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Geometry of p—jets, I

Alexandru Buium

Introduction. In a series of papers [B1-B4] the author developed a differential alge-
braic method which was used, among others, to prove diophantine results over function
fields. In this paper we start developing an analogue of that method which is designed
to work over number fields. The main point in our differential algebraic method was the
geometric study of “jet spaces” along a fixed derivation of the ground field. Of course,
there is no non zero derivation on a number field, so we cannot speak in the arithmetic
context about usual jets. Instead of derivations we will use certain natural non additive
maps on rings of integers, which we call p—derivations. The resulting “jet spaces” will be
called p—jet spaces. The present paper is devoted mainly to applications of this technique
to curves of genus ¢ > 2 (and ¢ = 0.) In a subsequent paper [B5] we shall investigate
curves of genus ¢ = 1, and more generally abelian varieties.

The present paper has two sections. In the first section we give a quick exposition of
the theory in its simplest form: we shall only look at the geometry of “first order p—jets”,
and even this will be done in a special case. This case will be however enough to prove
the following “quantitative version of the Manin-Mumford conjecture”:

Theorem A. Let X — J be the Abel map defined over a number field K of a smooth
curve of genus g > 2 into its Jacobian. Let p be a prime of K with p = char p > 2g.
Assume that K/Q is unramified at p and X/ K had good reduction at p. Let K® be the
algebraic closure of K. Then

BX(K®) N J(K®)tors) < p*-37 - [p(29 — 2) + 6g] - ¢!

A few remarks are in order. The finiteness of §{ X (/K*)NJ(K®)rs) was conjectured by
Manin and Mumford and first proved by Raynaud [Rayl]. In [Col] Coleman considered
the special case when J has complex multiplication and, assuming in addition that X/K
has ordinary reduction at p, he proved that §(X(K*) N J(K*)wrs) € p-¢. (By the way,
as shown by an example in [Col] the bound p - g fails in general, in the non complex
multiplication case.) Coleman’s proof was based on his deep theory of p—adic Abelian
integrals [Col] and heavily relies on both the complex multiplication assumption and the
ordinarity assumption (cf. the discussion in [Col], p. 157).
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Our strategy of proving Theorem A is the following. First we prove a “non ramified

version” of Theorem A: more precisely we prove that Theorem A holds with K® replaced
by the maximal extension K% of K contained in K* which is unramified above p. Actually
such a result will be proved to hold without the hypothesis p > 2g; cf. Theorem (1.11).
The proof of this will be entirely elementary and self contained; here is where we shall use
our first order p—jets by imitating our approach to the function field case [B4] [BV]. Note
also that, although we shall be working with reduction p?, our arguments will be quite
different from (and simpler than) Raynaud’s [Rayl] [Ray2]. In particular our arguments
may be used to give an easy proof (which is in addition effective) of his “infinitesimal”
results there.

Now Theorem A trivially follows from its “non ramified version” plus a result of
Coleman’s [Co2], p.615, which says that for p > 2¢g we have X(K*)NJ(K®)sops C J(K¥).
(Note that this latter result of Coleman’s depends again on his theory of p—adic Abelian
integrals.)

The second section of the paper is devoted to developing a theory of “higher p—jets”.
Our main application here is a p—adic analogue of our “§—polynomial affine embedding
theorem for projective curves” in [B2]. In what follows we explain our main concepts and
results.

Let R denote (throughout the paper) an absolutely unramified complete discrete val-
uation ring whith algebraically closed residue field k of characteristic p. Recall from [S]
p.39 that K has a unique lifting ¢ : R — R of the Frobenius of k. Define the map
¢ : R — R by the formula dz = (¢(z) — z7)/p. Morally é will play, in our approach, the
role of a derivation. As for usual derivations, for any z € R we write =, z", ...,z in
place of éz, 8%, ..., 6 z.

Now let X/R be a scheme of finite type. An R—valued function ¢ : X(R) — R
will be called a é—formal function on X(R) if any point in X(R) has an affine open
neighbourhood U C X where ¢ can be written as

@(P) = ®(u(P),u(P),w(P)", ..., u(P)™,..)), Pe€U(R)

where u = (uy,...,un) is an N—uple of regular functions on U (so u(P) € R¥) and @ is
an element in the p—adic completion of the ring of polynomials with coefficients in R in
infinitely many indeterminates. (These are the analogues of d—polynomial functions in
[B1-B4].) Then we shall prove

Theorem B. Let X/R be a smooth projective curve of genus g > 2. Then there exists
finitely many §—formal functions ¢y, ..., o5 on X(R) such that the map ¢ := (p1,...,on) :
X(R) — AN(R) = RN is injective and any other §—formal function %) on X(R) can be
written as ¥ = 0 o o for a suitable §—formal function 8 : AN(R) = RN — R. In contrast,
if X/ R is a projective space then any d—formal function ¢ : X(R) — R is constant.

Actually we shall be able to take the ¢;’s above of “order one” (i.e. locally given by
S (u(P),u(P)).



The second section of the paper will also contain a discussion of the relation between
p—jets and the “Greenberg transform”. Recall that to any scheme of finite type X/R
one can associate a (proalgebraic) k—scheme X called the Greenberg transform such that
X(R) ~ X(k) functorially in X (this is a construction going back to Lang’s thesis [L1],
[L2] and to Greenberg’s paper [Gr]). We will prove that for X/R smooth, the reduction
modulo p of our “infinite p—jet space” of X coincides with the Greenberg transform X;
cf. Theorem (2.10). This may be used to shed a new light on Greenberg transforms of
curves. It will follow for instance that if X/R is a smooth projective curve of genus at
least 2 then its Greenberg transform X is an affine scheme, and if @®(X) denotes the
ring of §—formal functions on X(R) then O(X) ~ O*(X) ® k. In contrast, if X is a
projective space over R then its Greenberg transform X has only constant global regular

functions; i.e. O(X) = k.
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1. First order p—jets and torsion points.

(1.1) Let f: A — B be a ring homomorphism. Let W,(B) be the ring of Witt vectors
of length 2 with coordinates in B [S]. By a p—derivation (of f) we understand a map of
sets 6 : A — B such that the induced map

(f,0): A— Bx B=Wy(B), =+ (f(z),(z))

is a ring homomorphism. Using the explicit ring structure of Wy( B), this condition means
that for z,y € A we have:

6(z +y) = dz + oy + O, (f(z), f(v))

6(zy) = f(z)"dy + f(y)Péz + pdzdy

where ®,(X,Y) is the polynomial with integer coeflicients (X? + Y? — (X + Y)?)/p; so
we see in particular that & is non additive.

(1.2) Remark. Ifin the above definition we replace W,( B) by the ring of dual numbers
Do(B) = B @ Be, € = 0 then we get the usual notion of derivation, which justifies our
terminology.

The “main hope” beyond the present paper is that much of the theory done in [B1-
B4] (as well as much of the “differential algebra” in [K], [R]) can be developped with



p—derivations in place of usual derivations; the applications one expects are p—adic ana-
logues of the results in those papers. Our main results stated in the Introduction are
samples of such analogues.

(1.3) Assume now R, k,¢,§ are as in the Introduction. Then é : R — R is trivially
seen to be a p—derivation of the identity.
Note that dp = 1 — p*~! is invertible in R; more generally we have:

(™, 8p",...,6 P ) R=p""'R, 0<i<n

So if we assume that B # 0 is an R—algebra with a p—derivation extending the derivation
on R, then the map R — B is injective (indeed p is not nilpotent in B, as shown by taking
¢ = n in the equality above).

(1.4) Now we pass to the construction of first order p—jet spaces. Let R,k,¢,4 be
as above and assume we are given a finitely generated R—algebra f : R — B. We
shall construct a finitely generated B—algebra f! : B — B! and a p—derivation (still
denoted by) 6 : B — B! of f! having the following universality property: for any ring
homomorphism ¢ : B = C and any p—derivation & : B — C such that do f = god:
R — C, there exists a unique ring homomorphism u : B! = C such that ¢ = v o f! and
d = wod. This B! will be called the first order p—jet algebra of B. The construction
goes as follows. Write B = R[T'|/I where T = (T;) is a family of indeterminates and J
is an ideal. Introduce a new family of indeterminates 7”7, indexed by the same set as T,
and prolong ¢ : R — R to a ring homomorphism (also denoted by) ¢ : R[T] — R[T,T"|
by requiring that

o(T:) =17 + pT}

Then define the map (still denoted by)
§: R[T] - R[T,T)

by the formula
§F = ((F) - F*)/p, F & RIT]

This map is a p—derivation of the inclusion, prolonging our original § : R — R. Finally
set B! = R[T,T"]/(I,I') where I' is the image of [ under §. The map § : R[T] — R[T,T")
induces a p—derivation § : B — B!, It is trivial to check that this construction satisfies
the universality property mentioned above.

Note that the above construction does not behave well under localisation: if f € B
then the natural map (B'); — (By)! need not be an isomorphism (take the case when
B = R[T] is a polynomial ring and f = T'). However it is an easy exercise to check that,
if p is nilpotent in B then the map (B'); — (By)! is an isomorphism.

Consequently, if X/R is a scheme of finite type on which p is nilpotent we may de-
fine the first order p—jet space of X as the scheme X' obtained by gluing the schemes
Spec (O(U)') for various affine open sets U C X. The construction X — X is functorial
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(X! represents the functor which associates to each scheme Z the set of all pairs (u, 3) con-
sisting of a morphism of schemes u : Z — X and a p—derivation § : Oy — u,.0z; by the
latter we understand a map of sheaves of sets inducing on each open set a p—derivation).
Moreover if G/R is a group scheme then G'/R is naturally a group scheme.

Finally, if X/R is a scheme of finite type on which p is not necessarily nilpotent, we set
Ry = R/p*R and X, := X ®g R, and we may consider the first order p—jet space of X
which we denote by X (in symbols X] := (X;)'). Note that p vanishes on X} (because
8(p*) has valuation 1 in R). Hence we have a map Xj — X, where we set Xp = X @ k.
We have in this situation a “lifting map”

Ve : X(R) = X, (k)

defined as follows: for any point P : Spec R — X the p—derivation § on R induces a
p—derivation from the ring of regular functions in a neighbourhood of P in X, to &, hence
by the universality property, we are provided with a k—point of X|].

In what follows, for any k—scheme Y we denote by Fy : Y — Y the absolute Frobenius
endomorphism and by FT(Y/k) the “Frobenius tangent scheme” Spec S(FyQy;) = Y
(Frobenius tangent bundle, if Y is smooth).

Proposition (1.5). Let X/R be a scheme of finite type, which is smooth along Xy.
Then X} — Xy is a (Zariski locally trivial) principal homogenous space for the Frobenius
tangent bundle FT(Xo/k) — Xo. If in addition X/R is a group scheme then Ker(X} —

Xo) Is a vector group.

Proof. The fact that XJ is a principal homogenous space for the Frobenius tangent
bundle (in the mere sense of functors to the category of sets) follows easily using the
description of the functor that X} represents (1.4) plus the following trivial observation.
Let f : A — B be a ring homomorphism where B has characteristic p. Then the set of
p—derivations of f is either empty or a principal homogenous space for the group of all
(usual) derivations of f o Fg (Fg =Frobenius of B). To check that X; — X, has local
sections in the Zariski topology, we may assume X is affine. Then it is sufficient to prove
Lemma (1.6) below. The assertion about the case when X is a group scheme may be
checked via an argument similar to the one in [B1], pp1397-1398.

Lemma (1.6). Assume we are given a finitely generated algebra f : R — B and its
first order p—jet algebra f' : B — B'. Assume B is smooth over R at any prime of B
containing p. Then for any integer m > 1 the natural projection m : B — B/p™ B factors
through f': B — B'.



Proof. Consider the commutative diagram

R % B

(f,é)4 I

Wo(B) B B

Wym) L Ln
Wy(B/p"B) & B[p™B

Since the kernel of Wy(B/p™B) & B/p™B is nilpotent it follows, by smoothness of f
in a neighbourhood of Spec B/pB in Spec B, that there exists a ring homomorphism
o: B = Wy(B/p™B) such that 0o f = Wa(r) o (f,é) and pjoo =n. Sop,ocisa
p—derivation of 7 prolonging 8. By the universality property (1.4), there exists a ring
homomorphism u : B' - B/p™B such that uo f! = n (and u 08 = p; 0 ). This closes
the proof of the Lemma and hence of Proposition (1.5).

In what follows it is convenient to use the following definition. A scheme X/R will be
called infinitesimally trivial if the absolute Frobenius Fyx, of X, lifts to an endomorphism
of the scheme X; compatibly with the unique lifting of the Frobenius of & to R;. (Of course
this notion depends only on X;.) It will be called infinitesimally non trivial otherwise.
Similar definitions can be given for group schemes, by requiring that the lifting of the
Frobenius be compatible with multiplication, inverse and unit, in the obvious sense.

Proposition (1.7). Assume we are in the situation of (1.5). Then the map X} —
Xo has a section (equivalently X is Xo—isomorphic to the “Frobenius tangent bundle”
FT(Xo/k)) if and only if X/ R is infinitesimally trivial. And the same statement holds in
the category of group schemes.

Proof. By the universlity property (1.4) there is a section of X} — X if and only if
there is a p—derivation of Ox, — Oy, prolonging the p—derivation on R. Giving such
a p—derivation d is equivalent to giving a lifting ¢ : X; — X, of the Frobenius of Xy
compatible with the unique lifting of the Frobenius on R; (via the formula ¢(z) = =’ +pdz,
well defined due to flatness} which closes the proof.

We will need the following important remark of Raynaud which is an easy consequence
of basic properties of the Cartier operator:

Proposition (1.8). (Raynaud [Ray2], 1.5.4) Let X/R be a smooth projective curve of
genus at least 2. Then X/R is infinitesimally non trivial.

For the next Proposition we need the following easy consequence of known properties
of vector bundles on curves.



Lemma (1.9). Consider an exact sequence of vector bundles on a smooth projective
curve Xo of genus g > 2 over k:

0+0x, 2 E2L->0

where L is a line bundle of degree > (2g — 2)/p. If the extension is non split then F is
ample.

Proof. By [MD], Corollaire 3, p. 45 if E is not ample then the pull back by a suitable
power of Frobenius of the sequence splits. But due to the condition on the degree of L
the maps induced by Frobenius

Ext'(L,0x,) = Ext!(F*L,0x,) = Ext'(F**L,0x,) — ...

are injective by the criterion [T], Theorem 15, p. 73 (and definition 11, p.79). So if our
sequence is non split, its pull back under a power of Frobenius cannot split, a contradiction.
The Lemma is proved.

Proposition (1.10). Let X/R be a smooth projective curve of genus at least 2. Then
the scheme X, is affine.

Proof. Recall by (1.5) that X} — X, is a Zariski locally trivial principal homogenous
space for the Frobenius tangent bundle FT(Xo/k) = Spec(S(F*wx,)). So it is defined by
some class

nc HI(X(), F"w};)
This class is non zero by (1.7) and (1.8). But on the other hand the principal homogenous
space corresponding to 7 has the following description. One considers the extension

0—)OX0—)E-+F‘MX°—}O
corresponding to the image of n under the natural isomorphism
HI(XU, F"w};) ~ E.’Et(F‘wxo,OXo)

one considers the projective bundle P(E) — X, and one consider the divisor D =
P(F*wy,) C P(E). Then the principal homogenous space corresponding to n identi-
fies with the complement P(E)\D. Since the extension above is non split, we get by
Lemma (1.9) that E is ample, i.e. that Op(gy(1) is ample. But D belongs to the linear
system of Op(g)(1) hence D is ample, hence X is affine and we are done.

Now, as explained in the Introduction, in order to prove Theorem A it is enough to
prove the following “non ramified version” of it:



Theorem (1.11). Let X/R be a smooth projective curve of genus g > 2 possessing an
R—rational point and embedded via this point into its Jacobian J/R. If p > 3 then

B(X(R) VI (R)tors) < p* - 37 - [p(29 — 2) + Gg] - !

If p = 2 then the same estimate holds with p* replaced by 649.

Proof. The argument will be parallel to the one in [BV] or [B4] where we treated the
function field case.
Set I := J(R)iors and consider the map

VL J(R) = Ji(k)

The restriction of V} to I' is injective if p > 3 and has kernel of order < 47 if p = 2;
indeed the kernel of the reduction map J(R) — Jo(k) is torsion free for p > 3 and contains
only points of order 2 if p = 2 (see [Sil], Chapter IV, Theorem (6.1) which extends with
identical proof to abelian varieties of arbitrary dimension).

Note that by (1.5) J3 is an extension of Jy by a vector group so B := pJ; coincides with
the maximal abelian subvariety of J} and the projection B — Jy is an isogeny through
which the multiplication by p on Jy factors; so the degree of B — J, is at most p*.

Claim. The image of V(') under the homomorphism J}(k) — Jy(k)/B(k) has car-

dinality at most p*s.

Indeed we will show that §(I'/pl") < p*. Write ' = I',@',» where ', is the p—primary
torsion of I' and ['yy is the prime to p torsion subgroup of I'. Since pI',, = T’y we only
have to check that §(T,/pl,) < p*. Let [[p"] be the subgroup of ' consisting of all
elements annihilated by p*. If L is the algebraic closure of the quotient field of R then
[[p"] € J(L)[p"] ~ (Z/p"Z)¥ hence the inverse image of ['[p"] in Z% is a free abelian
group of rank < 2g hence ['[p"]/I'[p*] N pI', is an F,—linear space of dimension at most
2g which implies that the same holds for I'/pl' = U, ([[p*}/T[p*] N p[',) and the Claim is

proved.

By the Claim above we have
p??
Vo(X(R) NT) C Xa(k) N [U(B(K) + b:)]

i=1

for some by, ..., by2e € JE(k). which implies in particular that

(X(R)AT) < C - SHB) +b) 0 X0



where C = 1if p > 3 and C = 49 if p = 2. On the other hand each B; := B + I
is complete while X; is affine by (1.10). Since both are closed subvarieties in J} their
intersection is both complete and affine so it is finite, 1.e. the set B;(k) N Xj(k) is finite.
Now we want to estimate the cardinality of this set. By (1.5) X and Jj are Zariski
locally trivial principally homogenous spaces for the Frobenius tangent bundles of X, and
Jo respectively. Let nx € H'(Xo, F*wx,) and n; € H'(Jo, F*(} /1) be the corresponding
cohomology classes defining these homogenous spaces and let

0 0x, = Ex o Flwy, =0

00y = Ec—= F'Q) =0

be the extension corresponding to nx,ns respectively. Consider the divisors Dy =
P(F*wx,) C P(Ex) and Dy = P(F*Qj ;) C P(Ej). Since Q) , =~ O% we have
Dy ~ Jy x P*7!. Note that these divisors belong to the linear systems associated to
Op(gx)(1) and Op(g,y(1) respectively and that we have identifications X; ~ P(Ex)\Dx
and JJ ~ P(E;)\D,. Let a: Xy — Jo be the inclusion. An argument similar to the cor-
responding one in [B2] section 1 shows that there is a natural restriction homomorphism
a*Ey — Ex prolonging the natural homomorphism a“ﬂ}o/k — wx,. The homomorphism
a* ;7 = Ex is clearly surjective so it induces a closed embedding P(Ex) C P(E;) pro-
longing the embedding X} C J}. By abuse we shall still denote by 7y, 7; the projections
P(Ex) — Xo,P(E;) = Jo.

It is standard to prove that the line bundle H := 730;,(30) ® Op(g,)(1) is very ample
on P(E;). Here O is the theta divisor on the Jacobian Jy. (Cf. [BV] for the argument.)

Next step is to compute the degree deguP(Ex) of P(Ex) as a subvariety of P(E;)
with respect to the embedding defined by ‘H. Note that

H® OP(EX) = Tr;x'ox(o) (30)® OP(EX)(I)

We may compute the selfintersection

(OpEx)(1) - OrEx)(1))P(Ex) = deg Frwx, = p(2g — 2)
hence we get
deguP(Ex) = p(2g9 — 2) + 6g

Finally we have
H®O0p, =7/05(30) =T, 770,(3(0 — n(b;)))

where m; : B; C J} = Jo, 7 : B C J} = Jy are the projections which, as we have shown,
have degree at most p* and T, : B; — B is the translation by —b;. So we get, using
(09) = ¢!, that

deg'HB = ng -39 g!



Now Bezout’s theorem in Fulton’s form [Fu] p.148, says that the number of irreducible
components in the intersection of two projective varieties of degrees d,, d; cannot exceed
dyd,. In particular

B(X3 N B;) < deguP(Ex) - degu B; < (p(29 — 2) + 6g) - p* - 3 - g!

which closes the proof of our Theorem (1.11), hence of Theorem A.

2. Higher p—jets, Greenberg transform, and §—formal functions.

(2.1) The construction in (1.4) may be iterated, and this leads to “higher order p—jet
spaces”. Assume R,4,¢ and f : R = B are as in (1.4). We write B!, BY in place
of R, B respectively and we write f° in place of f. One constructs a sequence of ring
homomorphisms f™ : B*! -4 B" (n > 1) and a sequence of p—derivations § : B*~! — B*
of f* having the following universality property: for any ring homomorphism g : B*~! —
C and any p—derivation @ : B"! — C such that do f*! = god : B2 — C, there
exists a unique ring homomorphism u : B" — C such that ¢ = vo f* and 9 = v o d.
This B™ will be called the p—jet algebra of order n of B. The construction is similar to
the one in (1.4). If B = R[T}/I we introduce families of indeterminates 7, 7", ..., T™, ..
and we prolong ¢ : R = R to ring homomorphisms: ¢ : R[T,...,T"~Y = R[T,...,T")]
by requiring that

¢(Ti(j)) — (Tl_(i))p +PT;ﬁ+1)

We get as in (1.4) p—derivations
§:R[T,...,T" Y] 5 R[T,...,T™]
of the inclusions and we set
B" = R|T,T',....T™)/(1,T,.., 1™

B*® = R[T,T',...,TW, /L T,..., 1"V, )

Here, as in the case of usual derivations, the upper ’ and (n) stand for “image under é and
8"" respectively. As in (1.4) this construction does not commute with localisation. So if
X/R is a scheme of finite type and U; are affine open sets covering X then the schemes
Spec O{U;)™ will not glue together. But it is easy to see that their p—adic completion
(i.e. the completions along the closed subset defined by p) do glue together to give a
formal scheme X™ which we may call the p—jet space of X of order n. Similarly gluing
the p—adic completions of Spec O(U;)™ we get a formal scheme X, the infinite p—jet
space of X. (In the special case when p is nilpotent on X the X™’s are actually schemes,
rather than merely formal schemes, and our X' here coincides with the X! defined in
(1.4). Moreover the sheaf of rings Oxn is generated in this case by Oxn-1 and §OQxn-1.)
Coming back to the general case, when p is not necessarly nilpotent on X, note that our
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construction is again functorial: X™ represents a functor analogue to the one in (1.4), but
this time in the frame of formal schemes. Moreover we have a projective system of formal
schemes

= X Xt s X0

where X® = X is the p—adic completion of X and X is the p—adic completion of the
inverse limit of the X™’s. Reducing the above system modulo p we get a projective system
of k—schemes:

W XF o X - = X2

Note that X§ = Xp = X ® k; note also that all transition maps in the latter system are
affine. The projective limit X§° of the latter system coincides of course with the reduction
modulo p of X,

Note also the following compatibility of the construction above with the construction
done in (1.4). Set R,, := R/p™'R, X,, := X @ R, and X := (X") ® R.; then the
equality in (1.3) immediately implies that we have the identification X ~ (X,,1.)".

A similar (obvious) discussion holds if we start with a group scheme G/ R instead of
a scheme X/R.

Here is a basic smoothness property of p—jets:

Proposition (2.2). Assume X/R is smooth along Xo. Then the morphisms X™ — X!
are smooth (by which we mean that they are locally obtained as p—adic completions of
smooth morphisms of schemes).

Proof. This is an easy exercise using Grothendieck’s Jacobian criterion of smoothness,
plus the explicit construction of p—jets given in (2.1). We leave this to the reader.

(2.3) Remark. A more precise statement can actually be proved, saying that X" —
X1 is locally a product with the p—adic completion of an affine space [B5]; we won’t
need this here.

Proposition (2.4). Assume X/R is smooth along Xo. Then forn > 1, Xp — X{™ " is
a (Zariski locally trivial) principal homogenous space for the “relative Frobenius tangent
bundle”

FT(XZ '/ X5™*) := Spec S(F'QX:-VX;—:) - X!
If in addition X/R is a group scheme then Ker(Xy — XJ™') are vector groups.

Proof. Similar to the proof of (1.5) and (1.6). Note that in order to apply the arguments
in (1.6) one needs a certain smoothness property; this is provided by Proposition (2.2).

(2.5) In what follows we prepare ourselves to prove that, at least in the smooth case,
X§° coincides with the “Greenberg transform”. In order to do this note that by the
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universality property of p—jets there is, for any scheme of finite type X/R, a natural
lifting map
V:X(R) = X®(R)

In case X is the affine line X is the infinite affine space and V is simply the map
V:R— RN, a Va = (a,da,8%,6%,..)
Composing with the “reduction modulo p map” we get for any X a map
Vo: X(R) = X(k)
In particular if X is the affine line we get the map
Vo:R= kN am Voa = (ra,néa,mé%, 76, ...)

where 7 : A = k is the canonical projection. On the other hand recall from (S] p.35 that
R has a unique multiplicative system of representatives 1 : k = R (i.e. a multiplicative
map such that 7 o = Idy) and if W(k) is the Witt ring of k then the map

6:W(k)=kN = R, 0(ao,a1,...)= i¢(a§")pi

1=0

is a ring isomorphism. The a;’s are called the Witt coordinates of a.

Lemma (2.6). The composed map
KN =w(k) 5 RZ kN

is bijective and its components, as well as the components of its inverse, are polynomials
with integer coefficients. More precisely, there exist universal polynomials with integer
coefficients Py, Py, ..., P,, ... such that

Vo0, oy, g, ..., ay, ...)) = (a0, 00,00 + Pe(ag, a1 )y .., an + Polag, o0, .. any),.0)

Example. Pz(ao,al) = Q’g-lﬂ’l

Proof.. We prove by induction on n > 0 that there exist universal polynomials P, £ > 0,
with integer coefficients such that for any

a= kapk eR, z= zb(ai-k)

k>0

we have
no__ p" P P! k
"a = Z[$"+k + Pnk(ml)!zl: <oy Ty Thy1s "'7'En+k—l)]p
k>0

12



Denote by O the coefficient of p* in the above formula.) This will close the proof for we
1

set P, := P, (one checks that Py = P, = 0). The case n = ( is clear. Assume the above
formula holds for n. We have
n rl+l 2 n .
¢(¢"a Z[$n+k + Par(zf, 7, .. w'i,xiw ) xi+k—1)]7’k
k>0

On the other hand we have

(6"a)? = E Qip*

k>0
where
Q() = 63
0 = P@g“lel
O = pal,, 007
+ank($0:”'a$k)$z+l? oy f:i-kl l)epw

+Rmk($05-“7mk—1!mza ty e n+L l) k > 2

for some universal polynomials R,;. Then a tedious but straightforward computation
gives the desired type of formula for

5™ = L (g(6%a) - (a)?)

e

and we are done.

Lemma (2.7). The map Vi : X(R) —» X§°(k) is bijective for X any scheme of finite
type over R.

Proof. Of course it is enough to assume X is affine. If X is an affine space then the
Corollary follows directly from Lemma (2.6). Assume now X C A" is a closed subscheme
so we may write

X = Spec R[T|/T

Consider the commutative diagram

ANR) B (AM)P(k)

So injectivity of Vg x is clear. To check surjectivity, take a point P € X°(k). Then we
have P = V°(P) for some P € AN(R). Now the equations defining X in (AY)$ have
the form (87 F)o where § > 0 and F € I (here the lower 0 means reduction mod p). So if
we fix any F' € I we have that

0,0,0,...) = (¢ F)o(VoP))j20 = (8 F)(VP))o)sz0 = (8 (F(VP)))o)sz0 = Vo(F(V P))

13



By injectivity of V, we get F(VP) =0 hence VP € X(R) and we are done.

(2.8) To make the following discussion easier, let’s make a definition: by a p—transform
we shall understand a functor X — X from the category of R—schemes of finite type to
the category of k—schemes, together with bijections X(R) ~ X (k) which are functorial
in X, such that all these data commute (in the obvious sense) with open immersions,
closed immersions and products. A construction due to Greenberg [Gr] (going back to
Lang’s thesis [L1], [L2]) provides a construction of a p—transform, called in the literature
the Greenberg transform. All we need to know about the Greenberg transform is that,
when restricted to smooth R—schemes, it gives reduced k—schemes, and, when applied
to the affine line, it gives the infinite affine space, with coordinates given by the Witt
coordinates. On the other hand Lemma (2.7) shows that the functor X — X§° together
with the bijections V : X(R) ~ X§°(k) also provide a p—transform. Now we have the
following Lemma whose (trivial) proof will be left to the reader:

Lemma (2.9). Assume we are given two p—transforms X — X and X + X. Assume the
foHowmg conditon (which we call (*)) is satisfied: there is an isomorphism of k—schemes

. L A such that the induced bijection u(k) : AY(k) = AY(k) coincides with the
bUeCthH Al(k) ~ A'(R) ~ A!(k) Then the two p—transforms become isomorpbic after
composition with the functor Z v Z,.q (i.e. there exist isomorphisms ux (X Yred —*
(X)rea (X any R—scheme of finite type) behaving functorially in X such that ux(k)
coincides with the bijection X (k) ~ X(R) ~ X(k)).

Putting together the considerations above we get:

Theorem (2.10). Let X X be the Greenberg transform. Then for any smooth X/ R
we have isomorphisms X ~ X§° behaving functorially in X.

Proof. We apply Lemina (2.9) to the Greenberg transform and to X — X§°. Condition
(*) follows from Lemma (2.6). Also, as noted before, the Greenberg transform of a smooth
scheme X/ R is reduced; but the same holds for X§° by (2.4) and we are done.

(2.11) In order to prove Theorem B in the Introduction we need more general discus-
sion. Let X/R be a scheme of finite type and denote by O°(X) the ring of §—formal
functions on X(R) (cf. the Introduction). Then there is a natural ring homomorphism
O(X®) = O%(X), f + f defined as follows. For any P € X(R), consider its lift-
ing V(P) € X*(R), V(P) : Spf R = X®; the latter induces a ring homomorphism
O(X*) = R and we let f(P) € R be the image of f under the above ring homomor-
phism.

The following Lemma summarizes some basic properties of O(X*) and O®(X).

14



Lemma (2.12). Let X/S be smooth. Then the following hold: 1) The map O(X*) —
O%®(X) is an isomorphism, in particular O(X ) is reduced, flat over R, and p—adically
complete, 2) The natural map O(X*®) ® k — O(X§) is injective, 3) If O(X§®) = k then
O(X*) = R, 4) If X} is affine for some n then X™ and X are affine formal schemes.
Moreover the maps O(X™) ® k =& O(X{) and O(X*®) ® k - O(X§°) are isomorphisms.
Finally O(X™) is topologically finitely generated and O(X>) is topologically d—finitely
generated by elements of O(X™) (i.e. topologically generated by finitely many elements
of O(X™) together with their p—derivatives of arbitrary order).

Proof. To check 1) it is sufficient to check injectivity, for then surjectivity follows. So
we may assume X = Spec R[T|/I, T = (T}, ...,Tn), hence

O(X*®) = (R[T,T",..)/(I,I',..)) = R[T,T",..] J(I,TI,..)°

where the upper ¢/ denotes the closure in the p—adic topology. Let f € O(X®) be
represented by ® € R[T,T",...] and assume f = 0. Let u : X(R) = R" be the embedding
defined by T, ...,Tn. We know that ®(u(P),u(P),...) =0 for all P € X(R). Reducing
modulo p we get Po(Vo(u(P))) = 0 where $y € k[T, T, ...] is the reduction of ®. Now
by (2.7) Vo(u(P)) runns through all of X$°(k). Since X is reduced (cf. (2.4)) we
get by Hilbert’s Nullstellensatz that & € (I, [’,...)o =image of ({,I',...) in k[T, T",...].
Hence ® = ¥° 4 p®' where ¥° € (/,1',...) and ®' € R[T,T",...]. Repeating the above
reasoning we may write ®' = ¥ 4 pd? ©? = ¥? 4 p®3 .. with ¥* € (/,1’,...) hence
® = P 4 pU¥' +p*W2 4+ .. e (,0',..)% hence f = 0 and 1) is checked.

2) follows immediately from the fact that p is a non zero divisor in O(X ).

3) follows immediately from 2) and the completeness of R and O(X).

4) is an easy exercise with formal schemes; one has to use the remark in (2.1) about
the generation of the structure sheaf of the schemes (X;)?, ¢ > ;.

We are now in the position to prove Theorem (2.13) below which proves in particular
Theorem B from the Introduction.

Theorem (2.13). If X/R is a smooth projective curve of genus at least 2 then, for
n > 1, X™ are affine formal schemes, and the same holds for X*°. Moreover O(X")
are topologically finitely generated and O(X ™) is topologically é—finitely generated by
elements in O(X"'). Finally O(X®) separates points on X(R). On the other hand if X
is a projective space over R then O(X*) = R.

Proof. Assume first X/ R is a smooth projective curve of genus at least 2. We know from
(1.10) that X} and hence the X}’s are affine varieties. So we simply apply assertion 4)
in (2.12), plus the fact that O(X§°) separates points on the affine scheme X§°.

Assume now X/ R is a projective space. Since through any two points of PV (R) passes
a projective line we may restrict ourselves to the case of the projective line X = Pj. By
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assertion 3) in Lemma (2.12) all we have to prove is that O(X$°) = k. Write X =
Spec R[y] U Spec R|z] with gluing defined by the isomorphism

Rly,y~'] = R[z,z7'], y+~— 27!

Then we have
X® =Spf Rly,y',y",..]"VU Spf Rlz,2,2",..]
with gluing given by the unique isomorphism
) " ]"

Rly,y ™' v, y",..]" = Rlz, 2712, 2", ...

extending the above one and commuting with §. One immediately checks by induction
that under this isomorphism we have

y(") -z LR+ pG,,

with
Fn—l € R[z,z"l, zl, zu, ”.,z(n—l)]‘, G'n c R[Z,z_l’ Z’, zh” . z(n)]-

Indeed, deriving yz = 1 we get
Y =271 = (p27P2) + (pz7P2 ) = (p2 )’ 4 ..

which proves our assertion for n = 1. Then using this formula, the induction step follows
trivially.
Hence
X = Spec kly,y',y",..]U Spec k[z,2', 2", ..]

with gluing given by
y(n) — (z'—])(") = _Z-Zp"z(n) + fn-l

where f,_1 € k[z,271,2',2", ..., 2(* 1], Assume now we have an element in O(XS). This
element is given by a polynomial

N
P(y) =3 Qi(w, v,y MY € kly, v, y" -, ™)
]
with the property that the rational fraction
N .
Pz =30 Qi(z7 (27 (27T (27
i=0

belongs to k[z,2,2",...,z2™]. We claim this forces P to belong to k. One proceeds by
induction on n. Indeed the coefficient of (2(™)V in P(z71) is

(“DM N Q= (T (7))
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By induction this forces N = 0 hence by induction again, P € k.
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