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Abstract. We explore a state model for the HOMFLYPT polynomial. Re-
formulated in the language of Gauss diagrams it admits an elementary proof

of existence of two HOMFLYPT polynomials for virtual string links which co-
incide in the case of classical links. In particular, for classical knots it gives a
new simple combinatorial proof of existence of the HOMFLYPT polynomial.
In the second part of the paper we obtain Gauss diagram formulas for Vassiliev

invariants coming from the HOMFLYPT polynomial. These formulas are new
already for invariants of degree 3.

Introduction

The HOMFLYPT polynomial P (L) is an invariant of oriented link L. It is de-
fined as the Laurent polynomial in two variables a and z with integer coefficients
satisfying the following skein relation and the initial condition:

(1) aP ( ) − a−1P ( ) = zP ( ) ; P ( ) = 1 .

If L is an unlink with m components then P (L) =
(

a−a−1

z

)m−1

. The existence of

such an invariant is a long and cumbersome theorem. It was established simulta-
neously and independently by five groups of authors [HOM, PT].

The proofs of [H, PT, LM] are based on the following scheme: for a fixed link
diagram, an ordering of the components and a choice of base points is made. The
polynomial P (L) is then defined by a recursive use of the skein relation to transform
the diagram to a descending form. The hardest part of the proof is then to show
the independence of the choice of base points and the order. This is then used to
prove the invariance of P (L) under the Reidemeister moves.

An extension of this scheme to virtual links breaks down at the independence of
the base points, since even for the simplest virtual knot diagram with two (classical)
crossings the polynomial defined in this way depends on the base point. However,
it turns out that (both in the classical and virtual case) it is possible to prove the
invariance under the Reidemeister moves directly, with no induction and without
any assumption of its independence on the ordering and the choice of basepoints.

In this paper we give a short and elementary proof of existence of two HOM-
FLYPT polynomials for ordered virtual links (which coincide in the classical case).
As a byproduct, it implies the existence of the HOMFLYPT polynomial for long
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(and hence also for closed) classical knots. It enables us to avoid the difficulties
with the independence of orderings in the approaches of [H, LM, PT].

The second part of the paper is devoted to Gauss diagram formulas for Vassiliev
invariants coming from the HOMFLYPT polynomial. It is known [GPV] that any
Vassiliev knot invariant may be presented by a Gauss diagram formula. This type
of formulae is the simplest for computation purposes; however, the algorithm for
producing them is complicated and until recently only few lower degree cases were
described explicitly. The first description of such formulas for an infinite family
of Vassiliev invariants was given in [CKR], where the coefficients of the Conway
polynomial were considered. This paper generalizes the result of [CKR] to the
HOMFLYPT polynomial.

We use a non-standard change of variables (used formely in [G2]), leaving z alone
and plugging in a = eh to obtain a power series

∑
k,l pk,lh

kzl. The coefficients pk,l

are Vassiliev invariants of degree 6 k + l, see [G2]. We give the Gauss diagram
formulas for pk,l for arbitrary k, l. These formulas are new already for invariants of
degree 3.

The paper is organized in the following way. In Section 1 we start from the
scheme of [H, LM, PT], extracting from it an explicit state model for the HOM-
FLYPT following [Ja] in Section 2. We then briefly review the notions of Gauss
diagrams and virtual links in Section 3 and reformulate the state model in these
terms in Section 4. Section 5 is dedicated to the formulation and proof of the
invariance of P (L) under the Reidemeister moves. The expansion of P (L) into
power series in h and z is considered in Section 6. In the same section we remind
the definition of the Gauss diagram formulas for Vassiliev invariants. Finally, we
describe the Gauss diagram formulas for pk,l in Section 7. In the last Section 8 we
analyse low degree cases in details.

Note that using instead of (1) the skein relation for the two-variable Kauffman
polynomial, one gets a similar state model. We plan to consider the resulting Gauss
diagram formulas in a forthcoming paper.

We are grateful to O. Viro for valuable discussions. This work has been done
when both authors were visiting the Max-Plank-Institut für Mathematik in Bonn,
which we would like to thank for excellent work conditions and hospitality. The
second author was supported by a grant 3-3577 of the Israel Ministry of Science
and ISF grant 1261/05.

1. HOMFLYPT and descending diagrams

The skein relation (1) allows one to calculate the HOMFLYPT polynomial of
a link. Following [H, LM, PT], this can be done by ordering a link diagram and
then transforming it into a descending diagram. We call a diagram D ordered, if its
components D1, D2,. . . ,Dm are ordered and on every component a (generic) base
point is chosen. An ordered diagram is descending, if Di is above Dj for all i < j

and if for every i as we go along Di starting from its base point along the orientation
we pass each self-crossing first on the overpass and then on the underpass.

An elementary step of the algorithm computing P (L) consists of the follow-
ing procedure. Suppose that D is an ordered diagram and that the subdiagram
D1, . . . ,Di−1 is already descending. We go along Di (starting from the base point)
looking for the first crossing which fails to be descending. At such a crossing x

we change it using the skein relation. Namely, depending on the sign ε (the local
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writhe) of the crossing, we express P (D) as

(2)

P ( ) = a−2P ( ) + a−1zP ( )

P ( ) = a2P ( ) − azP ( )

Denote the corresponding diagrams Dε, D−ε, D0.
The ordering of D = Dε induces the ordering of D−ε (in an obvious way); the

ordering of D0 requires some explanation. If x was a crossing of Di with Dj , j > i,
then these two components merge into a single component D0

i of D0, with a base
point being the base point of Di. If x was a self-crossing of Di, then Di splits into
two components: D0

i , which contains the base point of Di, and D0
i+1, where we

choose the base point in a neighborhood of x. In both cases the order of remaining
components shifts accordingly.

The diagrams D−ε, D0 are “more” descending than Dε. At the next step we
apply the same procedure to each of them.

Example 1a. For the trefoil 31 the algorithm consists of two steps, illustrated in
the figure below. The diagram D+ appearing in the first step is already descending;
the diagram D0 is not, so the second step is needed to transform it.

1

2

1 1

1

2

1

2

1

D−

Step 1:

Step 2:

D+ D0

D− D+ D0

Hence P (31) = a2 · 1 − az
(
a2 · a−a−1

z
− az · 1

)
= (2a2 − a4) + a2z2.

2. State model reformulation

The state model of [Ja] for the HOFMLYPT polynomial is a convenient refor-
mulation of the algorithm of Section 1.

A state S on a link diagram D is a subset of its crossings. The HOMFLYPT
polynomial is going to be a sum over the states. Let D(S) be the link diagram
obtained by smoothing every crossing in S according to orientation and c(S) be
the number of its components. We will not use the topology of D(S), however
its combinatorics will determine the contribution of the state S to the state sum.
The contribution will be a product of a global weight of the state as a whole,(

a−a−1

z

)c(S)−1
and local weights of crossings of the diagram.

The ordering of D induces an ordering of D(S) (in the way explained in Section
1 above) and thus determines a tracing of the link D(S). The local weight 〈x|D|S〉
of a crossing x of D depends on the first passage of a neighborhood of x in the
tracing and on the sign ε of x. Namely, if x is in S and we approach x first time
on an overpass of D then 〈x|D|S〉 = 0 (since such a situation does not occur in the
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above algorithm). If we approach x on an underpass of D then 〈x|D|S〉 = εa−εz

(i.e., the coefficient of D0 in (2)). In the case if x does not belong to S and we
approach x first time on an overpass then 〈x|D|S〉 = 1 (since in the above algorithm
we do not apply the skein relation to x). If we approach x on an underpass then
〈x|D|S〉 = a−2ε (i.e., the coefficient of D−ε in (2)). These assignments can be
summarized in the following figure.

First passage:

0 a−1z 1 a−2

−az 0 a2 1

Denote by 〈D|S〉 :=
∏

x〈x|D|S〉 the product of local weights of all crossings. For a
link L with a diagram D we have [Ja, Proposition 2]:

P (L) =
∑

S

〈D|S〉 ·

(
a − a−1

z

)c(S)−1

Example 1b. Consider a based trefoil diagram D and a state S consisting of
one crossing {x1}.

D =

x1

x2
x3

D(S) =

1

2

The tracing of D(S) first approaches the crossing x1 on the strand which was an
underpass in D. So its weight will be 〈x1|D|S〉 = −az. Similarly the weights
of the other two crossings are 〈x2|D|S〉 = a2 and 〈x3|D|S〉 = 1. So the total

contribution from this state will be equal to −a3z
(

a−a−1

z

)
= a2 − a4. The next

table shows the contributions from all eight states. Non-zero weights come from
states corresponding to descending diagrams appearing in the end of the algorithm,
see Example 1a.

∅ {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} {x1, x2, x3}

a2 a2 − a4 0 0 a2z2 0 0 0

So we recover the result of Example 1a: P (31) = (2a2 − a4) + z2a2.

Remarks. 1. Smoothing a crossing from a state S changes the number of
components by one. Hence the cardinality |S| and the difference m − c(S) (where
k is the number of components of D) are congruent modulo 2. Therefore the
HOMFLYPT polynomial P (L) is even in each of the variables a and z if m is odd,
and it is an odd polynomial if m is even.

2. The negative powers of z come from the factors
(

a−a−1

z

)c(S)−1
. A smoothing

of a crossing x ∈ S may increase c(S) by one, however this increment might be
compensated by a local weight 〈x|D|S〉. As a consequence we have that the lowest
power of z in the HOMFLYPT polynomial of L is equal to z−m+1 with some
coefficient (depending on a). In particular the HOMFLYPT polynomial P (K) of
a knot K is a genuine polynomial in z, i.e., does not contain terms with negative
powers of z.
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3. Gauss diagrams

Definition. Gauss diagrams provide an alternative and more combinatorial way
to present links. For a link diagram D consider a collection of (counterclockwise)
oriented circles parameterizing it. Two preimages of a crossing of D we unite in a
pair and connect them by an arrow pointing from the overpassing preimage to the
underpassing one. To each arrow we assign a sign ±1 of the corresponding crossing.
The result is called the Gauss diagram GD of the link diagram D. A link can be
uniquely reconstructed from the corresponding Gauss diagram [GPV].

For example, a Gauss diagram of the trefoil looks as follows.

D = GD =

A knot and its Gauss diagram

Not every diagram with arrows is realizable as a Gauss diagram of a classical

link. For example, is not realizable regardless of signs of its arrows. An

abstract Gauss diagram, or an arrow diagram is a generalization of a notion of
Gauss diagram, in which we forget about realizability. In other words, an arrow
diagram consists of a number of oriented circles with several arrows connecting pairs
of distinct points on them. The arrows are equipped with signs ±1. We consider
these diagrams up to orientation preserving diffeomorphisms of the circles.

We are going work with ordered Gauss diagrams, i.e. Gauss diagrams with
ordered circles and a base point 1, 2, . . . , m on each circle corresponding to
an ordering of D. Similarly, an ordered arrow diagram is an arrow diagram equipped
with an ordering of the circles and a base point (different from the end points of
the arrows) on each of them.

Two Gauss diagrams represent isotopic links if and only if they are related by a
finite number of Reidemeister moves (see, for example, [GPV, Öll, CDBooK]).

Ω1 :
ε ε

Ω2 : ε −ε

Ω3 : .

Note that the segments involved in Ω2 or Ω3 may lie on the different components
of the link. So the order in which they are traced along the link may be arbitrary.

A virtual link [Ka2, GPV] is an abstract (not necessarily realizable) Gauss dia-
gram considered modulo Reidemeister moves. Similarly, we define a ordered virtual
link as an equivalence class of ordered abstract Gauss diagrams modulo Reidemeis-
ter moves which do not involve base points. In particular, virtual string links are
ordered. For one-component links this notion is equivalent to the notion of long
(virtual) knots. It is well known that for classical knots the theories of long and
closed knots coincide, which however is not true for virtual knots.
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4. State models on Gauss diagrams

All notions and constructions of Section 2 have a straightforward translation to
the language of Gauss diagrams.

A state S on an abstract Gauss diagram G is a subset of its arrows. Let G(S) be
the abstract Gauss diagram obtained by doubling every arrow in S as in the figure

,

and let c(S) be the number of its circles. The ordering of G induces an ordering
of G(S). The local weight 〈α|G|S〉 of an arrow α of G in general depends on
whether α belongs to S, on the first passage in a neighborhood of α in the tracing
of G(S), and on the sign ε of α. Given a table of such local weights, we denote
by 〈G|S〉 :=

∏
α〈α|G|S〉 the product of local weights of all arrows and define a

polynomial P (G) by

(3) P (G) :=
∑

S

〈G|S〉 ·

(
a − a−1

z

)c(S)−1

The table of local weights for the HOMFLYPT state model (readily taken from
Section 2) is shown below.

(4)

First passage:

a−1z 0 a−2 1

−az 0 a2 1

Example 1c. For the Gauss diagram of the trefoil the states with non-zero
weights are the following.

States of :
2

1

Weights : 1 · a2 · 1 1 · (−az) · a2 ·
(

a−a−1

z

)
1 · (−az) · (−az)

Hence, P (G) = (2a2 − a4) + z2a2.

5. HOMFLYPT for virtual links

It turns out that directly - without any assumption about the existence of the
HOMFLYPT polynomial - one may prove the following

Theorem 1. The expression (3) is invariant under Reidemeister moves of ordered
Gauss diagrams and thus defines an invariant of ordered virtual links.

Remark. In particular, this theorem gives a direct elementary proof of an
existence of the HOMFLYPT polynomial of (long, and thus also closed) classical
knots. Here we diverge from the scheme of proof of [H, LM, PT]. Indeed, their
proofs of invariance under Reidemeister moves are based on the independence of
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the ordering. The later is the hardest part of the proof (and fails for virtual links).
Thus we avoid the difficulties arising in the case of [H, LM, PT].

Corollary 1. HOMFLYPT extends to an invariant of ordered virtual links. In
particular, HOMFLYPT polynomial for long virtual knots is well-defined. Since
one may use ascending diagrams instead of descending, there are two (descending
and ascending) HOMFLYPT polynomials of ordered virtual links, which coincide
on classical links.

Proof. Let Gauss diagrams G and G′ be related by an Ω1 move, so that G′ contains
a new isolated arrow α. Every state S of G corresponds to two states of G′: S and
S ∪ α. Depending on the orientation of α, their weights will be either 〈G|S〉 and

0, or εa−εz a−a−1

z
〈G|S〉 and a−2ε〈G|S〉. In both cases they sum up to 〈G|S〉 (since

εa−ε(a − a−1) + a−2ε = 1).
If Gauss diagrams G and G′ are related by an Ω2 move, G′ contains a pair of

extra arrows α1 and α2 with signs ε and −ε. Every state S of G corresponds to
four states of G′: S, S ∪ α1, S ∪ α2, and S ∪ α1 ∪ α2. There are three cases to
consider: (1) the first passage of this fragment in S is on the bottom segment (so
we encounter both arrow tails first); (2a) the first passage is on the top segment
and both segments belong to the same circle of G(S); (2b) the first passage is on
the top segment and the segments belong to two different circles of G(S). The
contribution of these arrows in each case are shown in the table.

States of G′:

(1) 1 0 0 0

(2a) 1 εaεz −εa−εz (a − a−1)z

(2b) 1 εaεz −εaεz 0

In all cases 〈G′|S〉 = 〈G|S〉, while the contributions of the last three states of G′

cancel out, i.e., 〈G′|S ∪ α1〉 + 〈G′|S ∪ α2〉 + 〈G′|S ∪ α1 ∪ α2〉 = 0.
Finally, if Gauss diagrams G and G′ are related by an Ω3 move, there is a

bijective correspondence between states of G and G′, depending on the order in
which three segments are passed in the tracing. This correspondence preserves the
weights and the combinatorics of the order in which the tracing enters and leaves
the neighborhood of these arrows. The table below summarises the correspondence
of states with non-zero weights.

1

2
3

1

2
3

a−3z

1

3
2

1

3
2

a−3z

2

1
3

2

1
3

a−3z

1

2
3

1

2
3

a−5z

1

3
2

1

3
2

a−3z

2

3
1

2

3
1

a−1z

3

1
2

3

1
2

a−1z
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2

1
3

2

1
3

a−3z

1

2
3

1

2
3

a−5z

1

2
3

1

2
3

a−4z2

2

1
3

2

1
3

a−2z2

1

2
3

1

2
3

a−4z2

1

3
2

1

3
2

a−2z2

1

2
3

1

2
3

a−3z3

For a better understanding of this table, let us explain one of the cases in details.
Denote the top, left, and right arrows in the fragment by αt, αl, and αr respectively.
Consider a state S ∪αl ∪αr which contains two arrows of the fragment. The order
of tracing the fragment depends on S. Only two orders of tracing may result in a
non-zero weight:

States of G:

1in 1out

2in

2out 3in
3out

or

1in 1out

3in

3out 2in
2out

States of G′:

1in 1out

2in

2out 3in
3out

or

1in 1out

3in

3out 2in
2out

Here the three consecutive entries and exits from the fragment are indicated by
1in, 1out, 2in, 2out, 3in, 3out. In the first case, the local weight of this fragment
is a−1z · a−1z · a−2 = a−4z2. The corresponding state of G′ is S ∪ αt ∪ αr. Note
that the pattern of entries and exits from the fragment is indeed the same. Its local
weight is also the same. In the second case, the local weight of this fragment is
a−1z · a−1z · 1 = a−2z2. Now the corresponding state of G′ is S ∪αt ∪αl. Both the
pattern of entries and exits and its local weight are again the same as in G. �

6. Vassiliev invariants coming from the HOMFLYPT polynomial

6.1. HOMFLYPT power series. A standard way [BN, BL] to relate Vassiliev
invariants to the HOMFLYPT polynomial is to make a substitution a = eNh,
z = eh − e−h and then take the Taylor expansion of P (L) in the variable h. The
coefficient at hn turns out to be a Vassiliev invariant of order 6 n which depends
on a parameter N .

In this paper we are working in a different way, following [G2]. Namely, we
substitute a = eh and take the Taylor expansion in h. The result will be a Laurent
polynomial in z and a power series in h. Let pk,l(L) be its coefficient at hkzl. It
is not difficult to see that for any link L the total degree k + l is not negative. (It
also follows from the Jaeger model in section 2.)

Lemma ([G2]). pk,l(L) is a Vassiliev invariant of order 6 k + l.
Indeed, plugging a = eh into the skein relation we get

P ( ) − P ( ) = zP ( ) + h(some terms) .
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Since all terms of the HOMFLYPT polynomial have non-negative total degree in z

and h, the terms of the right hand side has degree at least 1. Therefore, if we change
n + 1 crossings in different places then the alternating sum of the 2n polynomials
will have the degree of its monomials > n + 1. Hence the coefficient at any degree
n term will be zero. �

Remark. After substitution a = eh and the Taylor expansion in h the factor
a−a−1

z
becomes 2h+...

z
. In other words its total degree in h and z is not negative.

Therefore, the total degree k + l of the monomial hkzl of P (L) is not negative,
however the exponent l of z may be as negative as −k + 1.

Our next goal is to describe the Gauss diagram formulas for pk,l(L). Note that
the case k = 0 corresponds to the substitution a = 1 into the HOMFLYPT poly-
nomial, i.e. to the Conway polynomial. Thus p0,l(L) are coefficients of the Conway
polynomial for which the Gauss diagram formulas were found in [CKR]. This part
of our work may be considered as a generalization of [CKR].

6.2. Gauss diagram formulas for Vassiliev invariants. Let A be a free Z-
module generated by ordered arrow diagrams with m circles. Define a map I :
A → A by I(G) :=

∑
A⊆G A for any (abstract, ordered) Gauss diagram G, and

extend it to A by linearity. Here A ⊆ G means the arrow subdiagram A containing
the same circles as the whole diagram G but only a subset of arrows of G with their
signs. A natural scalar product on A is given by (A,B) := 0 if A is not equal to
B, and (A,B) := 1 if A = B for a pair of arrow diagrams A and B. Let us define
a pairing 〈A,G〉 := (A, I(G)).

Definition. Let A be a fixed element of A . By a Gauss diagram formula we
mean a function IA on abstract Gauss diagrams defined by IA : G 7→ 〈A,G〉.

If A is chosen at random then IA(G) usually changes under Reidemeister moves
and thus does not define any link invariant. However, for some special choice of A

it might be a link invariant. Due to certain special features of Gauss diagrams for
classical links, it may even happen that a formula gives an invariant of classical links,
but is not invariant for virtual links. According to [GPV] any Vassiliev invariant of
long knots can be expressed by a Gauss diagram formula. In the following sectins
we describe an algorithm for finding such formulas for invariants pk,l(L) coming
from the HOMFLYPT polynomial.

For shortness of notation, further we will use unsigned arrow diagrams, under-
standing by that a linear combination of arrow diagrams with all possible choices
of signs and appearing with a coefficients ±1 depending on whether even or odd
number of negative signs were chosen.

Examples. If m = 2 and

A =
1 2

:=
1 2

−
1 2

,

then IA(G) is equal to the linking number of components.
If m = 1 and

A = := − − + ,

then IA(G) is equal to the second coefficient of the Conway polynomial, p0,2(G)
(see [PV]).
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7. Gauss diagram formulas for HOMFLYPT coefficients

Our aim is to figure out contributions of various arrow subdiagrams to pk,l, using
the state model from Section 4.

Consider a state model on an arrow diagram A with the following table of local
weights 〈α|A|S〉:

(5)

First passage:

e−hz 0 e−2h − 1 0

−ehz 0 e2h − 1 0

Let 〈A|S〉 =
∏

α∈A〈α|A|S〉 and define a power series in h and z by

(6) W (A) =
∑

S

〈A|S〉

(
eh − e−h

z

)c(S)−1

Denote by wk,l the coefficient of hkzl in W (A), so that W (A) =
∑

k,l wk,l(A)hkzl.

Definition. Now the linear combination Ak,l ∈ A can be defined as follows.

Ak,l :=
∑

wk,l(A) · A

Theorem 2. Let G be a Gauss diagram of an ordered (possibly virtual) link L.
Then

pk,l(L) = IAk,l
(G) = 〈Ak,l, G〉 .

Proof. According to 4, the HOMFLYPT is equal to

P (G) =
∑

S⊂G

〈G|S〉 ·

(
a − a−1

z

)c(S)−1

.

We have

〈G|S〉 =
∏

α∈G

〈α|G|S〉 =
∏

α∈S

〈α|G|S〉
∏

α∈GrS

〈α|G|S〉 =

=
∏

α∈S

〈α|G|S〉
∑

A⊃S

(
∏

α∈ArS

(〈α|G|S〉 − 1)
∏

α∈GrA

1

)
=

=
∑

A⊃S

(
∏

α∈S

〈α|G|S〉
∏

α∈ArS

(〈α|G|S〉 − 1)

)
.

Therefore

P (G) =
∑

S⊂G

∑

A⊃S

(
∏

α∈S

〈α|G|S〉
∏

α∈ArS

(〈α|G|S〉 − 1)

)
·

(
a − a−1

z

)c(S)−1

=

=
∑

A⊂G

∑

S⊂A

(
∏

α∈S

〈α|G|S〉
∏

α∈ArS

(〈α|G|S〉 − 1)

)
·

(
a − a−1

z

)c(S)−1
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Comparing tables (4) and (5) of local weights, we get

∏

α∈S

〈α|G|S〉
∏

α∈ArS

(〈α|G|S〉 − 1) =
∏

α∈A

〈α|A|S〉 = 〈A|S〉

Thus

P (G) =
∑

A⊂G

∑

S⊂A

〈A|S〉 ·

(
a − a−1

z

)c(S)−1

And the theorem follows. �

7.1. Contributions of various diagrams to Ak,l. A state S of an arrow diagram
A is called ascending, if in the tracing of A(S) we approach a neighborhood of every
arrow (not only the ones in S) first at the arrow head. As easy to see from the
weight table, only ascending states contribute to W (A). In particular, the first end
point of an arrow in A (as we move from the base point along the orientation) must
be an arrow head.

Note that since e±2h − 1 = ±2h + (higher degree terms) and ±e∓hz = ±z +
(higher degree terms), the power series W (A) starts with terms of degree at least

|A|, the number of arrows of A. Moreover, the z-power of 〈A|S〉
(

eh−e−h

z

)c(S)−1

is

equal to |S| − c(S)+ 1. Therefore, for fixed k and l, the weight wk,l(A) of an arrow
diagram may be non-zero only if A satisfies the following conditions:

(i) |A| is at most k + l;
(ii) there is an ascending state S such that c(S) = |S| + 1 − l.

For diagrams of the highest degree |A| = k + l, the contribution of an ascending
state S to wk,l(A) is equal to (−1)|A|−|S|2kε(A), where ε(A) is the product of signs
of all arrows in A. If two such arrow diagrams A and A′ with |A| = k + l differ only
by signs of arrows, their contributions to Ak,l differ by the sign ε(A)ε(A′). Thus
all such diagrams may be combined to the unsigned diagram A, appearing in Ak,l

with the coefficient
∑

S(−1)|A|−|S|2k (where the summation is over all ascending
states of A with c(S) = |S| + 1 − l).

Arrow diagrams with isolated arrows do not contribute to Ak,l. Indeed, all
ascending states cancel out in pairs similarly to the proof of invariance under Ω1 in
Theorem 1.

7.2. Coefficients of the Conway polynomial. The Conway polynomial is ob-
tained from the HOMFLYPT polynomial by setting h = 0. So our formulas for
A0,l are the Gauss diagram formulas for coefficients of the Conway polynomial,
discovered earlier by Michael Khoury and Alfred Rossi [CKR]. Indeed, only states
with |S| = |A| and c(S) = 1 contribute to w0,l(A). Since these are diagrams of
the highest degree, according to 7.1 they may be combined into unsigned ascending
diagrams which appear with coefficients 1.

For example, in the case m = 1 of long knots, states with c(S) = 1 exist only
for even number l of arrows. For l = 2 and l = 4 the resulting linear combinations
A0,l are
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A0,2 = ; A0,3 = 0 ;

A0,4 = + + + + +

+ + + + + + + + +

+ + + + + + + + .

8. Low degree examples

Let us describe the corresponding formulas for degree 2 and 3 invariants of knots,
i.e. k + l = 2, 3, m = 1. The case A0,2 was described above. A direct check shows
that A2,0 = 0. Let us explicitly find the formula for A1,2. The maximal number
of arrows is equal to 3. To get Z2 in W (A) we need ascending states with either
|S| = 2 and c(S) = 1, or |S| = 3 and c(S) = 2. In the first case the equation
c(S) = 1 means that the two arrows of S must intersect. In the second case the
equation c(S) = 2 does not add any restrictions on the relative position of arrows.
In cases |S| = |A| = 2 or |S| = |A| = 3, since S is ascending, A itself must be
ascending as well.

For diagrams of the highest degree |A| = 1 + 2 = 3, we should count ascending
states of unsigned arrow diagrams with the coefficient (−1)3−|S|2, i.e. −2 for |S| = 2
and +2 for |S| = 3. There are only four types of (unsigned) 3-arrow diagrams with
no isolated arrows:

; , , .

Diagrams of the same type differ by directions of arrows.
For the first type, recall that the first arrow should be oriented towards the

base point; this leaves 4 possibilities for directions of the remaining two arrows.

One of them, namely does not have ascending states with |S| = 2, 3. The

remaining possibilities, together with their ascending states, are shown in the table:

The final contribution of this type of 3-arrow diagrams to A1,2 is equal to

−2 − 2 .
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The remaining three types of 3-arrow diagrams differ by the location of the base
point. A similar consideration shows that 5 out of the total of 12 arrow diagrams
of these types, namely

, , , ,

do not have ascending states with |S| = 2, 3. The remaining possibilities, together
with their ascending states, are shown in the table:

The final contribution of this type of 3-arrow diagrams to A1,2 is equal to

−2 − 2 − 2 + 2 − 2 .

Besides 3-arrow diagrams, some 2-arrow diagrams contribute to A1,2 as well.
Since |A| = 2 < k + l = 3, contributions of 2-arrow diagrams depend also on their
signs. Such diagrams must be ascending (since |S| = |A| = 2) and should not have

isolated arrows. There are four such diagrams, looking like , but with

different signs ε1, ε2 of arrows. For each of them 〈A|S〉 = ε1ε2e
−(ε1+ε2)hz2. If

ε1 = −ε2, then 〈A|S〉 = −z2, so the coefficient of hz2 vanishes and such diagrams
do not occur in A1,2. For two remaining diagrams with ε1 = ε2 = ±, coefficients of
hz2 in 〈A|S〉 are equal to ∓2 respectively.

Combing all the above contributions, we finally get

A1,2 = −2
(

+ + + + − + + −
)

.

At this point we can see the difference between virtual and classical long knots.
For classical knots IA1,2

= 〈A1,2, ·〉 can be simplified further. Note that for any

classical Gauss diagram G, 〈 , G〉 = 〈 , G〉. This follows from the symme-

try of the linking number. Indeed, supposed we have matched two vertical arrows
(which are the same in both diagrams) with two arrows of G. Let us consider the
orientation preserving smoothings of the corresponding two crossings of the link

diagram D associated with G. The smoothened diagram D̃ will have three compo-
nents. Matchings of the horizontal arrow of our arrow diagrams with an arrow of
G both measure the linking number between the first and the third components of

D̃, using crossings when the first component overpasses (underpasses, respectively)

the third one. Thus, as functions on classical Gauss diagrams, is equal to
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and we have

p1,2(G) = −2〈 + + + + + − , G〉 .

For virtual Gauss diagrams this is no longer true.
In a similar way one may check that A3,0 = −4A1,2.
Example 1d. Let us compute the coefficients of hz2 and h3 of the HOMFLYPT

polynomial on the trefoil from page 5.

〈A1,2, G〉 = 2〈 , G〉 = 2 and 〈A3,0, G〉 = −8 ,

It is easy to verify these coefficients in the Taylor expansion of P (31) = (2e2h −
e4h) + e2hz2.
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