p-adic aspects of Jacobi forms

Adriana Sofer

Princeton University
Department of Mathematics
Princeton
New Jersey, 08544-1000
USA

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn
Germany

p-adic aspects of Jacobi forms

Adriana Sofer
Department of Mathematics
Princeton University
asofer@math.princeton.edu

1 Introduction

We are interested in understanding and describing the p-adic properties of Jacobi forms. As opposed to the case of modular forms, not much work has been done in this area. The literature includes [?, ?, ?].

In the first section, we follow Serre's ideas from his theory of p-adic modular forms. We study Jacobi forms whose Fourier expansions have integral coefficients and look at congruences between them. Non-trivial examples are given by Jacobi-Eisenstein series. It, turns out that two Jacobi forms need to have the same index and satisfy a condition on the weights in order to be congruent.

If we define p-adic Jacobi forms in the natural way in this context, and restrict ourselves to the case of $S L_{2}(Z)$, we obtain a structure theorem for the space of p-adic Jacobi forms for $S L_{2}(Z)$ of a given weight $\chi \in Z_{p}^{\prime}$ and index $m \in Z$.

Another feature is that p-adic Jacobi forms for $\Gamma_{0}(p)$ are also forms for $S L_{2}(Z)$. This parallels the similar result for modular forms, and it will most probably play an important role in defining some p-adic operators that do not arise directly from complex operators.

In the second section, we associate to every Jacobi form with integral coefficients a measure on Z_{p} with values in the p-adic ring of Katz's generalized modular forms. This is an injection that allows us to interpret Jacobi forms with p-adic coefficients as truly p-adic objects, and this suggests where to look for the adequate "test objects" for a modular p-adic theory. It also provides examples of p-adic analytic families of modular forms.

Finally, we point out that a lot of work remains to be done, starting by finding a modular definition of p-adic Jacobi forms and studying Hecke and other operators. We hope to eventually obtain some results on p-adic properties of $1 / 2$-integral weight modular forms, since Jacobi forms are closely related to them.

Let us define precisely what we refer to as a Jacobi form (usually called a "weak" Jacobi form). The standard refcrence for Jacobi forms is [?]. For a more recent overview of the topic, see [?]. Let \mathcal{H} be the complex upper-half plane. Let $e(z)$ denote the exponential $e^{2 \pi i z}$ for $z \in \mathbb{C}$.

Definition 1.1 A Jacobi form of weight $k \in \mathbb{N}$ and index $m \in \mathbb{Z}$ on (Γ, L) where $\Gamma \subset S L_{2}(\mathbb{Z})$ is a congruence subgroup and $L \subset \mathbb{E}^{2}$ is a Γ-invariant by right multiplication rank-2 lattice, is a holomorphic function $\Phi: \mathcal{H} \times \mathbb{C} \longrightarrow \mathbb{C}$ satisfying the following:

1. First Transformation Lau:

$$
\begin{aligned}
& \qquad\left.\Phi\right|_{k, m} \gamma=(c \tau+d)^{-k} e\left(-\frac{m c z^{2}}{c \tau+d}\right) \Phi\left(\gamma \cdot \tau, \frac{z}{c \tau+d}\right)=\Phi \\
& \text { for every } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma
\end{aligned}
$$

2. Second Transformation Law:

$$
\left.\Phi\right|_{m} X=e\left(m\left(\lambda^{2} \tau+2 \lambda z\right)\right) \Phi(\tau, z+\lambda \tau+\mu)=\Phi
$$

for every $X=[\lambda, \mu] \in L$,
3. Holomorphicity at the cusps: for each $\gamma \in S L_{2}(\mathbb{Z}),\left.\Phi\right|_{k, m} \gamma$ has a Fourier expansion of the form

$$
\sum_{n \geq 0, r} c(n, r) q^{n} \zeta^{r}
$$

where $q=e(\tau), \zeta=e(z)$, and $c(n, r) \in \mathbb{C}$.
The space of all such forms is denoted $J_{k, m}(\Gamma, L)$. If $A \subset \mathbb{C}$ is any subring, we denote by $J_{k, m}(\Gamma, L, A)$ the subspace consisting of those forms $\Phi=\sum c(n, r) q^{n} \zeta^{r}$ with $c(n, r) \in A$ for all n and r.

We write $\mathbf{M}_{k}^{\text {merom }}(\Gamma, A)$ for the space of meromorphic elliptic modular forms of weight k for Γ whose Fourier coefficients at ∞ belong to A and $\mathrm{M}_{k}(\Gamma, A)$ for the subspace of holomorphic forms.

We often omit to mention the ring of coefficients $A=\mathbb{C}$.

Remarks:

- The indexes n and r appearing in the Fourier expansions of Jacobi forms are rational numbers with bounded denominators, the bound depending on Γ and L.
- It follows from the second transformation law of Jacobi forms that $c(n, r)=0$ if $r^{2}>4 n m+m^{2}$. Therefore, for a fixed n, there are finitely many non-zero $c(n, r)$.
- The standard definition of a Jacobi form includes the only further requirement that the coefficients $c(n, r)$ vanish whenever $r^{2}>4 n m$.
- The space $J_{k, m}(\Gamma, L)$ has finite dimension over \mathbb{C}.
- The group $\Gamma \triangleright L$, where $(\gamma, X)\left(\gamma^{\prime}, X^{\prime}\right)=\left(\gamma \gamma^{\prime}, X \gamma^{\prime}+X^{\prime}\right)$, acts on $J_{k, m}(\Gamma, L, \mathbb{C})$ via (1) and (2) of the previous definition:

$$
\Phi\left|(\gamma, X)=\left(\left.\Phi\right|_{k, m} \gamma\right)\right|_{m} X
$$

- If $\Phi \in J_{k, m}(\Gamma, L, A)$ and $X=[\lambda, \mu] \in \mathbb{Q}^{2}$ with $M X \in \mathbb{Z}^{2}$ for some $M \in \mathbb{Z}$, then $\left.\left(\left.\Phi\right|_{m} X\right)\right|_{z=0} \in \mathbf{M}_{k}^{m e r o m}\left(\Gamma \cap \Gamma\left(\frac{M^{2}}{(M, m)}\right), A\right)$. Morcover, if $X=[0, \mu]$, then $\left.\left(\left.\Phi\right|_{m} X\right)\right|_{z=0} \in \mathbf{M}_{k}\left(\Gamma \cap \Gamma\left(\frac{A^{2}}{(M, m)}\right), A\right)$.
- If Φ is a nonzero Jacobi form of index m, and we fix $\tau \in \mathcal{H}$, then $\Phi(\tau, z)$ has exactly $2 m$ zeros as a function of the variable z in a fundamental domain for the action of $\tau \mathbb{Z}+\mathbb{Z}$.

2 Congruences and p-adic limits

We first follow Serre's approach to p-adic modular forms, and consider congruences of Fourier coefficients of Jacobi forms.

Let K be a number field, \mathcal{O} its ring of integers. Let $p \geq 5$ be a rational prime and $\wp \mid p$ a prime ideal of \mathcal{O}. Let K_{\emptyset} be the completion of K at, \wp, \mathcal{O}_{p} its ring of integers, $\pi \in \notin$ an uniformizing parameter. We also let $\mathcal{O}^{ค}=K \cap \mathcal{O}_{\varnothing}$ and $\mathbf{F}=\mathcal{O}_{p} /(\pi)$.

We say that $\Phi \in J_{k, m}\left(\Gamma, L, \mathcal{O}^{Ð}\right)$ and $\Psi \in J_{k, m}\left(\Gamma^{\prime}, L^{\prime}, \mathcal{O}^{\triangleright}\right)$ are congruent modulo π^{s}, and denote it, by

$$
\Phi \equiv \Psi \bmod \pi^{s}
$$

when, if $\Phi=\sum c(n, r) q^{n} \zeta^{r}$ and $\Psi=\sum c^{\prime}(n, r) q^{n} \zeta^{r}$, then $c(n, r) \equiv c^{\prime}(n, r) \bmod$ π^{s} for all n and $r .{ }^{1}$

Example: The first non-trivial examples of congruences are given by the Jacobi-Eisenstein series $E_{k, m} \in J_{k, m}\left(S L_{2}(\mathbb{Z}), \mathbf{Z}^{2}, \mathbb{Z}\right)$ defined in [?, I.2]. By looking at the explicit coefficients for $E_{k, 1}$, we get

$$
E_{k, 1} \equiv E_{k^{\prime}, 1} \bmod p^{s+1}
$$

if $k \equiv k^{\prime} \bmod (p-1) p^{s}$. (The same congruence also holds for any given index m; this follows easily from the fact that $E_{k, 1} \mid V_{m}=E_{k, m}$, where V_{m} is the operator studied in [?, I.4].)

This shows that, not surprisingly, one can have congruences among Jacobi forms of different weights. What about different indexes?

Lemma 2.1 Let $\Phi \in J_{k, m}\left(\Gamma_{0}(N), L, \mathcal{O}^{\mathscr{P}}\right), \Psi \in J_{k^{\prime}, m^{\prime}}\left(\Gamma_{0}(N), L, \mathcal{O}^{\mathfrak{P}}\right)$ and assume that

$$
0 \not \equiv \Phi \equiv \Psi \bmod \pi^{s}
$$

for some $s \geq 1$. Then $m=m^{\prime}$ and $k \equiv k^{\prime} \bmod (p-1) p^{g(s)}$, for some $g(s) \rightarrow \infty$ when $s \rightarrow \infty$.

Proof: Let us work in $B=\mathbb{F}\left[\zeta, \zeta^{-1}\right]((q))$. The congruence implies

$$
\begin{equation*}
\Phi-\Psi=0 \tag{1}
\end{equation*}
$$

Let $X=[\lambda, \mu] \in L, \lambda \neq 0$. We replace z by $z+\lambda \tau+\mu$ in (??) and we use the second transformation law for Jacobi forms. We get

$$
\begin{equation*}
\left(q^{\lambda^{2}} \zeta^{2 \lambda}\right)^{-m} \Phi-\left(q^{\lambda^{2}} \zeta^{2 \lambda}\right)^{-m^{\prime}} \Psi=0 \tag{2}
\end{equation*}
$$

Equations (??) and (??) form a lincar system in B that can only be solved non trivially if $m=m^{\prime}$.

[^0]Now consider $\left.\Phi\right|_{z=0} \in \mathbf{M}_{k}\left(\Gamma_{0}(N), \mathcal{O}^{p}\right)$ and $\left.\Psi\right|_{z=0} \in \mathbf{M}_{k^{\prime}}\left(\Gamma_{0}(N), \mathcal{O}^{\triangleright}\right)$. The hypothesis $\Phi \equiv \Psi \bmod \pi^{s}$ implies that the q-expansions of $\left.\Phi\right|_{z=0}$ and $\left.\Psi\right|_{z=0}$ as modular forms are congruent modulo π^{s}-just replace 1 for ζ in the original congruence. If $\left.\left.\Phi\right|_{z=0} \equiv \Psi\right|_{z=0} \equiv 0 \bmod \left(\pi^{s}\right)$, evaluate instead at some other $\mu \in \mathbb{Q}, M \mu \in \mathbb{Z},(p, M)=1$: the forms $\left.\Phi\right|_{z=\mu}=\left.\Phi\right|_{m}[0, \mu]$ and $\left.\Psi\right|_{z=\mu}=\left.\Psi\right|_{m}[0, \mu]$ are forms of weights k and k^{\prime} for $\Gamma_{0}(N) \cap \Gamma\left(M^{\prime}\right)$, $\left(p, M^{\prime}\right)=1$. Since $2 m+1$ well-chosen such evaluations characterize a Jacobi form of index m, they cannot all be congruent to 0 modulo a power of a prime above π without being the original form itself congruent to $0 \bmod \left(\pi^{s}\right)$ too. In any case, we deduce that $k \equiv k^{\prime} \bmod (p-1) p^{g(s)}$ from a well-known result by Serre and Katz.

Let us now concentrate on the case $\Gamma=S L_{2}(\mathbb{Z}), L=\mathbb{Z}^{2}$, where we have the following structure theorem for Jacobi forms of even weight. Consider the graded ring $J_{2 *, *}=J_{2 *, *}\left(S L_{2}(\mathbb{Z}), \mathbb{Z}^{2}\right)$. Then

$$
J_{2 *, *}=\mathbf{M}_{*}[A, B]
$$

the polynomial ring in two variables, where M_{*} denotes the graded ring of holomorphic modular forms for $S L_{2}(\mathbb{E})$ over \mathbb{C}, and $A \in J_{-2,1}\left(S L_{2}(\mathbb{Z}), \mathbb{Z}^{2}, \mathbb{Z}\right)$, $B \in J_{0,1}\left(S L_{2}(\mathbb{Z}), \mathbb{Z}^{2}, \mathbb{Z}\right)$ are two specific Jacobi forms -for an explicit description of A and B, see $[?$, III.9, I.3]. The coefficients of A and B are coprime, and

$$
A=z^{2}+O\left(z^{4}\right) \quad, \quad B=12+O\left(z^{2}\right)
$$

(There is a similar result for $J_{2 *+1, *}$; but let us stick to even weights.)
The forms $\Phi \in J_{k, m}\left(S L_{2}(\mathbb{Z}), \mathbb{Z}^{2}, \mathcal{O}^{\mathfrak{p}}\right), \Psi \in J_{k^{\prime}, m}\left(S L_{2}(\mathbb{Z}), \mathbb{Z}^{2}, \mathcal{O}^{\mathfrak{p}}\right)$ can be expressed via the structure theorem as

$$
\Phi=\sum_{j=0}^{m} g_{j}(\tau) A^{j} B^{m-j} \quad, \quad \Psi=\sum_{j=0}^{m} h_{j}(\tau) A^{j} B^{m-j}
$$

for unique modular forms $g_{j} \in \mathbf{M}_{k+2 j}\left(S L_{2}(\mathbf{Z}), \mathcal{O}^{p}\right)$ and $h_{j} \in \mathbf{M}_{k^{\prime}+2 j}\left(S L_{2}(\mathbb{Z}), \mathcal{O}^{p}\right)$.

Lemma 2.2 If $\Phi \equiv \Psi \bmod \pi^{s}$ for some $s \geq 0$ then $g_{j} \equiv h_{j} \bmod \pi^{s}$ for $j=0, \ldots, m$.

Proof: If there is a j with $g_{j} \not \equiv h_{j} \bmod \pi^{s}$, take j_{0} to be the first such index. By the properties of A and B, we have

$$
\begin{aligned}
& \Phi=\sum_{j=0}^{m} g_{j}\left(12^{m-j} z^{2 j}+O\left(z^{2 j+2}\right)\right) \\
& \Psi=\sum_{j=0}^{m} h_{j}\left(12^{m-j} z^{2 j}+O\left(z^{2 j+2}\right)\right)
\end{aligned}
$$

Since $\Phi \equiv \Psi \bmod \pi^{s}$, then also

$$
\left.\left.\left(\zeta \frac{d}{d \zeta}\right)^{2 j_{0}}\right|_{\zeta=1} \Phi \equiv\left(\zeta \frac{d}{d \zeta}\right)^{2 j_{0}}\right|_{\zeta=1} \Psi \bmod \pi^{s}
$$

In terms of the complex variable z :

$$
\left.\left.\left(\frac{1}{2 \pi i} \frac{d}{d z}\right)^{2 j_{0}}\right|_{z=0} \Phi \equiv\left(\frac{1}{2 \pi i} \frac{d}{d z}\right)^{2 j_{0}}\right|_{z=0} \Psi \bmod \pi^{s}
$$

More precisely,

$$
12^{m-2 j_{0}} g_{j_{0}} \equiv 12^{m-2 j_{0}} h_{j_{0}} \bmod \pi^{s}
$$

which contradicts the property of j_{0} if $p \geq 5$.
We denote by $\mathbf{M}_{k}\left(S L_{2}(\mathbb{Z}), \mathcal{O}^{\infty}\right) \bmod \pi$ and $J_{k, m}\left(S L_{2}(\mathbb{Z}), \mathbb{Z}^{2}, \mathcal{O}^{p}\right) \bmod \pi$ the spaces of power series obtained by reducing $\bmod \pi$ the Fourier coefficients at ∞ of forms in $\mathrm{M}_{k}\left(S L_{2}(\mathbb{Z}), \mathcal{O}^{\mathfrak{p}}\right)$ and $J_{k, m}\left(S L_{2}(\mathbb{Z}), \mathbb{Z}^{2}, \mathcal{O}^{\mathfrak{p}}\right)$, respectively.

The following follows from Lemma??.

Corollary:

$$
J_{k, m}\left(S L_{2}(\mathbf{Z}), \mathbf{z}^{2}, \mathcal{O}^{\mathfrak{p}}\right) \bmod \pi \simeq \bigoplus_{j=0}^{m}\left[\mathbf{M}_{k+2 j}\left(S L_{2}(\mathbf{Z}), \mathcal{O}^{\wp}\right) \bmod \pi\right] A^{j} B^{m-j}
$$

The structure of $\mathbf{M}_{l}\left(S L_{2}(\mathbb{Z}), \mathcal{O}^{\mathfrak{p}}\right) \bmod \pi$ is well known (see [?]).
As a consequence of Lemma ??, we can attach a weight to the limit of a sequence of Jacobi forms. That is, if $\Phi_{j} \in J_{k_{j}, m}\left(\Gamma_{0}(N), L, \mathcal{O}^{p}\right)$ and $\left\{\Phi_{j}\right\}$ converges, then $k_{j} \rightarrow \chi \in\left(\mathbb{Z}_{p}^{*}\right)^{\prime} \simeq \mathbb{Z} /(p-1) \times \mathbb{Z}_{p}$. Here a weight $k \in \mathbb{Z}$ is interpreted as an element, of $\left(\mathbb{Z}_{p}^{*}\right)^{\prime}$ via $(k \bmod (p-1), k)$.

We next, give a definition of p-adic Jacobi forms of a given weight as limits of complex Jacobi forms.

Definition 2.3 A p-adic Jacobi form of weight $\chi \in\left(\mathbb{Z}_{p}^{*}\right)^{\prime}$ and index $m \in \mathbb{Z}$ on $\left(\Gamma_{0}(N), L\right)$ with coefficients in \mathcal{O}_{p} is an element of

$$
\begin{gathered}
J_{\chi, m}^{p}\left(\Gamma_{0}(N), L, \mathcal{O}_{\hat{p}}\right) \\
=\left\{\begin{array}{l}
\Phi \in \mathcal{O}_{p}((\zeta))[[q]], \Phi=\lim _{j} \Phi_{j}, \Phi_{j} \in J_{k_{j}, m}\left(\Gamma_{0}(N), L, \mathcal{O}^{p}\right) \\
k_{j} \rightarrow \chi
\end{array}\right\} .
\end{gathered}
$$

Denote by $\mathbf{M}_{\xi}^{p}\left(S L_{2}(\mathbb{Z}), \mathcal{O}_{p}\right)$ the space of p-adic modular forms of weight $\xi \in\left(\mathbb{Z}_{p}^{*}\right)^{\prime}$ on $S L_{2}(\mathbb{Z})$ with coefficients in \mathcal{O}_{p}. The next fact also follows from Lemma??.

Corollary: $J_{\chi, m}^{p}\left(S L_{2}(\mathbb{Z}), \mathbb{Z}^{2}, \mathcal{O}_{\wp}\right)=\bigoplus_{j=0}^{m} \mathbf{M}_{\chi+2 j}^{p}\left(S L_{2}(\mathbb{Z}), \mathcal{O}_{\wp}\right) A^{j} B^{m-j}$.
Proof: If $\Phi \in J_{\chi, m}^{p}\left(S L_{2}(\mathbf{Z}), \mathbf{z}^{2}, \mathcal{O}_{p}\right)$, then $\Phi=\lim _{n} \Phi_{n}$ for some $\Phi_{n} \in$ $J_{k_{n}, m}\left(S L_{2}(\mathbb{Z}), \mathbb{Z}^{2}, \mathcal{O}^{\infty}\right)$. Lemma ?? for the family Φ_{n} clearly implies that $\Phi \in \bigoplus_{j=0}^{m} \mathrm{M}_{\chi+2 j}^{p}\left(S L_{2}(\mathbb{Z}), \mathcal{O}_{p}\right) A^{j} B^{m-j}$.
Choose now forms $f_{\chi+2 j} \in \mathbf{M}_{\chi+2 j}^{p}\left(S L_{2}(\mathbf{Z}), \mathcal{O}_{\mathfrak{p}}\right)$. Let $\Phi=\sum_{j=0}^{m} f_{\chi+2 j} A^{j} B^{m-j}$.
We need to prove that $\Phi \in J_{\chi, m}^{p}\left(S L_{2}(\mathbb{Z}), \mathbb{Z}^{2}, \mathcal{O}_{\boldsymbol{p}}\right)$. By definition, for each j

$$
f_{\chi+2 j}=\lim _{n} f_{k_{n_{j}}+2 j}^{(n)}
$$

with $f_{k_{n_{j}}+2 j}^{(n)} \in \mathbf{M}_{k_{n_{j}}+2 j}\left(S L_{2}(\mathbb{Z}), \mathcal{O}^{p}\right)$ and $k_{n_{j}} \equiv \chi \bmod (p-1) p^{n}$. Assume for the time being that all $k_{n_{j}}$ coincide for $j=0, \ldots, m$ and relabel them k_{n}. Then $\Phi_{n}=\sum_{j=0}^{m} f_{k_{n}+2 j}^{(n)} A^{j} B^{m-j} \in J_{k_{n}, m}\left(S L_{2}(\mathbb{Z}), \mathbb{Z}^{2}, \mathcal{O}^{p}\right)$ and $\Phi=\lim _{n} \Phi_{n}$ is a p-adic Jacobi form.

It remains to show that we can assume, without loss of generality, that the $k_{n_{j}}$ coincide. Since $k_{n_{0}} \equiv k_{n_{1}} \equiv \ldots \equiv k_{n_{m}} \bmod (p-1) p^{n}$, define k_{n} to be the largest of these integers, and write $k_{n}=k_{n_{j}}+a_{j}(p-1) p^{n}$ with $a_{j} \in \mathbb{Z}$; replace now $f_{k_{n_{j}}+2 j}^{(n)}$ by $f_{k_{n}+2 j}^{(n)}=f_{k_{n_{j}}+2 j}^{(n)} E_{p-1}^{a_{j} p^{n}}$. We still have $f_{\chi+2 j}=$ $\lim _{n} f_{k_{n}+2 j}^{(n)}$ because $E_{p-1} \equiv 1 \bmod p$.

This ends the proof.

This already gives a pretty good idea of what a p-adic Jacobi form on $\left(S L_{2}(\mathbb{Z}), \mathbb{Z}^{2}\right.$) -as defined in ??- looks like. The next example-communicated to us by Rodriguez-Villegas- and theorem show the first step of an expected property of p-adic Jacobi forms, namely: that forms of a certain level $N p^{r}$ are also forms of level N.

Example : Let $p \equiv 1 \bmod 4$, and let $k \in \mathbb{N}, k \equiv 1+\frac{p-1}{2} \bmod (p-1)$. Then

$$
p(k-1) E_{k, 1} \equiv \sum_{r, s, r \equiv s \bmod 2} q^{\frac{r^{2}+p^{2}}{4}} \zeta^{r} \bmod p .
$$

The left-hand side form belongs to $J_{k, 1}\left(S L_{2}(\mathbf{Z}), \mathbf{Z}^{2}, \mathbf{Z}\right)$, and the right-hand side form belongs to $J_{1,1}\left(\Gamma_{0}(p), \mathbb{Z}^{2}, \mathbb{Z},(\dot{\bar{p}})\right)$-where the symbol $(\dot{\bar{p}})$ affects the First Transformation Law in the expected manner. In accordance to the spirit of the theory of p-adic modular forms, we expect the latter form to have weight $1+(\dot{\bar{p}})$ on $S L_{2}(\mathbb{Z})$. The congruence requirement for the weight k now becomes more clear.

This congruence follows from a study of the coefficients of $E_{k, 1}$, the Cohen numbers, done in [?].

Theorem 2.4

$$
J_{\chi, m}^{p}\left(\Gamma_{0}(p), \mathbf{Z}^{2}, \mathcal{O}_{\mathfrak{p}}\right) \simeq J_{\chi, m}^{p}\left(S L_{2}(\mathbb{Z}), \mathbb{Z}^{2}, \mathcal{O}_{\mathfrak{p}}\right)
$$

Proof: Let $\Phi \in J_{\chi, m}^{p}\left(\Gamma_{0}(p), \mathbf{Z}^{2}, \mathcal{O}_{p}\right)$. We will show that Φ belongs to the closure of $J_{\chi, m}^{p}\left(S L_{2}(\mathbb{Z}), \mathbb{Z}^{2}, \mathcal{O}_{Q}\right)$. That will imply the theorem.

Let

$$
\Phi_{j}=\operatorname{tr}\left(\Phi g^{p^{j}}\right)
$$

where $g=E_{a}-p^{a} E_{a}\left(q^{p}\right)$ (here E_{a} is the standard Eisenstein scries and $(p-1) \mid a)$ and $\operatorname{tr} \Psi \in J_{k, m}\left(S L_{2}(\mathbb{Z}), \mathbf{Z}^{2}, \mathcal{O}^{\mathcal{D}}\right)$ if $\Psi \in J_{k, m}\left(\Gamma_{0}(p), \mathbf{Z}^{2}, \mathcal{O}^{\mathcal{D}}\right)$ is given by the formula $t r \Psi=\sum_{\gamma \in \Gamma_{0}(p) \backslash S L_{2}(\mathbf{z})} \Psi \mid \gamma$. Then $\lim _{j} \Phi_{j}=\Phi$. For proving this, let us find a more explicit trace formula. If

$$
\begin{aligned}
\gamma_{l} & =\left(\begin{array}{cc}
0 & -1 \\
1 & l
\end{array}\right)=S\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right) \quad, 1 \leq l \leq p \\
\gamma_{p+1} & =I
\end{aligned}
$$

where $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, then

$$
\operatorname{tr} \Phi=\Phi+\sum_{l=1}^{p} \Phi \mid \gamma_{l}=\Phi+\sum_{l=1}^{p}(\Phi \mid S)(\tau+l, z)
$$

Using the Fourier expansion

$$
\Phi \mid S=\sum_{n \geq 0, r} b(n, r) q^{n / p} \zeta^{r}
$$

we have

$$
\begin{align*}
\operatorname{tr} \Phi & =\Phi+\sum_{n \geq 0, r} \sum_{l} b(n, r) q^{n / p} \zeta^{r} e(n l / p) \tag{3}\\
& =\Phi+p \sum_{n \equiv 0 m o d p, r} b(n, r) q^{n / p} \zeta^{r} \\
& =\Phi+\sum_{n \geq 0, r} b(n p, r) q^{n} \zeta^{r} \\
& =\Phi+p \Phi|S| U_{\tau}
\end{align*}
$$

where $U_{\tau} \sum_{n, r} a(n, r) q^{n} \zeta^{r}=\sum_{n, r} a(n p, r) q^{n} \zeta^{r}$.
Now let us prove that $\lim _{j} \Phi_{j}=\Phi$.

$$
\begin{equation*}
\Phi_{j}-\Phi=\operatorname{tr}\left(\Phi g^{p^{j}}\right)-\Phi g^{p^{j}}+\Phi\left(g^{p^{j}}-1\right) \tag{4}
\end{equation*}
$$

Recalling the definition of g, wo see that,

$$
g \equiv 1 \quad(\bmod p)
$$

Therefore, the second term in (??) tends to 0 . It, is easy to see that $g \mid S=$ $E_{a}-E_{a}(\tau / p)$, so we also have

$$
g \mid S \equiv 0 \quad(\bmod p)
$$

We still need to establish that the first term in (??) tends to 0 . If v_{p} is a p-adic valuation in \mathcal{O}_{p} normalized in order to satisfy $v_{p}(p)=1$,

$$
\begin{aligned}
v_{p}\left(\operatorname{tr}\left(\Phi g^{p^{j}}\right)-\Phi g^{p^{j}}\right) & =v_{p}\left(p\left(\Phi g^{p^{j}}\right)|S| U_{\tau}\right) \quad, \text { by (??) } \\
& \geq v_{p}\left(p\left(\Phi g^{p^{j}}\right) \mid S\right) \\
& =1+v_{p}(\Phi \mid S)+p^{j} v_{p}(g \mid S)
\end{aligned}
$$

Since $v_{p}(g \mid S)>0$, this valuation approaches ∞ and the second term in (??) tends to 0 . This ends the proof.

3 The p-adic measure associated to a Jacobi form

We keep the same notation as before.
In this section, we are going to associate to every $\Phi \in J_{k, m}\left(\Gamma, L, \mathcal{O}^{\mathfrak{p}}\right)$ a p-adic measure μ_{Φ} on \mathbb{Z}_{p} with values in $\mathrm{M}^{p}\left(\Gamma, \mathcal{O}_{p}\right)$, the p-adic ring of

Katz's p-adic modular forms. The idea behind the definition is as follows. If $\Phi=\sum_{n, r} c(n, r) q^{n} \zeta^{r}$, and we evaluate Φ at any root of unity $\zeta \in \mathbb{C}$, we obtain a modular form (in principle of an increased level; see [?, Theorem 1.3]). Moreover, the collection of $2 m+1$ evaluations of Φ at different roots of unity characterize Φ. Therefore, taking ζ to be an indeterminate in $\mu_{p} \infty$, the group of roots of unity of order a power of p, still preserves all the information about Φ. One way to formalize this is to interpret Φ as the measure μ_{Φ} on \mathbb{Z}_{p} whose Fourier transform is the power scries in X :

$$
\begin{align*}
\mu_{\Phi} & =\sum_{l \geq 0}\left(\sum_{n, r}\binom{r}{l} c(n, r) q^{n}\right) X^{l} \tag{5}\\
& =\sum_{n, r} c(n, r) q^{n} T^{r}
\end{align*}
$$

where $T=X+1$. (Recall that for given n and $l, \sum_{n, r}\binom{r}{l} c(n, r)$ is a finite sum.)

The next theorem states the precise result.
Theorem 3.1 Let $\Phi=\sum_{n, r} c(n, r) q^{n} \zeta^{\tau} \in J_{k, m}\left(\Gamma, L, \mathcal{O}^{p}\right)$. Then the power series

$$
\begin{equation*}
\sum_{l \geq 0}\left(\sum_{n, r}\binom{r}{l} c(n, r) q^{n}\right) X^{l} \tag{6}
\end{equation*}
$$

where $\binom{r}{l}=(-1)^{l}\binom{l-r-1}{-r-1}$ if $r<0$, is the Fourier transform of the measure on \mathbf{Z}_{p} with values in $\mathbf{M}^{p}\left(\Gamma, \mathcal{O}_{\mathfrak{p}}\right)$ whose j-moment is

$$
\begin{equation*}
m_{j}=\left.\left(\zeta \frac{d}{d \zeta}\right)^{j} \Phi\right|_{\zeta=1}=\left.\left(\frac{d}{2 \pi i d z}\right)^{j} \Phi\right|_{z=0} \tag{7}
\end{equation*}
$$

Moreover, the association $\Phi \rightarrow \mu_{\Phi}$ is one to one.
Proof: Let us show that the m_{j} 's defined in (??) are the moments of a measure. Notice that the Fourier expansion of m_{j} is

$$
\begin{equation*}
m_{j}=\sum_{n, r} r^{j} c(n, r) q^{n} \tag{8}
\end{equation*}
$$

and that

$$
\Phi=\sum_{j \geq 0} m_{j} \frac{(2 \pi i z)^{j}}{j!} .
$$

We first prove that $m_{j} \in \mathbf{M}_{k+j}^{p}\left(\Gamma, \mathcal{O}^{\text {p }}\right)$. One nice way to see this, while at the same time introducing a useful technique, is to show that, if $\tau=x+i y$,

$$
\left.e^{\frac{\pi m z^{2}}{y}} \Phi\right|_{k} \gamma=e^{\frac{\pi m z^{2}}{y}} \Phi \quad, \quad \gamma \in \Gamma
$$

where $\left.f(\tau, z)\right|_{k} \gamma=(c \tau+d)^{-k} f\left(\gamma \tau, \frac{z}{c \tau+d}\right)$ if $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. This simple computation is left to the reader. This says that, if we write

$$
e^{\frac{\pi m z^{2}}{\nu}} \Phi=\sum_{j \geq 0} f_{j}(\tau) \frac{(2 \pi i z)^{j}}{j!}
$$

then f_{j} is a nearly holomorphic -in the sense of [?]- modular form for Γ of weight $k+j$, with coefficients in $\mathcal{O}_{\mathfrak{p}}$. The powers of $\frac{1}{y}$ in each f_{j} are bounded. Also,

$$
f_{j}=m_{j}(q)+\frac{1}{y} * .
$$

It is a general fact that in such situation, m_{j} is a p-adic modular form. (Write the Maass-Weil operator $W=q \frac{d}{d q}-\frac{\text { weight }}{4 \pi y}$. If we replace in f_{j} the action of W by the action of $q \frac{d}{d q}$, we are left with m_{j}. On the other hand, being nearly holomorphic forms the closure of modular forms acted on by W, we obtain a form belonging to the closure of modular forms acted on by $q \frac{d}{d q}$, which is known to be a p-adic operator. For a more rigorous exposition, sce [?, ?].)

So $m_{j} \in \mathrm{M}_{k+j}^{p}\left(\Gamma, \mathcal{O}_{\rho}\right)$. What follows is a sketch of a standard argument that can be seen in [?, ?, ?]. If we write $\binom{x}{l}=\sum_{j=0}^{l} a_{j, l} x^{j}, a_{j, l} \in \mathbb{Q}$, then the l-coefficient in (??) satisfics

$$
\sum_{n, r}\binom{r}{l} c(n, r) q^{n}=\sum_{j=0}^{l} a_{j, l} m_{j}
$$

and hence belongs to $\mathbf{M}^{p}\left(\Gamma, \mathcal{O}_{\mathfrak{p}}\right) \otimes \mathbb{Q}$, but its q-expansion at ∞ has integral coefficients. We deduce that the l-coefficient of (??) belongs to $\mathrm{M}^{p}\left(\Gamma, \mathcal{O}_{\mathfrak{p}}\right)$. Therefore (??) is the Fouricr transform of a measure μ_{Φ} on \mathbb{Z}_{p} with values in $\mathrm{M}^{p}\left(\Gamma, \mathcal{O}_{p}\right)$. Its l-moment can be computed by using $T=X-1$:

$$
m_{l}=\left.\left((X+1) \frac{d}{d X}\right)^{l} \mu_{\Phi}\right|_{X=0}=\left.\left(T \frac{d}{d T}\right)^{l} \mu_{\Phi}\right|_{T=1}
$$

Look at the Fourier expansion you obtain for the moments of μ_{Φ} by performing this operation to (??); it coincides with the Fourier expansion of m_{l} in (??).

Finally, we can read off the injectivity of $\Phi \mapsto \mu_{\Phi}$ from the explicit Fourier expansions for Φ and μ_{Φ} in (??).

This concludes the proof.

The measures obtained from Jacobi forms via the theorem satisfy the following properties.

- If $\Phi \in J_{k, m}\left(\Gamma, L, \mathcal{O}^{\ominus}\right)$ then m_{0}, the 0 -moment of μ_{Φ}, belongs to $\mathbf{M}_{k}^{p}\left(\Gamma, \mathcal{O}_{\mathfrak{p}}\right)$. Also, m_{l}, the l-moment of μ_{Φ}, belongs to $\mathbf{M}_{k+l}^{p}\left(\Gamma, \mathcal{O}_{\mathfrak{p}}\right)$ for every $l \geq 0$. Hence, we can learn the weight of the original Jacobi form from any of its nonzero moments m_{l}.
- $\int_{\mathbf{Z}_{p}} \zeta^{x} d \mu_{\Phi}(x)=\Phi(q, \zeta)$ for every $\zeta \in \mu_{p} \infty$. In fact, $2 m+1$ of these values characterize $\Phi \in J_{k, m}\left(\Gamma, L, \mathcal{O}^{p}\right)$. Equivalently, $2 m+1$ moments of μ_{Φ} characterize Φ. This property can probably be restated in a more suitable way for learning what the index m of the original Jacobi form is from its associated measure.

References

[1] M. Eichler-D. Zagier: The theory of Jacobi forms, Progress in mathematics vol. 55, Birkhäuser (1985).
[2] F. Gouvêa: Arithmetic of p-adic Modular Forms, Springer-Verlag LNM 1304 (1988).
[3] Pavel Guerzhoy: An approach to the p-adic theory of Jacobi forms, IMRN 1 (1994)
[4] Pavel Guerzhoy: Jacobi-Eisenstein serics and p-adic interpolation of symmetric squares of cusp forms, Ann. Inst. Fourier (Grenoble) 45, 3 (1995), 605-624.
[5] M. Kaneko-D. Zagier: A generalized Jacobi thetia function and quasimodular forms, in The moduli space of curves (Texel Island, 1994) 165-172, Progr. Math. 129, Birkhäuser Boston, 1995.
[6] N. Katz: p-adic interpolation of real analytic Eisenstein series, Annl. of Math. 104 (1976), 459-571.
[7] B. Mazur-J. Tate: The p-adic Sigma function, Duke Math. Journal 62, 3 (1991), 663-688.
[8] F. Rodriguez-Villegas: The congruences of Clausen-von Staudt and Kummer for half-integral weight Eisenstein series, Math. Nach. 162 (1993) 187-191.
[9] J.P. Serre: Formes Modulaires et Fonctions Zêta p-adiques, in Modular functions of onc variable III, Springer-Verlag LNM 350 (1973), 191-268.
[10] G. Shimura: On some arithmetic properties of modular forms of one and several variables, Annals of Math. 102 (1975), 491-515.
[11] N. Skoruppa: Developments in the Theory of Jacobi forms, in Antomorphic functions and Applications, Khabarovsk, Acad. Sci. USSR, Inst. Appl. Math. (1990).
[12] A. Sofer: p-adic interpolation of square roots of central values of Hecke L-functions, Duke Math. Journal 83, 1 (1996), 1-28.
[13] A. Sofer: p-adic interpolation of half-integral weight modular forms, in Arithmetic Geometry, Contemporary Mathematics 174 (1994).

[^0]: ${ }^{1}$ There is a q-expansion principle for Jacobi forms, but its proof requires some features of Jacobi forms not visited here, and will appear elsewhere.

