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1 Introduction

We are interested in understanding and describing the p-adic properties of
Jacobi forms. As opposed to the case of modular forms, not much work has
been done in this area. The literature includes [?, ?, ?].

In the first section, we follow Serre’s ideas from his theory of p-adic mod-
ular forms. We study Jacobi forms whose Fourier expansions have integral
coeflicients and look at congruences between them. Non-trivial examples
are given by Jacobi-Eisenstein series. If turns out that two Jacobi forms
need to have the same index and satisfy a condition on the weights in order
to be congruent.

If we define p-adic Jacobi forms in the natural way in this context, and
restrict ourselves to the case of SLy(Z), we obtain a structure theorcm for
the space of p-adic Jacobi forms for SLy(Z) of a given weight x € Z, and
index m € Z.

Another feature is that p-adic Jacobi forms for T'g(p) are also forms for
SLo(Z). This parallels the similar result for modular forms, and it will most
probably play an important role in defining some p-adic operators that do
not arise dircctly from complex opcrators.

In the second section, we associate to every Jacobi form with integral
coefficients a measure on Z, with values in the p-adic ring of Katz’s gener-
alized modular forms. This is an injection that allows us to interpret Jacobi
forms with p-adic coeflicients as truly p-adic objects, and this suggests where
to look for the adequate “test objects” for a modular p-adic theory. It also
provides examples of p-adic analytic families of modular forms.



Finally, we point out that a lot of work remains to be done, starting by
finding a modular definition of p-adic Jacobi forms and studying Hecke and
other operators. We hope to eventually obtain some rcsults on p-adic prop-
erties of 1/2-integral weight modular forms, since Jacobi forms are closely
related to them.

Let us define precisely what we refer to as a Jacobi form (usually called
a “weak” Jacobi form). The standard reference for Jacobi forms is [?]. For a
more recent overview of the topic, see [?]. Let H be the complex upper-half
plane. Let e(z) denote the exponential 2™ for z € C.

Definition 1.1 A Jacobi form of weight k € N and indezm € Z on (', L)
where T' C SLy(Z) is a congruence subgroup and L C Z2 is a [-invariant by
right multiplication rank-2 lattice, is a holomorphic function ® : HxC — C
satisfying the following:

1. First Transformation Law:

— mez z
Oy = (e +d)~Fe(-———)(y.7

forevmy'y:(a Z)GF,

c
2. Second Transformation Law:
DX = e(mNT +222)0(T, 2+ AT+ ) = O
for every X = [\, u] € L,

3. Holomorphicity at the cusps: for each v € SLa(Z), Qlgmy has a
Fourier expansion of the form

S el "¢

n>0,r
where g = e(7), ( = e(z), and ¢(n,r) € C.

The space of all such forms is denoted Jg,,(I',L). If A C C is any
subring, we denote by Ji,.(I', L, A) the subspace consisting of those forms
¢ =3 c(n,r)q"¢" with ¢(n,r) € A for all n and 7.



We write M7 (T", A) for the space of meromorphic elliptic modular
forms of weight k for ' whose Fourier coefficients at oo belong to A and
My (T, A) for the subspace of holomorphic forms.

We often omit to mention the ring of coefficients A = C.

Remarks:

The indexes n and r appearing in the Fourier expansions of Jacobi
forms are rational numbers with bounded denominators, the bound
depending on I" and L.

It follows from the second transformation law of Jacobi forms that
c(n,r) = 0 if r2 > dnm + m?  Therefore, for a fixed n, there arc
finitely many non-zero ¢(n,r).

The standard definition of a Jacobi form includes the only further
requirenient that the coeflicients ¢(n,r) vanish whenever 72 > 4nm.

The space Ji ,(C, L) has finite dimension over C.

The group I' > L |, where (v, X)(v, X") = (¢, Xv' + X'), acts on
Jem (T, L,C) via (1) and (2) of the previous definition:

(I)|('Y:X) = (‘I’lk,m'f) ImX-
If @ € Jew(l,L,A) and X = A\ ] € @ with MX € Z2 for some

M € 2, then (9],,X)|.=0 € MP*™™(I' N T(¢fs), 4). Morcover, if
X = [0, 1], then (2], X) =0 € My(I' N (), A).
If @ is a nonzero Jacobi form of index m, and we fix 7 € H, then ®(7, z)

has exactly 2m zeros as a function of the variable z in a fundamental
domain for the action of 7Z + Z.

2 Congruences and p-adic limits

We first follow Serre’s approach to p-adic modular forms, and consider con-
gruences of Fourier coefficients of Jacobi forms.

Let K be a number field, O its ring of integers. Let p > 5 be a rational
prime and p|p a prime ideal of O. Let K, be the completion of K at g, O,, its
ring of integers, m € p an uniformizing parameter. We also let OP = KNO,,
and F = O, /(7).



We say that ® € Jg (T, L,0°) and ¥ € Jy ,,,(I", L', OF) are congruent
module 7¢, and denote it by

® = ¥ mod #*

when, if ® = Y ¢(n,7)q¢"¢"and ¥ = 3 /(n, 7)q"(", then ¢(n,r) = (n,r) mod
¢ for all n and r.!

Example: The first non-trivial examples of congruences are given by the
Jacobi-Eisenstein series By € Jem{(SL2(Z),Z% Z) defined in [?, 1.2]. By
looking at the explicit coefficients for Ej |, we get

Ek,l = E}clll mod })S—H

if & = k" mod (p — 1)p®*. (The same congruence also holds for any given
index m; this follows easily from the fact that Ey |V, = Eg,, , where V,,
is the operator studied in [7, 1.4].)

This shows that, not surprisingly, one can have congruences among Ja-
cobi forms of different weights. What about different indexes?

Lemma 2.1 Let ® € Ji,n(To(N), L, 0%), © € Jy i (To(N), L, OF) and
assume that
0Z® =" modr*

for some s > 1. Then m = m' and k = k' mod (p — 1)p*Y), for some
g(s) = o0 when s — co.

Proof: Let us work in B = F[¢,¢{'}({¢)). The congruence implics
&-T =0 (1)

Let X =[Apu] € L, A # 0. We replace z by z + A7 + u in (7?7) and we use
the second transformation law for Jacobi forms. We get

(qvcm)—m P — (q).zcz,\) —m/ T =0 (2)

Equations (??) and (?7?) form a lincar system in B that can only be solved

non trivially if m = m’.

"There is a g-expansion principle for Jacobi forms, but its proof requires some features
of Jacobi forms not visited here, and will appear elsewhere.



Now consider ® |z=0 € Mk(Fo(N), Op) and ¥ |z=g e My (FU(N), op)
The hypothesis ® = ¥ mod #° implies that the g-expansions of ®{,—¢ and
¥ |,=0 as modular forms are congrucnt modulo 7% —just replace 1 for ¢ in
the original congruence. If @ |,—9 = ¥|,=0 = 0 mod (7*), evaluate instead
at some other u € Q, Mp € Z, (p, M) = 1: the forms @ |,=, = ®|n[0, ]
and ¥ |,=, = ¥[,4[0, p] are forms of weights &k and &' for [o(N) N T'(M'),
{p, M") = 1. Since 2m+1 well-chosen such evaluations characterize a Jacobi
form of index m, they cannot all be congruent to 0 modulo a power of a
prime above m without being the original form itself congruent to 0 mnod ()
too. In any case, we deduce that & = &' mod (p — 1)p?®) from a well-known
result by Serre and Katz.

Let us now concentrate on the case [' = SLy(Z), L = Z2, where we have
the following structure theorem for Jacobi forms of even weight. Consider
the graded ring Jou s = Jou «(SL2(Z),22%). Then

JZ*,* = M*[A; B],

the polynomial ring in two variables, where M., denotes the graded ring of
holomorphic modular forms for SLy(Z) over C, and A € J_51(SLy(Z),22,2),
B € Jy,1(SLo(Z), 2% Z) are two specific Jacobi forms ~for an explicit descrip-
tion of A and B, sce [?, 111.9, 1.3]. The coefficients of A and B are coprime,
and

A=22+0(2") , B=124+0(2%.

(There is a similar result for Jo.41,; but let us stick to even weights.)
The forms @ € Jy ,,(SL2(Z), 2%, OP), ¥ € Jyr m(SLo(Z), 2% OP) can be
expressed via the structure theorem as

Lt

®=3 gj(r)AIB"7 | U= hy(r)ATB™
j=0 =0

for unique modular forms g; € Myy2;(SL2(Z), OF) and
h; € Mk1+2j(SL2(Z), 0F).

Lemma 2.2 If & = ¥ mod 7° for some s > 0 then g; = h; mod 7° for
F=0,...,m.



Proof: If there is a j with g; # /j mod 7°, take jp to be the first such
index. By the properties of A and B, we have

d = igj (12,,;_3'32;‘ + O(zzj""z))
j=0

m

U= 3 hy (12794 4 0(:42)
=0

Since ® = ¥ mod 7*, then also

d Zjo d 2j0
(CEE> ¢=1® = (CE) lc=1% mod 7*

In terms of the complex variable z:

1 d\%o 1 d\%
¢ 0= —2) " 2o mod 7
(21m'dz> l==0 (zm'dz) |z=0% mod =

More precisely,
12m A0 g, = 12m %0 ), mod n°

which contradicts the property of jp if p > 5.

We denote by My (SLa(Z), 09) mod m and Ji 1, (SL2(Z), Z2,OF) mod
the spaces of power scries obtained by reducing modn the Fourier coeffi-
cients at co of forms in My(SLa(Z), OP) and Jy ;,(SLo(Z), 2%, OP), respec-
tively.

The following follows from Lemma ?7.

Corollary:

Jkn(SL2(Z2), 2% 0P) mod 7 =~ (P[My42;(SLa(Z), 0F) mod w] A7 B™7.
=0

The structure of M;(SL2(Z), OF) mod 7 is well known (see [?]).

As a consequence of Lemma 77, we can attach a weight to the limit of
a sequence of Jacobi forms. That is, if ®; € Jg; m(To(N}, L, OF) and {®;}
converges, then k; — x € (Z;) ~ Z/(p— 1) x Z,. Here a weight k € Z is
interpreted as an element of (Z;)" via (k mod (p — 1), k).

We next give a definition of p-adic Jacobi forms of a given weight as
limits of complex Jacobi forms.



Definition 2.3 A p-adic Jacobi form of weight x € (Z})' and indezm € Z
on (Lo(N), L) with coefficients in O, is an element of

‘]x m.(FU( )7L)Op)

_ [ ® € 0,((C)lall, ® = lim; B, @5 € Ty, m(To(N), L, OP),
k‘j -2 X ’
Denote by M”(SLQ(Z) Op) the space of p-adic modular forms of weight
£ €(Z;) on SLQ(Z) with coefficients in O,. The next fact also follows from
Lcmma. 77,

Corollary: J2,,(SLs(Z),22 0,) = M? ,, (SLa(Z), Op) AV B™5.

J-O

Proof: If & € J2, (SLy(Z),2%,0,p), then & = lim, ®, for some &, €

Jknm(SLa(Z),2% 0P). Lemma ?7 for the family @, clearly implies that

P e Dilo A+2j(SL2(Z), O,) A7 B™3.

Choose now forms fy9; € M§+2j(SL2( ), Op). Let & = 37T, Fyr2jAIB™3,

We need to prove that & € JZ  (SL2(Z), 2,0,). By definition, for each
Fxvos = li,?l f k(:j'f'z_j

with _f(")_|_2J € ML., +2i(SL2(Z),0%) and ky; = x mod (p— 1)p". Assume
for the tuue being tha.t all kn coincide for j = 0,...,m and relabel them &,,.
Then &, = ©7b, ,E"LQJAJB"’-J € Jk, m(SLy(Z ) z2,0¢) and & = lim, &,
is a p-adic Jacobi form.

It remains to show that we can assume, without loss of generality, that
the kn; coincide. Since kn, = kn, = ... = kg, mod (p — 1)p", define £,
to be the largest of thebc integ(,rq and write k, = k,,j +a;(p — 1)p™ with

n} {n) a_,p . , o
a; € Z; replace now fk 2 by fk,.+23 fk., +2J po1 - Westill have fypo5 =

limy, fkn+2j because E,_; = 1 mod p.
This ends the proof.

This already gives a pretty good idea of what a p-adic Jacobi form on
(SLy(Z), Z?) -as defined in 77— looks like. The next example —communicated
to us by Rodriguez-Villegas— and theorem show the first step of an expected
property of p-adic Jacobi forms, namely: that forms of a certain level Np™
are also forms of level N.



Example : Letp=1mod4,andlet k€N £k=1+ P;—l mod (p —1). Then
r24pa?
plk—1)Ey,) = Z g~ 1 ¢ modp.
r,s,r=s mod 2

The left-hand side form belongs to Ji 1(SL2(Z), 22 Z), and the right-hand
side form belongs to Ji 1 (To(p), Z% Z, (1—3)) —-where the symbol (;—,) affects
the First Transformation Law in the expected manner. In accordance to the
spirit, of the theory of p-adic modular forms, we expect the latter form to
have weight 1+ (‘-J) on SLy(Z). The congruence requirement for the weight
k now becomes more clear.

This congruence follows from a study of the coefficients of Ey ;, the
Cohen numbers, done in [?].

Theorem 2.4

T2 m(Co(p), 2%, O0p) = J% 1, (SL2(2), 27, O)

R

Proof: Let ® € Ji"m(lf‘g(p),lz, Op). We will show that ® belongs to the
closure of J?

v .(SL2(Z),2% Op). That will imply the theorem.
Let

O; = tr((I’gpj)
where ¢ = E, — p*E,{¢") (here E, is the standard Eisenstein scries and
(p — D)]a) and tr¥ € Ji,,(SL2(Z),2%,0°) if ¥ € Jk,,,,(Fg(p),Z'z, OF) is
given by the formula ir¥ = 3 cr onsi.z) ¥17- Then lim; @; = €. For
proving this, let us find a more explicit trace formula. If

0 -1 1 1
" -—(1 I>_S(Ol) ,1<1<p

Yp+1 = I
where § = ( (1] _61 ), then

P P
trd =30 + Z Dlyy =0+ > (IS)(7 +1,2)
=1 =1

Using the Fourier expansion

B|S= Y b{n, )¢,

n>0,r



we have

tr& = O+ Z Zb(n,r)q”"”(re(nl/p) (3)

n20r |
= @+p ) b(n,r)gMPC

n=0modp,r

= @+ ) blnp,1)g"¢
n>0,r
= &+ p®|S|U;

where Uy 1, L a(n,7)g"¢" = 32, , a(np,7)q"(".
Now let us prove that lim; &; = .

B — & = tr(®g”) — dg? + D(g” — 1) (4)
Recalling the definition of g, we sec that
g=1 (mnod p)

Therefore, the second term in (??) tends to 0. It is easy to see that g|S =
E, — E,(7/p), so we also have

9/S=0 (mod p)

We still need to establish that the first term in (??) tends to 0. If v, is a
p-adic valuation in Oy normalized in order to satisfy v, (p) = 1,

vp (r(®g7) - 0g”) = wp (p(@g”)ISIU;) by (22
v (p(2g7)1S)
1+ v,(®|S) + P vp(g|S)

Y

Since vp(g|S) > 0, this valuation approaches oo and the second term in (?7)
tends to 0. This ends the proof.

3 The p-adic measure associated to a Jacobi form
We keep the same notation as before.

In this section, we are going to associate to every & € Ji (', L, OP)
a p-adic measure pug on Z, with values in MP(I",0,), the p-adic ring of



Katz’s p-adic modular forms. The idea behind the definition is as follows.
If @ =3, c(nr)g"¢", and we evaluate ® at any root of unity ¢ € C, we
obtain a modular form (in principle of an increased level; see [?, Theorem
1.3]). Moreover, the collection of 2m + 1 evaluations of ¢ at different roots
of unity characterize ®. Therefore, taking ¢ to be an indeterminate in pyeo0,
the group of roots of unity of order a power of p, still preserves all the
information about ¢. One way to formalize this is to interpret & as the
measure pg on Z, whose Fourier transform is the power series in X:

w = T((7)dtnnin)x ®)

>0 \n,r
= Zc(n,r)q"Tr
n,r

where T' = X + 1. (Recall that for given n and I, 3°,, .( 7 Je(n,7) is a finite

sum.)
The next theorem states the precise result.

Theorem 3.1 Let & = L, . c(n,7)q"¢" € Jp ([, L,0F). Then the power

= (51 o) .

‘20 n,r

where ( ; ) = (=1)* ( b=r-1 ) if < 0, 15 the Fourier transform of the

—r—1
measure on Ly with values in MP(T', O,) whose j-moment is
dy’ d \’
.= — Dl —y = ]|, 7
™ (< dc) o= (27ridz) l+=0 ")

Moreover, the association ® — g is one to one.

Proof: Let us show that the m;’s defined in (??) are the moments of a
measure. Notice that the Fourier expansion of m; is

my = Z rle(n, r)q" (8)

and that

12}
$ = Z’IﬂjM.

|
>0 J:

10



We first prove that mn; € ML+3(F} Of). One nice way to see this, while at
the same time introducing a useful technique, is to show that, if 7 = = + 4y,

2

22
—E:;_—(I)lk",':eLE:'_L(I) , ’)‘EF

- . a b L
where f(7,2)|xv = (e7 + d) kf('yT,ET-‘;?) if v = ( . d ) This simple

computation is left to the reader. This says that, if we write

ams? . Z fj 27(:1‘2

j20

then f; is a nearly holomorphic —in the sense of [?}- modular form for T
of weight £ + 7, with coefficients in O,. The powers of % in each f; are
bounded. Also,

1
m + - %,
fJ J() 7

It is a general fact that in such situation, m; is a p-adic modular form.
(Write the Maass-Weil operator W = Qag — %9%. If we replace in f; the
action of W by the action of q%, we are left with m;. On the other hand,
being nearly holomorphic forms the closure of modular forms acted on by
W we obtain a form belonging to the closurc of modular forms acted on by
qdq, which is known to be a p-adic operator. For a more rigorous exposition,
see (7, 7].)

So m; € Miﬂ-(f‘, Op). What follows is a skeich of a standard argument
. , T ;
that can be seen in [?, 7, ?]. If we write ( . ) = fo:() a;jix?, aj; € Q, then
the l-coefficient in (?7) satisfics
r
Z l '“. T Z ﬂ',J tTn.J
n,r

and hence belongs to MP(I', O,,) ® @; but its g-expansion at co has integral
cocfficients. We deduce that the [-coefficient of (?7) belongs to MP(I", O,,).
Therefore (77) is the Fourier transform of a measure p¢ on Z, with values
in MP(T', 0,). Its l-moment can be computed by using 7 = X — 1

d\* d
((X+ Uﬁ) ,u¢.|X:0 = ( ﬁ) Ii¢|T=1-

11



Look at the Fourier expansion you obtain for the moments of e by per-

forming this operation to (??); it coincides with the Fourier expansion of my
in (77).

Finally, we can rcad off the injectivity of ® — pge from the cxplicit

Fourier expansions for ® and pg in (?77).

This concludes the proof.

The measures obtained from Jacobi forms via the theorem satisfy the

following properties.

o If & € Jp (T, L, OP) then myp, the 0-moment of 14, belongs to

M (T, 0p). Also, my, the l-moment of j14, belongs to M} ,(T,0,)
for every { > 0. Hence, we can learn the weight of the original Jacobi
form from any of its nonzero momnents 7.

fz,, (Fdpe(z) = B(q,() for every ( € ppeo. In fact, 2m + 1 of these
values characterize ® € Jy (I, L, OF). Equivalently, 2rn+ 1 moments
of j1gp characterize ®. This property can probably be restated in a
more suitable way for learning what the index m of the original Jacobi
form is from its associated measure.
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