precisely, ξ′1 = |λ|(2s + κ) only depends on λ and s. For the pair at line 9, ξ′2 only
depends on λ, s, i, because it is invariant under the larger group U2 × SU2n.

The homogeneity degrees of the elements of D′ w.r. to the dilations (29) are (1, 2, 1) at
lines 8 and 10, and (1, 2, 2, 1) for the pair at line 9. By (30) and the subsequent comments,

(33) ξ′1(λ, s) = |λ|ξ′1(1, s) , ξ′2(λ, s, i) = λ2ξ′2(1, s, i) , ξ′3(λ, s, i, j) = λ2ξ′3(1, s, i, j) .

We split ΣD′ as the union of Σ[
D′ = {ξ′ : ξ′d0

= 0} = ρv(v)× {0}, cf. [2], and the sets

S̃i =

{
{ξ′(λ, s, i) , λ ∈ R , s ∈ i+ 2N} , (lines 8, 10)

{ξ′(λ, s, i, j) , λ ∈ R , s ∈ i+ 2N , 0 ≤ j ≤ (s− i)/2} , (line 9)

depending on i ≥ 0.
By Propositions 4.7, 4.8, and 4.9, Rs,i (resp. Rs,i,j) is contained in Vs,i⊗Vm (resp. Vs,i,j ⊗

Vm) if and only if i ≥ m. By Proposition 4.5 and Proposition 4.10 π(Mm) vanishes on V (µ)
if and only if R(µ) is not included in V (µ)⊗ Vm, which means i < m. This is also the case
of π(Um) = π(Mm)∗π(Mm).

Hence Sm contains the union of sets S̃i for 0 ≤ i ≤ m− 1. Moreover, each polynomial um

vanishes on S̃i, i < m, but is never zero on S̃i, i ≥ m, except for the origin.
We prove recursively the existence of polynomials ũi ∈ P(Rd0), i ≥ 0, such that

(a) ũi(ξ
′
1, ξ

′
2, λ) = c1,iξ

′
1
2 + ξ′2 + diλ

2, resp. (for line 9), ũi(ξ
′
1, ξ

′
2, ξ

′
3, λ) = c1,iξ

′
1
2 + ξ′2 +

c3,iξ
′
3 + diλ

2;
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(b) each ũi vanishes on S̃i but does not vanish on any other S̃i′ , i
′ 6= i, except for the

origin;
(c) um is a scalar multiple of

∏m−1
i=0 ũi.

Once this is done, the proof can be concluded as in the previous case.
Consider the polynomial u1. Being homogeneous of degree 2, it must be of the form

(34) u1(ξ
′
1, ξ

′
2, λ) = a1ξ

′
1
2
+ a2ξ

′
2 + bλ2 + cξ′1λ ,

resp.

(35) u1(ξ
′
1, ξ

′
2, ξ

′
3, λ) = a1ξ

′
1
2
+ a2ξ

′
2 + a3ξ

′
3 + bλ2 + cξ′1λ .

For i = 0, we have

a1λ
2ξ′1

2
(1, s) + a2λ

2ξ′2(1, s, 0) +a3λ
2ξ′3(1, s, 0, j)︸ ︷︷ ︸

only for line 9

+bλ2 + cλ|λ|ξ′1(1, s) = 0 ,

for every λ 6= 0, s even (and j ≤ s/2). This forces c = 0 by parity in λ.
In any case, we must have a2 6= 0. Suppose in fact that a2 = 0. In the cases of lines 8, 10,

the identity above would hold for every i, and u1 would vanish on every S̃i. In the case of line
9, u1 would not depend on ξ′2 and the polynomial p(ξ′1, ξ

′
3) = u1(ξ

′
1, ξ

′
3, 1) = a1ξ

′
1
2 + a3ξ

′
3 + b

would vanish at all points
(
2s + κ, ξ′3(1, s, 0, j)

)
, for s even and j ≤ s/2. Notice that, for s

and i fixed, the values ξ′3(1, s, i, j) must all be different, because ξ′3 is the only coordinate on
ΣD′ depending on j. Then we would have p = 0 and, by homogeneity, u1 = 0.

Thus, we have obtained ũ1 = u1/a2 satisfying (a), (b), (c) above.
Assume now that we have constructed ũi ∈ P(Rd0), i = 0, . . . , i0 − 1, satisfying (a), (b),

(c) above. Consider the polynomial ui0 . It vanishes on S̃i, i < i0, but does not vanish on S̃i,
i ≥ i0. Hence we can factor out ũi, i = 0, . . . , i0 − 1, from ui0 and there exists a polynomial

qi0 such that ui0 = qi0
∏i0−1

i=0 ũi. Necessarily qi,0 is homogeneous of degree 2 with respect to

(30), and vanishes on S̃i0 because the polynomials ũi, i < i0, do not vanish on it. Hence the
quotient qi0 will have the form (34), resp. (35). Arguing as before, it can be shown that
c = 0 and a2 6= 0. Then ũi0 = qi0/a2 has the required properties. �

The higher complexity of the second part of the proof given above was due to the presence
of more than one polynomial in ρv, but also by the fact that we did not use explicit formulas
for ξ′2(1, s, i) and ξ′3(1, s, i, j). To find such formulas does not seem an easy task anyhow,
cf. [3]. On the other hand, the arguments used in the proof emphasize a pattern which is
common to all cases at hand.

Note that we have also proved the following identities:

Sm =

{⋃m−1
s=0 {(|λ|(2s+ κ), λ), λ ∈ Rdim z′} (lines 8, 10) ,⋃m−1
i=0 S̃i (line 9) .

Also note that what prevents Sm from being an algebraic set is the dependence on |λ| of
ξ′1. It follows from (32) and (33) that the zero set of um in Rd is Sm ∪ S−m, where

S−m =
{
(−ξ1, ξ2, ξ3, λ) : (ξ1, ξ2, ξ3, λ) ∈ Sm

}
,
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(with the ξ′3-component omitted for the pairs at lines 8, 10 - this caveat will not be repeated
in the sequel).

Let now G be a Vm-valued, K-equivariant Schwartz function G on N ′. Set f = M∗
mG.

Then f ∈ S(N ′)K and f belongs to the orthogonal complement of
⋂νm

j=1 kerA
(m)
j = kerUm.

Hence the Gelfand transform of f vanishes on Sm. The following lemma justifies that we
can choose Schwartz extensions of G ′f which vanish on Sm.

Proposition 5.2. Let f ∈ S(N ′)K be such that its spherical transform G ′f vanishes on Sm.
For any p ∈ N, there exists ψ = ψ(p) ∈ S(Rd0) such that:

(i) (umψ)|ΣD′
= G ′f

(ii) there exist C = Cp > 0 and q = q(p) such that ‖ψ‖(p) ≤ C‖f‖(q).

We state first a preliminary lemma.

Lemma 5.3. Let P (y) be a real polynomial in y ∈ Rn. If f(x, y) ∈ S(R× Rn) vanishes on

{(P (y), y) : y ∈ Rn}, then there exists f̃ ∈ S(Rd0) satisfying f(x, y) = (x − P (y))f̃(x, y).

Furthermore f̃ depends linearly and continuously on f .

Proof. The conclusion follows easily from Hadamard’s lemma (Lemma 2.2), once we know
that the change of variables (x, y) 7−→

(
x − P (y), y

)
preserves S(Rn+1) with its topology.

This is trivial if degP (y) ≤ 1. If degP = m > 1, it follows from the inequality

|x− P (y)|+ |y| ≥ C
(
|x|1/m + |y|

)
,

which can be verified distinguishing between the two cases |x−P (y)| < |y| and |x−P (y)| ≥
|y|. �

Proof of Proposition 5.2.
Let ϕ ∈ S(Rd0) be an extension of G ′f . Such an extension exists by [2]. Let Pk be the

homogeneous component of degree k with respect to (30) in the Taylor expansion of ϕ around
the origin. Since ϕ vanishes on Sm, which is invariant under these dilations, Pk vanishes on
Sm.

By Lemma 5.1, there exists Qk ∈ P(Rd0) homogeneous of degree k with respect to (30)
such that umQk = Pk+2m.

Applying Whitney’s extension theorem, there exists ψ1 ∈ C∞(Rd0) with compact support
around the origin and Taylor expansion

∑
k∈NQk at the origin. Then ϕ− umψ1 vanishes of

infinite order at the origin.
We take now a function η, homogeneous of degree 0 w.r. to the dilations (30), C∞

away from the origin, and equal to 1 on a conic neighbourhood of ΣD′ and equal to 0 on
a conic neighbourhood of S−m. Such a function exists because, by the hypoellipticity of the
sublaplacian, ΣD′ is contained in a conic region around the positive ξ′1-semiaxis, cf. e.g. (15)
in [7]:

ΣD′ ⊂
{
(ξ′1, ξ

′
2, ξ

′
3, λ) : |ξ′2|

1
2 + |ξ′3|

1
2 + |λ| ≤ Cξ′1

}
.

Then the function ω = (ϕ − umψ1)η is Schwartz and vanishes on Sm ∪ S−m. By repeated
application of Lemma 5.3, ω = umψ2, with ψ2 Schwartz. Take ψ = ψ1+ψ2. Then umψη = ϕη,
so that (i) holds.
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Consider now the Schwartz norm ‖ψ‖(p) ≤ ‖ψ1‖(p) + ‖ψ2‖(p).
By Lemma 5.3, there exist an integer ν = ν(p) ≥ p and a constant Ap such that

‖ψ2‖(p) ≤ Ap‖ω‖(ν) ≤ A′
p‖ϕ− umψ1‖(ν) ≤ A′′

p

(
‖ϕ‖(ν) + ‖ψ1‖(ν+2m)

)
.

In order to estimate ‖ψ1‖(ν+2m), we use the fact that the Whitney extension of the jet

{Qk}k∈N can be performed so that the resulting function ψ1 = ψ
(p)
1 satisfies, for an integer

r = r(p) and a constant Bp,

‖ψ1‖(ν+2m) ≤ Bp

∑
k≤r

‖Qk‖ ≤ B′
p

∑
k≤r

‖Pk+2m‖ ≤ B′
p‖ϕ‖(r+2m) ,

where the norm of a polynomial is meant as the maximum of its coefficients.
Putting all together,

‖ψ‖(p) ≤ Cp‖ϕ‖(max(r,ν)+2m) .

By [2], there are an integer q = q(p) and a constant Cp such that it is possible to choose
ϕ = ϕ(p) above so that

‖ϕ‖(max(r,ν)+2m) ≤ C ′
p‖f‖(q) ,

and this concludes the proof. �

We resume the proof of Proposition 4.3.
Given G, set f = M∗

mG ∈ S(N ′)K ∈ (kerUm)⊥. By (31), G ′f vanishes on Sm.
Applying Proposition 5.2, we can choose a Schwartz function ψ such that umψ extends

G ′f . Defining h = G ′−1(ψ), we easily obtain, on ΣD′ ,

G ′(Umh) = umψ = G ′f .

This implies

M∗
mMmh = Umh = f = M∗

mG .

To factor out M∗
m, observe that for any λ 6= 0,

πλ(Mm)∗πλ (Mmh−H) = 0 .

By Proposition 4.5, both sides are 0 when restricted to a subspaces V (µ) with µ non-m-
admissible. If µ is m-admissible, then Proposition 4.10 implies that πλ (Mmh−H) = 0 on
V (µ). Then Mmh = H.

It remains to prove the estimates on the Schwartz norms. To the norm estimates given by
Proposition 5.2 it is sufficient to add that M∗

m and G ′−1 are continuous on the appropriate
Schwartz spaces. For G ′−1 we refer to [2, 6, 7].

6. Conclusion

We complete the proof of Theorem 1.1.
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Let G ∈
(
S(N ′) ⊗ Pk(z0)

)K
as in (6). We decompose G as in (13). We realise the

representation space Vm as Wα when |α| = m. By Lemma 4.3, for each (α, β), [α] + [β] = k,
there exists hα,β ∈ S(N ′)K such that

p̃α(v, ζ)g̃αβ = Mα,ζhα,β ,

where the operator Mα,ζ =
∑νm

j=1A
(m)
j b

(α)
j (ζ) is the realisation of Mm on Wα.

In the notation of (5), the operators D̃α′′

ζ form a basis of
(
D(N ′) ⊗ P(z0)

)K
. Therefore,

each Mα,ζ can be expressed as a linear combination of the D̃α′′

ζ with [α′′] = k, and one can
write G as

G =
∑

[α′′]=k

Dα′′

ζ Hα′′ ,

where the functions Hα′′ are finite linear combinations of hα,β.
The norm estimates are obvious after Proposition 4.3.
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