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1. Introduction.

Local H&lder gradient estimates for classical solutions

of fully nonlinear, second order elliptic equations of the form,
2
(1.1) F(u] = F(x,u,Du,Du) = 0 ,

were established by the author [12] as an extension of the’
corresponding estimates of-Laa;zhenskaya and Ural'tseva for the
gquasilinear case, (see [7], Cﬂapter 8, [1] Chapter i35.’In this
paper we derive such estimates for weak solutions in thé
"viscosity" sense of P-L Lions [10], also under reduced
smoothness hypotheses of the function F with respect to the
independent variables. In a sequel»we permit a more general
dependence on the gradient variables, enabling us to resclve an

outstanding problem concerning obstacles for fully nonlinear

equations under natural structure conditions.

To get some grip on the viscosity solutions, we employ
the fundamental approximations of Jensen [2]. Our subsequent

analysis involves subtle techniqﬁes with difference quotients,



which had previously been developed by the,aufhor in other
contexts ([9], [13]). We also establish local boundary estimates
for viscosity solutions of the Dirichlet pfoblem (Lemma 3.1,
Theorem 3.2) although for these, the method originating in Krylov

[4], goes through with only minor modification.

The function F in (1.1) is assumed defined on the set
' = Qximximnxsn r where § denotes a domain in Euclidean n-space,
R" , and Sn_ denotes the linear space of real, nxn , symmetric

matrices. Introducing, for any positive constants KO}K1, the

subsets,
To,q = {(x,z,p,x) €T | Izl & Kgr IPl s K 1,

we subject the function F to the following structural conditions:

F1. . {Uniform ellipticity).

A trace n s F(x,z,p,r+n) - F(x,z,p,r) S A trace n ;
F2. | | |F(x,2,p,00 | s uy 5
3. [Fix,z,p,r) - Fly t,q,o) | $ y Ux=y 1 Telz=£1M) x4,

for all (x,z,p,r) , (y,t,q,r) € FO 4 ¢ N z 0, € Sn ; for any
. 4 I .
KO’K1 > 0 , where A,A,uo,u1,u2,y are positive constants, depending

possibly on I(O,K.I



We observe that F1 implies the Lipschiﬁz continuity
of F with respect to r and hence may be equivalently

expressed as
(1.2) AL S Fr S AT .

We also point out that for classical solutions, (or at least
solutions in the Sobolev space Wz'n(Q)) , we shall be able to

permit and My to lie in certain LP spaces, (Remark 3

Mo
(ii)) . The structure conditions, F1, F2, F3, may be uéefully
viewed in conjunction with the following example, namely the
Isaac's equation from stochastic game theory. Let {LaB}, be a
family of linéar operators, indexed by two parameters

a € A, B€ B and given by

. aid ipy 4
(1.3) LaBu = aaBDiju + baBDiu + cuBu ’
where aij bi c £ i,j =1 n o € A B € B
Ci‘.B r GB I ClB r aB r r F"‘ ! 7

are real functions on Q . The corresponding Isaac's equation,

(1.4) F{u] = inf sup (L ,u-£f ) =0 ,
- aca pes B aB
will satisfy F1 to F3 if the operators LaB are uniformly

elliptic with respect to o and 8§ , that is,

ij
(1.5) AI S [aas] S AI



for all o € A , B € B for fixed positive conétants A, A

and the coefficlents ad € CY(@) , by s cg o £,4 € L7(®)  with
norms bounded independently of « and B8 . When either of the sets

A or B are singletons, we obtain the Bellman equatioﬁs of
stochastic control theory. The regularity results of this paper

can be used to establish the existence of continuously differentiable
solutions of equation (1.4).

Unless otherwise indicated, all notation in this paper

follows the book [1].



2. Interior estimates

In order to formulate our estimates, we first define the
notion of viscosity solution for equation (1.1). Let u be a

continuous function in § . The second superdifferential of- u

at a point x in Q is defined by

1,2

(2.1) D_"“u(x) = {(p,r) E:mnxsn|g(x+y) s u(x)+p-y+ry-y+0(|y|2)}

while the corresponding subdifferential is defined by

1,2

(2.2) D "%u(x) = {(p,r) € R™xg™[u(x+y) 2 ulx)+psy+ry-y+o(lyl®)} .

We then call u a viscosity subsolution of (1.1), (or say that

u satisfies F[u] 2 0 in the viscosity sense), if
(2.3) BF(x,u(x),p,r) 2 0 for ail (p,xr) € Dl’zu(x), X € 8 ,

and a viscosity supersolution of (1.1), (or u satisfies

F[u] s 0 in the viscosity sense), if-

(2.4) F(x,u(x),p,r) s 0 for all (p,r) € D "%u(x), x € Q

The function u is a viscosity solution of (1.1) if it is both

a viscosity subsolution and supersoclution. Some basic properties
of viscosity solutions are treated in the papers [2], [10] and

[15].



We can now state the following interior estimate and

regularity assertion.

Theorem.2.1. Let u be a uniformly Lipschitz ‘continuous viscosity

solution of equation (1.1) in the domain Q , where F satisfies

the structure conditions, F1, F2 and F3, Then u possesses HOlder

continuous first derivatives in Q and for any subdomain Q' < Q ,

we have the estimate,

(2.5) [Du) < c(1+5‘°‘1nu|0) ,

a; R’

where o is a positive constant depending only on n,A/A and vy

O

while dépends also on w./A, u./A, u~./A , diam § and |ul
naos LU 1 2 Lt

1:0 1
and §

dist (Q',90) .

Proof of Theorem 2.1.

We first observe that we can, without loss of generality,
restrict attention to functions F that are independent of =z .
Let us recall some basic properties of the Jensen approximations

([2}, [15]). Setting, for e > 0 ,

Q. = {x eQ | dist (x,3Q) > €} ,
we define two functions uz € C0’1(QE) whose graphs have fixed

distance € from the graph of u and which lie respectively above

and below the graph of u .



It follows that

. :
(2.6) [Duel 3 |Du|0 - and

3/2
(1+]Du| )

E

+
in the sense of distributions. Accordingly the functions u;
poséess second differentials almost everywhere in Qe and

moreover at any point X of twice differentiability,

+ 2t 2,1 -k
{(2.7) (Due' D uE) € Di’ u{xztev’) ,
where
+
+ Due
vV =
/1+IDui|2
£
0,1

Consequently if u € C ' (R) is a viscosity subsolution (or

supersolution) of (1.1) we have the differential inequalities,
+ * 2t

(2.8) . tF(xtev™, Due(x), D uE(x)) 2 0

almost everywhere in §Q .

We shall approach the estimation of first derivatives,

through the approximating difference quotients,



(2.9) v (x,8) =4 {ul(x+hE) ~ul(x)} , h>0,

which we shall regard as functions of 2n variables on the

domain Q'x R" where Q' = Qe+h . In particular we observe
that

+
(2.1.0) Dg.ive(x,ﬁ) = Dius(x+h£) '

+
Dgigjve(x,w) = hDijue(x+hE) .

Using the inequalities (2.8) we now obtain
- - 2+

(2.11) F(x-ev , Du_(x), D"u_(x+h&))

- F(x-ev , Du_(x) Dzun(x))

f c 14 £
- - 2 + '
2 F(x-gv , Due(X). D ue(x+h5))
- F(x+hE+ev’, Du;(x+h5), Dzu;(X+hE)) '

so that, writing

ald(x) = [V F_ (x-ev”, Du(x), D?W, (x)) dt
0 rij £ t

where

+ ) -
wt = tue(x+h£) + (1-t) uE(x) '



and using the structural condition F3 , we have:

1]
(2.12) LvE g a Dijve

-1 Yin2, ¥ - :
2 -h{u,(h+2e) "[D%u_(x+hE) [+ u,} .

2 -2"nY "N p%ulxehe) | - nTu, , (L€ 26 Sh)
o Y=1 ij + -1

2z =2h u,0 Dijus(x+h£) h Mo

o _onY-l ij _ -1

= =2h u1o Diéjve h Mo

by (2.10{, where

D ju¢ 2
== if D™ * 0 ,
ij |D u€|
o = 1
0 if Dzuz = 0

Consequently we obtain a differential inequality in both x and

£ , namely
il - oY1y il -
(2.13) a*Jp; v - 20’ weetDy . v 2 -h

1 . Hoy -
153 €

-The inequality (2.13) can be made uniformly elliptic by addition
of a suitable elliptic inequality in the £ variables. But

first, to simplify matters, let us rescale § through a

transformation
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(2.14) £ —> 2h*'1u1x'1g

to give in place of (2.13),

' i i -1
(2.15) a~ Dijv€ Ag Digjve 2 =h My

Next we write the differential inequality (2.8) for u; in

the form, -

2

: + + + + +
F(x+ev , Due’ D uE) - F(x+ev , DuE, 0)

2 - F(x+ev+, DuZ' 0) ,
so that by (2.10), (2.14) and F2 ,

ij _ 2v=1 2 ij +
(2.16) «o DgigjvE 4h (u1/l) o Dijue(x+h£)

where the coefficients a7 are given by

. 1
o' d(x) = F_ (x+ev’, Dul, tD
0 ij

2 +
ue)dt .

Therefore, we now have
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o 13 i3 iy, o
(2.17) Lve s a Dijve + Ao DiEjVE + a DgigjvE

]
Mo

2 —4h2Y—1u0(u1/A)2 - h
auB,
n

with T uniformly elliptic in Q' x R .

We are now essentially ready to invoke the weak Harnack

inequality for non-negative supersolutions ([11], Theorem 2,

[1] Theorem 9.22). To do this, we first fix points x, € Q ,

0
o ER with |g| =1 and let R < 1/3 dist(x,,3Q)., h < R/2 .

Denoting
we then set

(2.18) M, = supv_ , M, = sup v
2 3 £ 1 5

2R R

€

and apply the weak Harnack inequality to the function

~

w =M, - v_' in the set §2R . We mention here that although
w does not necessarily lie in the Sobolev space Wz’zn(ﬁéR) -
the weak Harnack inequality is still applicable by virtue of the
uppexr bound on D2w resulting from (2.6), [15]. Consequently

(2.19) (R7?" (ﬁz-vslp)1/P s-c(M, - M, +

o =

R
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where p and C are positive‘constants depénding'only on
n, A/X . At this stage we can let € - 0 , thereby obtaining

(2.19) for the difference quotient,
Vx,E) = vo(x,8) = & {u(x+hf) - u(x)}

By replacing u by =-u , we see that (2.19) also holds for
the function =-v and addition of the two inequalities yields

the oscillation estimate,

{(2,20) SC V S X 9sC V + % u3R2
B

Q
BR 2R

-1

where yx = 1-C ' . Next using (2.6) and (2.14), we can reduce

(2.20) to an estimate in the x variables only, namely

(2.21) osc v(x,go) S x osc Vix,E,) + %(12hY—1u1R[Du| S+ R2)
Br B2R °

3

and hence we obtain, for any R < R

0 ! diSt(XO,BQ) < R0/2 ’

h € R, the HOlder estimate

a
(2.22) osc v s C R {osc v + 1 [u,(u /l)zhzY 1R2
_ R A 0" 0
B 0 B
R - RO

- -1.2
+ u,lhY 1R0|Du|0 + u,h 1RO]}

where C and o depend on n and A/) . Of course we cannot
send h to zero in (2.22) but we can proceed with the aid of

the following trick. Fix a subdomain Q' < < @ and scale x

I
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so that 6 = dist(Q',3Q) = 2 . Choosing in (2.22), R = h < 1

R0 = hB , for some B < 1 , we cobtain

{u(x0 * hgg) + ulxg-hg,) - 2u(x0)}

S

a(1-8) 1 2, 2{(y+B) -1
£ Ch {|Du|0 * 3 gty /2 "h

pY+8-1

+ oy Ipuf, + u,h?E711)

so that, with B + v =1, v £ 1/2 we have

(2.23) ;4137 {ulxy+hEy) + ulx,-hEy) = 2u(x,)}

s c{ipuly + 3 [uguy /0% + w [puly + uyl)

for all h s 1, x, € @', |£,] = 1 . Consequently wu € c''*V(a)
and eliminating the normalization ¢§ = 1 , we obtain the

estimate

(2.24) [Du]

ayiar 5 C 87T {1+ 87/2) |ul

261+2Y

1
+ x(u0u1 + u.8)}

2

from which (2.5) follows. ||

Remarks. (i) If condition F3 1is strenghtened to the Lipschitz

condition,



P A VRS
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(2.25) |F(x,z,p,x)-Fly,t;q,0)] s u,(|x-y|+|z=t]) [r]| -
+ oy, Ux=y|+|z-t]+|p-a]) ,

then we can send h to zero in the proof of Theorem 2.1, with
the effect that the constant C in the estimate (2.5) will
be independent of My -

(ii) If the solution u lies in the Sobolev space Wz’n(

Q)
there is no need for the approximations uz  whence the functions
g and W, can be permitted to lie in certain LP,.spaces. In
particular we can allow Mo € Ln(Q) » while setting h = X-y o
My = M,(x,h) we can assume 1y, € LY ) ; |h| $ hy} for some
g >n and h0 >0 . Tﬁe estimate (2.5) then depends on
I “O“n ¢l u2Hq’w, h, dinstead of u, and y, . |

(iii) If in conditions F1, F2, F3 , the quantities A,A,¥y

are independent of K1 , while
(2.26) . S ul(1+K2), u, s u! (14K)) S ul(1+k2)

: o= Yo 11 M 1 170 H2 2 1
for constants ué, ui, ué depending only on Ky v then by
interpolation ([14], Lemma 1) we can conclude an interior bound
for the gradient of u , namely

-1
(2.27) |Du|0;9, s C(1+8 " |ulg)

where C depends on n, A/A, Y, ué/x, ui/k, ué/l , diam Q@ and

laly,q « For this we need also.the local H&lder estimate [15]
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but for the Isaac's equation (1.4) where we have a linear

structure,
(2.28) wg s pg(I+K ), uy S s v, 8 (14K,

the estimate (2.27) follows by the standard Holder interpolation,

([1], Lemma 6.32).



s
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3. Boundéry estimates

As indicated in [15], certain pointwise estimates for
classical solutions of (1.1), such as the Harnack and H&lder
estimate of Krylov and Safonov [6], (see'[1], Chapter 9),
carry over to viscosity solutions. This can be demonstrated

by writing the inequalities (2.8) to the form,

. ij * _ + +
(3.1) toa, Dijue 2 =-F(xzev, Due(x), 0)

P4 “Ug

by F2 , where the coefficients alj , given by

C . 1 ’
alj(x) = [ F (xtevt, Dui(x),'tDZu*(V))dt ’
+ 0 rij £ [

satisfy the uniform elliptic condition,
(3.2) AT s [a}?] s AT,

by F1 . In particular we infer the following local boundary
estimate, from the proof of the corresponding result for
classical solutions, due to Krylov [4], [5] (see also [8],

[131).

Lemma 3.1. Let u € CO’1(§) be a viscosity solution of

equation (1.1) where F satisfies the structure conditions



- 17 -

F1 and F2 . Let T be an open el boundary -portion of

90 with u =¢ on T for some ¢ € C1'Y(Q uT, 0 < y 1.

Then for any X €T, RS Ry < dist(xo, aN-T) , the function
v .given by

- ulx)-ex)
(3.3) vix) = dist (x,T)

satisfies the estimate

a
(3.4) osc v 5 C (Jl) oscC VvV + Rg[Dg]Y + R

R
QnBR 0 QﬂBR

01“[0 > N
0

where o > 0 depends on n,A/X and .y and C depends also

on T .

Lemma 3.1 provides a Holder estimate for thelnqrmal
derivative of v restricted to T . By combination of Theorem
2.1 and Lemma 3.7, we arrive at the following global estimate.

0,1 -

Theorem 3.2. Let u be a C (@) viscosity solution of the

Dirichlet problem.

(3.5) Flul =0 in @ , u =¢ on 30 ,

where F satisfies the structural conditions F1, F2, F3 and

30 € ¢1'Y(@) . Then u € C''%(Q) for some positive a depending

only on n, A/AX and y and we have the estimate

(3.6)  [pul, o sC,
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where C depends on n, A/X, Y, uy/A, uy/A, uy/A, |u|1‘Q

and .

Remarks. (i) An examination of the form of the estimate
(2.24) and (3.1) shows that we can replace Ugr Mqr Hy in
conditions F2, F3 by aY-] ay

r Wy by u, and U, by

Mo
uzd_] where d = dist(x, 39) .

(ii) From Remark (iii) of the proceeding section, if the

constants Hor Hqr ¥y satisfy (2.26), we deduce a global

gradient bound, so that

(3.7) s C

‘u|1tY?Q

where C depends on n, A/A, Y. ué/h, u;/l, ua/A, Iu'O-Q and
Q . Again for the case of the Isaac's equation, this can be

deduced directly from (3.6) by the standard H6lder interpolation,

({11, Lemma 6.35).

(1ii) It follows from [15], that if F1 holds, F is non-

decreasing in =z , and F3 1is strenghtened so that
(3.8) |F(x,2z,p,xr) - Fly,t,q,r)| < u1{(|x-yJ+|z—t|)|r|+|p—q|}
+ v(|x-y|+|z-t])

where v(a) - 0 as a - 0 , then viscosity solutions of the

Dirichlet problem (3.5) are unique.
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